WorldWideScience

Sample records for regional high-resolution map

  1. High resolution physical map of porcine chromosome 7 QTL region and comparative mapping of this region among vertebrate genomes

    Directory of Open Access Journals (Sweden)

    Demeure Olivier

    2006-01-01

    Full Text Available Abstract Background On porcine chromosome 7, the region surrounding the Major Histocompatibility Complex (MHC contains several Quantitative Trait Loci (QTL influencing many traits including growth, back fat thickness and carcass composition. Previous studies highlighted that a fragment of ~3.7 Mb is located within the Swine Leucocyte Antigen (SLA complex. Internal rearrangements of this fragment were suggested, and partial contigs had been built, but further characterization of this region and identification of all human chromosomal fragments orthologous to this porcine fragment had to be carried out. Results A whole physical map of the region was constructed by integrating Radiation Hybrid (RH mapping, BAC fingerprinting data of the INRA BAC library and anchoring BAC end sequences on the human genome. 17 genes and 2 reference microsatellites were ordered on the high resolution IMNpRH212000rad Radiation Hybrid panel. A 1000:1 framework map covering 550 cR12000 was established and a complete contig of the region was developed. New micro rearrangements were highlighted between the porcine and human genomes. A bovine RH map was also developed in this region by mapping 16 genes. Comparison of the organization of this region in pig, cattle, human, mouse, dog and chicken genomes revealed that 1 the translocation of the fragment described previously is observed only on the bovine and porcine genomes and 2 the new internal micro rearrangements are specific of the porcine genome. Conclusion We estimate that the region contains several rearrangements and covers 5.2 Mb of the porcine genome. The study of this complete BAC contig showed that human chromosomal fragments homologs of this heavily rearranged QTL region are all located in the region of HSA6 that surrounds the centromere. This work allows us to define a list of all candidate genes that could explain these QTL effects.

  2. High-resolution mapping of biomass burning emissions in tropical regions across three continents

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto

    2015-04-01

    Biomass burning emissions from open vegetation fires (forest fires, savanna fires, agricultural waste burning), human waste and biofuel combustion contain large amounts of trace gases (e.g., CO2, CH4, and N2O) and aerosols (BC and OC), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate . With the help of recently released satellite products, biomass density based on satellite and ground-based observation data, and spatial variable combustion factors, this study developed a new high-resolution emissions inventory for biomass burning in tropical regions across three continents in 2010. Emissions of trace gases and aerosols from open vegetation burning are estimated from burned areas, fuel loads, combustion factors, and emission factors. Burned areas were derived from MODIS MCD64A1 burned area product, fuel loads were mapped from biomass density data sets for herbaceous and tree-covered land based on satellite and ground-based observation data. To account for spatial heterogeneity in combustion factors, global fractional tree cover (MOD44B) and vegetation cover maps (MCD12Q1) were introduced to estimate the combustion factors in different regions by using their relationship with tree cover under less than 40%, between 40-60% and above 60% conditions. For emission factors, the average values for each fuel type from field measurements are used. In addition to biomass burning from open vegetation fires, the emissions from human waste (residential and dump) burning and biofuel burning in 2010 were also estimated for 76 countries in tropical regions across the three continents and then allocated into each pixel with 1 km grid based on the population density (Gridded Population of the World v3). Our total estimates for the tropical regions across the three continents in 2010 were 17744.5 Tg CO2, 730.3 Tg CO, 32.0 Tg CH4, 31.6 Tg NOx, 119.2 Tg NMOC, 6.3 Tg SO2, 9.8 NH3 Tg, 81.8 Tg PM2.5, 48.0 Tg OC, and 5.7 Tg BC, respectively. Open

  3. A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling

    NARCIS (Netherlands)

    Lenaerts, J.T.M.|info:eu-repo/dai/nl/314850163; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; van Meijgaard, E.; Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891

    2012-01-01

    A new, high resolution (27 km) surface mass balance (SMB) map of the Antarctic ice sheet is presented, based on output of a regional atmospheric climate model that includes snowdrift physics and is forced by the most recent reanalysis data from the European Centre for Medium-Range Weather Forecasts

  4. High-resolution mapping of a 130-kb core region of the MYCN amplicon in neuroblastomas

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, J.L.; Brodeur, G.M. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1996-02-15

    This article reports on a high-resolution restriction map containing the MYCN locus. the exon-intron structure and tissue distribution of the laminin {gamma}2 chain (LAMC2) gene, which is mutated in some cases of junctional epidermolysis bullosa. The article also discusses the transcription and splicing of this gene, which result in alternative uses of the last two exons of the gene. The different tissue distributions of the transcripts indicate different functions for the gene in vivo. 36 refs., 8 figs., 3 tabs.

  5. A new, high-resolution surface mass balance map of Antarctica (1979-2010) based on regional atmospheric climate modeling

    Science.gov (United States)

    Lenaerts, J. T. M.; van den Broeke, M. R.; van de Berg, W. J.; van Meijgaard, E.; Kuipers Munneke, P.

    2012-02-01

    A new, high resolution (27 km) surface mass balance (SMB) map of the Antarctic ice sheet is presented, based on output of a regional atmospheric climate model that includes snowdrift physics and is forced by the most recent reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), ERA-Interim (1979-2010). The SMB map confirms high accumulation zones in the western Antarctic Peninsula (>1500 mm y-1) and coastal West Antarctica (>1000 mm y-1), and shows low SMB values in large parts of the interior ice sheet (181 Gt y-1. Snowfall shows modest interannual variability (σ = 114 Gt y-1), but a pronounced seasonal cycle (σ = 30 Gt mo-1), with a winter maximum. The main ablation process is drifting snow sublimation, which also peaks in winter but with little interannual variability (σ = 9 Gt y-1).

  6. A high-resolution linkage map of the achondroplasia critical region on human chromosome 4q16.3

    Energy Technology Data Exchange (ETDEWEB)

    Tiller, G.E.; Polumbo, P.A. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States)

    1994-09-01

    Achondroplasia is the most common nonlethal skeletal dysplasia, with an incidence of greater than 1/40,000 births. Recently, a random search of the genome using highly polymorphic autosomal markers has localized the gene for achondroplasia to the distal portion of human chromosome 4p. We report here the construction of a high-resolution linkage map of the critical region including the achondroplasia locus. The CEPH panel of pedigrees was genotyped at several loci using highly polymorphic markers, including the Huntington locus (IT15), D4S43, D4S115, and the gene for the {beta}-subunit of rod cGMP phosphodiesterase (PDEB). These data were incorporated into the CEPH v.6.6 database and a multipoint map was generated using the LINKAGE programs v.5.1. Based on reported recombination events in achondroplasia pedigrees, the gene for achondroplasia lies distal to the anonymous marker D4S43, in the 8 cM region defined as follows: cen-IT15-D4S43-D4S98-[D4S115-D4S111]-D4S90-PDEB. The disparity between the genetic distance and the physical distance (2 mB) among these markers likely reflects the high rate of recombination within the region. Extension of this linkage map further toward the telomere and identification of distal recombinant markers should expedite efforts directed toward isolation of the gene for achondroplasia.

  7. Regional validation of a high-resolution digital soil map using soil profile attributes

    Science.gov (United States)

    Digital soil mapping (DSM) for precision agriculture (PA) management is aimed at developing models that predict soil properties or classes using legacy soil data, sensors, and environmental covariates. The utility of DSM for PA centers on its ability to provide soil information to optimize crop yiel...

  8. High resolution mapping and positional cloning of ENU-induced mutations in the Rw region of mouse chromosome 5

    Directory of Open Access Journals (Sweden)

    Schimenti Kerry J

    2010-11-01

    Full Text Available Abstract Background Forward genetic screens in mice provide an unbiased means to identify genes and other functional genetic elements in the genome. Previously, a large scale ENU mutagenesis screen was conducted to query the functional content of a ~50 Mb region of the mouse genome on proximal Chr 5. The majority of phenotypic mutants recovered were embryonic lethals. Results We report the high resolution genetic mapping, complementation analyses, and positional cloning of mutations in the target region. The collection of identified alleles include several with known or presumed functions for which no mutant models have been reported (Tbc1d14, Nol14, Tyms, Cad, Fbxl5, Haus3, and mutations in genes we or others previously reported (Tapt1, Rest, Ugdh, Paxip1, Hmx1, Otoe, Nsun7. We also confirmed the causative nature of a homeotic mutation with a targeted allele, mapped a lethal mutation to a large gene desert, and localized a spermiogenesis mutation to a region in which no annotated genes have coding mutations. The mutation in Tbc1d14 provides the first implication of a critical developmental role for RAB-GAP-mediated protein transport in early embryogenesis. Conclusion This collection of alleles contributes to the goal of assigning biological functions to all known genes, as well as identifying novel functional elements that would be missed by reverse genetic approaches.

  9. High-resolution elevation mapping of the McMurdo Dry Valleys, Antarctica, and surrounding regions

    Science.gov (United States)

    Fountain, Andrew G.; Fernandez-Diaz, Juan C.; Obryk, Maciej; Levy, Joseph; Gooseff, Michael; Van Horn, David J.; Morin, Paul; Shrestha, Ramesh

    2017-07-01

    We present detailed surface elevation measurements for the McMurdo Dry Valleys, Antarctica derived from aerial lidar surveys flown in the austral summer of 2014-2015 as part of an effort to understand geomorphic changes over the past decade. Lidar return density varied from 2 to > 10 returns m-2 with an average of about 5 returns m-2. Vertical and horizontal accuracies are estimated to be 7 and 3 cm, respectively. In addition to our intended targets, other ad hoc regions were also surveyed including the Pegasus flight facility and two regions on Ross Island, McMurdo Station, Scott Base (and surroundings), and the coastal margin between Cape Royds and Cape Evans. These data are included in this report and data release. The combined data are freely available at https://doi.org/10.5069/G9D50JX3" target="_blank">https://doi.org/10.5069/G9D50JX3.

  10. High-Resolution Mapping of Biomass Burning Emissions in Three Tropical Regions.

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo; Yamaguchi, Yasushi

    2015-09-15

    Biomass burning in tropical regions plays a significant role in atmospheric pollution and climate change. This study quantified a comprehensive monthly biomass burning emissions inventory with 1 km high spatial resolution, which included the burning of vegetation, human waste, and fuelwood for 2010 in three tropical regions. The estimations were based on the available burned area product MCD64A1 and statistical data. The total emissions of all gases and aerosols were 17382 Tg of CO2, 719 Tg of CO, 30 Tg of CH4, 29 Tg of NOx, 114 Tg of NMOC (nonmethane organic compounds), 7 Tg of SO2, 10 Tg of NH3, 79 Tg of PM2.5 (particulate matter), 45 Tg of OC (organic carbon), and 6 Tg of BC (black carbon). Taking CO as an example, vegetation burning accounted for 74% (530 Tg) of the total CO emissions, followed by fuelwood combustion and human waste burning. Africa was the biggest emitter (440 Tg), larger than Central and South America (113 Tg) and South and Southeast Asia (166 Tg). We also noticed that the dominant fire types in vegetation burning of these three regions were woody savanna/shrubland, savanna/grassland, and forest, respectively. Although there were some slight overestimations, our results are supported by comparisons with previously published data.

  11. A high-resolution linkage map of the citrus tristeza virus resistance gene region in Poncirus trifoliata (L.) Raf.

    Science.gov (United States)

    Fang, D Q; Federici, C T; Roose, M L

    1998-01-01

    Resistance to citrus tristeza virus (CTV) was evaluated in 554 progeny of 10 populations derived from Poncirus trifoliata. A dominant gene (Ctv) controlled CTV resistance in P. trifoliata. Twenty-one dominant PCR-based DNA markers were identified as linked to Ctv by bulked segregant analysis. Of the 11 closest markers to Ctv, only 2 segregated in all populations. Ten of these markers were cloned and sequenced, and codominant RFLP markers were developed. Seven RFLP markers were then evaluated in 10 populations. Marker orders were consistent in all linkage maps based on data of single populations or on combined data of populations with similar segregation patterns. In a consensus map, the six closest marker loci spanned 5.3 cM of the Ctv region. Z16 cosegregated with Ctv. C19 and AD08 flanked Ctv at distances of 0.5 and 0.8 cM, respectively. These 3 markers were present as single copies in the Poncirus genome, and could be used directly for bacterial artificial chromosome library screening to initiate a walk toward Ctv. BLAST searches of the GenBank database revealed high sequence similarities between 2 markers and known plant disease resistance genes, indicating that a resistance gene cluster exists in the Ctv region in P. trifoliata. PMID:9755216

  12. Using object-oriented classification and high-resolution imagery to map fuel types in a Mediterranean region.

    Science.gov (United States)

    L. Arroyo; S.P. Healey; W.B. Cohen; D. Cocero; J.A. Manzanera

    2006-01-01

    Knowledge of fuel load and composition is critical in fighting, preventing, and understanding wildfires. Commonly, the generation of fuel maps from remotely sensed imagery has made use of medium-resolution sensors such as Landsat. This paper presents a methodology to generate fuel type maps from high spatial resolution satellite data through object-oriented...

  13. Geomorphology and vegetation mapping the ice-free terrains of the Western Antarctic Peninsula region using very high resolution imagery from an UAV

    Science.gov (United States)

    Vieira, G.; Mora, C.; Pina, P.; Bandeira, L.; Hong, S. G.

    2014-12-01

    The West Antarctic Peninsula (WAP) is one of the Earth's regions with a fastest warming signal since the 1950's with an increase of over +2.5 ºC in MAAT. Significant changes have been reported for glaciers, ice-shelves, sea-ice and also for the permafrost environment. Mapping and monitoring the ice-free areas of the WAP has been until recently limited by the available aerial photo surveys, but also by the scarce high resolution satellite imagery (e.g. QuickBird, WorldView, etc.) that are seriously constrained by the high cloudiness of the region. Recent developments in Unmanned Aerial Vehicles (UAV's), which have seen significant technological advances and price reduction in the last few years, allow for its systematical use for mapping and monitoring in remote environments. In the framework of projects PERMANTAR-3 (PTDC/AAG-GLO/3908/2012 - FCT) and 3DAntártida (Ciência Viva), we complement traditional terrain surveying and mapping, satellite remote sensing (SAR and optical) and D-GPS deformation monitoring, with the application of an UAV. In this communication, we present the results from the application of a Sensefly ebee UAV in mapping the vegetation and geomorphological processes (e.g. sorted circles), as well as for digital elevation model generation in a test site in Barton Pen., King George Isl.. The UAV is a lightweight (ci. 700g) aircraft, with a 96 cm wingspan, which is portable and easy to transport. It allows for up to 40 min flight time, with application of RGB or NIR cameras. We have tested the ebee successfully with winds up to 10 m/s and obtained aerial photos with a ground resolution of 4 cm/pixel. The digital orthophotomaps, high resolution DEM's together with field observations have allowed for deriving geomorphological maps with unprecedented detail and accuracy, providing new insight into the controls on the spatial distribution of geomorphological processes. The talk will focus on the first results from the field surveys of February and

  14. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  15. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  16. Glacial lake mapping with very high resolution satellite SAR data

    Science.gov (United States)

    Strozzi, T.; Wiesmann, A.; Kääb, A.; Joshi, S.; Mool, P.

    2012-08-01

    Floods resulting from the outbursts of glacial lakes are among the most far-reaching disasters in high mountain regions. Glacial lakes are typically located in remote areas and space-borne remote sensing data are an important source of information about the occurrence and development of such lakes. Here we show that very high resolution satellite Synthetic Aperture Radar (SAR) data can be employed for reliably mapping glacial lakes. Results in the Alps, Pamir and Himalaya using TerraSAR-X and Radarsat-2 data are discussed in comparison to in-situ information, and high-resolution satellite optical and radar imagery. The performance of the satellite SAR data is best during the snow- and ice-free season. In the broader perspective of hazard management, the detection of glacial lakes and the monitoring of their changes from very high-resolution satellite SAR intensity images contributes to the initial assessment of hazards related to glacial lakes, but a more integrated, multi-level approach needs also to include other relevant information such as glacier outlines and outline changes or the identification of unstable slopes above the lake and the surrounding area, information types to which SAR analysis techniques can also contribute.

  17. A gene-based high-resolution comparative radiation hybrid map as a framework for genome sequence assembly of a bovine chromosome 6 region associated with QTL for growth, body composition, and milk performance traits

    Directory of Open Access Journals (Sweden)

    Laurent Pascal

    2006-03-01

    Full Text Available Abstract Background A number of different quantitative trait loci (QTL for various phenotypic traits, including milk production, functional, and conformation traits in dairy cattle as well as growth and body composition traits in meat cattle, have been mapped consistently in the middle region of bovine chromosome 6 (BTA6. Dense genetic and physical maps and, ultimately, a fully annotated genome sequence as well as their mutual connections are required to efficiently identify genes and gene variants responsible for genetic variation of phenotypic traits. A comprehensive high-resolution gene-rich map linking densely spaced bovine markers and genes to the annotated human genome sequence is required as a framework to facilitate this approach for the region on BTA6 carrying the QTL. Results Therefore, we constructed a high-resolution radiation hybrid (RH map for the QTL containing chromosomal region of BTA6. This new RH map with a total of 234 loci including 115 genes and ESTs displays a substantial increase in loci density compared to existing physical BTA6 maps. Screening the available bovine genome sequence resources, a total of 73 loci could be assigned to sequence contigs, which were already identified as specific for BTA6. For 43 loci, corresponding sequence contigs, which were not yet placed on the bovine genome assembly, were identified. In addition, the improved potential of this high-resolution RH map for BTA6 with respect to comparative mapping was demonstrated. Mapping a large number of genes on BTA6 and cross-referencing them with map locations in corresponding syntenic multi-species chromosome segments (human, mouse, rat, dog, chicken achieved a refined accurate alignment of conserved segments and evolutionary breakpoints across the species included. Conclusion The gene-anchored high-resolution RH map (1 locus/300 kb for the targeted region of BTA6 presented here will provide a valuable platform to guide high-quality assembling and

  18. High-Resolution Geologic Mapping in Eastern Candor Chasma: 2017 Status Report

    Science.gov (United States)

    Okubo, C. H.; Gaither, T. A.

    2017-06-01

    This abstract summarizes current results and planned activities from an ongoing initiative to construct a series of high-resolution structural and geologic maps in the east Candor Chasma region of Valles Marineris, Mars.

  19. High Resolution Regional Climate Simulations over Alaska

    Science.gov (United States)

    Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.

    2016-12-01

    In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.

  20. High-Resolution Maps of Mouse Reference Populations

    Directory of Open Access Journals (Sweden)

    Petr Simecek

    2017-10-01

    Full Text Available Genetic reference panels are widely used to map complex, quantitative traits in model organisms. We have generated new high-resolution genetic maps of 259 mouse inbred strains from recombinant inbred strain panels (C57BL/6J × DBA/2J, ILS/IbgTejJ × ISS/IbgTejJ, and C57BL/6J × A/J and chromosome substitution strain panels (C57BL/6J-Chr#, C57BL/6J-Chr#, and C57BL/6J-Chr#. We genotyped all samples using the Affymetrix Mouse Diversity Array with an average intermarker spacing of 4.3 kb. The new genetic maps provide increased precision in the localization of recombination breakpoints compared to the previous maps. Although the strains were presumed to be fully inbred, we found residual heterozygosity in 40% of individual mice from five of the six panels. We also identified de novo deletions and duplications, in homozygous or heterozygous state, ranging in size from 21 kb to 8.4 Mb. Almost two-thirds (46 out of 76 of these deletions overlap exons of protein coding genes and may have phenotypic consequences. Twenty-nine putative gene conversions were identified in the chromosome substitution strains. We find that gene conversions are more likely to occur in regions where the homologous chromosomes are more similar. The raw genotyping data and genetic maps of these strain panels are available at http://churchill-lab.jax.org/website/MDA.

  1. High resolution reflection seismic mapping of shallow coal seams

    CSIR Research Space (South Africa)

    Mngadi, SB

    2013-10-01

    Full Text Available Subsidence and collapse of unmapped shallow coal mine workings poses a risk to the public and hampers the development of valuable property. A high-resolution reflection seismic survey was conducted to determine whether it is possible to map...

  2. FMC cameras, high resolution films and very large scale mapping

    Science.gov (United States)

    Tachibana, Kikuo; Hasegawa, Hiroyuki

    1988-06-01

    Very large scale mapping (1/250) was experimented on the basis of FMC camera, high resolution film and total station surveying. The future attractive combination of precision photogrammetry and personal computer assisted terrestrial surveying was investigated from the point of view of accuracy, time effectiveness and total procedures control.

  3. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile...... dynamics is followed in situ during varying loading conditions by reciprocal space mapping: during uninterrupted tensile deformation, formation of subgrains is observed concurrently with broadening of Bragg reflections shortly after the onset of plastic deformation. When the traction is terminated, stress...

  4. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, Dick M. A.; Schmitt, Thierry

    2017-04-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODnet is entering its 3rd phase with operational portals providing access to marine data for bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities, complemented by checkpoint projects, analysing the fitness for purpose of data provision. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a resolution of 1/8 arcminute * 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs from 27 European data providers from 15 countries. For areas without coverage use has been made of the latest GEBCO DTM. The catalogue services and the generated EMODnet DTM have been published at the dedicated EMODnet Bathymetry portal which includes a versatile DTM viewing service that also supports downloading in various formats. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM) as part of the third phase of EMODnet. This new project will continue gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry

  5. Clickstream data yields high-resolution maps of science

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Johan [Los Alamos National Laboratory; Van De Sompel, Herbert [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Chute, Ryan [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Balakireva, Lyudmila [Los Alamos National Laboratory

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  6. Evaluation of the altimetry from SRTM-3 and planimetry from high-resolution PALSAR FBD data for semi-detailed topographic mapping in the Amazon Region.

    Science.gov (United States)

    Rodrigues, Thiago G; Paradella, Waldir R; Oliveira, Cleber G

    2011-09-01

    The Brazilian Amazon has a deficit of 35% of coverage regarding topographic mapping at semi-detailed (1:100,000) scale. This paper presents an alternative to overcome this scenario using a combination of planialtimetric information from two orbital SAR (Synthetic Aperture Radar) missions. The altimetry was acquired from Shuttle Radar Topography Mission (SRTM), while the planimetry was provided from Fine Beam Dual (FBD) images of the Phased Array L-band Synthetic Aperture Radar (PALSAR) sensor. The research was carried out in the mountainous area of the Serra dos Carajás (Pará State), located on the Amazon region. The quality of the orbital topographic information was evaluated regarding precise planialtimetric measurements acquired from Global Positioning System (GPS) field campaigns. The evaluations were performed following two approaches: (1) the use of Root Mean Square Error (RMSE) and (2) tendency and precision hypothesis tests. The investigation has shown that the planialtimetric quality of the orbital products fulfilled the Brazilian Map Accuracy Standards requirements for 1:100,000 A Class map. Thus, the use of combination of information provided by PALSAR and SRTM-3 data can be considered a promising alternative for production and update of semi-detailed topographic mapping in similar environments of the Amazon region, where topographic information is lacking or presents low quality.

  7. Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping

    NARCIS (Netherlands)

    Budiman, M.A.; Chang, S.B.; Leel, S.; Yang, T.J.; Zhang, H.B.; Jong, de J.H.S.G.M.; Wing, A.

    2004-01-01

    Abscission is a universal process whereby plants shed their organs, such as flowers, fruit and leaves. In tomato, the non-allelic mutations jointless and jointless-2 have been discovered as recessive mutations that completely suppress the formation of pedicel abscission zones. A high resolution

  8. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    G. P. Asner

    2012-07-01

    Full Text Available High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40% of the Colombian Amazon – a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i employing a universal approach to airborne LiDAR-calibration with limited field data; (ii quantifying environmental controls over carbon densities; and (iii developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  9. High-resolution mapping of bifurcations in nonlinear biochemical circuits

    Science.gov (United States)

    Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.

    2016-08-01

    Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.

  10. The high resolution mapping of the Venice Lagoon tidal network

    Science.gov (United States)

    Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Bellafiore, Debora; Trincardi, Fabio

    2017-04-01

    One of the biggest challenges of the direct observation of the ocean is to achieve a high resolution mapping of its seafloor morphology and benthic habitats. So far, sonars have mapped just 0.05% of the ocean floor with less than ten-meter resolution. The recent efforts of the scientific community have been devoted towards the mapping of both Deep Ocean and very shallow coastal areas. Coastal and transitional environments in particular undergo strong morphological changes due to natural and anthropogenic pressure. Nowadays, only about 5% of the seafloor of these environments † have been mapped: the shallowness of these environments has prevented the use of underwater acoustics to reveal their morphological features. The recent technological development of multibeam echosounder systems, however, enables these instruments to achieve very high performances also in such shallow environments. In this work, we present results and case studies of an extensive multibeam survey carried out in the Lagoon of Venice in 2013. The Lagoon of Venice is the biggest lagoon in the Mediterranean Sea with a surface of about 550 km2 and with an average depth of about 1 m. In the last century, the morphological and ecological properties of the lagoon changed dramatically: the surface of the salt marshes was reduced by 60% and some parts of the lagoon are deepening with a net sediment flux exiting from the inlets. Moreover, major engineering interventions are currently ongoing at the inlets (MOSE project). These changes at the inlets could affect substantially the lagoon environment. To understand and monitor the future evolution of the Lagoon of Venice, ISMAR within the project RITMARE (a National Research Programme funded by the Italian Ministry of University and Research) carried out an extensive survey, involving a team of more than 25 scientists, to collect high resolution (0.5 m) bathymetry of key study areas such as the tidal inlets and channels. Following a broad

  11. Exploring for subtle traps with high-resolution paleogeographic maps

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, T.B.; Breyer, J.A.

    1988-01-01

    High-resolution paleogeographic maps depicting the depositional history of the Reklaw 1 interval provide a basis for prospecting for subtle traps in the updip Reklaw trend in south Texas. The Reklaw 1 interval began with sand being carried southwest by longshore currents to form the barrier bar that forms the reservoir in Atkinson field. The hydrocarbons are trapped by the updip pinch-out of barrier-bar sand into lagoonal mud. Stratigraphic traps similar to Atkinson field could be present along depositional strike if the sand in the field were part of a more extensive-bar system. After the barrier bar formed, distributary-mouth bars prograded seaward depositing the bar-finger sands that are the reservoirs in Hysaw and Flax fields. Subtle structural traps could be present where small down-to-the-north faults associated with the Sample fault system cut the bar-finger sands downdip from the established production. Farther down paleoslope, the distributary channels began to bifurcate and the distributary-mouth bar coalesced to form a broad delt-front sheet sand. Burnell, Hondo Creek, and Runge West fields produce from this sheet sand near the unstable shelf margin. A rapid rise in relative sea level terminated deposition of the Reklaw 1 interval. Many of the oil and gas fields remaining to be discovered in the United States are in mature petroleum provinces where much of the remaining oil and gas probably resides in subtle traps. High-resolution paleogeographic maps may be a key to finding these subtle traps.

  12. HIGH-RESOLUTION ACOUSTIC MAPPING OF GAS CHARGED SEDIMENTS AND LIVING BENTHIC FORAMINIFERA ASSEMBLAGES FROM THE NE REGION OF THE GUANABARA BAY (RJ, BRAZIL

    Directory of Open Access Journals (Sweden)

    Francielli Paula Delavy

    2016-10-01

    Full Text Available This work was performed in the NE region of the Guanabara Bay, a highly impacted Brazilian coastal system, located in Rio de Janeiro State. It aimed to: i identify and map the areas with occurrence of gas in the sediment, as well as its acoustic signature; ii characterize the physical properties of the sediments and; iii document the response of microbenthic organisms (living benthic foraminifera to changes in quantity and quality of organic matter. Seismic surveys at the frequency of 12 kHz identified a large area with about 50% gas charged sediments in the study area. The main acoustic signatures of the shallow gas were black shadow and gas blanket. In addition, features related to gas seepages to the water column (acoustic plumes and pockmarks and gas percolation within the sediments (intra-sedimentary plumes, turbidity pinnacles were also identified. The gas has a biogenic origin and results from the high sedimentation rate between 0.03 to 0.9 cm.year-1 and from the decomposition of large amount of organic matter (10-20%. Vertical distribution of gas ranges from few centimeters to 9 m below the water-sediments interface. These occurrences are related to both gas migration from lower sedimentary layers to Holocene muds above, and to recent generation in near-surface sediments as the area display favorable conditions for gas production. Cores ranging from 150-240 cm in length have predominantly muddy sediments and variations in the P-wave velocity followed the changes in sediment density, controlled mainly by the presence of gas in sediments, bioclasts accumulation, textural variation and percentage of organic matter. The TOC content and Rock-Eval pyrolysis parameters evaluated in nine surface sediment samples indicate that good to excellent amount of organic matter associated with moderate to good source potential for gas production is present in the study area. In these areas living benthic foraminifera are of reduced diversity and density

  13. High-resolution mapping of motor vehicle carbon dioxide emissions

    Science.gov (United States)

    McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.

    2014-05-01

    A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of 5 years, highlighting the importance of timely updates to motor vehicle emission inventories.

  14. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map

    Directory of Open Access Journals (Sweden)

    Yihua Tan

    2015-09-01

    Full Text Available This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate.

  15. Visualizing sediment dynamics through repeated high-resolution multibeam mapping

    Science.gov (United States)

    de Vries, J. J.; Greinert, J.; Maierhofer, T.

    2013-12-01

    abundance of smaller ripples and different net-transport rates of sediment into the Wadden Sea. Vertical stratification in the Marsdiep is determined by salinity with stronger vertical stratification in winter time. The Texelstroom channel is ebb-dominant with an outflow over the entire water column. However, during more vertically stratified conditions, the residual circulation is smaller at the bottom because the outflow at the surface is balanced at the bottom resulting in more symmetrical sand waves in summer. The repeated high-resolution multibeam surveys shed light on the highly dynamic seasonal behavior of sand waves in the Texelstroom channel and corroborates the high value of repeated multibeam surveys to visualize these dynamics.

  16. A High-resolution Reanalysis for the European CORDEX Region

    Science.gov (United States)

    Bentzien, Sabrina; Bollmeyer, Christoph; Crewell, Susanne; Friederichs, Petra; Hense, Andreas; Keller, Jan; Keune, Jessica; Kneifel, Stefan; Ohlwein, Christian; Pscheidt, Ieda; Redl, Stephanie; Steinke, Sandra

    2014-05-01

    A High-resolution Reanalysis for the European CORDEX Region Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on the regional reanalysis for Europe with a domain matching the CORDEX-EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). The COSMO reanalysis system comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-interim data. The reanalysis data set currently covers 6 years (2007-2012). The evaluation of the reanalyses is done using independent observations with special emphasis on precipitation and high-impact weather situations. The development and evaluation of the COSMO-based reanalysis for the CORDEX-Euro domain can be seen as a preparation for joint European activities on the development of an ensemble system of regional reanalyses for Europe.

  17. Evaluation of a High-Resolution Regional Reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  18. The high-resolution regional reanalysis COSMO-REA6

    Science.gov (United States)

    Ohlwein, C.

    2016-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  19. High-resolution genome-wide mapping of histone modifications.

    Science.gov (United States)

    Roh, Tae-young; Ngau, Wing Chi; Cui, Kairong; Landsman, David; Zhao, Keji

    2004-08-01

    The expression patterns of eukaryotic genomes are controlled by their chromatin structure, consisting of nucleosome subunits in which DNA of approximately 146 bp is wrapped around a core of 8 histone molecules. Post-translational histone modifications play an essential role in modifying chromatin structure. Here we apply a combination of SAGE and chromatin immunoprecipitation (ChIP) protocols to determine the distribution of hyperacetylated histones H3 and H4 in the Saccharomyces cerevisiae genome. We call this approach genome-wide mapping technique (GMAT). Using GMAT, we find that the highest acetylation levels are detected in the 5' end of a gene's coding region, but not in the promoter. Furthermore, we show that the histone acetyltransferase, GCN5p, regulates H3 acetylation in the promoter and 5' end of the coding regions. These findings indicate that GMAT should find valuable applications in mapping target sites of chromatin-modifying enzymes.

  20. Regional High Resolution Reanalysis Covered European North East Shelf

    Science.gov (United States)

    Bourdalle-Badie, R.; Benkiran, M.; Chanut, J.; Drillet, Y.; Reffray, G.

    2011-12-01

    Mercator-Ocean has developed a regional forecasting system at 1/12° resolution over the North East Atlantic (IBI: Iberia, Biscay and Irish), taking advantage of the recent developments in NEMO. This regional forecasting system uses boundary conditions from the Mercator-Ocean global reanalysis (GLORYS: Global Ocean ReanalYses and Simulations). The assimilation component of the Mercator Ocean system, is based on a reduced-order Kalman filter (the SEEK or Singular Extended Evolutive Kalman filter). An IAU method (Incremental Analysis Updates) is used to apply the increments in the system. The error statistics are represented in a sub-space spanned by a small number of dominant 3D error directions. The data assimilation system allows to constrain the model in a multivariate way with Sea Surface Temperature (AVHRR + Multi-satellite High resolution), together with all available satellite Sea Level Anomalies, and with in situ observations from the CORA-03 data base, including ARGO floats temperature and salinity measurements. This reanalysis covers the period from January 2002 to December 2009. In this presentation, the results obtained with this reanalysis system (1/12°) are compared to the GLORYS ones. A special focus will be made on the gain thanks to the higher resolution of the model and higher resolution of the SST assimilated in this reanalysis.

  1. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Science.gov (United States)

    Buongiorno Nardelli, B.; Guinehut, S.; Pascual, A.; Drillet, Y.; Ruiz, S.; Mulet, S.

    2012-10-01

    The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data) was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  2. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  3. High resolution skin colorimetry, strain mapping and mechanobiology.

    Science.gov (United States)

    Devillers, C; Piérard-Franchimont, C; Schreder, A; Docquier, V; Piérard, G E

    2010-08-01

    Skin colours are notoriously different between individuals. They are governed by ethnicities and phototypes, and further influenced by a variety of factors including photoexposures and sustained mechanical stress. Indeed, mechanobiology is a feature affecting the epidermal melanization. High-resolution epiluminescence colorimetry helps in deciphering the effects of forces generated by Langer's lines or relaxed skin tension lines on the melanocyte activity. The same procedure shows a prominent laddering pattern of melanization in striae distensae contrasting with the regular honeycomb pattern in the surrounding skin.

  4. Construction of high-resolution recombination maps in Asian seabass.

    Science.gov (United States)

    Wang, Le; Bai, Bin; Liu, Peng; Huang, Shu Qing; Wan, Zi Yi; Chua, Elaine; Ye, Baoqing; Yue, Gen Hua

    2017-01-10

    A high-density genetic map is essential for de novo genome assembly, fine mapping QTL for important complex traits, comparative genomic studies and understanding the mechanisms of genome evolution. Although a number of genomic resources are available in Asian seabass (Lates calcarifer), a high-density linkage map is still lacking. To facilitate QTL mapping for marker-assisted selection and genome assembly, and to understand the genome-wide recombination rates, we constructed high density linkage maps using three families and genotyping by sequencing. A high-density consensus linkage map consisting of 8, 274 markers was constructed based on sex-averaged genetic maps. The genetic maps were then aligned and integrated with the current genome assembly of Asian seabass. More than 90% of the genome contig sequences were anchored onto the consensus genetic map. Evidence of assembly errors in the current genome assembly was identified. A fragment of up to 2.5 Mb belonging to LG14 was assembled into Chr15. The length of family-specific sex-averaged maps ranged from 1348.96 to 1624.65 cM. Female maps were slightly longer than male maps using common markers. Female-to-male ratios were highly variable both across chromosomes within each family and throughout three families for each chromosome. However, the distribution patterns of recombination along chromosomes were similar between sexes across the whole genome. The overall recombination rates were significantly correlated with genome-wide GC content and the correlations were revealed to be stronger in females than in males. These high-density genetic maps provide not only essential tools for facilitating de novo genome assembly and comparative genomic studies in teleosts, but also critical resources for fine mapping QTL and genome-wide association mapping for economically important traits in Asian seabass.

  5. A high resolution CEPH crossover mapping panel and integrated map of chromosome 11.

    Science.gov (United States)

    Fain, P R; Kort, E N; Yousry, C; James, M R; Litt, M

    1996-10-01

    High resolution (0.1 cM) CEPH crossover mapping panels were constructed for chromosome 11. These panels will facilitate a transition from top-down physical and genetic mapping strategies to integrated breakpoint mapping strategies. Novel methods, which differ from other methods in overcoming the limitations of incomplete heterozygosity and variable marker density, were developed for creating the panels and integrated maps. This made it possible to identify and sublocalize the majority of crossovers in 61 families. The panels were used to map 139 microsatellite markers. A semi-integrated map and a fully-integrated map were constructed by combining these data with data from CEPH 7.1 and then integrating data from the radiation hybrid (RH) map. Genetic lengths estimated from the mapping panels were similar to the estimates obtained when all recombinant and non-recombinant offspring were included (189.4 cM in females and 126.1 cM in males), indicating that genetic distances are stable at this high marker density. The maps have a cM density of 0.62. The distance between ordered markers is 1.39-2.92 cM depending on the criterion for order and the extent of map integration. The 2D maps provide the resolution and flexibility needed to enhance current applications such as positional cloning and mapping complex disorders; while the mapping panels will greatly improve the resolution, reliability and efficiency of future genetic mapping.

  6. Impact of High Resolution SST Data on Regional Weather Forecasts

    Science.gov (United States)

    Jedlovec, Gary J.; Case, Jonathon; LaFontaine, Frank; Vazquez, Jorge; Mattocks, Craig

    2010-01-01

    Past studies have shown that the use of coarse resolution SST products such as from the real-time global (RTG) SST analysis[1] or other coarse resolution once-a-day products do not properly portray the diurnal variability of fluxes of heat and moisture from the ocean that drive the formation of low level clouds and precipitation over the ocean. For example, the use of high resolution MODIS SST composite [2] to initialize the Advanced Research Weather Research and Forecast (WRF) (ARW) [3] has been shown to improve the prediction of sensible weather parameters in coastal regions [4][5}. In an extend study, [6] compared the MODIS SST composite product to the RTG SST analysis and evaluated forecast differences for a 6 month period from March through August 2007 over the Florida coastal regions. In a comparison to buoy data, they found that that the MODIS SST composites reduced the bias and standard deviation over that of the RTG data. These improvements led to significant changes in the initial and forecasted heat fluxes and the resulting surface temperature fields, wind patterns, and cloud distributions. They also showed that the MODIS composite SST product, produced for the Terra and Aqua satellite overpass times, captured a component of the diurnal cycle in SSTs not represented in the RTG or other one-a-day SST analyses. Failure to properly incorporate these effects in the WRF initialization cycle led to temperature biases in the resulting short term forecasts. The forecast impact was limited in some situations however, due to composite product inaccuracies brought about by data latency during periods of long-term cloud cover. This paper focuses on the forecast impact of an enhanced MODIS/AMSR-E composite SST product designed to reduce inaccuracies due data latency in the MODIS only composite product.

  7. GERLUMPH DATA RELEASE 1: HIGH-RESOLUTION COSMOLOGICAL MICROLENSING MAGNIFICATION MAPS AND eResearch TOOLS

    Energy Technology Data Exchange (ETDEWEB)

    Vernardos, G.; Fluke, C. J.; Croton, D. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria, 3122 (Australia); Bate, N. F. [Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW, 2006 (Australia)

    2014-03-01

    As synoptic all-sky surveys begin to discover new multiply lensed quasars, the flow of data will enable statistical cosmological microlensing studies of sufficient size to constrain quasar accretion disk and supermassive black hole properties. In preparation for this new era, we are undertaking the GPU-Enabled, High Resolution cosmological MicroLensing parameter survey (GERLUMPH). We present here the GERLUMPH Data Release 1, which consists of 12,342 high resolution cosmological microlensing magnification maps and provides the first uniform coverage of the convergence, shear, and smooth matter fraction parameter space. We use these maps to perform a comprehensive numerical investigation of the mass-sheet degeneracy, finding excellent agreement with its predictions. We study the effect of smooth matter on microlensing induced magnification fluctuations. In particular, in the minima and saddle-point regions, fluctuations are enhanced only along the critical line, while in the maxima region they are always enhanced for high smooth matter fractions (≈0.9). We describe our approach to data management, including the use of an SQL database with a Web interface for data access and online analysis, obviating the need for individuals to download large volumes of data. In combination with existing observational databases and online applications, the GERLUMPH archive represents a fundamental component of a new microlensing eResearch cloud. Our maps and tools are publicly available at http://gerlumph.swin.edu.au/.

  8. High-resolution mapping of the triangle of Koch: Spatial heterogeneity of fast pathway atrionodal connections.

    Science.gov (United States)

    Chua, Kelvin; Upadhyay, Gaurav; Lee, Elliot; Aziz, Zaid; Beaser, Andrew; Ozcan, Cevher; Broman, Michael; Nayak, Hemal; Tung, Roderick

    2017-11-24

    Dedicated mapping studies of the triangle of Koch to characterize retrograde fast pathway activation have not been previously performed using high-resolution, 3-dimensional, multielectrode mapping technology. To delineate the activation pattern and spatial distribution of the retrograde fast pathway within the triangle of Koch during typical atrioventricular nodal reentrant tachycardia (AVNRT) and right ventricular pacing in a consecutive series of patients using the Rhythmia mapping system (Boston Scientific, Natick, MA). A total of 18 patients with symptomatic typical AVNRT referred for ablation underwent ultrahigh-density mapping of atrial activation with minielectrode basket configuration during tachycardia. The earliest atrial activation was mapped using automated annotation, with manual overreading by 2 independent observers. The triangle of Koch was classified into 3 anatomic regions: anteroseptal (His), midseptal, and posteroseptal (coronary sinus roof). Thirteen patients underwent mapping of atrial activation during ventricular pacing. A median of 422 mapping points (interquartile range 258-896 points) was acquired within the triangle of Koch during tachycardia. The most common site of earliest atrial activation within the triangle of Koch was anterior in 67% of patients (n = 12). Midseptal early atrial activation was seen in 17% (n = 3), and posteroseptal activation was observed in 11% (n = 2). One patient exhibited broad simultaneous activation of the entire triangle of Koch. Slow pathway potentials were not identified. With high-resolution multielectrode mapping, atrial activation during typical AVNRT exhibited anatomic variability and spatially heterogeneous activation within the triangle of Koch. These findings highlight the limitations of an anatomically based classification of atrioventricular nodal retrograde pathways. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  9. High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly.

    Science.gov (United States)

    Bartholomé, Jérôme; Mandrou, Eric; Mabiala, André; Jenkins, Jerry; Nabihoudine, Ibouniyamine; Klopp, Christophe; Schmutz, Jeremy; Plomion, Christophe; Gion, Jean-Marc

    2015-06-01

    Genetic maps are key tools in genetic research as they constitute the framework for many applications, such as quantitative trait locus analysis, and support the assembly of genome sequences. The resequencing of the two parents of a cross between Eucalyptus urophylla and Eucalyptus grandis was used to design a single nucleotide polymorphism (SNP) array of 6000 markers evenly distributed along the E. grandis genome. The genotyping of 1025 offspring enabled the construction of two high-resolution genetic maps containing 1832 and 1773 markers with an average marker interval of 0.45 and 0.5 cM for E. grandis and E. urophylla, respectively. The comparison between genetic maps and the reference genome highlighted 85% of collinear regions. A total of 43 noncollinear regions and 13 nonsynthetic regions were detected and corrected in the new genome assembly. This improved version contains 4943 scaffolds totalling 691.3 Mb of which 88.6% were captured by the 11 chromosomes. The mapping data were also used to investigate the effect of population size and number of markers on linkage mapping accuracy. This study provides the most reliable linkage maps for Eucalyptus and version 2.0 of the E. grandis genome. © 2014 CIRAD. New Phytologist © 2014 New Phytologist Trust.

  10. High resolution ocean fronts product from JPSS VIIRS for improved composite mapping

    Science.gov (United States)

    Gladkova, I.; Ignatov, A.; Kihai, Y.; Shahriar, F.; Petrenko, B.

    2016-02-01

    High-resolution composite maps of oceanic thermal fronts reveal their spatial distribution and variability, along with seasonal variability and climatology, which are used to study a variety of marine environmental phenomena. Customarily, fronts are detected in a clear sky domain of instantaneous Level 2 (swath) or 3 (gridded) SST images (e.g., Miller 2009, 2014). However, dynamic regions of the ocean (e.g., ocean currents, eddies and upwellings) are often misidentified as cloud by many current cloud masks, thus significantly limiting the front detection, exactly in the areas where it is needed the most. Using a gap-free, high-resolution Level 4 SST analysis (such as the 1km global NASA MUR), in which various high-resolution satellite data have been assimilated and blended with in situ data, appears attractive. Application of SIED algorithm (Cayula 1995) to MUR indeed provides daily frontal product at a 1km resolution. However, high-resolution thermal structure is degraded in the L4 products. In particular, it is less reliable in the coastal zones, and may over-smoothed (especially, when over-screened L2/3 products are used as input). The new NOAA operational instrument, VIIRS onboard S-NPP (launched in 2011) and two future satellites, J1 (2017) and J2 (2021), provides high quality and resolution SST imagery, superior to the current operational AVHRR and experimental MODIS sensors. The cloud mask employed in the NOAA Advanced Clear-Sky Processor for Oceans (ACSPO) SST system, is most liberal among the community SST products. Yet, false alarms do occasionally occur in ACSPO, especially in the dynamic oceanic regions. Performing front detection at the stage of cloud masking improves both fronts and mask. We plan to output the frontal product as an extra layer of the ACSPO SST product, which can be directly used in the composition process. We are very interested in discussing the new ACSPO fronts product, its utility and improvements, with our potential users.

  11. High resolution hybrid optical and acoustic sea floor maps (Invited)

    Science.gov (United States)

    Roman, C.; Inglis, G.

    2013-12-01

    This abstract presents a method for creating hybrid optical and acoustic sea floor reconstructions at centimeter scale grid resolutions with robotic vehicles. Multibeam sonar and stereo vision are two common sensing modalities with complementary strengths that are well suited for data fusion. We have recently developed an automated two stage pipeline to create such maps. The steps can be broken down as navigation refinement and map construction. During navigation refinement a graph-based optimization algorithm is used to align 3D point clouds created with both the multibeam sonar and stereo cameras. The process combats the typical growth in navigation error that has a detrimental affect on map fidelity and typically introduces artifacts at small grid sizes. During this process we are able to automatically register local point clouds created by each sensor to themselves and to each other where they overlap in a survey pattern. The process also estimates the sensor offsets, such as heading, pitch and roll, that describe how each sensor is mounted to the vehicle. The end results of the navigation step is a refined vehicle trajectory that ensures the points clouds from each sensor are consistently aligned, and the individual sensor offsets. In the mapping step, grid cells in the map are selectively populated by choosing data points from each sensor in an automated manner. The selection process is designed to pick points that preserve the best characteristics of each sensor and honor some specific map quality criteria to reduce outliers and ghosting. In general, the algorithm selects dense 3D stereo points in areas of high texture and point density. In areas where the stereo vision is poor, such as in a scene with low contrast or texture, multibeam sonar points are inserted in the map. This process is automated and results in a hybrid map populated with data from both sensors. Additional cross modality checks are made to reject outliers in a robust manner. The final

  12. High-resolution geologic mapping of the inner continental shelf: Nahant to Gloucester, Massachusetts

    Science.gov (United States)

    Barnhardt, Walter A.; Andrews, Brian D.; Butman, Bradford

    2006-01-01

    This report presents high-resolution maps of the seafloor offshore of Massachusetts, from Nahant to Gloucester. Approximately 134 km² of the inner shelf were mapped with a focus on the nearshore region in water depths less than 40 m (fig. 1.1). The maps were prepared as part of a cooperative mapping program between the U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM). They are based on marine geophysical data, sediment sampling, and bottom photography obtained on two research cruises carried out in 2003 and 2004. The primary objective of this program is to develop a suite of seafloor maps that provide geologic information for management of coastal and marine resources. Accurate maps of seafloor geology are important first steps toward protecting fish habitat, delineating marine reserves, and assessing environmental changes due to natural or human impacts. The maps also provide a geologic framework for scientific research, industry and the public. The organization of this report is outlined in the navigation bar along the left-hand margin of the page. This is section 1, the introduction. Section 2 briefly describes the mapping products contained in this report and has links to large-format map sheets, that can be viewed on line or downloaded. Section 3 is a description of the data collection, processing, and analysis procedures used to create the map products. Section 4 examines the geologic framework and late Quaternary evolution of the region, and presents two different strategies for mapping the complex seafloor. This report also contains four appendices that include GIS layers of all data collected in this study, and copies of the sample and photographic data used to validate the interpretations.

  13. Developing a high-resolution regional atmospheric reanalysis for Australia

    Science.gov (United States)

    White, Christopher; Fox-Hughes, Paul; Su, Chun-Hsu; Jakob, Dörte; Kociuba, Greg; Eisenberg, Nathan; Steinle, Peter; Harris, Rebecca; Corney, Stuart; Love, Peter; Remenyi, Tomas; Chladil, Mark; Bally, John; Bindoff, Nathan

    2017-04-01

    A dynamically consistent, long-term atmospheric reanalysis can be used to support high-quality assessments of environmental risk and likelihood of extreme events. Most reanalyses are presently based on coarse-scale global systems that are not suitable for regional assessments in fire risk, water and natural resources, amongst others. The Australian Bureau of Meteorology is currently working to close this gap by producing a high-resolution reanalysis over the Australian and New Zealand region to construct a sequence of atmospheric conditions at sub-hourly intervals over the past 25 years from 1990. The Australia reanalysis consists of a convective-scale analysis nested within a 12 km regional-scale reanalysis, which is bounded by a coarse-scale ERA-Interim reanalysis that provides the required boundary and initial conditions. We use an unchanging atmospheric modelling suite based on the UERRA system used at the UK Met Office and the more recent version of the Bureau of Meteorology's operational numerical prediction model used in ACCESS-R (Australian Community Climate and Earth-System Simulator-Regional system). An advanced (4-dimensional variational) data assimilation scheme is used to optimally combine model physics with multiple observations from aircrafts, sondes, surface observations and satellites to create a best estimate of state of the atmosphere over a 6-hour moving window. This analysis is in turn used to drive a higher-resolution (1.5 km) downscaling model over selected subdomains within Australia, currently eastern New South Wales and Tasmania, with the capability to support this anywhere in the Australia-New Zealand domain. The temporal resolution of the gridded analysis fields for both the regional and higher-resolution subdomains are generally one hour, with many fields such as 10 m winds and 2 m temperatures available every 10 minutes. The reanalysis also produces many other variables that include wind, temperature, moisture, pressure, cloud cover

  14. Very High Resolution Mapping of Tree Cover Using Scalable Deep Learning Architectures

    Science.gov (United States)

    ganguly, sangram; basu, saikat; nemani, ramakrishna; mukhopadhyay, supratik; michaelis, andrew; votava, petr; saatchi, sassan

    2016-04-01

    Several studies to date have provided an extensive knowledge base for estimating forest aboveground biomass (AGB) and recent advances in space-based modeling of the 3-D canopy structure, combined with canopy reflectance measured by passive optical sensors and radar backscatter, are providing improved satellite-derived AGB density mapping for large scale carbon monitoring applications. A key limitation in forest AGB estimation from remote sensing, however, is the large uncertainty in forest cover estimates from the coarse-to-medium resolution satellite-derived land cover maps (present resolution is limited to 30-m of the USGS NLCD Program). As part of our NASA Carbon Monitoring System Phase II activities, we have demonstrated that uncertainties in forest cover estimates at the Landsat scale result in high uncertainties in AGB estimation, predominantly in heterogeneous forest and urban landscapes. We have successfully tested an approach using scalable deep learning architectures (Feature-enhanced Deep Belief Networks and Semantic Segmentation using Convolutional Neural Networks) and High-Performance Computing with NAIP air-borne imagery data for mapping tree cover at 1-m over California and Maryland. Our first high resolution satellite training label dataset from the NAIP data can be found here at http://csc.lsu.edu/~saikat/deepsat/ . In a comparison with high resolution LiDAR data available over selected regions in the two states, we found our results to be promising both in terms of accuracy as well as our ability to scale nationally. In this project, we propose to estimate very high resolution forest cover for the continental US at spatial resolution of 1-m in support of reducing uncertainties in the AGB estimation. The proposed work will substantially contribute to filling the gaps in ongoing carbon monitoring research and help quantifying the errors and uncertainties in related carbon products.

  15. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  16. High-resolution physical map for chromosome 16q12.1-q13, the Blau syndrome locus

    Directory of Open Access Journals (Sweden)

    Bonavita Gina

    2002-08-01

    Full Text Available Abstract Background The Blau syndrome (MIM 186580, an autosomal dominant granulomatous disease, was previously mapped to chromosome 16p12-q21. However, inconsistent physical maps of the region and consequently an unknown order of microsatellite markers, hampered us from further refining the genetic locus for the Blau syndrome. To address this problem, we constructed our own high-resolution physical map for the Blau susceptibility region. Results We generated a high-resolution physical map that provides more than 90% coverage of a refined Blau susceptibility region. The map consists of four contigs of sequence tagged site-based bacterial artificial chromosomes with a total of 124 bacterial artificial chromosomes, and spans approximately 7.5 Mbp; however, three gaps still exist in this map with sizes of 425, 530 and 375 kbp, respectively, estimated from radiation hybrid mapping. Conclusions Our high-resolution map will assist genetic studies of loci in the interval from D16S3080, near D16S409, and D16S408 (16q12.1 to 16q13.

  17. High-resolution physical map for chromosome 16q12.1-q13, the Blau syndrome locus

    Science.gov (United States)

    Wang, Xiaoju; Kuivaniemi, Helena; Bonavita, Gina; Williams, Charlene J; Tromp, Gerard

    2002-01-01

    Background The Blau syndrome (MIM 186580), an autosomal dominant granulomatous disease, was previously mapped to chromosome 16p12-q21. However, inconsistent physical maps of the region and consequently an unknown order of microsatellite markers, hampered us from further refining the genetic locus for the Blau syndrome. To address this problem, we constructed our own high-resolution physical map for the Blau susceptibility region. Results We generated a high-resolution physical map that provides more than 90% coverage of a refined Blau susceptibility region. The map consists of four contigs of sequence tagged site-based bacterial artificial chromosomes with a total of 124 bacterial artificial chromosomes, and spans approximately 7.5 Mbp; however, three gaps still exist in this map with sizes of 425, 530 and 375 kbp, respectively, estimated from radiation hybrid mapping. Conclusions Our high-resolution map will assist genetic studies of loci in the interval from D16S3080, near D16S409, and D16S408 (16q12.1 to 16q13). PMID:12186634

  18. Mapping Urban Ecosystem Services Using High Resolution Aerial Photography

    Science.gov (United States)

    Pilant, A. N.; Neale, A.; Wilhelm, D.

    2010-12-01

    Ecosystem services (ES) are the many life-sustaining benefits we receive from nature: e.g., clean air and water, food and fiber, cultural-aesthetic-recreational benefits, pollination and flood control. The ES concept is emerging as a means of integrating complex environmental and economic information to support informed environmental decision making. The US EPA is developing a web-based National Atlas of Ecosystem Services, with a component for urban ecosystems. Currently, the only wall-to-wall, national scale land cover data suitable for this analysis is the National Land Cover Data (NLCD) at 30 m spatial resolution with 5 and 10 year updates. However, aerial photography is acquired at higher spatial resolution (0.5-3 m) and more frequently (1-5 years, typically) for most urban areas. Land cover was mapped in Raleigh, NC using freely available USDA National Agricultural Imagery Program (NAIP) with 1 m ground sample distance to test the suitability of aerial photography for urban ES analysis. Automated feature extraction techniques were used to extract five land cover classes, and an accuracy assessment was performed using standard techniques. Results will be presented that demonstrate applications to mapping ES in urban environments: greenways, corridors, fragmentation, habitat, impervious surfaces, dark and light pavement (urban heat island). Automated feature extraction results mapped over NAIP color aerial photograph. At this scale, we can look at land cover and related ecosystem services at the 2-10 m scale. Small features such as individual trees and sidewalks are visible and mappable. Classified aerial photo of Downtown Raleigh NC Red: impervious surface Dark Green: trees Light Green: grass Tan: soil

  19. Transfer of Technology for Cadastral Mapping in Tajikistan Using High Resolution Satellite Data

    Science.gov (United States)

    Kaczynski, R.

    2012-07-01

    European Commission funded project entitled: "Support to the mapping and certification capacity of the Agency of Land Management, Geodesy and Cartography" in Tajikistan was run by FINNMAP FM-International and Human Dynamics from Nov. 2006 to June 2011. The Agency of Land Management, Geodesy and Cartography is the state agency responsible for development, implementation, monitoring and evaluation of state policies on land tenure and land management, including the on-going land reform and registration of land use rights. The specific objective was to support and strengthen the professional capacity of the "Fazo" Institute in the field of satellite geodesy, digital photogrammetry, advanced digital satellite image processing of high resolution satellite data and digital cartography. Lectures and on-the-job trainings for the personnel of "Fazo" and Agency in satellite geodesy, digital photogrammetry, cartography and the use of high resolution satellite data for cadastral mapping have been organized. Standards and Quality control system for all data and products have been elaborated and implemented in the production line. Technical expertise and trainings in geodesy, photogrammetry and satellite image processing to the World Bank project "Land Registration and Cadastre System for Sustainable Agriculture" has also been completed in Tajikistan. The new map projection was chosen and the new unclassified geodetic network has been established for all of the country in which all agricultural parcel boundaries are being mapped. IKONOS, QuickBird and WorldView1 panchromatic data have been used for orthophoto generation. Average accuracy of space triangulation of non-standard (long up to 90km) satellite images of QuickBird Pan and IKONOS Pan on ICPs: RMSEx = 0.5m and RMSEy = 0.5m have been achieved. Accuracy of digital orthophoto map is RMSExy = 1.0m. More then two and half thousands of digital orthophoto map sheets in the scale of 1:5000 with pixel size 0.5m have been produced

  20. TRANSFER OF TECHNOLOGY FOR CADASTRAL MAPPING IN TAJIKISTAN USING HIGH RESOLUTION SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    R. Kaczynski

    2012-07-01

    Full Text Available European Commission funded project entitled: "Support to the mapping and certification capacity of the Agency of Land Management, Geodesy and Cartography" in Tajikistan was run by FINNMAP FM-International and Human Dynamics from Nov. 2006 to June 2011. The Agency of Land Management, Geodesy and Cartography is the state agency responsible for development, implementation, monitoring and evaluation of state policies on land tenure and land management, including the on-going land reform and registration of land use rights. The specific objective was to support and strengthen the professional capacity of the "Fazo" Institute in the field of satellite geodesy, digital photogrammetry, advanced digital satellite image processing of high resolution satellite data and digital cartography. Lectures and on-the-job trainings for the personnel of "Fazo" and Agency in satellite geodesy, digital photogrammetry, cartography and the use of high resolution satellite data for cadastral mapping have been organized. Standards and Quality control system for all data and products have been elaborated and implemented in the production line. Technical expertise and trainings in geodesy, photogrammetry and satellite image processing to the World Bank project "Land Registration and Cadastre System for Sustainable Agriculture" has also been completed in Tajikistan. The new map projection was chosen and the new unclassified geodetic network has been established for all of the country in which all agricultural parcel boundaries are being mapped. IKONOS, QuickBird and WorldView1 panchromatic data have been used for orthophoto generation. Average accuracy of space triangulation of non-standard (long up to 90km satellite images of QuickBird Pan and IKONOS Pan on ICPs: RMSEx = 0.5m and RMSEy = 0.5m have been achieved. Accuracy of digital orthophoto map is RMSExy = 1.0m. More then two and half thousands of digital orthophoto map sheets in the scale of 1:5000 with pixel size 0.5m

  1. Using High-Resolution Airborne LiDAR-Data for Landslide Mapping in the Eastern Alps

    Science.gov (United States)

    Kamp, N.

    2012-04-01

    Due to the increasing frequency of natural disasters like floods and landslides, the active remote sensing technique LiDAR (Light Detection and Ranging), has become a topic of great interest to the Federal State Government of Styria, Federal Republic of Austria. In a perennial project from 2008 to 2012 high-resolution 3D Airborne LiDAR Data of the Province of Styria, an area about 16.000km2 in south-eastern Austria were collected. These data were processed to create Digital Terrain Models (DTM) and Digital Surface Models (DSM) at 1m resolution with a vertical accuracy of 15 [cm] and a positional accuracy of 40 [cm]. High resolution DTMs can be used in different geo-related applications like geomorphological mapping or natural hazard mapping. DTMs show because of its high accuracy various natural and anthropogenic terrain features such as erosion scarps, alluvial fans, landslides, old creeks, topographic edges and karstforms, as well as walking paths and roads and in addition to that LiDAR data allows the detection and outlining of these different geomorphological and anthropogenic features with the help of ArcGIS 10 geoprocessing and analysing techniques, mathematical, statistical and image processing methods and the open source scripting language Python. As a result complex workflows and new geoprocessing tools can be implemented in an ArcGIS 10 workspace and are provided as easy to use toolbox contents. The landslide phenomena take in centre stage of the research work of the author. Thereby the main focus is targeted on sliding movements out of soils and bedrock. Factors like gravity take effect on slope stability directly and cause complex mass movements with a downslope directed, gliding movement of bed- and/or loose-rock as well as soil material. In this paper the author presents the result of her master thesis, an automatic ArcGIS 10 landslide mapping tool using high-resolution LiDAR data in the rock masses of the Eastern Alps (Province of Styria, Austria

  2. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    Science.gov (United States)

    Finn, Carol A.; Morgan, Lisa A.

    2002-06-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within

  3. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich

    2017-01-01

    dislocation structures can be identified using advanced electron microscopy and synchrotron techniques. A detailed characterization of the microstructure during cyclic loading by in-situ monitoring the internal structure within individual grains with high energy x-rays can help to understand and predict...... the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied...

  4. High resolution mapping of dust sources in Central Asia using MODIS imagery

    Science.gov (United States)

    Nobakht, Mohamad; Shahgedanova, Maria; White, Kevin

    2015-04-01

    Dust impacts the energy balance of the Earth via absorption and scattering of radiation in the atmosphere and through the mechanism by which aerosols modify the optical properties of clouds and land surfaces. It is now established that the deposition of mineral dust significantly affects high-altitude environments, including both snow pack and glacier ice. Central Asia is a region where large deserts are located in close proximity to the mountains whose extensive glaciers and snow pack provide runoff supporting agriculture in the densely populated foothills. More than 75% of the territory in Central Asia is desert lowland varying from sandy to stony, salt, and clay deserts. Significant amounts of wind-blown desert dust, originating from these deserts, are deposited on glaciers of Tian Shan Mountains in Central Asia. Satellite remote sensing using optical imagery has provided us with a powerful tool for identification and characterization of dust emission sources. In this study we investigated the spatial distribution and seasonal pattern of dust emissions in surrounding lowlands of the Tian Shan Mountains using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Seasonality of dust emission is studied by analyzing MODIS Deep Blue aerosol optical depth, acquired over a period of 12 years from January 2003 to December 2014. We analyzed the spatial distribution and frequency of occurrence of dust optical depth to identify the main dust sources in this region. In order to produce a detailed map of dust emission sources, we also employed a dust enhancement algorithm to obtain high resolution (1km) dust enhancement products from MODIS imageries. The high resolution of MODIS dust enhancement products enabled us to identify several small, eroding point sources within the dust source areas. Different seasonal patterns of dust emissions were observed in northern, western and southern deserts around the Tian Shan Mountains and their relation to climatological

  5. Impacts of high resolution model downscaling in coastal regions

    Science.gov (United States)

    Bricheno, Lucy; Wolf, Judith

    2013-04-01

    With model development and cheaper computational resources ocean forecasts are becoming readily available, high resolution coastal forecasting is now a reality. This can only be achieved, however, by downscaling global or basin-scale products such as the MyOcean reanalyses and forecasts. These model products have resolution ranging from 1/16th - 1/4 degree, which are often insufficient for coastal scales, but can provide initialisation and boundary data. We present applications of downscaling the MyOcean products for use in shelf-seas and the nearshore. We will address the question 'Do coastal predictions improve with higher resolution modelling?' with a few focused examples, while also discussing what is meant by an improved result. Increasing resolution appears to be an obvious route for getting more accurate forecasts in operational coastal models. However, when models resolve finer scales, this may lead to the introduction of high-frequency variability which is not necessarily deterministic. Thus a flow may appear more realistic by generating eddies but the simple statistics like rms error and correlation may become less good because the model variability is not exactly in phase with the observations (Hoffman et al., 1995). By deciding on a specific process to simulate (rather than concentrating on reducing rms error) we can better assess the improvements gained by downscaling. In this work we will select two processes which are dominant in our case-study site: Liverpool Bay. Firstly we consider the magnitude and timing of a peak in tide-surge elevations, by separating out the event into timing (or displacement) and intensity (or amplitude) errors. The model can thus be evaluated on how well it predicts the timing and magnitude of the surge. The second important characteristic of Liverpool Bay is the position of the freshwater front. To evaluate model performance in this case, the location, sharpness, and temperature difference across the front will be

  6. Patterns of recombination activity on mouse chromosome 11 revealed by high resolution mapping.

    Directory of Open Access Journals (Sweden)

    Timothy Billings

    Full Text Available The success of high resolution genetic mapping of disease predisposition and quantitative trait loci in humans and experimental animals depends on the positions of key crossover events around the gene of interest. In mammals, the majority of recombination occurs at highly delimited 1-2 kb long sites known as recombination hotspots, whose locations and activities are distributed unevenly along the chromosomes and are tightly regulated in a sex specific manner. The factors determining the location of hotspots started to emerge with the finding of PRDM9 as a major hotspot regulator in mammals, however, additional factors modulating hotspot activity and sex specificity are yet to be defined. To address this limitation, we have collected and mapped the locations of 4829 crossover events occurring on mouse chromosome 11 in 5858 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. This chromosome was chosen for its medium size and high gene density and provided a comparison with our previous analysis of recombination on the longest mouse chromosome 1. Crossovers were mapped to an average resolution of 127 kb, and thirteen hotspots were mapped to <8 kb. Most crossovers occurred in a small number of the most active hotspots. Females had higher recombination rate than males as a consequence of differences in crossover interference and regional variation of sex specific rates along the chromosome. Comparison with chromosome 1 showed that recombination events tend to be positioned in similar fashion along the centromere-telomere axis but independently of the local gene density. It appears that mammalian recombination is regulated on at least three levels, chromosome-wide, regional, and at individual hotspots, and these regulation levels are influenced by sex and genetic background but not by gene content.

  7. WAVE BREAKING OVER LOCAL TOPOGRAPHY DURING THE MAP IOP 15 MISTRAL EVENT: OBSERVATIONS AND HIGH-RESOLUTION NUMERICAL SIMULATIONS

    OpenAIRE

    Guénard, Vincent; Tedeschi, Gilles; Drobinski, Philippe; Caccia, Jean Luc

    2005-01-01

    Abstract: This study investigates the fundamental processes involved in the severe Mistral’s windstorm occurring during the MAP IOP 15 (from 06 to 09 November 1999). It is based on numerical high-resolution simulations performed with the RAMS non-hydrostatic model at 3 km resolution. The simulation is found able to capture the flow complexity both upstream of the Alps and in coastal regions affected by the Mistral. The simulations accurately reproduce dynamical and thermodynamical fields obse...

  8. High-resolution hydraulic parameter maps for surface soils in tropical South America

    Science.gov (United States)

    Marthews, T. R.; Quesada, C. A.; Galbraith, D. R.; Malhi, Y.; Mullins, C. E.; Hodnett, M. G.; Dharssi, I.

    2014-05-01

    Modern land surface model simulations capture soil profile water movement through the use of soil hydraulics sub-models, but good hydraulic parameterisations are often lacking, especially in the tropics. We present much-improved gridded data sets of hydraulic parameters for surface soil for the critical area of tropical South America, describing soil profile water movement across the region to 30 cm depth. Optimal hydraulic parameter values are given for the Brooks and Corey, Campbell, van Genuchten-Mualem and van Genuchten-Burdine soil hydraulic models, which are widely used hydraulic sub-models in land surface models. This has been possible through interpolating soil measurements from several sources through the SOTERLAC soil and terrain data base and using the most recent pedotransfer functions (PTFs) derived for South American soils. All soil parameter data layers are provided at 15 arcsec resolution and available for download, this being 20x higher resolution than the best comparable parameter maps available to date. Specific examples are given of the use of PTFs and the importance highlighted of using PTFs that have been locally parameterised and that are not just based on soil texture. We discuss current developments in soil hydraulic modelling and how high-resolution parameter maps such as these can improve the simulation of vegetation development and productivity in land surface models.

  9. High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy

    Science.gov (United States)

    Pierścińska, Dorota; Marona, Łucja; Pierściński, Kamil; Wiśniewski, Przemysław; Perlin, Piotr; Bugajski, Maciej

    2017-02-01

    In this paper accurate measurements of temperature distribution on the facet of GaN-based diode lasers are presented as well as development of the instrumentation for high-resolution thermal imaging based on thermoreflectance. It is shown that thermoreflectance can be successfully applied to provide information on heat dissipation in these devices. We demonstrate the quantitative measurements of the temperature profiles and high-resolution temperature maps on the front facet of nitride lasers and prove that thermoreflectance spectroscopy can be considered as the accurate and fast nondestructive tool for investigation of thermally induced degradation modes of GaN lasers.

  10. A high-resolution radiation hybrid map of chicken chromosome 5 and comparison with human chromosomes

    Directory of Open Access Journals (Sweden)

    Milan Denis

    2004-09-01

    Full Text Available Abstract Background The resolution of radiation hybrid (RH maps is intermediate between that of the genetic and BAC (Bacterial Artificial Chromosome contig maps. Moreover, once framework RH maps of a genome have been constructed, a quick location of markers by simple PCR on the RH panel is possible. The chicken ChickRH6 panel recently produced was used here to construct a high resolution RH map of chicken GGA5. To confirm the validity of the map and to provide valuable comparative mapping information, both markers from the genetic map and a high number of ESTs (Expressed Sequence Tags were used. Finally, this RH map was used for testing the accuracy of the chicken genome assembly for chromosome 5. Results A total of 169 markers (21 microsatellites and 148 ESTs were typed on the ChickRH6 RH panel, of which 134 were assigned to GGA5. The final map is composed of 73 framework markers extending over a 1315.6 cR distance. The remaining 61 markers were placed alongside the framework markers within confidence intervals. Conclusion The high resolution framework map obtained in this study has markers covering the entire chicken chromosome 5 and reveals the existence of a high number of rearrangements when compared to the human genome. Only two discrepancies were observed in relation to the sequence assembly recently reported for this chromosome.

  11. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015

    Science.gov (United States)

    Ambika, Anukesh Krishnankutty; Wardlow, Brian; Mishra, Vimal

    2016-12-01

    India is among the countries that uses a significant fraction of available water for irrigation. Irrigated area in India has increased substantially after the Green revolution and both surface and groundwater have been extensively used. Under warming climate projections, irrigation frequency may increase leading to increased irrigation water demands. Water resources planning and management in agriculture need spatially-explicit irrigated area information for different crops and different crop growing seasons. However, annual, high-resolution irrigated area maps for India for an extended historical record that can be used for water resources planning and management are unavailable. Using 250 m normalized difference vegetation index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) and 56 m land use/land cover data, high-resolution irrigated area maps are developed for all the agroecological zones in India for the period of 2000-2015. The irrigated area maps were evaluated using the agricultural statistics data from ground surveys and were compared with the previously developed irrigation maps. High resolution (250 m) irrigated area maps showed satisfactory accuracy (R2=0.95) and can be used to understand interannual variability in irrigated area at various spatial scales.

  12. Gaussian Multiple Instance Learning Approach for Mapping the Slums of the World Using Very High Resolution Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL

    2013-01-01

    In this paper, we present a computationally efficient algo- rithm based on multiple instance learning for mapping infor- mal settlements (slums) using very high-resolution remote sensing imagery. From remote sensing perspective, infor- mal settlements share unique spatial characteristics that dis- tinguish them from other urban structures like industrial, commercial, and formal residential settlements. However, regular pattern recognition and machine learning methods, which are predominantly single-instance or per-pixel classi- fiers, often fail to accurately map the informal settlements as they do not capture the complex spatial patterns. To overcome these limitations we employed a multiple instance based machine learning approach, where groups of contigu- ous pixels (image patches) are modeled as generated by a Gaussian distribution. We have conducted several experi- ments on very high-resolution satellite imagery, represent- ing four unique geographic regions across the world. Our method showed consistent improvement in accurately iden- tifying informal settlements.

  13. A high-resolution map of synteny disruptions in gibbon and human genomes.

    Directory of Open Access Journals (Sweden)

    Lucia Carbone

    2006-12-01

    Full Text Available Gibbons are part of the same superfamily (Hominoidea as humans and great apes, but their karyotype has diverged faster from the common hominoid ancestor. At least 24 major chromosome rearrangements are required to convert the presumed ancestral karyotype of gibbons into that of the hominoid ancestor. Up to 28 additional rearrangements distinguish the various living species from the common gibbon ancestor. Using the northern white-cheeked gibbon (2n = 52 (Nomascus leucogenys leucogenys as a model, we created a high-resolution map of the homologous regions between the gibbon and human. The positions of 100 synteny breakpoints relative to the assembled human genome were determined at a resolution of about 200 kb. Interestingly, 46% of the gibbon-human synteny breakpoints occur in regions that correspond to segmental duplications in the human lineage, indicating a common source of plasticity leading to a different outcome in the two species. Additionally, the full sequences of 11 gibbon BACs spanning evolutionary breakpoints reveal either segmental duplications or interspersed repeats at the exact breakpoint locations. No specific sequence element appears to be common among independent rearrangements. We speculate that the extraordinarily high level of rearrangements seen in gibbons may be due to factors that increase the incidence of chromosome breakage or fixation of the derivative chromosomes in a homozygous state.

  14. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.

    Science.gov (United States)

    Maynard, Jonathan J; Karl, Jason W

    2017-01-01

    ) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches.

  15. Structural Mapping and Geomorphology of Ireland's Southwest Continental Shelf Using High Resolution Sonar

    Science.gov (United States)

    Bowden, S.; Wireman, R.

    2016-02-01

    Bathymetric surveys were conducted on the continental shelf off the southwest coast of County Cork, Ireland by the Marine Institute of Ireland, the Geological Survey of Ireland, and the INFOMAR project. Data were collected from July 2006 through September 2014 using a Kongsberg EM2040 multibeam echosounder aboard the R/Vs Celtic Voyager and Keary, and a Kongsberg EM1002 on the R/V Celtic Explorer. Sonar data were post-processed with CARIS HIPS and SIPS 9.0 to create 2D and 3D bathymetric and backscatter intensity surfaces with a resolution of 1 m. The offshore study site is part of the 286 Ma western Variscian orogenic front and has several massive outcrops, exhibiting 5 to 20 m of near-vertical relief. These outcrops were structurally mapped and relatively aged, and exhibit significant folding, rotation, tilting, and joint systems. Google Earth, ArcGIS, and previous terrestrial studies were used to further analyze how geomorphology is controlled by seafloor composition and structural features. Rock type and age were interpreted by comparing fracture analysis of the joints and fold trends to similar onshore outcrops documented previously, to determine an age of 416-299 Ma for the shelf's outcropping strata and associated structural features. The oldest features observed are regional anticlines and synclines containing Upper Devonian Old Red Sandstone and Lower Carboniferous shales. Within the shale layers are NE-SW plunging parasitic chevron folds. Jointing is observed in both sandstone and shale layers and is superimposed on chevron folding, with cross joints appearing to influence shallow current patterns. Rotation of the regional folds is the youngest structural feature, as both the parasitic folds and joint systems are warped. Our study shows that high resolution sonar is an effective tool for offshore structural mapping and is an important resource for understanding the geomorphology and geologic history of submerged outcrops on continental shelf systems.

  16. High-resolution mapping reveals links of HP1 with active and inactive chromatin components.

    Directory of Open Access Journals (Sweden)

    Elzo de Wit

    2007-03-01

    Full Text Available Heterochromatin protein 1 (HP1 is commonly seen as a key factor of repressive heterochromatin, even though a few genes are known to require HP1-chromatin for their expression. To obtain insight into the targeting of HP1 and its interplay with other chromatin components, we have mapped HP1-binding sites on Chromosomes 2 and 4 in Drosophila Kc cells using high-density oligonucleotide arrays and the DNA adenine methyltransferase identification (DamID technique. The resulting high-resolution maps show that HP1 forms large domains in pericentric regions, but is targeted to single genes on chromosome arms. Intriguingly, HP1 shows a striking preference for exon-dense genes on chromosome arms. Furthermore, HP1 binds along entire transcription units, except for 5' regions. Comparison with expression data shows that most of these genes are actively transcribed. HP1 target genes are also marked by the histone variant H3.3 and dimethylated histone 3 lysine 4 (H3K4me2, which are both typical of active chromatin. Interestingly, H3.3 deposition, which is usually observed along entire transcription units, is limited to the 5' ends of HP1-bound genes. Thus, H3.3 and HP1 are mutually exclusive marks on active chromatin. Additionally, we observed that HP1-chromatin and Polycomb-chromatin are nonoverlapping, but often closely juxtaposed, suggesting an interplay between both types of chromatin. These results demonstrate that HP1-chromatin is transcriptionally active and has extensive links with several other chromatin components.

  17. High-Resolution Cryo-EM Maps and Models: A Crystallographer's Perspective.

    Science.gov (United States)

    Wlodawer, Alexander; Li, Mi; Dauter, Zbigniew

    2017-10-03

    The appearance of ten high-resolution cryoelectron microscopy (cryo-EM) maps of proteins, ribosomes, and viruses was compared with the experimentally phased crystallographic electron density maps of four proteins. We found that maps calculated at a similar resolution by the two techniques are quite comparable in their appearance, although cryo-EM maps, even when sharpened, seem to be a little less detailed. An analysis of models fitted to the cryo-EM maps indicated the presence of significant problems in almost all of them, including incorrect geometry, clashes between atoms, and discrepancies between the map density and the fitted models. In particular, the treatment of the atomic displacement (B) factors was meaningless in almost all analyzed cryo-EM models. Stricter cryo-EM structure deposition standards and their better enforcement are needed. Published by Elsevier Ltd.

  18. A high-resolution cucumber cytogenetic map integrated with the genome assembly.

    Science.gov (United States)

    Sun, Jianying; Zhang, Zhonghua; Zong, Xu; Huang, Sanwen; Li, Zongyun; Han, Yonghua

    2013-07-09

    High-resolution cytogenetic map can provide not only important biological information on genome organization but also solid foundation for genetic and genomic research. The progress in the molecular and cytogenetic studies has created the basis for developing the cytogenetic map in cucumber (Cucumis sativus L.). Here, the cytogenetic maps of four cucumber chromosomes (chromosomes 1, 3-5) were constructed by fluorescence in situ hybridization (FISH) analysis on cucumber pachytene chromosomes. Together with our previously constructed cytogenetic maps of three cucumber chromosomes (chromosomes 2, 6-7), cucumber has a complete cytogenetic map with 76 anchoring points between the genetic, the cytogenetic and the draft genome assembly maps. To compare our pachytene FISH map directly to the genetic linkage and draft genome assembly maps, we used a standardized map unit-relative map position (RMP) to produce the comparative map alignments. The alignments allowed a global view of the relationship of genetic and physical distances along each cucumber chromosome, and accuracy and coverage of the draft genome assembly map. We demonstrated a good correlation between positions of the markers in the linkage and physical maps, and essentially complete coverage of chromosome arms by the draft genome assembly. Our study not only provides essential information for the improvement of sequence assembly but also offers molecular tools for cucumber genomics research, comparative genomics and evolutionary study.

  19. High-resolution mapping of transcription factor binding sites on native chromatin

    Science.gov (United States)

    Kasinathan, Sivakanthan; Orsi, Guillermo A.; Zentner, Gabriel E.; Ahmad, Kami; Henikoff, Steven

    2014-01-01

    Sequence-specific DNA-binding proteins including transcription factors (TFs) are key determinants of gene regulation and chromatin architecture. Formaldehyde cross-linking and sonication followed by Chromatin ImmunoPrecipitation (X-ChIP) is widely used for profiling of TF binding, but is limited by low resolution and poor specificity and sensitivity. We present a simple protocol that starts with micrococcal nuclease-digested uncross-linked chromatin and is followed by affinity purification of TFs and paired-end sequencing. The resulting ORGANIC (Occupied Regions of Genomes from Affinity-purified Naturally Isolated Chromatin) profiles of Saccharomyces cerevisiae Abf1 and Reb1 provide highly accurate base-pair resolution maps that are not biased toward accessible chromatin, and do not require input normalization. We also demonstrate the high specificity of our method when applied to larger genomes by profiling Drosophila melanogaster GAGA Factor and Pipsqueak. Our results suggest that ORGANIC profiling is a widely applicable high-resolution method for sensitive and specific profiling of direct protein-DNA interactions. PMID:24336359

  20. A High-Resolution Map of Emerald Ash Borer Invasion Risk for Southern Central Europe

    Directory of Open Access Journals (Sweden)

    Viktoria Valenta

    2015-08-01

    Full Text Available Ash species (Fraxinus spp. in Europe are threatened by the Emerald Ash Borer (Agrilus planipennis, EAB, an invasive wood boring beetle native to East Asia and currently spreading from European Russia westwards. Based on a high-resolution habitat distribution map (grid cell size: 25 × 25 m and data on distribution and abundance of Common Ash (Fraxinus excelsior, the most widespread and highly susceptive host species of EAB in Europe, we assess the spatial distribution of EAB invasion risks for southern Central Europe (Austria, Switzerland, Liechtenstein, southern Germany, South Tyrol. We found highest F. excelsior abundance and thus invasion risks in extensive lowland floodplain forests, medium risks in zonal lowland forests and low risks in upper montane and subalpine forests. Based on average velocities of spread in Russia (13–31 km/year and North America (2.5–80 km/year from flight and human-assisted transport, EAB is likely to cover the distance (1500 km between its current range edge in western Russia and the eastern border of the study region within few decades. However, secondary spread by infested wood products make earlier introductions likely. The high susceptibility and mortality of F. excelsior leave no doubt that this beetle will become a major forest pest once it reaches Central Europe. Therefore, developing and testing management approaches with the aim to halt or at least slow down the invasion of EAB in Europe have to be pursued with great urgency.

  1. Predictive mapping of soil properties at high resolution by component wise gradient boosting

    Science.gov (United States)

    Nussbaum, Madlene; Papritz, Andreas; Fraefel, Marielle; Baltensweiler, Andri; Keller, Armin

    2015-04-01

    Accurate spatial information on soils is crucial for sustainable usage of the resource soil. Spatial planning, agriculture, forestry or natural hazards management need high resolution maps of potentials of soils for particular functions (e. g. water storage, nutrient supply). Soil functions are derived from basic soil properties like soil organic carbon or soil texture. For many regions precise maps of basic soil properties are missing. Hence, as a prerequisite for digital soil function mapping, maps of soil properties must be created with the desired resolution. A wide range of statistical approaches (linear and additive models, external drift kriging, Random Forest) were used for this in the past. When numerous environmental covariates (e. g. hyper-spectral remote sensing data) are available the selection of the model with best predictive power is challenging. Besides the issue of covariate selection, one should allow for non-linear effects of covariates on soil properties. To handle these difficulties we used a gradient boosting approach that included besides categorical covariates linear and smooth non-linear terms of continuous covariates as base learners. Residual auto-correlation and non-stationary relationships were modeled by smooth spatial surfaces. Gradient boosting of this flavor selects relevant covariates in a slow learning procedure and inherently models non-linear dependencies on covariates during the fitting process. The restriction to linear and smoothing spline base learners retains the interpretability of the fitted predictive models. The number of boosting iterations is the main tuning parameter and was determined by tenfold cross validation. To explore the feasibility of the gradient boosting approach we mapped pH of forest topsoils in Canton of Zurich, Switzerland, at high (50 m) spatial resolution. Legacy pH measurements were available from 1200 sites in the in the forests of Canton of Zurich. Gradient boosting selected a sparse model with

  2. Mapping trees in high resolution imagery across large areas using locally variable thresholds guided by medium resolution tree maps

    Science.gov (United States)

    Fisher, Adrian; Danaher, Tim; Gill, Tony

    2017-06-01

    Large area tree maps, important for environmental monitoring and natural resource management, are often based on medium resolution satellite imagery. These data have difficulty in detecting trees in fragmented woodlands, and have significant omission errors in modified agricultural areas. High resolution imagery can better detect these trees, however, as most high resolution imagery is not normalised it is difficult to automate a tree classification method over large areas. The method developed here used an existing medium resolution map derived from either Landsat or SPOT5 satellite imagery to guide the classification of the high resolution imagery. It selected a spatially-variable threshold on the green band, calculated based on the spatially-variable percentage of trees in the existing map of tree cover. The green band proved more consistent at classifying trees across different images than several common band combinations. The method was tested on 0.5 m resolution imagery from airborne digital sensor (ADS) imagery across New South Wales (NSW), Australia using both Landsat and SPOT5 derived tree maps to guide the threshold selection. Accuracy was assessed across 6 large image mosaics revealing a more accurate result when the more accurate tree map from SPOT5 imagery was used. The resulting maps achieved an overall accuracy with 95% confidence intervals of 93% (90-95%), while the overall accuracy of the previous SPOT5 tree map was 87% (86-89%). The method reduced omission errors by mapping more scattered trees, although it did increase commission errors caused by dark pixels from water, building shadows, topographic shadows, and some soils and crops. The method allows trees to be automatically mapped at 5 m resolution from high resolution imagery, provided a medium resolution tree map already exists.

  3. THEMIS high-resolution digital terrain: Topographic and thermophysical mapping of Gusev Crater, Mars

    Science.gov (United States)

    Cushing, G.E.; Titus, T.N.; Soderblom, L.A.; Kirk, R.L.

    2009-01-01

    We discuss a new technique to generate high-resolution digital terrain models (DTMs) and to quantitatively derive and map slope-corrected thermophysical properties such as albedo, thermal inertia, and surface temperatures. This investigation is a continuation of work started by Kirk et al. (2005), who empirically deconvolved Thermal Emission Imaging System (THEMIS) visible and thermal infrared data of this area, isolating topographic information that produced an accurate DTM. Surface temperatures change as a function of many variables such as slope, albedo, thermal inertia, time, season, and atmospheric opacity. We constrain each of these variables to construct a DTM and maps of slope-corrected albedo, slope- and albedo-corrected thermal inertia, and surface temperatures across the scene for any time of day or year and at any atmospheric opacity. DTMs greatly facilitate analyses of the Martian surface, and the MOLA global data set is not finely scaled enough (128 pixels per degree, ???0.5 km per pixel near the equator) to be combined with newer data sets (e.g., High Resolution Imaging Science Experiment, Context Camera, and Compact Reconnaissance Imaging Spectrometer for Mars at ???0.25, ???6, and ???20 m per pixel, respectively), so new techniques to derive high-resolution DTMs are always being explored. This paper discusses our technique of combining a set of THEMIS visible and thermal infrared observations such that albedo and thermal inertia variations within the scene are eliminated and only topographic variations remain. This enables us to produce a high-resolution DTM via photoclinometry techniques that are largely free of albedo-induced errors. With this DTM, THEMIS observations, and a subsurface thermal diffusion model, we generate slope-corrected maps of albedo, thermal inertia, and surface temperatures. In addition to greater accuracy, these products allow thermophysical properties to be directly compared with topography.

  4. Rapid high resolution single nucleotide polymorphism-comparative genome hybridization mapping in Caenorhabditis elegans.

    Science.gov (United States)

    Flibotte, Stephane; Edgley, Mark L; Maydan, Jason; Taylor, Jon; Zapf, Rick; Waterston, Robert; Moerman, Donald G

    2009-01-01

    We have developed a significantly improved and simplified method for high-resolution mapping of phenotypic traits in Caenorhabditis elegans using a combination of single nucleotide polymorphisms (SNPs) and oligo array comparative genome hybridization (array CGH). We designed a custom oligonucleotide array using a subset of confirmed SNPs between the canonical wild-type Bristol strain N2 and the Hawaiian isolate CB4856, populated with densely overlapping 50-mer probes corresponding to both N2 and CB4856 SNP sequences. Using this method a mutation can be mapped to a resolution of approximately 200 kb in a single genetic cross. Six mutations representing each of the C. elegans chromosomes were detected unambiguously and at high resolution using genomic DNA from populations derived from as few as 100 homozygous mutant segregants of mutant N2/CB4856 heterozygotes. Our method completely dispenses with the PCR, restriction digest, and gel analysis of standard SNP mapping and should be easy to extend to any organism with interbreeding strains. This method will be particularly powerful when applied to difficult or hard-to-map low-penetrance phenotypes. It should also be possible to map polygenic traits using this method.

  5. High Resolution Map of Water Supply and Demand for North East United States

    Science.gov (United States)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2012-12-01

    Accurate estimates of water supply and demand are crucial elements in water resources management and modeling. As part of our NSF-funded EaSM effort to build a Northeast Regional Earth System Model (NE-RESM) as a framework to improve our understanding and capacity to forecast the implications of planning decisions on the region's environment, ecosystem services, energy and economic systems through the 21st century, we are producing a high resolution map (3' x 3' lat/long) of estimated water supply and use for the north east region of United States. Focusing on water demand, results from this study enables us to quantify how demand sources affect the hydrology and thermal-chemical water pollution across the region. In an attempt to generate this 3-minute resolution map in which each grid cell has a specific estimated monthly domestic, agriculture, thermoelectric and industrial water use. Estimated Use of Water in the United States in 2005 (Kenny et al., 2009) is being coupled to high resolution land cover and land use, irrigation, power plant and population data sets. In addition to water demands, we tried to improve estimates of water supply from the WBM model by improving the way it controls discharge from reservoirs. Reservoirs are key characteristics of the modern hydrologic system, with a particular impact on altering the natural stream flow, thermal characteristics, and biogeochemical fluxes of rivers. Depending on dam characteristics, watershed characteristics and the purpose of building a dam, each reservoir has a specific optimum operating rule. It means that literally 84,000 dams in the National Inventory of Dams potentially follow 84,000 different sets of rules for storing and releasing water which must somehow be accounted for in our modeling exercise. In reality, there is no comprehensive observational dataset depicting these operating rules. Thus, we will simulate these rules. Our perspective is not to find the optimum operating rule per se but to find

  6. Pan-Tropical Forest Mapping by Exploiting Textures of Multi-Temporal High Resolution SAR Data

    Science.gov (United States)

    Knuth, R.; Eckardt, R.; Richter, N.; Schmullius, C.

    2012-12-01

    Even though the first commitment period of the Kyoto Protocol is in the offing, there is still a strong demand for profound, reliable, and up to date information in order to bridge the gap of knowledge of the land cover conversion. Despite the fact that land use change is one of the largest carbon contribution factors, it is still poorly quantified. This is particularly true for many tropical forest areas worldwide. Here, preservation of such pristine forest areas is critically endangered. Enormous population growth, the increasing global demand for various resources, and the ongoing unsustainable management practices put the remaining tropical forests under a huge pressure. Yet, only the United Nations Food and Agriculture Organization's (FAO) global Forest Resources Assessment (FRA) report provides the crucial quantitative information every 5 years on a regional scale. Nonetheless, the assembled information of the FRA reports bear the burden of ambiguity and vagueness, because they were compiled based on autonomously gathered statistics, which are usually driven by the individual country needs. There is a broad consensus among the different scientific disciplines, that only the remote sensing technology allows for a large scale robust monitoring of these widespread, and remote forest areas. Consequently, the FAO decided to supplementary analyze remote sensing data for the present (2010) and upcoming FRAs. However, it is also widely accepted that currently only microwave remote sensing techniques allow for an all-day, weather independent monitoring of the frequently cloud-covered tropics. In this context, high resolution Synthetic Aperture Radar (SAR) images of the German satellites TerraSAR-X and TanDEM-X have been investigated within the pan-tropics to support the latest FRA 2010 report. Data of more than 304 predominantly cloud-covered sites in Latin America (188), Central Africa (45) and Southeast Asia (71) have been acquired. Upon delivery, the corresponding

  7. Generation and Assessment of Urban Land Cover Maps Using High-Resolution Multispectral Aerial Images

    DEFF Research Database (Denmark)

    Höhle, Joachim; Höhle, Michael

    2013-01-01

    New aerial cameras and new advanced geo-processing tools improve the generation of urban land cover maps. Elevations can be derived from stereo pairs with high density, positional accuracy, and efficiency. The combination of multispectral high-resolution imagery and high-density elevations enable...... tree learning based on recursive partitioning is investigated. We conclude that the open source software “R” provides all the tools needed for performing statistical prudent classification and accuracy evaluations of urban land cover maps....... a unique method for the automatic generation of urban land cover maps. In the present paper, imagery of a new medium-format aerial camera and advanced geoprocessing software are applied to derive normalized digital surface models and vegetation maps. These two intermediate products then become input...

  8. High-resolution Mapping of Offshore and Onshore Glaciogenic Features in Melville Bay, Northwestern Greenland

    Science.gov (United States)

    Freire, F.; Gyllencreutz, R.; Greenwood, S.; Mayer, L. A.; Jakobsson, M.

    2014-12-01

    This study presents results from high resolution mapping in the northwestern part of Greenland's continental shelf, offshore from the Greenland Ice Sheet. The study area is located at about 74o30'N and 58 o40'W where high-resolution seafloor imagery were collected from ~200-500 m water depth. These data were analyzed and compared to existing high-resolution satellite imagery of exposed glacial landforms from the nearby coastal areas. Offshore geophysical mapping equipment consisted of a Kongsberg EM2040 multibeam that was bow-mounted on the sailing vessel Explorer of Sweden together with a Seatex MRU5+ motion sensor and GPS antennas. In addition, a GAVIA autonomous underwater vehicle (AUV) from University of Iceland with installed Geoswath interfometric sonar and Marine Sonic side-scan was used. The data from these systems permitted the production of both 5-m (for the EM2040) and 2-m (for the Geoswath) resolution bathymetric grids for landform analyzes. Sediment characterization analysis was also undertaken using the co-registered backscatter data. The exposed onshore landforms were studied using data from the high-res QuickBird satellite images with a 2-m pixel resolution. Geomorphic analysis of the data shows that past tectonic and glacial scouring processes have shaped the present-day landscape in both the offshore and onshore study areas. The terrain consists of glacially eroded bedrock covered with very thin surficial sediments resembling a 'cnoc-and-lochan' terrain, although the degree of erosion varies spatially, probably as a result of local variations in the rock properties. Different glacially influenced features are identified and described in the study. These features have been used to understand and infer past ice-sheet processes, particularly ice-flow direction and the extent of ice-cover on the continental shelves from previous extreme glaciation events. The backscatter information from the high-resolution interferometric sonar show fine

  9. High-resolution mapping of global surface water and its long-term changes

    Science.gov (United States)

    Pekel, J. F.; Cottam, A.; Gorelick, N.; Belward, A.

    2016-12-01

    The location and persistence of surface water is both affected by climate and human activity and affects climate, biological diversity and human wellbeing. Global datasets documenting surface water location and seasonality have been produced but measuring long-term changes at high resolution remains a challenge.To address the dynamic nature of water, the European Commission's Joint Research Centre (JRC), working with the Google Earth Engine (GEE) team has processed each single pixel acquired by Landsat 5, 7, and 8 between 16th March 1984 to 10th October 2015 (> 3.000.000 Landsat scenes, representing > 1823 Terabytes of data).The produced dataset record months and years when water was present across 32 year, were occurrence changed and what form changes took in terms of seasonality and persistence, and document intra-annual persistence, inter-annual variability, and trends.This validated dataset shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered showing how surface water is altered by human activities.Freely available, we anticipate that this dataset will provide valuable information to those working in areas linked to security of water supply for agriculture, industry and human consumption, for assessing water-related disaster reduction and recovery and for the study of waterborne pollution and disease spread. The maps will also improve surface boundary condition setting in climate and weather models, improve carbon emissions estimates, inform regional climate change impact studies, delimit wetlands for biodiversity and determine desertification trends. Issues such as dam building (and less widespread dam removal), disappearing rivers, the geopolitics of water distribution and coastal erosion are also addressed.

  10. Improving the process of geological mapping in sedimentary terrain by using high-resolution topography in 3D environments

    Science.gov (United States)

    Chan, Yu-Chang; Shih, Nai-Cih; Chiu, Chia-Hung; Hsieh, Yu-Chung

    2017-04-01

    Traditional geologic maps were basically produced by field geologists through direct field investigations and interpretations from 2D topographic maps. However, the quality of traditional geologic maps was knowingly compromised by field conditions, particularly, when the mapping area is largely inaccessible or covered by heavy forest canopies. Recent advancement in airborne LiDAR technology can virtually remove trees or buildings, thus, providing a useful high-resolution topographic data set for the bare ground surface. The high-resolution topography still needs to be interpreted in terms of geology, and fundamental questions regarding how to apply the high-resolution topography remain to be answered for improving the process and quality of geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recently developed methods by an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed Python program tools and many layers of relevant information at interactive 3D environments on a computer. Our mapping results indicate that the proposed mapping methods will significantly raise the quality and consistency of the geologic maps. Our study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced in 3D environments based on existing geologic maps and a few field checks for verification.

  11. Speckle variance full-field optical coherence microscopy for high-resolution microvasculature mapping

    Science.gov (United States)

    Ogien, Jonas; Dubois, Arnaud

    2017-02-01

    This work reports on the feasibility of dynamic imaging using conventional reflectivity-based tomographic images obtained with full-field optical coherence microscopy (FF-OCM). Implementation of speckle variance for flow mapping with an imaging rate of 180 Hz is demonstrated by mapping 20% intralipid flowing into 100-μm-diameter microcapillary tubes at speeds up to 50 mm/s. This constitutes a significant advance in high-resolution, real-time microvasculature mapping, using FF-OCM. The acquisition scheme in FF-OCM is particularly appropriate for en face visualization of the microvasculature, as FF-OCM directly acquires en face tomographic images unlike conventional OCT which usually requires reslicing of a three-dimensional data set to get en face images.

  12. High-Resolution Geologic Mapping of the Inner Continental Shelf: Cape Ann to Salisbury Beach, Massachusetts

    Science.gov (United States)

    Barnhardt, Walter A.; Andrews, Brian D.; Ackerman, Seth D.; Baldwin, Wayne E.; Hein, Christopher J.

    2009-01-01

    The geologic framework of the Massachusetts inner continental shelf between Cape Ann and Salisbury Beach has been shaped by a complicated history of glaciation, deglaciation, and changes in relative sea level. New geophysical data (swath bathymetry, sidescan sonar and seismic-reflection profiling), sediment samples, and seafloor photography provide insight into the geomorphic and stratigraphic record generated by these processes. High-resolution spatial data and geologic maps in this report support coastal research and efforts to understand the type, distribution, and quality of subtidal marine habitats in the Massachusetts coastal ocean.

  13. Exploring the high-resolution mapping of gender-disaggregated development indicators.

    Science.gov (United States)

    Bosco, C; Alegana, V; Bird, T; Pezzulo, C; Bengtsson, L; Sorichetta, A; Steele, J; Hornby, G; Ruktanonchai, C; Ruktanonchai, N; Wetter, E; Tatem, A J

    2017-04-01

    Improved understanding of geographical variation and inequity in health status, wealth and access to resources within countries is increasingly being recognized as central to meeting development goals. Development and health indicators assessed at national or subnational scale can often conceal important inequities, with the rural poor often least well represented. The ability to target limited resources is fundamental, especially in an international context where funding for health and development comes under pressure. This has recently prompted the exploration of the potential of spatial interpolation methods based on geolocated clusters from national household survey data for the high-resolution mapping of features such as population age structures, vaccination coverage and access to sanitation. It remains unclear, however, how predictable these different factors are across different settings, variables and between demographic groups. Here we test the accuracy of spatial interpolation methods in producing gender-disaggregated high-resolution maps of the rates of literacy, stunting and the use of modern contraceptive methods from a combination of geolocated demographic and health surveys cluster data and geospatial covariates. Bayesian geostatistical and machine learning modelling methods were tested across four low-income countries and varying gridded environmental and socio-economic covariate datasets to build 1×1 km spatial resolution maps with uncertainty estimates. Results show the potential of the approach in producing high-resolution maps of key gender-disaggregated socio-economic indicators, with explained variance through cross-validation being as high as 74-75% for female literacy in Nigeria and Kenya, and in the 50-70% range for many other variables. However, substantial variations by both country and variable were seen, with many variables showing poor mapping accuracies in the range of 2-30% explained variance using both geostatistical and machine

  14. Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling

    NARCIS (Netherlands)

    Lenaerts, J.T.M.|info:eu-repo/dai/nl/314850163; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van Wessem, J.M.|info:eu-repo/dai/nl/413533085; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; van Meijgaard, E.; van Ulft, L.H.; Schaefer, M.

    2014-01-01

    This study uses output of a high-resolution (5.5 km) regional atmospheric climate model to describe the present-day (1979–2012) climate of Patagonia, with a particular focus on the surface mass balance (SMB) of the Patagonian ice fields. Through a comparison with available in situ observations, it

  15. REAL-TIME high-resolution urban surface water flood mapping to support flood emergency management

    Science.gov (United States)

    Guan, M.; Yu, D.; Wilby, R.

    2016-12-01

    Strong evidence has shown that urban flood risks will substantially increase because of urbanisation, economic growth, and more frequent weather extremes. To effectively manage these risks require not only traditional grey engineering solutions, but also a green management solution. Surface water flood risk maps based on return period are useful for planning purposes, but are limited for application in flood emergencies, because of the spatiotemporal heterogeneity of rainfall and complex urban topography. Therefore, a REAL-TIME urban surface water mapping system is highly beneficial to increasing urban resilience to surface water flooding. This study integrated numerical weather forecast and high-resolution urban surface water modelling into a real-time multi-level surface water mapping system for Leicester City in the UK. For rainfall forecast, the 1km composite rain radar from the Met Office was used, and we used the advanced rainfall-runoff model - FloodMap to predict urban surface water at both city-level (10m-20m) and street-level (2m-5m). The system is capable of projecting 3-hour urban surface water flood, driven by rainfall derived from UK Met Office radar. Moreover, this system includes real-time accessibility mapping to assist the decision-making of emergency responders. This will allow accessibility (e.g. time to travel) from individual emergency service stations (e.g. Fire & Rescue; Ambulance) to vulnerable places to be evaluated. The mapping results will support contingency planning by emergency responders ahead of potential flood events.

  16. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques

    Directory of Open Access Journals (Sweden)

    Francisco Eugenio

    2017-11-01

    Full Text Available Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2, can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones.

  17. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques.

    Science.gov (United States)

    Eugenio, Francisco; Marcello, Javier; Martin, Javier; Rodríguez-Esparragón, Dionisio

    2017-11-16

    Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2), can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain) but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones.

  18. Exploring for subtle traps with high-resolution paleogeographic maps: Reklaw 1 interval (Eocene), south Texas

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, T.P.; Breyer, J.A.

    1989-01-01

    High-resolution paleogeographic maps depicting the depositional history of the Reklaw 1 interval provide a basis for prospecting for subtle traps in the updip Reklaw trend in south Texas. The Reklaw 1 interval began with sand being carried southwestward by longshore currents to form the barrier bar that became Atkinson field. The hydrocarbons were trapped by the updip pinch-out of barrier-bar sand into lagoonal mud. Stratigraphic traps similar to Atkinson field could be present along depositional strike if the sand in the field were part of an extensive barrier-bar system. After the barrier bar formed, distributary mouth bars prograded seaward, depositing the bar-finger sands that became the Hysaw and Flax fields. Subtle structural traps could be present today where small up-to-the-coast faults associated with the sample fault system cut the bar-finger sands downdip from established production. Farther down paleoslope, the distributary channels began to bifurcate and the distributary mouth bars coalesced to form a broad delta-front sheet sand. Burnell, Hondo Creek, and Runge West fields produce from this sheet sand at the unstable shelf margin. A rapid rise in relative sea level terminated the Reklaw 1 interval. Many of the oil and gas fields still to be discovered in the US are in mature petroleum provinces where much of the remaining oil and gas probably resides in subtle traps. High-resolution paleogeographic maps are the key to finding these subtle traps. 11 figures, 2 tables.

  19. High-resolution geological maps of central London, UK: Comparisons with the London Underground

    Directory of Open Access Journals (Sweden)

    Jonathan D. Paul

    2016-03-01

    Full Text Available This study presents new thickness maps of post-Cretaceous sedimentary strata beneath central London. >1100 borehole records were analysed. London Clay is thickest in the west; thicker deposits extend as a narrow finger along the axis of the London Basin. More minor variations are probably governed by periglacial erosion and faulting. A shallow anticline in the Chalk in north-central London has resulted in a pronounced thinning of succeeding strata. These results are compared to the position of London Underground railway tunnels. Although tunnels have been bored through the upper levels of London Clay where thick, some tunnels and stations are positioned within the underlying, more lithologically variable, Lower London Tertiary deposits. Although less complex than other geological models of the London Basin, this technique is more objective and uses a higher density of borehole data. The high resolution of the resulting maps emphasises the power of modelling an expansive dataset in a rigorous but simple fashion.

  20. High-resolution, genome-wide mapping of chromatin modifications by GMAT.

    Science.gov (United States)

    Roh, Tae-Young; Zhao, Keji

    2008-01-01

    One major postgenomic challenge is to characterize the epigenomes that control genome functions. The epigenomes are mainly defined by the specific association of nonhistone proteins with chromatin and the covalent modifications of chromatin, including DNA methylation and posttranslational histone modifications. The in vivo protein-binding and chromatin-modification patterns can be revealed by the chromatin immunoprecipitation assay (ChIP). By combining the ChIP assays and the serial analysis of gene expression (SAGE) protocols, we have developed an unbiased and high-resolution genome-wide mapping technique (GMAT) to determine the genome-wide protein-targeting and chromatin-modification patterns. GMAT has been successfully applied to mapping the target sites of the histone acetyltransferase, Gcn5p, in yeast and to the discovery of the histone acetylation islands as an epigenetic mark for functional regulatory elements in the human genome.

  1. High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays

    DEFF Research Database (Denmark)

    Buus, Søren; Rockberg, Johan; Forsström, Björn

    2012-01-01

    against unwanted (e.g. autoimmune) reactivities. Antibodies target proteins as either conformational or linear epitopes. The latter are typically probed with peptides, but the cost of peptide screening programs tends to prohibit comprehensive specificity analysis. To perform high-throughput, high-resolution...... mapping of linear antibody epitopes, we have used ultrahigh-density peptide microarrays generating several hundred thousand different peptides per array. Using exhaustive length and substitution analysis, we have successfully examined the specificity of a panel of polyclonal antibodies raised against......-density peptide microarrays can be used for linear epitope mapping. With an upper theoretical limit of 2,000,000 individual peptides per array, these peptide microarrays may even be used for a systematic validation of antibodies at the proteomic level....

  2. High resolution stream water quality assessment in the Vancouver, British Columbia region: a citizen science study.

    Science.gov (United States)

    Shupe, Scott M

    2017-12-15

    Changing land cover and climate regimes modify water quantity and quality in natural stream systems. In regions undergoing rapid change, it is difficult to effectively monitor and quantify these impacts at local to regional scales. In Vancouver, British Columbia, one of the most rapidly urbanizing areas in Canada, 750 measurements were taken from a total of 81 unique sampling sites representing 49 streams located in urban, forest, and agricultural-dominant watersheds at a frequency of up to 12 times per year between 2013 and 2016. Dissolved nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations, turbidity, water temperature, pH and conductivity were measured by citizen scientists in addition to observations of hydrology, vegetation, land use, and visible stream impacts. Land cover was mapped at a 15-m resolution using Landsat 8 OLI imagery and used to determine dominant land cover for each watershed in which a sample was recorded. Regional, seasonal, and catchment-type trends in measurements were determined using statistical analyses. The relationships of nutrients to land cover varied seasonally and on a catchment-type basis. Nitrate showed seasonal highs in winter and lows in summer, though phosphate had less seasonal variation. Overall, nitrate concentrations were positively associated to agriculture and deciduous forest and negatively associated with coniferous forest. In contrast, phosphate concentrations were positively associated with agricultural, deciduous forest, and disturbed land cover and negatively associated with urban land cover. Both urban and agricultural land cover were significantly associated with an increase in water conductivity. Increased forest land cover was associated with better water quality, including lower turbidity, conductivity, and water temperature. This study showed the importance of high resolution sampling in understanding seasonal and spatial dynamics of stream water quality, made possible with the large number of

  3. The need for sustained and integrated high-resolution mapping of dynamic coastal environments

    Science.gov (United States)

    Stockdon, Hilary F.; Lillycrop, Jeff W.; Howd, Peter A.; Wozencraft, Jennifer M.

    2007-01-01

    The evolution of the United States' coastal zone response to both human activities and natural processes is dynamic. Coastal resource and population protection requires understanding, in detail, the processes needed for change as well as the physical setting. Sustained coastal area mapping allows change to be documented and baseline conditions to be established, as well as future behavior to be predicted in conjunction with physical process models. Hyperspectral imagers and airborne lidars, as well as other recent mapping technology advances, allow rapid national scale land use information and high-resolution elevation data collection. Coastal hazard risk evaluation has critical dependence on these rich data sets. A fundamental storm surge model parameter in predicting flooding location, for example, is coastal elevation data, and a foundation in identifying the most vulnerable populations and resources is land use maps. A wealth of information for physical change process study, coastal resource and community management and protection, and coastal area hazard vulnerability determination, is available in a comprehensive national coastal mapping plan designed to take advantage of recent mapping technology progress and data distribution, management, and collection.

  4. Functional physiology of the human terminal antrum defined by high-resolution electrical mapping and computational modeling.

    Science.gov (United States)

    Berry, Rachel; Miyagawa, Taimei; Paskaranandavadivel, Niranchan; Du, Peng; Angeli, Timothy R; Trew, Mark L; Windsor, John A; Imai, Yohsuke; O'Grady, Gregory; Cheng, Leo K

    2016-11-01

    High-resolution (HR) mapping has been used to study gastric slow-wave activation; however, the specific characteristics of antral electrophysiology remain poorly defined. This study applied HR mapping and computational modeling to define functional human antral physiology. HR mapping was performed in 10 subjects using flexible electrode arrays (128-192 electrodes; 16-24 cm 2 ) arranged from the pylorus to mid-corpus. Anatomical registration was by photographs and anatomical landmarks. Slow-wave parameters were computed, and resultant data were incorporated into a computational fluid dynamics (CFD) model of gastric flow to calculate impact on gastric mixing. In all subjects, extracellular mapping demonstrated normal aboral slow-wave propagation and a region of increased amplitude and velocity in the prepyloric antrum. On average, the high-velocity region commenced 28 mm proximal to the pylorus, and activation ceased 6 mm from the pylorus. Within this region, velocity increased 0.2 mm/s per mm of tissue, from the mean 3.3 ± 0.1 mm/s to 7.5 ± 0.6 mm/s (P human terminal antral contraction is controlled by a short region of rapid high-amplitude slow-wave activity. Distal antral wave acceleration plays a major role in antral flow and mixing, increasing particle strain and trituration. Copyright © 2016 the American Physiological Society.

  5. Mapping human brain capillary water lifetime: high-resolution metabolic neuroimaging.

    Science.gov (United States)

    Rooney, William D; Li, Xin; Sammi, Manoj K; Bourdette, Dennis N; Neuwelt, Edward A; Springer, Charles S

    2015-06-01

    Shutter-speed analysis of dynamic-contrast-agent (CA)-enhanced normal, multiple sclerosis (MS), and glioblastoma (GBM) human brain data gives the mean capillary water molecule lifetime (τ(b)) and blood volume fraction (v(b); capillary density-volume product (ρ(†)V)) in a high-resolution (1)H2O MRI voxel (40 μL) or ROI. The equilibrium water extravasation rate constant, k(po) (τ(b)(-1)), averages 3.2 and 2.9 s(-1) in resting-state normal white matter (NWM) and gray matter (NGM), respectively (n = 6). The results (italicized) lead to three major conclusions. (A) k(po) differences are dominated by capillary water permeability (P(W)(†)), not size, differences. NWM and NGM voxel k(po) and v(b) values are independent. Quantitative analyses of concomitant population-averaged k(po), v(b) variations in normal and normal-appearing MS brain ROIs confirm P(W)(†) dominance. (B) P(W)(†) is dominated (>95%) by a trans(endothelial)cellular pathway, not the P(CA)(†) paracellular route. In MS lesions and GBM tumors, P(CA)(†) increases but P(W)(†) decreases. (C) k(po) tracks steady-state ATP production/consumption flux per capillary. In normal, MS, and GBM brain, regional k(po) correlates with literature MRSI ATP (positively) and Na(+) (negatively) tissue concentrations. This suggests that the P(W)(†) pathway is metabolically active. Excellent agreement of the relative NGM/NWM k(po)v(b) product ratio with the literature (31)PMRSI-MT CMR(oxphos) ratio confirms the flux property. We have previously shown that the cellular water molecule efflux rate constant (k(io)) is proportional to plasma membrane P-type ATPase turnover, likely due to active trans-membrane water cycling. With synaptic proximities and synergistic metabolic cooperativities, polar brain endothelial, neuroglial, and neuronal cells form "gliovascular units." We hypothesize that a chain of water cycling processes transmits brain metabolic activity to k(po), letting it report neurogliovascular unit Na

  6. Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping

    Directory of Open Access Journals (Sweden)

    Johannes eStelzer

    2014-04-01

    Full Text Available Although ultra-high-field fMRI at field strengths of 7T or above provides substantial gains in BOLD contrast-to-noise ratio, when very high-resolution fMRI is required such gains are inevitably reduced. The improvement in sensitivity provided by multivariate analysis techniques, as compared with univariate methods, then becomes especially welcome. Information mapping approaches are commonly used, such as the searchlight technique, which take into account the spatially distributed patterns of activation in order to predict stimulus conditions. However, the popular searchlight decoding technique, in particular, has been found to be prone to spatial inaccuracies. For instance, the spatial extent of informative areas is generally exaggerated, and their spatial configuration is distorted. We propose the combination of a nonparametric and permutation-based statistical framework with linear classifiers. We term this new combined method Feature Weight Mapping (FWM. The main goal of the proposed method is to map the specific contribution of each voxel to the classification decision while including a correction for the multiple comparisons problem. Next, we compare this new method to the searchlight approach using a simulation and ultra-high-field 7T experimental data. We found that the searchlight method led to spatial inaccuracies that are especially noticeable in high-resolution fMRI data. In contrast, FWM was more spatially precise, revealing both informative anatomical structures as well as the direction by which voxels contribute to the classification. By maximizing the spatial accuracy of ultra-high-field fMRI results, global multivariate methods provide a substantial improvement for characterizing structure-function relationships.

  7. High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Han, Yuanhong; Khu, Dong-Man; Monteros, Maria J

    2012-02-01

    Single nucleotide polymorphisms (SNPs) represent the most abundant type of genetic polymorphism in plant genomes. SNP markers are valuable tools for genetic analysis of complex traits of agronomic importance, linkage and association mapping, genome-wide selection, map-based cloning, and marker-assisted selection. Current challenges for SNP genotyping in polyploid outcrossing species include multiple alleles per loci and lack of high-throughput methods suitable for variant detection. In this study, we report on a high-resolution melting (HRM) analysis system for SNP genotyping and mapping in outcrossing tetraploid genotypes. The sensitivity and utility of this technology is demonstrated by identification of the parental genotypes and segregating progeny in six alfalfa populations based on unique melting curve profiles due to differences in allelic composition at one or multiple loci. HRM using a 384-well format is a fast, consistent, and efficient approach for SNP discovery and genotyping, useful in polyploid species with uncharacterized genomes. Possible applications of this method include variation discovery, analysis of candidate genes, genotyping for comparative and association mapping, and integration of genome-wide selection in breeding programs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9566-x) contains supplementary material, which is available to authorized users.

  8. Distinct laterality alterations distinguish mild cognitive impairment and Alzheimer's disease from healthy aging: statistical parametric mapping with high resolution MRI.

    Science.gov (United States)

    Long, Xiaojing; Zhang, Lijuan; Liao, Weiqi; Jiang, Chunxiang; Qiu, Bensheng

    2013-12-01

    Laterality of human brain varies under healthy aging and diseased conditions. The alterations in hemispheric asymmetry may embed distinct biomarkers linked to the disease dynamics. Statistical parametric mapping based on high-resolution magnetic resonance imaging (MRI) and image processing techniques have allowed automated characterization of morphological features across the entire brain. In this study, 149 subjects grouped in healthy young, healthy elderly, mild cognitive impairment (MCI), and Alzheimer's disease (AD) were investigated using multivariate analysis for regional cerebral laterality indexed by surface area, curvature index, cortical thickness, and subjacent white matter volume measured on high-resolution MR images. Asymmetry alteration of MCI and AD were characterized by marked region-specific reduction, while healthy elderly featured a distinct laterality shift in the limbic system in addition to regional asymmetry loss. Lack of the laterality shift in limbic system and early loss of asymmetry in entorhinal cortex may be biomarkers to identify preclinical AD among other dementia. Multivariate analysis of hemispheric asymmetry may provide information helpful for monitoring the disease progress and improving the management of MCI and AD. Copyright © 2012 Wiley Periodicals, Inc.

  9. High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays.

    Science.gov (United States)

    Urban, Alexander Eckehart; Korbel, Jan O; Selzer, Rebecca; Richmond, Todd; Hacker, April; Popescu, George V; Cubells, Joseph F; Green, Roland; Emanuel, Beverly S; Gerstein, Mark B; Weissman, Sherman M; Snyder, Michael

    2006-03-21

    Deletions and amplifications of the human genomic sequence (copy number polymorphisms) are the cause of numerous diseases and a potential cause of phenotypic variation in the normal population. Comparative genomic hybridization (CGH) has been developed as a useful tool for detecting alterations in DNA copy number that involve blocks of DNA several kilobases or larger in size. We have developed high-resolution CGH (HR-CGH) to detect accurately and with relatively little bias the presence and extent of chromosomal aberrations in human DNA. Maskless array synthesis was used to construct arrays containing 385,000 oligonucleotides with isothermal probes of 45-85 bp in length; arrays tiling the beta-globin locus and chromosome 22q were prepared. Arrays with a 9-bp tiling path were used to map a 622-bp heterozygous deletion in the beta-globin locus. Arrays with an 85-bp tiling path were used to analyze DNA from patients with copy number changes in the pericentromeric region of chromosome 22q. Heterozygous deletions and duplications as well as partial triploidies and partial tetraploidies of portions of chromosome 22q were mapped with high resolution (typically up to 200 bp) in each patient, and the precise breakpoints of two deletions were confirmed by DNA sequencing. Additional peaks potentially corresponding to known and novel additional CNPs were also observed. Our results demonstrate that HR-CGH allows the detection of copy number changes in the human genome at an unprecedented level of resolution.

  10. Downscaling GRACE Remote Sensing Datasets to High-Resolution Groundwater Storage Change Maps of California’s Central Valley

    Directory of Open Access Journals (Sweden)

    Michelle E. Miro

    2018-01-01

    Full Text Available NASA’s Gravity Recovery and Climate Experiment (GRACE has already proven to be a powerful data source for regional groundwater assessments in many areas around the world. However, the applicability of GRACE data products to more localized studies and their utility to water management authorities have been constrained by their limited spatial resolution (~200,000 km2. Researchers have begun to address these shortcomings with data assimilation approaches that integrate GRACE-derived total water storage estimates into complex regional models, producing higher-resolution estimates of hydrologic variables (~2500 km2. Here we take those approaches one step further by developing an empirically based model capable of downscaling GRACE data to a high-resolution (~16 km2 dataset of groundwater storage changes over a portion of California’s Central Valley. The model utilizes an artificial neural network to generate a series of high-resolution maps of groundwater storage change from 2002 to 2010 using GRACE estimates of variations in total water storage and a series of widely available hydrologic variables (PRISM precipitation and temperature data, digital elevation model (DEM-derived slope, and Natural Resources Conservation Service (NRCS soil type. The neural network downscaling model is able to accurately reproduce local groundwater behavior, with acceptable Nash-Sutcliffe efficiency (NSE values for calibration and validation (ranging from 0.2445 to 0.9577 and 0.0391 to 0.7511, respectively. Ultimately, the model generates maps of local groundwater storage change at a 100-fold higher resolution than GRACE gridded data products without the use of computationally intensive physical models. The model’s simulated maps have the potential for application to local groundwater management initiatives in the region.

  11. Large-Area, High-Resolution Tree Cover Mapping with Multi-Temporal SPOT5 Imagery, New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    Adrian Fisher

    2016-06-01

    Full Text Available Tree cover maps are used for many purposes, such as vegetation mapping, habitat connectivity and fragmentation studies. Small remnant patches of native vegetation are recognised as ecologically important, yet they are underestimated in remote sensing products derived from Landsat. High spatial resolution sensors are capable of mapping small patches of trees, but their use in large-area mapping has been limited. In this study, multi-temporal Satellite pour l’Observation de la Terre 5 (SPOT5 High Resolution Geometrical data was pan-sharpened to 5 m resolution and used to map tree cover for the Australian state of New South Wales (NSW, an area of over 800,000 km2. Complete coverages of SPOT5 panchromatic and multispectral data over NSW were acquired during four consecutive summers (2008–2011 for a total of 1256 images. After pre-processing, the imagery was used to model foliage projective cover (FPC, a measure of tree canopy density commonly used in Australia. The multi-temporal imagery, FPC models and 26,579 training pixels were used in a binomial logistic regression model to estimate the probability of each pixel containing trees. The probability images were classified into a binary map of tree cover using local thresholds, and then visually edited to reduce errors. The final tree map was then attributed with the mean FPC value from the multi-temporal imagery. Validation of the binary map based on visually assessed high resolution reference imagery revealed an overall accuracy of 88% (±0.51% standard error, while comparison against airborne lidar derived data also resulted in an overall accuracy of 88%. A preliminary assessment of the FPC map by comparing against 76 field measurements showed a very good agreement (r2 = 0.90 with a root mean square error of 8.57%, although this may not be representative due to the opportunistic sampling design. The map represents a regionally consistent and locally relevant record of tree cover for NSW, and

  12. Detection of a weak meddy-like anomaly from high-resolution satellite SST maps

    Directory of Open Access Journals (Sweden)

    Mikhail Emelianov

    2012-09-01

    Full Text Available Despite the considerable impact of meddies on climate through the long-distance transport of properties, a consistent observation of meddy generation and propagation in the ocean is rather elusive. Meddies propagate at about 1000 m below the ocean surface, so satellite sensors are not able to detect them directly and finding them in the open ocean is more fortuitous than intentional. However, a consistent census of meddies and their paths is required in order to gain knowledge about their role in transporting properties such as heat and salt. In this paper we propose a new methodology for processing high-resolution sea surface temperature maps in order to detect meddy-like anomalies in the open ocean on a near-real-time basis. We present an example of detection, involving an atypical meddy-like anomaly that was confirmed as such by in situ measurements.

  13. Evaluation of ALOS PALSAR Data for High-Resolution Mapping of Vegetated Wetlands in Alaska

    Directory of Open Access Journals (Sweden)

    Daniel Clewley

    2015-06-01

    Full Text Available As the largest natural source of methane, wetlands play an important role in the carbon cycle. High-resolution maps of wetland type and extent are required to quantify wetland responses to climate change. Mapping northern wetlands is particularly important because of a disproportionate increase in temperatures at higher latitudes. Synthetic aperture radar data from a spaceborne platform can be used to map wetland types and dynamics over large areas. Following from earlier work by Whitcomb et al. (2009 using Japanese Earth Resources Satellite (JERS-1 data, we applied the “random forests” classification algorithm to variables from L-band ALOS PALSAR data for 2007, topographic data (e.g., slope, elevation and locational information (latitude, longitude to derive a map of vegetated wetlands in Alaska, with a spatial resolution of 50 m. We used the National Wetlands Inventory and National Land Cover Database (for upland areas to select training and validation data and further validated classification results with an independent dataset that we created. A number of improvements were made to the method of Whitcomb et al. (2009: (1 more consistent training data in upland areas; (2 better distribution of training data across all classes by taking a stratified random sample of all available training pixels; and (3 a more efficient implementation, which allowed classification of the entire state as a single entity (rather than in separate tiles, which eliminated discontinuities at tile boundaries. The overall accuracy for discriminating wetland from upland was 95%, and the accuracy at the level of wetland classes was 85%. The total area of wetlands mapped was 0.59 million km2, or 36% of the total land area of the state of Alaska. The map will be made available to download from NASA’s wetland monitoring website.

  14. A regional high-resolution carbon flux inversion of North America for 2004

    OpenAIRE

    Schuh, A. E.; A. S. Denning; Corbin, K. D.; Baker, I. T.; M. Uliasz; N. Parazoo; A. E. Andrews; D. E. J. Worthy

    2010-01-01

    Resolving the discrepancies between NEE estimates based upon (1) ground studies and (2) atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous glob...

  15. High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar.

    Science.gov (United States)

    Croxford, Adam E; Rogers, Tom; Caligari, Peter D S; Wilkinson, Michael J

    2008-01-01

    * The provision of sequence-tagged site (STS) anchor points allows meaningful comparisons between mapping studies but can be a time-consuming process for nonmodel species or orphan crops. * Here, the first use of high-resolution melt analysis (HRM) to generate STS markers for use in linkage mapping is described. This strategy is rapid and low-cost, and circumvents the need for labelled primers or amplicon fractionation. * Using white lupin (Lupinus albus, x = 25) as a case study, HRM analysis was applied to identify 91 polymorphic markers from expressed sequence tag (EST)-derived and genomic libraries. Of these, 77 generated STS anchor points in the first fully resolved linkage map of the species. The map also included 230 amplified fragment length polymorphisms (AFLP) loci, spanned 1916 cM (84.2% coverage) and divided into the expected 25 linkage groups. * Quantitative trait loci (QTL) analyses performed on the population revealed genomic regions associated with several traits, including the agronomically important time to flowering (tf), alkaloid synthesis and stem height (Ph). Use of HRM-STS markers also allowed us to make direct comparisons between our map and that of the related crop, Lupinus angustifolius, based on the conversion of RFLP, microsatellite and single nucleotide polymorphism (SNP) markers into HRM markers.

  16. Creating High-Resolution Multiscale Maps of Human Tissue Using Multi-beam SEM.

    Directory of Open Access Journals (Sweden)

    André F Pereira

    2016-11-01

    Full Text Available Multi-beam scanning electron microscopy (mSEM enables high-throughput, nano-resolution imaging of macroscopic tissue samples, providing an unprecedented means for structure-function characterization of biological tissues and their cellular inhabitants, seamlessly across multiple length scales. Here we describe computational methods to reconstruct and navigate a multitude of high-resolution mSEM images of the human hip. We calculated cross-correlation shift vectors between overlapping images and used a mass-spring-damper model for optimal global registration. We utilized the Google Maps API to create an interactive map and provide open access to our reconstructed mSEM datasets to both the public and scientific communities via our website www.mechbio.org. The nano- to macro-scale map reveals the tissue's biological and material constituents. Living inhabitants of the hip bone (e.g. osteocytes are visible in their local extracellular matrix milieu (comprising collagen and mineral and embedded in bone's structural tissue architecture, i.e. the osteonal structures in which layers of mineralized tissue are organized in lamellae around a central blood vessel. Multi-beam SEM and our presented methodology enable an unprecedented, comprehensive understanding of health and disease from the molecular to organ length scale.

  17. High resolution orientation mapping of secondary phases in ATI 718Plus® alloy

    Directory of Open Access Journals (Sweden)

    Krakow Robert

    2014-01-01

    Full Text Available The polycrystalline superalloy ATI 718Plus ® (hereafter 718Plus has been developed to replace the established alloy Inconel 718 by offering higher temperature capability for applications in gas turbines. The alloy exhibits two secondary phases in the austenitic matrix; it is strengthened by the γ′-phase with η-phase discontinuously precipitated at the grain boundaries. It can be utilized to control grain growth during forging. Generally, hexagonal η phase has been reported to possess a defined crystallographic orientation with the matrix. However, the material studied here exhibits blocky η-phase that has been precipitated and grown during thermo-mechanical processing. Therefore a measurable change in orientation relationship is expected. The standard technique for orientation mapping is electron back-scattered diffraction with spatial resolution of 100 nm. That is insufficient for studying η-phase in 718Plus. By applying high resolution orientation mapping in the transmission electron microscope (Philips CM 300 FEGTEM equipped with a Nanomegas ASTARTM system a resolution of 3 nm was achieved. The indexed diffraction data was analysed using the Matlab Toolbox Mtex. The analysis included grain reconstruction and exclusion of low confidence measurements. The data set allows generating phase boundary maps indicating interfaces characteristics. Quantitative assessment shows that only 19% of the γ-η-interfaces fulfil the orientation relationship.

  18. A high-resolution cat radiation hybrid and integrated FISH mapping resource for phylogenomic studies across Felidae.

    Science.gov (United States)

    Davis, Brian W; Raudsepp, Terje; Pearks Wilkerson, Alison J; Agarwala, Richa; Schäffer, Alejandro A; Houck, Marlys; Chowdhary, Bhanu P; Murphy, William J

    2009-04-01

    We describe the construction of a high-resolution radiation hybrid (RH) map of the domestic cat genome, which includes 2662 markers, translating to an estimated average intermarker distance of 939 kilobases (kb). Targeted marker selection utilized the recent feline 1.9x genome assembly, concentrating on regions of low marker density on feline autosomes and the X chromosome, in addition to regions flanking interspecies chromosomal breakpoints. Average gap (breakpoint) size between cat-human ordered conserved segments is less than 900 kb. The map was used for a fine-scale comparison of conserved syntenic blocks with the human and canine genomes. Corroborative fluorescence in situ hybridization (FISH) data were generated using 129 domestic cat BAC clones as probes, providing independent confirmation of the long-range correctness of the map. Cross-species hybridization of BAC probes on divergent felids from the genera Profelis (serval) and Panthera (snow leopard) provides further evidence for karyotypic conservation within felids, and demonstrates the utility of such probes for future studies of chromosome evolution within the cat family and in related carnivores. The integrated map constitutes a comprehensive framework for identifying genes controlling feline phenotypes of interest, and to aid in assembly of a higher coverage feline genome sequence.

  19. A high-resolution regional reanalysis for the European CORDEX region

    Science.gov (United States)

    Bollmeyer, Christoph; Keller, Jan; Ohlwein, Christian; Wahl, Sabrina

    2015-04-01

    Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Weather Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations, renewable energy applications). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on two regional reanalyses for Europe and Germany. The European reanalysis COSMO-REA6 matches the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). Nested into COSMO-REA6 is COSMO-REA2, a convective-scale reanalysis with 2km resolution for Germany. COSMO-REA6 comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-Interim data. COSMO-REA2 also uses the nudging scheme complemented by a latent heat nudging of radar information. The reanalysis data set currently covers 17 years (1997-2013) for COSMO-REA6 and 4 years (2010-2013) for COSMO-REA2 with a very large set of output variables and a high temporal output step of hourly 3D-fields and quarter-hourly 2D-fields. The evaluation

  20. Direct Push Optical Screening Tool for High Resolution, Real-Time Mapping of Chlorinated Solvent DNAPL Architecture

    Science.gov (United States)

    2016-07-01

    is historically used in subsurface environmental assessments it i the natural fluorescence of polycyclic aromatic hydrocarbons (PAHs) found in the...sites impacted by petroleum hydrocarbon fuels, creosotes, and MGP tars. The rapid, high-resolution, real-time nature of LIF technologies described...ER-201121) Direct Push Optical Screening Tool for High- Resolution, Real-Time Mapping of Chlorinated Solvent DNAPL Architecture July 2016 This

  1. Quantifying uncertainty due to internal variability using high-resolution regional climate model simulations

    Science.gov (United States)

    Gutmann, E. D.; Ikeda, K.; Deser, C.; Rasmussen, R.; Clark, M. P.; Arnold, J. R.

    2015-12-01

    The uncertainty in future climate predictions is as large or larger than the mean climate change signal. As such, any predictions of future climate need to incorporate and quantify the sources of this uncertainty. One of the largest sources comes from the internal, chaotic, variability within the climate system itself. This variability has been approximated using the 30 ensemble members of the Community Earth System Model (CESM) large ensemble. Here we examine the wet and dry end members of this ensemble for cool-season precipitation in the Colorado Rocky Mountains with a set of high-resolution regional climate model simulations. We have used the Weather Research and Forecasting model (WRF) to simulate the periods 1990-2000, 2025-2035, and 2070-2080 on a 4km grid. These simulations show that the broad patterns of change depicted in CESM are inherited by the high-resolution simulations; however, the differences in the height and location of the mountains in the WRF simulation, relative to the CESM simulation, means that the location and magnitude of the precipitation changes are very different. We further show that high-resolution simulations with the Intermediate Complexity Atmospheric Research model (ICAR) predict a similar spatial pattern in the change signal as WRF for these ensemble members. We then use ICAR to examine the rest of the CESM Large Ensemble as well as the uncertainty in the regional climate model due to the choice of physics parameterizations.

  2. ESTIMATION OF STAND HEIGHT AND FOREST VOLUME USING HIGH RESOLUTION STEREO PHOTOGRAPHY AND FOREST TYPE MAP

    Directory of Open Access Journals (Sweden)

    K. M. Kim

    2016-06-01

    Full Text Available Traditional field methods for measuring tree heights are often too costly and time consuming. An alternative remote sensing approach is to measure tree heights from digital stereo photographs which is more practical for forest managers and less expensive than LiDAR or synthetic aperture radar. This work proposes an estimation of stand height and forest volume(m3/ha using normalized digital surface model (nDSM from high resolution stereo photography (25cm resolution and forest type map. The study area was located in Mt. Maehwa model forest in Hong Chun-Gun, South Korea. The forest type map has four attributes such as major species, age class, DBH class and crown density class by stand. Overlapping aerial photos were taken in September 2013 and digital surface model (DSM was created by photogrammetric methods(aerial triangulation, digital image matching. Then, digital terrain model (DTM was created by filtering DSM and subtracted DTM from DSM pixel by pixel, resulting in nDSM which represents object heights (buildings, trees, etc.. Two independent variables from nDSM were used to estimate forest stand volume: crown density (% and stand height (m. First, crown density was calculated using canopy segmentation method considering live crown ratio. Next, stand height was produced by averaging individual tree heights in a stand using Esri’s ArcGIS and the USDA Forest Service’s FUSION software. Finally, stand volume was estimated and mapped using aerial photo stand volume equations by species which have two independent variables, crown density and stand height. South Korea has a historical imagery archive which can show forest change in 40 years of successful forest rehabilitation. For a future study, forest volume change map (1970s–present will be produced using this stand volume estimation method and a historical imagery archive.

  3. Estimation of Stand Height and Forest Volume Using High Resolution Stereo Photography and Forest Type Map

    Science.gov (United States)

    Kim, K. M.

    2016-06-01

    Traditional field methods for measuring tree heights are often too costly and time consuming. An alternative remote sensing approach is to measure tree heights from digital stereo photographs which is more practical for forest managers and less expensive than LiDAR or synthetic aperture radar. This work proposes an estimation of stand height and forest volume(m3/ha) using normalized digital surface model (nDSM) from high resolution stereo photography (25cm resolution) and forest type map. The study area was located in Mt. Maehwa model forest in Hong Chun-Gun, South Korea. The forest type map has four attributes such as major species, age class, DBH class and crown density class by stand. Overlapping aerial photos were taken in September 2013 and digital surface model (DSM) was created by photogrammetric methods(aerial triangulation, digital image matching). Then, digital terrain model (DTM) was created by filtering DSM and subtracted DTM from DSM pixel by pixel, resulting in nDSM which represents object heights (buildings, trees, etc.). Two independent variables from nDSM were used to estimate forest stand volume: crown density (%) and stand height (m). First, crown density was calculated using canopy segmentation method considering live crown ratio. Next, stand height was produced by averaging individual tree heights in a stand using Esri's ArcGIS and the USDA Forest Service's FUSION software. Finally, stand volume was estimated and mapped using aerial photo stand volume equations by species which have two independent variables, crown density and stand height. South Korea has a historical imagery archive which can show forest change in 40 years of successful forest rehabilitation. For a future study, forest volume change map (1970s-present) will be produced using this stand volume estimation method and a historical imagery archive.

  4. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    Science.gov (United States)

    Wang, Yu; Du, Haixiao; Xia, Mingrui; Ren, Ling; Xu, Mo; Xie, Teng; Gong, Gaolang; Xu, Ningyi; Yang, Huazhong; He, Yong

    2013-01-01

    Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome). Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based) brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  5. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome. Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  6. Assessing Usefulness of High-Resolution Satellite Imagery (HRSI) for Re-Survey of Cadastral Maps

    Science.gov (United States)

    Rao, S. S.; Sharma, J. R.; Rajashekar, S. S.; Rao, D. S. P.; Arepalli, A.; Arora, V.; Kuldeep; Singh, R. P.; Kanaparthi, M.

    2014-11-01

    The Government of India has initiated "National Land Records Modernization Programme (NLRMP)" with emphasis to modernize management of land records, minimize scope of land/property disputes, enhance transparency in the land records maintenance system, and facilitate moving eventually towards guaranteed conclusive titles to immovable properties in the country. One of the major components of the programme is survey/re-survey and updating of all survey and settlement records including creation of original cadastral records wherever necessary. The use of ETS/GPS, Aerial or High Resolution Satellite Images (HRSI) and hybrid method of images are suggested for re-survey in the guidelines. The emerging new satellite technologies enabling earth observation at a spatial resolution of 1.0m or 0.5m or even 0.41m have brought revolutionary changes in the field of cadastral survey. The highresolution satellite imagery (HRSI) is showing its usefulness for cadastral surveys in terms of clear identification of parcel boundaries and other cultural features due to which traditional cadastre and land registration systems have been undergoing major changes worldwide. In the present research study, cadastral maps are derived from ETS/GPS, HRSI of 1.0m and 0.5m and used for comparison. The differences in areas, perimeter and position of parcels derived from HRSI are compared vis-a-vis ETS/GPS boundaries. An assessment has been made on the usefulness of HRSI for re-survey of cadastral maps vis-a-vis conventional ground survey.

  7. HIGH-RESOLUTION DEBRIS FLOW VOLUME MAPPING WITH UNMANNED AERIAL SYSTEMS (UAS AND PHOTOGRAMMETRIC TECHNIQUES

    Directory of Open Access Journals (Sweden)

    M. S. Adams

    2016-06-01

    Full Text Available Debris flows cause an average € 30 million damages and 1-2 fatalities every year in Austria. Detailed documentation of their extent and magnitude is essential for understanding, preventing and mitigating these natural hazard events. The recent development of unmanned aerial systems (UAS has provided a new possibility for on-demand high-resolution monitoring and mapping. Here, we present a study, where the spatial extent and volume of a large debris flow event were mapped with different UAS, fitted with commercial off-the-shelf sensors. Orthophotos and digital terrain models (DTM were calculated using structure-from-motion photogrammetry software. Terrain height differences caused by the debris flow in the catchment and valley floor were derived by subtracting the pre-event airborne laser scanning (ALS DTM from a post-event UAS-DTM. The analysis of the volumetric sediment budget showed, that approximately 265,000 m³ material was mobilised in the catchment, of which 45,000 m³ settled there; of the material, which reached the valley floor, 120,000 m³ was deposited, while another 10,000 m³ was eroded from there. The UAS-results were validated against ALS data and imagery from a traditional manned-aircraft photogrammetry campaign. In conclusion, the UAS-data can reach an accuracy and precision comparable to manned aircraft data, but with the added benefits of higher flexibility, easier repeatability, less operational constraints and higher spatial resolution.

  8. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    Science.gov (United States)

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  9. History of the clay-rich unit at Mawrth Vallis, Mars: High-resolution mapping of a candidate landing site

    Science.gov (United States)

    Loizeau, D.; Mangold, N.; Poulet, F.; Bibring, J.-P.; Bishop, J. L.; Michalski, J.; Quantin, C.

    2015-11-01

    The Mawrth Vallis region is covered by some of the largest phyllosilicate-rich outcrops on Mars, making it a unique window into the past history of Mars in terms of water alteration, potential habitability, and the search for past life. A landing ellipse had been proposed for the Curiosity rover. This area has been extensively observed by the High Resolution Imaging Science Experiment and the Compact Reconnaissance Imaging Spectrometer for Mars, offering the possibility to produce geologic, structural, and topographic maps at very high resolution. These observations provide an unprecedented detailed context of the rocks at Mawrth Vallis, in terms of deposition, alteration, erosion, and mechanical constraints. Our analyses demonstrate the presence of a variety of alteration environments on the surface and readily accessible to a rover, the presence of flowing water at the surface postdating the formation of the clay-rich units, and evidence for probable circulation of fluids in the rocks at different depths. These rocks undergo continuous erosion, creating fresh outcrops where potential biomarkers may have been preserved. The diversity of aqueous environments over geological time coupled to excellent preservation properties make the area a very strong candidate for future robotic investigation on Mars, like the NASA Mars 2020 mission.

  10. High-resolution mapping and spatial variability of soil organic carbon storage of permafrost-affected soils

    Science.gov (United States)

    Siewert, Matthias; Hugelius, Gustaf

    2017-04-01

    Permafrost-affected soils store large amounts of soil organic carbon (SOC). Mapping of this SOC provides a first order spatial input variable for research that relates carbon stored in permafrost regions to carbon cycle dynamics. High-resolution satellite imagery is becoming increasingly available even in circum-polar regions. The presented research highlights findings of high-resolution mapping efforts of SOC from five study areas in the northern circum-polar permafrost region. These study areas are located in Siberia (Kytalyk, Spasskaya Pad /Neleger, Lena delta), Northern Sweden (Abisko) and Northwestern Canada (Herschel Island). Our high spatial resolution analyses show how geomorphology has a strong influence on the distribution of SOC. This is organized at different spatial scales. Periglacial landforms and processes dictate local scale SOC distribution due to patterned ground. Such landforms are non-sorted circles and ice-wedge polygons of different age and scale. Palsas and peat plateaus are formed and can cover larger areas in Sub-Arctic environments. Study areas that have not been affected by Pleistocene glaciation feature ice-rich Yedoma sediments that dominate the local relief through thermokarst formation and create landscape scale macro environments that dictate the distribution of SOC. A general trend indicates higher SOC storage in Arctic tundra soils compared to forested Boreal or Sub-Arctic taiga soils. Yet, due to the shallower active layer depth in the Arctic, much of the SOC may be permanently frozen and thus not be available to ecosystem processes. Significantly more SOC is stored in soils compared to vegetation, indicating that vegetation growth and incorporation of the carbon into the plant phytomass alone will not be able to offset SOC released from permafrost. This contribution also addresses advances in thematic mapping methods and digital soil mapping of SOC in permafrost terrain. In particular machine-learning methods, such as support

  11. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart.

    Science.gov (United States)

    Messroghli, Daniel R; Radjenovic, Aleksandra; Kozerke, Sebastian; Higgins, David M; Sivananthan, Mohan U; Ridgway, John P

    2004-07-01

    A novel pulse sequence scheme is presented that allows the measurement and mapping of myocardial T1 in vivo on a 1.5 Tesla MR system within a single breath-hold. Two major modifications of conventional Look-Locker (LL) imaging are introduced: 1) selective data acquisition, and 2) merging of data from multiple LL experiments into one data set. Each modified LL inversion recovery (MOLLI) study consisted of three successive LL inversion recovery (IR) experiments with different inversion times. We acquired images in late diastole using a single-shot steady-state free-precession (SSFP) technique, combined with sensitivity encoding to achieve a data acquisition window of T1 using signal intensities from regions of interest and pixel by pixel. T1 accuracy at different heart rates derived from simulated ECG signals was tested in phantoms. T1 estimates showed small systematic error for T1 values from 191 to 1196 ms. In vivo T1 mapping was performed in two healthy volunteers and in one patient with acute myocardial infarction before and after administration of Gd-DTPA. T1 values for myocardium and noncardiac structures were in good agreement with values available from the literature. The region of infarction was clearly visualized. MOLLI provides high-resolution T1 maps of human myocardium in native and post-contrast situations within a single breath-hold. Copyright 2004 Wiley-Liss, Inc.

  12. Automated Segmentation of High-Resolution Photospheric Images of Active Regions

    Science.gov (United States)

    Yang, Meng; Tian, Yu; Rao, Changhui

    2018-02-01

    Due to the development of ground-based, large-aperture solar telescopes with adaptive optics (AO) resulting in increasing resolving ability, more accurate sunspot identifications and characterizations are required. In this article, we have developed a set of automated segmentation methods for high-resolution solar photospheric images. Firstly, a local-intensity-clustering level-set method is applied to roughly separate solar granulation and sunspots. Then reinitialization-free level-set evolution is adopted to adjust the boundaries of the photospheric patch; an adaptive intensity threshold is used to discriminate between umbra and penumbra; light bridges are selected according to their regional properties from candidates produced by morphological operations. The proposed method is applied to the solar high-resolution TiO 705.7-nm images taken by the 151-element AO system and Ground-Layer Adaptive Optics prototype system at the 1-m New Vacuum Solar Telescope of the Yunnan Observatory. Experimental results show that the method achieves satisfactory robustness and efficiency with low computational cost on high-resolution images. The method could also be applied to full-disk images, and the calculated sunspot areas correlate well with the data given by the National Oceanic and Atmospheric Administration (NOAA).

  13. Integration of myocardial scar identified by preoperative delayed contrast-enhanced MRI into a high-resolution mapping system for planning and guidance of VT ablation procedures

    Science.gov (United States)

    Rettmann, M. E.; Suzuki, A.; Wang, S.; Pottinger, N.; Arter, J.; Netzer, A.; Parker, K.; Viker, K.; Packer, D. L.

    2017-03-01

    Myocardial scarring creates a substrate for reentrant circuits which can lead to ventricular tachycardia. In ventricular catheter ablation therapy, regions of myocardial scarring are targeted to interrupt arrhythmic electrical pathways. Low voltage regions are a surrogate for myocardial scar and are identified by generating an electro anatomic map at the start of the procedure. Recent efforts have focussed on integration of preoperative scar information generated from delayed contrast-enhanced MR imaging to augment intraprocedural information. In this work, we describe an initial feasibility study of integration of a preoperative MRI derived scar maps into a high-resolution mapping system to improve planning and guidance of VT ablation procedures.

  14. Error characteristics of high resolution regional climate models over the Alpine area

    Energy Technology Data Exchange (ETDEWEB)

    Suklitsch, Martin; Gobiet, Andreas; Truhetz, Heimo; Khurshid Awan, Nauman [University of Graz, Wegener Center for Climate and Global Change and Institute for Geophysics, Astrophysics and Meteorology, Institute of Physics, Graz (Austria); Goettel, Holger [German Emissions Trading Authority at the Federal Environment Agency, Berlin (Germany); Jacob, Daniela [Max Planck Institute for Meteorology, University of Hamburg, Hamburg (Germany)

    2011-07-15

    This study describes typical error ranges of high resolution regional climate models operated over complex orography and investigates the scale-dependence of these error ranges. The results are valid primarily for the European Alpine region, but to some extent they can also be transferred to other orographically complex regions of the world. We investigate the model errors by evaluating a set of 62 one-year hindcast experiments for the year 1999 with four different regional climate models. The analysis is conducted for the parameters mean sea level pressure, air temperature (mean, minimum and maximum) and precipitation (mean, frequency and intensity), both as an area average over the whole modeled domain (the ''Greater Alpine Region'', GAR) and in six subregions. The subregional seasonal error ranges, defined as the interval between the 2.5th percentile and the 97.5th percentile, lie between -3.2 and +2.0 K for temperature and between -2.0 and +3.1 mm/day (-45.7 and +94.7%) for precipitation, respectively. While the temperature error ranges are hardly broadened at smaller scales, the precipitation error ranges increase by 28%. These results demonstrate that high resolution RCMs are applicable in relatively small scale climate impact studies with a comparable quality as on well investigated larger scales as far as temperature is concerned. For precipitation, which is a much more demanding parameter, the quality is moderately degraded on smaller scales. (orig.)

  15. Exploiting High Resolution Multi-Seasonal Textural Measures and Spectral Information for Reedbed Mapping

    Directory of Open Access Journals (Sweden)

    Alex Okiemute Onojeghuo

    2016-02-01

    Full Text Available Reedbeds across the UK are amongst the most important habitats for rare and endangered birds, wildlife and organisms. However, over the past century, this valued wetland habitat has experienced a drastic reduction in quality and spatial coverage due to pressures from human related activities. To this end, conservation organisations across the UK have been charged with the task of conserving and expanding this threatened habitat. With this backdrop, the study aimed to develop a methodology for accurate reedbed mapping through the combined use of multi-seasonal texture measures and spectral information contained in high resolution QuickBird satellite imagery. The key objectives were to determine the most effective single-date (autumn or summer and multi-seasonal QuickBird imagery suitable for reedbed mapping over the study area; to evaluate the effectiveness of combining multi-seasonal texture measures and spectral information for reedbed mapping using a variety of combinations; and to evaluate the most suitable classification technique for reedbed mapping from three selected classification techniques, namely maximum likelihood classifier, spectral angular mapper and artificial neural network. Using two selected grey-level co-occurrence textural measures (entropy and angular second moment, a series of experiments were conducted using varied combinations of single-date and multi-seasonal QuickBird imagery. Overall, the results indicate the multi-seasonal pansharpened multispectral bands (eight layers combined with all eight grey level co-occurrence matrix texture measures (entropy and angular second moment computed using windows 3 × 3 and 7 × 7 produced the optimal reedbed (76.5% and overall classification (78.1% accuracies using the maximum likelihood classifier technique. Using the optimal 16 layer multi-seasonal pansharpened multispectral and texture combined image dataset, a total reedbed area of 9.8 hectares was successfully mapped over the

  16. Post-earthquake road damage assessment using region-based algorithms from high-resolution satellite images

    Science.gov (United States)

    Haghighattalab, A.; Mohammadzadeh, A.; Valadan Zoej, M. J.; Taleai, M.

    2010-10-01

    Receiving accurate and comprehensive knowledge about the conditions of roads after earthquake strike are crucial in finding optimal paths and coordinating rescue missions. Continuous coverage of the disaster region and rapid access of high-resolution satellite images make this technology as a useful and powerful resource for post-earthquake damage assessment and the evaluation process. Along with this improved technology, object-oriented classification has become a promising alternative for classifying high-resolution remote sensing imagery, such as QuickBird, Ikonos. Thus, in this study, a novel approach is proposed for the automatic detection and assessment of damaged roads in urban areas based on object based classification techniques using post-event satellite image and vector map. The most challenging phase of the proposed region-based algorithm is the segmentation procedure. The extracted regions are then classified using nearest neighbor classifier making use of textural parameters. Then, an appropriate fuzzy inference system (FIS) is proposed for road damage assessment. Finally, the roads are correctly labeled as 'Blocked road' or 'Unblocked road' in the road damage assessment step. The proposed method was tested on QuickBird pan-sharpened image of Bam, Iran, concerning the devastating earthquake that occurred in December 2003. The visual investigation of the obtained results demonstrates the efficiency of the proposed approach.

  17. High-resolution AUV mapping and lava flow ages at Axial Seamount

    Science.gov (United States)

    Clague, D. A.; Paduan, J. B.; Dreyer, B. M.; Caress, D. W.; Martin, J.

    2011-12-01

    Mapping along mid-ocean ridges, as on land, requires identification of flow boundaries and sequence, and ages of some flows to understand eruption history. Multibeam sonars on autonomous underwater vehicles (AUV) now generate 1-m resolution maps that resolve lava pillars, internal flow structures and boundaries, and lava flow emplacement sequences using crosscutting relations and abundance of fissures. MBARI has now mapped the summit caldera floor and rims and the upper south rift zone on Axial Seamount on the Juan de Fuca Ridge. With the advent of the high-resolution bathymetry and the ability to observe flow contacts to determine superposition using ROVs and submersibles, the missing component has been determining absolute ages of the flows. We used the MBARI ROV Doc Ricketts to collect short push cores (Six ages from the lowermost part of the south rift of Axial Seamount include samples on a cone with deep summit crater that is ~16,580 aBP and on 5 flows between 950 and 1510 aBP. Two additional flows from the southeast rim of the caldera are 905 and 2005 aBP. An age of 6910 aBP from 15 cm depth in a 2-m volcaniclastic unit on top of a pre-caldera flow on the eastern rim of the caldera suggests formation of the caldera several tens of thousands aBP. Seven ages on at least 5 flows on the floor of Axial caldera range from 620 to 1145 aBP, whereas 10 extensive mapped flows are all inferred to be <620 aBP as they are covered by sediment too thin to sample. The older pillow flows are difficult to map as discrete flows. In contrast, the 11 flows erupted during the last 620 years have an eruption frequency of 55 years. Of these, 6 not significantly overlapped by younger flows have a combined surface area of 30.2 km2 and represent roughly the output over 275 years of eruptive activity in the caldera at Axial Seamount, although they were not erupted in a continuous 275 year timespan. If we use average flow thicknesses of 3-5 m for these sheet flows, we estimate a lava

  18. Biometric Properties Estimated from High Resolution Imagery in the Amazon and the Cerrado Regions

    Science.gov (United States)

    Hagen, S.; Palace, M. W.; Braswell, B. H.; Bustamante, M.; Ferreira, L.

    2009-12-01

    The Amazon and Cerrado regions are unique ecotypes with complex and varied forest and vegetation structure. Forest structure reveals the dual influences of disturbance and growth. Because these two tropical regions have and are undergoing rapid change due to human encroachment, understanding the forests structure in these ecotypes aids in efforts to quantify carbon dynamics on both regional and global scales. Analysis of data from literature found that canopy cover and biomass are highly correlated in the Cerrado (r2=.86), more so than other structural variables. This indicates that use of radar and lidar to estimate biomass in savannah ecotypes with sparse and clumpy tree cover might be prone to error. Literature also suggests that lidar and radar saturate in high biomass forests. Remote sensing of forest canopy structure estimation has greatly advanced to due the aid of high resolution satellite images. We estimated forest structure using high resolution image data from IKONOS using textural methods such as lacunarity, semivariance, power spectrum, entropy, and a crown characterization algorithm for 11,014 image tiles or sections (1 square km each) extracted from 300 IKONOS images. Our preprocessing of this data calculated top-of-atmosphere reflectance based on metadata from IKONOS image acquisition. A user-trained five category landuse classification was used to determine which areas within an IKONOS tile would be analyzed using textural methods.We compare results with available field measured forest biometric data. We used an Index of Translational Homogeneity (ITH) calculated from our lacunarity results. ITH is an index of average crown width and we estimated an average of 8.1 m +/- 7.7 SD. Our estimate of the range based on semivariance was an average of 11.4 m +/- 7.3 SD. Our crown characterization algorithm estimated average crown width to be 12.5 m +/- 4.0 SD. The average entropy of each tile was 5.7 +/- 0.5 SD. We associated each IKONOS tile with one of

  19. High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery

    Directory of Open Access Journals (Sweden)

    Fangfang Yao

    2015-09-01

    Full Text Available Accurate information of urban surface water is important for assessing the role it plays in urban ecosystem services under the content of urbanization and climate change. However, high-resolution monitoring of urban water bodies using remote sensing remains a challenge because of the limitation of previous water indices and the dark building shadow effect. To address this problem, we proposed an automated urban water extraction method (UWEM which combines a new water index, together with a building shadow detection method. Firstly, we trained the parameters of UWEM using ZY-3 imagery of Qingdao, China. Then we verified the algorithm using five other sub-scenes (Aksu, Fuzhou, Hanyang, Huangpo and Huainan ZY-3 imagery. The performance was compared with that of the Normalized Difference Water Index (NDWI. Results indicated that UWEM performed significantly better at the sub-scenes with kappa coefficients improved by 7.87%, 32.35%, 12.64%, 29.72%, 14.29%, respectively, and total omission and commission error reduced by 61.53%, 65.74%, 83.51%, 82.44%, and 74.40%, respectively. Furthermore, UWEM has more stable performances than NDWI’s in a range of thresholds near zero. It reduces the over- and under-estimation issues which often accompany previous water indices when mapping urban surface water under complex environmental conditions.

  20. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo

    2014-01-27

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  1. Multivariate Multi-data Assimilation System in Regional Model with High Resolution

    Science.gov (United States)

    Benkiran, M.; Chanut, J.; Giraud St Albin, S.; Drillet, Y.

    2010-12-01

    Mercator Ocean has developed a regional North East Shelf forecasting system over the North East Atlantic, taking advantage of the recent developments in NEMO (1/12°). This regional forecasting system uses boundary conditions from the operational real-time Mercator Ocean North Atlantic high resolution system (1/12°). The assimilation component of the Mercator Ocean system, is based on a reduced-order Kalman filter (the SEEK or Singular Extended Evolutive Kalman filter). The error statistics are represented in a sub-space spanned by a small number of dominant 3D error directions. The data assimilation system allows to constrain the model in a multivariate way with Sea Surface Temperature (RTG-SST), together with all available satellite Sea Level Anomalies, and with in situ observations from the CORIOLIS database, including ARGO floats temperature and salinity measurements.At last, we used PALM coupler which provides a general structure for a modular implementation of a data assimilation system, and makes easier the changes in the analysis algorithm. We will confront the results obtained with the regional forecast system (1/12°) with IAU (Incremental Analysis Updates) to the ones obtained with Mercator Ocean North Atlantic high resolution system (1/12°).

  2. High-resolution mapping of combustion processes and implications for CO2 emissions

    Science.gov (United States)

    Wang, R.; Tao, S.; Ciais, P.; Shen, H. Z.; Huang, Y.; Chen, H.; Shen, G. F.; Wang, B.; Li, W.; Zhang, Y. Y.; Lu, Y.; Zhu, D.; Chen, Y. C.; Liu, X. P.; Wang, W. T.; Wang, X. L.; Liu, W. X.; Li, B. G.; Piao, S. L.

    2013-05-01

    High-resolution mapping of fuel combustion and CO2 emission provides valuable information for modeling pollutant transport, developing mitigation policy, and for inverse modeling of CO2 fluxes. Previous global emission maps included only few fuel types, and emissions were estimated on a grid by distributing national fuel data on an equal per capita basis, using population density maps. This process distorts the geographical distribution of emissions within countries. In this study, a sub-national disaggregation method (SDM) of fuel data is applied to establish a global 0.1° × 0.1° geo-referenced inventory of fuel combustion (PKU-FUEL) and corresponding CO2 emissions (PKU-CO2) based upon 64 fuel sub-types for the year 2007. Uncertainties of the emission maps are evaluated using a Monte Carlo method. It is estimated that CO2 emission from combustion sources including fossil fuel, biomass, and solid wastes in 2007 was 11.2 Pg C yr-1 (9.1 Pg C yr-1 and 13.3 Pg C yr-1 as 5th and 95th percentiles). Of this, emission from fossil fuel combustion is 7.83 Pg C yr-1, which is very close to the estimate of the International Energy Agency (7.87 Pg C yr-1). By replacing national data disaggregation with sub-national data in this study, the average 95th minus 5th percentile ranges of CO2 emission for all grid points can be reduced from 417 to 68.2 Mg km-2 yr-1. The spread is reduced because the uneven distribution of per capita fuel consumptions within countries is better taken into account by using sub-national fuel consumption data directly. Significant difference in per capita CO2 emissions between urban and rural areas was found in developing countries (2.08 vs. 0.598 Mg C/(cap. × yr)), but not in developed countries (3.55 vs. 3.41 Mg C/(cap. × yr)). This implies that rapid urbanization of developing countries is very likely to drive up their emissions in the future.

  3. National scale high-resolution mapping of coastal wave overtopping risk in England and Wales

    Science.gov (United States)

    Alexandre, Rebecca; Hird, Matthew

    2015-04-01

    The coastal flooding associated with the 2013-2014 UK winter storms caused widespread property damage and one fatality along the coastlines of south-west England and Wales. High spring tides and large waves combined to unexpectedly overtop coastal flood defences. The increasing risk of waves overtopping sea defences coupled with the rise in property development along the coast highlights the need for new and innovative tools for understanding coastal flood risk. Until now, broad-scale coastal hazard maps have overlooked coastal wave overtopping inundation, thereby underestimating flood risk. Recognising this gap has led to the development of the first nation-wide wave overtopping flood map for England and Wales, which we present here. Aimed primarily at the re/insurance sector, JBA has established a methodology for rapidly modelling large-scale wave overtopping flooding. An inception study investigated a range of modelling approaches for national scale modelling and the most suitable design computed general peak wave overtopping rates representative of four separate return period events. Hydrographs were calculated to reflect the changes in the overtopping rate as a result of changes to the water levels throughout the tidal cycle. Overtopping volumes were then computed from the overtopping rates and defence polylines digitised in ArcGIS. Finally, topographically controlled inundation was simulated across a high-resolution digital terrain model using a 2D hydrodynamic flood model. Results from the selected methodology compared well against test areas modelled in detail using additional data on bathymetry, beach profiles, and defence geometry. Sensibility checks were performed using extreme sea level value data to ensure that the model outputs were consistent with the sea level heights expected during a storm event of a particular return period. Moreover, model results corroborated well with media reports on flood extents experienced by communities during the 2013

  4. A high resolution radiation hybrid map of wheat chromosome 4A

    Science.gov (United States)

    Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequenc...

  5. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study

    Directory of Open Access Journals (Sweden)

    Els De Roeck

    2014-12-01

    Full Text Available The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke as a case in point, this study illustrates the potential of very high resolution (VHR optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of <5m resolution was acquired in the spring of 2013 for the area around Bruges, Belgium, a region where dairy farms suffer from liver fluke infections transmitted by freshwater snails. The vector thrives in small water bodies (SWBs, such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  6. A high resolution physical and RH map of pig chromosome 6q1.2 and comparative analysis with human chromosome 19q13.1

    Directory of Open Access Journals (Sweden)

    Robic Annie

    2003-05-01

    Full Text Available Abstract Background The generation of BAC/PAC contigs in targeted genome regions is a powerful method to establish high-resolution physical maps. In domestic animal species the generation of such contigs is typically initiated with the screening of libraries with probes derived from human genes that are expected to be located in the region of interest by comparative mapping. However, in many instances the available gene-derived probes are too far apart to allow the cloning of BAC/PAC contigs larger than a few hundred kb. High resolution physical mapping allows to estimate the sizes of gaps and to control the orientation of the individual sub-contigs, which helps to avoid errors during the assembly of smaller contigs into final Mb-sized contigs. The recently constructed porcine IMNpRH2 panel allowed us to use this approach for the construction of high-resolution physical maps of SSC 6q1.2. Results Two sequence-ready BAC/PAC contigs of the gene-rich region on porcine chromosome 6q1.2 (SSC 6q1.2 containing the RYRl gene were constructed. The two contigs spanned about 1.2 Mb and 2.0 Mb respectively. The construction of these contigs was monitored by the results provided by the mapping of 15 markers on the IMpRH7000rad and 35 markers on the IMNpRH212000rad radiation hybrid panels. Analyses on the IMpRH panel allowed us to globally link and orientate preliminary smaller contigs, whereas analyses on the high resolution IMNpRH2 panel allowed us to finally identify the order of genes and markers. Conclusions A framework map of 523 cR12000 was established covering the whole studied region. The order of markers on the framework 1000:1 RH map was found totally consistent with the data deduced from the contig map. The kb/cR ratio was very constant in the whole region, with an average value of 6.6 kb/cR. We estimate that the size of the remaining gap between the two contigs is of about 300 kb. The integrated physical and RH map of the investigated region on

  7. HIGH-RESOLUTION SEISMIC VELOCITY AND ATTENUATION MODELS OF THE CAUCASUS-CASPIAN REGION

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R; Gok, R; Sandvol, E

    2007-07-10

    The southwest edge of Eurasia is a tectonically and structurally complex region that includes the Caspian and Black Sea basins, the Caucasus Mountains, and the high plateaus south of the Caucasus. Crustal and upper mantle velocities show great heterogeneity in this region and regional phases display variations in both amplitudes and travel time. Furthermore, due to a lack of quality data, the region has largely been unexplored in terms of the detailed lithospheric seismic structure. A unified high-resolution 3D velocity and attenuation model of the crust and upper mantle will be developed and calibrated. This model will use new data from 23 new broadband stations in the region analyzed with a comprehensive set of techniques. Velocity models of the crust and upper mantle will be developed using a joint inversion of receiver functions and surface waves. The surface wave modeling will use both event-based methods and ambient noise tomography. Regional phase (Pg, Pn, Sn, and Lg) Q model(s) will be constructed using the new data in combination with existing data sets. The results of the analysis (both attenuation and velocity modeling) will be validated using modeling of regional phases, calibration with selected events, and comparison with previous work. Preliminary analyses of receiver functions show considerable variability across the region. All results will be integrated into the KnowledgeBase.

  8. Very high-resolution regional climate simulations over Scandinavia-present climate

    DEFF Research Database (Denmark)

    Christensen, Ole B.; Christensen, Jens H.; Machenhauer, Bennert

    1998-01-01

    The hydrological cycle on a regional scale is poorly represented with a present-day coarse resolution general circulation model (GCM). With a dynamical downscaling technique, in which a regional higher-resolution climate model (RCM) is nested into the GCM, this starts to become feasible. Here...... the authors go one step further with a double nesting approach, applying an RCM at 19-km horizontal resolution nested into an RCM at 57-km resolution over an area covering the Scandinavian Peninsula. A 9-yr-long time-slice simulation is performed with the driving boundary conditions taken from a fully coupled...... simulated in the high-resolution simulation. It does, however, inherit certain large-scale systematic errors from the driving GCM. In many cases these errors increase with increasing resolution. Model verification of near-surface temperature and precipitation is made using a new gridded climatology based...

  9. High-Resolution Melting (HRM) of Hypervariable Mitochondrial DNA Regions for Forensic Science.

    Science.gov (United States)

    Dos Santos Rocha, Alípio; de Amorim, Isis Salviano Soares; Simão, Tatiana de Almeida; da Fonseca, Adenilson de Souza; Garrido, Rodrigo Grazinoli; Mencalha, Andre Luiz

    2017-08-23

    Forensic strategies commonly are proceeding by analysis of short tandem repeats (STRs); however, new additional strategies have been proposed for forensic science. Thus, this article standardized the high-resolution melting (HRM) of DNA for forensic analyzes. For HRM, mitochondrial DNA (mtDNA) from eight individuals were extracted from mucosa swabs by DNAzol reagent, samples were amplified by PCR and submitted to HRM analysis to identify differences in hypervariable (HV) regions I and II. To confirm HRM, all PCR products were DNA sequencing. The data suggest that is possible discriminate DNA from different samples by HRM curves. Also, uncommon dual-dissociation was identified in a single PCR product, increasing HRM analyzes by evaluation of melting peaks. Thus, HRM is accurate and useful to screening small differences in HVI and HVII regions from mtDNA and increase the efficiency of laboratory routines based on forensic genetics. © 2017 American Academy of Forensic Sciences.

  10. High resolution gradient fingerprint mapping and its impact on urban planning.

    Science.gov (United States)

    Larour, Eric; Adhikari, Surendra; Ivins, Erik

    2017-04-01

    Local sea level rise is a measure of several competing processes, such as the contribution of melting ice from polar ice sheets, short-term processes related to ocean and atmospheric circulation, vertical land motion, viscoelastic adjustment of the mantle and crust and intense storm flooding. Of all these components, polar ice sheets will contribute most in the near to long-term future. It is therefore paramount to understand how sensitive local sea level is to spatio-temporally variable patterns of ice thickness in glaciated areas around the world. Here, we propose a new tool to assess this sensitivity based on gradient fingerprint mapping (GFM). This method quantifies exactly the derivative dS/dH, where S is local sea level and H ice thickness around the world. This derivative can be used to compute local projections of sea level using the following approach: S = dS/dH * DH + deltaS, where dS/dH is the gradient fingerprint (as it relates to ice) and DH any projected change in ice thickness (be it from observations extrapolated in time, or semi-empirical approaches, or model-based projections). deltaS encompasses other time variable components (assumed of a lower order) described above. Using high-resolution GFM, urban planners can assess which glaciated areas around the world will be of relevance to sea level change at their specific location, and how to instantly transfer projections of polar ice sheet evolution into localized sea-level change projections, along with associated uncertainties. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  11. Glaciotectonic structures mapped by GPR, geoelectrical, high-resolution seismic and airborne transient electromagnetic methods

    Science.gov (United States)

    Høyer, Anne-Sophie; Møller, Ingelise; Jørgensen, Flemming

    2013-04-01

    Glaciotectonic structures have traditionally been recognized through observations in the landscape or exposures like cliffs. However, mapping of these structures can highly benefit from geophysical data, which can give information on buried glaciotectonic complexes. In the current study, we focus on the appearance of glaciotectonic structures in data from four commonly used geophysical methods: Ground penetrating radar (GPR), geoelectrical, high-resolution seismic and airborne transient electromagnetic (SkyTEM). The data are collected within a study area that covers 100 km2 and is located in the western part of Denmark. The study area is characterized by a highly heterogeneous geological setting, which has been influenced by multiple glacial deformation phases resulting in a buried glaciotectonic complex. The glaciotectonic structures appear as folds and faults and are recognizable at all scales. As a consequence of the different resolution capabilities of the methods, different degrees of detail are observed: Large-scale structures are recognized based on the seismic and airborne transient electromagnetic data, whereas small-scale structures are interpreted based on the GPR and geoelectrical data. At the same time, the nature of the methods results in different types of information from the data: The GPR and the seismic data generally provide detailed structural information, whereas the electric and electromagnetic data provide a more 'blurred' resistivity image of the subsurface. In order to recognize geological structures on the electric and electromagnetic data, the structures therefore need to influence sediments with contrasting resistivities to the surroundings. The structures are recognizable on all the different data sets, but the understanding and thus, the interpretation, of the geological environment strongly benefits from the combined observations from the different types of data.

  12. High-Resolution Regional Reanalysis in China: Evaluation of 1 Year Period Experiments

    Science.gov (United States)

    Zhang, Qi; Pan, Yinong; Wang, Shuyu; Xu, Jianjun; Tang, Jianping

    2017-10-01

    Globally, reanalysis data sets are widely used in assessing climate change, validating numerical models, and understanding the interactions between the components of a climate system. However, due to the relatively coarse resolution, most global reanalysis data sets are not suitable to apply at the local and regional scales directly with the inadequate descriptions of mesoscale systems and climatic extreme incidents such as mesoscale convective systems, squall lines, tropical cyclones, regional droughts, and heat waves. In this study, by using a data assimilation system of Gridpoint Statistical Interpolation, and a mesoscale atmospheric model of Weather Research and Forecast model, we build a regional reanalysis system. This is preliminary and the first experimental attempt to construct a high-resolution reanalysis for China main land. Four regional test bed data sets are generated for year 2013 via three widely used methods (classical dynamical downscaling, spectral nudging, and data assimilation) and a hybrid method with data assimilation coupled with spectral nudging. Temperature at 2 m, precipitation, and upper level atmospheric variables are evaluated by comparing against observations for one-year-long tests. It can be concluded that the regional reanalysis with assimilation and nudging methods can better produce the atmospheric variables from surface to upper levels, and regional extreme events such as heat waves, than the classical dynamical downscaling. Compared to the ERA-Interim global reanalysis, the hybrid nudging method performs slightly better in reproducing upper level temperature and low-level moisture over China, which improves regional reanalysis data quality.

  13. High-Resolution, Semi-Automatic Fault Mapping Using Umanned Aerial Vehicles and Computer Vision: Mapping from an Armchair

    Science.gov (United States)

    Micklethwaite, S.; Vasuki, Y.; Turner, D.; Kovesi, P.; Holden, E.; Lucieer, A.

    2012-12-01

    Our ability to characterise fractures depends upon the accuracy and precision of field techniques, as well as the quantity of data that can be collected. Unmanned Aerial Vehicles (UAVs; otherwise known as "drones") and photogrammetry, provide exciting new opportunities for the accurate mapping of fracture networks, over large surface areas. We use a highly stable, 8 rotor, UAV platform (Oktokopter) with a digital SLR camera and the Structure-from-Motion computer vision technique, to generate point clouds, wireframes, digital elevation models and orthorectified photo mosaics. Furthermore, new image analysis methods such as phase congruency are applied to the data to semiautomatically map fault networks. A case study is provided of intersecting fault networks and associated damage, from Piccaninny Point in Tasmania, Australia. Outcrops >1 km in length can be surveyed in a single 5-10 minute flight, with pixel resolution ~1 cm. Centimetre scale precision can be achieved when selected ground control points are measured using a total station. These techniques have the potential to provide rapid, ultra-high resolution mapping of fracture networks, from many different lithologies; enabling us to more accurately assess the "fit" of observed data relative to model predictions, over a wide range of boundary conditions.igh resolution DEM of faulted outcrop (Piccaninny Point, Tasmania) generated using the Oktokopter UAV (inset) and photogrammetric techniques.

  14. High-resolution mapping of global surface water and its long-term changes

    Science.gov (United States)

    Pekel, Jean-François; Cottam, Andrew; Gorelick, Noel; Belward, Alan S.

    2016-12-01

    The location and persistence of surface water (inland and coastal) is both affected by climate and human activity and affects climate, biological diversity and human wellbeing. Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions, statistical extrapolation of regional data and satellite imagery, but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images, we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal. Losses in Australia and the USA linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water

  15. Correlation of scar in cardiac MRI and high-resolution contact mapping of left ventricle in a chronic infarct model.

    Science.gov (United States)

    Thajudeen, Anees; Jackman, Warren M; Stewart, Brian; Cokic, Ivan; Nakagawa, Hiroshi; Shehata, Michael; Amorn, Allen M; Kali, Avinash; Liu, Ezh; Harlev, Doron; Bennett, Nathan; Dharmakumar, Rohan; Chugh, Sumeet S; Wang, Xunzhang

    2015-06-01

    Endocardial mapping for scars and abnormal electrograms forms the most essential component of ventricular tachycardia ablation. The utility of ultra-high resolution mapping of ventricular scar was assessed using a multielectrode contact mapping system in a chronic canine infarct model. Chronic infarcts were created in five anesthetized dogs by ligating the left anterior descending coronary artery. Late gadolinium-enhanced magnetic resonance imaging (LGE MRI) was obtained 4.9 ± 0.9 months after infarction, with three-dimensional (3D) gadolinium enhancement signal intensity maps at 1-mm and 5-mm depths from the endocardium. Ultra-high resolution electroanatomical maps were created using a novel mapping system (Rhythmia Mapping System, Rhythmia Medical/Boston Scientific, Marlborough, MA, USA) Rhythmia Medical, Boston Scientific, Marlborough, MA, USA with an 8.5F catheter with mini-basket electrode array (64 tiny electrodes, 2.5-mm spacing, center-to-center). The maps contained 7,754 ± 1,960 electrograms per animal with a mean resolution of 2.8 ± 0.6 mm. Low bipolar voltage (transmural scar, and dense transmural scar) as well as normal tissue, were significantly different. A unipolar voltage of transmural extension of scar in MRI. Electrograms exhibiting isolated late potentials (ILPs) were manually annotated and ILP maps were created showing ILP location and timing. ILPs were identified in 203 ± 159 electrograms per dog (within low-voltage areas) and ILP maps showed gradation in timing of ILPs at different locations in the scar. Ultra-high resolution contact electroanatomical mapping accurately localizes ventricular scar and abnormal myocardial tissue in this chronic canine infarct model. The high fidelity electrograms provided clear identification of the very low amplitude ILPs within the scar tissue and has the potential to quickly identify targets for ablation. ©2015 The Authors. Pacing and Clinical Electrophysiology Published by Wiley Periodicals, Inc.

  16. High resolution population distribution maps for Southeast Asia in 2010 and 2015.

    Directory of Open Access Journals (Sweden)

    Andrea E Gaughan

    Full Text Available Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org.

  17. High Resolution Population Distribution Maps for Southeast Asia in 2010 and 2015

    Science.gov (United States)

    Gaughan, Andrea E.; Stevens, Forrest R.; Linard, Catherine; Jia, Peng; Tatem, Andrew J.

    2013-01-01

    Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution) population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org. PMID:23418469

  18. Evaluation of Surface Energy Balance models for mapping evapotranspiration using very high resolution airborne remote sensing data

    Science.gov (United States)

    Paul, George

    Agriculture is the largest (90%) consumer of all fresh water in the world. The consumptive use of water by vegetation represented by the process evapotranspiration (ET) has a vital role in the dynamics of water, carbon and energy fluxes of the biosphere. Consequently, mapping ET is essential for making water a sustainable resource and also for monitoring ecosystem response to water stress and changing climate. Over the past three decades, numerous thermal remote sensing based ET mapping algorithms were developed and these have brought a significant theoretical and technical advancement in the spatial modeling of ET. Though these algorithms provided a robust, economical, and efficient tool for ET estimations at field and regional scales, yet the uncertainties in flux estimations were large, making evaluation a difficult task. The main objective of this study was to evaluate and improve the performance of widely used remote sensing based energy balance models, namely: the Surface Energy Balance Algorithm for Land (SEBAL), Mapping Evapotranspiration at high Resolution and with Internalized Calibration (METRIC), and Surface Energy Balance System (SEBS). Data used in this study was collected as part of a multi-disciplinary and multi-institutional field campaign BEAREX (Bushland Evapotranspiration and Agricultural Remote Sensing Experiment) that was conducted during 2007 and 2008 summer cropping seasons at the USDA-ARS Conservation and Production Research Laboratory (CPRL) in Bushland, Texas. Seventeen high resolution remote sensing images taken from multispectral sensors onboard aircraft and field measurements of the agro-meteorological variables from the campaign were used for model evaluation and improvement. Overall relative error measured in terms of mean absolute percent difference (MAPD) for instantaneous ET (mm h -1) were 22.7%, 23.2%, and 12.6% for SEBAL, METRIC, and SEBS, respectively. SEBAL and METRIC performances for irrigated fields representing higher ET

  19. Typical disturbances of the daytime equatorial F region observed with a high-resolution HF radar

    Directory of Open Access Journals (Sweden)

    E. Blanc

    1998-06-01

    Full Text Available HF radar measurements were performed near the magnetic equator in Africa (Korhogo 9°24'63''N–5°37'38''W during the International Equatorial Electrojet Year (1993–1994. The HF radar is a high-resolution zenithal radar. It gives ionograms, Doppler spectra and echo parameters at several frequencies simultaneously. This paper presents a comparative study of the daytime ionospheric structures observed during 3 days selected as representative of different magnetic conditions, given by magnetometer measurements. Broad Doppler spectra, large echo width, and amplitude fluctuations revealed small-scale instability processes up to the F-region peak. The height variations measured at different altitudes showed gravity waves and larger-scale disturbances related to solar daytime influence and equatorial electric fields. The possibility of retrieving the ionospheric electric fields from these Doppler or height variation measurements in the presence of the other possible equatorial ionospheric disturbances is discussed.

  20. Resolved complex coastlines and land-sea contrasts in a high-resolution regional climate model

    DEFF Research Database (Denmark)

    Tian, Tian; Boberg, Fredrik; Christensen, Ole BøSsing

    2013-01-01

    system, and (2) examine different ocean responses in coarse and fine grids to atmospheric forcing. The experiments were performed covering the years 1990-2010, both using ERAI lateral boundary conditions. ERAI SSTs generally agree well with satellite SSTs in summer with differences within 1o......C, but the ERAI overestimates the ice extent by 72% in winter due to the coarse resolution in the Baltic Sea. The atmosphere in the Baltic land-sea transition was more sensitive to high-resolution modelled SSTs with a significant improvement in winter, but it also provided a cold bias in summer as a combination...... of errors from both atmospheric and ocean models. Overall, the coupled simulation without observational constraints showed only minor deviations in the air-sea interface in the Baltic coastal region compared to the prescribed simulation, with seasonal mean differences within 2oCin2m air temperatures and 1o...

  1. A high-resolution 1961-1990 monthly temperature climatology for the greater Alpine region

    Energy Technology Data Exchange (ETDEWEB)

    Hiebl, Johann; Auer, Ingeborg; Boehm, Reinhard; Schoener, Wolfgang [Central Inst. for Meteorology and Geodynamics (ZAMG), Vienna (Austria); Maugeri, Maurizio; Lentini, Gianluca; Spinoni, Jonathan [Univ. of Milan (Italy). Dept. of Physics; Brunetti, Michele; Nanni, Teresa [Inst. of Atmospheric Sciences and Climate, Italian National Research Council (ISAC-CNR), Bologna (Italy); Tadic, Melita Percec [Meteorological and Hydrological Service of Croatia (DHMZ), Zagreb (Croatia); Bihari, Zita [Hungarian Meteorological Service (OMSZ), Budapest (Hungary); Dolinar, Mojca [Environmental Agency of the Republic of Slovenia (ARSO), Ljubljana (Slovenia); Mueller-Westermeier, Gerhard [German Meteorological Service (DWD), Offenbach (Germany)

    2009-10-15

    The main object of the presented study was the creation of a high-resolution monthly temperature climatology for the greater Alpine region (GAR). This climatology, which is determined from observational averages for the period 1961-1990, necessitated a multinational, high-quality temperature dataset, in which especially inhomogeneities due to different methods of means estimation had to be regarded. Based on multilinear regression techniques and regionalisation, significant model improvements could be reached by adjusting for mesoscale effects in cold air pools, coastal and lakeshore belts, urban areas and slopes. The final 1 x 1 km grids allowing temperature description of the orographically complex Alpine terrain with an accuracy of 1 C have been made available for further applications at the web pages of the Central Institute for Meteorology and Geodynamics. (orig.)

  2. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    Science.gov (United States)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  3. A Prior Knowledge-Based Method to Derivate High-Resolution Leaf Area Index Maps with Limited Field Measurements

    Directory of Open Access Journals (Sweden)

    Yuechan Shi

    2016-12-01

    Full Text Available High-resolution leaf area index (LAI maps from remote sensing data largely depend on empirical models, which link field LAI measurements to the vegetation index. The existing empirical methods often require the field measurements to be sufficient for constructing a reliable model. However, in many regions of the world, there are limited field measurements available. This paper presents a prior knowledge-based (PKB method to derivate LAI with limited field measurements, in an effort to improve the accuracy of empirical model. Based on the assumption that the experimental sites with the same vegetation type can be represented by similar models, a priori knowledge for crops was extracted from the published models in various cropland sites. The knowledge, composed of an initial guess of each model parameter with the associated uncertainty, was then combined with the local field measurements to determine a semi-empirical model using the Bayesian inversion method. The proposed method was evaluated at a cropland site in the Huailai region of Hebei Province, China. Compared with the regression method, the proposed PKB method can effectively improve the accuracy of empirical model and LAI estimation, when the field measurements were limited. The results demonstrate that a priori knowledge extracted from the universal sites can provide important auxiliary information to improve the representativeness of the empirical model in a given study area.

  4. VERITAS: A Mission Concept for the High Resolution Topographic Mapping and Imaging of Venus

    Science.gov (United States)

    Hensley, S.; Smrekar, S. E.; Pollard, B.

    2012-12-01

    Magellan, a NASA mission to Venus in the early 1990's, mapped nearly the entire surface of Venus with an S-band (12 cm) synthetic aperture radar and microwave radiometer and made radar altimeter measurements of the topography. These measurements revolutionized our understanding of the geomorphology, geology and geophysical processes that have shaped the evolution of the surface of Venus. The Magellan spacecraft had an elliptical orbit with an apoapsis of approximately 8000 km and a periapsis of 257 km and an orbital inclination of 86°. In this way the radar was able to collect long strips of data approximately 10000 km in length running north to south with altitudes varying from 3000 km to 257 km. During the remainder of the orbit the collected data was down linked to earth. The SAR mode operated in burst mode fashion whereby it transmitted a small string of pulses up to a couple of hundred pulses in length followed by a quiescent period when the radar ceased transmission and allowed interleaved operation of the altimeter and radiometer modes. This mode of operation allowed for a significant reduction in downlinked SAR imaging data at the expense of azimuth (i.e. along-track) resolution. However, the lack of finer resolution imagery and topography of the surface than that obtained by the Magellan mission has hampered the definitive answer to key questions concerning the processes and evolution of the surface of Venus. The Venus Emissivity, Radio Science, InSAR Topography And Spectroscopy (VERITAS) Mission is a proposed mission to Venus designed to obtain high resolution imagery and topography of the surface using an X-band radar configured as a single pass radar interferometer coupled with a multispectral NIR emissivity mapping capability. VERITAS would map surface topography with a spatial resolution of 250 m and 5 m vertical accuracy and generate radar imagery with 30 m spatial resolution. These capabilities represent an order of magnitude or better improvement

  5. Carbonado revisited: Insights from neutron diffraction, high resolution orientation mapping and numerical simulations

    Science.gov (United States)

    Piazolo, Sandra; Kaminsky, Felix V.; Trimby, Patrick; Evans, Lynn; Luzin, V.

    2016-11-01

    One of the most controversial diamond types is carbonado, as its origin and geological history are still under debate. Here, we investigate selected carbonado samples using neutron diffraction and high resolution orientation mapping in combination with numerical simulations. Neutron diffraction analyses show that fine grained carbonado samples exhibit a distinct lack of crystallographic preferred orientation. Quantitative crystallographic orientation analyses performed on transmission electron microscope (TEM) sections reveal that the 2-10 μm grains exhibit locally significant internal deformation. Such features are consistent with crystal plastic deformation of a grain aggregate that initially formed by rapid nucleation, characterized by a high number of nucleation sites and no crystallographic preferred orientation. Crystal plastic deformation resulted in high stress heterogeneities close to grain boundaries, even at low bulk strains, inducing a high degree of lattice distortion without significant grain size reduction and the development of a crystallographic preferred orientation. Observed differences in the character of the grain boundary network and internal deformation structures can be explained by significant post-deformation annealing occurring to variable degrees in the carbonado samples. Differences in intensity of crystal bending and subgrain boundary sharpness can be explained by dislocation annihilation and rearrangement, respectively. During annealing grain energy is reduced resulting in distinct changes to the grain boundary geometry. Grain scale numerical modelling shows that anisotropic grain growth, where grain boundary energy is determined by the orientation of a boundary segment relative to the crystallographic orientation of adjacent grains results in straight boundary segments with abrupt changes in orientation even if the boundary is occurring between two triple junctions forming a ;zigzag; pattern. In addition, in diamond anisotropic

  6. High-resolution Observations of Active Region Moss and its Dynamics

    Science.gov (United States)

    Morton, R. J.; McLaughlin, J. A.

    2014-07-01

    The High Resolution Coronal Imager has provided the sharpest view of the EUV corona to date. In this paper, we exploit its impressive resolving power to provide the first analysis of the fine-scale structure of moss in an active region. The data reveal that the moss is made up of a collection of fine threads that have widths with a mean and standard deviation of 440 ± 190 km (FWHM). The brightest moss emission is located at the visible head of the fine-scale structure and the fine structure appears to extend into the lower solar atmosphere. The emission decreases along the features, implying that the lower sections are most likely dominated by cooler transition region plasma. These threads appear to be the cool, lower legs of the hot loops. In addition, the increased resolution allows for the first direct observation of physical displacements of the moss fine structure in a direction transverse to its central axis. Some of these transverse displacements demonstrate periodic behavior, which we interpret as a signature of kink (Alfvénic) waves. Measurements of the properties of the transverse motions are made and the wave motions have means and standard deviations of 55 ± 37 km for the transverse displacement amplitude, 77 ± 33 s for the period, and 4.7 ± 2.5 km s-1 for the velocity amplitude. The presence of waves in the transition region of hot loops could have important implications for the heating of active regions.

  7. A regional high-resolution carbon flux inversion of North America for 2004

    Directory of Open Access Journals (Sweden)

    A. E. Schuh

    2010-05-01

    Full Text Available Resolving the discrepancies between NEE estimates based upon (1 ground studies and (2 atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS and an underlying biosphere (SiB3 model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous global inversions including the Transcom suite of inversions have utilized inversion regions formed by collapsing biome-similar grid cells into larger aggregated regions. An extreme example of this might be where corrections to NEE imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO2 mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to Gross Primary Productivity (GPP and Ecosystem Respiration (ER is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the Parameterized Chemical Transport Model (PCTM models is used to forge a connection between upwind biosphere fluxes and downwind observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a

  8. A regional high-resolution carbon flux inversion of North America for 2004

    Science.gov (United States)

    Schuh, A. E.; Denning, A. S.; Corbin, K. D.; Baker, I. T.; Uliasz, M.; Parazoo, N.; Andrews, A. E.; Worthy, D. E. J.

    2010-05-01

    Resolving the discrepancies between NEE estimates based upon (1) ground studies and (2) atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous global inversions including the Transcom suite of inversions have utilized inversion regions formed by collapsing biome-similar grid cells into larger aggregated regions. An extreme example of this might be where corrections to NEE imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO2 mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to Gross Primary Productivity (GPP) and Ecosystem Respiration (ER) is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the Parameterized Chemical Transport Model (PCTM) models is used to forge a connection between upwind biosphere fluxes and downwind observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a mean estimate 0.57 Pg/yr sink in North America

  9. Short-term forecasting of high resolution local DNI maps with multiple fish-eye cameras in stereoscopic mode

    Science.gov (United States)

    Blanc, Philippe; Massip, Pierre; Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Kuhn, Pascal; Wilbert, Stefan; Schüler, David; Prahl, Christoph

    2017-06-01

    Nowcasting of high resolution maps of direct normal irradiance (DNI) is of interest to efficiently operate Concentrated Solar Power plants. The paper presents a state-of-the-art and innovative methodology, developed in the framework of the FP7 DNICast project, to derive nowcasting of DNI maps from fish-eye cameras in stereoscopic mode. This methodology has been applied at the Plataforma Solar de Almeria: fish-eye cameras at distances from each other between 500 m and 900 m have been used in stereoscopic mode to produce nowcasted 1-min time series of decametric DNI maps.

  10. High-resolution 3-D T1*-mapping and quantitative image analysis of GRAY ZONE in chronic fibrosis.

    Science.gov (United States)

    Pop, Mihaela; Ramanan, Venkat; Yang, Franklin; Zhang, Li; Newbigging, Susan; Ghugre, Nilesh R; Wright, Graham A

    2014-12-01

    The substrate of potentially lethal cardiac arrhythmias often resides in the gray zone (GZ), a mixture of viable myocytes and collagen strands found between healthy myocardium and infarct core (IC). The specific aims of this paper are to demonstrate correspondence between regions delineated in T1* (apparent T1) maps and tissue characteristics seen in histopathology and to determine the MR imaging resolution needed to adequately identify GZ-associated substrate in chronic infarct. For this, a novel 3-D multicontrast late enhancement (MCLE) MR method was used to image ex vivo swine hearts with chronic infarction, at high resolution ( 0.6×0.6×1.25 mm). Pixel-wise classified tissue maps were calculated using steady-state and T1* images as input to a fuzzy-clustering algorithm. Quantitative histology based on collagen stains was performed in n = 10 selected slabs and showed very good correlations between histologically-determined areas of heterogeneous and dense fibrosis, and the corresponding GZ ( R2 = 0.96) and IC ( R2 = 0.97 ) in tissue classified maps. Furthermore, in n = 24 slabs, we performed volumetric measurements of GZ and IC, at the original and decreased image resolutions. Our results demonstrated that the IC volume remained relatively unchanged across all resolutions, whereas the GZ volume progressively increased with diminished image resolution, with changes reaching significance at 1×1×5 mm resolution (p infarct. Future work will focus on translating these findings to optimizing the current in vivo MCLE imaging of the GZ.

  11. Imaging the slab structure in the Alpine region by high-resolution P-wave tomography

    Science.gov (United States)

    Guillot, Stéphane; Zhao, Liang; Paul, Anne; Malusà, Marco G.; Xu, Xiaobing; Zheng, Tianyu; Solarino, stefano; Schwartz, Stéphane; Dumont, Thierry; Salimbeni, Simone; Aubert, Coralie; Pondrelli, Silvia; Wang, Qingchen; Zhu, Rixiang

    2017-04-01

    Based upon a finite-frequency inversion of traveltimes, we computed a new high-resolution tomography model using P-wave data from 527 broadband seismic stations, both from permanent networks and temporary experiments (Zhao et al., 2016). This model provides an improved image of the slab structure in the Alpine region, and fundamental pin-points for the analysis of Cenozoic magmatism, (U)HP metamorphism and Alpine topography. Our results document the lateral continuity of the European slab from the Western to the Central Alps, and the down-dip slab continuity beneath the Central Alps, ruling out the hypothesis of slab breakoff to explain Cenozoic Alpine magmatism. A low velocity anomaly is observed in the upper mantle beneath the core of the Western Alps, pointing to dynamic topography effects (Malusà et al., this meeting). A NE-dipping Adriatic slab, consistent with Dinaric subduction, is possibly observed beneath the Eastern Alps, whereas the laterally continuous Adriatic slab of the Northern Apennines shows major gaps at the boundary with the Southern Apennines, and becomes near vertical in the Alps-Apennines transition zone. Tear faults accommodating opposite-dipping subductions during Alpine convergence may represent reactivated lithospheric faults inherited from Tethyan extension. Our results suggest that the interpretations of previous tomography results that include successive slab breakoffs along the Alpine-Zagros-Himalaya orogenic belt might be proficiently reconsidered. Malusà M.G. et alii (2017) On the potential asthenospheric linkage between Apenninic slab rollback and Alpine topographic uplift: insights from P wave tomography and seismic anisotropy analysis. EGU 2017. Zhao L. et alii (2016), Continuity of the Alpine slab unraveled by high-resolution P wave tomography. J. Geophys. Res., doi:10.1002/2016JB013310.

  12. Regional airway obstruction in cystic fibrosis determined by electrical impedance tomography in comparison with high resolution CT.

    Science.gov (United States)

    Zhao, Zhanqi; Müller-Lisse, Ullrich; Frerichs, Inéz; Fischer, Rainald; Möller, Knut

    2013-11-01

    Electrical impedance tomography (EIT) is able to deliver regional information to assess the airway obstruction in patients with cystic fibrosis (CF). In the present study, regional obstruction in CF patients measured by EIT was compared with high resolution computed tomography (HRCT). Five CF patients were routinely scheduled for HRCT examination. EIT measurements were performed on these patients ±2 months during a standard pulmonary function test. The weighted Brody score derived from HRCT, which considers bronchiectasis, mucus plugging, peribronchial thickening, parenchymal opacity and hyperinflation, was calculated from the CT scans acquired at the location of EIT electrodes ±5 cm. Ratios of maximum expiratory flows at 25% and 75% of vital capacity (MEF25/MEF75) with respect to relative impedance change were calculated for regional areas in EIT images. Regional airway obstruction identified in the MEF25/MEF75 maps was similar to that found in CT. Median values of MEF25/MEF75 and weighted Brody score were highly correlated (r(2) = 0.83, P < 0.05). We found that regional obstruction measured by EIT is reliable and may be used as an additional clinical examination tool for CF patients.

  13. High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling.

    Science.gov (United States)

    Arms, Erin M; Bloom, Arnold J; St Clair, Dina A

    2015-09-01

    QTL stm9 controlling rapid-onset water stress tolerance in S. habrochaites was high-resolution mapped to a chromosome 9 region that contains genes associated with abiotic stress tolerances. Wild tomato (Solanum habrochaites) exhibits tolerance to abiotic stresses, including drought and chilling. Root chilling (6 °C) induces rapid-onset water stress by impeding water movement from roots to shoots. S. habrochaites responds to such changes by closing stomata and maintaining shoot turgor, while cultivated tomato (S. lycopersicum) fails to close stomata and wilts. This response (shoot turgor maintenance under root chilling) is controlled by a major QTL (designated stm9) on chromosome 9, which was previously fine-mapped to a 2.7-cM region. Recombinant sub-near-isogenic lines for chromosome 9 were marker-selected, phenotyped for shoot turgor maintenance under root chilling in two sets of replicated experiments (Fall and Spring), and the data were used to high-resolution map QTL stm9 to a 0.32-cM region. QTL mapping revealed a single QTL that was coincident for both the Spring and Fall datasets, suggesting that the gene or genes contributing to shoot turgor maintenance under root chilling reside within the marker interval H9-T1673. In the S. lycopersicum reference genome sequence, this chromosome 9 region is gene-rich and contains representatives of gene families that have been associated with abiotic stress tolerance.

  14. Surface Hail Simulations in a High-Resolution Regional Climate Model

    Science.gov (United States)

    Villanueva-Birriel, Cecille; Van Weverberg, Kwinten; Lukach, Maryna; Marbaix, Philippe; van Ypersele, Jean-Pascal

    2015-04-01

    The past years have seen a rapid advancement in computational resources, enabling regional climate models to perform at convection-permitting resolutions. This feature has allowed the use of complex bulk microphysical parameterizations as a means to improve cloud and precipitation representations within these models. Given the increased trend in the last decades of extreme precipitation events in numerous regions around the world, developments and evaluation of microphysical parameterizations implemented in regional climate models are crucial in order to better assess future precipitation projections. One important aspect for accurate deep convective storm simulations is in the hail parameterization within models, which can substantially impact precipitation and dynamical features within the cloud along with subsequent cold pool-driven secondary convection. Great economic costs and hazardous implications have been associated with hailstorms, which makes it of the utmost importance to properly simulate hailstone sizes at the surface. And yet many models have so far struggled to reproduce characteristic observational features of hail producing storms linked to weaknesses within microphysical parameterizations. As part of the aims for the Modeling Atmospheric Composition and Climate for the Belgian Territory (MACCBET) project1, we used the COSMO-CLM model, a nonhydrostatic regional climate model, driven by ERA-Interim data to simulate, at high resolution (3km), a selected number of intense convective cases in the 2000-2014 period with more than half having surface hail reports. A modified version of the 2-moment Seifert and Beheng (2006; Van Weverberg et al. 2014) microphysical scheme, with an added hail category, was used for this study. Preliminary results showed that the 2-moment scheme produced significant simulated hail as opposed to negligible amounts present in the model runs with a 1-moment version of the same parameterization. Additionally, the 2-moment

  15. High-resolution Observation of Moving Magnetic Features in Active Regions

    Science.gov (United States)

    Li, Qin; Deng, Na; Jing, Ju; Wang, Haimin

    2017-08-01

    Moving magnetic features (MMFs) are small photospheric magnetic elements that emerge and move outward toward the boundary of moat regions mostly during a sunspot decaying phase, in a serpent wave-like magnetic topology. Studies of MMFs and their classification (e.g., unipolar or bipolar types) strongly rely on the high spatiotemporal-resolution observation of photospheric magnetic field. In this work, we present a detailed observation of a sunspot evolution in NOAA active region (AR) 12565, using exceptionally high resolution Halpha images from the 1.6 New Solar telescope (NST) at Big Bear Solar Observatory (BBSO) and the UV images from the Interface Region Imaging Spectrograph (IRIS). The spectropolarimetric measurements of photospheric magnetic field are obtained from the NST Near InfraRed Imaging Spectropolarimeter (NIRIS) at Fe I 1.56 um line. We investigate the horizontal motion of the classified MMFs and discuss the clustering patterns of the geometry and motion of the MMFs. We estimate the rate of flux generation by appearance of MMFs and the role MMFs play in sunspot decaying phase. We also study the interaction between the MMFs and the existing magnetic field features and its response to Ellerman bombs and IRIS bombs respectively at higher layers.

  16. High resolution Ca/P maps of bone architecture in 3D synchrotron radiation microtomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Tzaphlidou, M. [Laboratory of Medical Physics, Medical School, University of Ioannina, PO Box 1186, 45110 Ioannina (Greece)]. E-mail: mtzaphli@cc.uoi.gr; Speller, R. [Department of Medical Physics and Bioengineering, University College London, 11-20 Capper Street, London WC1E 6JA (United Kingdom); Royle, G. [Department of Medical Physics and Bioengineering, University College London, 11-20 Capper Street, London WC1E 6JA (United Kingdom); Griffiths, J. [Department of Medical Physics and Bioengineering, University College London, 11-20 Capper Street, London WC1E 6JA (United Kingdom); Olivo, A. [Department of Physics, University of Trieste (Italy); Pani, S. [Department of Physics, University of Trieste (Italy); Longo, R. [Department of Physics, University of Trieste (Italy)

    2005-04-01

    The Ca/P ratio was measured in cortical bone samples from the femoral neck and tibia of different animal species, using synchrotron radiation microtomography. Use of a monoenergetic X-ray beam, as provided by the synchrotron facility, generates accurate 3D maps of the linear attenuation coefficient within the sample and hence gives the ability to map different chemical components. Also, by comparing normal and abnormal bones, i.e. osteoporotic (induced by inflammation), changes in the Ca/P ratio brought about by bone diseases can be detected. MicroCT data sets were collected at 20 and 28keV for each bone sample and two calibration phantoms. From the 3D data sets, multiple 2D slices were reconstructed with a slice thickness of {approx}30{mu}m. Regions of interest were defined around suitable sites and were converted to Ca/P ratios using the data collected from the test phantoms. A significant difference (p0.001) between osteoporotics and age-matched normals at both energies was detected. Differences between different bone sites from the same animal are not significant (p>0.5) while those between the same bone sites from different animals are highly significant (p0.001). Differences between estimates made at 20 and 28keV are not significant (p>0.5). An important aspect is the ability to map the spatial distribution of the Ca/P ratio.

  17. Geospatial mapping of Antarctic coastal oasis using geographic object-based image analysis and high resolution satellite imagery

    Science.gov (United States)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-04-01

    An accurate spatial mapping and characterization of land cover features in cryospheric regions is an essential procedure for many geoscientific studies. A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (OBIA) to extract cryospheric geospatial information from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for OBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, east Antarctica. Multilevel segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features with respect to scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify land mass, man-made features, snow/ice, and water bodies. We focus on water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and OBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≍97%. In conclusion, our results suggest that OBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geospatial information.

  18. High-resolution geological mapping and sampling using wireline rock drills

    Science.gov (United States)

    MacLeod, C. J.; Allerton, S.; Dick, H. J. B.; Escartin, J.

    2003-04-01

    High-resolution sampling is key to most fine-scale geological investigations of the ocean floor. However, devices that can take large numbers of precisely-located, geographically oriented samples from hard substrates have not previously been available. Portable rock drills, mounted vertically on a tripod frame and operated by wireline from a conventional ship, are a way of obtaining such material in a cost-effective manner. They allow efficient assessment of x-y (horizontal) variability and thereby complement much deeper ODP-type drilling operations, which primarily assess z-axis (vertical) variations. Few wireline drills have been built and/or operated successfully to date, a notable exception being the 5m drill built and run by the British Geological Survey, which has been used - mostly for industrial applications - for many years. This drill takes cores up to 5m long in water depths of less than 2000m. A second drill, funded through the BRIDGE programme, has been built by BGS specifically for scientific use. This device takes geographically oriented cores up to 1m long in full ocean depths, and has a video link to aid site selection. It is of light weight, and is operated on a conventional conducting cable. On-bottom time is similar to that of a rock dredge. The rock drills have recently been used with great success on two cruises on RRS James Clark Ross: cruise JR31, to Atlantis Bank, on the SW Indian Ridge; and cruise JR63 to the Mid-Atlantic Ridge near the Fifteen-Twenty fracture zone. On both cruises seafloor exposures of lower crustal gabbros and mantle peridotites were targetted, with the aim of understanding the primary lithological variability of slow-spread ocean lithosphere and the mechanisms of their exhumation. Altogether 115 successful sites were drilled in a little over three weeks of shiptime, on slopes of up to 44 degrees and water depths of 4500m. Scientific highlights include the demonstration that peridotites and gabbros in both regions were

  19. High resolution mapping of modafinil induced changes in glutamate level in rat brain.

    Directory of Open Access Journals (Sweden)

    Mohammad Haris

    Full Text Available Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS has been commonly used to detect the glutamate (Glu changes in vivo. In this study, we used a recently described glutamate chemical exchange saturation transfer (GluCEST imaging technique to measure Modafinil induced regional Glu changes in rat brain and compared the results with Glu concentration measured by single voxel 1HMRS. No increases in either GluCEST maps or 1HMRS were observed after Modafinil injection over a period of 5 hours. However, a significant increase in GluCEST (19 ± 4.4% was observed 24 hours post Modafinil administration, which is consistent with results from previous biochemical studies. This change was not consistently seen with 1HMRS. GluCEST mapping allows regional cerebral Glu changes to be measured and may provide a useful clinical biomarker of Modafinil effects for the management of patients with sleep disorders and addiction.

  20. High resolution mapping of reticulated water fluoride in Western Australia: opportunities to improve oral health.

    Science.gov (United States)

    Al-Bloushi, N S; Trolio, R; Kruger, E; Tennant, M

    2012-12-01

    Drinking water with an optimum fluoride concentration is a recognized effective method to reduce dental decay. In this study normal suppliers of drinking water in Western Australia provided map data regarding the distribution of their supplies and the locations of their test points. These data were collated into a single unified map of Western Australian water supplies and fluoride levels. It is clear that the effect of prevention in regionally isolated communities is significant as the cost of providing service is anywhere between 2 and 4 times higher than that in high density regions. The current study found that although a very significant proportion of the population has access to water with fluoride concentrations that would be caries protective, most of these are large urban centre based. Those with high burdens of dental disease are mostly residential in rural and remote areas where water is either not fluoridated, nor regulated, or low in fluoride. However, it is acknowledged that water fluoridation, for many reasons, is not always feasible in rural and remote communities, and preventive efforts through alternative sources of fluoride (e.g. toothpaste) should be considered, even if less effective at community level. © 2012 Australian Dental Association.

  1. High resolution mapping of modafinil induced changes in glutamate level in rat brain.

    Science.gov (United States)

    Haris, Mohammad; Singh, Anup; Cai, Kejia; Nath, Kavindra; Verma, Gaurav; Nanga, Ravi Prakash Reddy; Hariharan, Hari; Detre, John A; Epperson, Neill; Reddy, Ravinder

    2014-01-01

    Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS) has been commonly used to detect the glutamate (Glu) changes in vivo. In this study, we used a recently described glutamate chemical exchange saturation transfer (GluCEST) imaging technique to measure Modafinil induced regional Glu changes in rat brain and compared the results with Glu concentration measured by single voxel 1HMRS. No increases in either GluCEST maps or 1HMRS were observed after Modafinil injection over a period of 5 hours. However, a significant increase in GluCEST (19 ± 4.4%) was observed 24 hours post Modafinil administration, which is consistent with results from previous biochemical studies. This change was not consistently seen with 1HMRS. GluCEST mapping allows regional cerebral Glu changes to be measured and may provide a useful clinical biomarker of Modafinil effects for the management of patients with sleep disorders and addiction.

  2. High Resolution Regional Attenuation for the Source Physics Experiment Using Multiphase Inversion

    Science.gov (United States)

    Pyle, M. L.; Walter, W. R.; Pasyanos, M.

    2015-12-01

    Seismic event amplitude measurement plays a critical role in the discrimination between earthquakes and explosions. An accurate 2D model of the attenuation experienced by seismic waves traveling through the earth is especially important for reasonable amplitude estimation at small event-to-station distances. In this study, we investigate the detailed attenuation structure in the region around southern Nevada as part of the Source Physics Experiment (SPE). The SPE consists of a series of chemical explosions at the Nevada National Security Site (NNSS) designed to improve our understanding of explosion physics and enable better modeling of explosion sources. Phase I of the SPE is currently being conducted in the Climax Stock Granite and Phase II will move to a contrasting dry alluvium geology. A high-resolution attenuation model will aid in the modeling efforts of these experiments. To improve our understanding of the propagation of energy from sources in the area to local and regional stations in the western U.S., we invert regional phases Pn, Pg, and Lg to examine the crust and upper mantle attenuation structure of southern Nevada and the surrounding region. We consider observed amplitudes as the frequency-domain product of a source term, a site term, a geometrical spreading term, and an attenuation (Q) term (e.g. Walter and Taylor, 2001). Initially we take a staged approach to first determine the best 1D Q values; next we calculate source terms using the 1D model, and finally we solve for the best 2D Q parameters and site terms considering all frequencies simultaneously. Our preliminary results agree generally with those from the continent-wide study by Pasyanos (2013). With additional data we are working to develop a more detailed and higher frequency model of the region as well as move toward a fully non-linear inversion.

  3. Mapping of genetic abnormalities of primary tumours from metastatic CRC by high-resolution SNP arrays.

    Science.gov (United States)

    Sayagués, José María; Fontanillo, Celia; Abad, María del Mar; González-González, María; Sarasquete, María Eugenia; Chillon, Maria del Carmen; Garcia, Eva; Bengoechea, Oscar; Fonseca, Emilio; Gonzalez-Diaz, Marcos; De las Rivas, Javier; Muñoz-Bellvis, Luís; Orfao, Alberto

    2010-10-29

    For years, the genetics of metastatic colorectal cancer (CRC) have been studied using a variety of techniques. However, most of the approaches employed so far have a relatively limited resolution which hampers detailed characterization of the common recurrent chromosomal breakpoints as well as the identification of small regions carrying genetic changes and the genes involved in them. Here we applied 500K SNP arrays to map the most common chromosomal lesions present at diagnosis in a series of 23 primary tumours from sporadic CRC patients who had developed liver metastasis. Overall our results confirm that the genetic profile of metastatic CRC is defined by imbalanced gains of chromosomes 7, 8q, 11q, 13q, 20q and X together with losses of the 1p, 8p, 17p and 18q chromosome regions. In addition, SNP-array studies allowed the identification of small (1.5 Mb) altered DNA sequences, many of which contain cancer genes known to be involved in CRC and the metastatic process. Detailed characterization of the breakpoint regions for the altered chromosomes showed four recurrent breakpoints at chromosomes 1p12, 8p12, 17p11.2 and 20p12.1; interestingly, the most frequently observed recurrent chromosomal breakpoint was localized at 17p11.2 and systematically targeted the FAM27L gene, whose role in CRC deserves further investigations. In summary, in the present study we provide a detailed map of the genetic abnormalities of primary tumours from metastatic CRC patients, which confirm and extend on previous observations as regards the identification of genes potentially involved in development of CRC and the metastatic process.

  4. High resolution mapping of development in the wildland-urban interface using object based image extraction

    Science.gov (United States)

    Caggiano, Michael D.; Tinkham, Wade T.; Hoffman, Chad; Cheng, Antony S.; Hawbaker, Todd J.

    2016-01-01

    The wildland-urban interface (WUI), the area where human development encroaches on undeveloped land, is expanding throughout the western United States resulting in increased wildfire risk to homes and communities. Although census based mapping efforts have provided insights into the pattern of development and expansion of the WUI at regional and national scales, these approaches do not provide sufficient detail for fine-scale fire and emergency management planning, which requires maps of individual building locations. Although fine-scale maps of the WUI have been developed, they are often limited in their spatial extent, have unknown accuracies and biases, and are costly to update over time. In this paper we assess a semi-automated Object Based Image Analysis (OBIA) approach that utilizes 4-band multispectral National Aerial Image Program (NAIP) imagery for the detection of individual buildings within the WUI. We evaluate this approach by comparing the accuracy and overall quality of extracted buildings to a building footprint control dataset. In addition, we assessed the effects of buffer distance, topographic conditions, and building characteristics on the accuracy and quality of building extraction. The overall accuracy and quality of our approach was positively related to buffer distance, with accuracies ranging from 50 to 95% for buffer distances from 0 to 100 m. Our results also indicate that building detection was sensitive to building size, with smaller outbuildings (footprints less than 75 m2) having detection rates below 80% and larger residential buildings having detection rates above 90%. These findings demonstrate that this approach can successfully identify buildings in the WUI in diverse landscapes while achieving high accuracies at buffer distances appropriate for most fire management applications while overcoming cost and time constraints associated with traditional approaches. This study is unique in that it evaluates the ability of an OBIA

  5. High resolution mapping of development in the wildland-urban interface using object based image extraction

    Directory of Open Access Journals (Sweden)

    Michael D. Caggiano

    2016-10-01

    Full Text Available The wildland-urban interface (WUI, the area where human development encroaches on undeveloped land, is expanding throughout the western United States resulting in increased wildfire risk to homes and communities. Although census based mapping efforts have provided insights into the pattern of development and expansion of the WUI at regional and national scales, these approaches do not provide sufficient detail for fine-scale fire and emergency management planning, which requires maps of individual building locations. Although fine-scale maps of the WUI have been developed, they are often limited in their spatial extent, have unknown accuracies and biases, and are costly to update over time. In this paper we assess a semi-automated Object Based Image Analysis (OBIA approach that utilizes 4-band multispectral National Aerial Image Program (NAIP imagery for the detection of individual buildings within the WUI. We evaluate this approach by comparing the accuracy and overall quality of extracted buildings to a building footprint control dataset. In addition, we assessed the effects of buffer distance, topographic conditions, and building characteristics on the accuracy and quality of building extraction. The overall accuracy and quality of our approach was positively related to buffer distance, with accuracies ranging from 50 to 95% for buffer distances from 0 to 100 m. Our results also indicate that building detection was sensitive to building size, with smaller outbuildings (footprints less than 75 m2 having detection rates below 80% and larger residential buildings having detection rates above 90%. These findings demonstrate that this approach can successfully identify buildings in the WUI in diverse landscapes while achieving high accuracies at buffer distances appropriate for most fire management applications while overcoming cost and time constraints associated with traditional approaches. This study is unique in that it evaluates the ability

  6. Nationwide high-resolution mapping of hazards in the Philippines (Plinius Medal Lecture)

    Science.gov (United States)

    Lagmay, Alfredo Mahar Francisco A.

    2015-04-01

    The Philippines being a locus of typhoons, tsunamis, earthquakes, and volcanic eruptions, is a hotbed of disasters. Situated in a region where severe weather and geophysical unrest is common, the Philippines will inevitably suffer from calamities similar to those experienced recently. With continued development and population growth in hazard prone areas, it is expected that damage to infrastructure and human losses would persist and even rise unless appropriate measures are immediately implemented by government. Recently, the Philippines put in place a responsive program called the Nationwide Operational Assessment of Hazards (NOAH) for disaster prevention and mitigation. The efforts of Project NOAH are an offshoot of lessons learned from previous disasters that have inflicted massive loss of lives and costly damage to property. Several components of the NOAH program focus on mapping of landslide, riverine flood and storm surge inundation hazards. By simulating hazards phenomena over IFSAR- and LiDAR-derived digital terrain models (DTMs) using high-performance computers, multi-hazards maps of 1:10,000 scale, have been produced and disseminated to local government units through a variety of platforms. These detailed village-level (barangay-level) maps are useful to identify safe evacuation sites, planning emergency access routes and prepositioning of search and rescue and relief supplies during times of crises. They are also essential for long-term development planning of communities. In the past two years, NOAH was instrumental in providing timely, site-specific, and understandable hazards information to the public, considered as best practice in disaster risk reduction management (DRR). The use of advanced science and technology in the country's disaster prevention efforts is imperative to successfully mitigate the adverse impacts of natural hazards and should be a continuous quest - to find the best products, put forth in the forefront of battle against

  7. High resolution mapping of development in the wildland-urban interface using object based image extraction.

    Science.gov (United States)

    Caggiano, Michael D; Tinkham, Wade T; Hoffman, Chad; Cheng, Antony S; Hawbaker, Todd J

    2016-10-01

    The wildland-urban interface (WUI), the area where human development encroaches on undeveloped land, is expanding throughout the western United States resulting in increased wildfire risk to homes and communities. Although census based mapping efforts have provided insights into the pattern of development and expansion of the WUI at regional and national scales, these approaches do not provide sufficient detail for fine-scale fire and emergency management planning, which requires maps of individual building locations. Although fine-scale maps of the WUI have been developed, they are often limited in their spatial extent, have unknown accuracies and biases, and are costly to update over time. In this paper we assess a semi-automated Object Based Image Analysis (OBIA) approach that utilizes 4-band multispectral National Aerial Image Program (NAIP) imagery for the detection of individual buildings within the WUI. We evaluate this approach by comparing the accuracy and overall quality of extracted buildings to a building footprint control dataset. In addition, we assessed the effects of buffer distance, topographic conditions, and building characteristics on the accuracy and quality of building extraction. The overall accuracy and quality of our approach was positively related to buffer distance, with accuracies ranging from 50 to 95% for buffer distances from 0 to 100 m. Our results also indicate that building detection was sensitive to building size, with smaller outbuildings (footprints less than 75 m2) having detection rates below 80% and larger residential buildings having detection rates above 90%. These findings demonstrate that this approach can successfully identify buildings in the WUI in diverse landscapes while achieving high accuracies at buffer distances appropriate for most fire management applications while overcoming cost and time constraints associated with traditional approaches. This study is unique in that it evaluates the ability of an OBIA

  8. Spatio Temporal Detection and Virtual Mapping of Landslide Using High-Resolution Airborne Laser Altimetry (lidar) in Densely Vegetated Areas of Tropics

    Science.gov (United States)

    Bibi, T.; Azahari Razak, K.; Rahman, A. Abdul; Latif, A.

    2017-10-01

    Landslides are an inescapable natural disaster, resulting in massive social, environmental and economic impacts all over the world. The tropical, mountainous landscape in generally all over Malaysia especially in eastern peninsula (Borneo) is highly susceptible to landslides because of heavy rainfall and tectonic disturbances. The purpose of the Landslide hazard mapping is to identify the hazardous regions for the execution of mitigation plans which can reduce the loss of life and property from future landslide incidences. Currently, the Malaysian research bodies e.g. academic institutions and government agencies are trying to develop a landslide hazard and risk database for susceptible areas to backing the prevention, mitigation, and evacuation plan. However, there is a lack of devotion towards landslide inventory mapping as an elementary input of landslide susceptibility, hazard and risk mapping. The developing techniques based on remote sensing technologies (satellite, terrestrial and airborne) are promising techniques to accelerate the production of landslide maps, shrinking the time and resources essential for their compilation and orderly updates. The aim of the study is to provide a better perception regarding the use of virtual mapping of landslides with the help of LiDAR technology. The focus of the study is spatio temporal detection and virtual mapping of landslide inventory via visualization and interpretation of very high-resolution data (VHR) in forested terrain of Mesilau river, Kundasang. However, to cope with the challenges of virtual inventory mapping on in forested terrain high resolution LiDAR derivatives are used. This study specifies that the airborne LiDAR technology can be an effective tool for mapping landslide inventories in a complex climatic and geological conditions, and a quick way of mapping regional hazards in the tropics.

  9. A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy

    Science.gov (United States)

    Kregel, Steven J.; Thurston, Glen K.; Zhou, Jia; Garand, Etienne

    2017-09-01

    A velocity map imaging (VMI) setup consisting of multiple electrodes with three adjustable voltage parameters, designed for slow electron velocity map imaging applications, is presented. The motivations for this design are discussed in terms of parameters that influence the VMI resolution and functionality. Particularly, this VMI has two tunable potentials used to adjust for optimal focus, yielding good VMI focus across a relatively large energy range. It also allows for larger interaction volumes without significant sacrifice to the resolution via a smaller electric gradient at the interaction region. All the electrodes in this VMI have the same dimensions for practicality and flexibility, allowing for relatively easy modifications to suit different experimental needs. We have coupled this VMI to a cryogenic ion trap mass spectrometer that has a flexible source design. The performance is demonstrated with the photoelectron spectra of S- and CS2 -. The latter has a long vibrational progression in the ground state, and the temperature dependence of the vibronic features is probed by changing the temperature of the ion trap.

  10. High-Resolution N6-Methyladenosine (m6A) Map Using Photo-Crosslinking-Assisted m6A Sequencing**

    OpenAIRE

    Chen, Kai; Lu, Zhike; Wang, Xiao; Fu, Ye; Luo, Guan-Zheng; Liu, Nian; Han, Dali; Dominissini, Dan; Dai, Qing; Pan, Tao; He, Chuan

    2014-01-01

    N6-methyladenosine (m6A) is an abundant internal modification in eukaryotic mRNA and plays regulatory roles in mRNA metabolism. However, methods to precisely locate the m6A modification remain limited. We present here a photo-crosslinking-assisted m6A sequencing strategy (PA-m6A-seq) to more accurately define sites with m6A modification. Using this strategy, we obtained a high-resolution map of m6A in a human transcriptome. The map resembles the general distribution patte...

  11. High-resolution mapping and genetic characterization of the Lazy-2 gravitropic mutant of tomato

    Science.gov (United States)

    Behringer, F. J.; Lomax, T. L.

    1999-01-01

    Mutation of the Lazy-2 (Lz-2) gene in tomato (Lycopersicon esculentum mill.) produces a phytochrome-dependent reversal of shoot gravitropism, providing a unique genetic resource for investigating how signals from light modulate gravitropism. We mapped the Lz-2 gene using RFLPs and a PCR-based technique to assess the feasibility of positional cloning. Analysis of a 1338 plant backcross population between L. esculentum and L. pennellii placed Lz-2 within a 1.2 cM interval on chromosome 5, 0.4 cM from TG504-CT201A interval. The inabililty to resolve these markers indicates that Lz-2 resides in a centromeric region in which recombination is highly suppressed. Lazy-2 is tightly linked to but does not encode the gene for ACC4, an enzyme involved in ethylene biosynthesis. We also observed that Lz-2 is partially dominant under certain conditions and stages of development.

  12. Standardized Precipitation Index (SPI) over the Mediterranean region based on high resolution gridded data.

    Science.gov (United States)

    Polychroni, Iliana; Nastos, Panagiotis

    2017-04-01

    Mediterranean water resource system is heavily influenced by changes in climate conditions, which in turns affect significantly the socioeconomic development, specifically over coastal areas. Taking into consideration that the surface temperature is projected to rise over the 21st century and the mean precipitation is likely to decrease in mid-latitude dry regions, according to IPCC 2014, we confronted the challenge to study the drought over the Mediterranean region by means of the Standardized Precipitation Index (SPI), defined as the difference from the mean for a specified time period divided by the standard deviation, where the mean and standard deviation are determined from past records. Drought is a long-range phenomenon that affects the Mediterranean. The drought not only affects food production but also has severe environmental, economic and social impacts. The objective of this study is to assess and analyze the spatio-temporal evolution of the SPI for 3-, 6-, 9-, 12- month timescales, during the period 1950-2015. For this purpose, we processed high resolution gridded daily precipitation datasets (0.25° x 0.25°), based on the E-OBS dataset from ECA&D. Mean SPI patterns and trends for the whole examined period, as well as successive 30-year periods, were assessed by using R-project. Moreover, the influence of the well-known atmospheric circulation index of the wider region of Europe, namely the North Atlantic Oscillation Index (NAOI), on the SPI over the Mediterranean was considered necessary to evaluate, because NAOI strongly modulates precipitation over Europe and the Mediterranean.

  13. Region-of-interest cone beam computed tomography (ROI CBCT) with a high resolution CMOS detector

    Science.gov (United States)

    Jain, A.; Takemoto, H.; Silver, M. D.; Nagesh, S. V. S.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm x 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested.

  14. Extreme climate projections over the transboundary Koshi River Basin using a high resolution regional climate model

    Directory of Open Access Journals (Sweden)

    Rupak Rajbhandari

    2017-09-01

    Full Text Available The high-resolution climate model Providing REgional Climates for Impacts Studies (PRECIS was used to project the changes in future extreme precipitation and temperature over the Koshi River Basin for use in impact assessments. Three outputs of the Quantifying Uncertainties in Model Prediction (QUMP simulations using the Hadley Centre Couple Model (HadCM3 based on the IPCC SRES A1B emission scenario were used to project the future climate. The projections were analysed for three time slices, 2011–2040 (near future, 2041–2070 (mid-century, and 2071–2098 (distant future. The results show an increase in the future frequency and intensity of climate extremes events such as dry days, consecutive dry days, and very wet days (95th percentile, with greater increases over the southern plains than in the mountainous area to the north. A significant decrease in moderate rainfall days (75th percentile is projected over the middle (high mountain and trans-Himalaya areas. Increases are projected in both the extreme maximum and extreme minimum temperature, with a slightly higher rate in minimum temperature. The number of warm days is projected to increase throughout the basin, with more rapid rates in the trans-Himalayan and middle mountain areas than in the plains. Warm nights are also projected to increase, especially in the southern plains. A decrease is projected in cold days and cold nights indicating overall warming throughout the basin.

  15. Sub- and multi-day precipitation extremes in high resolution Met Office regional climate model simulations

    Science.gov (United States)

    Chan, Steven; Kendon, Elizabeth; Fowler, Hayley; Blenkinsop, Stephen; Ferro, Christopher; Roberts, Nigel

    2013-04-01

    As part of the United Kingdom Natural Environment Research Council-supported CONVEX project, the Met Office has completed two high-resolution (12-km parameterised convection and 1.5-km explicit convection permitting) regional climate model simulations. Extreme value theory is used as a diagnostic tool for the above two simulations. On sub-daily time scales, the 12-km simulation has weaker and more realistic typical JJA extremes than the 1.5-km RCM, yet the 12-km RCM has overly intense extreme extremes. Grid point storms are found to play a role in creating these overly intense extreme extremes. Comparisons with observations indicate that the 1.5-km RCM is more successful than the 12-km RCM in representing (multi-)hourly JJA extremes for long return periods. As accumulation periods increase toward (multi-)daily time scales, the 12-km precipitation extremes become more comparable with observations and the 1.5-km RCM. Both simulations have reasonable DJF sub- and multi-day extremes, but DJF extremes are generally weaker, so they are less interesting than JJA extremes practically. Overall, our results indicate that the usage of higher resolution explicit convection permitting models has led to some improvements in the simulations of high impact precipitation extremes.

  16. High-Resolution Regional Phase Attenuation Models of the Iranian Plateau and Surrounding Regions

    Science.gov (United States)

    2014-03-03

    this region. Igneous rocks tend to get younger towards the eastern part of the Bitlis suture and Kars plateau (e.g. Keskin, 2003), which is consistent...Pg and Sn. 15. SUBJECT TERMS variational analysis, adjoint method, Data assimilation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...latite with minor basalt) volcanic rocks (Berberian and King, 1981) suggesting the presence of extensive crustal melting. Sahand (ca. 3800 m) is

  17. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    OpenAIRE

    Buongiorno Nardelli, B.; Guinehut, S.; Pascual, A.; Drillet, Y.; Ruiz, S.; Mulet, S.

    2012-01-01

    The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data) was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estim...

  18. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    DEFF Research Database (Denmark)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars

    The Carlsberg Fault zone is located in the N-S striking Höllviken Graben and traverses the city of Copenhagen. The fault zone is a NNW-SSE striking structure in direct vicinity to the transition zone of the Danish Basin and the Baltic Shield. Recent small earthquakes indicate activity in the area......, although none of the mapped earthquakes appear to have occurred on the Carlsberg Fault. We examined the fault evolution by a combination of very high resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The chalk stratigraphy....... In the Upper Cretaceous growth faulting documents continued rifting. This finding contrasts the Late Cretaceous to Paleogene inversion tectonics in neighboring structures, as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image structures in Quaternary layers in the Carlsberg...

  19. High-resolution mapping, modeling, and evolution of subsurface geomorphology using ground-penetrating radar techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Loveson, V.J.; Gujar, A.R.

    Ground Penetrating Radar (GPR) is widely used for mapping of subsurface. Features in civil, geological, geotechnical, and geo- environmental applications. Considering the available technologies to map surface features, GPR techniques strands...

  20. High Resolution Mapping of Bactericidal Monoclonal Antibody Binding Epitopes on Staphylococcus aureus Antigen MntC.

    Directory of Open Access Journals (Sweden)

    Alexey V Gribenko

    2016-09-01

    Full Text Available The Staphylococcus aureus manganese transporter protein MntC is under investigation as a component of a prophylactic S.aureus vaccine. Passive immunization with monoclonal antibodies mAB 305-78-7 and mAB 305-101-8 produced using MntC was shown to significantly reduce S. aureus burden in an infant rat model of infection. Earlier interference mapping suggested that a total of 23 monoclonal antibodies generated against MntC could be subdivided into three interference groups, representing three independent immunogenic regions. In the current work binding epitopes for selected representatives of each of these interference groups (mAB 305-72-5 - group 1, mAB 305-78-7 - group 2, and mAB 305-101-8 - group 3 were mapped using Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS. All of the identified epitopes are discontinuous, with binding surface formed by structural elements that are separated within the primary sequence of the protein but adjacent in the context of the three-dimensional structure. The approach was validated by co-crystallizing the Fab fragment of one of the antibodies (mAB 305-78-7 with MntC and solving the three-dimensional structure of the complex. X-ray results themselves and localization of the mAB 305-78-7 epitope were further validated using antibody binding experiments with MntC variants containing substitutions of key amino acid residues. These results provided insight into the antigenic properties of MntC and how these properties may play a role in protecting the hostagainst S. aureus infection by preventing the capture and transport of Mn2+, a key element that the pathogen uses to evade host immunity.

  1. GHRSST Level 3C North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-19 (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  2. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  3. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  4. GHRSST Level 3P North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-19 (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  5. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  6. A high-resolution radiation hybrid map of chicken chromosome 5 and comparison with human chromosomes

    NARCIS (Netherlands)

    Pitel, F.; Abasht, B.; Morrison, M.; Crooijmans, R.P.M.A.; Vignoles, F.; Leroux, S.; Feve, K.; Bardes, S.; Milan, D.; Lagarrigue, S.; Groenen, M.A.M.; Douaire, M.; Vignal, A.

    2004-01-01

    Background - The resolution of radiation hybrid (RH) maps is intermediate between that of the genetic and BAC (Bacterial Artificial Chromosome) contig maps. Moreover, once framework RH maps of a genome have been constructed, a quick location of markers by simple PCR on the RH panel is possible. The

  7. A fuzzy decision making system for building damage map creation using high resolution satellite imagery

    Science.gov (United States)

    Rastiveis, H.; Samadzadegan, F.; Reinartz, P.

    2013-02-01

    Recent studies have shown high resolution satellite imagery to be a powerful data source for post-earthquake damage assessment of buildings. Manual interpretation of these images, while being a reliable method for finding damaged buildings, is a subjective and time-consuming endeavor, rendering it unviable at times of emergency. The present research, proposes a new state-of-the-art method for automatic damage assessment of buildings using high resolution satellite imagery. In this method, at the first step a set of pre-processing algorithms are performed on the images. Then, extracting a candidate building from both pre- and post-event images, the intact roof part after an earthquake is found. Afterwards, by considering the shape and other structural properties of this roof part with its pre-event condition in a fuzzy inference system, the rate of damage for each candidate building is estimated. The results obtained from evaluation of this algorithm using QuickBird images of the December 2003 Bam, Iran, earthquake prove the ability of this method for post-earthquake damage assessment of buildings.

  8. High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis

    Science.gov (United States)

    MacFaden, Sean W.; O'Neil-Dunne, Jarlath P. M.; Royar, Anna R.; Lu, Jacqueline W. T.; Rundle, Andrew G.

    2012-01-01

    Urban tree canopy is widely believed to have myriad environmental, social, and human-health benefits, but a lack of precise canopy estimates has hindered quantification of these benefits in many municipalities. This problem was addressed for New York City using object-based image analysis (OBIA) to develop a comprehensive land-cover map, including tree canopy to the scale of individual trees. Mapping was performed using a rule-based expert system that relied primarily on high-resolution LIDAR, specifically its capacity for evaluating the height and texture of aboveground features. Multispectral imagery was also used, but shadowing and varying temporal conditions limited its utility. Contextual analysis was a key part of classification, distinguishing trees according to their physical and spectral properties as well as their relationships to adjacent, nonvegetated features. The automated product was extensively reviewed and edited via manual interpretation, and overall per-pixel accuracy of the final map was 96%. Although manual editing had only a marginal effect on accuracy despite requiring a majority of project effort, it maximized aesthetic quality and ensured the capture of small, isolated trees. Converting high-resolution LIDAR and imagery into usable information is a nontrivial exercise, requiring significant processing time and labor, but an expert system-based combination of OBIA and manual review was an effective method for fine-scale canopy mapping in a complex urban environment.

  9. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Directory of Open Access Journals (Sweden)

    Ramanathan Sugumaran

    2008-08-01

    Full Text Available The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  10. High-resolution mapping and modelling of surface albedo in Norwegian boreal forests: from remotely sensed data to predictions

    Science.gov (United States)

    Cherubini, Francesco; Hu, Xiangping; Vezhapparambu, Sajith; Stromman, Anders

    2017-04-01

    fraction of the respective tree species is greater than 75%. Results show averages of albedo estimates for forests and cropland depicting spatial (along a latitudinal gradient) and temporal (daily, monthly, and seasonal) variations across Norway. As the case study region is a country with heterogeneous topography, we also study the sensitivity of the albedo estimates to the slope and aspect of the terrain. The mathematical programming approach uses a variety of functional forms, constraints and variables, leading to many different model outputs. There are several models with relatively high performances, allowing for a flexibility in the model selection, with different model variants suitable for different situations. This approach produces albedo predictions at the same resolution of the land cover dataset (16 m, notably higher than the MODIS estimates), can incorporate changes in climate conditions, and is robust to cross-validation between different locations. By integrating satellite measurements and high-resolution vegetation maps, we can thus produce semi-empirical models that can predict albedo values for boreal forests using a variety of input variables representing climate and/or vegetation structure. Further research can explore the possible advantages of its implementation in land surface schemes over existing approaches.

  11. Convergence of topological domain boundaries, insulators, and polytene interbands revealed by high-resolution mapping of chromatin contacts in the early Drosophila melanogaster embryo

    Science.gov (United States)

    Stadler, Michael R; Haines, Jenna E

    2017-01-01

    High-throughput assays of three-dimensional interactions of chromosomes have shed considerable light on the structure of animal chromatin. Despite this progress, the precise physical nature of observed structures and the forces that govern their establishment remain poorly understood. Here we present high resolution Hi-C data from early Drosophila embryos. We demonstrate that boundaries between topological domains of various sizes map to DNA elements that resemble classical insulator elements: short genomic regions sensitive to DNase digestion that are strongly bound by known insulator proteins and are frequently located between divergent promoters. Further, we show a striking correspondence between these elements and the locations of mapped polytene interband regions. We believe it is likely this relationship between insulators, topological boundaries, and polytene interbands extends across the genome, and we therefore propose a model in which decompaction of boundary-insulator-interband regions drives the organization of interphase chromosomes by creating stable physical separation between adjacent domains. PMID:29148971

  12. High Resolution Modelling of Aerosols-Meteorology Interactions over Northern Europe and Arctic regions

    Science.gov (United States)

    Mahura, Alexander; Nuterman, Roman; Baklanov, Alexander

    2017-04-01

    Aerosols have influence on weather, air quality and climate. Multi-scale modelling, and especially long-range atmospheric transport, dispersion, and deposition of aerosols from remote sources is especially challenging in northern latitudes. It is due to complexity of meteorological, chemical and biological processes, their interactions and especially within and above the surface layer, linking to climate change, and influence on ecosystems. The online integrated meteorology-chemistry-aerosols model Enviro-HIRLAM (Environment - High Resolution Limited Area Model) was employed for evaluating spatio-temporal variability of atmospheric aerosols and their interactions and effects on meteorology with a focus on the Northern Europe and Arctic regions. The model setup covers domain having 510 x 568 grids of latitude vs. longitude, horizontal resolution of 0.15 deg, 40 vertical hybrid levels, time step of 360 sec, 6 h meteorological surface data assimilation. The model was run for January and July-August 2010 at DMI's CRAY-XC30 supercomputer. Emissions used are anthropogenic (ECLIPSE v5), shipping (combined AU_RCP and FMI), wildfires (IS4FIRES), and interactive sea salt, dust and DMS. The boundary conditions were obtained from ECMWF: for meteorology (from IFS at 0.15 and 0.25 deg. for summer and winter, respectively) and atmospheric composition (from MACC Reanalysis at 1.125 deg. resolution). The Enviro-HIRLAM model was employed in 4 modes: the reference run (e.g. without aerosols influence on meteorology) and 3 modified runs (direct aerosol effect (DAE), indirect aerosol effect (IDAE), and both effects DAE and IDAE included). The differences between the reference run and the runs with mentioned aerosol effects were estimated on a day-by-day, monthly and diurnal cycle bases over the domain, Arctic areas, European and Nordic countries. The results of statistical analyses are summarized and presented.

  13. Analysis of sultriness-triggering parameters using high resolution regional climate simulations

    Science.gov (United States)

    Brecht, Benedict; Schipper, Janus Willem

    2017-04-01

    Under changing environmental conditions - which are a consequence of global climate change - living comfort should be maintained. A change of the temperature and humidity is expected, which affects the living comfort of people and is analyzed here. The study is performed in the framework of a project funded by the Baden-Württemberg foundation and couples the outdoor and the indoor climate as well as the thermal-hygric behavior of walls by thermal-energetic building simulations driven with regional climate model data. The intention is to avoid, too wet and sultry indoor climate by passive plaster systems. High resolution regional climate simulations are made with the non-hydrostatic regional climate model COSMO-CLM (CCLM) and driven by data from the global climate model (GCM) ECHAM6 for projection as well as ERA-Interim reanalysis (ECMWF) for validation. The global data are dynamically downscaled with CCLM up to a convection permitting mesh size of 2.8 km; past (1981-2010) and future (2021-2050) periods are considered. To estimate the range of possible future developments an ensemble is created by the use of two emission scenarios, RCP4.5 and RCP8.5, coupling CCLM with the soil vegetation atmosphere transfer scheme VEG3D (additionally to TERRA) and climate simulations with different GCMs as forcing models. Also a bias correction of the RCM runs is done to use them for the impact studies. The evaluation of the model simulations showed a high dependency of sultriness conditions in southwestern Germany on the large scale weather conditions. For example, if the prevailing wind direction was southwest, a quarter of the days in summer had a mean value of specific humidity over 12 g/kg (assumed as a sultriness limit here) in the Rhine valley (mean over 30 years). These large scale conditions were analyzed with the objective weather type classification of Dittmann and Bissolli. In the next step, factors affecting sultriness, for example orography, landuse or local wind

  14. Assessment of LiDAR and Spectral Techniques for High-Resolution Mapping of Sporadic Permafrost on the Yukon-Kuskokwim Delta, Alaska

    Directory of Open Access Journals (Sweden)

    Matthew A. Whitley

    2018-02-01

    Full Text Available Western Alaska’s Yukon-Kuskokwim Delta (YKD spans nearly 67,200 km2 and is among the largest and most productive coastal wetland ecosystems in the pan-Arctic. Permafrost currently forms extensive elevated plateaus on abandoned floodplain deposits of the outer delta, but is vulnerable to disturbance from rising air temperatures, inland storm surges, and salt-kill of vegetation. As pan-Arctic air and ground temperatures rise, accurate baseline maps of permafrost extent are critical for a variety of applications including long-term monitoring, understanding the scale and pace of permafrost degradation processes, and estimating resultant greenhouse gas dynamics. This study assesses novel, high-resolution techniques to map permafrost distribution using LiDAR and IKONOS imagery, in tandem with field-based parameterization and validation. With LiDAR, use of a simple elevation threshold provided a permafrost map with 94.9% overall accuracy; this approach was possible due to the extremely flat coastal plain of the YKD. The addition of high spatial-resolution IKONOS satellite data yielded similar results, but did not increase model performance. The methods and the results of this study enhance high-resolution permafrost mapping efforts in tundra regions in general and deltaic landscapes in particular, and provide a baseline for remote monitoring of permafrost distribution on the YKD.

  15. Spatiotemporal High-Resolution Cloud Mapping with a Ground-Based IR Scanner

    National Research Council Canada - National Science Library

    Brede, Benjamin; Thies, Boris; Bendix, Jörg; Feister, Uwe

    2017-01-01

    .... This study presents a retrieval algorithm that evaluates observations of a hemispherically scanning thermal infrared radiometer, the NubiScope, to produce georeferenced, spatially explicit cloud maps...

  16. Combining Proximal and Penetrating Soil Electrical Conductivity Sensors for High Resolution Digital Soil Mapping

    Science.gov (United States)

    Proximal ground conductivity sensors produce high spatial resolution maps that integrate the bulk electrical conductivity (ECa) of the soil profile. Variability in conductivity maps must either be inverted to profile conductivity, or be directly calibrated to profile properties for meaningful interp...

  17. COMBINING PROXIMAL AND PENETRATING CONDUCTIVITY SENSORS FOR HIGH RESOLUTION SOIL MAPPING

    Science.gov (United States)

    Proximal ground conductivity sensors produce a high spatial resolution map that integrates the bulk electrical conductivity (ECa) of the soil profile. Variability in the conductivity map must either be inverted to estimate profile conductivity, or be directly calibrated to soil profile properties fo...

  18. Will it Blend? Visualization and Accuracy Evaluation of High-Resolution Fuzzy Vegetation Maps

    Science.gov (United States)

    Zlinszky, A.; Kania, A.

    2016-06-01

    Instead of assigning every map pixel to a single class, fuzzy classification includes information on the class assigned to each pixel but also the certainty of this class and the alternative possible classes based on fuzzy set theory. The advantages of fuzzy classification for vegetation mapping are well recognized, but the accuracy and uncertainty of fuzzy maps cannot be directly quantified with indices developed for hard-boundary categorizations. The rich information in such a map is impossible to convey with a single map product or accuracy figure. Here we introduce a suite of evaluation indices and visualization products for fuzzy maps generated with ensemble classifiers. We also propose a way of evaluating classwise prediction certainty with "dominance profiles" visualizing the number of pixels in bins according to the probability of the dominant class, also showing the probability of all the other classes. Together, these data products allow a quantitative understanding of the rich information in a fuzzy raster map both for individual classes and in terms of variability in space, and also establish the connection between spatially explicit class certainty and traditional accuracy metrics. These map products are directly comparable to widely used hard boundary evaluation procedures, support active learning-based iterative classification and can be applied for operational use.

  19. Evaluation of the use of very high resolution aerial imagery for accurate ice-wedge polygon mapping (Adventdalen, Svalbard).

    Science.gov (United States)

    Lousada, Maura; Pina, Pedro; Vieira, Gonçalo; Bandeira, Lourenço; Mora, Carla

    2017-09-24

    The main objective of this paper is to verify the accuracy of delineating and characterizing ice-wedge polygonal networks with features exclusively extracted from remotely sensed images of very high resolution. This kind of mapping plays a key role for quantifying ice-wedge degradation in warming permafrost. The evaluation of mapping a network is performed in this study with two sets of aerial images that are compared to ground reference data determined by fieldwork on the same network, located in Adventdalen, Svalbard (78°N). One aerial dataset is obtained from a photogrammetric survey with RGB+NIR imagery of 20cm/pixel, the other from an UAV (Unmanned Aerial Vehicle) survey that acquired RGB images of 6cm/pixel of spatial resolution. Besides evaluating the degree of matching between the delineations, the morphometric and topological features computed for the differently mapped versions of the network are also confronted, to have a more solid basis of comparison. The results obtained are similar enough to admit that remotely sensed images of very high resolution are an adequate support to provide extensive characterizations and classifications of this kind of patterned ground. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. High resolution SNP based microarray mapping of mosaic supernumerary marker chromosomes 13 and 17: delineating novel loci for apraxia.

    Science.gov (United States)

    Kogan, Jillene M; Miller, Erin; Ware, Stephanie M

    2009-05-01

    High resolution comparative genomic hybridization is emerging as a powerful tool for delineating chromosomal rearrangements such as duplications, deletions, and unbalanced translocations, but it has not yet been broadly applied for structural aberrations such as supernumerary marker chromosomes (SMCs). In this report, we present the clinical and molecular analysis of a patient with de novo mosaic SMC (17) and SMC (13). High resolution single nucleotide polymorphism (SNP) based microarray mapping successfully identified the parent of origin for the SMCs and allowed delineation of the breakpoints which include a 5.1 Mb duplication from 17p11.2 to 17q11.2 as well as duplication of chromosome 13 that includes 2.2 Mb from 13q11 to 13q12.11. Interestingly, the patient has markedly severe oral and verbal apraxia, a characteristic feature of patients with 17p11.2 duplication syndrome (Potocki-Lupski syndrome, PTLS). Fine mapping indicates that the patient's duplication overlaps with a subset of PTLS patients, but not with PTLS patients harboring the common microduplication. FISH analysis confirms that the patient lacks duplication of RAI1, a dosage sensitive gene within the common microduplication interval. Taken together, these results demonstrate the utility of SNP microarray based methodology for mapping disease-causing genes, including those within SMCs, and provide the opportunity to identify novel candidate genes for verbal apraxia.

  1. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis.

    Directory of Open Access Journals (Sweden)

    Xue-Feng Ma

    Full Text Available We have created a high-resolution linkage map of Miscanthus sinensis, using genotyping-by-sequencing (GBS, identifying all 19 linkage groups for the first time. The result is technically significant since Miscanthus has a very large and highly heterozygous genome, but has no or limited genomics information to date. The composite linkage map containing markers from both parental linkage maps is composed of 3,745 SNP markers spanning 2,396 cM on 19 linkage groups with a 0.64 cM average resolution. Comparative genomics analyses of the M. sinensis composite linkage map to the genomes of sorghum, maize, rice, and Brachypodium distachyon indicate that sorghum has the closest syntenic relationship to Miscanthus compared to other species. The comparative results revealed that each pair of the 19 M. sinensis linkages aligned to one sorghum chromosome, except for LG8, which mapped to two sorghum chromosomes (4 and 7, presumably due to a chromosome fusion event after genome duplication. The data also revealed several other chromosome rearrangements relative to sorghum, including two telomere-centromere inversions of the sorghum syntenic chromosome 7 in LG8 of M. sinensis and two paracentric inversions of sorghum syntenic chromosome 4 in LG7 and LG8 of M. sinensis. The results clearly demonstrate, for the first time, that the diploid M. sinensis is tetraploid origin consisting of two sub-genomes. This complete and high resolution composite linkage map will not only serve as a useful resource for novel QTL discoveries, but also enable informed deployment of the wealth of existing genomics resources of other species to the improvement of Miscanthus as a high biomass energy crop. In addition, it has utility as a reference for genome sequence assembly for the forthcoming whole genome sequencing of the Miscanthus genus.

  2. Comparative High-Resolution Mapping of the Wax Inhibitors Iw1 and Iw2 in Hexaploid Wheat

    OpenAIRE

    Haibin Wu; Jinxia Qin; Jun Han; Xiaojie Zhao; Shuhong Ouyang; Yong Liang; Dong Zhang; Zhenzhong Wang; Qiuhong Wu; Jingzhong Xie; Yu Cui; Huiru Peng; Qixin Sun; Zhiyong Liu

    2013-01-01

    The wax (glaucousness) on wheat leaves and stems is mainly controlled by two sets of genes: glaucousness loci (W1 and W2) and non-glaucousness loci (Iw1 and Iw2). The non-glaucousness (Iw) loci act as inhibitors of the glaucousness loci (W). High-resolution comparative genetic linkage maps of the wax inhibitors Iw1 originating from Triticum dicoccoides, and Iw2 from Aegilops tauschii were developed by comparative genomics analyses of Brachypodium, sorghum and rice genomic sequences correspond...

  3. High-Resolution Mapping of Modified DNA Nucleobases Using Excision Repair Enzymes.

    Science.gov (United States)

    Ransom, Monica; Bryan, D Suzi; Hesselberth, Jay R

    2018-01-01

    Modification of DNA nucleobases has a profound effect on genome function. We developed a method that maps the positions of the modified DNA nucleobases throughout genomic DNA. This method couples in vitro nucleobase excision with massively parallel DNA sequencing to determine the location of modified DNA nucleobases with single base precision. This protocol was used to map uracil incorporation and UV photodimers in DNA, and a modification of the protocol has been used to map sparse modification events in cells. The Excision-seq protocol is broadly applicable to a variety of base modifications for which an excision enzyme is available.

  4. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A

    Czech Academy of Sciences Publication Activity Database

    Balcárková, Barbora; Frenkel, Z.; Škopová, Monika; Abrouk, Michael; Kumar, A.; Chao, S.; Kianian, S. F.; Akhunov, E.; Korol, A.; Doležel, Jaroslav; Valárik, Miroslav

    2017-01-01

    Roč. 7, JAN 10 (2017), č. článku 2063. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * bread wheat * high-density * agronomic traits * tetraploid wheat * hexaploid wheat * polyploid wheat * genetic maps * genomes * recombination * endosperm radiation hybrid panel * radiation hybrid map * wheat chromosome 4A * chromosome deletion bin map * Triticum aestivum * SNP iSelect array Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.298, year: 2016

  5. Spatiotemporal High-Resolution Cloud Mapping with a Ground-Based IR Scanner

    NARCIS (Netherlands)

    Brede, Benjamin; Thies, Boris; Bendix, Jörg; Feister, Uwe

    2017-01-01

    The high spatiotemporal variability of clouds requires automated monitoring systems. This study presents a retrieval algorithm that evaluates observations of a hemispherically scanning thermal infrared radiometer, the NubiScope, to produce georeferenced, spatially explicit cloud maps. The algorithm

  6. High-resolution maps of forest-urban watersheds present an opportunity for ecologists and managers

    Science.gov (United States)

    Dense populations of people and abundant impervious surfaces contribute to poor water quality and increased flooding in forest-urban watersheds. Green infrastructure mitigates these effects, but precisely quantifying benefits is difficult because most land cover maps rely on coar...

  7. Creating a high resolution social vulnerability map in support of national decision makers in South Africa

    CSIR Research Space (South Africa)

    Le Roux, Alice

    2015-08-01

    Full Text Available The core objective of this study was to create a social vulnerability map based on generally accepted variables that are indicative of drivers of social vulnerability, capturing the unique attributes of South African communities. The paper explains...

  8. Mapping temporal changes in connectivity using high-resolution aerial data and object based image analysis

    Science.gov (United States)

    Masselink, Rens; Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2014-05-01

    Within the field of geomorphology mapping has always been an important tool to interpret spatial and temporal distributions of phenomena and processes at the surface. In the field of connectivity however, although throughout the past decade many articles have been published, there are only very few that go into the mapping of connectivity. This study aimed at developing a new, automated method for mapping connectivity within agricultural catchments. The method, which is a combination of Object-Based Image Analysis (OBIA) and traditional geomorphological field mapping, was applied to two agricultural catchments in Navarre, Spain, both with an area of approximately 2 sq.km. An unmanned aerial vehicle (UAV) was used to take aerial photographs with a resolution of 6 cm, of which a DEM with a 12 cm resolution was created using structure-from-motion photogrammetry. Connectivity was mapped within the study areas using OBIA using a top down method, meaning that connectivity was mapped at different scale levels, starting at the largest scale. Firstly sub-catchments were automatically delineated, after which several characteristics and features that affect connectivity within the sub-catchments were classified, e.g. landuse, landslides, rills, gullies, riparian vegetation, changes in slope, ploughing direction etc. In two consecutive years (2013-2014) photographs were taken and connectivity of both catchments of both years will be compared. Future work will include a quantification of the mapped connectivity (highly connected years vs. low connected years), causes and consequences of these differences in connectivity, comparison to existing connectivity indices and comparison of mapped connectivity in sub-catchments and measured discharge.

  9. High resolution mapping of the tropospheric NO2 distribution in three Belgian cities based on airborne APEX remote sensing

    Science.gov (United States)

    Tack, Frederik; Merlaud, Alexis; Fayt, Caroline; Danckaert, Thomas; Iordache, Daniel; Meuleman, Koen; Deutsch, Felix; Adriaenssens, Sandy; Fierens, Frans; Van Roozendael, Michel

    2015-04-01

    An approach is presented to retrieve tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) and to map the NO2 two dimensional distribution at high resolution, based on Airborne Prism EXperiment (APEX) observations. APEX, developed by a Swiss-Belgian consortium on behalf of ESA (European Space Agency), is a pushbroom hyperspectral imager with a high spatial (approximately 3 m at 5000 m ASL), spectral (413 to 2421 nm in 533 narrow, contiguous spectral bands) and radiometric (14-bit) resolution. VCDs are derived, following a similar approach as described in the pioneering work of Popp et al. (2012), based on (1) spectral calibration and spatial binning of the observed radiance spectra in order to improve the spectral resolution and signal-to-noise ratio, (2) Differential Optical Absorption Spectroscopy (DOAS) analysis of the pre-processed spectra in the visible wavelength region, with a reference spectrum containing low NO2 absorption, in order to quantify the abundance of NO2 along the light path, based on its molecular absorption structures and (3) radiative transfer modeling for air mass factor calculation in order to convert slant to vertical columns. This study will be done in the framework of the BUMBA (Belgian Urban NO2 Monitoring Based on APEX hyperspectral data) project. Dedicated flights with APEX mounted in a Dornier DO-228 airplane, operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR), are planned to be performed in Spring 2015 above the three largest and most heavily polluted Belgian cities, i.e. Brussels, Antwerp and Liège. The retrieved VCDs will be validated by comparison with correlative ground-based and car-based DOAS observations. Main objectives are (1) to assess the operational capabilities of APEX to map the NO2 field over an urban area at high spatial and spectral resolution in a relatively short time and cost-effective way, and to characterise all aspects of the retrieval approach; (2) to use the APEX NO2 measurements

  10. HIGH-RESOLUTION SEISMIC VELOCITY AND ATTENUATION MODELS OF THE CAUCASUS-CASPIAN REGION

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R; Gok, R; Pasyanos, M; Skobeltsyn, G; Teoman, U; Godoladze, T; Sandvol, E

    2008-07-01

    The southwest edge of Eurasia is a tectonically and structurally complex region that includes the Caspian and Black Sea basins, the Caucasus Mountains, and the high plateaus south of the Caucasus. Using data from 25 broadband stations located in the region, new estimates of crustal and upper mantle thickness, velocity structure, and attenuation are being developed. Receiver functions have been determined for all stations. Depth to Moho is estimated using slant stacking of the receiver functions, forward modeling, and inversion. Moho depths along the Caspian and in the Kura Depression are in general poorly constrained using only receiver functions due to thick sedimentary basin sediments. The best fitting models suggest a low velocity upper crust with Moho depths ranging from 30 to 40 km. Crustal thicknesses increase in the Greater Caucasus with Moho depths of 40 to 50 km. Pronounced variations with azimuth of source are observed indicating 3D structural complexity and upper crustal velocities are higher than in the Kura Depression to the south. In the Lesser Caucasus, south and west of the Kura Depression, the crust is thicker (40 to 50 km) and upper crustal velocities are higher. Work is underway to refine these models with the event based surface wave dispersion and ambient noise correlation measurements from continuous data. Regional phase (Lg and Pg) attenuation models as well as blockage maps for Pn and Sn are being developed. Two methods are used to estimate Q: the two-station method to estimate inter-station Q and the reversed, two-station, two event method. The results are then inverted to create Lg and Pg Q maps. Initial results suggest substantial variations in both Pg and Lg Q in the region. A zone of higher Pg Q extends west from the Caspian between the Lesser and Greater Caucasus and a narrow area of higher Lg Q is observed.

  11. High Resolution Spatial and Temporal Mapping of Traffic-Related Air Pollutants

    Directory of Open Access Journals (Sweden)

    Stuart Batterman

    2015-04-01

    Full Text Available Vehicle traffic is one of the most significant emission sources of air pollutants in urban areas. While the influence of mobile source emissions is felt throughout an urban area, concentrations from mobile emissions can be highest near major roadways. At present, information regarding the spatial and temporal patterns and the share of pollution attributable to traffic-related air pollutants is limited, in part due to concentrations that fall sharply with distance from roadways, as well as the few monitoring sites available in cities. This study uses a newly developed dispersion model (RLINE and a spatially and temporally resolved emissions inventory to predict hourly PM2.5 and NOx concentrations across Detroit (MI, USA at very high spatial resolution. Results for annual averages and high pollution days show contrasting patterns, the need for spatially resolved analyses, and the limitations of surrogate metrics like proximity or distance to roads. Data requirements, computational and modeling issues are discussed. High resolution pollutant data enable the identification of pollutant “hotspots”, “project-level” analyses of transportation options, development of exposure measures for epidemiology studies, delineation of vulnerable and susceptible populations, policy analyses examining risks and benefits of mitigation options, and the development of sustainability indicators integrating environmental, social, economic and health information.

  12. High-resolution mobile optical 3D scanner with color mapping

    Science.gov (United States)

    Ramm, Roland; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Notni, Gunther

    2017-07-01

    A high-resolution mobile handheld scanning device suitable for 3D data acquisition and analysis for forensic investigations, rapid prototyping, design, quality management, and archaeology with a measurement volume of approximately 325 mm x 200 mm x 100mm and a lateral object resolution of 170 µm developed at our institute is introduced. The scanners weight is 4.4 kg with an optional color DLSR camera. The PC for measurement control and point calculation is included inside the housing. Power supply is realized by rechargeable batteries. Possible operation time is between 30 and 60 minutes. The object distance is between 400 and 500 mm, and the scan time for one 3D shot may vary between 0.1 and 0.5 seconds. The complete 3D result is obtained a few seconds after starting the scan. For higher quality 3D and color images the scanner is attachable to tripod use. Measurement objects larger than the measurement volume must be acquired partly. The different resulting datasets are merged using a suitable software module. The scanner has been successfully used in various applications.

  13. SAETTA: high resolution 3D mapping of the lightning activity around Corsica Island

    Science.gov (United States)

    Coquillat, Sylvain; Defer, Eric; Lambert, Dominique; Pinty, Jean-Pierre; Pont, Véronique; Prieur, Serge

    2017-04-01

    In the frame of the French atmospheric observatory CORSiCA (http://www.obs-mip.fr/corsica), a total lightning activity detection system called SAETTA (Suivi de l'Activité Electrique Tridimensionnelle Totale de l'Atmosphère) has been deployed in Corsica Island in order to strengthen the potential of observation of convective events causing heavy rainfall and flash floods in the West Mediterranean basin. SAETTA is a network of 12 LMA stations (Lightning Mapping Array) developed by New Mexico Tech (USA). The instrument allows observing lightning flashes in 3D and real time, at high temporal (80 µs) and spatial resolutions. It detects the radiations emitted by cloud discharges in the 60-66 MHz band, in a radius of about 350 km from the centre of the network, in passive mode and standalone (solar panel and batteries). Initially deployed in May 2014, SAETTA operated from July 13 to October 20 in 2014 and from April 19 to December 1st in 2015. It is now in permanent operation since 16 April 2016. Many high quality observations have been performed so far that provide an accurate location in space and time of the convective events. They also bring interesting dynamical and microphysical features of those events. For example the intensity of the convective surges, the transport of charged ice particles in the stratiform area of the thunderclouds can be deduced from SAETTA observations. Specific events have also been detected as well: bolts-from-the-blue, inter cloud discharges, high level discharges in convective but also in stratiform areas, inverted dipoles. The specific lightning patterns of 2015 illustrate the complex influence of the relief, probably via slope and valley winds over Corsica and via induced lee-side convergences over the sea. SAETTA is expected to operate for at least a decade over Corsica so it will participate to the calibration/validation of upcoming lightning detectors from space such as MTG-LI. It will also be a key instrument during the field

  14. High-Resolution Specification of the Land and Ocean Surface for Improving Regional Mesoscale Model Predictions

    Science.gov (United States)

    Case, Jonathan L.; Lazarus, Steven M.; Splitt, Michael E.; Crosson, William L.; Lapenta, William M.; Jedlovec, Gary J.; Peters-Lidard, Christa D.

    2008-01-01

    The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many meteorological processes. High-resolution, accurate representations of surface properties such as sea-surface temperature (SST), soil temperature and moisture content, ground fluxes, and vegetation are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of sensible weather. The NASA Short-term Prediction Research and Transition (SPoRT) Center has been conducting separate studies to examine the impacts of high-resolution land-surface initialization data from the Goddard Space Flight Center Land Information System (LIS) on subsequent WRF forecasts, as well as the influence of initializing WRF with SST composites derived from the MODIS instrument. This current project addresses the combined impacts of using high-resolution lower boundary data over both land (LIS data) and water (MODIS SSTs) on the subsequent daily WRF forecasts over Florida during May 2004. For this experiment, the WRF model is configured to run on a nested domain with 9- km and 3-kin grid spacing, centered on the Florida peninsula and adjacent coastal waters of the Gulf of Mexico and Atlantic Ocean. A control configuration of WRF is established to take all initial condition data from the NCEP Eta model. Meanwhile, two WRF experimental runs are configured to use high-resolution initialization data from (1) LIS land-surface data only, and (2) a combination of LIS data and high-resolution MODIS SST composites. The experiment involves running 24-hour simulations of the control WRF configuration, the MS-initialized WRF, and the LIS+MODIS-initialized WRF daily for the entire month of May 2004. All atmospheric data for initial and boundary conditions for the Control, LIS, and LIS+MODIS runs come from the NCEP Eta model on a 40-km grid. Verification statistics are generated at land surface observation sites and buoys, and the impacts

  15. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Long, A.D. [Univ. of California, Davis, CA (United States)]|[McMaster Univ., Ontario (Canada); Mullaney, S.L.; Langley, C.H. [Univ. of California, Davis, CA (United States); Reid, L.A.; Fry, J.D.; Mackay, T.F.C. [North Carolina State Univ., Raleigh, NC (United States)

    1995-03-01

    Factors responsible for selection response for abdominal bristle number and correlated responses in sternopleural bristle number were mapped to the X and third chromosome of Drosophila melanogaster. Lines divergent for high and low abdominal bristle number were created by 25 generations of artificial selection from a large base population, with an intensity of 25 individuals of each sex selected from 100 individuals of each sex scored per generation. Isogenic chromosome substitution lines in which the high (H) X or third chromosome were placed in an isogenic low (L) background were derived from the selection lines and from the 93 recombinant isogenic (RI) HL X and 67 RI chromosome 3 lines constructed from them. Highly polymorphic neutral roo transposable elements were hybridized in situ to the polytene chromosomes of the RI lines to create a set of cytogenetic markers. These techniques yielded a dense map with an average spacing of 4 cM between informative markers. Two factors with large effects on abdominal bristle number were mapped on the X chromosome and five factors on the third chromosome. One factor with a large effect on sternopleural bristle number was mapped to the X and two were mapped to the third chromosome; all factors with sternopleural effects corresponded to those with effects on abdominal bristle number. Two of the chromosome 3 factors with large effects on abdominal bristle number were also associated with reduced viability. Significant sex-specific effects and epistatic interactions between mapped factors of the same order of magnitude as the additive effects were observed. All factors mapped to the approximate positions of likely candidate loci previously characterized by mutations with large effects on bristle number. 55 refs., 4 figs., 7 tabs.

  16. Calculating High Resolution CWSI Maps for Entire Growing Season of a Cultivated Barley Field with UAV-Collected Surface Temperatures.

    Science.gov (United States)

    Hoffmann, H.; Jensen, R.; Nieto Solana, H.; Friborg, T.; Thomsen, A.

    2015-12-01

    With agriculture as the largest consumer of freshwater and an overall increasing pressure on water resources, developing more efficient irrigation systems is important. Combining the crop water stress index (CWSI) with unmanned aerial vehicles (UAVs) enables detection of which specific areas within a cultivated field that requires irrigation to ensure healthy growing plants. In this study remotely sensed, high resolution surface temperatures are collected with a thermal camera onboard an UAV. Temperatures are used to calculate spatially distributed, high resolution CWSI maps over a barley field during growing seasons 2014 and 2015. In early stages of the barley growing season, surface temperatures are an ensemble of both soil and canopy temperatures. Canopy temperatures are extracted using leaf area index and the two source energy balance modelling scheme. This approach enables CWSI calculations for homogeneous and evenly distributed crops (such as barley) during early as well as late stages of a growing season. CWSI maps are calculated using both an empirical and an analytical approach and are compared and validated against modelled canopy conductance and transpiration rates.

  17. Introducing mapping standards in the quality assessment of buildings extracted from very high resolution satellite imagery

    Science.gov (United States)

    Freire, S.; Santos, T.; Navarro, A.; Soares, F.; Silva, J. D.; Afonso, N.; Fonseca, A.; Tenedório, J.

    2014-04-01

    Many municipal activities require updated large-scale maps that include both topographic and thematic information. For this purpose, the efficient use of very high spatial resolution (VHR) satellite imagery suggests the development of approaches that enable a timely discrimination, counting and delineation of urban elements according to legal technical specifications and quality standards. Therefore, the nature of this data source and expanding range of applications calls for objective methods and quantitative metrics to assess the quality of the extracted information which go beyond traditional thematic accuracy alone. The present work concerns the development and testing of a new approach for using technical mapping standards in the quality assessment of buildings automatically extracted from VHR satellite imagery. Feature extraction software was employed to map buildings present in a pansharpened QuickBird image of Lisbon. Quality assessment was exhaustive and involved comparisons of extracted features against a reference data set, introducing cartographic constraints from scales 1:1000, 1:5000, and 1:10,000. The spatial data quality elements subject to evaluation were: thematic (attribute) accuracy, completeness, and geometric quality assessed based on planimetric deviation from the reference map. Tests were developed and metrics analyzed considering thresholds and standards for the large mapping scales most frequently used by municipalities. Results show that values for completeness varied with mapping scales and were only slightly superior for scale 1:10,000. Concerning the geometric quality, a large percentage of extracted features met the strict topographic standards of planimetric deviation for scale 1:10,000, while no buildings were compliant with the specification for scale 1:1000.

  18. High-resolution mapping of European fishing pressure on the benthic habitats

    DEFF Research Database (Denmark)

    Eigaard, Ole Ritzau; Bastardie, Francois; Hintzen, Niels T.

    Mapping and monitoring of pressure from fishery on the marine benthic environment is necessary to support an ecosystem approach to fisheries management (EAFM). In many cases this need is not reflected in official fisheries statistics and logbooks, where focus typically is on catch rather than......-scale maps of benthic fishing pressure covering the EU, Norwegian and Turkish waters. First individual logbook observations from 13 countries were assigned to 17 different functional gear groups (métiers) based on target species and gear type information. Secondly, relationships between gear width and vessel...

  19. Using high-resolution digital aerial imagery to map land cover

    Science.gov (United States)

    Dieck, J.J.; Robinson, Larry

    2014-01-01

    The Upper Midwest Environmental Sciences Center (UMESC) has used aerial photography to map land cover/land use on federally owned and managed lands for over 20 years. Until recently, that process used 23- by 23-centimeter (9- by 9-inch) analog aerial photos to classify vegetation along the Upper Mississippi River System, on National Wildlife Refuges, and in National Parks. With digital aerial cameras becoming more common and offering distinct advantages over analog film, UMESC transitioned to an entirely digital mapping process in 2009. Though not without challenges, this method has proven to be much more accurate and efficient when compared to the analog process.

  20. Fiber Optic Distributed Sensors for High-resolution Temperature Field Mapping.

    Science.gov (United States)

    Lomperski, Stephen; Gerardi, Craig; Lisowski, Darius

    2016-11-07

    The reliability of computational fluid dynamics (CFD) codes is checked by comparing simulations with experimental data. A typical data set consists chiefly of velocity and temperature readings, both ideally having high spatial and temporal resolution to facilitate rigorous code validation. While high resolution velocity data is readily obtained through optical measurement techniques such as particle image velocimetry, it has proven difficult to obtain temperature data with similar resolution. Traditional sensors such as thermocouples cannot fill this role, but the recent development of distributed sensing based on Rayleigh scattering and swept-wave interferometry offers resolution suitable for CFD code validation work. Thousands of temperature measurements can be generated along a single thin optical fiber at hundreds of Hertz. Sensors function over large temperature ranges and within opaque fluids where optical techniques are unsuitable. But this type of sensor is sensitive to strain and humidity as well as temperature and so accuracy is affected by handling, vibration, and shifts in relative humidity. Such behavior is quite unlike traditional sensors and so unconventional installation and operating procedures are necessary to ensure accurate measurements. This paper demonstrates implementation of a Rayleigh scattering-type distributed temperature sensor in a thermal mixing experiment involving two air jets at 25 and 45 °C. We present criteria to guide selection of optical fiber for the sensor and describe installation setup for a jet mixing experiment. We illustrate sensor baselining, which links readings to an absolute temperature standard, and discuss practical issues such as errors due to flow-induced vibration. This material can aid those interested in temperature measurements having high data density and bandwidth for fluid dynamics experiments and similar applications. We highlight pitfalls specific to these sensors for consideration in experiment design

  1. Dynamics of the MAP IOP 15 severe Mistral event: Observations and high-resolution numerical simulations

    Science.gov (United States)

    Guénard, V.; Drobinski, P.; Caccia, J. L.; Tedeschi, G.; Currier, P.

    2006-04-01

    This paper investigates the fundamental processes involved in a severe Mistral event that occurred during the Mesoscale Alpine Program (from 6 to 9 November 1999). The Mistral refers to a violent north/north-westerly wind blowing in south-eastern France from the Rhône valley to the French Riviera. The study is based on measurements from radiosoundings launched from Lyon and Nîmes and from two UHF wind profilers located near Marseille and Toulon allowing a good description of the flow in the complex terrain formed by the south-western Alps. Observational results are compared with RAMS non-hydrostatic numerical simulations performed with 27 km, 9 km and 3 km nested grids. The numerical simulations capture the flow complexity both upstream of the Alps and in the coastal area affected by the Mistral. They correctly reproduce horizontal wind speeds and directions, vertical velocities, virtual potential temperature and relative humidity documented by the observational network. The simulations are used to point out the main dynamical processes generating the Mistral. It is found that flow splitting around the Alps and around the isolated peaks bordering the south-eastern part of the Rhône valley (Mont Ventoux 1909 m, Massif du Lubéron 1425 m) induces the low-level jet observed near Marseille that lasts for 36 hours. The high-resolution simulation indicates that the transient low-level jet lasting for only 9 hours observed at Toulon is due to a gravity wave breaking over local topography (the Sainte Baume 1147 m) where hydraulic jumps are involved. A mountain wake with two opposite-sign potential-vorticity banners is generated. The mesoscale wake explains the westward progression of the large-scale Alpine wake.

  2. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  3. The Effect of Shadow Area on Sgm Algorithm and Disparity Map Refinement from High Resolution Satellite Stereo Images

    Science.gov (United States)

    Tatar, N.; Saadatseresht, M.; Arefi, H.

    2017-09-01

    Semi Global Matching (SGM) algorithm is known as a high performance and reliable stereo matching algorithm in photogrammetry community. However, there are some challenges using this algorithm especially for high resolution satellite stereo images over urban areas and images with shadow areas. As it can be seen, unfortunately the SGM algorithm computes highly noisy disparity values for shadow areas around the tall neighborhood buildings due to mismatching in these lower entropy areas. In this paper, a new method is developed to refine the disparity map in shadow areas. The method is based on the integration of potential of panchromatic and multispectral image data to detect shadow areas in object level. In addition, a RANSAC plane fitting and morphological filtering are employed to refine the disparity map. The results on a stereo pair of GeoEye-1 captured over Qom city in Iran, shows a significant increase in the rate of matched pixels compared to standard SGM algorithm.

  4. Mapping Entomological Dengue Risk Levels in Martinique Using High-Resolution Remote-Sensing Environmental Data

    Directory of Open Access Journals (Sweden)

    Vanessa Machault

    2014-12-01

    Full Text Available Controlling dengue virus transmission mainly involves integrated vector management. Risk maps at appropriate scales can provide valuable information for assessing entomological risk levels. Here, results from a spatio-temporal model of dwellings potentially harboring Aedes aegypti larvae from 2009 to 2011 in Tartane (Martinique, French Antilles using high spatial resolution remote-sensing environmental data and field entomological and meteorological information are presented. This tele-epidemiology methodology allows monitoring the dynamics of diseases closely related to weather/climate and environment variability. A Geoeye-1 image was processed to extract landscape elements that could surrogate societal or biological information related to the life cycle of Aedes vectors. These elements were subsequently included into statistical models with random effect. Various environmental and meteorological conditions have indeed been identified as risk/protective factors for the presence of Aedes aegypti immature stages in dwellings at a given date. These conditions were used to produce dynamic high spatio-temporal resolution maps from the presence of most containers harboring larvae. The produced risk maps are examples of modeled entomological maps at the housing level with daily temporal resolution. This finding is an important contribution to the development of targeted operational control systems for dengue and other vector-borne diseases, such as chikungunya, which is also present in Martinique.

  5. Validating a high-resolution digital soil map for precision agriculture across multiple fields

    Science.gov (United States)

    Digital soil mapping (DSM) for precision agriculture (PA) management is aimed at developing models that predict soil properties or classes using legacy soil data, sensors, and environmental covariates. The utility of DSM for PA is based on its ability to provide useful spatial soil information for o...

  6. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    Science.gov (United States)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  7. High-resolution carbon mapping on the million-hectare Island of Hawaii

    Science.gov (United States)

    Gregory P. Asner; R. Flint Hughes; Joseph Mascaro; Amanda L. Uowolo; David E. Knapp; James Jacobson; Ty Kennedy-Bowdoin; John K . Clark

    2011-01-01

    Current markets and international agreements for reducing emissions from deforestation and forest degradation (REDD) rely on carbon (C) monitoring techniques. Combining field measurements, airborne light detection and ranging (LiDAR)-based observations, and satellite-based imagery, we developed a 30-meter-resolution map of aboveground C density spanning 40 vegetation...

  8. High Resolution Mapping of Soils and Landforms for the Desert Renewable Energy Conservation Plan (DRECP)

    Science.gov (United States)

    Potter, Christopher S.; Li, Shuang

    2014-01-01

    The Desert Renewable Energy Conservation Plan (DRECP), a major component of California's renewable energy planning efforts, is intended to provide effective protection and conservation of desert ecosystems, while allowing for the sensible development of renewable energy projects. This NASA mapping report was developed to support the DRECP and the Bureau of Land Management (BLM). We outline in this document remote sensing image processing methods to deliver new maps of biological soils crusts, sand dune movements, desert pavements, and sub-surface water sources across the DRECP area. We focused data processing first on the largely unmapped areas most likely to be used for energy developments, such as those within Renewable Energy Study Areas (RESA) and Solar Energy Zones (SEZs). We used imagery (multispectral and radar) mainly from the years 2009-2011.

  9. High-resolution three-dimensional mapping of semiconductor dopant potentials

    DEFF Research Database (Denmark)

    Twitchett, AC; Yates, TJV; Newcomb, SB

    2007-01-01

    Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how a combin......Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how...... a combination of electron holography and electron tomography can be used to determine quantitatively the three-dimensional electrostatic potential in an electrically biased semiconductor device with nanometer spatial resolution....

  10. Spatiotemporal High-Resolution Cloud Mapping with a Ground-Based IR Scanner

    Directory of Open Access Journals (Sweden)

    Benjamin Brede

    2017-01-01

    Full Text Available The high spatiotemporal variability of clouds requires automated monitoring systems. This study presents a retrieval algorithm that evaluates observations of a hemispherically scanning thermal infrared radiometer, the NubiScope, to produce georeferenced, spatially explicit cloud maps. The algorithm uses atmospheric temperature and moisture profiles and an atmospheric radiative transfer code to differentiate between cloudy and cloudless measurements. In case of a cloud, it estimates its position by using the temperature profile and viewing geometry. The proposed algorithm was tested with 25 cloud maps generated by the Fmask algorithm from Landsat 7 images. The overall cloud detection rate was ranging from 0.607 for zenith angles of 0 to 10° to 0.298 for 50–60° on a pixel basis. The overall detection of cloudless pixels was 0.987 for zenith angles of 30–40° and much more stable over the whole range of zenith angles compared to cloud detection. This proves the algorithm’s capability in detecting clouds, but even better cloudless areas. Cloud-base height was best estimated up to a height of 4000 m compared to ceilometer base heights but showed large deviation above that level. This study shows the potential of the NubiScope system to produce high spatial and temporal resolution cloud maps. Future development is needed for a more accurate determination of cloud height with thermal infrared measurements.

  11. The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis.

    Science.gov (United States)

    Williams, R W; Gu, J; Qi, S; Lu, L

    2001-01-01

    Recombinant inbred (RI) strains of mice are an important resource used to map and analyze complex traits. They have proved particularly effective in multidisciplinary genetic studies. Widespread use of RI strains has been hampered by their modest numbers and by the difficulty of combining results derived from different RI sets. We have increased the density of typed microsatellite markers two- to five-fold in each of several major RI sets that share C57BL/6 as a parental strain (AXB, BXA, BXD, BXH and CXB). A common set of 490 markers was genotyped in just over 100 RI strains. Genotypes of around 1,100 additional microsatellites in one or more RI sets were generated, collected and checked for errors. Consensus RI maps that integrate genotypes of approximately 1,600 microsatellite loci were assembled. The genomes of individual strains typically incorporate 45-55 recombination breakpoints. The collected RI set - termed the BXN set - contains approximately 5,000 breakpoints. The distribution of recombinations approximates a Poisson distribution and distances between breakpoints average about 0.5 centimorgans (cM). Locations of most breakpoints have been defined with a precision of Hardy-Weinberg equilibrium in only a small number of intervals. Consensus maps derived from RI strains conform almost exactly to theoretical expectation and are close to the length predicted by the Haldane-Waddington equation (x3.6 for a 2-3 cM interval between markers). Non-syntenic associations between different chromosomes introduce predictable distortions in quantitative trait locus (QTL) datasets that can be partly corrected using two-locus correlation matrices.

  12. High Resolution Mapping of Bactericidal Monoclonal Antibody Binding Epitopes on Staphylococcus aureus Antigen MntC.

    OpenAIRE

    Alexey V Gribenko; Kevin Parris; Lidia Mosyak; Sheng Li; Luke Handke; Julio C Hawkins; Elena Severina; Yury V Matsuka; Annaliesa S Anderson

    2016-01-01

    The Staphylococcus aureus manganese transporter protein MntC is under investigation as a component of a prophylactic S.aureus vaccine. Passive immunization with monoclonal antibodies mAB 305-78-7 and mAB 305-101-8 produced using MntC was shown to significantly reduce S. aureus burden in an infant rat model of infection. Earlier interference mapping suggested that a total of 23 monoclonal antibodies generated against MntC could be subdivided into three interference groups, representing three i...

  13. High-Resolution 3-D Mapping of Soil Texture in Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mette Balslev

    2013-01-01

    , silt, fine sand, and coarse sand content at six standard soil depths of GlobalSoilMap project (0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm) via regression rules using the Cubist data mining tool. Seventeen environmental variables were used as predictors and their strength of prediction was also...... calculated. For example, in the prediction of silt content at 0 to 5 cm depth, factors that registered a higher level of importance included the soil map scored (90%), landscape types (54%), and landuse (27%), while factors with lower scores were direct insolation (17%) and slope aspect (14%). Model...... validation (20% of the data selected randomly) showed a higher prediction performance in the upper depth intervals but increasing prediction error in the lower depth intervals (e.g., R2 = 0.54, RMSE = 33.7 g kg−1 for silt 0–5 cm and R2 = 0.29, RMSE = 38.8 g kg−1 from 100–200 cm). Danish soils have a high...

  14. Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms.

    Directory of Open Access Journals (Sweden)

    Rajini R Haraksingh

    Full Text Available Accurate and efficient genome-wide detection of copy number variants (CNVs is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH, Single Nucleotide Polymorphism (SNP genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications.

  15. Vegetation mapping from high-resolution satellite images in the heterogeneous arid environments of Socotra Island (Yemen)

    Science.gov (United States)

    Malatesta, Luca; Attorre, Fabio; Altobelli, Alfredo; Adeeb, Ahmed; De Sanctis, Michele; Taleb, Nadim M.; Scholte, Paul T.; Vitale, Marcello

    2013-01-01

    Socotra Island (Yemen), a global biodiversity hotspot, is characterized by high geomorphological and biological diversity. In this study, we present a high-resolution vegetation map of the island based on combining vegetation analysis and classification with remote sensing. Two different image classification approaches were tested to assess the most accurate one in mapping the vegetation mosaic of Socotra. Spectral signatures of the vegetation classes were obtained through a Gaussian mixture distribution model, and a sequential maximum a posteriori (SMAP) classification was applied to account for the heterogeneity and the complex spatial pattern of the arid vegetation. This approach was compared to the traditional maximum likelihood (ML) classification. Satellite data were represented by a RapidEye image with 5 m pixel resolution and five spectral bands. Classified vegetation relevés were used to obtain the training and evaluation sets for the main plant communities. Postclassification sorting was performed to adjust the classification through various rule-based operations. Twenty-eight classes were mapped, and SMAP, with an accuracy of 87%, proved to be more effective than ML (accuracy: 66%). The resulting map will represent an important instrument for the elaboration of conservation strategies and the sustainable use of natural resources in the island.

  16. Building high-resolution synthetic lethal networks: a 'Google map' of the cancer cell.

    Science.gov (United States)

    Paul, James M; Templeton, Shaina D; Baharani, Akanksha; Freywald, Andrew; Vizeacoumar, Franco J

    2014-12-01

    The most commonly used therapies for cancer involve delivering high doses of radiation or toxic chemicals to the patient that also cause substantial damage to normal tissue. To overcome this, researchers have recently resorted to a basic biological concept called 'synthetic lethality' (SL) that takes advantage of interactions between gene pairs. The identification of SL interactions is of considerable therapeutic interest because if a particular gene is SL with a tumor-causing mutation, then the targeting that gene carries therapeutic advantages. Mapping these interactions in the context of human cancer cells could hold the key to effective, targeted cancer treatments. In this review, we cover the recent advances that aim to identify these SL interactions using unbiased genetic screens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A Flat Universe from High-Resolution Maps of the Cosmic MicrowaveBackground Radiation

    Energy Technology Data Exchange (ETDEWEB)

    de Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill,J.; Boscaleri, A.; Coble, K.; Crill, B.P.; De Gasperis, G.; Farese, P.C.; Ferreira, P.G.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V.V.; Iacoangeli, A.; Jaffe, A.H.; Lange, A.E.; Martinis, L.; Masi, S.; Mason,P.; Mauskopf, P.D.; Melchiorri, A.; Miglio, L.; Montroy, T.; Netterfield,C.B.; Pascale, E.; Piacentini, F.; Pogosyan, D.; Prunet, S.; Rao, S.; Romeo, G.; Ruhl, J.E.; Scaramuzzi, F.; Sforna, D.; Vittorio, N.

    2000-04-28

    The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K Cosmic Microwave Background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole {ell}{sub peak} = (197 {+-} 6), with an amplitude DT{sub 200} = (69 {+-} 8){mu}K. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favored by standard inflationary scenarios.

  18. Feature selection from high resolution remote sensing data for biotope mapping

    Directory of Open Access Journals (Sweden)

    M. Bindel

    2012-09-01

    Full Text Available Mapping of Landscape Protection Areas with regard to user requirements for detailed land cover and biotope classes has been limited by the spatial and temporal resolution of Earth observation data. The synergistic use of new generation optical and SAR data may overcome these limitations. The presented work is part of the ENVILAND-2 project, which focuses on the complementary use of RapidEye and TerraSAR-X data to derive land cover and biotope classes as needed by the Environmental Agencies. The goal is to semi-automatically update the corresponding maps by utilising more Earth observation data and less field work derived information. Properties of both sensors are used including the red edge band of the RapidEye system and the high spatial and temporal resolution TerraSAR-X data.The main part of this work concentrates on the process of feature selection. Based upon multi-temporal optical and SAR data various features like textural measurements, spectral features and vegetation indices can be computed. The resulting information stacks can easily exceed hundreds of layers. The goal of this work is to reduce these information layers to get a set of decorrelated features for the classification of biotope types. The first step is to evaluate possible features. Followed by a feature extraction and pre-processing. The pre-processing contains outlier removal and feature normalization. The next step describes the process of feature selection and is divided into two parts. The first part is a regression analysis to remove redundant information. The second part constitutes the class separability analysis. For the remaining features and for every class combination present in the study area different separability measurements like divergence or Jeffries-Matusita distance are computed. As result there is a set of features for every class providing the highest class separability values. As the final step an evaluation is performed to estimate how much features

  19. Object-Based Land-Cover Mapping with High Resolution Aerial Photography at a County Scale in Midwestern USA

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Li

    2014-11-01

    Full Text Available There are growing demands for detailed and accurate land cover maps in land system research and planning. Macro-scale land cover maps normally cannot satisfy the studies that require detailed land cover maps at micro scales. In the meantime, applying conventional pixel-based classification methods in classifying high-resolution aerial imagery is ineffective to develop high accuracy land-cover maps, especially in spectrally heterogeneous and complicated urban areas. Here we present an object-based approach that identifies land-cover types from 1-meter resolution aerial orthophotography and a 5-foot DEM. Our study area is Tippecanoe County in the State of Indiana, USA, which covers about a 1300 km2 land area. We used a countywide aerial photo mosaic and normalized digital elevation model as input datasets in this study. We utilized simple algorithms to minimize computation time while maintaining relatively high accuracy in land cover mapping at a county scale. The aerial photograph was pre-processed using principal component transformation to reduce its spectral dimensionality. Vegetation and non-vegetation were separated via masks determined by the Normalized Difference Vegetation Index. A combination of segmentation algorithms with lower calculation intensity was used to generate image objects that fulfill the characteristics selection requirements. A hierarchical image object network was formed based on the segmentation results and used to assist the image object delineation at different spatial scales. Finally, expert knowledge regarding spectral, contextual, and geometrical aspects was employed in image object identification. The resultant land cover map developed with this object-based image analysis has more information classes and higher accuracy than that derived with pixel-based classification methods.

  20. 3-Dimentional Mapping Coastal Zone using High Resolution Satellite Stereo Imageries

    Science.gov (United States)

    Hong, Zhonghua; Liu, Fengling; Zhang, Yun

    2014-03-01

    The metropolitan coastal zone mapping is critical for coastal resource management, coastal environmental protection, and coastal sustainable development and planning. The results of geometric processing of a Shanghai coastal zone from 0.7-m-resolution QuickBird Geo stereo images are presented firstly. The geo-positioning accuracy of ground point determination with vendor-provided rigorous physical model (RPM) parameters is evaluated and systematic errors are found when compared with ground control points surveyed by GPS real-time kinematic (GPS-RTK) with 5cm accuracy. A bias-compensation process in image space that applies a RPM bundle adjustment to the RPM-calculated 3D ground points to correct the systematic errors is used to improve the geo-positioning accuracy. And then, a area-based matching (ABM) method is used to generated the densely corresponding points of left and right QuickBird images. With the densely matching points, the 3-dimentinal coordinates of ground points can be calculated by using the refined geometric relationship between image and ground points. At last step, digital surface model (DSM) can be achieved automatically using interpolation method. Accuracies of the DSM as assessed from independent checkpoints (ICPs) are approximately 1.2 m in height.

  1. Rapid high-resolution mapping of balanced chromosomal rearrangements on tiling CGH arrays.

    Science.gov (United States)

    Greisman, Harvey A; Hoffman, Noah G; Yi, Hye Son

    2011-11-01

    The diagnosis and classification of many cancers depends in part on the identification of large-scale genomic aberrations such as chromosomal deletions, duplications, and balanced translocations. Array-based comparative genomic hybridization (array CGH) can detect chromosomal imbalances on a genome-wide scale but cannot reliably identify balanced chromosomal rearrangements. We describe a simple modification of array CGH that enables simultaneous identification of recurrent balanced rearrangements and genomic imbalances on the same microarray. Using custom tiling oligonucleotide arrays and gene-specific linear amplification primers, translocation CGH (tCGH) maps balanced rearrangements to ∼100-base resolution and facilitates the rapid cloning and sequencing of novel rearrangement breakpoints. As proof of principle, we used tCGH to characterize nine of the most common gene fusions in mature B-cell neoplasms and myeloid leukemias. Because tCGH can be performed in any CGH-capable laboratory and can screen for multiple recurrent translocations and genome-wide imbalances, it should be of broad utility in the diagnosis and classification of various types of lymphomas, leukemias, and solid tumors. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. High Resolution Mapping of Peatland Hydroperiod at a High-Latitude Swedish Mire

    Directory of Open Access Journals (Sweden)

    Nathan Torbick

    2012-06-01

    Full Text Available Monitoring high latitude wetlands is required to understand feedbacks between terrestrial carbon pools and climate change. Hydrological variability is a key factor driving biogeochemical processes in these ecosystems and effective assessment tools are critical for accurate characterization of surface hydrology, soil moisture, and water table fluctuations. Operational satellite platforms provide opportunities to systematically monitor hydrological variability in high latitude wetlands. The objective of this research application was to integrate high temporal frequency Synthetic Aperture Radar (SAR and high spatial resolution Light Detection and Ranging (LiDAR observations to assess hydroperiod at a mire in northern Sweden. Geostatistical and polarimetric (PLR techniques were applied to determine spatial structure of the wetland and imagery at respective scales (0.5 m to 25 m. Variogram, spatial regression, and decomposition approaches characterized the sensitivity of the two platforms (SAR and LiDAR to wetland hydrogeomorphology, scattering mechanisms, and data interrelationships. A Classification and Regression Tree (CART, based on random forest, fused multi-mode (fine-beam single, dual, quad pol Phased Array L-band Synthetic Aperture Radar (PALSAR and LiDAR-derived elevation to effectively map hydroperiod attributes at the Swedish mire across an aggregated warm season (May–September, 2006–2010. Image derived estimates of water and peat moisture were sensitive (R2 = 0.86 to field measurements of water table depth (cm. Peat areas that are underlain by permafrost were observed as areas with fluctuating soil moisture and water table changes.

  3. A high-resolution optical measurement system for rapid acquisition of radiation flux density maps

    Science.gov (United States)

    Thelen, Martin; Raeder, Christian; Willsch, Christian; Dibowski, Gerd

    2017-06-01

    To identify the power and flux density of concentrated solar radiation the Institute of Solar Research at the German Aerospace Center (DLR - Deutsches Zentrum für Luft-und Raumfahrt e. V.) has used the camera-based measurement system FATMES (Flux and Temperature Measurement System) since 1995. The disadvantages of low resolution, difficult handling and poor computing power required a revision of the existing measurement system. The measurement system FMAS (Flux Mapping Acquisition system) is equipped with state-of-the-art-hardware, is compatible with computers off-the-shelf and is programmed in LabView. The expenditure of time for an image evaluation is reduced by the factor 60 compared to FATMES. The new measurement system is no longer associated with the facilities Solar Furnace and High Flux Solar Simulator at the DLR in Cologne but is also applicable as a mobile system. The data and the algorithms are transparent throughout the complete process. The measurement accuracy of FMAS is determined to at most ±3 % until now. The error of measurement of FATMES is at least 2 % higher according to the conducted comparison tests.

  4. High-Resolution Urban Greenery Mapping for Micro-Climate Modelling Based on 3d City Models

    Science.gov (United States)

    Hofierka, J.; Gallay, M.; Kaňuk, J.; Šupinský, J.; Šašak, J.

    2017-10-01

    Urban greenery has various positive micro-climate effects including mitigation of heat islands. The primary root of heat islands in cities is in absorption of solar radiation by the mass of building structures, roads and other solid materials. The absorbed heat is subsequently re-radiated into the surroundings and increases ambient temperatures. The vegetation can stop and absorb most of incoming solar radiation mostly via the photosynthesis and evapotranspiration process. However, vegetation in mild climate of Europe manifests considerable annual seasonality which can also contribute to the seasonal change in the cooling effect of the vegetation on the urban climate. Modern methods of high-resolution mapping and new generations of sensors have brought opportunity to record the dynamics of urban greenery in a high resolution in spatial, spectral, and temporal domains. In this paper, we use the case study of the city of Košice in Eastern Slovakia to demonstrate the methodology of 3D mapping and modelling the urban greenery during one vegetation season in 2016. The purpose of this monitoring is to capture 3D effects of urban greenery on spatial distribution of solar radiation in urban environment. Terrestrial laser scanning was conducted on four selected sites within Košice in ultra-high spatial resolution. The entire study area, which included these four smaller sites, comprised 4 km2 of the central part of the city was flown within a single airborne lidar and photogrammetric mission to capture the upper parts of buildings and vegetation. The acquired airborne data were used to generate a 3D city model and the time series of terrestrial lidar data were integrated with the 3D city model. The results show that the terrestrial and airborne laser scanning techniques can be effectively used to monitor seasonal changes in foliage of trees in order to assess the transmissivity of the canopy for microclimate modelling.

  5. HIGH-RESOLUTION URBAN GREENERY MAPPING FOR MICRO-CLIMATE MODELLING BASED ON 3D CITY MODELS

    Directory of Open Access Journals (Sweden)

    J. Hofierka

    2017-10-01

    Full Text Available Urban greenery has various positive micro-climate effects including mitigation of heat islands. The primary root of heat islands in cities is in absorption of solar radiation by the mass of building structures, roads and other solid materials. The absorbed heat is subsequently re-radiated into the surroundings and increases ambient temperatures. The vegetation can stop and absorb most of incoming solar radiation mostly via the photosynthesis and evapotranspiration process. However, vegetation in mild climate of Europe manifests considerable annual seasonality which can also contribute to the seasonal change in the cooling effect of the vegetation on the urban climate. Modern methods of high-resolution mapping and new generations of sensors have brought opportunity to record the dynamics of urban greenery in a high resolution in spatial, spectral, and temporal domains. In this paper, we use the case study of the city of Košice in Eastern Slovakia to demonstrate the methodology of 3D mapping and modelling the urban greenery during one vegetation season in 2016. The purpose of this monitoring is to capture 3D effects of urban greenery on spatial distribution of solar radiation in urban environment. Terrestrial laser scanning was conducted on four selected sites within Košice in ultra-high spatial resolution. The entire study area, which included these four smaller sites, comprised 4 km2 of the central part of the city was flown within a single airborne lidar and photogrammetric mission to capture the upper parts of buildings and vegetation. The acquired airborne data were used to generate a 3D city model and the time series of terrestrial lidar data were integrated with the 3D city model. The results show that the terrestrial and airborne laser scanning techniques can be effectively used to monitor seasonal changes in foliage of trees in order to assess the transmissivity of the canopy for microclimate modelling.

  6. Mapping intra-urban malaria risk using high resolution satellite imagery: a case study of Dar es Salaam.

    Science.gov (United States)

    Kabaria, Caroline W; Molteni, Fabrizio; Mandike, Renata; Chacky, Frank; Noor, Abdisalan M; Snow, Robert W; Linard, Catherine

    2016-07-30

    With more than half of Africa's population expected to live in urban settlements by 2030, the burden of malaria among urban populations in Africa continues to rise with an increasing number of people at risk of infection. However, malaria intervention across Africa remains focused on rural, highly endemic communities with far fewer strategic policy directions for the control of malaria in rapidly growing African urban settlements. The complex and heterogeneous nature of urban malaria requires a better understanding of the spatial and temporal patterns of urban malaria risk in order to design effective urban malaria control programs. In this study, we use remotely sensed variables and other environmental covariates to examine the predictability of intra-urban variations of malaria infection risk across the rapidly growing city of Dar es Salaam, Tanzania between 2006 and 2014. High resolution SPOT satellite imagery was used to identify urban environmental factors associated malaria prevalence in Dar es Salaam. Supervised classification with a random forest classifier was used to develop high resolution land cover classes that were combined with malaria parasite prevalence data to identify environmental factors that influence localized heterogeneity of malaria transmission and develop a high resolution predictive malaria risk map of Dar es Salaam. Results indicate that the risk of malaria infection varied across the city. The risk of infection increased away from the city centre with lower parasite prevalence predicted in administrative units in the city centre compared to administrative units in the peri-urban suburbs. The variation in malaria risk within Dar es Salaam was shown to be influenced by varying environmental factors. Higher malaria risks were associated with proximity to dense vegetation, inland water and wet/swampy areas while lower risk of infection was predicted in densely built-up areas. The predictive maps produced can serve as valuable resources for

  7. High-resolution mapping and transcriptional activity analysis of chicken centromere sequences on giant lampbrush chromosomes.

    Science.gov (United States)

    Krasikova, Alla; Fukagawa, Tatsuo; Zlotina, Anna

    2012-12-01

    Exploration into morphofunctional organisation of centromere DNA sequences is important for understanding the mechanisms of kinetochore specification and assembly. In-depth epigenetic analysis of DNA fragments associated with centromeric nucleosome proteins has demonstrated unique features of centromere organisation in chicken karyotype: there are both mature centromeres, which comprise chromosome-specific homogeneous arrays of tandem repeats, and recently evolved primitive centromeres, which consist of non-tandemly organised DNA sequences. In this work, we describe the arrangement and transcriptional activity of chicken centromere repeats for Cen1, Cen2, Cen3, Cen4, Cen7, Cen8, and Cen11 and non-repetitive centromere sequences of chromosomes 5, 27, and Z using highly elongated lampbrush chromosomes, which are characteristic of the diplotene stage of oogenesis. The degree of chromatin packaging and fine spatial organisations of tandemly repetitive and non-tandemly repetitive centromeric sequences significantly differ at the lampbrush stage. Using DNA/RNA FISH, we have demonstrated that during the lampbrush stage, DNA sequences are transcribed within the centromere regions of chromosomes that lack centromere-specific tandem repeats. In contrast, chromosome-specific centromeric repeats Cen1, Cen2, Cen3, Cen4, Cen7, Cen8, and Cen11 do not demonstrate any transcriptional activity during the lampbrush stage. In addition, we found that CNM repeat cluster localises adjacent to non-repetitive centromeric sequences in chicken microchromosome 27 indicating that centromere region in this chromosome is repeat-rich. Cross-species FISH allowed localisation of the sequences homologous to centromeric DNA of chicken chromosomes 5 and 27 in centromere regions of quail orthologous chromosomes.

  8. OnEarth: An Open Source Solution for Efficiently Serving High-Resolution Mapped Image Products

    Science.gov (United States)

    Thompson, C. K.; Plesea, L.; Hall, J. R.; Roberts, J. T.; Cechini, M. F.; Schmaltz, J. E.; Alarcon, C.; Huang, T.; McGann, J. M.; Chang, G.; Boller, R. A.; Ilavajhala, S.; Murphy, K. J.; Bingham, A. W.

    2013-12-01

    This presentation introduces OnEarth, a server side software package originally developed at the Jet Propulsion Laboratory (JPL), that facilitates network-based, minimum-latency geolocated image access independent of image size or spatial resolution. The key component in this package is the Meta Raster Format (MRF), a specialized raster file extension to the Geospatial Data Abstraction Library (GDAL) consisting of an internal indexed pyramid of image tiles. Imagery to be served is converted to the MRF format and made accessible online via an expandable set of server modules handling requests in several common protocols, including the Open Geospatial Consortium (OGC) compliant Web Map Tile Service (WMTS) as well as Tiled WMS and Keyhole Markup Language (KML). OnEarth has recently transitioned to open source status and is maintained and actively developed as part of GIBS (Global Imagery Browse Services), a collaborative project between JPL and Goddard Space Flight Center (GSFC). The primary function of GIBS is to enhance and streamline the data discovery process and to support near real-time (NRT) applications via the expeditious ingestion and serving of full-resolution imagery representing science products from across the NASA Earth Science spectrum. Open source software solutions are leveraged where possible in order to utilize existing available technologies, reduce development time, and enlist wider community participation. We will discuss some of the factors and decision points in transitioning OnEarth to a suitable open source paradigm, including repository and licensing agreement decision points, institutional hurdles, and perceived benefits. We will also provide examples illustrating how OnEarth is integrated within GIBS and other applications.

  9. Satellite-based high-resolution mapping of rainfall over southern Africa

    Science.gov (United States)

    Meyer, Hanna; Drönner, Johannes; Nauss, Thomas

    2017-06-01

    A spatially explicit mapping of rainfall is necessary for southern Africa for eco-climatological studies or nowcasting but accurate estimates are still a challenging task. This study presents a method to estimate hourly rainfall based on data from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Rainfall measurements from about 350 weather stations from 2010-2014 served as ground truth for calibration and validation. SEVIRI and weather station data were used to train neural networks that allowed the estimation of rainfall area and rainfall quantities over all times of the day. The results revealed that 60 % of recorded rainfall events were correctly classified by the model (probability of detection, POD). However, the false alarm ratio (FAR) was high (0.80), leading to a Heidke skill score (HSS) of 0.18. Estimated hourly rainfall quantities were estimated with an average hourly correlation of ρ = 0. 33 and a root mean square error (RMSE) of 0.72. The correlation increased with temporal aggregation to 0.52 (daily), 0.67 (weekly) and 0.71 (monthly). The main weakness was the overestimation of rainfall events. The model results were compared to the Integrated Multi-satellitE Retrievals for GPM (IMERG) of the Global Precipitation Measurement (GPM) mission. Despite being a comparably simple approach, the presented MSG-based rainfall retrieval outperformed GPM IMERG in terms of rainfall area detection: GPM IMERG had a considerably lower POD. The HSS was not significantly different compared to the MSG-based retrieval due to a lower FAR of GPM IMERG. There were no further significant differences between the MSG-based retrieval and GPM IMERG in terms of correlation with the observed rainfall quantities. The MSG-based retrieval, however, provides rainfall in a higher spatial resolution. Though estimating rainfall from satellite data remains challenging, especially at high temporal resolutions, this study showed promising results

  10. A high-resolution map of human evolutionary constraint using 29 mammals

    Science.gov (United States)

    Lindblad-Toh, Kerstin; Garber, Manuel; Zuk, Or; Lin, Michael F.; Parker, Brian J.; Washietl, Stefan; Kheradpour, Pouya; Ernst, Jason; Jordan, Gregory; Mauceli, Evan; Ward, Lucas D.; Lowe, Craig B.; Holloway, Alisha K.; Clamp, Michele; Gnerre, Sante; Alfoldi, Jessica; Beal, Kathryn; Chang, Jean; Clawson, Hiram; Cuff, James; Di Palma, Federica; Fitzgerald, Stephen; Flicek, Paul; Guttman, Mitchell; Hubisz, Melissa J; Jaffe, David B.; Jungreis, Irwin; Kent, W James; Kostka, Dennis; Lara, Marcia; Martins, Andre L; Massingham, Tim; Moltke, Ida; Raney, Brian J.; Rasmussen, Matthew D.; Robinson, Jim; Stark, Alexander; Vilella, Albert J.; Wen, Jiayu; Xie, Xiaohui; Zody, Michael C.; Worley, Kim C.; Kovar, Christie L.; Muzny, Donna M.; Gibbs, Richard A.; Warren, Wesley C.; Mardis, Elaine R; Weinstock, George M.; Wilson, Richard K.; Birney, Ewan; Margulies, Elliott H.; Herrero, Javier; Green, Eric D.; Haussler, David; Siepel, Adam; Goldman, Nick; Pollard, Katherine S.; Pedersen, Jakob S.; Lander, Eric S.; Kellis, Manolis

    2011-01-01

    Comparison of related genomes has emerged as a powerful lens for genome interpretation. Here, we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and report constrained elements covering ~4.2% of the genome. We use evolutionary signatures and comparison with experimental datasets to suggest candidate functions for ~60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events, and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements, and ~1,000 primate- and human-accelerated elements. Overlap with disease-associated variants suggests our findings will be relevant for studies of human biology and health. PMID:21993624

  11. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.

    Science.gov (United States)

    Ma, Wenxiu; Ay, Ferhat; Lee, Choli; Gulsoy, Gunhan; Deng, Xinxian; Cook, Savannah; Hesson, Jennifer; Cavanaugh, Christopher; Ware, Carol B; Krumm, Anton; Shendure, Jay; Blau, C Anthony; Disteche, Christine M; Noble, William S; Duan, ZhiJun

    2018-01-31

    The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. JOINT PROCESSING OF UAV IMAGERY AND TERRESTRIAL MOBILE MAPPING SYSTEM DATA FOR VERY HIGH RESOLUTION CITY MODELING

    Directory of Open Access Journals (Sweden)

    A. Gruen

    2013-08-01

    Full Text Available Both unmanned aerial vehicle (UAV technology and Mobile Mapping Systems (MMS are important techniques for surveying and mapping. In recent years, the UAV technology has seen tremendous interest, both in the mapping community and in many other fields of application. Carrying off-the shelf digital cameras, the UAV can collect high quality aerial optical images for city modeling using photogrammetric techniques. In addition, a MMS can acquire high density point clouds of ground objects along the roads. The UAV, if operated in an aerial mode, has difficulties in acquiring information of ground objects under the trees and along façades of buildings. On the contrary, the MMS collects accurate point clouds of objects from the ground, together with stereo images, but it suffers from system errors due to loss of GPS signals, and also lacks the information of the roofs. Therefore, both technologies are complementary. This paper focuses on the integration of UAV images, MMS point cloud data and terrestrial images to build very high resolution 3D city models. The work we will show is a practical modeling project of the National University of Singapore (NUS campus, which includes buildings, some of them very high, roads and other man-made objects, dense tropical vegetation and DTM. This is an intermediate report. We present work in progress.

  13. Satellite-based high-resolution mapping of rainfall over southern Africa

    Directory of Open Access Journals (Sweden)

    H. Meyer

    2017-06-01

    Full Text Available A spatially explicit mapping of rainfall is necessary for southern Africa for eco-climatological studies or nowcasting but accurate estimates are still a challenging task. This study presents a method to estimate hourly rainfall based on data from the Meteosat Second Generation (MSG Spinning Enhanced Visible and Infrared Imager (SEVIRI. Rainfall measurements from about 350 weather stations from 2010–2014 served as ground truth for calibration and validation. SEVIRI and weather station data were used to train neural networks that allowed the estimation of rainfall area and rainfall quantities over all times of the day. The results revealed that 60 % of recorded rainfall events were correctly classified by the model (probability of detection, POD. However, the false alarm ratio (FAR was high (0.80, leading to a Heidke skill score (HSS of 0.18. Estimated hourly rainfall quantities were estimated with an average hourly correlation of ρ = 0. 33 and a root mean square error (RMSE of 0.72. The correlation increased with temporal aggregation to 0.52 (daily, 0.67 (weekly and 0.71 (monthly. The main weakness was the overestimation of rainfall events. The model results were compared to the Integrated Multi-satellitE Retrievals for GPM (IMERG of the Global Precipitation Measurement (GPM mission. Despite being a comparably simple approach, the presented MSG-based rainfall retrieval outperformed GPM IMERG in terms of rainfall area detection: GPM IMERG had a considerably lower POD. The HSS was not significantly different compared to the MSG-based retrieval due to a lower FAR of GPM IMERG. There were no further significant differences between the MSG-based retrieval and GPM IMERG in terms of correlation with the observed rainfall quantities. The MSG-based retrieval, however, provides rainfall in a higher spatial resolution. Though estimating rainfall from satellite data remains challenging, especially at high temporal resolutions, this study showed

  14. A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs

    Directory of Open Access Journals (Sweden)

    Guyon Richard

    2012-06-01

    Full Text Available Abstract Background The Nile tilapia (Oreochromis niloticus is the second most farmed fish species worldwide. It is also an important model for studies of fish physiology, particularly because of its broad tolerance to an array of environments. It is a good model to study evolutionary mechanisms in vertebrates, because of its close relationship to haplochromine cichlids, which have undergone rapid speciation in East Africa. The existing genomic resources for Nile tilapia include a genetic map, BAC end sequences and ESTs, but comparative genome analysis and maps of quantitative trait loci (QTL are still limited. Results We have constructed a high-resolution radiation hybrid (RH panel for the Nile tilapia and genotyped 1358 markers consisting of 850 genes, 82 markers corresponding to BAC end sequences, 154 microsatellites and 272 single nucleotide polymorphisms (SNPs. From these, 1296 markers could be associated in 81 RH groups, while 62 were not linked. The total size of the RH map is 34,084 cR3500 and 937,310 kb. It covers 88% of the entire genome with an estimated inter-marker distance of 742 Kb. Mapping of microsatellites enabled integration to the genetic map. We have merged LG8 and LG24 into a single linkage group, and confirmed that LG16-LG21 are also merged. The orientation and association of RH groups to each chromosome and LG was confirmed by chromosomal in situ hybridizations (FISH of 55 BACs. Fifty RH groups were localized on the 22 chromosomes while 31 remained small orphan groups. Synteny relationships were determined between Nile tilapia, stickleback, medaka and pufferfish. Conclusion The RH map and associated FISH map provide a valuable gene-ordered resource for gene mapping and QTL studies. All genetic linkage groups with their corresponding RH groups now have a corresponding chromosome which can be identified in the karyotype. Placement of conserved segments indicated that multiple inter-chromosomal rearrangements have occurred

  15. A high-resolution comparative map between pig chromosome 17 and human chromosomes 4, 8, and 20: Identification of synteny breakpoints

    DEFF Research Database (Denmark)

    Lahbib-Mansais, Yvette; Karlskov-Mortensen, Peter; Mompart, Florence

    2005-01-01

    We report on the construction of a high-resolution comparative map of porcine chromosome 17 (SSC17) focusing on evolutionary breakpoints with human chromosomes. The comparative map shows high homology with human chromosome 20 but suggests more limited homologies with other human chromosomes. SSC1...

  16. High resolution mapping of riffle-pool dynamics based on ADCP and close-range remote sensing data

    Science.gov (United States)

    Salmela, Jouni; Kasvi, Elina; Alho, Petteri

    2017-04-01

    Present development of mobile laser scanning (MLS) and close-range photogrammetry with unmanned aerial vehicle (UAV) enable us to create seamless digital elevation models (DEMs) of the riverine environment. Remote-controlled flow measurement platforms have also improved spatio-temporal resolution of the flow field data. In this study, acoustic Doppler current profiler (ADCP) attached to remote-controlled mini-boat, UAV-based bathymetry and MLS techniques were utilized to create the high-resolution DEMs of the river channel. These high-resolution measurements can be used in many fluvial applications such as computational fluid dynamics, channel change detection, habitat mapping or hydro-electric power plant planning. In this study we aim: 1) to analyze morphological changes of river channel especially riffle and pool formations based on fine-scale DEMs and ADCP measurements, 2) to analyze flow fields and their effect on morphological changes. The interest was mainly focused on reach-scale riffle-pool dynamics within two-year period of 2013 and 2014. The study was performed in sub-arctic meandering Pulmankijoki River located in Northern Finland. The river itself has shallow and clear water and sandy bed sediment. Discharge remains typically below 10 m3s-1 most of the year but during snow melt period in spring the discharge may exceed 70 m3s-1. We compared DEMs and ADCP measurements to understand both magnitude and spatio-temporal change of the river bed. Models were accurate enough to study bed form changes and locations and persistence of riffles and pools. We analyzed their locations with relation to flow during the peak and low discharge. Our demonstrated method has improved significantly spatio-temporal resolution of riverine DEMs compared to other cross-sectional and photogrammetry based models. Together with flow field measurements we gained better understanding of riverbed-water interaction

  17. High-resolution Digital Mapping of Historical Lava Flows as a Test-bed for Lava Flow Models

    Science.gov (United States)

    Pyle, D. M.; Parks, M.; Nomikou, P.; Mather, T. A.; Simou, E.; Kalnins, L. M.; Paulatto, M.; Watts, A. B.

    2013-12-01

    Quantitative analysis of high-resolution lava flow morphology can improve our understanding of past effusive eruptions by providing insight into eruptive processes and the rheological properties of erupted magmas. We report the results of an ongoing investigation into the young dacite lava flows of the Kameni islands, Santorini volcano, Greece, which were emplaced during both subaerial and shallow submarine eruptions over the past 3000 years. Historical eruptions of the Kameni islands since 1866 have been very carefully documented in contemporaneous scientific reports. Eruptions since 1573 appear to be time-predictable, with a close relationship between eruption length, the size of extruded lava domes, and the time elapsed since the previous eruption. A new NERC - Airborne Survey and Research Facility LiDAR survey of the Kameni islands was completed in May 2012, using a Leica ALS50 Airborne Laser Scanner mounted on a Dornier 228 aircraft. The topographic surface was mapped at an average point density of 2.1 points per square metre, and covers the entire extent of the youngest subaerial lava flow fields on Santorini. A 2-m DEM derived from the 2012 LiDAR dataset was merged with a 5-m resolution bathymetric grid, based on multibeam surveys carried out by the Hellenic Centre for Marine Research, during cruises in 2001 and 2006, using a SEABEAM 2120 hull-mounted swath system. The resultant grid provides the first high resolution map of both subaerial and submarine historic lava flows emplaced in the centre of the Santorini caldera, and includes several previously unidentified submarine flows and cones. Attribute maps were used to delineate and identify discrete lava flows both onshore and offshore; and morphometric profiles were used to compute accurate volumetric estimates for each of the historic flows, and to determine bulk rheological properties of the lavas, assuming a Bingham rheology. This ongoing work will improve our analysis of the relationship between

  18. Functional optical coherence tomography for high-resolution mapping of cilia beat frequency in the mouse oviduct in vivo

    Science.gov (United States)

    Wang, Shang; Burton, Jason C.; Behringer, Richard R.; Larina, Irina V.

    2016-02-01

    Since mouse is a superior model for genetic analysis of human disorders, reproductive studies in mice have significant implications on further understanding of fertility and infertility in humans. Fertilized oocytes are transported through the reproductive tract by motile cilia lining the lumen of the oviduct as well as by oviduct contractions. While the role of cilia is well recognized, ciliary dynamics in the oviduct is not well understood, largely owing to the lack of live imaging approaches. Here, we report in vivo micro-scale mapping of cilia and cilia beat frequency (CBF) in the mouse oviduct using optical coherence tomography (OCT). This functional imaging method is based on spectral analysis of the OCT speckle variations produced by the beat of cilia in the oviduct, which does not require exogenous contrast agents. Animal procedures similar to the ones used for production of transgenic mice are utilized to expose the reproductive organs for imaging in anesthetized females. In this paper, we first present in vivo structural imaging of the mouse oviduct capturing the oocyte and the preimplantation embryo and then show the result of depth-resolved high-resolution CBF mapping in the ampulla of the live mouse. These data indicate that this structural and functional OCT imaging approach can be a useful tool for a variety of live investigations of mammalian reproduction and infertility.

  19. A high-resolution whole-genome map of key chromatin modifications in the adult Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Hang Yin

    2011-12-01

    Full Text Available Epigenetic research has been focused on cell-type-specific regulation; less is known about common features of epigenetic programming shared by diverse cell types within an organism. Here, we report a modified method for chromatin immunoprecipitation and deep sequencing (ChIP-Seq and its use to construct a high-resolution map of the Drosophila melanogaster key histone marks, heterochromatin protein 1a (HP1a and RNA polymerase II (polII. These factors are mapped at 50-bp resolution genome-wide and at 5-bp resolution for regulatory sequences of genes, which reveals fundamental features of chromatin modification landscape shared by major adult Drosophila cell types: the enrichment of both heterochromatic and euchromatic marks in transposons and repetitive sequences, the accumulation of HP1a at transcription start sites with stalled polII, the signatures of histone code and polII level/position around the transcriptional start sites that predict both the mRNA level and functionality of genes, and the enrichment of elongating polII within exons at splicing junctions. These features, likely conserved among diverse epigenomes, reveal general strategies for chromatin modifications.

  20. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach

    Energy Technology Data Exchange (ETDEWEB)

    Weinhardt, L.; Fuchs, O.; Blum, M.; B& #228; r, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

    2008-06-17

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

  1. High-resolution peptide mapping separations with MS-friendly mobile phases and charge-surface-modified C18.

    Science.gov (United States)

    Lauber, Matthew A; Koza, Stephan M; McCall, Scott A; Alden, Bonnie A; Iraneta, Pamela C; Fountain, Kenneth J

    2013-07-16

    Ionic analytes, such as peptides, can be challenging to separate by reverse-phase chromatography with optimal efficiency. They tend, for instance, to exhibit poor peak shapes, particularly when eluted with mobile phases preferred for electrospray ionization mass spectrometry. We demonstrate that a novel charged-surface C18 stationary phase alleviates some of the challenges associated with reverse-phase peptide separations. This column chemistry, known as CSH (charged-surface hybrid) C18, improves upon an already robust organosilica hybrid stationary phase, BEH (ethylene-bridged hybrid) C18. Based on separations of a nine-peptide standard, CSH C18 was found to exhibit improved loadability, greater peak capacities, and unique selectivity compared to BEH C18. Its performance was also seen to be significantly less dependent on TFA-ion pairing, making it ideal for MS applications where high sensitivity is desired. These performance advantages were evaluated through application to peptide mapping, wherein CSH C18 was found to aid the development of a high-resolution, high-sensitivity LC-UV-MS peptide mapping method for the therapeutic antibody, trastuzumab. From these results, the use of a C18 stationary phase with a charged surface, such as CSH C18, holds significant promise for facilitating challenging peptide analyses.

  2. Chromosome landing at the ¤Mla¤ locus in barley (¤Hordeum vulgare¤ L.) by means of high-resolution mapping with AFLP markers

    DEFF Research Database (Denmark)

    Schwarz, G.; Michalek, W.; Mohler, V.

    1999-01-01

    The complex Mla locus of barley determines resistance to the powdery mildew pathogen Erysiphe graminis f. sp. hol dei. With a view towards gene isolation, a population consisting of 950 F-2 individuals derived from a cross between the near-isogenic lines 'P01' (Mla1) and 'P10' (Mla12) was used...... to construct a high-resolution map of the Mla region. A fluorescence-based AFLP technique and bulked segregant analysis were applied to screen for polymorphic, tightly linked AFLP markers, Three AFLP markers were selected as suitable for a chromosome-landing strategy. One of these AFLP markers and a closely...... linked RFLP marker were converted into sequence-specific PCR markers. PCR-based screening of approximately 70 000 yeast artificial chromosome (YAC) clones revealed three identical YACs harbouring the Mla locus. Terminal insert sequences were obtained using inverse PCR. The derived STS marker from...

  3. High-resolution regional modelling of natural and anthropogenic radiocarbon in the Mediterranean Sea

    Science.gov (United States)

    Ayache, Mohamed; Dutay, Jean-Claude; Mouchet, Anne; Tisnérat-Laborde, Nadine; Montagna, Paolo; Tanhua, Toste; Siani, Giuseppe; Jean-Baptiste, Philippe

    2017-03-01

    A high-resolution dynamical model (Nucleus for European Modelling of the Ocean, Mediterranean configuration - NEMO-MED12) was used to give the first simulation of the distribution of radiocarbon (14C) across the whole Mediterranean Sea. The simulation provides a descriptive overview of both the natural pre-bomb 14C and the entire anthropogenic radiocarbon transient generated by the atmospheric bomb tests performed in the 1950s and early 1960s. The simulation was run until 2011 to give the post-bomb distribution. The results are compared to available in situ measurements and proxy-based reconstructions. The radiocarbon simulation allows an additional and independent test of the dynamical model, NEMO-MED12, and its performance to produce the thermohaline circulation and deep-water ventilation. The model produces a generally realistic distribution of radiocarbon when compared with available in situ data. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar on the inter-basin natural radiocarbon distribution and characterize the ventilation of intermediate and deep water especially through the propagation of the anthropogenic radiocarbon signal. We explored the impact of the interannual variability on the radiocarbon distribution during the Eastern Mediterranean Transient (EMT) event. It reveals a significant increase in 14C concentration (by more than 60 ‰) in the Aegean deep water and at an intermediate level (value up to 10 ‰) in the western basin. The model shows that the EMT makes a major contribution to the accumulation of radiocarbon in the eastern Mediterranean deep waters.

  4. Investigating Cenozoic climate change in tectonically active regions with a high-resolution atmospheric general circulation model (ECHAM5)

    Science.gov (United States)

    Mutz, Sebastian; Ehlers, Todd; Li, Jingmin; Werner, Martin; Stepanek, Christian; Lohmann, Gerrit

    2016-04-01

    Studies of Cenozoic palaeo-climates contribute to our understanding of contemporary climate change by providing insight into analogues such as the Pliocene (PLIO), and by evaluation of GCM (General Circulation Models) performance using the Mid-Holocene (MH) and the Last Glacial Maximum (LGM). Furthermore, climate is a factor to be considered in the evolution of ecology, landscapes and mountains, and in the reconstruction of erosion histories. In this study, we use high-resolution (T159) ECHAM5 simulations to investigate pre-industrial (PI) and the the above mentioned palaeo-climates for four tectonically active regions: Alaska (St. Elias Range), the US Northwest Pacific (Cascade Range), western South America (Andes) and parts of Asia (Himalaya-Tibet). The PI climate simulation is an AMIP (Atmospheric Model Intercomparison Project) style ECHAM5 experiment, whereas MH and LGM simulation are based on simulations conducted at the Alfred Wegner Institute, Bremerhaven. Sea surface boundary conditions for MH were taken from coupled atmosphere-ocean model simulations (Wei and Lohmann, 2012; Zhang et al, 2013) and sea surface temperatures and sea ice concentration for the LGM are based on GLAMAP project reconstructions (Schäfer-Neth and Paul, 2003). Boundary conditions for the PLIO simulation are taken from the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) project and the employed PLIO vegetation boundary condition is created by means of the transfer procedure for the PRISM vegetation reconstruction to the JSBACH plant functional types as described by Stepanek and Lohmann (2012). For each of the investigated areas and time slices, the regional simulated climates are described by means of cluster analyses based on the variability of precipitation, 2m air temperature and the intra-annual amplitude of the values. Results indicate the largest differences to a PI climate are observed for LGM and PLIO climates in the form of widespread cooling and warming

  5. High-resolution digital elevation model and historical topographic maps of the Tisza River floodplain, the Great Hungarian Plain

    Science.gov (United States)

    Timár, G.; Mészáros, J.

    2009-04-01

    The Great Hungarian Plain (GHP), the central part of the Pannonian Basin, is one of the world’s most developed flatlands. The relief differences remain under 20 meters in the central area of the plain, especially in the wide floodplain of the Tisza River. After the flood control measurements of the river (1846-1930), newly built dykes cut the wider floodplain from the actual narrow floodway. Common knowledge of the historical inundation patterns has been almost lost. To obtain pieces of information about the possible flood extents, usage of high-resolution elevation models is a valuable option, as well as application of rectified historical topographic maps. The best available elevation model of the GHP is based on the vectorized 1:10,000 scale topographic maps of the Institute of Geodesy, Cartography and Remote Sensing of Hungary (FÃ-MI). The base contour interval is 1 meter but according to the very flat characteristics of the area, halving contours are commonly used. This contour density is definitely needed to get better elevaition models than the one of the SRTM, which shows only the general features of the flatland with remarkable errors at the forests. Historical topographic datasets, such as the ones compiled directly for the water control measures (triangulation: 1833-34; mapping until 1842 by Sámuel Lányi), as well as the First (1783-86) and Second (1857-61) Military Surveys can be rectified easiliy after understanding their geodetic basis. They show in surprising precisity the fine vertical structure of the river terraces and the historical inundation levels. These cartographic elements are of great value also for the necessary re-assessment of the flood control system.

  6. Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping.

    Science.gov (United States)

    Mitchell, Matthew G E; Johansen, Kasper; Maron, Martine; McAlpine, Clive A; Wu, Dan; Rhodes, Jonathan R

    2018-05-01

    Urban areas are sources of land use change and CO 2 emissions that contribute to global climate change. Despite this, assessments of urban vegetation carbon stocks often fail to identify important landscape-scale drivers of variation in urban carbon, especially the potential effects of landscape structure variables at different spatial scales. We combined field measurements with Light Detection And Ranging (LiDAR) data to build high-resolution models of woody plant aboveground carbon across the urban portion of Brisbane, Australia, and then identified landscape scale drivers of these carbon stocks. First, we used LiDAR data to quantify the extent and vertical structure of vegetation across the city at high resolution (5×5m). Next, we paired this data with aboveground carbon measurements at 219 sites to create boosted regression tree models and map aboveground carbon across the city. We then used these maps to determine how spatial variation in land cover/land use and landscape structure affects these carbon stocks. Foliage densities above 5m height, tree canopy height, and the presence of ground openings had the strongest relationships with aboveground carbon. Using these fine-scale relationships, we estimate that 2.2±0.4 TgC are stored aboveground in the urban portion of Brisbane, with mean densities of 32.6±5.8MgCha -1 calculated across the entire urban land area, and 110.9±19.7MgCha -1 calculated within treed areas. Predicted carbon densities within treed areas showed strong positive relationships with the proportion of surrounding tree cover and how clumped that tree cover was at both 1km 2 and 1ha resolutions. Our models predict that even dense urban areas with low tree cover can have high carbon densities at fine scales. We conclude that actions and policies aimed at increasing urban carbon should focus on those areas where urban tree cover is most fragmented. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. GHRSST Level 2P Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the Atlantic Ocean and nearby regions based on multi-channel sea surface...

  8. GHRSST Level 2P Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the Atlantic Ocean and nearby regions based on multi-channel sea surface...

  9. Applying Lidar and High-Resolution Multispectral Imagery for Improved Quantification and Mapping of Tundra Vegetation Structure and Distribution in the Alaskan Arctic

    Science.gov (United States)

    Greaves, Heather E.

    Climate change is disproportionately affecting high northern latitudes, and the extreme temperatures, remoteness, and sheer size of the Arctic tundra biome have always posed challenges that make application of remote sensing technology especially appropriate. Advances in high-resolution remote sensing continually improve our ability to measure characteristics of tundra vegetation communities, which have been difficult to characterize previously due to their low stature and their distribution in complex, heterogeneous patches across large landscapes. In this work, I apply terrestrial lidar, airborne lidar, and high-resolution airborne multispectral imagery to estimate tundra vegetation characteristics for a research area near Toolik Lake, Alaska. Initially, I explored methods for estimating shrub biomass from terrestrial lidar point clouds, finding that a canopy-volume based algorithm performed best. Although shrub biomass estimates derived from airborne lidar data were less accurate than those from terrestrial lidar data, algorithm parameters used to derive biomass estimates were similar for both datasets. Additionally, I found that airborne lidar-based shrub biomass estimates were just as accurate whether calibrated against terrestrial lidar data or harvested shrub biomass--suggesting that terrestrial lidar potentially could replace destructive biomass harvest. Along with smoothed Normalized Differenced Vegetation Index (NDVI) derived from airborne imagery, airborne lidar-derived canopy volume was an important predictor in a Random Forest model trained to estimate shrub biomass across the 12.5 km2 covered by our lidar and imagery data. The resulting 0.80 m resolution shrub biomass maps should provide important benchmarks for change detection in the Toolik area, especially as deciduous shrubs continue to expand in tundra regions. Finally, I applied 33 lidar- and imagery-derived predictor layers in a validated Random Forest modeling approach to map vegetation

  10. High Resolution Mapping of the Impermeable Surfaces of Barnstable County, Cape Cod and their Relationship to Water Quality

    Science.gov (United States)

    Stone, T.; Fiske, G.; Schlesinger, P.

    2003-12-01

    We have developed several impermeable surface maps for all Cape Cod (Barnstable County) to help assess the contribution of paved and other impermeable surfaces to declines in local and regional water quality. These maps have been assembled with the cooperation of many town planning departments, the Cape Cod National Seashore, Mass Military Reservation, the Cape Cod Commission, the Association to Preserve Cape Cod (APCC) and from IKONOS data. The map are being used to predict where new impermeable surface will occur, define current and future hotspots of non-point pollution, and to map the relationships of impermeable surfaces to the zones of contribution (ZOC) of municipal wells. The maps are also used to define the percentage of impermeable surfaces in buffer zones around ponds and estuaries. Combining these data with census data on housing and population density allows us to define the importance of impervious surface as minor or major factors in water pollution.

  11. High-resolution multibeam backscatter data - northern Channel Islands region, southern California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data release presents data for 5-m resolution acoustic-backscatter data of the northern Channel Islands region, southern California. The raster data files are...

  12. Rainfall Characteristics and Regionalization in Peninsular Malaysia Based on a High Resolution Gridded Data Set

    Directory of Open Access Journals (Sweden)

    Chee Loong Wong

    2016-11-01

    Full Text Available Daily gridded rainfall data over Peninsular Malaysia are delineated using an objective clustering algorithm, with the objective of classifying rainfall grids into groups of homogeneous regions based on the similarity of the rainfall annual cycles. It has been demonstrated that Peninsular Malaysia can be statistically delineated into eight distinct rainfall regions. This delineation is closely associated with the topographic and geographic characteristics. The variation of rainfall over the Peninsula is generally characterized by bimodal variations with two peaks, i.e., a primary peak occurring during the autumn transitional period and a secondary peak during the spring transitional period. The east coast zones, however, showed a single peak during the northeast monsoon (NEM. The influence of NEM is stronger compared to the southwest monsoon (SWM. Significantly increasing rainfall trends at 95% confidence level are not observed in all regions during the NEM, with exception of northwest zone (R1 and coastal band of west coast interior region (R3. During SWM, most areas have become drier over the last three decades. The study identifies higher variation of mean monthly rainfall over the east coast regions, but spatially, the rainfall is uniformly distributed. For the southwestern coast and west coast regions, a larger range of coefficients of variation is mostly obtained during the NEM, and to a smaller extent during the SWM. The inland region received least rainfall in February, but showed the largest spatial variation. The relationship between rainfall and the El Niño Southern Oscillation (ENSO was examined based on the Multivariate ENSO Index (MEI. Although the concurrent relationships between rainfall in the different regions and ENSO are generally weak with negative correlations, the rainfall shows stronger positive correlation with preceding ENSO signals with a time lag of four to eight months.

  13. A high-resolution map of the regulator of the complement activation gene cluster on 1q32 that integrates new genes and markers.

    Science.gov (United States)

    Heine-Suñer, D; Díaz-Guillén, M A; de Villena, F P; Robledo, M; Benítez, J; Rodríguez de Córdoba, S

    1997-01-01

    Sixteen microsatellite markers, including two described here, were used to construct a high-resolution map of the 1q32 region encompassing the regulator of the complement activation (RCA) gene cluster. The RCA genes are a group of related genes coding for plasma and membrane associated proteins that collectively control activation of the complement component C3. We provide here the location of two new genes within the RCA gene cluster. These genes are PFKFB2 that maps 15 kilobases (kb) upstream of the C4BPB gene, and a gene located 4 kb downstream of C4BPA, which seems to code for the 72 000 Mr component of the signal recognition particle (SRP72). Neither of these two genes is related structurally or functionally to the RCA genes. In addition, our map shows the centromere-telomere orientation of the C4BPB/MCP linkage group, which is: centromere-PFKFB2-C4BPB-C4BPA-SRP72-C4BPAL1++ +-C4BPAL2-telomere, and outlines an interval with a significant female-male recombination difference which suggests the presence of a female-specific hotspot(s) of recombination.

  14. High resolution experiments with the ALADIN-Climate regional climate model

    Science.gov (United States)

    Csima, G.

    2009-09-01

    The global climate models are able to describe the climate of the Earth at a rather coarse resolution providing realistic projections only for the synoptic scale characteristics of the climate. For this reason, they are insufficient for detailed regional or local scale estimations. However, impact studies and policy makers need simulations including all the effects caused by local features. Consequently, techniques for downscaling global climate model simulations - such as regional climate modelling - are essential. The ALADIN-Climate regional climate model (developed by Météo France on the basis of the internationally developed ALADIN modelling system) was adapted at the Hungarian Meteorological Service a few years ago. In the framework of the CECILIA project (www.cecilia-eu.org), the ALADIN-Climate regional climate model runs at high (10 km) horizontal resolution. Therefore, it is anticipated to give more realistic climate estimation for this century than either the global models or the lower resolution regional climate models. The ALADIN-Climate model was coupled to both ERA-40 re-analysis data and the ARPEGE/OPA global atmosphere-ocean general circulation model for the past - 1961-1990 - as the reference period. For the future time slices of 2021-2050 and 2071-2100, the lateral boundary conditions were provided by the same global model with the use of A1B SRES scenario. The results have been validated against different observational datasets for the past, and have been compared to the results of the ARPEGE-Climat global model in order to expose the added value of the regional climate model. The ALADIN-Climate model has also been evaluated for the future to give an estimation of climate change in the Carpathian Basin.

  15. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    Science.gov (United States)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars; Boldreel, Lars Ole

    2015-04-01

    The Carlsberg Fault zone is located in the N-S striking Höllviken Graben and traverses the city of Copenhagen. The fault zone is a NNW-SSE striking structure in direct vicinity to the transition zone of the Danish Basin and the Baltic Shield. Recent small earthquakes indicate activity in the area, although none of the mapped earthquakes appear to have occurred on the Carlsberg Fault. We examined the fault evolution by a combination of very high resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The chalk stratigraphy and the localization of the fault zone at depth was inferred from previous studies by other authors. We extrapolated the Jurassic and Triassic stratigraphy from the Pomeranian Bay to the area of investigation. The fault zone shows a flower structure in the Triassic as well as in Cretaceous sediments. The faulting geometry indicates strong influence of Triassic processes when subsidence and rifting prevailed in the Central European Basin System. Growth strata within the surrounding Höllviken Graben reveal syntectonic sedimentation in the lower Triassic, indicating the opening to be a result of Triassic rifting. In the Upper Cretaceous growth faulting documents continued rifting. This finding contrasts the Late Cretaceous to Paleogene inversion tectonics in neighbouring structures, as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image structures in Quaternary layers in the Carlsberg Fault zone. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below. In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise

  16. Mapping of Polar Areas Based on High-Resolution Satellite Images: The Example of the Henryk Arctowski Polish Antarctic Station

    Science.gov (United States)

    Kurczyński, Zdzisław; Różycki, Sebastian; Bylina, Paweł

    2017-12-01

    To produce orthophotomaps or digital elevation models, the most commonly used method is photogrammetric measurement. However, the use of aerial images is not easy in polar regions for logistical reasons. In these areas, remote sensing data acquired from satellite systems is much more useful. This paper presents the basic technical requirements of different products which can be obtain (in particular orthoimages and digital elevation model (DEM)) using Very-High-Resolution Satellite (VHRS) images. The study area was situated in the vicinity of the Henryk Arctowski Polish Antarctic Station on the Western Shore of Admiralty Bay, King George Island, Western Antarctic. Image processing was applied on two triplets of images acquired by the Pléiades 1A and 1B in March 2013. The results of the generation of orthoimages from the Pléiades systems without control points showed that the proposed method can achieve Root Mean Squared Error (RMSE) of 3-9 m. The presented Pléiades images are useful for thematic remote sensing analysis and processing of measurements. Using satellite images to produce remote sensing products for polar regions is highly beneficial and reliable and compares well with more expensive airborne photographs or field surveys.

  17. Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations

    Energy Technology Data Exchange (ETDEWEB)

    Di Luca, Alejandro; Laprise, Rene [Universite du Quebec a Montreal (UQAM), Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Departement des Sciences de la Terre et de l' Atmosphere, PK-6530, Succ. Centre-ville, B.P. 8888, Montreal, QC (Canada); De Elia, Ramon [Universite du Quebec a Montreal, Ouranos Consortium, Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal (Canada)

    2012-03-15

    Regional Climate Models (RCMs) constitute the most often used method to perform affordable high-resolution regional climate simulations. The key issue in the evaluation of nested regional models is to determine whether RCM simulations improve the representation of climatic statistics compared to the driving data, that is, whether RCMs add value. In this study we examine a necessary condition that some climate statistics derived from the precipitation field must satisfy in order that the RCM technique can generate some added value: we focus on whether the climate statistics of interest contain some fine spatial-scale variability that would be absent on a coarser grid. The presence and magnitude of fine-scale precipitation variance required to adequately describe a given climate statistics will then be used to quantify the potential added value (PAV) of RCMs. Our results show that the PAV of RCMs is much higher for short temporal scales (e.g., 3-hourly data) than for long temporal scales (16-day average data) due to the filtering resulting from the time-averaging process. PAV is higher in warm season compared to cold season due to the higher proportion of precipitation falling from small-scale weather systems in the warm season. In regions of complex topography, the orographic forcing induces an extra component of PAV, no matter the season or the temporal scale considered. The PAV is also estimated using high-resolution datasets based on observations allowing the evaluation of the sensitivity of changing resolution in the real climate system. The results show that RCMs tend to reproduce relatively well the PAV compared to observations although showing an overestimation of the PAV in warm season and mountainous regions. (orig.)

  18. Very high resolution regional climate model simulations over Greenland: Identifying added value

    DEFF Research Database (Denmark)

    Lucas-Picher, P.; Wulff-Nielsen, M.; Christensen, J.H.

    2012-01-01

    This study presents two simulations of the climate over Greenland with the regional climate model (RCM) HIRHAM5 at 0.05° and 0.25° resolution driven at the lateral boundaries by the ERA-Interim reanalysis for the period 1989–2009. These simulations are validated against observations from meteorol...... models. However, the bias between the simulations and the few available observations does not reduce with higher resolution. This is partly explained by the lack of observations in regions where the higher resolution is expected to improve the simulated climate. The RCM simulations show...... adequate forcing fields for ice sheet models, particularly for their improved simulation of the processes occurring at the steep margins of the ice sheet....

  19. Evaluation of a high-resolution regional climate simulation over Greenland

    OpenAIRE

    LEFEBRE, Filip; Fettweis, Xavier; Gallée, Hubert; VAN YPERSELE, Jean-Pascal; Marbaix, Philippe; Greuell, Wouter; CALANCA Pierluigi

    2005-01-01

    A simulation of the 1991 summer has been performed over south Greenland with a coupled atmosphere–snow regional climate model (RCM) forced by the ECMWF re-analysis. The simulation is evaluated with in-situ coastal and ice-sheet atmospheric and glaciological observations. Modelled air temperature, specific humidity, wind speed and radiative fluxes are in good agreement with the available observations, although uncertainties in the radiative transfer scheme need further investigation to improve...

  20. High Resolution Topography of Polar Regions from Commercial Satellite Imagery, Petascale Computing and Open Source Software

    Science.gov (United States)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Kramer, WIlliam; Bauer, Greg; Bates, Brian; Williamson, Cathleen

    2017-04-01

    Surface topography is among the most fundamental data sets for geosciences, essential for disciplines ranging from glaciology to geodynamics. Two new projects are using sub-meter, commercial imagery licensed by the National Geospatial-Intelligence Agency and open source photogrammetry software to produce a time-tagged 2m posting elevation model of the Arctic and an 8m posting reference elevation model for the Antarctic. When complete, this publically available data will be at higher resolution than any elevation models that cover the entirety of the Western United States. These two polar projects are made possible due to three equally important factors: 1) open-source photogrammetry software, 2) petascale computing, and 3) sub-meter imagery licensed to the United States Government. Our talk will detail the technical challenges of using automated photogrammetry software; the rapid workflow evolution to allow DEM production; the task of deploying the workflow on one of the world's largest supercomputers; the trials of moving massive amounts of data, and the management strategies the team needed to solve in order to meet deadlines. Finally, we will discuss the implications of this type of collaboration for future multi-team use of leadership-class systems such as Blue Waters, and for further elevation mapping.

  1. Using object-based image analysis to conduct high-resolution conifer extraction at regional spatial scales

    Science.gov (United States)

    Coates, Peter S.; Gustafson, K. Benjamin; Roth, Cali L.; Chenaille, Michael P.; Ricca, Mark A.; Mauch, Kimberly; Sanchez-Chopitea, Erika; Kroger, Travis J.; Perry, William M.; Casazza, Michael L.

    2017-08-10

    The distribution and abundance of pinyon (Pinus monophylla) and juniper (Juniperus osteosperma, J. occidentalis) trees (hereinafter, "pinyon-juniper") in sagebrush (Artemisia spp.) ecosystems of the Great Basin in the Western United States has increased substantially since the late 1800s. Distributional expansion and infill of pinyon-juniper into sagebrush ecosystems threatens the ecological function and economic viability of these ecosystems within the Great Basin, and is now a major contemporary challenge facing land and wildlife managers. Particularly, pinyon-juniper encroachment into intact sagebrush ecosystems has been identified as a primary threat facing populations of greater sage-grouse (Centrocercus urophasianus; hereinafter, "sage-grouse"), which is a sagebrush obligate species. Even seemingly innocuous scatterings of isolated pinyon-juniper in an otherwise intact sagebrush landscape can negatively affect survival and reproduction of sage-grouse. Therefore, accurate and high-resolution maps of pinyon-juniper distribution and abundance (indexed by canopy cover) across broad geographic extents would help guide land management decisions that better target areas for pinyon-juniper removal projects (for example, fuel reduction, habitat improvement for sage-grouse, and other sagebrush species) and facilitate science that further quantifies ecological effects of pinyon-juniper encroachment on sage-grouse populations and sagebrush ecosystem processes. Hence, we mapped pinyon-juniper (referred to as conifers for actual mapping) at a 1 × 1-meter (m) high resolution across the entire range of previously mapped sage-grouse habitat in Nevada and northeastern California.We used digital orthophoto quad tiles from National Agriculture Imagery Program (2010, 2013) as base imagery, and then classified conifers using automated feature extraction methodology with the program Feature Analyst™. This method relies on machine learning algorithms that extract features from

  2. Tandem repeat regions within the Burkholderia pseudomallei genome and their application for high resolution genotyping

    Directory of Open Access Journals (Sweden)

    Harvey Steven P

    2007-03-01

    Full Text Available Abstract Background The facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We identified and categorized tandem repeat arrays and their distribution throughout the genome of B. pseudomallei strain K96243 in order to develop a genetic typing method for B. pseudomallei. We then screened 104 of the potentially polymorphic loci across a diverse panel of 31 isolates including B. pseudomallei, B. mallei and B. thailandensis in order to identify loci with varying degrees of polymorphism. A subset of these tandem repeat arrays were subsequently developed into a multiple-locus VNTR analysis to examine 66 B. pseudomallei and 21 B. mallei isolates from around the world, as well as 95 lineages from a serial transfer experiment encompassing ~18,000 generations. Results B. pseudomallei contains a preponderance of tandem repeat loci throughout its genome, many of which are duplicated elsewhere in the genome. The majority of these loci are composed of repeat motif lengths of 6 to 9 bp with 4 to 10 repeat units and are predominately located in intergenic regions of the genome. Across geographically diverse B. pseudomallei and B.mallei isolates, the 32 VNTR loci displayed between 7 and 28 alleles, with Nei's diversity values ranging from 0.47 and 0.94. Mutation rates for these loci are comparable (>10-5 per locus per generation to that of the most diverse tandemly repeated regions found in other less diverse bacteria. Conclusion The frequency, location and duplicate nature of tandemly repeated regions within the B. pseudomallei genome indicate that these tandem repeat regions may play a role in generating and maintaining adaptive genomic variation. Multiple-locus VNTR analysis revealed extensive diversity within the global isolate set containing B. pseudomallei and B. mallei, and it detected genotypic differences within clonal lineages of both species that were

  3. Targeted Recombinant Progeny: a design for ultra-high resolution mapping of Quantitative Trait Loci in crosses between inbred or pure lines.

    Science.gov (United States)

    Heifetz, Eliyahu M; Soller, Morris

    2015-07-07

    High-resolution mapping of the loci (QTN) responsible for genetic variation in quantitative traits is essential for positional cloning of candidate genes, and for effective marker assisted selection. The confidence interval (QTL) flanking the point estimate of QTN-location is proportional to the number of individuals in the mapping population carrying chromosomes recombinant in the given interval. Consequently, many designs for high resolution QTN mapping are based on increasing the proportion of recombinants in the mapping population. The "Targeted Recombinant Progeny" (TRP) design is a new design for high resolution mapping of a target QTN in crosses between pure, or inbred lines. It is a three-generation procedure generating a large number of recombinant individuals within a QTL previously shown to contain a QTN. This is achieved by having individuals that carry chromosomes recombinant across the target QTL interval as parents of a large mapping population; most of whom will therefore carry recombinant chromosomes targeted to the given QTL. The TRP design is particularly useful for high resolution mapping of QTN that differentiate inbred or pure lines, and hence are not amenable to high resolution mapping by genome-wide association tests. In the absence of residual polygenic variation, population sizes required for achieving given mapping resolution by the TRP-F2 design relative to a standard F2 design ranged from 0.289 for a QTN with standardized allele substitution effect = 0.2, mapped to an initial QTL of 0.2 Morgan to 0.041 for equivalent QTN mapped to an initial QTL of 0.02 M. In the presence of residual polygenic variation, the relative effectiveness of the TRP design ranges from 1.068 to 0.151 for the same initial QTL intervals and QTN effect. Thus even in the presence of polygenic variation, the TRP can still provide major savings. Simulation showed that mapping by TRP should be based on 30-50 markers spanning the initial interval; and on at least 50 or

  4. The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail.

    Science.gov (United States)

    Yassi, Rita; O'Grady, Gregory; Paskaranandavadivel, Nira; Du, Peng; Angeli, Timothy R; Pullan, Andrew J; Cheng, Leo K; Erickson, Jonathan C

    2012-06-06

    Gastrointestinal contractions are controlled by an underlying bioelectrical activity. High-resolution spatiotemporal electrical mapping has become an important advance for investigating gastrointestinal electrical behaviors in health and motility disorders. However, research progress has been constrained by the low efficiency of the data analysis tasks. This work introduces a new efficient software package: GEMS (Gastrointestinal Electrical Mapping Suite), for analyzing and visualizing high-resolution multi-electrode gastrointestinal mapping data in spatiotemporal detail. GEMS incorporates a number of new and previously validated automated analytical and visualization methods into a coherent framework coupled to an intuitive and user-friendly graphical user interface. GEMS is implemented using MATLAB®, which combines sophisticated mathematical operations and GUI compatibility. Recorded slow wave data can be filtered via a range of inbuilt techniques, efficiently analyzed via automated event-detection and cycle clustering algorithms, and high quality isochronal activation maps, velocity field maps, amplitude maps, frequency (time interval) maps and data animations can be rapidly generated. Normal and dysrhythmic activities can be analyzed, including initiation and conduction abnormalities. The software is distributed free to academics via a community user website and forum (http://sites.google.com/site/gimappingsuite). This software allows for the rapid analysis and generation of critical results from gastrointestinal high-resolution electrical mapping data, including quantitative analysis and graphical outputs for qualitative analysis. The software is designed to be used by non-experts in data and signal processing, and is intended to be used by clinical researchers as well as physiologists and bioengineers. The use and distribution of this software package will greatly accelerate efforts to improve the understanding of the causes and clinical consequences of

  5. The gastrointestinal electrical mapping suite (GEMS: software for analyzing and visualizing high-resolution (multi-electrode recordings in spatiotemporal detail

    Directory of Open Access Journals (Sweden)

    Yassi Rita

    2012-06-01

    Full Text Available Abstract Background Gastrointestinal contractions are controlled by an underlying bioelectrical activity. High-resolution spatiotemporal electrical mapping has become an important advance for investigating gastrointestinal electrical behaviors in health and motility disorders. However, research progress has been constrained by the low efficiency of the data analysis tasks. This work introduces a new efficient software package: GEMS (Gastrointestinal Electrical Mapping Suite, for analyzing and visualizing high-resolution multi-electrode gastrointestinal mapping data in spatiotemporal detail. Results GEMS incorporates a number of new and previously validated automated analytical and visualization methods into a coherent framework coupled to an intuitive and user-friendly graphical user interface. GEMS is implemented using MATLAB®, which combines sophisticated mathematical operations and GUI compatibility. Recorded slow wave data can be filtered via a range of inbuilt techniques, efficiently analyzed via automated event-detection and cycle clustering algorithms, and high quality isochronal activation maps, velocity field maps, amplitude maps, frequency (time interval maps and data animations can be rapidly generated. Normal and dysrhythmic activities can be analyzed, including initiation and conduction abnormalities. The software is distributed free to academics via a community user website and forum (http://sites.google.com/site/gimappingsuite. Conclusions This software allows for the rapid analysis and generation of critical results from gastrointestinal high-resolution electrical mapping data, including quantitative analysis and graphical outputs for qualitative analysis. The software is designed to be used by non-experts in data and signal processing, and is intended to be used by clinical researchers as well as physiologists and bioengineers. The use and distribution of this software package will greatly accelerate efforts to improve the

  6. Landslide and alluvial hazard high-resolution mapping of the Somma-Vesuvius volcano by means of DTM, remote sensing, geophysical and geomorphological data GIS-based approach

    OpenAIRE

    Alessio, G.; De Falco, M.; Di Crescenzo, G.; Nappi, R.; Santo, A.

    2012-01-01

    The aim of this paper is to recognize and map the Somma-Vesuvius volcano landslide-prone areas by means of multi-disciplinary terrain analysis and classification; in detail, high-resolution DTM of landslides areas occurred over long time periods, remote sensing, and geophysical and geomorphological data are presented for assessing hydrogeological hazard parameters of this volcanic district.

  7. Air-sea exchange over Black Sea estimated from high resolution regional climate simulations

    Science.gov (United States)

    Velea, Liliana; Bojariu, Roxana; Cica, Roxana

    2013-04-01

    Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective

  8. Development of ALARO-Climate regional climate model for a very high resolution

    Science.gov (United States)

    Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan

    2013-04-01

    ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main features of the RCM ALARO-Climate and results of the first model simulations on longer time-scales (1961-1990). The model was driven by the ERA-40/Interim re-analyses and run on the large pan-European integration domain ("ENSEMBLES / Euro-Cordex domain") with spatial resolution of 25 km. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version 7 dataset. The validation of the first ERA-40 simulation has revealed significant cold biases in all seasons (between -4 and -2 °C) and overestimation of precipitation on 20% to 60% in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The consequent adaptations in the model and their effect on the simulated properties of climate variables are illustrated. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1.05/1.1.00/02.0073). The partial support was also provided under the projects P209-11-0956 of the Czech Science Foundation and CZ.1.07/2.4.00/31.0056 (Operational Programme of Education for Competitiveness of Ministry of Education, Youth and Sports of the Czech Republic).

  9. On Asymmetry of Magnetic Helicity in Emerging Active Regions: High-resolution Observations

    Science.gov (United States)

    Tian, Lirong; Démoulin, Pascal; Alexander, David; Zhu, Chunming

    2011-01-01

    We employ the DAVE (differential affine velocity estimator) tracking technique on a time series of Michelson Doppler Imager (MDI)/1 minute high spatial resolution line-of-sight magnetograms to measure the photospheric flow velocity for three newly emerging bipolar active regions (ARs). We separately calculate the magnetic helicity injection rate of the leading and following polarities to confirm or refute the magnetic helicity asymmetry, found by Tian & Alexander using MDI/96 minute low spatial resolution magnetograms. Our results demonstrate that the magnetic helicity asymmetry is robust, being present in the three ARs studied, two of which have an observed balance of the magnetic flux. The magnetic helicity injection rate measured is found to depend little on the window size selected, but does depend on the time interval used between the two successive magnetograms being tracked. It is found that the measurement of the magnetic helicity injection rate performs well for a window size between 12 × 10 and 18 × 15 pixels and at a time interval Δt = 10 minutes. Moreover, the short-lived magnetic structures, 10-60 minutes, are found to contribute 30%-50% of the magnetic helicity injection rate. Comparing with the results calculated by MDI/96 minute data, we find that the MDI/96 minute data, in general, can outline the main trend of the magnetic properties, but they significantly underestimate the magnetic flux in strong field regions and are not appropriate for quantitative tracking studies, so provide a poor estimate of the amount of magnetic helicity injected into the corona.

  10. High-resolution photogrammetric surface extraction over glaciated regions from WorldView stereo pairs

    Science.gov (United States)

    Noh, M.; Howat, I. M.; Morin, P. J.; Porter, C. C.

    2013-12-01

    The monitoring of surface change in glaciated regions such as Alaska, Greenland and Antarctica is an important pursuit in climate-related Earth Science. Repeat Digital Elevation Models (DEM) created by photogrammetric surface extraction from a time-series of stereo pairs provide an efficient and low cost means for analyzing surface change over large, remote areas. Stereo-photogrammetric DEM extraction over glaciated regions is challenging due to typically low-contrast surfaces such as ice, snow, mountain shadows and steep slopes, resulting in large feature search areas and matching failures. A method for reducing the feature search area is critical for successful and efficient DEM extraction in this terrain. The SETSM (Surface Extraction with TIN-based Search-space Minimization) algorithm is developed for overcoming these problems and performs surface extraction automatically, without any user-defined or a-priori information, such as seed DEMs, using only the sensor Rational Polynomial Coefficients (RPCs) for geometric constraints. Rotation-invariant, multi-patch Normalized Cross Correlation (NCC) is used as its basic similarity measurement. SETSM constructs a TIN (Triangular Irregular Network) in the object-space domain in order to minimize the necessary search space. It employs a pyramiding strategy that uses iteratively finer resolution TIN's to minimize the search space and uses a vertical line locus to provide precise geometric constraints for reducing the search area. As a major benefit, SETSM relatively adjusts the Rational Function Model (RFM) between stereo pairs to reduce the offset between corresponding points projected by the vertical line locus caused by RPC errors, dramatically reducing the number of matching failures. In SETSM, this offset is iteratively removed with a parabolic adjustment of the NCC solution. As a demonstration, Worldview stereo pairs for a variety of test areas in Alaska, Greenland and Antarctica are selected for creating 2m grid

  11. Development of ALARO-Climate regional climate model for a very high resolution

    Science.gov (United States)

    Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan

    2014-05-01

    ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main results of the RCM ALARO-Climate model simulations in 25 and 6.25 km resolutions on the longer time-scale (1961-1990). The model was driven by the ERA-40 re-analyses and run on the integration domain of ~ 2500 x 2500 km size covering the central Europe. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version dataset 8. Other simulated parameters (e.g., cloudiness, radiation or components of water cycle) were compared to the ERA-40 re-analyses. The validation of the first ERA-40 simulation in both, 25 km and 6.25 km resolutions, revealed significant cold biases in all seasons and overestimation of precipitation in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The differences between these simulations were small and thus revealed a robustness of the model's physical parameterization on the resolution change. The series of 25 km resolution simulations with several model adaptations was carried out to study their effect on the simulated properties of climate variables and thus possibly identify a source of major errors in the simulated climate. The current investigation suggests the main reason for biases is related to the model physic. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1

  12. Production of high-resolution digital terrain models in mountain regions to support risk assessment

    Directory of Open Access Journals (Sweden)

    Gianfranco Forlani

    2015-07-01

    Full Text Available Demand for high-accuracy digital terrain models (DTMs in the Alpine region has been steadily increasing in recent years in valleys as well as high mountains. In the former, the determination of the geo-mechanical parameters of rock masses is the main objective; global warming, which causes the retreat of glaciers and the reduction of permafrost, is the main drive of the latter. The consequence is the instability of rock masses in high mountains: new cost-effective monitoring techniques are required to deal with the peculiar characteristics of such environment, delivering results at short notice. After discussing the design and execution of photogrammetric surveys in such areas, with particular reference to block orientation and block control, the paper describes the production of DTMs of rock faces and glacier fronts with light instrumentation and data acquisition techniques, allowing highly automated data processing. To this aim, the PhotoGPS technique and structure from motion algorithms are used to speed up the orientation process, while dense matching area-based correlation techniques are used to generate the DTMs.

  13. GHRSST Level 2P Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  14. GHRSST Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  15. Development of a high resolution grid-based river flow model for use with regional climate model output

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available A grid-based approach to river flow modelling has been developed for regional assessments of the impact of environmental change on hydrologically sensitive systems. The approach also provides a means of assessing, and providing feedback on, the hydrological performance of the land-surface component of a regional climate model (RCM. When combined with information on the evolution of climate, the model can give estimates of the impact of future climate change on river flows and flooding. The high-resolution flow routing and runoff-production model is designed for use with RCM-derived rainfall and potential evaporation (PE, although other sources of gridded rainfall and PE can be employed. Called the "Grid-to-Grid Model", or G2G, it can be configured on grids of different resolution and coverage (a 1 km grid over the UK is used here. The model can simulate flow on an area-wide basis as well as providing estimates of fluvial discharges for input to shelf-sea and ocean models. Configuration of the flow routing model on a relatively high resolution 1 km grid allows modelled river flows to be compared with gauged observations for a variety of catchments across the UK. Modelled flows are also compared with those obtained from a catchment-based model, a parameter-generalised form of the Probability-Distributed Model (PDM developed for assessing flood frequency. Using RCM re-analysis rainfall and PE as input, the G2G model performs well compared with measured flows at a daily time-step, particularly for high relief catchments. It performs less well for low-relief and groundwater-dominated regions because the dominant model control on runoff production is topography.

  16. APIFLAME v1.0: high resolution fire emission model and application to the Euro-Mediterranean region

    Science.gov (United States)

    Turquety, S.; Menut, L.; Bessagnet, B.; Anav, A.; Viovy, N.; Maignan, F.; Wooster, M.

    2013-11-01

    This paper describes a new model for the calculation of daily, high-resolution (up to 1 km) fire emissions, developed in the framework of the APIFLAME project (Analysis and Prediction of the Impact of Fires on Air quality ModEling). The methodology relies on the classical approach, multiplying the burned area by the fuel load and the emission factors specific to the vegetation burned. Emissions can be calculated on any user-specified domain, horizontal grid, and list of trace gases and aerosols, providing input information on the burned area (location, extent) and emission factors of the targeted species are available. The strength of the proposed algorithm is its high resolution and its flexibility in terms of domain and input data (including the vegetation classification). The modification of the default values and databases proposed does not require changes in the core of the model. The code may be used for the calculation of global or regional inventories. However, it has been developed and tested more specifically for Europe and the Mediterranean area. In this region, the burning season extends from June to October in most regions, with generally small but frequent fires in Eastern Europe, Western Russia, Ukraine and Turkey, and large events in the Mediterranean area. The resulting emissions represents a significant fraction of the total yearly emissions (on average amounting to ~30% of anthropogenic emissions for PM2.5, ~20% for CO). The uncertainty on the daily carbon emissions was estimated to ~100% based on an ensemble analysis. Considering the large uncertainties on emission factors, the potential error on the emissions for the various pollutants is even larger. Comparisons to other widely used emission inventories shows good correlations but discrepancies of a factor of 2-4 on the amplitude of the emissions, our results being generally on the higher end.

  17. Experimental annotation of the human pathogen Histoplasma capsulatum transcribed regions using high-resolution tiling arrays

    Directory of Open Access Journals (Sweden)

    Sil Anita

    2011-09-01

    Full Text Available Abstract Background The fungal pathogen Histoplasma capsulatum is thought to be the most common cause of fungal respiratory infections in immunocompetent humans, yet little is known about its biology. Here we provide the first genome-wide studies to experimentally validate its genome annotation. A functional interrogation of the Histoplasma genome provides critical support for continued investigation into the biology and pathogenesis of H. capsulatum and related fungi. Results We employed a three-pronged approach to provide a functional annotation for the H. capsulatum G217B strain. First, we probed high-density tiling arrays with labeled cDNAs from cells grown under diverse conditions. These data defined 6,172 transcriptionally active regions (TARs, providing validation of 6,008 gene predictions. Interestingly, 22% of these predictions showed evidence of anti-sense transcription. Additionally, we detected transcription of 264 novel genes not present in the original gene predictions. To further enrich our analysis, we incorporated expression data from whole-genome oligonucleotide microarrays. These expression data included profiling under growth conditions that were not represented in the tiling experiment, and validated an additional 2,249 gene predictions. Finally, we compared the G217B gene predictions to other available fungal genomes, and observed that an additional 254 gene predictions had an ortholog in a different fungal species, suggesting that they represent genuine coding sequences. Conclusions These analyses yielded a high confidence set of validated gene predictions for H. capsulatum. The transcript sets resulting from this study are a valuable resource for further experimental characterization of this ubiquitous fungal pathogen. The data is available for interactive exploration at http://histo.ucsf.edu.

  18. Experimental annotation of the human pathogen Histoplasma capsulatum transcribed regions using high-resolution tiling arrays.

    Science.gov (United States)

    Voorhies, Mark; Foo, Catherine K; Sil, Anita

    2011-09-29

    The fungal pathogen Histoplasma capsulatum is thought to be the most common cause of fungal respiratory infections in immunocompetent humans, yet little is known about its biology. Here we provide the first genome-wide studies to experimentally validate its genome annotation. A functional interrogation of the Histoplasma genome provides critical support for continued investigation into the biology and pathogenesis of H. capsulatum and related fungi. We employed a three-pronged approach to provide a functional annotation for the H. capsulatum G217B strain. First, we probed high-density tiling arrays with labeled cDNAs from cells grown under diverse conditions. These data defined 6,172 transcriptionally active regions (TARs), providing validation of 6,008 gene predictions. Interestingly, 22% of these predictions showed evidence of anti-sense transcription. Additionally, we detected transcription of 264 novel genes not present in the original gene predictions. To further enrich our analysis, we incorporated expression data from whole-genome oligonucleotide microarrays. These expression data included profiling under growth conditions that were not represented in the tiling experiment, and validated an additional 2,249 gene predictions. Finally, we compared the G217B gene predictions to other available fungal genomes, and observed that an additional 254 gene predictions had an ortholog in a different fungal species, suggesting that they represent genuine coding sequences. These analyses yielded a high confidence set of validated gene predictions for H. capsulatum. The transcript sets resulting from this study are a valuable resource for further experimental characterization of this ubiquitous fungal pathogen. The data is available for interactive exploration at http://histo.ucsf.edu.

  19. Fast terrain modelling for hydrogeological risk mapping and emergency management: the contribution of high-resolution satellite SAR imagery

    Directory of Open Access Journals (Sweden)

    A. Nascetti

    2015-07-01

    Full Text Available Geomatic tools fast terrain modelling play a relevant role in hydrogeological risk mapping and emergency management. Given their complete independence from logistic constraints on the ground (as for airborne data collection, illumination (daylight, and weather (clouds conditions, synthetic aperture radar (SAR satellite systems may provide important contributions in terms of digital surface models (DSMs and digital elevation models (DEMs. For this work we focused on the potential of high-resolution SAR satellite imagery for DSM generation using an interferometric (InSAR technique and using a revitalized radargrammetric stereomapping approach. The goal of this work was just methodological. Our goal was to illustrate both the fundamental advantages and drawbacks of the radargrammetric approach with respect to the InSAR technique for DSM generation, and to outline their possible joint role in hydrogeological risk mapping and emergency management. Here, it is worth mentioning that radargrammetry procedures are independent of image coherence (unlike the interferometric approach and phase unwrapping, as well as of parsimony (only a few images are necessary. Therefore, a short time is required for image collection (from tens of minutes to a few hours, thanks to the independence from illumination and weather. The most relevant obstacles of the technique are speckle and the lack of texture impact on image matching, as well as the well-known deformations of SAR imagery (layover and foreshortening, which may produce remarkable difficulties with complex morphologies and that must be accounted for during acquisition planning. Here, we discuss results obtained with InSAR and radargrammetry applied to a COSMO-SkyMed SpotLight triplet (two stereopairs suited for radargrammetry and InSAR, sharing one common image acquired over suburbs of San Francisco (United States, which are characterized by mixed morphology and land cover. We mainly focused on urban areas and

  20. High-resolution mapping of the NO2 spatial distribution over Belgian urban areas based on airborne APEX remote sensing

    Science.gov (United States)

    Tack, Frederik; Merlaud, Alexis; Iordache, Marian-Daniel; Danckaert, Thomas; Yu, Huan; Fayt, Caroline; Meuleman, Koen; Deutsch, Felix; Fierens, Frans; Van Roozendael, Michel

    2017-05-01

    -scale variability, can be mapped accurately with high spatial resolution and in a relatively short time frame, and the contributing emission sources can be resolved. High-resolution quantitative information about the atmospheric NO2 horizontal variability is currently rare, but can be very valuable for (air quality) studies at the urban scale.

  1. Continuous positive airway pressure effects on regional lung aeration in patients with COPD: a high-resolution CT scan study.

    Science.gov (United States)

    Holanda, Marcelo A; Fortaleza, Simone C B; Alves-de-Almeida, Mirizana; Winkeler, Georgia F P; Reis, Ricardo C; Felix, John H S; Lima, José W O; Pereira, Eanes D B

    2010-08-01

    The effects of nasal continuous positive airway pressure (CPAP) on the lung parenchyma of patients with COPD, to our knowledge, have never been assessed by high-resolution CT (HRCT) scanning. HRCT scans were obtained at the apex, hilum, and basis of the lungs at functional residual capacity while on spontaneous respiration and at the end of CPAP trials of 5 cm water (H(2)O), 10 cm H(2)O, and 15 cm H(2)O in 11 stable patients with COPD and eight healthy volunteers. Lung aeration was assessed by quantitative density parameters and by qualitative analysis of each CT image after processing by means of a density-based color-mask computational algorithm. The quantitative parameters were density histograms, the relative area of the lungs with attenuation values lung aeration in both groups, but in some patients with COPD, CPAP deflated some regions of the lungs. CPAP levels of 10 cm H(2)O and 15 cm H(2)O increased the emphysematous zones in all sectors of the lungs, including dorsal and apical regions in patients with COPD compared to little hyperaeration predominantly in the ventral areas in healthy volunteers. Nasal CPAP causes variable effects on regional lung aeration in relation to the applied pressure and the regional distribution of emphysema in patients with COPD. Low pressure levels may cause regional lung deflation in some patients. High levels increase the emphysematous areas wherever they are located inside the lungs.

  2. Terrane mapping on the dip-slope based on high-resolution DTM and its geological implications at the Huafan University campus in northern Taiwan

    Science.gov (United States)

    Tseng, C. H.; Chan, Y. C.; Jeng, C. J.; Hsieh, Y. C.

    2016-12-01

    Analyses of slope stability is a critical issue in mountainous areas in Taiwan, for slope failure often causes great damage to local and even regional communities. A dip-slope about 20° toward southwest has been confirmed, on which the Huafan University campus is founded in the northern end of the Western Foothill belt in northern Taiwan. Continuous monitoring systems for the dip-slope by means of inclinometers and groundwater gauges have been set up within the campus for 15 years. Furthermore, a numerical three dimensional modeling for the landslide runout of the dip-slope has also been achieved and proposes potential failure mechanisms. Nevertheless, geomorphic and geological conditions which may be related to the slop failure in the study area were unclear owing to dense vegetation and artificial objects. A 3-D GIS mapping method on the basis of a high-resolution digital terrane model (DTM) derived from LiDAR technology is applied to this area. The high-resolution DTM can be used to distinguish small-scale natural morphology of geomorphic and geological features and structures. Results of the analyses reveal several bulges existing at lower part of the dip-slope, implying potential creeping behavior. In addition, narrow and small gullies are also found on one of the flanks of the dip-slope, and may raise instability if erosional processes continue within the gullies on both lateral sides of the slope mass. On the other hand, traces of a potential fault striking NNE-SSW through the campus is also proposed. The existence of the potential fault can explain the phenomena of groundwater exudation in some places within and outside the campus. Furthermore, bedding plane traces of the bedrock formations by the 3-D mapping method perform inconsistent attitudes within the campus and adjacent regions, resulting in a concave morphology of the landform. It is thus assumed that the potential fault and fold-like structures probably resulted from tectonic stress coming from

  3. THE OLKHON GEODYNAMIC PROVING GROUND (LAKE BAIKAL: HIGH RESOLUTION SATELLITE DATA AND GEOLOGICAL MAPS OF NEW GENERATION

    Directory of Open Access Journals (Sweden)

    Valentin S. Fedorovsky

    2015-09-01

    Full Text Available The Olkhon region of the Western Pribaikalie is highly attractive for geologists due to the presence of diverse metamorphic complexes and highly complicated combinations of folded structures in this region. The Olkhon region is located within the area of the Pribaikalsky National Park of Russia. At abundant outcrops in the subject area, various geological aspects resulting from the Early Palaeozoic collision system can be studied in detail. By its parameters, the subject area can be considered a «geodynamic proving ground». In recent years, abundant aerospace materials on the area have been accumulated, and long-term field studies resulted in many discoveries and findings which encourage critical revision of the initial conceptions. The material available allows compilation of a new package of geological maps in hard and electronic versions.

  4. Large-scale and high-resolution 3-D cave mapping by terrestrial laser scanning: a case study of the Domica Cave, Slovakia

    Directory of Open Access Journals (Sweden)

    Michal Gallay

    2015-09-01

    Full Text Available Mapping and modelling the complicated geometry of caves is a challenging task that has traditionally been undertaken by tacheometric surveying methods. These methods are excellent for capturing the general shape of a cave system but they are not suitable for high-speed, high-resolution mapping of complex surfaces found in this environment. Terrestrial laser scanning (TLS technologies can acquire millions of points represented by 3-D coordinates, at very high spatial densities on complex multifaceted surfaces within minutes. In the last few years, advances in measurement speed, reduction in size / cost and increased portability of this technology has revolutionised the collection of 3-D data. This paper discusses the methodological framework and the advantages / disadvantages of adopting terrestrial laser scanning to rapidly map a complex cave system on the example of the Domica Cave in Slovakia. This cave originated in the largest karst region in the West Carpathians. The collected data set or ‘point cloud’ contains over 11.9 billion measured points, captured in 5 days from 327 individual scanning positions. The dataset represents almost 1600 m of the cave passages. Semi-automatic registration of these scans was carried out using reference spheres placed in each scene and this method archived an overall registration error of 2.24 mm (RMSE. Transformation of the final registered point cloud from its local coordinate system to the national cartographic system was achieved with total accuracy of 21 mm (RMSE. This very detailed data set was used to create a 3-D cave surface model needed for volumetric analyses. In the future, it will be used for spatial analyses or simulating the interaction of surface and subsurface processes contributing to the development of the cave system on the basis of a 3-D GIS platform.

  5. Vegetation mapping in the St Lucia estuary using very high-resolution multispectral imagery and LiDAR

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2016-05-01

    Full Text Available This paper examines the value of very high-resolution multispectral satellite imagery and LiDAR-derived digital elevation information for classifying estuarine vegetation types. Satellite images used are from the WorldView-2, RapidEye, and SPOT-6...

  6. Application of Low-Cost UASs and Digital Photogrammetry for High-Resolution Snow Depth Mapping in the Arctic

    DEFF Research Database (Denmark)

    Cimoli, Emiliano; Marcer, Marco; Vandecrux, Baptiste Robert Marcel

    2017-01-01

    The repeat acquisition of high-resolution snow depth measurements has important research and civil applications in the Arctic. Currently the surveying methods for capturing the high spatial and temporal variability of the snowpack are expensive, in particular for small areal extents. An alternative...

  7. High-Resolution Genome-Wide Linkage Mapping Identifies Susceptibility Loci for BMI in the Chinese Population

    DEFF Research Database (Denmark)

    Zhang, Dong Feng; Pang, Zengchang; Li, Shuxia

    2012-01-01

    linkage could exist in different ethnic populations. BMI was measured from 126 dizygotic twins in Qingdao municipality who were genotyped using high-resolution Affymetrix Genome-Wide Human SNP arrays containing about 1 million single-nucleotide polymorphisms (SNPs). Nonparametric linkage analysis...

  8. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia.

    Science.gov (United States)

    Wang, Bin; Waters, Cathy; Orgill, Susan; Gray, Jonathan; Cowie, Annette; Clark, Anthony; Liu, De Li

    2018-02-23

    Efficient and effective modelling methods to assess soil organic carbon (SOC) stock are central in understanding the global carbon cycle and informing related land management decisions. However, mapping SOC stocks in semi-arid rangelands is challenging due to the lack of data and poor spatial coverage. The use of remote sensing data to provide an indirect measurement of SOC to inform digital soil mapping has the potential to provide more reliable and cost-effective estimates of SOC compared with field-based, direct measurement. Despite this potential, the role of remote sensing data in improving the knowledge of soil information in semi-arid rangelands has not been fully explored. This study firstly investigated the use of high spatial resolution satellite data (seasonal fractional cover data; SFC) together with elevation, lithology, climatic data and observed soil data to map the spatial distribution of SOC at two soil depths (0-5cm and 0-30cm) in semi-arid rangelands of eastern Australia. Overall, model performance statistics showed that random forest (RF) and boosted regression trees (BRT) models performed better than support vector machine (SVM). The models obtained moderate results with R 2 of 0.32 for SOC stock at 0-5cm and 0.44 at 0-30cm, RMSE of 3.51MgCha -1 at 0-5cm and 9.16MgCha -1 at 0-30cm without considering SFC covariates. In contrast, by including SFC, the model accuracy for predicting SOC stock improved by 7.4-12.7% at 0-5cm, and by 2.8-5.9% at 0-30cm, highlighting the importance of including SFC to enhance the performance of the three modelling techniques. Furthermore, our models produced a more accurate and higher resolution digital SOC stock map compared with other available mapping products for the region. The data and high-resolution maps from this study can be used for future soil carbon assessment and monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Use of high-resolution satellite images for characterization of geothermal reservoirs in the Tarapaca Region, Chile

    Science.gov (United States)

    Arellano-Baeza, A. A.; Montenegro A., C.

    2010-12-01

    The use of renewable and clean sources of energy is becoming crucial for sustainable development of all countries, including Chile. Chilean Government plays special attention to the exploration and exploitation of geothermal energy, total electrical power capacity of which could reach 16.000 MW. In Chile the main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the Lansat satellite have been used to characterize the geothermal field in the region of the Puchuldiza geysers, Colchane, Region of Tarapaca, North of Chile, located at the altitude of 4000 m. Structure of lineaments associated to the geothermal field have been extracted from the images using the lineament detection technique developed by authors. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament analysis is a power tool for the detection of faults and joint zones associated to the geothermal fields.

  10. Analysis of a high-resolution regional climate simulation for Alpine temperature. Validation and influence of the NAO

    Energy Technology Data Exchange (ETDEWEB)

    Proemmel, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung

    2008-11-06

    To determine whether the increase in resolution of climate models improves the representation of climate is a crucial topic in regional climate modelling. An improvement over coarser-scale models is expected especially in areas with complex orography or along coastlines. However, some studies have shown no clear added value for regional climate models. In this study a high-resolution regional climate model simulation performed with REMO over the period 1958-1998 is analysed for 2m temperature over the orographically complex European Alps and their surroundings called the Greater Alpine Region (GAR). The model setup is in hindcast mode meaning that the simulation is driven with perfect boundary conditions by the ERA40 reanalysis through prescribing the values at the lateral boundaries and spectral nudging of the large-scale wind field inside the model domain. The added value is analysed between the regional climate simulation with a resolution of 1/6 and the driving reanalysis with a resolution of 1.125 . Before analysing the added value both the REMO simulation and the ERA40 reanalysis are validated against different station datasets of monthly and daily mean 2m temperature. The largest dataset is the dense, homogenised and quality controlled HISTALP dataset covering the whole GAR, which gave the opportunity for the validation undertaken in this study. The temporal variability of temperature, as quantified by correlation, is well represented by both REMO and ERA40. However, both show considerable biases. The REMO bias reaches 3 K in summer in regions known to experience a problem with summer drying in a number of regional models. In winter the bias is strongly influenced by the choice of the temperature lapse rate, which is applied to compare grid box and station data at different altitudes, and has the strongest influence on inner Alpine subregions where the altitude differences are largest. By applying a constant lapse rate the REMO bias in winter in the high

  11. Seasonal monitoring and estimation of regional aerosol distribution over Po valley, northern Italy, using a high-resolution MAIAC product

    Science.gov (United States)

    Arvani, Barbara; Pierce, R. Bradley; Lyapustin, Alexei I.; Wang, Yujie; Ghermandi, Grazia; Teggi, Sergio

    2016-09-01

    In this work, the new 1 km-resolved Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is employed to characterize seasonal PM10 - AOD correlations over northern Italy. The accuracy of the new dataset is assessed compared to the widely used Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Aerosol Optical Depth (AOD) data, retrieved at 0.55 μm with spatial resolution of 10 km (MYD04_L2). We focused on evaluating the ability of these two products to characterize both temporal and spatial distributions of aerosols within urban and suburban areas. Ground PM10 measurements were obtained from 73 of the Italian Regional Agency for Environmental Protection (ARPA) monitoring stations, spread across northern Italy, during a three-year period from 2010 to 2012. The Po Valley area (northern Italy) was chosen as the study domain because of its severe urban air pollution, resulting from it having the highest population and industrial manufacturing density in the country, being located in a valley where two surrounding mountain chains favor the stagnation of pollutants. We found that the global correlations between the bin-averaged PM10 and AOD are R2 = 0.83 and R2 = 0.44 for MYD04_L2 and for MAIAC, respectively, suggesting a greater sensitivity of the high-resolution product to small-scale deviations. However, the introduction of Relative Humidity (RH) and Planetary Boundary Layer (PBL) depth corrections allowed for a significant improvement to the bin-averaged PM - AOD correlation, which led to a similar performance: R2 = 0.96 for MODIS and R2 = 0.95 for MAIAC. Furthermore, the introduction of the PBL information in the corrected AOD values was found to be crucial in order to capture the clear seasonal cycle shown by measured PM10 values. The study allowed us to define four seasonal linear correlations that estimate PM10 concentrations satisfactorily from the remotely sensed MAIAC AOD retrieval. Overall, the results show that the high

  12. Genomics-based high-resolution mapping of the BaMMV/BaYMV resistance gene rym11 in barley (Hordeum vulgare L.).

    Science.gov (United States)

    Lüpken, Thomas; Stein, Nils; Perovic, Dragan; Habekuss, Antje; Krämer, Ilona; Hähnel, Urs; Steuernagel, Burkhard; Scholz, Uwe; Zhou, Rounan; Ariyadasa, Ruvini; Taudien, Stefan; Platzer, Matthias; Martis, Mihaela; Mayer, Klaus; Friedt, Wolfgang; Ordon, Frank

    2013-05-01

    Soil-borne barley yellow mosaic virus disease, caused by different strains of Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), is one of the most important diseases of winter barley (Hordeum vulgare L.) in Europe and East Asia. The recessive resistance gene rym11 located in the centromeric region of chromosome 4HL is effective against all so far known strains of BaMMV and BaYMV in Germany. In order to isolate this gene, a high-resolution mapping population (10,204 meiotic events) has been constructed. F2 plants were screened with co-dominant flanking markers and segmental recombinant inbred lines (RILs) were tested for resistance to BaMMV under growth chamber and field conditions. Tightly linked markers were developed by exploiting (1) publicly available barley EST sequences, (2) employing barley synteny to rice, Brachypodium distachyon and sorghum and (3) using next-generation sequencing data of barley. Using this approach, the genetic interval was efficiently narrowed down from the initial 10.72 % recombination to 0.074 % recombination. A marker co-segregating with rym11 was developed providing the basis for gene isolation and efficient marker-assisted selection.

  13. Combined high-resolution aeromagnetic and radiometric mapping of uranium mineralization and tectonic settings in Northeastern Nigeria

    Science.gov (United States)

    Adepelumi, A. A.; Falade, A. H.

    2017-10-01

    Geological lineaments, depths to the basement, uranium concentrations, and remobilization in parts of the Upper Benue Trough, covering about 55 × 55 km2 (longitudes 11°30'-12°00'E and 10°30'-10°30'N), Northeastern Nigeria were investigated using integrated High-Resolution Aeromagnetic Data (HRAD) and radiometric data. This was with a view to identifying the potential zones of uranium occurrence in the area. The HRAD was processed to accentuate anomalies of interest and depths estimate of 150-1941 m were obtained from source parameter imaging technique. The results from the superposition of the horizontal gradient magnitude, analytical signal amplitude, first vertical derivative, and 3D Euler solutions of the HRAD revealed that the study area was dissected by linear structures that trend ENE-WSW, NE-SW, E-W, NNE-SSW, WNW-ESE, and NW-SE; among which the ENE-WSW and NE-SW trends dominated. Analyses of radiometric data showed that uranium ores in the study area were possibly remobilized epigenetically from the granitic rocks, and were later deposited into sedimentary rocks (Bima formation). Burashika group (Bongna hills) and Wawa area of the study area showed vein-type deposits, while the anatectic migmatite in the northeastern region and the uranium rich Bima formation showed both fault/fracture and contact types of deposition. It was also observed the northwesterly and southeasterly, dominant dip direction, dipping faults dip in the same direction as the paleocurrent direction (direction of depositions of sediments), and trend in a direction perpendicular to the hypothetical direction of uranium deposition. The study concluded that the studied area is dissected by several linear structures and the studied area possibly contains deposits of uranium ore, which are likely to be found in: the Bima Sandstones of Wade, Shinga, Bima hill, Wuyo, Teli, Bryel, Dali, Barkan, Gasi, Kunkun, Boragara, Deba, and Gberundi localities; the anatectic migmatite at Kubuku, Whada

  14. Cross-correlation based high resolution electron backscatter diffraction and electron channelling contrast imaging for strain mapping and dislocation distributions in InAlN thin films

    OpenAIRE

    Vilalta-Clemente, A.; Naresh-Kumar, G; Nouf-Allehiani, M.; Gamarra, P.; di Forte-Poisson, M. A.; Trager-Cowan, C.; Wilkinson, A.J.

    2017-01-01

    We describe the development of cross-correlation based high resolution electron backscatter diffraction (HR-EBSD) and electron channelling contrast imaging (ECCI), in the scanning electron microscope (SEM), to quantitatively map the strain variation and lattice rotation and determine the density and identify dislocations in nitride semiconductor thin films. These techniques can provide quantitative, rapid, non-destructive analysis of the structural properties of materials with a spatial resol...

  15. High-resolution mapping of H4K16 and H3K23 acetylation reveals conserved and unique distribution patterns in Arabidopsis and rice

    OpenAIRE

    Lu, Li; Chen, Xiangsong; Sanders, Dean; Qian, Shuiming; Zhong, Xuehua

    2015-01-01

    Histone acetylation and deacetylation are key epigenetic gene regulatory mechanisms that play critical roles in eukaryotes. Acetylation of histone 4 lysine 16 (H4K16ac) is implicated in many cellular processes. However, its biological function and relationship with transcription are largely unexplored in plants. We generated first genome-wide high-resolution maps of H4K16ac in Arabidopsis thaliana and Oryza sativa. We showed that H4K16ac is preferentially enriched around the transcription sta...

  16. APIFLAME v1.0: high-resolution fire emission model and application to the Euro-Mediterranean region

    Science.gov (United States)

    Turquety, S.; Menut, L.; Bessagnet, B.; Anav, A.; Viovy, N.; Maignan, F.; Wooster, M.

    2014-04-01

    This paper describes a new model for the calculation of daily, high-resolution (up to 1 km) fire emissions, developed in the framework of the APIFLAME (Analysis and Prediction of the Impact of Fires on Air quality ModEling) project. The methodology relies on the classical approach, multiplying the burned area by the fuel load consumed and the emission factors specific to the vegetation burned. Emissions can be calculated on any user-specified domain, horizontal grid, and list of trace gases and aerosols, providing input information on the burned area (location, extent), and emission factors of the targeted species are available. The applicability to high spatial resolutions and the flexibility to different input data (including vegetation classifications) and domains are the main strength of the proposed algorithm. The modification of the default values and databases proposed does not require any change in the core of the model. The code may be used for the calculation of global or regional inventories. However, it has been developed and tested more specifically for Europe and the Mediterranean area. A regional analysis of fire activity and the resulting emissions in this region is provided. The burning season extends from June to October in most regions, with generally small but frequent fires in eastern Europe, western Russia, Ukraine and Turkey, and large events in the Mediterranean area. The resulting emissions represent a significant fraction of the total yearly emissions (on average amounting to ~ 30% of anthropogenic emissions for PM2.5, ~ 20% for CO). The uncertainty regarding the daily carbon emissions is estimated at ~ 100% based on an ensemble analysis. Considering the large uncertainties regarding emission factors, the potential error on the emissions for the various pollutants is even larger. Comparisons with other widely used emission inventories show good correlations but discrepancies of a factor of 2-4 in the amplitude of the emissions, our results

  17. Super-resolution T1 estimation: Quantitative high resolution T1 mapping from a set of low resolution T1 -weighted images with different slice orientations.

    Science.gov (United States)

    Van Steenkiste, Gwendolyn; Poot, Dirk H J; Jeurissen, Ben; den Dekker, Arnold J; Vanhevel, Floris; Parizel, Paul M; Sijbers, Jan

    2017-05-01

    Quantitative T1 mapping is a magnetic resonance imaging technique that estimates the spin-lattice relaxation time of tissues. Even though T1 mapping has a broad range of potential applications, it is not routinely used in clinical practice as accurate and precise high resolution T1 mapping requires infeasibly long acquisition times. To improve the trade-off between the acquisition time, signal-to-noise ratio and spatial resolution, we acquire a set of low resolution T1 -weighted images and directly estimate a high resolution T1 map by means of super-resolution reconstruction. Simulation and in vivo experiments show an increased spatial resolution of the T1 map, while preserving a high signal-to-noise ratio and short scan time. Moreover, the proposed method outperforms conventional estimation in terms of root-mean-square error. Super resolution T1 estimation enables resolution enhancement in T1 mapping with the use of standard (inversion recovery) T1 acquisition sequences. Magn Reson Med 77:1818-1830, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. High resolution modelling of aerosol dispersion regimes during the CAPITOUL field experiment: from regional to local scale interactions

    Directory of Open Access Journals (Sweden)

    B. Aouizerats

    2011-08-01

    Full Text Available High resolution simulation of complex aerosol particle evolution and gaseous chemistry over an atmospheric urban area is of great interest for understanding air quality and processes. In this context, the CAPITOUL (Canopy and Aerosol Particle Interactions in the Toulouse Urban Layer field experiment aims at a better understanding of the interactions between the urban dynamics and the aerosol plumes. During a two-day Intensive Observational Period, a numerical model experiment was set up to reproduce the spatial distribution of specific particle pollutants, from the regional scales and the interactions between different cities, to the local scales with specific turbulent structures. Observations show that local dynamics depends on the day-regime, and may lead to different mesoscale dynamical structures. This study focuses on reproducing these fine scale dynamical structures, and investigate the impact on the aerosol plume dispersion. The 500-m resolution simulation manages to reproduce convective rolls at local scale, which concentrate most of the aerosol particles and can locally affect the pollutant dispersion and air quality.

  19. High-Resolution Measurement of the {sup 4}He({gamma},n) Reaction in the Giant Resonance Region

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Bjoern

    2003-03-01

    A comprehensive near-threshold {sup 4}He(gamma,n) absolute cross section measurement has been performed at the high-resolution tagged-photon facility MAX-lab located in Lund, Sweden. The 20 < Eg < 45 MeV tagged photons (covering the Giant Dipole Resonance energy region) were directed towards a liquid {sup 4}He target, and knocked-out neutrons were detected in a pair of 60 cm x 60 cm vetoed NE213A liquid scintillator arrays. The intense and varying charge-neutral experimental backgrounds were carefully quantified and removed from the data using a precision fitting procedure. Eight average laboratory angles (30, 45, 60, 75, 90, 105, 120, and 135 deg) were investigated for eight photon energy bins (25, 27, 29, 31, 35, 36, 39, and 41 MeV), resulting in 64 differential cross sections. These angular distributions were integrated to produce total cross sections as a function of photon energy. The resulting cross sections peak at 1.9 mb at a photon energy of 27 MeV, and fall off to a near-constant value of 1.1 mb by 36 MeV. Further, they are in excellent agreement with those measured by Sims et al. using tagged photons in the Quasi-Deuteron energy region. Overall, the results favor modern theoretical models which are based upon a charge-symmetric nucleon-nucleon force, in marked contrast to the recommendations made by Calarco et al. in 1983 based on the sparse {sup 4}He(gamma,n) data available at the time.

  20. New Possibilities for High-Resolution, Large-Scale Ecosystem Assessment of the World's Semi-Arid Regions

    Science.gov (United States)

    Burney, J. A.; Goldblatt, R.

    2016-12-01

    Understanding drivers of land use change - and in particular, levels of ecosystem degradation - in semi-arid regions is of critical importance because these agroecosystems (1) are home to the world's poorest populations, almost all of whom depend on agriculture for their livelihoods, (2) play a critical role in the global carbon and climate cycles, and (3) have in many cases seen dramatic changes in temperature and precipitation, relative to global averages, over the past several decades. However, assessing ecosystem health (or, conversely, degradation) presents a difficult measurement problem. Established methods are very labor intensive and rest on detailed questionnaires and field assessments. High-resolution satellite imagery has a unique role semi-arid ecosystem assessment in that it can be used for rapid (or repeated) and very simple measurements of tree and shrub density, an excellent overall indicator for dryland ecosystem health. Because trees and large shrubs are more sparse in semi-arid regions, sub-meter resolution imagery in conjunction with automated image analysis can be used to assess density differences at high spatial resolution without expensive and time-consuming ground-truthing. This could be used down to the farm level, for example, to better assess the larger-scale ecosystem impacts of different management practices, to assess compliance with REDD+ carbon offset protocols, or to evaluate implementation of conservation goals. Here we present results comparing spatial and spectral remote sensing methods for semi-arid ecosystem assessment across new data sources, using the Brazilian Sertão as an example, and the implications for large-scale use in semi-arid ecosystem science.

  1. GHRSST Level 3P North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  2. High-resolution mapping based on an Unmanned Aerial Vehicle (UAV) to capture paleoseismic offsets along the Altyn-Tagh fault, China.

    Science.gov (United States)

    Gao, Mingxing; Xu, Xiwei; Klinger, Yann; van der Woerd, Jerome; Tapponnier, Paul

    2017-08-15

    The recent dramatic increase in millimeter- to centimeter- resolution topographic datasets obtained via multi-view photogrammetry raises the possibility of mapping detailed offset geomorphology and constraining the spatial characteristics of active faults. Here, for the first time, we applied this new method to acquire high-resolution imagery and generate topographic data along the Altyn Tagh fault, which is located in a remote high elevation area and shows preserved ancient earthquake surface ruptures. A digital elevation model (DEM) with a resolution of 0.065 m and an orthophoto with a resolution of 0.016 m were generated from these images. We identified piercing markers and reconstructed offsets based on both the orthoimage and the topography. The high-resolution UAV data were used to accurately measure the recent seismic offset. We obtained the recent offset of 7 ± 1 m. Combined with the high resolution satellite image, we measured cumulative offsets of 15 ± 2 m, 20 ± 2 m, 30 ± 2 m, which may be due to multiple paleo-earthquakes. Therefore, UAV mapping can provide fine-scale data for the assessment of the seismic hazards.

  3. High-resolution mapping of genotype-phenotype relationships in cridu chat syndrome using array comparative genomic hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoxiao; Snijders, Antoine; Segraves, Richard; Zhang,Xiuqing; Niebuhr, Anita; Albertson, Donna; Yang, Huanming; Gray, Joe; Niebuhr, Erik; Bolund, Lars; Pinkel, Dan

    2007-07-03

    We have used array comparative genomic hybridization to map DNA copy-number changes in 94 patients with cri du chat syndrome who had been carefully evaluated for the presence of the characteristic cry, speech delay, facial dysmorphology, and level of mental retardation (MR). Most subjects had simple deletions involving 5p (67 terminal and 12 interstitial). Genotype-phenotype correlations localized the region associated with the cry to 1.5 Mb in distal 5p15.31, between bacterial artificial chromosomes (BACs) containing markers D5S2054 and D5S676; speech delay to 3.2 Mb in 5p15.32-15.33, between BACs containing D5S417 and D5S635; and the region associated with facial dysmorphology to 2.4 Mb in 5p15.2-15.31, between BACs containing D5S208 and D5S2887. These results overlap and refine those reported in previous publications. MR depended approximately on the 5p deletion size and location, but there were many cases in which the retardation was disproportionately severe, given the 5p deletion. All 15 of these cases, approximately two-thirds of the severely retarded patients, were found to have copy-number aberrations in addition to the 5p deletion. Restriction of consideration to patients with only 5p deletions clarified the effect of such deletions and suggested the presence of three regions, MRI-III, with differing effect on retardation. Deletions including MRI, a 1.2-Mb region overlapping the previously defined cri du chat critical region but not including MRII and MRIII, produced a moderate level of retardation. Deletions restricted to MRII, located just proximal to MRI, produced a milder level of retardation, whereas deletions restricted to the still-more proximal MRIII produced no discernible phenotype. However, MR increased as deletions that included MRI extended progressively into MRII and MRIII, and MR became profound when all three regions were deleted.

  4. High-resolution mapping of genotype-phenotype relationships in cri du chat syndrome using array comparative genomic hybridization.

    Science.gov (United States)

    Zhang, Xiaoxiao; Snijders, Antoine; Segraves, Richard; Zhang, Xiuqing; Niebuhr, Anita; Albertson, Donna; Yang, Huanming; Gray, Joe; Niebuhr, Erik; Bolund, Lars; Pinkel, Dan

    2005-02-01

    We have used array comparative genomic hybridization to map DNA copy-number changes in 94 patients with cri du chat syndrome who had been carefully evaluated for the presence of the characteristic cry, speech delay, facial dysmorphology, and level of mental retardation (MR). Most subjects had simple deletions involving 5p (67 terminal and 12 interstitial). Genotype-phenotype correlations localized the region associated with the cry to 1.5 Mb in distal 5p15.31, between bacterial artificial chromosomes (BACs) containing markers D5S2054 and D5S676; speech delay to 3.2 Mb in 5p15.32-15.33, between BACs containing D5S417 and D5S635; and the region associated with facial dysmorphology to 2.4 Mb in 5p15.2-15.31, between BACs containing D5S208 and D5S2887. These results overlap and refine those reported in previous publications. MR depended approximately on the 5p deletion size and location, but there were many cases in which the retardation was disproportionately severe, given the 5p deletion. All 15 of these cases, approximately two-thirds of the severely retarded patients, were found to have copy-number aberrations in addition to the 5p deletion. Restriction of consideration to patients with only 5p deletions clarified the effect of such deletions and suggested the presence of three regions, MRI-III, with differing effect on retardation. Deletions including MRI, a 1.2-Mb region overlapping the previously defined cri du chat critical region but not including MRII and MRIII, produced a moderate level of retardation. Deletions restricted to MRII, located just proximal to MRI, produced a milder level of retardation, whereas deletions restricted to the still-more proximal MRIII produced no discernible phenotype. However, MR increased as deletions that included MRI extended progressively into MRII and MRIII, and MR became profound when all three regions were deleted.

  5. A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China

    Science.gov (United States)

    Qi, Ji; Zheng, Bo; Li, Meng; Yu, Fang; Chen, Chuchu; Liu, Fei; Zhou, Xiafei; Yuan, Jing; Zhang, Qiang; He, Kebin

    2017-12-01

    We developed a high-resolution Beijing-Tianjin-Hebei (BTH) regional air pollutants emission inventory for the year 2013. The inventory was established using a bottom-up approach based on facility-level activity data obtained from multiple data sources. The estimates from the BTH 2013 emission inventory show that the total emissions of SO2, NOX, PM2.5, PM10, CO, NMVOC, NH3, BC, and OC were 2,305, 2,686, 1,090, 1,494, 20,567, 2,207, 623, 160, and 254 Gg, respectively. The industry sector is the largest emissions source for SO2, NOX, PM2.5, PM10, CO, and NMVOC in the BTH region, contributing 72.6%, 43.7%, 59.6%, 64.7%, 60.3%, and 70.4% of the total emissions, respectively. Power plants contributed 11.8% and 23.3% of the total SO2 and NOX emissions, respectively. The transportation sector contributed 28.9% of the total NOX emissions. Emissions from the residential sector accounted for 31.3%, 21.5%, 46.6% and 71.7% of the total PM2.5, NMVOC, BC and OC emissions, respectively. In addition, more than 90% of the total NH3 emissions originate from the agriculture sector, with 44.2% from fertilizer use and 47.7% from livestock. The spatial distribution results illustrate that air pollutant emissions are mainly distributed over the eastern and southern BTH regions. Beijing, Tianjin, Shijiazhuang, Tangshan and Handan are the major contributors of air pollutants. The major NMVOC species in the BTH region are ethylene, acetylene, ethane and toluene. Ethylene is the biggest contributor in Tianjin and Hebei. The largest contributor in Beijing is toluene. There is relatively low uncertainty in SO2 and NOX emission estimates, medium uncertainty in PM2.5, PM10 and CO emission estimates, and high uncertainties in VOC, NH3, BC and OC emission estimates. The proposed policy recommendations, based on the BTH 2013 emission inventory, would be helpful to develop strategies for air pollution control.

  6. High-resolution meiotic and physical mapping of the Best`s vitelliform macular dystrophy (VMD2) locus to pericentromeric chromosome 11

    Energy Technology Data Exchange (ETDEWEB)

    Weber, B.H.F.; Vogt, G. [Institut fuer Humangenetik, Wuerzburg (Germany); Walker, D. [UBC, Vancouver (Canada)] [and others

    1994-09-01

    Vitelliform macular dystrophy, also known as Best`s disease, is a juvenile-onset macular degeneration with autosomal dominant inheritance. It is characterized by well-demarcated accumulation of lipofuscin-like material within and beneath the retinal pigment epithelium (RPE) and classically results in an egg yolk-like appearance of the macula. Typically, carriers of the disease gene show a specific electrophysiological sign which can be detected by electrooculography (EOG). The EOG measures a standing potential between the cornea and the retina which is primarily generated by the RPE. The histopathological findings as well as the EOG abnormalities suggest that Best`s disease is a generalized disorder of the RPE. The basic biochemical defect is still unknown. As a first step in the positional cloning of the defective gene, the Best`s disease locus was mapped to chromosome 11 between markers at D11S871 and INT2. Subsequently, his region was refined to a 3.7 cM interval flanked by loci D11S903 and PYGM. To further narrow the D11S903-PYGM interval and to obtain an estimate of the physical size of the minimal candidate region, we used a combination of high-resolution PCR hybrid mapping and analysis of recombinant Best`s disease chromosomes. We identified six markers from within the D11S903-PYGM interval that show no recombination with the defective gene in three multigeneration Best`s disease pedigrees. Our hybrid panel localizes these markers on either side of the centromere on chromosome 11. The closest markers flanking the disease gene are at D11S986 in band p12-11.22 and at D11S480 in band q13.2-13.3. Our study demonstrates that the physical size of the Best`s disease region is exceedingly larger than was previously estimated from the genetic data due to the proximity of the defective gene to the centromere of chromosome 11.

  7. Simulating sub-daily Intensity-Frequency-Duration curves in Australia using a dynamical high-resolution regional climate model

    Science.gov (United States)

    Mantegna, Gabriel A.; White, Christopher J.; Remenyi, Tomas A.; Corney, Stuart P.; Fox-Hughes, Paul

    2017-11-01

    Climate change has the potential to significantly alter the characteristics of high-intensity, short-duration rainfall events, potentially leading to more severe and more frequent flash floods. Research has shown that future changes to such events could far exceed expectations based on temperature scaling and basic physical principles alone, but that computationally expensive convection-permitting models are required to accurately simulate sub-daily extreme rainfall events. It is therefore crucial to be able to model future changes to sub-daily duration extreme rainfall events as cost effectively as possible, especially in Australia where such information is scarce. In this study, we seek to determine what the shortest duration of extreme rainfall is that can be simulated by a less computationally expensive convection-parametrizing Regional Climate Model (RCM). We examine the ability of the Conformal Cubic Atmospheric Model (CCAM), a ∼10 km high-resolution convection-parametrizing RCM, to reproduce sub-daily Intensity-Frequency-Duration (IFD) curves corresponding to two long-term observational stations in the Australian island state of Tasmania, and examine the future model projections. We find that CCAM simulates observed extreme rainfall statistics well for 3-h durations and longer, challenging the current understanding that convection-permitting models are needed to accurately model sub-daily extreme rainfall events. Further, future projections from CCAM for the end of this Century show that extreme sub-daily rainfall intensities could increase by more than 15% per °C, far exceeding the 7% scaling estimate predicted by the Clausius-Clapeyron vapour pressure relationship and the 5% scaling estimate recommended by the Australian Rainfall and Runoff guide.

  8. A Versatile, Production-Oriented Approach to High-Resolution Tree-Canopy Mapping in Urban and Suburban Landscapes Using GEOBIA and Data Fusion

    Directory of Open Access Journals (Sweden)

    Jarlath O'Neil-Dunne

    2014-12-01

    Full Text Available The benefits of tree canopy in urban and suburban landscapes are increasingly well known: stormwater runoff control, air-pollution mitigation, temperature regulation, carbon storage, wildlife habitat, neighborhood cohesion, and other social indicators of quality of life. However, many urban areas lack high-resolution tree canopy maps that document baseline conditions or inform tree-planting programs, limiting effective study and management. This paper describes a GEOBIA approach to tree-canopy mapping that relies on existing public investments in LiDAR, multispectral imagery, and thematic GIS layers, thus eliminating or reducing data acquisition costs. This versatile approach accommodates datasets of varying content and quality, first using LiDAR derivatives to identify aboveground features and then a combination of LiDAR and imagery to differentiate trees from buildings and other anthropogenic structures. Initial tree canopy objects are then refined through contextual analysis, morphological smoothing, and small-gap filling. Case studies from locations in the United States and Canada show how a GEOBIA approach incorporating data fusion and enterprise processing can be used for producing high-accuracy, high-resolution maps for large geographic extents. These maps are designed specifically for practical application by planning and regulatory end users who expect not only high accuracy but also high realism and visual coherence.

  9. Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters

    Science.gov (United States)

    Ierodiaconou, Daniel; Schimel, Alexandre C. G.; Kennedy, David; Monk, Jacquomo; Gaylard, Grace; Young, Mary; Diesing, Markus; Rattray, Alex

    2018-01-01

    Habitat mapping data are increasingly being recognised for their importance in underpinning marine spatial planning. The ability to collect ultra-high resolution (cm) multibeam echosounder (MBES) data in shallow waters has facilitated understanding of the fine-scale distribution of benthic habitats in these areas that are often prone to human disturbance. Developing quantitative and objective approaches to integrate MBES data with ground observations for predictive modelling is essential for ensuring repeatability and providing confidence measures for habitat mapping products. Whilst supervised classification approaches are becoming more common, users are often faced with a decision whether to implement a pixel based (PB) or an object based (OB) image analysis approach, with often limited understanding of the potential influence of that decision on final map products and relative importance of data inputs to patterns observed. In this study, we apply an ensemble learning approach capable of integrating PB and OB Image Analysis from ultra-high resolution MBES bathymetry and backscatter data for mapping benthic habitats in Refuge Cove, a temperate coastal embayment in south-east Australia. We demonstrate the relative importance of PB and OB seafloor derivatives for the five broad benthic habitats that dominate the site. We found that OB and PB approaches performed well with differences in classification accuracy but not discernible statistically. However, a model incorporating elements of both approaches proved to be significantly more accurate than OB or PB methods alone and demonstrate the benefits of using MBES bathymetry and backscatter combined for class discrimination.

  10. Developing high-resolution spatial data of migration corridors for avian species of concern in regions of high potential wind development

    Energy Technology Data Exchange (ETDEWEB)

    Katzner, Todd [West Virginia Univ., Morgantown, WV (United States)

    2014-06-15

    The future of the US economy, our national security, and our environmental quality all depend on decreasing our reliance on foreign oil and on fossil fuels. An essential component of decreasing this reliance is the development of alternative energy sources. Wind power is among the most important alternative energy sources currently available, and the mid-Atlantic region is a primary focus for wind power development. In addition to being important to the development of wind power, the mid-Atlantic region holds a special responsibility for the conservation of the eastern North America's golden eagles (Aquila chrysaetos). This small population breeds in northeastern Canada, winters in the southern Appalachians, and nearly all of these birds pass through the mid-Atlantic region twice each year. Movement of these birds is not random and, particularly during spring and autumn, migrating golden eagles concentrate in a narrow 30-50 mile wide corridor in central Pennsylvania. Thus, because the fate of these rare birds may depend on responsible management of the habitat they use it is critical to use research to identify ways to mitigate prospective impacts on this and similar raptor species. The goal of this project was to develop high-resolution spatial risk maps showing migration corridors of and habitat use by eastern golden eagles in regions of high potential for wind development. To accomplish this, we first expanded existing models of raptor migration for the eastern USA to identify broad-scale migration patterns. We then used data from novel high-resolution tracking devices to discover routes of passage and detailed flight behavior of individual golden eagles throughout the eastern USA. Finally, we integrated these data and models to predict population-level migration patterns and individual eagle flight behavior on migration. We then used this information to build spatially explicit, probabilistic maps showing relative risk to birds from wind development. This

  11. Metabolic mapping by use of high-resolution magic angle spinning 1H MR spectroscopy for assessment of apoptosis in cervical carcinomas

    Directory of Open Access Journals (Sweden)

    Sundfør Kolbein

    2007-01-01

    Full Text Available Abstract Background High-resolution magic angle proton magnetic resonance spectroscopy (HR 1H MAS MRS provides a broad metabolic mapping of intact tumor samples and allows for microscopy investigations of the samples after spectra acquisition. Experimental studies have suggested that the method can be used for detection of apoptosis, but this has not been investigated in a clinical setting so far. We have explored this hypothesis in cervical cancers by searching for metabolites associated with apoptosis that were not influenced by other histopathological parameters like tumor load and tumor cell density. Methods Biopsies (n = 44 taken before and during radiotherapy in 23 patients were subjected to HR MAS MRS. A standard pulse-acquire spectrum provided information about lipids, and a spin-echo spectrum enabled detection of non-lipid metabolites in the lipid region of the spectra. Apoptotic cell density, tumor cell fraction, and tumor cell density were determined by histopathological analysis after spectra acquisition. Results The apoptotic cell density correlated with the standard pulse-acquire spectra (p 2 to CH3 (p = 0.02. In contrast, the spin-echo spectra contained the main information on tumor cell fraction and tumor cell density (p p = 0.001 and between tumor cell density and glycerophosphocholine (GPC concentration (p = 0.024 and ratio of GPC to choline (p Conclusion Our findings indicate that the apoptotic activity of cervical cancers can be assessed from the lipid metabolites in HR MAS MR spectra and that the HR MAS data may reveal novel information on the metabolic changes characteristic of apoptosis. These changes differed from those associated with tumor load and tumor cell density, suggesting an application of the method to explore the role of apoptosis in the course of the disease.

  12. High-Resolution Mapping of Crossover and Non-crossover Recombination Events by Whole-Genome Re-sequencing of an Avian Pedigree.

    Directory of Open Access Journals (Sweden)

    Linnéa Smeds

    2016-05-01

    Full Text Available Recombination is an engine of genetic diversity and therefore constitutes a key process in evolutionary biology and genetics. While the outcome of crossover recombination can readily be detected as shuffled alleles by following the inheritance of markers in pedigreed families, the more precise location of both crossover and non-crossover recombination events has been difficult to pinpoint. As a consequence, we lack a detailed portrait of the recombination landscape for most organisms and knowledge on how this landscape impacts on sequence evolution at a local scale. To localize recombination events with high resolution in an avian system, we performed whole-genome re-sequencing at high coverage of a complete three-generation collared flycatcher pedigree. We identified 325 crossovers at a median resolution of 1.4 kb, with 86% of the events localized to <10 kb intervals. Observed crossover rates were in excellent agreement with data from linkage mapping, were 52% higher in male (3.56 cM/Mb than in female meiosis (2.28 cM/Mb, and increased towards chromosome ends in male but not female meiosis. Crossover events were non-randomly distributed in the genome with several distinct hot-spots and a concentration to genic regions, with the highest density in promoters and CpG islands. We further identified 267 non-crossovers, whose location was significantly associated with crossover locations. We detected a significant transmission bias (0.18 in favour of 'strong' (G, C over 'weak' (A, T alleles at non-crossover events, providing direct evidence for the process of GC-biased gene conversion in an avian system. The approach taken in this study should be applicable to any species and would thereby help to provide a more comprehensive portray of the recombination landscape across organism groups.

  13. Mapping primary gyrogenesis during fetal development in primate brains: high-resolution in utero structural MRI study of fetal brain development in pregnant baboons

    Directory of Open Access Journals (Sweden)

    Peter Kochunov

    2010-05-01

    Full Text Available The global and regional changes in the fetal cerebral cortex in primates were mapped during primary gyrification (PG; weeks 17-25 of 26 weeks total gestation. Studying pregnant baboons using high-resolution MRI in utero, measurements included cerebral volume, cortical surface area, gyrification index and length and depth of ten primary cortical sulci. Seven normally developing fetuses were imaged in two animals longitudinally and sequentially. We compared these results to those on PG that from the ferret studies and analyzed them in the context of our recent studies of phylogenetics of cerebral gyrification. We observed that in both primates and non-primates, the cerebrum undergoes a very rapid transformation into the gyrencephalic state, subsequently accompanied by an accelerated growth in brain volume and cortical surface area. However, PG trends in baboons exhibited some critical differences from those observed in ferrets. For example, in baboons, the growth along the long (length axis of cortical sulci was unrelated to the growth along the short (depth axis and far outpaced it. Additionally, the correlation between the rate of growth along the short sulcal axis and heritability of sulcal depth was negative and approached significance (r=-0.60;p<.10, while the same trend for long axis was positive and not significant (p=0.3;p=0.40. These findings, in an animal that shares a highly orchestrated pattern of PG with humans, suggest that ontogenic processes that influence changes in sulcal length and depth are diverse and possibly driven by different factors in primates than in non-primates.

  14. Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography

    Directory of Open Access Journals (Sweden)

    Claude Flener

    2013-11-01

    Full Text Available Accurate terrain models are a crucial component of studies of river channel evolution. In this paper we describe a new methodology for creating high-resolution seamless digital terrain models (DTM of river channels and their floodplains. We combine mobile laser scanning and low-altitude unmanned aerial vehicle (UAV photography-based methods for creating both a digital bathymetric model of the inundated river channel and a DTM of a point bar of a meandering sub-arctic river. We evaluate mobile laser scanning and UAV-based photogrammetry point clouds against terrestrial laser scanning and combine these data with an optical bathymetric model to create a seamless DTM of two different measurement periods. Using this multi-temporal seamless data, we calculate a DTM of difference that allows a change detection of the meander bend over a one-year period.

  15. : Signal Decomposition of High Resolution Time Series River data to Separate Local and Regional Components of Conductivity

    Science.gov (United States)

    Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of a wastewater treatment facility along a river. Data was collected over 14-60 days, and several seasons. The power spectral densit...

  16. Signal Decomposition of High Resolution Time Series River Data to Separate Local and Regional Components of Conductivity

    Science.gov (United States)

    Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of an oil and gas wastewater treatment facility along a river. Data was collected over 14-60 days. The power spectral density was us...

  17. The Arabidopsis TAC Position Viewer: a high-resolution map of transformation-competent artificial chromosome (TAC) clones aligned with the Arabidopsis thaliana Columbia-0 genome.

    Science.gov (United States)

    Hirose, Yoshitsugu; Suda, Kunihiro; Liu, Yao-Guang; Sato, Shusei; Nakamura, Yukino; Yokoyama, Koji; Yamamoto, Naoki; Hanano, Shigeru; Takita, Eiji; Sakurai, Nozomu; Suzuki, Hideyuki; Nakamura, Yasukazu; Kaneko, Takakazu; Yano, Kentaro; Tabata, Satoshi; Shibata, Daisuke

    2015-09-01

    We present a high-resolution map of genomic transformation-competent artificial chromosome (TAC) clones extending over all Arabidopsis thaliana (Arabidopsis) chromosomes. The Arabidopsis genomic TAC clones have been valuable genetic tools. Previously, we constructed an Arabidopsis genomic TAC library consisting of more than 10,000 TAC clones harboring large genomic DNA fragments extending over the whole Arabidopsis genome. Here, we determined 13,577 end sequences from 6987 Arabidopsis TAC clones and mapped 5937 TAC clones to precise locations, covering approximately 90% of the Arabidopsis chromosomes. We present the large-scale data set of TAC clones with high-resolution mapping information as a Java application tool, the Arabidopsis TAC Position Viewer, which provides ready-to-go transformable genomic DNA clones corresponding to certain loci on Arabidopsis chromosomes. The TAC clone resources will accelerate genomic DNA cloning, positional walking, complementation of mutants and DNA transformation for heterologous gene expression. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  18. High Resolution Typing by Whole Genome Mapping Enables Discrimination of LA-MRSA (CC398 Strains and Identification of Transmission Events.

    Directory of Open Access Journals (Sweden)

    Thijs Bosch

    Full Text Available After its emergence in 2003, a livestock-associated (LA-MRSA clade (CC398 has caused an impressive increase in the number of isolates submitted for the Dutch national MRSA surveillance and now comprises 40% of all isolates. The currently used molecular typing techniques have limited discriminatory power for this MRSA clade, which hampers studies on the origin and transmission routes. Recently, a new molecular analysis technique named whole genome mapping was introduced. This method creates high-resolution, ordered whole genome restriction maps that may have potential for strain typing. In this study, we assessed and validated the capability of whole genome mapping to differentiate LA-MRSA isolates. Multiple validation experiments showed that whole genome mapping produced highly reproducible results. Assessment of the technique on two well-documented MRSA outbreaks showed that whole genome mapping was able to confirm one outbreak, but revealed major differences between the maps of a second, indicating that not all isolates belonged to this outbreak. Whole genome mapping of LA-MRSA isolates that were epidemiologically unlinked provided a much higher discriminatory power than spa-typing or MLVA. In contrast, maps created from LA-MRSA isolates obtained during a proven LA-MRSA outbreak were nearly indistinguishable showing that transmission of LA-MRSA can be detected by whole genome mapping. Finally, whole genome maps of LA-MRSA isolates originating from two unrelated veterinarians and their household members showed that veterinarians may carry and transmit different LA-MRSA strains at the same time. No such conclusions could be drawn based spa-typing and MLVA. Although PFGE seems to be suitable for molecular typing of LA-MRSA, WGM provides a much higher discriminatory power. Furthermore, whole genome mapping can provide a comparison with other maps within 2 days after the bacterial culture is received, making it suitable to investigate transmission

  19. Surface circulation in the Iroise Sea (western Brittany) derived from high resolution current mapping by HF radars

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Barbin, Yves; Marié, Louis; Ardhuin, Fabrice

    2010-05-01

    The use of high frequency radar (HFR) systems for near-real-time coastal ocean monitoring necessities that short time scale motions of the radar-derived velocities are better understood. While the ocean radar systems are able to describe coastal flow patterns with unprecedented details, the data they produce are often too sparse or gappy for applications such as the identification of coherent structures and fronts or understanding transport and mixing processes. In this study, we address two challenges. First, we report results from the HF radar system (WERA) which is routinely operating since 2006 on the western Brittany coast to monitor surface circulation in the Iroise Sea, over an area extending up to 100 km offshore. To obtain more reliable records of vector current fields at high space and time resolution, the Multiple Signal Classification (MUSIC) direction finding algorithm is employed in conjunction with the variational interpolation (2dVar) of radar-derived velocities. This provides surface current maps at 1 km spacing and time resolution of 20 min. Removing the influence of the sea state on radar-derived current measurements is discussed and performed on some data sequences. Second, we examine in deep continuous 2d velocity records for a number of periods, exploring the different modes of variability of surface currents in the region. Given the extent, duration, and resolution of surface current velocity measurements, new quantitative insights from various time series and spatial analysis on higher frequency kinematics will be discussed. By better characterizing the full spectrum of flow regimes that contribute to the surface currents and their shears, a more complete picture of the circulation in the Iroise Sea can be obtained.

  20. Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae).

    Science.gov (United States)

    Lepelley, Maud; Mahesh, Venkataramaiah; McCarthy, James; Rigoreau, Michel; Crouzillat, Dominique; Chabrillange, Nathalie; de Kochko, Alexandre; Campa, Claudine

    2012-07-01

    Phenylalanine ammonia lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway producing phenolics, widespread constituents of plant foods and beverages, including chlorogenic acids, polyphenols found at remarkably high levels in the coffee bean and long recognized as powerful antioxidants. To date, whereas PAL is generally encoded by a small gene family, only one gene has been characterized in Coffea canephora (CcPAL1), an economically important species of cultivated coffee. In this study, a molecular- and bioinformatic-based search for CcPAL1 paralogues resulted successfully in identifying two additional genes, CcPAL2 and CcPAL3, presenting similar genomic structures and encoding proteins with close sequences. Genetic mapping helped position each gene in three different coffee linkage groups, CcPAL2 in particular, located in a coffee genome linkage group (F) which is syntenic to a region of Tomato Chromosome 9 containing a PAL gene. These results, combined with a phylogenetic study, strongly suggest that CcPAL2 may be the ancestral gene of C. canephora. A quantitative gene expression analysis was also conducted in coffee tissues, showing that all genes are transcriptionally active, but they present distinct expression levels and patterns. We discovered that CcPAL2 transcripts appeared predominantly in flower, fruit pericarp and vegetative/lignifying tissues like roots and branches, whereas CcPAL1 and CcPAL3 were highly expressed in immature fruit. This is the first comprehensive study dedicated to PAL gene family characterization in coffee, allowing us to advance functional studies which are indispensable to learning to decipher what role this family plays in channeling the metabolism of coffee phenylpropanoids.

  1. Physical and Chemical Properties of Jupiter's Polar Vortices and Regions of Auroral Influence Revealed Through High-Resolution Infrared Imaging

    Science.gov (United States)

    Fernandes, Josh; Orton, Glenn S.; Sinclair, James; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya; Momary, Thomas W.; Yanamandra-Fisher, Padma A.

    2016-10-01

    We report characterization of the physical and chemical properties of Jupiter's polar regions derived from mid-infrared imaging of Jupiter covering all longitudes at unprecedented spatial resolution using the COMICS instrument at the Subaru Telescope on the nights of January 24 and 25, 2016 (UT). Because of Jupiter's slight axial tilt of 3°, the low angular resolution and incomplete longitudinal coverage of previous mid-infrared observations, the physical and chemical properties of Jupiter's polar regions have been poorly characterized. In advance of the Juno mission's exploration of the polar regions, this study focuses on mapping the 3-dimensional structure of Jupiter's polar regions, specifically to characterize the polar vortices and compact regions of auroral influence. Using mid-infrared images taken in the 7.8 - 24.2 µm range, we determined the 3-dimensional temperature field, mapped the para-H2 fraction and aerosol opacity at 700 mbar and lower pressures, and constrained the distribution of gaseous NH3 in Jupiter's northern and southern polar regions. Retrievals of these atmospheric parameters was performed using NEMESIS, a radiative transfer forward model and retrieval code. Preliminary results indicate that there are vortices at both poles, each with very distinct low-latitude boundaries approximately 60° (planetocentric) from the equator, which can be defined by sharp thermal gradients extending at least from the upper troposphere (500 mbar) and into the stratosphere (0.1 mbar). These polar regions are characterized by lower temperatures, lower aerosol number densities, and lower NH3 volume mixing ratios, compared with the regions immediately outside the vortex boundaries. These images also provided the highest resolution of prominent auroral-related stratospheric heating to date, revealing a teardrop-shaped morphology in the north and a sharp-edged oval shape in the south. Both appear to be contained inside the locus of H3+ auroral emission detected

  2. A new high-resolution kinematic model for the southern North Atlantic region: the Iberian plate kinematics since the Late Cretaceous

    Science.gov (United States)

    Macchiavelli, Chiara; Vergés, Jaume; Schettino, Antonio; Fernández, Manel; Turco, Eugenio; Torné, Montserrat; Casciello, Emilio

    2017-04-01

    We present the first high-resolution kinematic model for the southern North Atlantic since the late Cretaceous, in order to constrain the Iberian kinematics during the last 83 Myr. Assessing the detailed movements of the Iberian plate is crucial to constrain the kinematics of the Western Mediterranean region and to better understand the Pyrenees and Betic - Rif orogenic systems evolution. The new plate motions model for the Iberia - North America plate pair is accompanied by a high-resolution isochron map for the southern North Atlantic region, resulting from a re-examination of 400 ship tracks and 3 aeromagnetic tracks in the NGDC data base for the area between the Azores triple junction and 46° N. We derive a well-constrained kinematic solution for the relative motion between an independent Iberia and North America from seafloor spreading data despite the short length of the magnetic lineations and the scarcity of large-offset transform faults and fracture zones. Accurate finite reconstruction poles for the Iberia - North America conjugate plate pair between the Late Cretaceous (Chron 34, 83.5 Ma) and the present day (Chron 2A, 2.58 Ma) are calculated on the basis of a set of 100 magnetic profiles through an iterative method. Euler poles and associated angles of rotation are computed as follow. An initial rotation pole is calculated using only magnetic anomaly crossings. The initial large uncertainty associated with the first determination is reduced by generating a set of synthetic fracture zones associated with the initial pole and using points sampled along these structures in conjunction with magnetic anomaly crossings to calculate a new Euler pole and associated confidence ellipse. This procedure is repeated n times, generating a sequence of improving approximate solutions and stopped when the solution become stable excluding solutions that were inconsistent with geological constraints. We used these results to build a comprehensive kinematic model for the

  3. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. VIII. A WIDE-AREA, HIGH-RESOLUTION MAP OF DUST EXTINCTION IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Dalcanton, Julianne J.; Fouesneau, Morgan; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Hogg, David W. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Pl #424, New York, NY 10003 (United States); Lang, Dustin [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213 (United States); Leroy, Adam K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Gordon, Karl D.; Gilbert, Karoline M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sandstrom, Karin [Steward Observatory, University of Arizona, 933 N Cherry Ave, Tucson, AZ 85721 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Dong, Hui; Lauer, Tod R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Gouliermis, Dimitrios A. [Max Planck Institute für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Guhathakurta, Puragra [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Schruba, Andreas [California Institute of Technology, Cahill Center for Astrophysics, 1200 E. California Blvd, Pasadena, CA 91125 (United States); Seth, Anil C. [University of Utah, Salt Lake City, UT (United States); Skillman, Evan D., E-mail: jd@astro.washington.edu [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2015-11-20

    We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color–magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor of ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine and Li dust models overpredict the observed extinction by a factor of ∼2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ∼2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine and Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.

  4. Geographic Object-based Image Analysis for Developing Cryospheric Surface Mapping Application using Remotely Sensed High-Resolution Satellite Imagery

    Science.gov (United States)

    Jawak, S. D.; Luis, A. J.

    2015-12-01

    A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (GEOBIA) to extract cryospheric geoinformation from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for GEOBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, Antarctica. Multi-level segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features w.r.t scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify landmass, man-made features, snow/ice, and water bodies. A specific attention was paid to water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and GEOBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≈97%. In conclusion, the results suggest that GEOBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geoinformation.

  5. A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans

    Science.gov (United States)

    Doroquez, David B; Berciu, Cristina; Anderson, James R; Sengupta, Piali; Nicastro, Daniela

    2014-01-01

    Many primary sensory cilia exhibit unique architectures that are critical for transduction of specific sensory stimuli. Although basic ciliogenic mechanisms are well described, how complex ciliary structures are generated remains unclear. Seminal work performed several decades ago provided an initial but incomplete description of diverse sensory cilia morphologies in C. elegans. To begin to explore the mechanisms that generate these remarkably complex structures, we have taken advantage of advances in electron microscopy and tomography, and reconstructed three-dimensional structures of fifty of sixty sensory cilia in the C. elegans adult hermaphrodite at high resolution. We characterize novel axonemal microtubule organization patterns, clarify structural features at the ciliary base, describe new aspects of cilia–glia interactions, and identify structures suggesting novel mechanisms of ciliary protein trafficking. This complete ultrastructural description of diverse cilia in C. elegans provides the foundation for investigations into underlying ciliogenic pathways, as well as contributions of defined ciliary structures to specific neuronal functions. DOI: http://dx.doi.org/10.7554/eLife.01948.001 PMID:24668170

  6. Object-Based Classification of Grasslands from High Resolution Satellite Image Time Series Using Gaussian Mean Map Kernels

    Directory of Open Access Journals (Sweden)

    Mailys Lopes

    2017-07-01

    Full Text Available This paper deals with the classification of grasslands using high resolution satellite image time series. Grasslands considered in this work are semi-natural elements in fragmented landscapes, i.e., they are heterogeneous and small elements. The first contribution of this study is to account for grassland heterogeneity while working at the object level by modeling its pixels distributions by a Gaussian distribution. To measure the similarity between two grasslands, a new kernel is proposed as a second contribution: the α -Gaussian mean kernel. It allows one to weight the influence of the covariance matrix when comparing two Gaussian distributions. This kernel is introduced in support vector machines for the supervised classification of grasslands from southwest France. A dense intra-annual multispectral time series of the Formosat-2 satellite is used for the classification of grasslands’ management practices, while an inter-annual NDVI time series of Formosat-2 is used for old and young grasslands’ discrimination. Results are compared to other existing pixel- and object-based approaches in terms of classification accuracy and processing time. The proposed method is shown to be a good compromise between processing speed and classification accuracy. It can adapt to the classification constraints, and it encompasses several similarity measures known in the literature. It is appropriate for the classification of small and heterogeneous objects such as grasslands.

  7. Flood Damage Modeling on the Basis of Urban Structure Mapping Using High-Resolution Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Tina Gerl

    2014-08-01

    Full Text Available The modeling of flood damage is an important component for risk analyses, which are the basis for risk-oriented flood management, risk mapping, and financial appraisals. An automatic urban structure type mapping approach was applied on a land use/land cover classification generated from multispectral Ikonos data and LiDAR (Light Detection And Ranging data in order to provide spatially detailed information about the building stock of the case study area of Dresden, Germany. The multi-parameter damage models FLEMOps (Flood Loss Estimation Model for the private sector and regression-tree models have been adapted to the information derived from remote sensing data and were applied on the basis of the urban structure map. To evaluate this approach, which is suitable for risk analyses, as well as for post-disaster event analyses, an estimation of the flood losses caused by the Elbe flood in 2002 was undertaken. The urban structure mapping approach delivered a map with a good accuracy of 74% and on this basis modeled flood losses for the Elbe flood in 2002 in Dresden were in the same order of magnitude as official damage data. It has been shown that single-family houses suffered significantly higher damages than other urban structure types. Consequently, information on their specific location might significantly improve damage modeling, which indicates a high potential of remote sensing methods to further improve risk assessments.

  8. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations.

    Science.gov (United States)

    2014-12-11

    Cassava (Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400-500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculenta Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480 meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. We used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selection-enhanced breeding of this important crop. Copyright © 2015 International Cassava Genetic Map Consortium (ICGMC).

  9. Large-scale, high-resolution wind resource mapping for wind farm planning and development in South Africa

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Badger, Jake; Hansen, Jens Carsten

    2014-01-01

    estimates are designed for national and provincial planning and strategic environmental impact assessment for wind power in South Africa and the results have therefore been made available in common GIS formats. The database of results is in the public domain and can be downloaded from the WASA web site......Numerical wind atlas data at 5 km resolution have been used to map the wind resources of the Wind Atlas for South Africa (WASA) domain in great detail: mean wind speed, mean wind power density, elevation and ruggedness index for every 250 metres over an area of 350,000 square kilometres. The wind......-climatological inputs to the wind resource mapping are wind atlas data sets derived from mesoscale modelling using the Karlsruhe Atmospheric Mesoscale Model (KAMM). The topographical inputs to the microscale modelling are 20-m digital height contours from 1:50,000 South African topographical maps and vector-format land...

  10. Large-scale, high-resolution wind resource mapping for wind farm planning and development in South Africa

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Badger, Jake; Hansen, Jens Carsten

    estimates are designed for national and provincial planning and strategic environmental impact assessment for wind power in South Africa and the results have therefore been made available in common GIS formats. The database of results is in the public domain and can be downloaded from the WASA web site......Numerical wind atlas data at 5 km resolution have been used to map the wind resources of the Wind Atlas for South Africa (WASA) domain in great detail: mean wind speed, mean wind power density, elevation and ruggedness index for every 250 metres over an area of 350,000 square kilometres. The wind......-climatological inputs to the wind resource mapping are wind atlas data sets derived from mesoscale modelling using the Karlsruhe Atmospheric Mesoscale Model (KAMM). The topographical inputs to the microscale modelling are 20-m digital height contours from 1:50,000 South African topographical maps and vector-format land...

  11. Design of a High Resolution Open Access Global Snow Cover Web Map Service Using Ground and Satellite Observations

    Science.gov (United States)

    Kadlec, J.; Ames, D. P.

    2014-12-01

    The aim of the presented work is creating a freely accessible, dynamic and re-usable snow cover map of the world by combining snow extent and snow depth datasets from multiple sources. The examined data sources are: remote sensing datasets (MODIS, CryoLand), weather forecasting model outputs (OpenWeatherMap, forecast.io), ground observation networks (CUAHSI HIS, GSOD, GHCN, and selected national networks), and user-contributed snow reports on social networks (cross-country and backcountry skiing trip reports). For adding each type of dataset, an interface and an adapter is created. Each adapter supports queries by area, time range, or combination of area and time range. The combined dataset is published as an online snow cover mapping service. This web service lowers the learning curve that is required to view, access, and analyze snow depth maps and snow time-series. All data published by this service are licensed as open data; encouraging the re-use of the data in customized applications in climatology, hydrology, sports and other disciplines. The initial version of the interactive snow map is on the website snow.hydrodata.org. This website supports the view by time and view by site. In view by time, the spatial distribution of snow for a selected area and time period is shown. In view by site, the time-series charts of snow depth at a selected location is displayed. All snow extent and snow depth map layers and time series are accessible and discoverable through internationally approved protocols including WMS, WFS, WCS, WaterOneFlow and WaterML. Therefore they can also be easily added to GIS software or 3rd-party web map applications. The central hypothesis driving this research is that the integration of user contributed data and/or social-network derived snow data together with other open access data sources will result in more accurate and higher resolution - and hence more useful snow cover maps than satellite data or government agency produced data by

  12. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.

    Science.gov (United States)

    Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M

    2017-10-24

    Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.

  13. The songbird syrinx morphome: a three-dimensional, high-resolution, interactive morphological map of the zebra finch vocal organ

    Directory of Open Access Journals (Sweden)

    Düring Daniel N

    2013-01-01

    Full Text Available Abstract Background Like human infants, songbirds learn their species-specific vocalizations through imitation learning. The birdsong system has emerged as a widely used experimental animal model for understanding the underlying neural mechanisms responsible for vocal production learning. However, how neural impulses are translated into the precise motor behavior of the complex vocal organ (syrinx to create song is poorly understood. First and foremost, we lack a detailed understanding of syringeal morphology. Results To fill this gap we combined non-invasive (high-field magnetic resonance imaging and micro-computed tomography and invasive techniques (histology and micro-dissection to construct the annotated high-resolution three-dimensional dataset, or morphome, of the zebra finch (Taeniopygia guttata syrinx. We identified and annotated syringeal cartilage, bone and musculature in situ in unprecedented detail. We provide interactive three-dimensional models that greatly improve the communication of complex morphological data and our understanding of syringeal function in general. Conclusions Our results show that the syringeal skeleton is optimized for low weight driven by physiological constraints on song production. The present refinement of muscle organization and identity elucidates how apposed muscles actuate different syringeal elements. Our dataset allows for more precise predictions about muscle co-activation and synergies and has important implications for muscle activity and stimulation experiments. We also demonstrate how the syrinx can be stabilized during song to reduce mechanical noise and, as such, enhance repetitive execution of stereotypic motor patterns. In addition, we identify a cartilaginous structure suited to play a crucial role in the uncoupling of sound frequency and amplitude control, which permits a novel explanation of the evolutionary success of songbirds.

  14. A proxy for snow cover and winter ground surface cooling: Mapping Usnea sp. communities using high resolution remote sensing imagery (Maritime Antarctica)

    Science.gov (United States)

    Vieira, Gonçalo; Mora, Carla; Pina, Pedro; Schaefer, Carlos E. R.

    2014-11-01

    Usnea sp. formations show a spatial distribution coinciding with wind-exposed locations on rock knobs or sedimentary bodies, while they are commonly absent from concave sites. Field collection of georeferenced ground truthing data in the Meseta Norte (Fildes Peninsula, Maritime Antarctica) and the application of supervised classification techniques over a summer high resolution QuickBird satellite scene showed excellent classification accuracy for the different landcover types. The results show that Usnea formation distribution maps are a viable proxy for areas with less snow during the cold season. Such an approach provides input for permafrost and active layer modelling since snow acts as a critical control on ground surface heat balance. Since snow mapping is extremely difficult in Maritime Antarctica our tested approach provides important added-value for empirical-statistical modelling of permafrost distribution.

  15. A high-resolution genetic map of yellow monkeyflower identifies chemical defense QTLs and recombination rate variation.

    Science.gov (United States)

    Holeski, Liza M; Monnahan, Patrick; Koseva, Boryana; McCool, Nick; Lindroth, Richard L; Kelly, John K

    2014-03-13

    Genotyping-by-sequencing methods have vastly improved the resolution and accuracy of genetic linkage maps by increasing both the number of marker loci as well as the number of individuals genotyped at these loci. Using restriction-associated DNA sequencing, we construct a dense linkage map for a panel of recombinant inbred lines derived from a cross between divergent ecotypes of Mimulus guttatus. We used this map to estimate recombination rate across the genome and to identify quantitative trait loci for the production of several secondary compounds (PPGs) of the phenylpropanoid pathway implicated in defense against herbivores. Levels of different PPGs are correlated across recombinant inbred lines suggesting joint regulation of the phenylpropanoid pathway. However, the three quantitative trait loci identified in this study each act on a distinct PPG. Finally, we map three putative genomic inversions differentiating the two parental populations, including a previously characterized inversion that contributes to life-history differences between the annual/perennial ecotypes. Copyright © 2014 Holeski et al.

  16. High-resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset

    Science.gov (United States)

    Christopher Daly; Melissa E. Slater; Joshua A. Roberti; Stephanie H. Laseter; Lloyd W. Swift

    2017-01-01

    A 69-station, densely spaced rain gauge network was maintained over the period 1951–1958 in the Coweeta Hydrologic Laboratory, located in the southern Appalachians in western North Carolina, USA. This unique dataset was used to develop the first digital seasonal and annual precipitation maps for the Coweeta basin, using elevation regression functions and...

  17. Enhancing hydrologic mapping using LIDAR and high resolution aerial photos on the Frances Marion National Forest in coastal South Carolina

    Science.gov (United States)

    Andy Maceyka; William F. Hansen

    2016-01-01

    Evaluating hydrology within coastal marine terrace features has always been problematic as watershed boundaries and stream detail are difficult to determine in low gradient terrain with dense bottomland forests. Various studies have improved hydrologic detail using USGS Topographic Contour Maps (Hansen 2001, Eidson and others 2005) or Light Detection and Ranging (LIDAR...

  18. ‘‘Blind'' mapping of genic DNA sequence polymorphisms in Lolium perenne L. by high resolution melting curve analysis

    DEFF Research Database (Denmark)

    Studer, Bruno; Jensen, Louise Bach; Fiil, Alice

    2009-01-01

    curves. In this study, HRM was used for simultaneous screening and genotyping of genic DNA sequence polymorphisms identified in the Lolium perenne F2 mapping population VrnA. Melting profiles of PCR products amplified from previously published gene loci and from a novel gene putatively involved...... knowledge of allelic sequences in the key grassland species perennial ryegrass (Lolium perenne L.)....

  19. High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus

    NARCIS (Netherlands)

    Ghazaleh, Naghmeh; Van der Zwaag, W.; Clarke, Stephanie; Ville, Dimitri Van De; Maire, Raphael; Saenz, Melissa

    2017-01-01

    Animal models of hearing loss and tinnitus observe pathological neural activity in the tonotopic frequency maps of the primary auditory cortex. Here, we applied ultra high-field fMRI at 7 T to test whether human patients with unilateral hearing loss and tinnitus also show altered functional activity

  20. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01

    Science.gov (United States)

    A landmark in soybean research, Glyma1.01, the first whole genome sequence of variety Williams 82 (Glycine max L. Merr.) was completed in 2010 and is widely used. However, because the assembly was primarily built based on the linkage maps constructed with a limited number of markers and recombinant...

  1. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells

    Science.gov (United States)

    This report presents a study utilizing next-generation sequencing technology, combined with chromatin immunoprecipitation (ChIP-seq) technology to analyze histone modification induced by butyrate and to construct a high-definition map of the epigenomic landscape with normal histone H3, H4, and their...

  2. High Resolution Mapping of an Alleged Chemical Weapons Dump Site in the Santa Cruz Basin, offshore California

    Science.gov (United States)

    Brewer, P. G.; Peltzer, E. T.; Walz, P. M.; Caress, D. W.; Thomas, H. J.

    2013-12-01

    Nautical charts record seven locations off the coast of California labeled as 'Chemical Munitions Dumping Area, Disused' that together cover some 12,000 km2 of sea floor. However only one such chemical munitions site is officially documented and no record exists of any chemical munitions disposed of at other locations, thus creating confusion. We have executed a one day AUV mapping survey of a corner of one such site in the Santa Cruz Basin, south of Port Hueneme, to examine and investigate the debris field. The region is covered with soft sediment and the overlying water is very low in oxygen at ~10 μmol/kg. The processed 110 kHz sidescan data revealed some 754 targets in 25.6 km2 for an average of 29 targets per km2. This was followed by two ROV dives to investigate the targets identified. We found but one false positives among the over 40 targets visited, and found items ranging from two distinct lines of unmarked or labeled and now empty barrels, two target drones, and much miscellaneous debris including 4-packs of cat food cans and a large ships mast over 30m in length. There was zero evidence of chemical weapons materiel as expected given the lack of official records. Almost all of the targets were covered in dense and colorful assemblages of invertebrates: sponges, anemones, and crabs. Where barrels were sufficiently open for full visual inspection, the interior sea floor appeared to have become fully anoxic and was covered in white and yellow bacterial mat. The area chosen for our survey (centered at 33.76 deg N 119.56 deg W) was across the north western boundary of the marked site, and represents only ~ 10% percent of the designated area. Our expectation, that human nature would drive the disposal activities to the nearest corner of the chosen area rather than the center of the field appears to have been confirmed. Objects were found both within and outside of the boundary of the dump site. We have not surveyed the full marked area but there appears to be

  3. Air Quality Modeling for the Urban Jackson, Mississippi Region Using a High Resolution WRF/Chem Model

    Directory of Open Access Journals (Sweden)

    Shelton J. Swanier

    2011-06-01

    Full Text Available In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi region using an online WRF/Chem (Weather Research and Forecasting–Chemistry model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators.

  4. High resolution three-dimensional magnetization mapping in Tokachidake Volcano using low altitude airborne magnetic survey data

    Science.gov (United States)

    Iwata, M.; Mogi, T.; Okuma, S.; Nakatsuka, T.

    2016-12-01

    Tokachidake Volcano, central Hokkaido, Japan erupted in 1926, 1962 and 1988-1989 in the 20th century from the central part. In recent years, expansions of the edifice of the volcano at shallow depth and increases of the volcanic smoke in the Taisho crater were observed (Meteorological Agency of Japan, 2014). Magnetic changes were observed at the 62-2 crater by repeated magnetic measurements in 2008-2009, implying a demagnetization beneath the crater (Hashimoto at al., 2010). Moreover, a very low resistivity part was found right under the 62-2 crater from an AMT survey (Yamaya et al., 2010). However, since the station numbers of the survey are limited, the area coverage is not sufficient. In this study, we have re-analyzed high-resolution aeromagnetic data to delineate the three-dimensional magnetic structure of the volcano to understand the nature of other craters.A low altitude airborne magnetic survey was conducted in 2014 mainly over the active areas of the volcano by the Ministry of Land, Infrastructure, Transport and Tourism to manage land slide risk in the volcano. The survey was flown at an altitude of 60 m above ground by a helicopter with a Cesium magnetometer in the towed-bird 30m below the helicopter. The low altitude survey enables us to delineate the detailed magnetic structure. We calculated magnetic anomaly distribution on a smooth surface assuming equivalent anomalies below the observation surface. Then the 3D magnetic imaging method (Nakatsuka and Okuma, 2014) was applied to the magnetic anomalies to reveal the three-dimensional magnetic structure.As a result, magnetization highs were seen beneath the Ground crater, Suribachi crater and Kitamuki crater. This implies that magmatic activity occurred in the past at these craters. These magma should have already solidified and acquired strong remanent magnetization. Relative magnetization lows were seen beneath the 62-2 crater and the Taisho crater where fumarolic activity is active. However a

  5. Velocity-space observation regions of high-resolution two-step reaction gamma-ray spectroscopy

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nocente, M.; Gorini, G.

    2015-01-01

    High-resolution γ-ray spectroscopy (GRS) measurements resolve spectral shapes of Dopplerbroadened γ-rays. We calculate weight functions describing velocity-space sensitivities of any two-step reaction GRS measurements in magnetized plasmas using the resonant nuclear reaction 9Be(α, nγ)12C...... as an example. The energy-dependent cross sections of this reaction suggest that GRS is sensitive to alpha particles above about 1.7 MeV and highly sensitive to alpha particles at the resonance energies of the reaction. Here we demonstrate that highresolution two-step reaction GRS measurements are not only...

  6. Modeling Photo-Bleaching Kinetics to Create High Resolution Maps of Rod Rhodopsin in the Human Retina.

    Directory of Open Access Journals (Sweden)

    Martin Ehler

    Full Text Available We introduce and describe a novel non-invasive in-vivo method for mapping local rod rhodopsin distribution in the human retina over a 30-degree field. Our approach is based on analyzing the brightening of detected lipofuscin autofluorescence within small pixel clusters in registered imaging sequences taken with a commercial 488nm confocal scanning laser ophthalmoscope (cSLO over a 1 minute period. We modeled the kinetics of rhodopsin bleaching by applying variational optimization techniques from applied mathematics. The physical model and the numerical analysis with its implementation are outlined in detail. This new technique enables the creation of spatial maps of the retinal rhodopsin and retinal pigment epithelium (RPE bisretinoid distribution with an ≈ 50μm resolution.

  7. High-resolution maps of the 1.5 GHz emission from Jupiter's disk and radiation belt

    Science.gov (United States)

    Roberts, J. A.; Berge, G. L.; Bignell, R. C.

    1984-01-01

    VLA maps of four different faces of Jupiter made with a resolution of about 0.3 Jovian radius show new features of the radiation belt emission. A synchrotron model which reproduces these features serves to define the major characteristics of the relativistic electrons in the radiation belt. The observations provide the best determination to date of the atmospheric emission at 1.5 GHz and yield a disk brightness temperature of 425 + or - 100 K.

  8. Genome-Wide High-Resolution Mapping of UV-Induced Mitotic Recombination Events in Saccharomyces cerevisiae

    OpenAIRE

    Yin, Yi; Thomas D Petes

    2013-01-01

    In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs). Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH). In this study, LOH events induced by ultraviolet (UV) light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP) microarrays. UV doses that have little effect on the viability of diploid cells s...

  9. Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae.

    OpenAIRE

    Yi Yin; Thomas D Petes

    2013-01-01

    In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs). Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH). In this study, LOH events induced by ultraviolet (UV) light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP) microarrays. UV doses that have little effect on the viability of diploid cells s...

  10. Scalable, incremental learning with MapReduce parallelization for cell detection in high-resolution 3D microscopy data

    KAUST Repository

    Sung, Chul

    2013-08-01

    Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy techniques such as Knife-Edge Scanning Microscopy (KESM) are enabling whole-brain survey of neuronal distributions. Data from such techniques pose serious challenges to quantitative analysis due to the massive, growing, and sparsely labeled nature of the data. In this paper, we present a scalable, incremental learning algorithm for cell body detection that can address these issues. Our algorithm is computationally efficient (linear mapping, non-iterative) and does not require retraining (unlike gradient-based approaches) or retention of old raw data (unlike instance-based learning). We tested our algorithm on our rat brain Nissl data set, showing superior performance compared to an artificial neural network-based benchmark, and also demonstrated robust performance in a scenario where the data set is rapidly growing in size. Our algorithm is also highly parallelizable due to its incremental nature, and we demonstrated this empirically using a MapReduce-based implementation of the algorithm. We expect our scalable, incremental learning approach to be widely applicable to medical imaging domains where there is a constant flux of new data. © 2013 IEEE.

  11. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology.

    Science.gov (United States)

    Tompkins, Adrian M; Ermert, Volker

    2013-02-18

    The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions.

  12. Epicardial-endocardial breakthrough during stable atrial macroreentry: Evidence from ultra-high-resolution 3-dimensional mapping.

    Science.gov (United States)

    Pathik, Bhupesh; Lee, Geoffrey; Sacher, Frédéric; Haïssaguerre, Michel; Jaïs, Pierre; Massoullié, Grégoire; Derval, Nicolas; Sanders, Prashanthan; Kistler, Peter; Kalman, Jonathan M

    2017-08-01

    Evidence for epicardial-endocardial breakthrough (EEB) is derived from mapping inferences in patients with atrial fibrillation who may also have focal activations. The purpose of this study was to investigate whether EEB could be discerned during stable right atrial (RA) macroreentry using high-density high-spatial resolution 3-dimensional mapping. Macroreentry was diagnosed using 3-dimensional mapping and entrainment. Bipolar maps were reviewed for EEB defined as (1) presence of focal endocardial activation with radial spread unaccounted for by an endocardial wavefront and (2) present with the same timing on every tachycardia cycle. The EEB site was always in proximity to a line of endocardial conduction slowing or block. Distance and conduction velocity from the line of block to the EEB site was calculated. Electrograms at EEB sites were individually analyzed for morphology and to confirm direction of activation. Entrainment was performed at EEB sites. Twenty-six patients were studied. Fourteen examples of EEB were seen: 11 at the posterior RA (4 at the superior portion of the posterior wall and 7 at the inferior section) and 1 each at the cavotricuspid isthmus postablation, RA septum, and inferolateral RA. The mean area of the EEB site was 0.6 ± 0.2 cm2. A mean of 79.5% ± 18.6% of unipolar electrograms at the EEB site demonstrated an rS morphology. The mean distance and conduction velocity from the line of endocardial block to the EEB site at the posterior RA was 13.6 ± 2.3 mm and 59.3 ± 12.3 cm/s, respectively. In 4 patients, entrainment demonstrated that EEB sites were within the circuit and in 1 of these patients critical to arrhythmia maintenance. Activation maps during tachycardia and coronary sinus pacing demonstrated EEB at the same anatomic site. EEB sites were demonstrated in stable atrial macroreentry supported by systematic entrainment confirmation and demonstration of the same phenomenon during pacing. Copyright © 2017 Heart Rhythm Society

  13. High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot diseases.

    Science.gov (United States)

    Valentini, Giseli; Gonçalves-Vidigal, Maria Celeste; Hurtado-Gonzales, Oscar P; de Lima Castro, Sandra Aparecida; Cregan, Perry B; Song, Qijian; Pastor-Corrales, Marcial A

    2017-08-01

    Co-segregation analysis and high-throughput genotyping using SNP, SSR, and KASP markers demonstrated genetic linkage between Ur-14 and Co-3 4 /Phg-3 loci conferring resistance to the rust, anthracnose and angular leaf spot diseases of common bean. Rust, anthracnose, and angular leaf spot are major diseases of common bean in the Americas and Africa. The cultivar Ouro Negro has the Ur-14 gene that confers broad spectrum resistance to rust and the gene cluster Co-3 4 /Phg-3 containing two tightly linked genes conferring resistance to anthracnose and angular leaf spot, respectively. We used co-segregation analysis and high-throughput genotyping of 179 F2:3 families from the Rudá (susceptible) × Ouro Negro (resistant) cross-phenotyped separately with races of the rust and anthracnose pathogens. The results confirmed that Ur-14 and Co-3 4 /Phg-3 cluster in Ouro Negro conferred resistance to rust and anthracnose, respectively, and that Ur-14 and the Co-3 4 /Phg-3 cluster were closely linked. Genotyping the F2:3 families, first with 5398 SNPs on the Illumina BeadChip BARCBEAN6K_3 and with 15 SSR, and eight KASP markers, specifically designed for the candidate region containing Ur-14 and Co-3 4 /Phg-3, permitted the creation of a high-resolution genetic linkage map which revealed that Ur-14 was positioned at 2.2 cM from Co-3 4 /Phg-3 on the short arm of chromosome Pv04 of the common bean genome. Five flanking SSR markers were tightly linked at 0.1 and 0.2 cM from Ur-14, and two flanking KASP markers were tightly linked at 0.1 and 0.3 cM from Co-3 4 /Phg-3. Many other SSR, SNP, and KASP markers were also linked to these genes. These markers will be useful for the development of common bean cultivars combining the important Ur-14 and Co-3 4 /Phg-3 genes conferring resistance to three of the most destructive diseases of common bean.

  14. High Resolution Mapping and Interpretation of Channel and Floodplain Topography With a Narrow-Beam Terrestrial-Aquatic Lidar

    Science.gov (United States)

    McKean, J.; Isaak, D.; Tonina, D.; Wright, W.; Kinzel, P.

    2007-12-01

    Basic description of channel and floodplain topography remains a fundamental challenge for modeling flow and sediment transport or even simply mapping habitat. Standard field wading and boat surveys of stream topography are limited by costs and logistics to relatively small sample reaches and floodplain maps are seldom well- integrated with channel bathymetry. We used the NASA Experimental Advanced Airborne Research Lidar (EAARL) to map channel and floodplain topography and investigate geomorphic controls on physical habitat in two diverse channels in the watershed of the Middle Fork Salmon River, Idaho. Bear Valley Creek is a small low-gradient gravel-bed stream flowing across an unconfined valley filled with glacial outwash materials. A hierarchy of nested geomorphic features is evident in this channel with the broadest fluvial domains a legacy of ~15,000 years of post-glacial valley evolution. Contemporary hydraulics operate on this broad template and control two smaller scales of pool-riffle morphology. Salmon spawning patterns closely reflect these nested physical domains, demonstrating how geomorphic history can influence modern distributions of aquatic habitat and organisms. In contrast, Big Creek is a higher-gradient stream predominately confined by steep side slopes in a deep valley. Here, the distribution of geomorphic domains and physical habitat is controlled by modern erosion processes and rock quality. Tributaries and valley walls contribute coarse debris, up to large boulders, to the channel, resulting in very rough and poorly organized bed topography. Tributary fans also function as local grade control with sediment deposition in lower-gradient reaches upstream of fans. A GIS toolkit is under development to extract at-a-station channel metrics from EAARL data, including for example, cross section and longitudinal profile characteristics. A new investigation has also begun to further investigate the quality of EAARL data. This study will explore the

  15. Quantitating the effect of prosthesis design on femoral remodeling using high-resolution region-free densitometric analysis (DXA-RFA)

    DEFF Research Database (Denmark)

    Farzi, Mohsen; Morris, Richard M; Penny, Jeannette

    2017-01-01

    -resurfacing prosthesis, where BMD increase was widespread across the metaphysis (p Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf...... are not readily resolved using conventional DXA analysis. DXA region free analysis (DXA RFA) is a novel computational image analysis technique that provides a high-resolution quantitation of periprosthetic BMD. Here, we applied the technique to quantitate the magnitude and areal size of periprosthetic BMD changes...... of Orthopaedic Research Society....

  16. Experiment LEND of the NASA Lunar Reconnaissance Orbiter for high-resolution mapping of neutron emission of the Moon.

    Science.gov (United States)

    Mitrofanov, I G; Sanin, A B; Golovin, D V; Litvak, M L; Konovalov, A A; Kozyrev, A S; Malakhov, A V; Mokrousov, M I; Tretyakov, V I; Troshin, V S; Uvarov, V N; Varenikov, A B; Vostrukhin, A A; Shevchenko, V V; Shvetsov, V N; Krylov, A R; Timoshenko, G N; Bobrovnitsky, Y I; Tomilina, T M; Grebennikov, A S; Kazakov, L L; Sagdeev, R Z; Milikh, G N; Bartels, A; Chin, G; Floyd, S; Garvin, J; Keller, J; McClanahan, T; Trombka, J; Boynton, W; Harshman, K; Starr, R; Evans, L

    2008-08-01

    The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.

  17. Combined use of X-ray fluorescence microscopy, phase contrast imaging for high resolution quantitative iron mapping in inflamed cells

    Science.gov (United States)

    Gramaccioni, C.; Procopio, A.; Farruggia, G.; Malucelli, E.; Iotti, S.; Notargiacomo, A.; Fratini, M.; Yang, Y.; Pacureanu, A.; Cloetens, P.; Bohic, S.; Massimi, L.; Cutone, A.; Valenti, P.; Rosa, L.; Berlutti, F.; Lagomarsino, S.

    2017-06-01

    X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and localize elements in cells. To derive information useful for biology and medicine, it is essential not only to localize, but also to map quantitatively the element concentration. Here we applied quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, atomic force microscopy and synchrotron phase contrast imaging.

  18. Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae.

    Science.gov (United States)

    Yin, Yi; Petes, Thomas D

    2013-10-01

    In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs). Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH). In this study, LOH events induced by ultraviolet (UV) light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP) microarrays. UV doses that have little effect on the viability of diploid cells stimulate crossovers more than 1000-fold in wild-type cells. In addition, UV stimulates recombination in G1-synchronized cells about 10-fold more efficiently than in G2-synchronized cells. Importantly, at high doses of UV, most conversion events reflect the repair of two sister chromatids that are broken at approximately the same position whereas at low doses, most conversion events reflect the repair of a single broken chromatid. Genome-wide mapping of about 380 unselected crossovers, break-induced replication (BIR) events, and gene conversions shows that UV-induced recombination events occur throughout the genome without pronounced hotspots, although the ribosomal RNA gene cluster has a significantly lower frequency of crossovers.

  19. Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yi Yin

    2013-10-01

    Full Text Available In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs. Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH. In this study, LOH events induced by ultraviolet (UV light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP microarrays. UV doses that have little effect on the viability of diploid cells stimulate crossovers more than 1000-fold in wild-type cells. In addition, UV stimulates recombination in G1-synchronized cells about 10-fold more efficiently than in G2-synchronized cells. Importantly, at high doses of UV, most conversion events reflect the repair of two sister chromatids that are broken at approximately the same position whereas at low doses, most conversion events reflect the repair of a single broken chromatid. Genome-wide mapping of about 380 unselected crossovers, break-induced replication (BIR events, and gene conversions shows that UV-induced recombination events occur throughout the genome without pronounced hotspots, although the ribosomal RNA gene cluster has a significantly lower frequency of crossovers.

  20. Terrane daylight mapping on large dip-slope terrain based on high-resolution DTM and semi-automatic geoprocessing processes

    Science.gov (United States)

    Yeh, Chih-Hsiang; Lin, Ming-Lang; Chan, Yu-Chang; Chang, Kuo-Jen; Hsieh, Yu-Chung

    2015-04-01

    "Daylight" in slope engineering means a lineament appearing on the ground surface casued by a internal weak plane of a rock slope. The morphology of the daylight implies the free surface condition of the rock mass upper the weak plane, directly affecting the slope stability and safety. Traditionally, the reconnaissance of daylight employs field investigation and drillings in local dip slope area, but when mapping in large area, it would be subjected to vegetation cover and budget limitation to get a simply result not used for engineering applications. Therefore, the purpose of this study is to develop a rapid and reliable mapping program based on high-resolution DTM, and to generate a large-scale daylight map for large dip slope area. The methodology can be divided into two phases: the first is re-mapping terrane boundary lineaments using LiDAR data and 3D GIS mapping technology; the second is automatically mapping daylight tracks by trend surface analysis and python scripts based on above terrane boundary lineaments. This study takes the area of Keelung River north bank, which is mainly cuesta topography, for an example. Recently, in the area, the frequency of dip slope landslide occurrence becomes more higher because of human development. One major reason to cause the daylight appearing on downslope is the slope toe cutting or river incision. Hereby, according to the final results of the daylight map, we can assess where the potential landsides dip slops are, and further differentiate three different risks of dip slope from the daylight's morphology, expecting to provide more detail engineering and geological information for furture engineering site selection and the design and application of disaster prevention.

  1. The Impact Snow Albedo Feedback over Mountain Regions as Examined through High-Resolution Regional Climate Change Experiments over the Rocky Mountains

    Science.gov (United States)

    Letcher, Theodore

    As the climate warms, the snow albedo feedback (SAF) will play a substantial role in shaping the climate response of mid-latitude mountain regions with transient snow cover. One such region is the Rocky Mountains of the western United States where large snow packs accumulate during the winter and persist throughout the spring. In this dissertation, the Weather Research and Forecast model (WRF) configured as a regional climate model is used to investigate the role of the SAF in determining the regional climate response to forced anthropogenic climate change. The regional effects of climate change are investigated by using the pseudo global warming (PGW) framework, which is an experimental configuration in a which a mean climate perturbation is added to the boundary forcing of a regional model, thus preserving the large-scale circulation entering the region through the model boundaries and isolating the mesoscale climate response. Using this framework, the impact of the SAF on the regional energetics and atmospheric dynamics is examined and quantified. Linear feedback analysis is used to quantify the strength of the SAF over the Headwaters region of the Colorado Rockies for a series of high-resolution PGW experiments. This technique is used to test sensitivity of the feedback strength to model resolution and land surface model. Over the Colorado Rockies, and integrated over the entire spring season, the SAF strength is largely insensitive to model resolution, however there are more substantial differences on the sub-seasonal (monthly) timescale. In contrast, the SAF strength over this region is very sensitive to choice of land surface model. These simulations are also used to investigate how spatial and diurnal variability in warming caused by the SAF influences the dynamics of thermally driven mountain-breeze circulations. It is shown that, the SAF causes stronger daytime mountain-breeze circulations by increasing the warming on the mountains slopes thus enhancing

  2. Automated analysis protocol for high resolution BOLD-fMRI mapping of the fingertip somatotopy in brodmann area 3b.

    Science.gov (United States)

    Pfannmöller, Jörg P; Schweizer, Renate; Lotze, Martin

    2016-02-01

    To introduce a standardized and automatized method for functional MRI (fMRI) examinations of the cortical sensory somatotopy in large samples for investigations of the fingertip somatotopy in the primary somatosensory cortex. At 3 Tesla, T2* (spin-spin relaxation time) weighted images (gradient-echo echo planar imaging, voxel size 1.5 × 1.5 × 2 mm3) were acquired during stimulation of the finger tips for thumb, index and middle finger on both hands, in a group of 18 healthy participants. In addition, structural T1 weighted (magnetization prepared rapid gradient echo, isotropic voxel size 1 mm) and MR-angiography (time of flight, voxel size 0.26 × 0.26 × 0.5 mm3) images were recorded. Boundary based register served to combine movement correction and registration in FreeSurfer Functional analysis stream (FS-Fast), resulting in fine scale corrections, as revealed with FSL Possum (FSL FMRIB Software Library Physics-Oriented Simulated Scanner for Understanding MRI) simulations. Automated data analysis was achieved by inclusion of cytoarchitectonic probability maps for calculation of functional activation in Brodmann area 3b. Draining vessel artifacts were identified using the peak value approach and the MR-angiography. Distances were computed as the shortest connection within the gray matter. The fMRI somatotopic maps agreed with the expected fingertip somatotopy in 63% of the investigated subjects, an improvement of 34% compared with FS-Fast. Artifacts have been removed completely. Adjacent fingertips showed average distances of 8 ± 4.3 mm, and between thumb and middle finger 13.4 ± 4.8 mm was found. Distances for both hands were similar as expected from the characteristics of the fingertip spatial tactile resolution. The introduced evaluation procedure allowed automated analysis of the fingertip representation in excellent agreement with preceding results. © 2015 Wiley Periodicals, Inc.

  3. Geo-Correction of High-Resolution Imagery Using Fast Template Matching on a GPU in Emergency Mapping Contexts

    Directory of Open Access Journals (Sweden)

    Martina Giovalli

    2013-09-01

    Full Text Available The increasing availability of satellite imagery acquired by existing and new sensors allows a wide variety of new applications that depend on the use of diverse spectral and spatial resolution data sets. One of the pre-conditions for the use of hybrid image data sets is a consistent geo-correction capacity. We demonstrate how a novel fast template matching approach implemented on a graphics processing unit (GPU allows us to accurately and rapidly geo-correct imagery in an automated way. The key difference with existing geo-correction approaches, which do not use a GPU, is the possibility to match large source image segments (8,192 by 8,192 pixels with relatively large templates (512 by 512 pixels significantly faster. Our approach is sufficiently robust to allow for the use of various reference data sources. The need for accelerated processing is relevant in our application context, which relates to mapping activities in the European Copernicus emergency management service. Our new method is demonstrated over an area northwest of Valencia (Spain for a large forest fire event in July 2012. We use the Disaster Monitoring Constellation’s (DMC DEIMOS-1 and RapidEye imagery for the delineation of burnt scar extent. Automated geo-correction of each full resolution image set takes approximately one minute. The reference templates are taken from the TerraColor data set and the Spanish national ortho-imagery database, through the use of dedicated web map services. Geo-correction results are compared to the vector sets derived in the Copernicus emergency service activation request.

  4. High resolution digital mapping and geomorphological analysis of the 2010 Mount Meager rock-debris avalanche (BC, Canada).

    Science.gov (United States)

    Roberti, Gioachino; van Wyk de vries, Benjamin; Ward, Brent; Clague, John; Friele, Pierre; Perotti, Luigi; Giardino, Marco

    2016-04-01

    This study examines the large landslide that occurred at Mt. Meager, 200 km NNW of Vancouver, British Columbia, Canada, on August 6, 2010. We studied the source area and deposits to reconstruct the failure of the south flank of Mt. Meager from slow deformation to catastrophic collapse, the subsequent transformation into a debris avalanche, and the 11 km run-out. We use a Structure from Motion (SfM) photogrammetric approach and processed both historical British Columbia Provincial airphotos (1948, 1962, 1964-1965, 1973, 1981, 1990, and 2006) and digital images taken with a commercial camera during low-level helicopter traverses. The SfM products have been used to calculate volumes and the geometry of the south flank of Mt. Meager before and after the catastrophic failure, and to produce an orthophoto that we have used to map and describe the deposit. Oblique helicopter photos provide information on the scar geometry and rock units exposed by the failure. The SfM-derived orthophoto and ground observations allowed us to map deposit facies, lithologies, and structures, including thrust, normal, and strike-slip faults. We identified five sub-areas in the accumulation zone based on the association of facies and deformation structures. Based on our interpretation of the remotely sensed data and ground observations, we propose that the landslide had two main rheological phases: one richer in water and highly mobile, and another massive and water-poor. The water-rich phase spread quickly and superelevated high on valley walls as it moved down valley. It left a discontinuous veneer of debris, typically deposit with hummocks and brittle-ductile faults and shear zone in the distal part of the run-out zone.

  5. Predicting carbon benefits from climate-smart agriculture: High-resolution carbon mapping and uncertainty assessment in El Salvador.

    Science.gov (United States)

    Kearney, Sean Patrick; Coops, Nicholas C; Chan, Kai M A; Fonte, Steven J; Siles, Pablo; Smukler, Sean M

    2017-11-01

    Agroforestry management in smallholder agriculture can provide climate change mitigation and adaptation benefits and has been promoted as 'climate-smart agriculture' (CSA), yet has generally been left out of international and voluntary carbon (C) mitigation agreements. A key reason for this omission is the cost and uncertainty of monitoring C at the farm scale in heterogeneous smallholder landscapes. A largely overlooked alternative is to monitor C at more aggregated scales and develop C contracts with groups of land owners, community organizations or C aggregators working across entire landscapes (e.g., watersheds, communities, municipalities, etc.). In this study we use a 100-km 2 agricultural area in El Salvador to demonstrate how high-spatial resolution optical satellite imagery can be used to map aboveground woody biomass (AGWB) C at the landscape scale with very low uncertainty (95% probability of a deviation of less than 1%). Uncertainty of AGWB-C estimates remained low (agricultural lands in the study area, and that utilizing AGWB-C maps to target denuded areas could increase C gains per unit area by 46%. The potential value of C credits under a plausible adoption scenario would range from $38,270 to $354,000 yr -1 for the study area, or about $13 to $124 ha -1  yr -1 , depending on C prices. Considering farm sizes in smallholder landscapes rarely exceed 1-2 ha, relying solely on direct C payments to farmers may not lead to widespread CSA adoption, especially if farm-scale monitoring is required. Instead, landscape-scale approaches to C contracting, supported by satellite-based monitoring methods such as ours, could be a key strategy to reduce costs and uncertainty of C monitoring in heterogeneous smallholder landscapes, thereby incentivizing more widespread CSA adoption. Copyright © 2017. Published by Elsevier Ltd.

  6. Acetone in Orion BN/KL: High-resolution maps of a special oxygen-bearing molecule

    National Research Council Canada - National Science Library

    Peng, T.-C; Despois, D; Brouillet, N; Baudry, A; Favre, C; Remijan, A; Wootten, A; Wilson, T. L; Combes, F; Wlodarczak, G

    2013-01-01

    ...) and oxygen-bearing (e.g., HCOOCH3) molecules. However, acetone (CH3)2CO, a special complex O-bearing molecule, has been shown to have a very different distribution from other typical O-bearing molecules in the BN/KL region...

  7. A novel typing method for Listeria monocytogenes using high-resolution melting analysis (HRMA) of tandem repeat regions.

    Science.gov (United States)

    Ohshima, Chihiro; Takahashi, Hajime; Iwakawa, Ai; Kuda, Takashi; Kimura, Bon

    2017-07-17

    Listeria monocytogenes, which is responsible for causing food poisoning known as listeriosis, infects humans and animals. Widely distributed in the environment, this bacterium is known to contaminate food products after being transmitted to factories via raw materials. To minimize the contamination of products by food pathogens, it is critical to identify and eliminate factory entry routes and pathways for the causative bacteria. High resolution melting analysis (HRMA) is a method that takes advantage of differences in DNA sequences and PCR product lengths that are reflected by the disassociation temperature. Through our research, we have developed a multiple locus variable-number tandem repeat analysis (MLVA) using HRMA as a simple and rapid method to differentiate L. monocytogenes isolates. While evaluating our developed method, the ability of MLVA-HRMA, MLVA using capillary electrophoresis, and multilocus sequence typing (MLST) was compared for their ability to discriminate between strains. The MLVA-HRMA method displayed greater discriminatory ability than MLST and MLVA using capillary electrophoresis, suggesting that the variation in the number of repeat units, along with mutations within the DNA sequence, was accurately reflected by the melting curve of HRMA. Rather than relying on DNA sequence analysis or high-resolution electrophoresis, the MLVA-HRMA method employs the same process as PCR until the analysis step, suggesting a combination of speed and simplicity. The result of MLVA-HRMA method is able to be shared between different laboratories. There are high expectations that this method will be adopted for regular inspections at food processing facilities in the near future. Copyright © 2017. Published by Elsevier B.V.

  8. Acquisition and Processing of High Resolution Hyperspectral Imageries for the 3d Mapping of Urban Heat Islands and Microparticles of Montreal

    Science.gov (United States)

    Mongeau, R.; Baudouin, Y.; Cavayas, F.

    2017-10-01

    Ville de Montreal wanted to develop a system to identify heat islands and microparticles at the urban scale and to study their formation. UQAM and UdeM universities have joined their expertise under the framework "Observatoire Spatial Urbain" to create a representative geospatial database of thermal and atmospheric parameters collected during the summer months. They innovated in the development of a methodology for processing high resolution hyperspectral images (1-2 m). In partnership with Ville de Montreal, they integrated 3D geospatial data (topography, transportation and meteorology) in the process. The 3D mapping of intraurban heat islands as well as air micro-particles makes it possible, initially, to identify the problematic situations for future civil protection interventions during extreme heat. Moreover, it will be used as a reference for the Ville de Montreal to establish a strategy for public domain tree planting and in the analysis of urban development projects.

  9. Evaluation of EURO-CORDEX and Med-CORDEX regional climate model ensembles over the Carpathian Basin using the high resolution gridded observational database: CARPATCLIM

    Science.gov (United States)

    Torma, Csaba Zsolt

    2017-04-01

    In the framework of the international initiation called the COordinated Regional Downscaling Experiment (CORDEX) several regional climate model (RCM) experiments have been accomplished over different sub-regions of the globe. EURO-CORDEX and Med-CORDEX initiatives provide RCM ensembles targeting Europe at grid resolutions of 50 km (medium resolution) and of 12 km (high resolution). Here a standard evaluation of the ERA-Interim driven EURO-CORDEX and Med-CORDEX RCM ensemble is presented at both resolutions (medium and high). The study represents the performance of the members of RCM ensembles in representing the basic spatiotemporal patterns of the Carpathian Basin climate for the period 1989-2008. In total 9 RCM simulations were evaluated over the Carpathian Basin against the high resolution gridded observational database: CARPATCLIM, focusing on near-surface air temperature (mean, maximum, minimum) and precipitation. The CARPATCLIM database provides daily near-surface temperature (mean, maximum, minimum) and precipitation data encompassing the Carpathian region at 0.1o x 0.1o grid resolution for the period 1961-2010, thus ideal for validation studies over the Carpathian Basin. Different performance metrics computed encompassing different time scales: from daily to monthly and seasonal mean values are used to assess model performance over the region of interest. The preliminary analysis confirms the ability of RCMs to capture the basic features of the climate at regional scales as of the Carpathian Basin. This work is in favor to select RCMs with best performance over the Carpathian Basin on which the future high-resolution climatic database can be established for risk assessment and impact studies for this regional European domain.

  10. Two-dimensional high-resolution motility mapping in the isolated feline duodenum: methodology and initial results.

    Science.gov (United States)

    Lammers, W J; Dhanasekaran, S; Slack, J R; Stephen, B

    2001-08-01

    Several types of electrical events occur in the small intestine but their spatial and temporal contributions to overall motility are not clear. In order to quantify local motility in greater detail, a new technique of recording and analysing movements at multiple sites was developed. Use was made of isolated segments of feline duodenum superfused in a tissue bath. Multiple marker dots (20-75) were placed on the serosal surface by applying fine spots of candle soot in rectangular arrays (1-2 mm dot separation). A digital video camera was used to record spontaneous movements of the dots for periods of 10-30 min. After each experiment, 4-6 periods (10-60 s each) of video frames were transferred to a computer (25 fps, 720 x 576 pixels) and the movements of the dots was tracked every 40 ms using custom-made software. Initial results (eight experiments) show that spontaneous motility is remarkably variable, both in space and time. Three types of movement could be discerned: (i) periodic, rolling or pendular movements, with a frequency of approximately 15 min-1 occurring predominantly in the longitudinal direction; (ii) twitches, wherein a subset of dots were suddenly displaced longitudinally; and (iii) drifts of most of the dots in a circular or oblique direction. All three types of movement occurred throughout every recording session although their relative magnitudes differed greatly from moment to moment. Occasionally, it was possible to detect propagated 'contractions' with an apparent velocity of 10 mm s(-1). Immobilizing the preparation at one point by inserting a needle through the middle of the array of markers had a negligible effect on the displacements, whereas application of verapamil (10(-5) mol L(-1)) reduced or abolished motility. In summary, we present a new technique to map in detail two-dimensional motility at the surface of the intestine. Initial results seem to suggest that motility at the serosal surface is not uniform and highly anisotropic.

  11. Application of the High Resolution Melting analysis for genetic mapping of Sequence Tagged Site markers in narrow-leafed lupin (Lupinus angustifolius L.).

    Science.gov (United States)

    Kamel, Katarzyna A; Kroc, Magdalena; Święcicki, Wojciech

    2015-01-01

    Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome.

  12. High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Francesca [The Art Institute of Chicago, Chicago, IL (United States); Rose, Volker [Argonne National Laboratory, Advanced Photon Source and Center for Nanoscale Materials, Argonne, IL (United States)

    2013-04-15

    Here for the first time we describe the use of high resolution nanoprobe X-ray fluorescence (XRF) mapping for the analysis of artists' paints, hierarchically complex materials typically composed of binder, pigments, fillers, and other additives. The work undertaken at the nanoprobe sought to obtain highly spatially resolved, highly sensitive mapping of metal impurities (Pb, Cd, Fe, and other metals) in submicron particles of zinc oxide pigments used in early 20th century artists' tube paints and enamel paints, with particular emphasis on Ripolin, a popular brand of French house paint used extensively by Pablo Picasso and some of his contemporaries. Analysis revealed that the Zn oxide particles only contain a little Fe, proving that the highest quality Zn oxide pigment, free of Pb and Cd, was used for Ripolin house paints as well as artists' paints. Nanoprobe XRF mapping also demonstrated that artists' tube paints generally have more abundant fillers and additional whites (based on Pb, Ti, Ca) than Ripolin paints, which contain mostly pure zinc oxide. The chemical characterization of paints at the nanoscale opens the path to a better understanding of their fabrication and chemical reactivity. (orig.)

  13. High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso

    Science.gov (United States)

    Casadio, Francesca; Rose, Volker

    2013-04-01

    Here for the first time we describe the use of high resolution nanoprobe X-ray fluorescence (XRF) mapping for the analysis of artists' paints, hierarchically complex materials typically composed of binder, pigments, fillers, and other additives. The work undertaken at the nanoprobe sought to obtain highly spatially resolved, highly sensitive mapping of metal impurities (Pb, Cd, Fe, and other metals) in submicron particles of zinc oxide pigments used in early 20th century artists' tube paints and enamel paints, with particular emphasis on Ripolin, a popular brand of French house paint used extensively by Pablo Picasso and some of his contemporaries. Analysis revealed that the Zn oxide particles only contain a little Fe, proving that the highest quality Zn oxide pigment, free of Pb and Cd, was used for Ripolin house paints as well as artists' paints. Nanoprobe XRF mapping also demonstrated that artists' tube paints generally have more abundant fillers and additional whites (based on Pb, Ti, Ca) than Ripolin paints, which contain mostly pure zinc oxide. The chemical characterization of paints at the nanoscale opens the path to a better understanding of their fabrication and chemical reactivity.

  14. It's all in the pixels: high resolution remote sensing data and the mapping and analysis of the archaeological and historical landscape

    Directory of Open Access Journals (Sweden)

    Erwin Meylemans

    2017-03-01

    Full Text Available In Flanders (Belgium a large amount of remote-sensing data has been acquired and processed over the past few years, including high-resolution lidar and multi/hyperspectral aerial photography. These new data are contributing to the detection of archaeological sites and the characterisation of the cultural/historical landscape. Of particular use in historically stable areas under forest and pasture, lidar demonstrates the presence of a large number of previously unknown features and sites. The analysis and modelling of these data, combined with other landscape data such as soil maps, augering data, geological and historical maps, and aerial photographs, also provide possible new instruments for the characterisation and evaluation of prehistoric and historic landscapes. This vast amount of new remote-sensing data, plus the information it delivers, however, presents not only obvious opportunities but also a number of challenges. A centralised online system was developed by the 'GIS-Flanders agency', storing both processed and raw data from multispectral recordings, airborne lidar, mobile mapping images etc., and presenting several download and visualisation possibilities and tools. A new system has also been set up to handle specific archaeological and cultural historical data (historical images and aerial photographs, archaeological field data. Dialogue is needed so that the preservation and management needs of the archaeological heritage are also included.

  15. Evaluation of single-band snow-patch mapping using high-resolution microwave remote sensing: an application in the maritime Antarctic

    Science.gov (United States)

    Mora, Carla; Jiménez, Juan Javier; Pina, Pedro; Catalão, João; Vieira, Gonçalo

    2017-01-01

    The mountainous and ice-free terrains of the maritime Antarctic generate complex mosaics of snow patches, ranging from tens to hundreds of metres. These can only be accurately mapped using high-resolution remote sensing. In this paper we evaluate the application of radar scenes from TerraSAR-X in High Resolution SpotLight mode for mapping snow patches at a test area on Fildes Peninsula (King George Island, South Shetlands). Snow-patch mapping and characterization of snow stratigraphy were conducted at the time of image acquisition on 12 and 13 January 2012. Snow was wet in all studied snow patches, with coarse-grain and rounded crystals showing advanced melting and with frequent ice layers in the snow pack. Two TerraSAR-X scenes in HH and VV polarization modes were analysed, with the former showing the best results when discriminating between wet snow, lake water and bare soil. However, significant overlap in the backscattering signal was found. Average wet-snow backscattering was -18.0 dB in HH mode, with water showing -21.1 dB and bare soil showing -11.9 dB. Single-band pixel-based and object-oriented image classification methods were used to assess the classification potential of TerraSAR-X SpotLight imagery. The best results were obtained with an object-oriented approach using a watershed segmentation with a support vector machine (SVM) classifier, with an overall accuracy of 92 % and Kappa of 0.88. The main limitation was the west to north-west facing snow patches, which showed significant error, an issue related to artefacts from the geometry of satellite imagery acquisition. The results show that TerraSAR-X in SpotLight mode provides high-quality imagery for mapping wet snow and snowmelt in the maritime Antarctic. The classification procedure that we propose is a simple method and a first step to an implementation in operational mode if a good digital elevation model is available.

  16. A high-resolution integrated map of copy number polymorphisms within and between breeds of the modern domesticated dog

    Directory of Open Access Journals (Sweden)

    Nicholas Thomas J

    2011-08-01

    Full Text Available Abstract Background Structural variation contributes to the rich genetic and phenotypic diversity of the modern domestic dog, Canis lupus familiaris, although compared to other organisms, catalogs of canine copy number variants (CNVs are poorly defined. To this end, we developed a customized high-density tiling array across the canine genome and used it to discover CNVs in nine genetically diverse dogs and a gray wolf. Results In total, we identified 403 CNVs that overlap 401 genes, which are enriched for defense/immunity, oxidoreductase, protease, receptor, signaling molecule and transporter genes. Furthermore, we performed detailed comparisons between CNVs located within versus outside of segmental duplications (SDs and find that CNVs in SDs are enriched for gene content and complexity. Finally, we compiled all known dog CNV regions and genotyped them with a custom aCGH chip in 61 dogs from 12 diverse breeds. These data allowed us to perform the first population genetics analysis of canine structural variation and identify CNVs that potentially contribute to breed specific traits. Conclusions Our comprehensive analysis of canine CNVs will be an important resource in genetically dissecting canine phenotypic and behavioral variation.

  17. WE-AB-202-08: Feasibility of Single-Inhalation/Single-Energy Xenon CT for High-Resolution Imaging of Regional Lung Ventilation in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Pinkham, D; Schueler, E; Diehn, M; Mittra, E; Loo, B; Maxim, P [Stanford University School of Medicine, Palo Alto, California (United States); Negahdar, M [IBM Research Center, San Jose, California (United States); Yamamoto, T [University of California Davis Medical Center, Sacramento, CA (United States)

    2016-06-15

    quantify regional lung ventilation volumetrically with high resolution using widely accessible radiologic equipment. Bill Loo and Peter Maxim are founders of TibaRay, Inc. Bill Loo is also a board member. Bill Loo and Peter Maxim have received research grants from Varian Medical Systems, Inc. and RaySearch Laboratory.

  18. High resolution climate and vegetation simulations of the Late Pliocene, a model-data comparison over western Europe and the Mediterranean region

    Directory of Open Access Journals (Sweden)

    A. Jost

    2009-10-01

    Full Text Available Here we perform a detailed comparison between climate model results and climate reconstructions in western Europe and the Mediterranean area for the mid-Piacenzian warm interval (ca 3 Myr ago of the Late Pliocene epoch. This region is particularly well suited for such a comparison as several quantitative climate estimates from local pollen records are available. They show evidence for temperatures significantly warmer than today over the whole area, mean annual precipitation higher in northwestern Europe and equivalent to modern values in its southwestern part. To improve our comparison, we have performed high resolution simulations of the mid-Piacenzian climate using the LMDz atmospheric general circulation model (AGCM with a stretched grid which allows a finer resolution over Europe. In a first step, we applied the PRISM2 (Pliocene Research, Interpretation, and Synoptic Mapping boundary conditions except that we used modern terrestrial vegetation. Second, we simulated the vegetation for this period by forcing the ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems dynamic global vegetation model (DGVM with the climatic outputs from the AGCM. We then supplied this simulated terrestrial vegetation cover as an additional boundary condition in a second AGCM run. This gives us the opportunity to investigate the model's sensitivity to the simulated vegetation changes in a global warming context.

    Model results and data show a great consistency for mean annual temperatures, indicating increases by up to 4°C in the study area, and some disparities, in particular in the northern Mediterranean sector, as regards winter and summer temperatures. Similar continental mean annual precipitation and moisture patterns are predicted by the model, which broadly underestimates the wetter conditions indicated by the data in northwestern Europe. The biogeophysical effects due to the changes in vegetation simulated by ORCHIDEE are weak

  19. Mapping and monitoring of sediment budgets and river change by means of UAS multi-scale, high-resolution imageries

    Science.gov (United States)

    Chang, Kuo-Jen; Tseng, Chih-Ming

    2017-04-01

    the dataset been verified firstly. The migration of the debris is well defined from DEMs and been calculated. The sediment budgets are thus been evaluated. The riverbed migration is affect both by natural sediment deposition and by human activities. The profile of the riverbed is blocked mainly in the midstream area. One-half of the debris still rested on the mid- to upstream, and in the up-slope. To the end, the UAS and the methodology used in this study is been adjusted and is capable to apply to other region for hazard monitoring, mitigation and planning.

  20. Determination of the UV solar risk in Argentina with high-resolution maps calculated using TOMS ozone climatology

    Science.gov (United States)

    Piacentini, Rubén D.; Cede, Alexander; Luccini, Eduardo; Stengel, Fernando

    2004-01-01

    The connection between ultraviolet (UV) radiation and various skin diseases is well known. In this work, we present the computer program "UVARG", developed in order to prevent the risk of getting sunburn for persons exposed to solar UV radiation in Argentina, a country that extends from low (tropical) to high southern hemisphere latitudes. The software calculates the so-called "erythemal irradiance", i.e., the spectral irradiance weighted by the McKinlay and Diffey action spectrum for erythema and integrated in wavelength. The erythemal irradiance depends mainly on the following geophysical parameters: solar elevation, total ozone column, surface altitude, surface albedo, total aerosol optical depth and Sun-Earth distance. Minor corrections are due to the variability in the vertical ozone, aerosol, pressure, humidity and temperature profiles and the extraterrestrial spectral solar UV irradiance. Key parameter in the software is a total ozone column climatology incorporating monthly averages, standard deviations and tendencies for the particular geographical situation of Argentina that was obtained from TOMS/NASA satellite data from 1978 to 2000. Different skin types are considered in order to determine the sunburn risk at any time of the day and any day of the year, with and without sunscreen protection. We present examples of the software for three different regions: the high altitude tropical Puna of Atacama desert in the North-West, Tierra del Fuego in the South when the ozone hole event overpasses and low summertime ozone conditions over Buenos Aires, the largest populated city in the country. In particular, we analyzed the maximum time for persons having different skin types during representative days of the year (southern hemisphere equinoxes and solstices). This work was made possible by the collaboration between the Argentine Skin Cancer Foundation, the Institute of Physics Rosario (CONICET-National University of Rosario, Argentina) and the Institute of

  1. A high-resolution map of the Grp1 locus on chromosome V of potato harbouring broad-spectrum resistance to the cyst nematode species Globodera pallida and Globodera rostochiensis

    NARCIS (Netherlands)

    Finkers-Tomczak, A.M.; Danan, S.; Dijk, van T.; Beyene, A.; Bouwman-Smits, L.; Overmars, H.A.; Eck, van H.J.; Goverse, A.; Bakker, J.; Bakker, E.H.

    2009-01-01

    The Grp1 locus confers broad-spectrum resistance to the potato cyst nematode species Globodera pallida and Globodera rostochiensis and is located in the GP21-GP179 interval on the short arm of chromosome V of potato. A high-resolution map has been developed using the diploid mapping population

  2. Hurricane Dennis Aerial Photography: High-Resolution Imagery of the Florida Panhandle and Surrounding Regions After Landfall

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of the Florida panhandle and surrounding regions after Hurricane Dennis made landfall. The regions photographed range from...

  3. A comparison of gold versus silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board arrays.

    Science.gov (United States)

    O'Grady, G; Paskaranandavadivel, N; Angeli, T R; Du, P; Windsor, J A; Cheng, L K; Pullan, A J

    2011-03-01

    Stomach contractions are initiated and coordinated by electrical events termed slow waves, and slow wave abnormalities contribute to gastric motility disorders. Recently, flexible printed circuit board (PCB) multi-electrode arrays were introduced, facilitating high-resolution mapping of slow wave activity in humans. However PCBs with gold contacts have shown a moderately inferior signal quality to previous custom-built silver-wire platforms, potentially limiting analyses. This study determined if using silver instead of gold contacts improved flexible PCB performance. In a salt-bath test, modestly higher stimulus amplitudes were recorded from silver PCBs (mean 312, s.d. 89 µV) than those from gold (mean 281, s.d. 85 µV) (p < 0.001); however, the signal-to-noise ratio (SNR) was similar (p = 0.26). In eight in vivo experimental studies, involving gastric serosal recordings from five pigs, no silver versus gold differences were found in terms of slow wave amplitudes (mean 677 versus 682 µV; p = 0.91), SNR (mean 8.8 versus 8.8 dB; p = 0.94) or baseline drift (NRMS; mean 12.0 versus 12.1; p = 0.97). Under the prescribed conditions, flexible PCBs with silver or gold contacts provide comparable results in vivo, and contact material difference does not explain the performance difference between current-generation slow wave mapping platforms. Alternative explanations for this difference and the implications for electrode design are discussed.

  4. High-resolution regional modeling of summertime transport and impact of African dust over the Red Sea and Arabian Peninsula

    KAUST Repository

    Kalenderski, Stoitchko Dimitrov

    2016-05-23

    Severe dust outbreaks and high dust loading over Eastern Africa and the Red Sea are frequently detected in the summer season. Observations suggest that small-scale dynamic and orographic effects, from both the Arabian and African sides, strongly contribute to dust plume formation. To better understand these processes, we present here the first high resolution modeling study of a dust outbreak in June 2012 developed over East Africa, the Red Sea, and the Arabian Peninsula. Using the Weather Research and Forecasting model coupled with Chemistry component (WRF-Chem), we identified several dust generating dynamical processes that range from convective to synoptic scales, including synoptic cyclones, nocturnal low-level jets, and cold pools of mesoscale convective systems. The simulations reveal an eastward transport of African dust across the Red Sea. Over the northern part of the Red Sea, most of the dust transport occurs above 2 km height, whereas across the central and southern parts of the sea, dust is mostly transported below 2 km height. Dust is the dominant contributor (87%) to the aerosol optical depth, producing a domain average cooling effect of -12.1 W m-2 at the surface, a warming of 7.1 W m-2 in the atmosphere, and a residual cooling of -4.9 W m-2 at the top of the atmosphere. Both dry and wet deposition processes contribute significantly to dust removal from the atmosphere. Model results compare well with available ground-based and satellite observations, but generally underestimate the observed maximum values of aerosol optical depth. The satellite-retrieved mean optical depth at some locations are underestimated by a factor of two. A sensitive experiment suggests that these large local differences may result from poor characterization of dust emissions in some areas of the modeled domain. In this case study we successfully simulate the major fine-scale dust generating dynamical processes, explicitly resolving convection and haboob

  5. High-resolution mapping of the [gamma]-aminobutyric acid receptor subunit [beta]3 and [alpha]5 gene cluster on chromosome 15q11-q13, and localization of breakpoints in two Angelman syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett, D.; Wagstaff, J.; Woolf, E. (Children' s Hospital, Boston, MA (United States) Harvard Medical School, Boston, MA (United States)); Glatt, K. (Children' s Hospital, Boston, MA (United States)); Kirkness, E.J. (National Inst. of Alcohol Abuse and Alcoholism, Rockville, MD (United States))Lalande, M. (Children' s Hospital, Boston, MA (United States) Harvard Medical School, Boston, MA (United States) Howard Hughes Medical Inst., Boston, MA (United States))

    1993-06-01

    The [gamma]-aminobutyric acid (GABA[sub A]) receptors are a family of ligand-gated chloride channels constituting the major inhibitory neurotransmitter receptors in the nervous system. In order to determine the genomic organization of the GABA[sub A] receptor [beta]3 subunit gene (GABRB3) and [alpha]5 subunit gene (GABRA5) in chromosome 15q11-q13, the authors have constructed a high-resolution physical map using the combined techniques of field-inversion gel electrophoresis and phage genomic library screening. This map, which covers nearly 1.0 Mb, shows that GABRB3 and GABRA5 are separated by less than 100 kb and are arranged in a head-to-head configuration. GABRB3 encompasses approximately 250 kb, while GABRA5 is contained within 70 kb. This difference in size is due in large part to an intron of 150 kb within GABRB3. The authors have also identified seven putative CpG islands within a 600-kb interval. Chromosomal rearrangement breakpoints -- in one Angelman syndrome (AS) patient with an unbalanced translocation and in another patient with a submicroscopic deletion -- are located within the large GABRB3 intron. These findings will facilitate chromosomal walking strategies for cloning the regions disrupted by the DNA rearrangements in these AS patients and will be valuable for mapping new genes to the AS chromosomal region. 64 refs., 6 figs., 2 tabs.

  6. Development of high-resolution dynamic dust source function - A case study with a strong dust storm in a regional model

    Science.gov (United States)

    Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul

    2017-06-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.

  7. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  8. Coronal extension of flaring region magnetic fields inferred from high-resolution microwave and type III burst observations

    Science.gov (United States)

    Lantos, P.; Pick, M.; Kundu, M. R.

    1984-01-01

    Observations of three solar radio bursts, obtained with the Very Large Array of the National Radio Astronomy Observatory at 6 cm wavelength, have been combined with meter observations from the Mark III Nancay Radioheliograph. There is a good correlation between solar activity observed at the two wavelength domains. A small change by about 10 sec in the centimetric burst location corresponds to a large change, by about 0.5 solar radius, in the related metric type III burst location. This indicates discrete injection/acceleration regions and the presence of very divergent magnetic fields. The bursts come from two distinct active regions. With two-dimensional spatial resolution, it is shown that, in this sample, each active region possesses a coronal extension that is separated from that of the neighboring active region.

  9. High-resolution multibeam bathymetry data collected in 2004 for the northern Channel Islands region, southern California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data release presents data for 5-m resolution multibeam-bathymetry data of the northern Channel Islands region, southern California. The raster data files are...

  10. Detecting Damaged Building Regions Based on Semantic Scene Change from Multi-Temporal High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Jihui Tu

    2017-04-01

    Full Text Available The detection of damaged building regions is crucial to emergency response actions and rescue work after a disaster. Change detection methods using multi-temporal remote sensing images are widely used for this purpose. Differing from traditional methods based on change detection for damaged building regions, semantic scene change can provide a new point of view since it can indicate the land-use variation at the semantic level. In this paper, a novel method is proposed for detecting damaged building regions based on semantic scene change in a visual Bag-of-Words model. Pre- and post-disaster scene change in building regions are represented by a uniform visual codebook frequency. The scene change of damaged and non-damaged building regions is discriminated using the Support Vector Machine (SVM classifier. An evaluation of experimental results, for a selected study site of the Longtou hill town of Yunnan, China, which was heavily damaged in the Ludian earthquake of 14 March 2013, shows that this method is feasible and effective for detecting damaged building regions. For the experiments, WorldView-2 optical imagery and aerial imagery is used.

  11. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  12. Identification of Dust Source Regions at High-Resolution and Dynamics of Dust Source Mask over Southwest United States Using Remote Sensing Data

    Science.gov (United States)

    Sprigg, W. A.; Sahoo, S.; Prasad, A. K.; Venkatesh, A. S.; Vukovic, A.; Nickovic, S.

    2015-12-01

    Identification and evaluation of sources of aeolian mineral dust is a critical task in the simulation of dust. Recently, time series of space based multi-sensor satellite images have been used to identify and monitor changes in the land surface characteristics. Modeling of windblown dust requires precise delineation of mineral dust source and its strength that varies over a region as well as seasonal and inter-annual variability due to changes in land use and land cover. Southwest USA is one of the major dust emission prone zone in North American continent where dust is generated from low lying dried-up areas with bare ground surface and they may be scattered or appear as point sources on high resolution satellite images. In the current research, various satellite derived variables have been integrated to produce a high-resolution dust source mask, at grid size of 250 m, using data such as digital elevation model, surface reflectance, vegetation cover, land cover class, and surface wetness. Previous dust source models have been adopted to produce a multi-parameter dust source mask using data from satellites such as Terra (Moderate Resolution Imaging Spectroradiometer - MODIS), and Landsat. The dust source mask model captures the topographically low regions with bare soil surface, dried-up river plains, and lakes which form important source of dust in southwest USA. The study region is also one of the hottest regions of USA where surface dryness, land use (agricultural use), and vegetation cover changes significantly leading to major changes in the areal coverage of potential dust source regions. A dynamic high resolution dust source mask have been produced to address intra-annual change in the aerial extent of bare dry surfaces. Time series of satellite derived data have been used to create dynamic dust source masks. A new dust source mask at 16 day interval allows enhanced detection of potential dust source regions that can be employed in the dust emission and

  13. Towards high resolution mapping of 3-D mesoscale dynamics from observations: preliminary comparison of retrieval techniques and models within MESCLA project

    Science.gov (United States)

    Buongiorno Nardelli, B.; Guinehut, S.; Pascual, A.; Drillet, Y.; Ruiz, S.; Mulet, S.

    2012-03-01

    Within the MyOcean R&D project MESCLA (MEsoSCale dynamical Analysis through combined model, satellite and in situ data), different estimates of the vertical velocities derived from observations have been compared. Two main approaches have been considered, one based on the retrieval of 3-D fields from the observations alone and one based on the analyses provided by MyOcean MERCATOR models. The motivation for this double approach is that, while data assimilation in numerical models is crucial to obtain more accurate analyses and forecasts, its results might be significantly influenced by specific model configurations (e.g. forcing, parameterization of smaller scale processes and spatial resolution). On the other hand, the purely observation-based approach is limited by the underlying assumptions of simplified dynamical models and by the relatively low resolution of present products. MESCLA tested innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations, developing new products that might be used to gradually build the next generations of operational observation-based products.

  14. High-Resolution Mapping of RNA Polymerases Identifies Mechanisms of Sensitivity and Resistance to BET Inhibitors in t(8;21 AML

    Directory of Open Access Journals (Sweden)

    Yue Zhao

    2016-08-01

    Full Text Available Bromodomain and extra-terminal domain (BET family inhibitors offer an approach to treating hematological malignancies. We used precision nuclear run-on transcription sequencing (PRO-seq to create high-resolution maps of active RNA polymerases across the genome in t(8;21 acute myeloid leukemia (AML, as these polymerases are exceptionally sensitive to BET inhibitors. PRO-seq identified over 1,400 genes showing impaired release of promoter-proximal paused RNA polymerases, including the stem cell factor receptor tyrosine kinase KIT that is mutated in t(8;21 AML. PRO-seq also identified an enhancer 3′ to KIT. Chromosome conformation capture confirmed contacts between this enhancer and the KIT promoter, while CRISPRi-mediated repression of this enhancer impaired cell growth. PRO-seq also identified microRNAs, including MIR29C and MIR29B2, that target the anti-apoptotic factor MCL1 and were repressed by BET inhibitors. MCL1 protein was upregulated, and inhibition of BET proteins sensitized t(8:21-containing cells to MCL1 inhibition, suggesting a potential mechanism of resistance to BET-inhibitor-induced cell death.

  15. High-resolution Remotely Operated Vehicle (ROV) mapping of a slow-spreading ridge: Mid-Atlantic Ridge 45°N

    Science.gov (United States)

    Yeo, I. A.; Searle, R. C.

    2013-06-01

    Axial volcanic ridges (AVRs) are found on most slow-spreading mid-ocean ridges and are thought to be the main locus of volcanism there. In this study we present high-resolution mapping of a typical, well-defined AVR on the Mid-Atlantic Ridge at 45°N. The AVR is characterized by "hummocky terrain," composed typically of hummocks with pillowed or elongate pillowed flanks with pillowed or lobate lava flow summits, often with small haystacks sitting on their highest points. The AVR is surrounded by several areas of "flat seafloor," composed of lobate and sheet lava flows. The spatial and morphological differences between these areas indicate different eruption processes operating on and off the AVR. Volcanic fissures are found all around and on the AVR, although those with the greatest horizontal displacement are found on the ridge crest and flat seafloor. Clusters of fissures may represent volcanic vents. Extremely detailed comparisons of sediment coverage and examination of contact relations around the AVR suggest that many of the areas of flat seafloor are of a similar age or younger than the hummocky terrain of the AVR. Additionally, all the lavas surveyed have similar degrees of sediment cover, suggesting that the AVR was either built or resurfaced in the same 50 ka time frame as the flat seafloor.

  16. High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae

    Science.gov (United States)

    Demaeght, Peter; Osborne, Edward J.; Odman-Naresh, Jothini; Grbić, Miodrag; Nauen, Ralf; Merzendorfer, Hans

    2014-01-01

    The acaricides clofentezine, hexythiazox and etoxazole are commonly referred to as ‘mite growth inhibitors’, and clofentezine and hexythiazox have been used successfully for the integrated control of plant mite pests for decades. Although they are still important today, their mode of action has remained elusive. Recently, a mutation in chitin synthase 1 (CHS1) was linked to etoxazole resistance. In this study, we identified and investigated a T. urticae strain (HexR) harboring recessive, monogenic resistance to each of hexythiazox, clofentezine, and etoxazole. To elucidate if there is a common genetic basis for the observed cross-resistance, we adapted a previously developed bulk segregant analysis method to map with high resolution a single, shared resistance locus for all three compounds. This finding indicates that the underlying molecular basis for resistance to all three compounds is identical. This locus is centered on the CHS1 gene, and as supported by additional genetic and biochemical studies, a non-synonymous variant (I1017F) in CHS1 associates with resistance to each of the tested acaricides in HexR. Our findings thus demonstrate a shared molecular mode of action for the chemically diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole as inhibitors of an essential, non-catalytic activity of CHS1. Given the previously documented cross-resistance between clofentezine, hexythiazox and the benzyolphenylurea compounds flufenoxuron and cycloxuron, CHS1 should be also considered as a potential target-site of insecticidal BPUs. PMID:24859419

  17. Mapping Intra-Field Yield Variation Using High Resolution Satellite Imagery to Integrate Bioenergy and Environmental Stewardship in an Agricultural Watershed

    Directory of Open Access Journals (Sweden)

    Yuki Hamada

    2015-07-01

    Full Text Available Biofuels are important alternatives for meeting our future energy needs. Successful bioenergy crop production requires maintaining environmental sustainability and minimum impacts on current net annual food, feed, and fiber production. The objectives of this study were to: (1 determine under-productive areas within an agricultural field in a watershed using a single date; high resolution remote sensing and (2 examine impacts of growing bioenergy crops in the under-productive areas using hydrologic modeling in order to facilitate sustainable landscape design. Normalized difference indices (NDIs were computed based on the ratio of all possible two-band combinations using the RapidEye and the National Agricultural Imagery Program images collected in summer 2011. A multiple regression analysis was performed using 10 NDIs and five RapidEye spectral bands. The regression analysis suggested that the red and near infrared bands and NDI using red-edge and near infrared that is known as the red-edge normalized difference vegetation index (RENDVI had the highest correlation (R2 = 0.524 with the reference yield. Although predictive yield map showed striking similarity to the reference yield map, the model had modest correlation; thus, further research is needed to improve predictive capability for absolute yields. Forecasted impact using the Soil and Water Assessment Tool model of growing switchgrass (Panicum virgatum on under-productive areas based on corn yield thresholds of 3.1, 4.7, and 6.3 Mg·ha−1 showed reduction of tile NO3-N and sediment exports by 15.9%–25.9% and 25%–39%, respectively. Corresponding reductions in water yields ranged from 0.9% to 2.5%. While further research is warranted, the study demonstrated the integration of remote sensing and hydrologic modeling to quantify the multifunctional value of projected future landscape patterns in a context of sustainable bioenergy crop production.

  18. Mapping bare soil in South West Wales, UK, using high resolution colour infra-red aerial photography for water quality and flood risk management applications

    Science.gov (United States)

    Sykes, Helena; Neale, Simon; Coe, Sarah

    2016-04-01

    Natural Resources Wales is a UK government body responsible for environmental regulation, among other areas. River walks in Water Framework Directive (WFD) priority catchments in South West Wales, UK, identified soil entering water courses due to poaching and bank erosion, leading to deterioration in the water quality and jeopardising the water quality meeting legal minimum standards. Bare soil has also been shown to cause quicker and higher hydrograph peaks in rural catchments than if those areas were vegetated, which can lead to flooding of domestic properties during peak storm flows. The aim was to target farm visits by operational staff to advise on practices likely to improve water quality and to identify areas where soft engineering solutions such as revegetation could alleviate flood risk in rural areas. High resolution colour-infrared aerial photography, 25cm in the three colour bands and 50cm in the near infrared band, was used to map bare soil in seven catchments using supervised classification of a five band stack including the Normalised Difference Vegetation Index (NDVI). Mapping was combined with agricultural land use and field boundary data to filter out arable fields, which are supposed to bare soil for part of their cycle, and was very successful when compared to ground truthing, with the exception of silage fields which contained sparse, no or unproductive vegetation at the time the imagery was acquired leading to spectral similarity to bare soil. A raindrop trace model was used to show the path sediment from bare soil areas would take when moving through the catchment to a watercourse, with hedgerows inserted as barriers following our observations from ground truthing. The findings have been used to help farmers gain funding for improvements such as fencing to keep animals away from vulnerable river banks. These efficient and automated methods can be rolled out to more catchments in Wales and updated using aerial imagery acquired more recently to

  19. Genome-Wide Differentiation of Various Melon Horticultural Groups for Use in GWAS for Fruit Firmness and Construction of a High Resolution Genetic Map.

    Science.gov (United States)

    Nimmakayala, Padma; Tomason, Yan R; Abburi, Venkata L; Alvarado, Alejandra; Saminathan, Thangasamy; Vajja, Venkata G; Salazar, Germania; Panicker, Girish K; Levi, Amnon; Wechter, William P; McCreight, James D; Korol, Abraham B; Ronin, Yefim; Garcia-Mas, Jordi; Reddy, Umesh K

    2016-01-01

    Melon (Cucumis melo L.) is a phenotypically diverse eudicot diploid (2n = 2x = 24) has climacteric and non-climacteric morphotypes and show wide variation for fruit firmness, an important trait for transportation and shelf life. We generated 13,789 SNP markers using genotyping-by-sequencing (GBS) and anchored them to chromosomes to understand genome-wide fixation indices (Fst) between various melon morphotypes and genomewide linkage disequilibrium (LD) decay. The FST between accessions of cantalupensis and inodorus was 0.23. The FST between cantalupensis and various agrestis accessions was in a range of 0.19-0.53 and between inodorus and agrestis accessions was in a range of 0.21-0.59 indicating sporadic to wide ranging introgression. The EM (Expectation Maximization) algorithm was used for estimation of 1436 haplotypes. Average genome-wide LD decay for the melon genome was noted to be 9.27 Kb. In the current research, we focused on the genome-wide divergence underlying diverse melon horticultural groups. A high-resolution genetic map with 7153 loci was constructed. Genome-wide segregation distortion and recombination rate across various chromosomes were characterized. Melon has climacteric and non-climacteric morphotypes and wide variation for fruit firmness, a very important trait for transportation and shelf life. Various levels of QTLs were identified with high to moderate stringency and linked to fruit firmness using both genome-wide association study (GWAS) and biparental mapping. Gene annotation revealed some of the SNPs are located in β-D-xylosidase, glyoxysomal malate synthase, chloroplastic anthranilate phosphoribosyltransferase, and histidine kinase, the genes that were previously characterized for fruit ripening and softening in other crops.

  20. Genome-wide differentiation of various melon horticultural groups for use in GWAS for fruit firmness and construction of a high resolution genetic map

    Directory of Open Access Journals (Sweden)

    Padma Nimmakayala

    2016-09-01

    Full Text Available Melon (Cucumis melo L. is a phenotypically diverse eudicot diploid (2n = 2x =24 has climacteric and non-climacteric morphotypes and show wide variation for fruit firmness, an important trait for transportation and shelf life. We generated 13,789 SNP markers using genotyping-by-sequencing and anchored them to chromosomes to understand genome-wide fixation indices (Fst between various melon morphotypes and genomewide linkage disequilibrium (LD decay. The FST between accessions of cantalupensis and inodorus was 0.23. The FST between cantalupensis and various agrestis accessions was in a range of 0.19 to 0.53 and between inodorus and agrestis accessions was in a range of 0.21 to 0.59 indicating sporadic to wide ranging introgression. The EM (Expectation Maximization algorithm was used for estimation of 1,436 haplotypes. Average genome-wide LD decay for the melon genome was noted to be 9.27 Kb. In the current research, we focused on the genome-wide divergence underlying diverse melon horticultural groups. A high-resolution genetic map with 7153 loci was constructed. Genome-wide segregation distortion and recombination rate across various chromosomes were characterized. Melon has climacteric and non-climacteric morphotypes and wide variation for fruit firmness, a very important trait for transportation and shelf life. Various levels of QTLs were identified with high to moderate stringency and linked to fruit firmness using both genome-wide association study (GWAS and biparental mapping. Gene annotation revealed some of the SNPs are located in -D-xylosidase, glyoxysomal malate synthase, chloroplastic anthranilate phosphoribosyltransferase, and histidine kinase, the genes that were previously characterized for fruit ripening and softening in other crops.

  1. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology

    OpenAIRE

    Tompkins, Adrian M; Ermert, Volker

    2013-01-01

    Background The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. Methods A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall driv...

  2. High Resolution Vp and Vp/Vs Local Earthquake Tomography of the Val d'Agri Region (Southern Apennines, Italy).

    Science.gov (United States)

    Improta, L.; Bagh, S.; De Gori, P.; Pastori, M.; Piccinini, D.; Valoroso, L.; Anselmi, M.; Buttinelli, M.; Chiarabba, C.

    2015-12-01

    The Val d'Agri (VA) Quaternary basin in the southern Apennines extensional belt hosts the largest oilfield in onshore Europe and normal-fault systems with high (up to M7) seismogenic potential. Frequent small-magnitude swarms related to both active crustal extension and anthropogenic activity have occurred in the region. Causal factors for induced seismicity are a water impoundment with severe seasonal oscillations and a high-rate wastewater injection well. We analyzed around 1200 earthquakes (MLENI petroleum company. We used local earthquake tomography to investigate static and transient features of the crustal velocity structure and to accurately locate earthquakes. Vp and Vp/Vs models are parameterized by a 3x3x2 km spacing and well resolved down to about 12 km depth. The complex Vp model illuminates broad antiformal structures corresponding to wide ramp-anticlines involving Mesozoic carbonates of the Apulia hydrocarbon reservoir, and NW-SE trending low Vp regions related to thrust-sheet-top clastic basins. The VA basin corresponds to shallow low-Vp region. Focal mechanisms show normal faulting kinematics with minor strike slip solutions in agreement with the local extensional regime. Earthquake locations and focal solutions depict shallow (< 5 km depth) E-dipping extensional structures beneath the artificial lake located in the southern sector of the basin, and along the western margin of the VA. A few swarms define relatively deep transfer structures accommodating the differential extension between main normal faults. The spatio-temporal distribution of around 220 events correlates with wastewater disposal activity, illuminating a NE-dipping fault between 2-5 km depth in the carbonate reservoir. The fault measures 5 km along dip and corresponds to a pre-existing thrust fault favorably oriented with respect to the local extensional field.

  3. Regional CO pollution and export in China simulated by the high-resolution nested-grid GEOS-Chem model

    Directory of Open Access Journals (Sweden)

    D. Chen

    2009-06-01

    Full Text Available An updated version of the nested-grid GEOS-Chem model is developed allowing for higher horizontal (0.5°×0.667° resolution as compared to global models. CO transport over a heavily polluted region, the Beijing-Tianjin-Hebei (BTH city cluster in China, and the pattern of outflow from East China in summertime are investigated. Comparison of the nested-grid with global models indicates that the fine-resolution nested-grid model is capable of resolving individual cities with high associated emission intensities. The nested-grid model indicates the presence of a high CO column density over the Sichuan Basin in summer, attributable to the low-level stationary vortex associated with the Basin's topographical features. The nested-grid model provides good agreement also with measurements from a suburban monitoring site in Beijing during summer 2005. Tagged CO simulation results suggest that regional emissions make significant contributions to elevated CO levels over Beijing on polluted days and that the southeastward moving cyclones bringing northwest winds to Beijing are the key meteorological mechanisms responsible for dispersion of pollution over Beijing in summer. Overall CO fluxes to the NW Pacific from Asia are found to decrease by a factor of 3–4 from spring to summer. Much of the seasonal change is driven by decreasing fluxes from India and Southeast Asia in summer, while fluxes from East China are only 30% lower in summer than in spring. Compared to spring, summertime outflow from Chinese source regions is strongest at higher latitudes (north of 35° N. The deeper convection in summer transporting CO to higher altitudes where export is more efficient is largely responsible for enhanced export in summer.

  4. An AIS-based high-resolution ship emission inventory and its uncertainty in Pearl River Delta region, China.

    Science.gov (United States)

    Li, Cheng; Yuan, Zibing; Ou, Jiamin; Fan, Xiaoli; Ye, Siqi; Xiao, Teng; Shi, Yuqi; Huang, Zhijiong; Ng, Simon K W; Zhong, Zhuangmin; Zheng, Junyu

    2016-12-15

    Ship emissions contribute significantly to air pollution and impose health risks to residents along the coastal area. By using the refined data from the Automatic Identification System (AIS), this study developed a highly resolved ship emission inventory for the Pearl River Delta (PRD) region, China, home to three of ten busiest ports in the world. The region-wide SO2, NOX, CO, PM10, PM2.5, and VOC emissions in 2013 were estimated to be 61,484, 103,717, 10,599, 7155, 6605, and 4195t, respectively. Ocean going vessels were the largest contributors of the total emissions, followed by coastal vessels and river vessels. In terms of ship type, container ship was the leading contributor, followed by conventional cargo ship, dry bulk carrier, fishing ship, and oil tanker. These five ship types accounted for >90% of total emissions. The spatial distributions of emissions revealed that the key emission hot spots all concentrated within the newly proposed emission control area (ECA) and ship emissions within ECA covered >80% of total ship emissions in the PRD, highlighting the importance of ECA in emissions reduction in the PRD. The uncertainties of emission estimates of pollutants were quantified, with lower bounds of -24.5% to -21.2% and upper bounds of 28.6% to 33.3% at 95% confidence intervals. The lower uncertainties in this study highlighted the powerfulness of AIS data in improving ship emission estimates. The AIS-based bottom-up methodology can be used for developing and upgrading ship emission inventory and formulating effective control measures on ship emissions in other port regions wherever possible. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Alex [University of California, Los Angeles, CA (United States). Joint Institute for Regional Earth System Science and Engineering

    2013-07-24

    Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while

  6. High Resolution Decision Maps for Urban Planning: A Combined Analysis of Urban Flooding and Thermal Stress Potential In Asia and Europe

    Directory of Open Access Journals (Sweden)

    Boogaard Floris

    2017-01-01

    Full Text Available Urban flooding and thermal stress have become key issues for many cities around the world. With the continuing effects of climate change, these two issues will become more acute and will add to the serious problems already experienced in dense urban areas. Therefore, the sectors of public health and disaster management are in the need of tools that can assess the vulnerability to floods and thermal stress. The present paper deals with the combination of innovative tools to address this challenge. Three cities in different climatic regions with various urban contexts have been selected as the pilot areas to demonstrate these tools. These cities are Tainan (Taiwan, Ayutthaya (Thailand and Groningen (Netherlands. For these cities, flood maps and heat stress maps were developed and used for the comparison analysis. The flood maps produced indicate vulnerable low-lying areas, whereas thermal stress maps indicate open, unshaded areas where high Physiological Equivalent Temperature (PET values (thermal comfort can be expected. The work to date indicates the potential of combining two different kinds of maps to identify and analyse the problem areas. These maps could be further improved and used by urban planners and other stakeholders to assess the resilience and well-being of cities. The work presented shows that the combined analysis of such maps also has a strong potential to be used for the analysis of other challenges in urban dense areas such as air and water pollution, immobility and noise disturbance.

  7. High-resolution infrared spectrum of jet-cooled methyl acetate in the C=O stretching region: internal rotations of two inequivalent methyl tops.

    Science.gov (United States)

    Sunahori, Fumie X; Borho, Nicole; Liu, Xunchen; Xu, Yunjie

    2011-12-21

    The jet-cooled high resolution infrared (IR) spectrum of methyl acetate (MA), CH(3)-C(=O)-O-CH(3), in the C=O fundamental band region was recorded by using a rapid scan IR laser spectrometer equipped with an astigmatic multipass cell. No high resolution IR analyses of the ro-vibrational transitions between the ground and non-torsionally excited vibrational states have hitherto been reported for molecules with two inequivalent methyl rotors. Because of the two chemically different methyl tops in MA, i.e., the acetyl -CH(3) and methoxy -CH(3), each rotational energy level is split into more than two torsional sublevels by internal rotations of these methyl groups. We were able to assign ro-vibrational transitions of four torsional species by using the ground state combination differences calculated from the molecular constants of the vibrational ground state recently determined by a global fit of the microwave and millimeter wave lines [M. Tudorie, I. Kleiner, J. T. Hougen, S. Melandri, L. W. Sutikdja, and W. Stahl, J. Mol. Spectrosc. 269, 211 (2011)]. The assigned lines were successfully fitted using the BELGI-Cs-IR program to an overall standard deviation which is comparable to the measurement accuracy. This study is also of interest in understanding the role of methyl rotors in the intramolecular vibrational-energy redistribution processes in mid-size organic molecules.

  8. A High-Resolution Reconstruction of Late Holocene Environmental Change from Laguna Ek'Naab, Northern Holmul Region, Peten, Guatemala

    Science.gov (United States)

    Anderson, L.; Wahl, D.; Estrada-Belli, F.

    2015-12-01

    Widespread demographic shifts in the southern Maya lowlands at the end of the Classic period have been attributed to environmental change caused by human activity and/or climate variability. Fire was essential to landscape modification and was a primary agent of environmental change associated with prehispanic land use. While several studies have provided insight into the dynamic relationship between natural and anthropogenic drivers of change, defining the specific interplay between natural environmental change, human modification of the environment, and cultural response to changes remains a persistent challenge. Here we present the results of a multi-proxy study that reconstructs fire history, agricultural land use, and environmental change during and after Pre-Columbian Maya settlement. Results are interpreted in the context of settlement history as inferred from archaeological mapping around the study site. Our findings suggest landscape disturbance, as indicated by erosion, local burning, and nearby maize agriculture, was at its peak during the Early Classic period. This disturbance was likely due to large-scale settlement at the nearby site of Witzna'. All proxies indicate a slow decline in disturbance into the Late Classic period,