Sample records for regional crustal thickness

  1. Variations of the crustal thickness in Nepal Himalayas based on tomographic inversion of regional earthquake data

    I. Koulakov


    Full Text Available We estimate variations of the crustal thickness beneath the Nepal Himalayas based on tomographic inversion of regional earthquake data. We have obtained a low-velocity anomaly in the upper part of the model down to depths of 40 to 80 km and proposed that the lower limit of this anomaly represents variations of the Moho depth. This statement was supported by results of synthetic modeling. The obtained variations of crustal thickness match fairly well with the free-air gravity anomalies: thinner crust patterns correspond to lower gravity values and vice versa. There is also some correlation with magnetic field: higher magnetic values correspond to the major areas of thicker crust. We propose that elevated magnetic values can be associated with more rigid segments of the incoming Indian crust which cause more compression in the thrust zone and leads to stronger crustal thickening.

  2. Variations of the crustal thickness in the Betic-Rif domain and their foreland regions, by P-Receiver Functions

    Stich, D.; Mancilla, F.; Morales, J.; Martin, R.; Diaz, J.; Pazos, A.; Cordoba, D.; Pulgar, J. A.; Ibarra, P.; Harnafi, M.; Gonzalez-Lodeiro, F.


    To image the crustal structure of the Betic-Rif Range and the surrounding area we perform a P-receiver function study (PRF). We calculate PRFs at 110 broadband stations located in South Iberia Peninsula and North Morocco to obtain thickness and average Vp/Vs ratio for the Crust. The Crustal thickness values show strong lateral variations throughout the region. Crustal thicknesses vary between ~19 km and ~46 km. The Betic and Rif ranges are underlined by a thickened crust with crustal thicknesses between ~35 km and ~46 km, reaching the highest values in the contact between the Alboran Domain and External Zones. Southeast Iberia and Northeast Morocco are affected by significant crustal thinning, with crustal thicknesses ranging from ~19 km to ~30 km, with the shallowest Moho along the Mediterranean coast. The transition from thick to thin crust is coincident with the faults system of the Trans-Alboran Shear Zone. Toward the North, the Iberian Massif is an homogeneous domain of average 30-31 km crustal thickness and flat Moho discontinuity with low average Vp/Vs ratios ~1.72. Further south an extended domain, which includes the Atlas domain and its foreland regions, presents crustal thickness of 27-34km. Vp/Vs ratios in north Morocco show normal values of ~1.75 for most stations except for the Atlas domain, where several stations present low Vp/Vs ratios around 1.71. The obtained PRFs are migrated to depth building cross-section images to delineate the crustal mantle discontinuity (Moho) along the study area. In the migrated images, we include altogether ~11.200 PFRs to follow the Moho discontinuity from the Iberian Massif, in the North, along the Gribraltar arc towards the Moroccan Massif in the South. These images show how, in the North, the Iberian crust underthrust the Alboran domain along their contact with the observation of a slab, from the western limit until the 3°W longitude, reaching the maximum depth of ~70 km under the coast coincide with the

  3. Crustal structure of the Altiplano from broadband regional waveform modeling: Implications for the composition of thick continental crust

    Swenson, Jennifer L.; Beck, Susan L.; Zandt, George


    We have modeled the full waveforms from six intermediate-depth and two shallow earthquakes recorded at regional distances by the BANJO Broadband Andean Joint Experiment (BANJO) and Seismic Exploration of the Deep Altiplano (SEDA) portable seismic networks in the central Andes. In this study we utilize data from those BANJO and SEDA stations located within the Altiplano and Eastern Cordillera. We used reflectivity synthetic seismograms and a grid search to constrain four parameters of the Altiplano-Eastern Cordillera lithosphere: crustal thickness, average crustal velocity (Vp), and crustal and upper mantle Poisson's ratios (σcrust and σmantle). Using our grid search, we investigated the crustal and upper mantle structure along 36 individual event station paths and applied forward modeling to 56 event station paths. Robust models for the Altiplano that provide the best overall fit between the data and synthetic seismograms are characterized by an average Vp of 5.75-6.25 km/s, crustal thicknesses of 60-65 km, σcrust = 0.25, and σmantle = 0.27-0.29. We find a north-south variation in the structure of the Altiplano, with the crust south of the BANJO transect characterized by either lower than average crustal P wave velocities or a slightly higher σcrust relative to crust north of the BANJO transect. These results are consistent with a model of crustal thickening caused predominantly by tectonic shortening of felsic crust, rather than by underplating or magmatic intrusion from the mantle.

  4. Joint inversion of local, regional and teleseismic data for crustal thickness in the Eurasia-Africa plate boundary region

    Marone, Federica; van der Meijde, Mark; van der Lee, Suzan; Giardini, Domenico


    A new map for the Moho discontinuity (EAM02) in the Eurasia-Africa plate boundary region is presented. Reliable results have also been obtained for the southern and eastern Mediterranean Basin, the northern African coasts and the eastern Atlantic Ocean, regions only occasionally considered in studies on the Mediterranean region. The Moho topography model is derived from two independent sets of constraints. Information contained in the fundamental and higher-mode Rayleigh waves obtained from waveform modelling is used to constrain the Moho depth between estimates of crustal thickness taken from published reflection and refraction surveys, gravity studies and receiver function analysis. Strong lateral variations in the Moho topography have been observed in the Mediterranean Sea, confirming the complex evolution of this plate boundary region. In the west, the Moho discontinuity has been found at 15-20 km depth, suggesting extended and, at least in some locations, oceanic crust, while in the east the crust is on average 25-30 km thick. There it is interpreted either as Mesozoic oceanic or thinned Precambrian continental crust covered by thick sedimentary deposits. Standard continental crust (30-35 km) is observed along the eastern part of the northern African coast, while to the west a rapid change from a relatively deep Moho (down to 42 km) below the Atlas Mountain Range to the thin crust of the southwestern Mediterranean Sea has been found. The crust beneath the eastern North Atlantic Ocean can be up to 5 km thicker compared with standard oceanic crust (6 km). The crust has been interpreted to be heterogeneous as a consequence of irregular magma supply at the Mid-Atlantic ridge. In addition, serpentinization of the sub-Moho mantle could contribute to the imaging of apparently anomalous thick oceanic crust. In Europe, the presence of crustal roots (>45 km) beneath the major mountain belts has been confirmed, while thin crust (isostatic compensation at 60 km depth

  5. Crustal thickness controlled by plate tectonics

    Artemieva, Irina M.; Meissner, Rolf


    /gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...... (lithosphere) recycling. The processes of crust–mantle interaction have created very dissimilar crustal styles in Europe, as seen by its seismic structure, crustal thickness, and average seismic velocities in the basement. Our special focus is on processes responsible for the formation of the thin crust...

  6. Antarctic Crustal Thickness from Gravity Inversion

    Vaughan, A. P.; Kusznir, N. J.; Ferraccioli, F.; Jordan, T. A.


    Using gravity anomaly inversion, we have produced the first comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/β) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction. The continental lithosphere thinning distribution, used to define the initial thermal model temperature perturbation is derived from the gravity inversion and uses no a priori isochron information; as a consequence the gravity inversion method provides a prediction of ocean-continent transition location, which is independent of ocean isochron information. The gravity anomaly contribution from ice thickness is included in the gravity inversion, as is the contribution from sediments which assumes a compaction controlled sediment density increase with depth. Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the most recent Bedmap2 ice thickness and bedrock topography compilation south of 60 degrees south (Fretwell et al., 2013) and relatively sparse constraints on sediment thickness. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica penetrated by narrow continental rifts that feature relatively thinner crust. The East Antarctic Rift System (EARS) is a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. Intermediate crustal thickness with an inferred linear rift fabric is predicted under Coates Land. An extensive region of either thick oceanic crust or highly thinned continental crust is predicted offshore Oates Land and north Victoria Land, and also off West Antarctica

  7. Crustal thickness controlled by plate tectonics

    Artemieva, Irina M.; Meissner, Rolf


    The continental crust on Earth cannot be extracted directly from the mantle, and the primary crust extracted directly from an early magma ocean is not preserved on Earth. We review geophysical and geochemical aspects of global crust–mantle material exchange processes and examine the processes which...... magmatism. While both subduction and delamination recycle crustal material into the mantle, mafic magmatism transports mantle material upward and participates in growth of newoceanic and continental crusts and significant structural and chemicalmodification of the latter. We discuss the role of basalt....../gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...

  8. Crustal-thickness variations in the central Andes

    Beck, Susan L.; Zandt, George; Myers, Stephen C.; Wallace, Terry C.; Silver, Paul G.; Drake, Lawrence


    We estimated the crustal thickness along an east-west transect across the Andes at lat 20°S and along a north-south transect along the eastern edge of the Altiplano from data recorded on two arrays of portable broadband seismic stations (BANJO and SEDA). Waveforms of deep regional events in the downgoing Nazca slab and teleseismic earthquakes were processed to isolate the P-to-S converted phases from the Moho in order to compute the crustal thickness. We found crustal-thickness variations of nearly 40 km across the Andes. Maximum crustal thicknesses of 70 74 km under the Western Cordillera and the Eastern Cordillera thin to 32 38 km 200 km east of the Andes in the Chaco Plain. The central Altiplano at 20°S has crustal thicknesses of 60 to 65 km. The crust also appears to thicken from north (16°S, 55 60 km) to south (20°S, 70 74 km) along the Eastern Cordillera. The Subandean zone crust has intermediate thicknesses of 43 to 47 km. Crustal-thickness predictions for the Andes based on Airy-type isostatic behavior show remarkable overall correlation with observed crustal thickness in the regions of high elevation. In contrast, at the boundary between the Eastern Cordillera and the Subandean zone and in the Chaco Plain, the crust is thinner than predicted, suggesting that the crust in these regions is supported in part by the flexural rigidity of a strong lithosphere. With additional constraints, we conclude that the observation of Airy-type isostasy is consistent with thickening associated with compressional shortening of a weak lithosphere squeezed between the stronger lithosphere of the subducting Nazca plate and the cratonic lithosphere of the Brazilian craton.

  9. Crustal accretion at high temperature spreading centres: Rheological control of crustal thickness

    Schmeling, Harro


    New determinations of lateral crustal thickness variations at anomalous oceanic spreading centres such as Iceland have shown that the crust may be thinner at the ridge axis above the plume thickening towards the sides ( Bjarnason and Schmeling, 2009). To understand this behaviour crustal accretion models have been carried out solving the conservation equations of mass, momentum and energy with melting, melt extraction, and feedback of extracted material as newly formed crust for an extending lithosphere system underlain by a hot mantle plume. The dynamics of rifting are thermally and rheologically controlled by the feedback due to accreted new crust. Four accretional modes with characteristic crustal thickness variations are identified depending on the width of the volcanic emplacement zone, the accretional heating rate, which can be associated with the thickness of the surface layer in which magmatic emplacement takes place, and the spreading rate. Mode 1: zero crustal thickness at the spreading axis develops for cool accretion and a wide emplacement zone. Mode 2: strongly or moderately crustal thickening away from the axis develops in case of warm (deep reaching) accretion and wide emplacement zones. Mode 3: nearly constant crustal thickness develops in case of warm (deep reaching) accretion but narrow emplacement zones. Dynamic topography of mode 3 shows only a weak or no regional minimum at all near the axis. Modes 2 or 3 may be identified with the situation in Iceland. Mode 4: a stagnating central crustal block evolves for cool accretion and narrow emplacement. This mode disappears for increasing spreading rates. No accretional mode with maximum crustal thickness above the plume at the rift axis has been found. The absence of mode 1 accretion (with zero crust at ridge axis) on earth may be an indication that in general crustal accretion is not cold (and shallow). The model is also applied to other hotspot-ridge settings (Azores, Galapagos) and suggests modes 2

  10. Comparison of publically available Moho depth and crustal thickness grids with newly derived grids by 3D gravity inversion for the High Arctic region.

    Lebedeva-Ivanova, Nina; Gaina, Carmen; Minakov, Alexander; Kashubin, Sergey


    We derived Moho depth and crustal thickness for the High Arctic region by 3D forward and inverse gravity modelling method in the spectral domain (Minakov et al. 2012) using lithosphere thermal gravity anomaly correction (Alvey et al., 2008); a vertical density variation for the sedimentary layer and lateral crustal variation density. Recently updated grids of bathymetry (Jakobsson et al., 2012), gravity anomaly (Gaina et al, 2011) and dynamic topography (Spasojevic & Gurnis, 2012) were used as input data for the algorithm. TeMAr sedimentary thickness grid (Petrov et al., 2013) was modified according to the most recently published seismic data, and was re-gridded and utilized as input data. Other input parameters for the algorithm were calibrated using seismic crustal scale profiles. The results are numerically compared with publically available grids of the Moho depth and crustal thickness for the High Arctic region (CRUST 1 and GEMMA global grids; the deep Arctic Ocean grids by Glebovsky et al., 2013) and seismic crustal scale profiles. The global grids provide coarser resolution of 0.5-1.0 geographic degrees and not focused on the High Arctic region. Our grids better capture all main features of the region and show smaller error in relation to the seismic crustal profiles compare to CRUST 1 and GEMMA grids. Results of 3D gravity modelling by Glebovsky et al. (2013) with separated geostructures approach show also good fit with seismic profiles; however these grids cover the deep part of the Arctic Ocean only. Alvey A, Gaina C, Kusznir NJ, Torsvik TH (2008). Integrated crustal thickness mapping and plate recon-structions for the high Arctic. Earth Planet Sci Lett 274:310-321. Gaina C, Werner SC, Saltus R, Maus S (2011). Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic. Geol Soc Lond Mem 35, 39-48. Glebovsky V.Yu., Astafurova E.G., Chernykh A.A., Korneva M.A., Kaminsky V.D., Poselov V.A. (2013). Thickness of the Earth's crust in the


    Woo Kim Jeong


    Full Text Available Any uncompensated mass of the northern Andes Mountains is presumably under pressure to adjust within the Earth to its ideal state of isostatic equilibrium. Isostasy is the ideal state that any
    uncompensated mass seeks to achieve in time. These pressures interact with the relative motions between adjacent plates that give rise to earthquakes along the plate boundaries. By combining the
    gravity MOHO estimates and crustal discontinuities with historical and instrumental seismological catalogs the correlation between isostatically disturbed terrains and seismicity has been established.
    The thinner and thicker crustal regions were mapped from the zero horizontal curvature of the crustal thickness estimates. These boundaries or edges of crustal thickness variations were compared to
    crustal discontinuities inferred from gravity and magnetic anomalies and the patterns of seismicity that have been catalogued for the last 363 years. The seismicity is very intense along the Nazca-North
    Andes, Caribbean-North American and North Andes-South American collision zones and associated with regional tectonic compressional stresses that have locally increased and/or diminished by
    compressional and tensional stress, respectively, due to crustal thickness variations. High seismicity is also associated with the Nazca-Cocos diverging plate boundary whereas low seismicity is associated with the Panama-Nazca Transform Fault and the South American Plate.

  12. Sedimentary and crustal thicknesses and Poisson's ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays

    Wang, Weilai; Wu, Jianping; Fang, Lihua; Lai, Guijuan; Cai, Yan


    The sedimentary and crustal thicknesses and Poisson's ratios of the NE Tibetan Plateau and its adjacent regions are estimated by the h- κ stacking and CCP image of receiver functions from the data of 1,317 stations. The horizontal resolution of the obtained results is as high as 0.5° × 0.5°, which can be used for further high resolution model construction in the region. The crustal thicknesses from Airy's equilibrium are smaller than our results in the Sichuan Basin, Qilian tectonic belt, northern Alxa block and Qaidam Basin, which is consistent with the high densities in the mantle lithosphere and may indicate that the high-density lithosphere drags crust down overall. High Poisson's ratios and low velocity zones are found in the mid- and lower crust beneath eastern Qilian tectonic belt and the boundary areas of the Ordos block, indicating that partial melting may exist in these regions. Low Poisson's ratios and low-velocity anomalies are observed in the crust in the NE Tibetan Plateau, implying that the mafic lower crust is thinning or missing and that the mid- and lower crust does not exhibit melting or partial melting in the NE Tibetan Plateau, and weak flow layers are not likely to exist in this region.

  13. Gravity-based model for regional flexure induced by crustal loading by the 14-km-thick Mississippi delta

    Ajala, R. A.; Mann, P.


    We used gravity data constrained by deep-penetration seismic reflection lines to determine the crustal structure beneath the Mississippi delta, the seventh-largest deltaic accumulation on Earth. The observed gravity anomaly at the margin consist of a high of 50 mGal over the shelf with a low of -27 mGal at a landward distance of 250 km, a low of -18 mGal at a seaward distance of 136 km, and another high of 23 mGal at a seaward distance of 178 km from the shelf edge. The gravity high is centered over the thickest part of the delta, much of which has been deposited since the Miocene. The elastic thickness of the underlying crust is estimated by comparing the amplitude and wavelength of the observed gravity anomaly to the predicted anomaly based on simple elastic plate models. The process-oriented gravity modeling approach has been used to flexurally backstrip the sediments and add the present-day water depth to obtain the total tectonic subsidence (TTS). The gravity effect due to the initial rift structure obtained from the TTS known as the "rifting anomaly" and sediment loading called the "sedimentation anomaly" are used to compute the present-day gravity anomaly. The best fit result is for a margin which sediments were deposited on thinned transitional crust with an elastic thickness of 48 km. Results from flexural modeling show that top of basement has been flexed up to 8 km over a lateral distance of more than 500 km by the deltaic load. The map-view shape of the uplifted rim with a predicted, maximum topographic expression of 40 m is egg-shaped with its northern, more narrow tip crossing the Mississippi Valley near Memphis, its northwestern part running parallel to the northern Ouachita Mountains, its western part tracking parallel to the Mexia-Balcones fault system of Texas, and its eastern edge parallel to the west coast of Florida. While the overall magnitude of the topographic flexure is low, delta-related flexure may have contributed to the Miocene

  14. A Comparative Analysis of Seismological and Gravimetric Crustal Thicknesses below the Andean Region with Flat Subduction of the Nazca Plate

    Mario E. Gimenez


    Full Text Available A gravimetric study was carried out in a region of the Central Andean Range between 28∘ and 32∘ south latitudes and from 72∘ and 66∘ west longitudes. The seismological and gravimetrical Moho models were compared in a sector which coincides with the seismological stations of the CHARGE project. The comparison reveals discrepancies between the gravity Moho depths and those obtained from seismological investigations (CHARGE project, the latter giving deeper values than those resulting from the gravimetric inversion. These discrepancies are attenuated when the positive gravimetric effect of the Nazca plate is considered. Nonetheless, a small residuum of about 5 km remains beneath the Cuyania terrane region, to the east of the main Andean chain. This residuum could be gravimetrically justified if the existence of a high density or eclogitized portion of the lower crust is considered. This result differed from the interpretations from Project “CHARGE” which revealed that the entire inferior crust extending from the Precordillera to the occidental “Sierras Pampeanas” could be “eclogitized”. In this same sector, we calculated the effective elastic thickness (Te of the crust. These results indicated an anomalous value of Te = 30 km below the Cuyania terrane. This is further conclusive evidence of the fact that the Cuyania terrane is allochthonous, for which also geological evidences exist.

  15. Testing Predictions of Continental Insulation using Oceanic Crustal Thicknesses

    Hoggard, Mark; Shorttle, Oliver; White, Nicky


    The thermal blanketing effect of continental crust has been predicted to lead to elevated temperatures within the upper mantle beneath supercontinents. Initial break-up is associated with increased magmatism and the generation of flood basalts. Continued rifting and sea-floor spreading lead to a steady reduction of this thermal anomaly. Recently, evidence in support of this behaviour has come from the major element geochemistry of mid-ocean ridge basalts, which suggest excess rifting temperatures of ˜ 150 °C that decay over ˜ 100 Ma. We have collated a global inventory of ˜ 1000 seismic reflection profiles and ˜ 500 wide-angle refraction experiments from the oceanic realm. Data are predominantly located along passive margins, but there are also multiple surveys in the centres of the major oceanic basins. Oceanic crustal thickness has been mapped, taking care to avoid areas of secondary magmatic thickening near seamounts or later thinning such as across transform faults. These crustal thicknesses are a proxy for mantle potential temperature at the time of melt formation beneath a mid-ocean ridge system, allowing us to quantify the amplitude and duration of thermal anomalies generated beneath supercontinents. The Jurassic break-up of the Central Atlantic and the Cretaceous rifting that formed the South Atlantic Ocean are both associated with excess temperatures of ˜ 50 °C that have e-folding times of ˜ 50 Ma. In addition to this background trend, excess temperatures reach > 150 °C around the region of the Rio Grande Rise, associated with the present-day Tristan hotspot. The e-folding time of this more local event is ˜ 10 Ma, which mirrors results obtained for the North Atlantic Ocean south of Iceland. In contrast, crustal thicknesses from the Pacific Ocean reveal approximately constant potential temperature through time. This observation is in agreement with predictions, as the western Pacific was formed by rifting of an oceanic plate. In summary

  16. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study

    Farner, Michael J.; Lee, Cin-Ty A.


    The majority of arc magmas are highly evolved due to differentiation within the lithosphere or crust. Some studies have suggested a relationship between crustal thickness and magmatic differentiation, but the exact nature of this relationship is unclear. Here, we examine the interplay of crustal thickness and magmatic differentiation using a global geochemical dataset compiled from active volcanic arcs and elevation as a proxy for crustal thickness. With increasing crustal thickness, average arc magma compositions become more silicic (andesitic) and enriched in incompatible elements, indicating that on average, arc magmas in thick crust are more evolved, which can be easily explained by the longer transit and cooling times of magmas traversing thick arc lithosphere and crust. As crustal thickness increases, arc magmas show higher degrees of iron depletion at a given MgO content, indicating that arc magmas saturate earlier in magnetite when traversing thick crust. This suggests that differentiation within thick crust occurs under more oxidizing conditions and that the origin of oxidation is due to intracrustal processes (contamination or recharge) or the role of thick crust in modulating melting degree in the mantle wedge. We also show that although arc magmas are on average more silicic in thick crust, the most silicic magmas (>70 wt.% SiO2) are paradoxically found in thin crust settings, where average compositions are low in silica (basaltic). We suggest that extreme residual magmas, such as those exceeding 70 wt.% SiO2, are preferentially extracted from shallow crustal magma bodies than from deep-seated magma bodies, the latter more commonly found in regions of thick crust. We suggest that this may be because the convective lifespan of crustal magma bodies is limited by conductive cooling through the overlying crustal lid and that magma bodies in thick crust cool more slowly than in thin crust. When the crust is thin, cooling is rapid, preventing residual magmas

  17. Mercury's lithospheric thickness and crustal density, as inferred from MESSENGER observations

    James, P. B.; Mazarico, E.; Genova, A.; Smith, D. E.; Neumann, G. A.; Solomon, S. C.


    The gravity field and topography of Mercury measured by the MESSENGER spacecraft have provided insights into the thickness of the planet's elastic lithosphere, Te. We localized the HgM006 free-air gravity anomaly and gtmes_125v03 shape datasets to search for theoretical elastic thickness solutions that best fit a variety of localized coherence spectra between Bouguer gravity anomaly and topography. We adopted a crustal density of ρcrust =2700 kg m-3 for the Bouguer gravity correction, but density uncertainty did not markedly affect the elastic thickness estimates. A best-fit solution in the northern smooth plains (NSP) gives an elastic thickness of Te =30-60 km at the time of formation of topography for a range of ratios of top to bottom loading from 1 to 5. For a mechanical lithosphere with a thickness of ~2Te and a temperature of 1600 °C at the base, this solution is consistent with a geothermal gradient of 9-18 K km-1. A similar coherence analysis exterior to the NSP produces an elastic thickness estimate of Te =20-50 km, albeit with a poorer fit. Coherence in the northern hemisphere as a whole does not approach zero at any wavelength, because of the presence of variations in crustal thickness that are unassociated with elastic loading. The ratios and correlations of gravity and topography at intermediate wavelengths (harmonic degree l between 30 and 50) also constrain regional crustal densities. We localized gravity and topography with a moving Slepian taper and calculated regionally averaged crustal densities with the approximation ρcrust=Zl/(2πG), where Zl is the localized admittance and G is the gravitational constant. The only regional density estimates greater than 2000 kg m-3 for l=30 correspond to the NSP. Density estimates outside of the NSP were unreasonably low, even for highly porous crust. We attribute these low densities to the confounding effects of crustal thickness variations and Kaula filtering of the gravity dataset at the highest harmonic

  18. Qinghai-Tibet Plateau crustal thickness derived from EGM2008 and CRSUT2.0

    Zhou Hao


    Full Text Available Qinghai-Tibet Plateau is the most complex region for crustal thickness inversion, while high-resolution earth gravity model (EGM makes it possible to obtain high precision gravity anomaly, which is a key parameter to depict the Earth’s inner structure in geodesy domain. On the basis of this principle, we calculated the Bouguer gravity anomalies in Qinghai-Tibet Plateau with EGM2008 and SRTM6. 0 by efficient high-degree spherical harmonic synthesis algorithm. In order to obtain the gravity anomaly caused by Moho density mutant, the noises caused by the topography was removed by wavelet details. Then, the crustal thickness was corrected on the basis of CRUST 2. 0 with the deep-large-scale single density interface formula. The inversion result indicates that the crustal thickness in Qinghai-Tibet Plateau is between 50 km and 75 km, which is in correspondence with the recent science research result. Compared with the 2 degree CRUST 2. 0 model, the spatial resolution of crustal thickness in our research can reach 40 arc minutes. In addition, there is a positive relationship between the inversed crustal thickness and topography, which can prove the effectiveness of Airy-Heiskanen isostatic model in gravity reduction.

  19. Crustal Thickness Along the Central American Volcanic Front

    MacKenzie, L. S.; Abers, G. A.; Rondenay, S.; Fischer, K. M.; Syracuse, E. M.; Protti, J. M.; Gonzalez, V.; Strauch, W.


    Subduction zone processes alter the upper plate in a number of ways, including accretion, magmatic addition, serpentinization of the mantle wedge and formation of mafic cumulates in the lower crust. All of these changes affect seismic velocities, and characterizing the structure of underlying terranes in Central America establishes a baseline for composition and continental growth. Tomography Under Costa Rica and Nicaragua (TUCAN) is a PASSCAL deployment of broadband seismometers over an 18-month period. The network has two dense cross arc lines and two along arc lines that cross terrane boundaries. Teleseismic P and PP arrivals recorded on the TUCAN network have been used to estimate crustal thickness and Vp/Vs, and to develop receiver function images. Surface reflected mode conversions (Ppms and Psms) enhance resolution. Crustal thickness ranges from 25 to 44 km with formal errors ranging 1.6-9.2 km. The thinnest crust (24.6 +/- 3.5 km) lies directly beneath the arc in Nicaragua, whereas the thickest crust (43.5 +/- 2.5 km) lies in the backarc in Nicaragua and beneath the Costa Rican arc (37.9 +/- 5.2). Changes in crustal thickness and Vp/Vs show two distinct terrane boundaries crossing the arc. Vp/Vs indicate continental crust (Vp/Vs=1.71-1.77) in Nicaragua, with a transition to gabbroic crust (Vp/Vs=1.82-1.88) in Costa Rica where fragments of the Caribbean large Igneous Province have been found. Crustal thickness beneath the arc in Costa Rica yields a crustal growth rate of 16-36 km3/km/Ma, assuming a base crustal thickness of 30-32 km with 6-14 Ma of magmatism. The Moho shows strong velocity contrasts throughout the study area, and is the only interface seen in the backarc, but it is complicated by interferences caused by shallow structure beneath the arc and forearc. Forward modeling indicates that reverberations in sediment layers interfere with the Ps arrival, however surface reflected arrivals (Ppms) require a velocity contrast on the order of 0.5-1.0 km

  20. Arctic and N Atlantic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion

    Kusznir, Nick; Alvey, Andy


    The ocean basins of the Arctic and N. Atlantic formed during the Mesozoic and Cenozoic as a series of distinct ocean basins, both small and large, leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. The plate tectonic framework of this region was demonstrated by the pioneering work of Peter Ziegler in AAPG Memoir 43 " Evolution of the Arctic-North Atlantic and the Western Tethys" published in 1988. The spatial evolution of Arctic Ocean and N Atlantic ocean basin geometry and bathymetry are critical not only for hydrocarbon exploration but also for understanding regional palaeo-oceanography and ocean gateway connectivity, and its influence on global climate. Mapping crustal thickness and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion we have produced comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic and N Atlantic region, We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Gravity anomaly and bathymetry data used in the gravity inversion are from the NGA (U) Arctic Gravity Project and IBCAO respectively; sediment thickness is from a new regional compilation. The resulting maps of crustal thickness and continental lithosphere thinning factor are used to determine continent-ocean boundary location and the distribution of oceanic lithosphere. Crustal cross-sections using Moho depth from the gravity inversion allow continent-ocean transition structure to be determined and magmatic type (magma poor, "normal" or magma rich). Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Eurasia, Canada, Makarov, Podvodnikov and Baffin Basins

  1. Determination of the crust thickness in the active margin of the Antarctic region; Determinacao da estrutura crustal na margem ativa da regiao antartica

    Torres, Luiz Carlos; Gamboa, Luiz Antonio Pierantoni [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Lagemar; Gomes, Benedito Souza [PETROBRAS, Rio de Janeiro, RJ (Brazil)


    Seismic multichannel, gravity and magnetometry measurements were carried out in the region of West coast of the Antarctic Peninsula, Bransfield Strait, South Shetland Islands and South Shetland Trench, by Brazilian Antarctic Program during the summers of 1987 and 1988. The present work, using a continue seismic and gravity and gravity data profile crossing the area, intends to present a two-dimensional model of the crust thickness in this region. By this model, the Moho discontinuity would lie at a depth of 14.5 km below the axis of the Bransfield trough. This anomalous behaviour in addition to compressional processes identified in the accretionary prism and trench, was interpreted as an evidence of the continued opening of the Bransfield basin. (author)

  2. Near-axis crustal structure and thickness of the Endeavour Segment, Juan de Fuca Ridge

    Soule, Dax; Wilcock, William S. D.; Toomey, Douglas R.; Hooft, Emilie E. E.; Weekly, Robert T.


    A model of crustal thickness and lower crustal velocities is obtained for crustal ages of 0.1-1.2 Ma on the Endeavour Segment of the Juan de Fuca Ridge by inverting travel times of crustal paths and non-ridge-crossing wide-angle Moho reflections obtained from a three-dimensional tomographic experiment. The crust is thicker by 0.5-1 km beneath a 200 m high plateau that extends across the segment center. This feature is consistent with the influence of the proposed Heckle melt anomaly on the spreading center. The history of ridge propagation on the Cobb overlapping spreading center may also have influenced the formation of the plateau. The sharp boundaries of the plateau and crustal thickness anomaly suggest that melt transport is predominantly upward in the crust. Lower crustal velocities are lower at the ends of the segment, likely due to increased hydrothermal alteration in regions influenced by overlapping spreading centers, and possibly increased magmatic differentiation.

  3. The Crustal Thickness of the Philippine Sea Plate Derived from Gravity Data

    Horng-Yuan Yen


    Full Text Available We constructed a new free-air gravity anomaly map of the Philippine Sea Plate (PSP using ship-tracked gravity data from the National Geophysical Data Center (NGDC. Our results show that the isogals trend correlates well with the tectonic structures in the PSP. After removing the gravity induced by sea water from the free-air gravity data, we obtained the regional Bouguer gravity anomaly, which is later used to compute the Moho geometry in the PSP by applying the Parker-Oldenburg iterative method. Our results indicate that in the southern part of the West Philippine Basin (WPB the crustal thickness is nearly homogeneous with a value of about 5 km, which implies that the WPB is quite stable. The low-amplitude and near-zero free-air gravity anomalies clearly indicate that the whole WPB, except at trenches and island arcs, is nearly in a state of isostatic equilibrium. The average crustal thickness of the Palau Kyushu Ridge (PKR is more than 10 km. In the eastern PSP the crustal thickness gradually increases eastward. Our results also imply that a relatively thin and low density mantle exists beneath the Parece Vela Basin (PVB as a consequence of back-arc spreading and serpentinized upwells of the thin crustal thickness.

  4. Detailed crustal thickness variations beneath the Illinois Basin area: Implications for crustal evolution of the midcontinent

    Yang, Xiaotao; Pavlis, Gary L.; Hamburger, Michael W.; Marshak, Stephen; Gilbert, Hersh; Rupp, John; Larson, Timothy H.; Chen, Chen; Carpenter, N. Seth


    We present high-resolution imaging results of crustal and upper mantle velocity discontinuities across the Illinois Basin area using both common conversion point stacking and plane wave migration methods applied to P wave receiver functions from the EarthScope Ozark, Illinois, Indiana, and Kentucky experiment. The images reveal unusually thick crust (up to 62 km) throughout the central and southeastern Illinois Basin area. A significant Moho gradient underlies the NW trending Ste. Genevieve Fault Zone, which delineates the boundary between the Illinois Basin and Ozark Dome. Relatively thinner crust (convergent margin tectonics around 1.55-1.35 Ga; (3) by Late Precambrian magmatic underplating at the base of older crust, associated with the creation of the Eastern Granite-Rhyolite Province around 1.3 Ga; and (4) through crustal "relamination" during an episode of Proterozoic flat-slab subduction beneath the Illinois Basin, possibly associated with the Grenville Orogeny.

  5. Crustal Thickness and Lower Crustal Velocity Structure Beneath the Endeavour Segment of the Juan de Fuca Ridge

    Hill, R.; Soule, D. C.; Wilcock, W. S. D.; Toomey, D. R.; Hooft, E. E. E.; Weekly, R. T.


    In 2009, a multi-scale seismic tomography experiment was conducted on the Endeavour segment of the Juan de Fuca Ridge aboard the R/V Marcus G. Langseth. Ocean bottom seismometers were deployed at 64 sites and recorded 5567 shots of a 36-element, 6600 in.3 airgun array. The experiment extended 100 km along-axis and 60 km cross-axis. Two crustal tomographic analyses have previously been completed using data from the experiment. First, 93,000 manually picked crustal refraction arrivals (Pg) were used to develop a three-dimensional model of crustal velocity and thickness in the upper crust (Weekly et al. 2014). Second, this model was used as the starting model in an analysis that incorporated ~19,000 Moho reflection arrivals (PmP) for non-ridge crossing paths to image lower crustal velocity structure and crustal thickness off-axis. A key feature of this model is a ~0.5-1 km increase in crustal thickness beneath a bathymetric plateau that extends to either side of the central portion of the Endeavour segment. We present a tomographic inversions that incorporates ridge-crossing paths to examine spatial variations in lower crustal velocity and crustal thickness beneath the ridge axis. The preliminary results from an inversion that incorporates ~8700 manually picked ridge-crossing PmP arrival times reveals a ~10-km-wide low velocity zone extending throughout the lower crust with a velocity anomaly of -0.3 to -0.5 km/s at ≥4 km depth. This low velocity zone extends both to the north and south of the axial magma chamber reflector imaged previously beneath the central Endeavour. The inversion also shows significant variations in apparent crustal thickness along axis but additional analysis is required to understand whether these variations are well resolved.

  6. Analysis the 1978–2008 crustal and sub-crustal earthquake catalog of Vrancea region

    L. Telesca


    Full Text Available The crustal and sub-crustal seismicity that occurred in the Vrancea area from 1978 to 2008 is investigated. Due to quarry blast contamination, the analysis of the crustal seismicity was restricted to events that occurred between 20 km and 60 km, considering sub-crustal events as all those that occurred at depths larger than 60 km. The completeness magnitude was estimated between 2.3 and 2.5 for the crustal seismicity and between 2.9 and 3.1 for the sub-crustal one. The Gutenberg-Richter b-values show clear differences between crustal and sub-crustal seismicity, with values around 0.9 and 1.3–1.4, respectively. The analysis performed in this study represents a preliminary issue for the seismic hazard assessment of surrounding regions like Moldova, for which the earthquakes generated in Vrancea represent an important threat.

  7. The crustal structure of Egypt and the northern Red Sea region

    Hosny, Ahmed; Nyblade, Andrew


    P-wave receiver functions from 26 stations in the Egyptian National Seismic Network (ENSN) have been modeled using the H-k stacking method and in a joint inversion method with Rayleigh wave group velocities to investigate crustal structure across Egypt and the northern Red Sea region. The new estimates of crustal structure, when combined with previous results, show that along the rifted margins of the Red Sea, Gulf of Suez and Gulf of Aqaba crustal thickness ranges from 25 to 30 km, the average crustal Vp/Vs ratio is 1.77, and the average crustal shear-wave velocity is 3.6 km/s. Beneath northern and central Egypt, including the Sinai Peninsula, crustal thickness ranges from 32 to 38 km, the average crustal Vp/Vs ratio is 1.79, and the average crustal shear-wave velocity is 3.5 km/s. Beneath southern Egypt, crustal thickness ranges from 35 to 40 km, the average crustal Vp/Vs ratio is 1.76, and the average crustal shear-wave velocity is 3.7 km/s. In southern Egypt, the crust is also characterized by a 10-20 km thick mafic lower crust. These findings indicate that crust along the rifted margins of the northern Red Sea, and Gulfs of Suez and Aqaba have been thinned by about 5 to 10 km. The thick mafic lower crust in southern Egypt can be attributed to suturing during the Neoproterozoic collision of east Gondwana against the Sahara metacraton. Overall, the structure of the crust in Egypt away from the northern Red Sea region is similar to the structure of Precambrian crust in many other parts of Africa.

  8. Crustal Thickness in Northern Andes Using pP and sS Precursors at Teleseismic Distances

    Aranda Camacho, N. M.; Assumpcao, M.


    The Andean belt is a result of the subduction of the Nazca plate beneath the South American continental plate. It has an extension of 8000 km from Venezuela to Tierra del Fuego. While the crustal-thickness is a well-known property in Southern and Central Andes, it is still poorly known in the Northern Andes (between 10°N and 4° S). The crustal thickness is a very important property to understand the crustal evolution such as in geodynamic models and in modeling wave-propagation in global and regional seismic studies. Due to the high seismic activity at intermediate depths in the Northern Andes, it is possible to use the teleseismic P-wave and S-wave trains to find the crustal-thickness. In this study, we analyze the reflections from the underside of the Moho for intermediate and deep earthquakes in the northern Andes recorded at teleseismic distances (between 40°- 85°), and estimate the crustal-thickness at the bounce points of the pP and sS wave by converting the delay time between the phases pP and pmP and also between sS and smS into crustal thickness. This method can be applied in zones with earthquakes having magnitude larger than 6 for that reason the Northern Andes is a favorable area to develop it. We analyzed five events from the Northern Andes with magnitude larger than 6 and deeper than 100 km. The crustal thickness was calculated using the P wave with the vertical component and the S wave using both transverse SH and radial SV components. We find that the crustal-thickness in this area varied from 27.9 × 2.4 km at (76.48 W, 4.82 N) to 55.7 × 5.2 km at (77.92 W, 2 S). Our results show a crustal-thickness consistent with a compilation made for a larger region that includes our research area, showing residuals between -4 km and 4 km in most of the bounce points . We are getting results in areas that have not been studied previously so it will help to increase the database of crustal-thicknesses for the Northern Andes.

  9. Decrease in oceanic crustal thickness since the breakup of Pangaea

    van Avendonk, Harm J. A.; Davis, Joshua K.; Harding, Jennifer L.; Lawver, Lawrence A.


    Earth's mantle has cooled by 6-11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15-20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.



    A new approach was taken to investigate the crustal stucture of the Kane transform and its aseismic extension, using high quality bathymetry and gravity data. The gravity signatures associated with variations in crustal thickness of the transform were isolated from the observed free-air anomaly,was continued downward to the mean depth of the crust/mantle interface and converted onto the relief on that surface. The crustal thickness of the transform was then calculated by subtracting seawater depth from the depth of the gravity-inferred crust/mantle interface. 3-D gravity investigation results indicate that the Kane transform and adjacent areas are associated with a crust thinner than normal oceanic crust. The transform trough is largely underlain by a crust less than 4.5km thick and in the nodal basins the crust may be as thin as 3 km. The crust beneath the fracture zone valley is 4 - 5.5 km thick. The rift valleys on the spreading segments are also characterized by thin crust (4 - 5 km thick). Thin oceanic crust extends to 20 - 30 km from the transform axis, except for some localized places such as the inside comer highs adjoining the ridge-transform intersections. These gravity-inferred results match fairly well with limited published seismic results. Thinning of the crust is mainly attributable to a thin layer 3, which in tum may be explained by the combined effects of reduced magma supply at the ends of the spreading segments and tectonic activities in the region.


    PhilipD.Rabinowitz; 胡延昌


    A new approach was taken to investigate the crustal stucture of the Kane transform and its aseismic extension, using high quality bathymetry and gravity data. The gravity signatures associated with variations in crustal thickness of the transform were isolated from the observed free-air anomaly,was continued downward to the mean depth of the crust/mantle interface and converted on to the relief onthat surface. The crustal thickness of the transform was then calculated by subtracting seawater depth from the depth of the gravity-inferred crust/mantle interface. 3-D gravity investigation results indicate that the Kane transform and adjacent areas are associated with a crust thinner than normal oceanic crust. The transform trough is largely underlain by a crust less than 4.5kin thick and in the nodal basins the crust may be as thin as 3 kin. The crust beneath the fracture zone valley is 4 - 5.5 km thick. The rift valleys on the spreading segments are also characterized by thin crust (4 - 5 km thick). Thin oceanic crust extends to 20-30 km from the transform axis,except for some localized places such as the inside comerhighs adjoining the ridge-transform intersections. These gravity-inferred results match fairly well with limited published seismic results. Thinning of the crust is mainly attributable to a thin layer 3, which in turn may be explained by the combined effects of reduced magma supply at the ends of the spreading segments and tectonic activities in the region.

  12. Tectonic history of the Ordos Block and Qinling Orogen inferred from crustal thickness

    Feng, Mei; An, Meijian; Dong, Shuwen


    The Ordos Block and the Qinling Orogen in central China are key regions that have been affected by Indo-Eurasian collision, convergence of the North China, South China and Siberian cratons, and subduction of the Pacific oceanic plate during the Phanerozoic. Investigation of the crustal structure in this area can therefore provide significant insights into the interactions among these tectonic blocks and plates. The Chinese Academy of Geological Sciences deployed ca. 249 portable broad-band seismic stations in this area from 2011 to 2016, and we retrieved P-wave receiver functions (RFs) from these new stations, and also from all other available permanent and portable seismic stations in China. Crustal thicknesses beneath the stations were retrieved using 1-D S-wave velocity models, which were obtained by linearized inversion of the RFs with initial reference models from regionalized S-wave velocities of surface wave inversions. We demonstrate with synthetic tests that this inversion scheme is superior to a jointly linearized inversion of RFs and surface waves. The results show that crustal thicknesses generally correlate with tectonic domains in the study region. Thus, thick crust is present beneath the Daba Shan region and the area close to the northeastern Tibetan Plateau, intermediate-thickness crust is present beneath the Ordos Block and the central North China Craton, and thin crust exists beneath the North China Plain. However, some notable exceptions exist. The crust beneath the central Qinling is thinner than that beneath the neighbouring Daba Shan region and even the Weihe Basin, implying that subduction and collision of the North China and South China cratons in the Palaeozoic did not produce a thick crust beneath the suture. The relatively thin crust beneath the eastern and central Qinling must be denser than that beneath neighbouring areas. All the basins around the Ordos Block have been considered to be graben. However, our results show that the crust

  13. Crustal Thickness Across Alaska via Ps Receiver Functions and Gravity Data and Comparison to Lithospheric Structure

    O'Driscoll, L.; Saltus, R. W.; Miller, M. S.; Porritt, R. W.


    The geologic mosaic of terranes, adjacent multi-phase plate boundary, rapid lateral topographic variations, and heterogeneous distribution of strain throughout Alaska all suggest strong heterogeneity of crustal architecture. We present a model of crustal thickness across the state is primarily constrained where seismic instrumentation has been deployed - dense coverage in the south-central region and sparse coverage in the north, west, and arc regions. P receiver functions (PRF) were calculated using an upgraded version of Funclab, a software module that retrieves data, calculates receiver functions, facilitates quality control, and calculates H-k stacking, depth mapping via binned Common Conversion Point stacking, and other backend products. 1,678 events and 262 stations yielded 102,000 preliminary PRF that were culled to 21,000 total RFs. Iterative time-domain deconvolution was performed about a 1 Hz central frequency for ZRT traces. Our model reproduces many of the Moho depth variations previously modeled by receiver functions and gravity. Thick (>60 km) crust below the Chugach and St. Elias Ranges transitions to ~40 km thick crust south of the Denali Fault. Immediately to the north, thin (29-35) crust is observed in central Alaska between the Alaska and Brooks Ranges. The central Brooks Range is observed to have a thick crustal root below its topographic high axis. Stations scattered throughout western Alaska and the Bering Sea regions generally show average (~35 km) thickness crust while displaying inter-station uniqueness in the form of stacked RFs. Below the forearc and central Alaska Range, the Yakutat slab Moho is also observed. To complete coverage for the state we use a gravity Moho model calibrated to our receiver function solutions. The resolution of gravity-derived Moho models is limited and can only produce a smoothed approximation of the actual Moho. Where receiver function results are dense we observe significant complexity to the Moho, consistent

  14. Crustal model for the Middle East and North Africa region: implications for the isostatic compensation mechanism

    Seber, Dogan; Sandvol, Eric; Sandvol, Christine; Brindisi, Carrie; Barazangi, Muawia


    We present a new 3-D crustal model for the Middle East and North Africa region that includes detailed topography, sediment thickness, and Moho depth values. The model is obtained by collecting, integrating, and interpolating reliable, published sedimentary rock thickness and Moho depth measurements in the Middle East and North Africa region. To evaluate the accuracy of the model, the 3-D gravity response of the model is calculated and compared with available observed Bouguer gravity anomalies in the region. The gravity modelling shows that the new crustal model predicts large portions of the observed Bouguer anomalies. However, in some regions, such as the Red Sea and Caspian Sea regions, where crustal structure is relatively well-determined, the residual anomalies are of the order of a few hundred milligals. Since the new crustal model results in large residual anomalies in regions where reasonably good constraints exist for the model, these large residuals cannot simply be explained by inaccuracies in the model. To analyse the cause of these residuals further we developed an isostatically compensated (Airy-type) Moho-depth model and calculated its gravity response. Isostatic gravity anomalies are in nearly perfect agreement with the observed gravity values. However, the isostatic model differs significantly from the new (3-D) crustal model. If isostasy is to be maintained, crustal and/or upper mantle lateral density variations are needed to explain the large observed gravity residuals.

  15. Quantitative restoration the Gulf of Mexico continental margins based on a newly-derived, basin-wide, crustal thickness map

    Nguyen, L. C.; Mann, P.


    For decades, one of the main difficulties for understanding the tectonic evolution of the Gulf of Mexico (GOM) is quantifying the amount of crustal thinning of its deeply-buried and salt-covered continental margins formed during the Triassic-Jurassic rifting. In this study, we present a new crustal thickness map for the entire GOM and its surrounding areas based on integration of: 1) depth to basement compilation of previous seismic refraction and well data; and 2) regional estimation of Moho depths from 3D gravity inversion. Gravity modeling of salt thickness and Moho depth provide new constraints on crustal thickness in areas where refraction and well data are not available from both the US and Mexican GOM. Our derived crustal thickness map shows a zone of stretched continental crust with an average thickness of 20 km extending 700 km from the Ouachita foldbelt to the Sigsbee escarpment and in a 200-km-wide zone along the north and NW edge of the Yucatan block. To fully reconstruct the GOM to its pre-rift stage, we first close the late Jurassic oceanic part of the deep GOM using the traces of oceanic transform faults mapped from satellite gravity data. We then use our crustal thickness map to restore the thinned continental crust of the conjugate margins. Restoring the Yucatan block in a NW-SE direction produces the optimal, closed-fit model which supports a two-phase, GOM opening concept with early asymmetrical rifting across a broader, more extended, North American lower plate ( 250 km) in the northern, US GOM and a narrower, less extended, Yucatan upper plate ( 100 km) in the southern, Mexican GOM. Our full-fit reconstruction shows a single, post-rift Louann-Campeche salt-filled sag basin and re-aligned Paleozoic magnetic trends between the Yucatan block and Florida.

  16. Magnetic crustal thickness in Greenland from CHAMP and Ørsted data

    Maule, Cathrine Fox; Purucker, Michael E.; Olsen, Nils


    and observatory data. After correcting for the remanent magnetization, we determine the vertically integrated magnetization of the crust. Making some simplifying assumptions about the susceptibility, the thickness of the magnetic crust is determined by iteratively improving an initial crustal thickness model...

  17. Separation of dynamic and isostatic components of the Venusian gravity and topography and determination of the crustal thickness of Venus

    Yang, An; Huang, Jinshui; Wei, Daiyun


    Assuming that the long-wavelength geoid and topography of Venus are supported by both mantle convection and Airy isostasy, we propose a method to separate the dynamic and isostatic components of the Venusian gravity and topography with the aid of the dynamic admittance from numerical models of mantle convection and the isostatic admittance from an Airy isostatic model. The global crustal thickness is then calculated based on the isostatic component of the gravity and topography. The results show that some highland plateaus such as Ishtar Terra and Ovda Regio have thick crust, which are largely supported by isostatic compensation. Other highland plateaus such as Thetis and Phoebe Regiones appear to have superimposed contributions from crustal thickening and dynamic support. Volcanic rises such as Atla and Beta Regiones have thin crust, which is consistent with the postulation that these volcanic rises are mainly the products of dynamic uplift caused by mantle plumes.

  18. Crustal thickness and composition beneath the High Lava Plains of Eastern Oregon from teleseismic receiver functions

    Eagar, K. C.; Fouch, M. J.; James, D. E.; Carlson, R. W.


    The nature of the crust beneath the High Lava Plains of eastern Oregon is fundamental for understanding the origins of widespread Cenozoic volcanism in the region. Eruptions of flood basalts in the southern Cascadian back arc peaked ~17-15 Ma, and were followed by distributed bimodal volcanism along two perpendicular migrating tracks; the Snake River Plain and the High Lava Plains. The orientations of eruptive centers have led to several competing hypotheses about their cause, including a deep mantle plume, slab retreat and asthenospheric inflow, lithospheric delamination, and lithospheric extension. The goal of this project is to constrain the nature, geometry, and depth of the Moho across the High Lava Plains, which will shed light on questions regarding crustal influence on melt generation and differentiation and the degree of magmatic underplating. In this study, we analyze teleseismic receiver functions from 118 stations of the High Lava Plains temporary broadband array, 34 nearby EarthScope/USArray stations, and 5 other regional broadband stations to determine bulk crustal features of thickness (H) and Vp/Vs ratio (κ). Applying the H-κ stacking method, we search for the best-fitting solution of timing predictions for direct and multiple P-to-S conversions from the Moho interface. Converting Vp/Vs to Poisson ratio, which is dependent primarily upon rock composition, allows for comparison with other direct geological observations. Preliminary results show that the crust of the High Lava Plains is relatively thin (~31 km) with a very sharp gradient to thicker crust (~42 km) at the western edge of the Owyhee Plateau in southwestern Idaho. This gradient is co-located with the western margin of Precambrian North America and is in the vicinity of the Jordan Craters volcanic center. The sharp topography of the Moho might have been a factor in melt migration beneath this area. West of the High Lava Plains, the crust thickens to ~40 km into the Cascade volcanic arc

  19. A Graphical Approach to Quality Checking Crustal Thickness Point Data Using Isostacy

    Wallet, B.; Okure, M. S.; Keller, G. R.


    Constructing crustal models requires the aggregation of considerable amounts of data from multiple data sources. Unfortunately, such data often are noisy and outliers within the data may produce large errors in the resulting model. However, despite what are clearly large errors, verification and cleaning of the data is complicated by the fact that true crustal thicknesses can vary greatly over a distances of 10’s of kilometers. Thus, it is impossible to select a single threshold that is capable of filtering outliers. In this work, we were attempting to form an estimate of the crustal thickness for North America using 1845 observations from the USGS Earthquake Hazards Program integrated with the receiver function-based crustal thickness estimates that are an EarthScope data product. Our initial efforts demonstrated that a large number of the observed depths were greater than expected. To improve our data, we employed an Airy-Heiskanen local compensation model to estimate crustal thickness based upon elevation. We then calculate the residuals of the crustal thickness. Examination of these residuals revealed a bimodal structure with a smaller upper tail cluster corresponding to observations we believed to be too thick to be reliable. We then adjusted our estimate of the depth of compensation at sea level such that the lower tail cluster had an approximately zero mean residual, which occurred at a value of 37 km. We then recalculated the residuals and estimated a threshold graphical. By then using this new set of filtered data, we were able to obtain better maps than previously obtainable. Our goal is to set up a database than be expanded and revised via community input and new results.

  20. Crustal thickness and images of the lithospheric discontinuities in the Gibraltar arc and surrounding areas

    Mancilla, Flor de Lis; Stich, Daniel; Morales, José; Martín, Rosa; Diaz, Jordi; Pazos, Antonio; Córdoba, Diego; Pulgar, Javier A.; Ibarra, Pedro; Harnafi, Mimoun; Gonzalez-Lodeiro, Francisco


    The Gibraltar arc and surrounding areas are a complex tectonic region and its tectonic evolution since Miocene is still under debate. Knowledge of its lithospheric structure will help to understand the mechanisms that produced extension and westward motion of the Alboran domain, simultaneously with NW-SE compression driven by Africa-Europe plates convergence. We perform a P-wave receiver function analysis in which we analyse new data recorded at 83 permanent and temporary seismic broad-band stations located in the South of the Iberian peninsula. These data are stacked and combined with data from a previous study in northern Morocco to build maps of thickness and average vP/vS ratio for the crust, and cross-sections to image the lithospheric discontinuities beneath the Gibraltar arc, the Betic and Rif Ranges and their Iberian and Moroccan forelands. Crustal thickness values show strong lateral variations in the southern Iberia peninsula, ranging from ˜19 to ˜46 km. The Variscan foreland is characterized by a relatively flat Moho at ˜31 km depth, and an average vP/vS ratio of ˜1.72, similar to other Variscan terranes, which may indicate that part of the lower crustal orogenic root was lost. The thickest crust is found at the contact between the Alboran domain and the External Zones of the Betic Range, while crustal thinning is observed southeastern Iberia (down to 19 km) and in the Guadalquivir basin where the thinning at the Iberian paleomargin could be still preserved. In the cross-sections, we see a strong change between the eastern Betics, where the Iberian crust underthrusts and couples to the Alboran crust, and the western Betics, where the underthrusting Iberian crust becomes partially delaminated and enters into the mantle. The structures largely mirror those on the Moroccan side where a similar detachment was observed in northern Morocco. We attribute a relatively shallow strong negative-polarity discontinuity to the lithosphere-asthenosphere boundary

  1. Crustal Structure of the Iceland Region from Spectrally Correlated Free-air and Terrain Gravity Data

    Leftwich, T. E.; vonFrese, R. R. B.; Potts, L. V.; Roman, D. R.; Taylor, P. T.


    Seismic refraction studies have provided critical, but spatially restricted constraints on the structure of the Icelandic crust. To obtain a more comprehensive regional view of this tectonically complicated area, we spectrally correlated free-air gravity anomalies against computed gravity effects of the terrain for a crustal thickness model that also conforms to regional seismic and thermal constraints. Our regional crustal thickness estimates suggest thickened crust extends up to 500 km on either side of the Greenland-Scotland Ridge with the Iceland-Faeroe Ridge crust being less extended and on average 3-5 km thinner than the crust of the Greenland-Iceland Ridge. Crustal thickness estimates for Iceland range from 25-35 km in conformity with seismic predictions of a cooler, thicker crust. However, the deepening of our gravity-inferred Moho relative to seismic estimates at the thermal plume and rift zones of Iceland suggests partial melting. The amount of partial melting may range from about 8% beneath the rift zones to perhaps 20% above the plume core where mantle temperatures may be 200-400 C above normal. Beneath Iceland, areally limited regions of partial melting may also be compositionally and mechanically layered and intruded. The mantle plume appears to be centered at (64.6 deg N, 17.4 deg W) near the Vatnajokull Glacier and the central Icelandic neovolcanic zones.

  2. Crustal structure of the western Indian shield: Model based on regional gravity and magnetic data

    Suman Kilaru


    This study probes the geometry of the different crustal units in terms of density and susceptibility variations in order to decipher the imprints of the major tectonic processes the region has undergone. In order to decipher the crustal geometry of the Gadra–Fatehpur profile, two NW–SE gravity and magnetic profile vertical sections (A–A′ in the south and B–B′ in the north are modelled on the basis of the constraints provided from previous seismic models. The crustal model of the Gadra–Fatehpur profile is composed of alluvium, Tertiary sediments, MIS, Marwar Supergroup, low-density layers (LDLs and the middle–lower crustal layers, with a distinct change in configuration from the southwest to northeast. The Moho dips from SW to NE, the MIS in the SW gives way to the thick pile of the Marwar Supergroup to the NE. The evolution of MIS has been suggested to have occurred as a consequence of delamination of the upper mantle. LDLs are incorporated in Gadra–Fatehpur model. In the SW, LDL (2550 kg/m3 lies below the MIS in the NE, another LDL (2604 kg/m3 is depicted below the mid-crustal layer.

  3. Crustal radial anisotropy in Northeast China and its implications for the regional tectonic extension

    Guo, Zhen; Yang, Yingjie; Chen, Y. John


    We obtain high-resolution Rayleigh and Love wave phase velocity maps from ambient noise tomography using data recorded by NECESSArray in Northeast China. The resulting radial anisotropic model from the joint inversion of Rayleigh and Love wave dispersion curves reveals strong relationship between the crustal radial anisotropy and tectonic provinces, that is, strong positive anisotropy (Vsh > Vsv) beneath the Songliao Basin and weak radial anisotropy beneath the Xinmeng Belt and Changbaishan Region. The Songliao Basin experienced widespread crustal extension during the late Mesozoic. We interpret the lower crustal anisotropy beneath the Songliao Basin as a result of ductile deformation during the rifting stage, which may lead to the alignment of anisotropic minerals and the observed strong radial anisotropy at present. In the northern Songliao Basin, where thick syn-rift and post-rift sediments (≥4 km) are believed to be present, we observe a broader lateral distribution of anisotropy with stronger amplitude compared with the southern basin. We suggest that the broader distribution of crustal radial anisotropy in the northern basin could be the consequence of outward lower crustal flow driven by the sedimentary loading during the post-rift stage, which is also proposed by previous numerical modeling.

  4. Broadband regional waveform modeling to investigate crustal structure and tectonics of the central Andes

    Swenson, Jennifer Lyn

    We use broadband regional waveform modeling of earthquakes in the central Andes to determine seismic properties of the Altiplano crust. Properties of the shear-coupled P-wavetrain (SPL ) from intermediate-depth events provide particularly important information about the structure of the crust. We utilize broadband seismic data recorded at the BANJO and SEDA stations, and synthetic seismograms computed with a reflectivity technique to study the sensitivity of SPL to crustal and upper mantle parameters at regional distances. We find that the long-period SPL-wavetrain is most sensitive to crustal and mantle Poisson's ratios, average crustal velocity, and crustal thickness. A comprehensive grid search method developed to investigate these four parameters suggests that although trade-offs exist between model parameters, models of the Altiplano which provide the best fit between the data and synthetic seismograms are characterized by low Poisson's ratios, low average crustal velocity and thick crust. We apply our grid search technique and sensitivity analysis results to model the full waveforms from 6 intermediate-depth and 2 shallow-focus earthquakes recorded at regional distances by BANJO and SEDA stations. Results suggest that the Altiplano crust is much thicker (55--65 km) and slower (5.75--6.25 km/s) than global average values. Low crustal and mantle Poisson's ratios together with the lack of evidence for a high-velocity lower crust suggests a bulk felsic crustal composition, resulting in an overall weak crust. Our results favor a model of crustal thickening involving large-scale tectonic shortening of a predominantly felsic crust. To better understand the mechanics of earthquake rupture along the South American subduction zone, we have analyzed broadband teleseismic P-waves and utilize single- and multi-station inversion techniques to constrain source characteristics for the 12 November 1996 Peru subduction zone earthquake. Aftershock locations, intensity reports

  5. Lithospheric Thickness Variations from Gravity and Topography in Areas of High Crustal Remanent Magnetization on Mars

    Smrekar, S. E.; Raymond, C. A.


    Large regions of intense crustal re- manent magnetization were fortuitously discovered on Mars by the Mars Global Surveyor (MGS) spacecraft. Gravity and topography admittance studies are used to examine lithospheric structure in the areas of intense magnetization. Areas with positively magnetized crust appear to have thinner crust and elastic lithosphere than negatively magnetized crust. Additional information is contained in the original extended abstract.

  6. South China Sea crustal thickness and lithosphere thinning from satellite gravity inversion incorporating a lithospheric thermal gravity anomaly correction

    Kusznir, Nick; Gozzard, Simon; Alvey, Andy


    are highly asymmetric and have several striking features such as the Macclesfield Bank, Xisha Trough, Reed Bank and Dangerous Grounds. Thin continental crust is predicted extending westwards from thin oceanic crust north of Macclesfield Bank into the Quiondongnan (QDN) basin and is interpreted as being generated ahead of westward propagating sea-floor spreading most in the Oligocene. Further south, highly thinned continental crust or possibly serpentinised exhumed mantle is predicted in the Phu Khanh Basin. Ahead of the failed propagating tip of seafloor spreading, offshore southern Vietnam, thinned continental crust is predicted for the Cuu Long and Nam Con Son Basins. Crustal thicknesses from gravity inversion confirms that the southern margin of the SCS consists of fragmented blocks of thinned continental crust separated by thinner regions of continental crust that have undergone higher degrees of stretching and thinning. The Reed Bank is predicted to have a crustal thickness of 20 to 25km, similar to that of Macclesfield Bank. The Dangerous Grounds, west of the Reed Bank, are also predicted to consist of continental crust. This region has been thinned to a higher degree than the Reed Bank, with continental crustal thickness ranging between 10 and 20km thick.

  7. Crustal thickness at the Tuxtla Volcanic Field (Veracruz, Mexico) from receiver functions

    Zamora-Camacho, A.; Espindola, V. H.; Pacheco, J. F.; Espindola, J. M.; Godinez, M. L.


    The Tuxtla Volcanic Field (TVF) is a structure of basaltic rocks on the western margin of the Gulf of Mexico in the Mexican State of Veracruz. Located some 150 km from the easternmost tip of the Mexican Volcanic Belt, its tectonic relationship is still unclear. The volcanism, mostly alkaline, is younger than 7 Ma and has given origin to hundreds of cinder and scoria cones, maars and four large composite volcanoes, one of which, San Martín Tuxtla, erupted explosively in 1793. Due to its volcanological importance, it has been the subject of several geological studies, none of which focused on its crustal structure. Moreover, because the seismicity level in the area is relatively low, no broadband seismometers of Mexico's National Seismological Service are currently installed in the area. In this paper we present the results of the analyses of 24 teleseismic events occurring between 2004 and 2008 recorded in two broadband stations deployed around San Martín volcano. The aim of this study was to determine the depth to the Moho, any major intracrustal interface in the area, and a velocity model by means of receiver function analysis. The results show that the crustal thickness in the area varies between roughly 28 and 34 km. The receiver functions at one station suggest a second interface at a depth between 10 and 14 km. This interface is probably the contact between an upper sedimentary layer and the transitional crust found elsewhere in the margins of the Gulf of Mexico. The determination of the crustal thickness in the TVF is of importance to characterize the area and as a framework to pursue further studies of this volcanic field.

  8. Receiver functions and crustal structure of the northwestern Andean region, Colombia

    Poveda, Esteban; Monsalve, Gaspar; Vargas, Carlos Alberto


    We used the receiver function technique to deduce crustal thickness beneath the northwestern Andean system, using data from the permanent seismic network of Colombia, combined with some of the IRIS and CTBTO stations in Colombia and Ecuador. The estimation of crustal thickness was made using the primary P to s conversion and crustal reverberations. The bulk crustal VP/VS ratio was constrained using a crustal thickness versus VP/VS stacking method, in addition to estimations using a time to depth conversion technique based on results of a modified Wadati diagram analysis. We observed a wide range of crustal thicknesses, including values around 17 km beneath the Malpelo Island on the Pacific Ocean, 20 to 30 km at the coastal Pacific and Caribbean plains of Colombia, 25 to 40 km beneath the eastern plains and foothills, 35 km beneath the Western Cordillera, 45 km at the Magdalena River intermountain valley, 52 to 58 km under the northern Central Cordillera, and reaching almost 60 km beneath some of the volcanoes of the Southern Cordilleran system of Colombia; crustal thickness can be slightly greater than 60 km beneath the plateau of the Eastern Cordillera. The values of VP/VS are particularly high for some of the stations on the volcanic centers, reaching values above 1.79, probably related to the addition of mafic materials to the lower crust, and in the plateau of the Eastern Cordillera near Bogota, where we speculate about the possibility of crustal seismic anisotropy associated with shear zones.

  9. Low crustal velocities and mantle lithospheric variations in southern Tibet from regional Pnl waveforms

    Rodgers, Arthur J.; Schwartz, Susan Y.

    We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.

  10. Crustal thickness in central Europe from single-station seismic noise autocorrelation analysis

    Becker, Gesa; Knapmeyer-Endrun, Brigitte


    The InSight mission to Mars will place a single three-component seismometer on the planet's surface, requiring the application of single-station methods. In addition, seismicity on Mars is likely less abundant than on Earth, making it important to also use the available seismic noise. For these reasons different approaches of seismic noise autocorrelation have been tested with broadband three-component datasets from 12 stations across central Europe. These stations cover varying Moho depths of ca. 25-50 km depth. With the help of the autocorrelations, reflected body waves are extracted in order to estimate the crustal thickness at each station. This is of special relevance for Mars, where average crustal thickness is uncertain by a factor of two. The different approaches used are waterlevel normalized autocorrelation, with and without application of a short-term and long-term average filter to the spectrum of the data prior to autocorrelation, and phase autocorrelation. These approaches are compared and analyzed. Estimates for the Moho depths are made from the lag times of the reflected P-waves and compared to available Moho depth values at the stations. Due to the availability of three-component data these estimates can be cross-validated and in some cases not only P-wave reflections, but also possible S-wave and multiple reflections can be identified. The estimates compare well with the general trend of Moho depth expected for these stations. The consistency of results is further investigated by comparing different stations of the GERES array (aperture 2 km), which also allows to examine results for closely located broad-band and short-period stations side by side.

  11. Crustal Velocity Model of the Altai-Sayan Region

    Behrend, M. J.; Mackey, K. G.


    We have developed a crustal velocity model for the the region encompassed by the Altai-Sayan Seismic Network of South-Central Russia (45o-55o N. X 79o-98o E.). Geographically, the study area includes the Altai and Sayan Mountain Ranges, Western Mongolia, Eastern Kazakhstan, and Northwest China. To develop our model we used phase arrival data from approximately 175 larger earthquakes recorded by the Altai-Sayan Seismic Network between 1977 and 1981 and reported in the bulletin Materialy po Seismichnosti Sibiri. To develop our model, we divided the region into 1o N-S x 2o E-W cells. Events within each cell, plus a small surrounding area, were relocated multiple times using a grid-search routine, in effort to determine the best fitting Pg and Sg velocities. Pg and Sg phase arrivals are generally from the 100-1000 km range and represent secondary arriving phases. These arrivals are dominant in this region and we consider the time picks and phase identifications to be reliable. Velocities tested range from 5.650 to 6.350 km/s for Pg and from 3.310 to 3.710 km/s for Sg. The best fitting velocities for each cell were then assigned to the geographic coordinates of the cell's center point. The standard Jeffreys-Bullen model was used for Pn velocities. The best fitting Pg and Sg velocities are those that minimize the average event residuals in a cell. High residual arrivals were omitted from the location process. In our model, Pg velocities range from 5.975-6.325 km/s, while Sg velocities range from 3.510-3.630 km/s, though the higher velocity extremes are constrained by one event and are not statistically significant. The average Pg velocity of the study area was, 6.147 km/s, and average Sg, 3.576 km/s. Geologically, these velocities are associated with the Central Asiatic Foldbelt and are consistent with regional crustal velocities along the southern edge of the Siberian Craton to the East as determined by previous studies.

  12. Crustal structure of the Nordland region, northern Norway

    Maystrenko, Yuriy P.; Olesen, Odleiv; Gernigon, Laurent; Gradmann, Sofie


    To understand the major structural features of the sedimentary cover and crystalline crust within the Nordland County area of Norway, a data-based 3D structural model has been constructed in the framework of the Neonor2 project, "Neotectonics in Nordland - implications for petroleum exploration". The 3D structural model covers the Lofoten Ridge, the Ribban and Vestfjorden basins and adjacent areas of the Norwegian mainland. The model also covers the northern part of the adjacent Vøring Basin. At the regional scale, the 3D model includes the rifted margin which is located at the transition from the exposed crystalline rocks of the Fennoscandian Shield in the east to the Cenozoic oceanic domain of the Norwegian-Greenland Sea in the west. During the construction of the 3D structural model, all recently published and/or released data have been compiled in order to set the initial model. This initial 3D model has been validated by a 3D density modelling in order to obtain a gravity-consistent 3D structural model of the entire study area. The 3D density modelling has been carried out by using the IGMAS plus software (the Interactive Gravity and Magnetic Application System). During the 3D density modelling, densities have been assigned as constant values for the crystalline rocks. In contrast, densities of sedimentary rocks have been set to be depth-dependent in order to reflect the compaction of sedimentary rocks with depth. According to the results of the 3D density modeling, the crystalline crust of the investigated region consists of several layers with different densities. The deepest crustal layer is the high-density lower crust which corresponds to the high-velocity lower crustal layer. The regional-scale gravity response associated with the positions of the Moho and lithosphere-asthenosphere boundary is one of the key factors for performing a proper 3D density model of the study area. At the regional scale, the Moho and lithosphere-asthenosphere boundary are

  13. Crustal thickness variation beneath the Romanian seismic network from Rayleigh wave dispersion and receiver function analysis

    Tataru, Dragos; Grecu, Bogdan; Zaharia, Bogdan


    Variations in crustal thickness in Romania where determined by joint inversion of P wave receiver functions (RFs) and Rayleigh wave group velocity dispersion. We present new models of shear wave velocity structure of the crust beneath Romanian broad band stations. The data set consist in more than 500 teleseismic earthquake with epicentral distance between 30° and 95°, magnitude greater than 6 and a signal-to-noise ratio greater than 3 for the P-wave pulse. Most epicenters are situated along the northern Pacific Rim and arrive with backazimuths (BAZs) between 0° and 135° at the Romanian seismic network. We combine receiver functions with fundamental-mode of the Rayleigh wave group velocities to further constrain the shear-wave velocity structure.To extract the group velocities we applied the Multiple Filter Technique analysis to the vertical components of the earthquakes recordings. This technique allowed us to identify the Rayleigh wave fundamental mode and to compute the dispersion curves of the group velocities at periods between 10 and 150 s allowing us to resolve shear wave velocities to a depth of 100 km. The time-domain iterative deconvolution procedure of Ligorrıa and Ammon (1999) was employed to deconvolve the vertical component of the teleseismic P waveforms from the corresponding horizontal components and obtain radial and transverse receiver functions at each broadband station. The data are inverted using a joint, linearized inversion scheme (Hermann, 2002) which accounts for the relative influence of each set of observations, and allows a trade-off between fitting the observations, constructing a smooth model, and matching a priori constraints. The results show a thin crust for stations located inside the Pannonian basin (28-30 km) and a thicker crust for those in the East European Platform (36-40 km). The stations within the Southern and Central Carpathian Orogen are characterized by crustal depths of ~35 km. For stations located in the Northern

  14. Shallow Crustal Thermal Structures of Central Taiwan Foothills Region

    Shao-Kai Wu


    Full Text Available Crustal thermal structures are closely related to metamorphism, rock rheology, exhumation processes, hydrocarbon maturation levels, frictional faulting and other processes. Drilling is the most direct way to access the temperature fields in the shallow crust. However, a regional drilling program for geological investigation is usually very expensive. Recently, a large-scale in-situ investigation program in the Western Foothills of Central Taiwan was carried out, providing a rare opportunity to conduct heat flow measurements in this region where there are debates as to whether previous measured heat flows are representative of the thermal state in this region. We successfully collected 28 geothermal gradients from these wells and converted them into heat flows. The new heat flow dataset is consistent with previous heat flows, which shows that the thermal structures of Central Taiwan are different from that of other subduction accretionary prisms. We then combine all the available heat flow information to analyze the frictional parameters of the Chelungpu fault zone that ruptured during the 1999, Chi-Chi, Taiwan, earthquake. The heat flow dataset gave consistent results compared with the frictional parameters derived from another independent study that used cores recovered from the Chelungpu fault zone at depth. This study also shows that it is suitable for using heat-flow data obtained from shallow subsurface to constrain thrusting faulting parameters, similar to what had been done for the strike-slip San Andreas Fault in California. Additional fieldworks are planned to study heat flows in other mountainous regions of Taiwan for more advanced geodynamic modeling efforts.

  15. Crustal structure beneath the High Lava Plains of eastern Oregon and surrounding regions from receiver function analysis

    Eagar, Kevin C.; Fouch, Matthew J.; James, David E.; Carlson, Richard W.


    We analyze teleseismic P-to-S receiver functions to image crustal structure beneath the High Lava Plains (HLP) of eastern Oregon and surrounding regions. Coverage from 206 broadband seismic stations provides the first opportunity to resolve variations in crustal composition, thickness, and heterogeneity on scales of a few km in depth and tens of km laterally across the HLP region. We utilize both H - κ stacking and a new Gaussian-weighted common conversion point stacking technique. We find crust that is ≥40 km thick beneath the Cascades, Idaho Batholith, and Owyhee Plateau and thinner (˜31 km) crust beneath the HLP and northern Great Basin. Low Poisson's ratios of ˜0.240 characterize the granitic crust beneath the Idaho Batholith, while the Owyhee Plateau exhibits values of ˜0.270, typical of average continental crust. The Owyhee Plateau is a thick simple crustal block with distinct edges at depth. The western HLP exhibits high average values of 0.304, typical for regions of widespread basaltic volcanism. Combined with other geological and geophysical observations, the areas of abnormally high Poisson's ratios (˜0.320) and low-velocity zones in the crust beneath north-central and southern Oregon are consistent with the presence of partial melt on either side of the HLP trend, suggesting a central zone where crustal melts have drained to the surface, perhaps enabled by the Brothers Fault Zone. Thicker crust and an anomalous N-S band of low Poisson's ratios (˜0.252) skirting the Steens Mountain escarpment is consistent with residuum from a midcrustal magma source of the massive flood basalts, supporting the view of extensive mafic underplating and intraplating of the crust from Cenozoic volcanism.

  16. Using a Genetic Algorithm to Model Broadband Regional Waveforms for Crustal Structure in the Western United States

    Bhattacharyya, Joydeep; Sheehan, Anne F.; Tiampo, Kristy; Rundle, John


    In this study, we analyze regional seismograms to obtain the crustal structure in the eastern Great Basin and western Colorado plateau. Adopting a for- ward-modeling approach, we develop a genetic algorithm (GA) based parameter search technique to constrain the one-dimensional crustal structure in these regions. The data are broadband three-component seismograms recorded at the 1994-95 IRIS PASSCAL Colorado Plateau to Great Basin experiment (CPGB) stations and supplemented by data from U.S. National Seismic Network (USNSN) stations in Utah and Nevada. We use the southwestern Wyoming mine collapse event (M(sub b) = 5.2) that occurred on 3 February 1995 as the seismic source. We model the regional seismograms using a four-layer crustal model with constant layer parameters. Timing of teleseismic receiver functions at CPGB stations are added as an additional constraint in the modeling. GA allows us to efficiently search the model space. A carefully chosen fitness function and a windowing scheme are added to the algorithm to prevent search stagnation. The technique is tested with synthetic data, both with and without random Gaussian noise added to it. Several separate model searches are carried out to estimate the variability of the model parameters. The average Colorado plateau crustal structure is characterized by a 40-km-thick crust with velocity increases at depths of about 10 and 25 km and a fast lower crust while the Great Basin has approximately 35- km-thick crust and a 2.9-km-thick sedimentary layer.

  17. Density heterogeneity of the North American upper mantle from satellite gravity and a regional crustal model

    Herceg, Matija; Artemieva, Irina; Thybo, Hans


    and by introducing variations into the crustal structure which corresponds to the uncertainty of its resolution by highquality and low-quality seismic models. We examine the propagation of these uncertainties into determinations of lithospheric mantle density. Given a relatively small range of expected density......We present a regional model for the density structure of the North American upper mantle. The residual mantle gravity anomalies are based on gravity data derived from the GOCE geopotential models with crustal correction to the gravity field being calculated from a regional crustal model. We analyze...... how uncertainties and errors in the crustal model propagate from crustal densities to mantle residual gravity anomalies and the density model of the upper mantle. Uncertainties in the residual upper (lithospheric) mantle gravity anomalies result from several sources: (i) uncertainties in the velocity-density...

  18. Airy Isostasy on the Moon:Implications for Crustal Thickness%月球Airy均衡状态与月壳厚度估计

    丰海; 李建成; 李大炜; 张守建; 刘志勇


    Lunar geoid (or selenoid) anomaly and topogrphy variations are the expressions of its internal density anomaly and boundary undulations. So the geoid to topography ratio (GTR) can be used to study the isostatic state of the moon and its crustal thickness. A new lunar crustal thickness model was derived by GTR technique from filtered gravity model SGM100h and topography model STM359_grid-02, with the mare fill and subcrustal mass anomalies removed. This model indicates that the lunar crust has an average thickness of 36. 9 km, and the average farside thickness is 13. 5 km thicker than nearside. The crustal thicknesses at Apollo 12/14 sites of our crustal thickness model are 28.3km and 29.1km, respectively. It also shows that the crust beneath the mare basins is generally thinner than the regions around,%月球水准面异常和表面地形变化是其内部密度不均匀和各个界面的起伏变化的体现,因此利用水准面和地形之比(geoidto to pography ratio,GTR)可估计月球均衡和月壳厚度。本文基于月球重力场模型SGMIOOh和地形模型STM359-grid-02,经过去除表面玄武岩填充和深层异常质量影响,并结合理论Airy均衡模型中GTR与参考月壳厚度的关系,计算得到了新的月壳厚度模型。该模型的月壳平均厚度为36.9km,背面比正面平均厚约13.5km,Apoll012/14登陆点的月壳厚度分别是28.3km和29.1km。在各月海盆地存在着中央较薄、四周逐渐增厚的趋势。

  19. Crustal structure of the Bighorn Mountains region: Precambrian influence on Laramide shortening and uplift in north-central Wyoming

    Worthington, Lindsay L.; Miller, Kate C.; Erslev, Eric A.; Anderson, Megan L.; Chamberlain, Kevin R.; Sheehan, Anne F.; Yeck, William L.; Harder, Steven H.; Siddoway, Christine S.


    The crustal structure of north-central Wyoming records a history of complex lithospheric evolution from Precambrian accretion to Cretaceous-Paleogene Laramide shortening. We present two active source P wave velocity model profiles collected as part of the Bighorn Arch Seismic Experiment in 2010. Analyses of these velocity models and single-fold reflection data, together with potential field modeling of regional gravity and magnetic signals, constrain crustal structure and thickness of the Bighorn region. We image a west dipping reflection boundary and model a sharp magnetic contact east of the Bighorn Arch that together may delineate a previously undetected Precambrian suture zone. Localized patches of a high-velocity, high-density lower crustal layer (the "7.× layer") occur across the study area but are largely absent beneath the Bighorn Arch culmination. Moho topography is relatively smooth with no large-scale offsets, with depths ranging from ~50 to 37 km, and is largely decoupled from Laramide basement topography. These observations suggest that (1) the edge of the Archean Wyoming craton lies just east of the Bighorn Mountains, approximately 300 km west of previous interpretations, and (2) Laramide deformation localized in an area with thin or absent 7.× layer, due to its relatively weak lower crust, leading to detachment faulting. Our findings show that Precambrian tectonics in northern Wyoming may be more complicated than previously determined and subsequent Laramide deformation may have been critically dependent on laterally heterogeneous crustal structure that can be linked to Precambrian origins.

  20. How plume-ridge interaction shapes the crustal thickness pattern of the Réunion hotspot track

    Bredow, Eva; Steinberger, Bernhard; Gassmöller, Rene; Dannberg, Juliane


    The Réunion mantle plume has shaped a large area of the Earth's surface over the past 65 million years: from the Deccan Traps in India along the hotspot track comprising the island chains of the Laccadives, Maldives, and Chagos Bank on the Indian plate and the Mascarene Plateau on the African plate up to the currently active volcanism at La Réunion Island. This study addresses the question how the Réunion plume, especially in interaction with the Central Indian Ridge, created the complex crustal thickness pattern of the hotspot track. For this purpose, the mantle convection code ASPECT was used to design three-dimensional numerical models, which consider the specific location of the plume underneath moving plates and surrounded by large-scale mantle flow. The results show the crustal thickness pattern produced by the plume, which altogether agrees well with topographic maps. Especially two features are consistently reproduced by the models: the distinctive gap in the hotspot track between the Maldives and Chagos is created by the combination of the ridge geometry and plume-ridge interaction; and the Rodrigues Ridge, a narrow crustal structure which connects the hotspot track and the Central Indian Ridge, appears as the surface expression of a long-distance sublithospheric flow channel. This study therefore provides further insight how small-scale surface features are generated by the complex interplay between mantle and lithospheric processes.

  1. Comparative seismic and petrographic crustal study between the Western and Eastern Sierras Pampeanas region (31°S

    P. Alvarado


    Full Text Available The ancient Sierras Pampeanas in the central west part of Argentina are a seismically active region in the back-arc of the Andes. Their crystalline basement cored uplifts extend up to 800 km east of the oceanic trench over the flat subduction segment of the Nazca plate. Approximately 40 felt crustal earthquakes, are reported per year for this region. Historic and modern seismicity indicates that the Western Sierras Pampeanas (WSP have more crustal earthquakes of greater-size than the Eastern Sierras Pampeanas (ESP. Remarkable changes in composition and structure also characterize the WSP and ESP basements. We have quantitatively compared both regions using seismological constrains. A recent regional study of moderate earthquakes shows reverse and thrust focal mechanisms occurring at depths down to 25 km in the WSP. In contrast, the ESP have reverse and strike-slip focal mechanisms of shallower depths (< 10 km. A seismic velocity structure of Vp 6.4 km/s, Vp/Vs ~1.80, and thickness 50 km, best represents the WSP crust. The ESP crust is characterized by Vp 6.0 km/s, Vp/Vs < 1.70, and thickness 30 km. These seismological determinations correlate with the interpretation of a different origin for the western and eastern terranes. The WSP show seismic properties indicative of a more mafic-ultramafic thick crust consistent with an oceanic island-arc and back-arc formation. The ESP show crustal seismic properties consistent with a higher silica content and with a formation by the collision of a continental terrane.

  2. Measurement of sediment and crustal thickness corrected RDA for 2D profiles at rifted continental margins: Applications to the Iberian, Gulf of Aden and S Angolan margins

    Cowie, Leanne; Kusznir, Nick


    Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal

  3. Seismotectonics of Taiwan Shoal region in northeastern SCS: Insights from crustal structure

    Kuiyuan, Wan; Jinlong, Sun; Shaohong, Xia; Xiaoling, Xie; Xiang, Zhang; Huilong, Xu; Jinghe, Cao


    A seismicity cluster and a great 16 September 1994 earthquake occur in the Taiwan Shoal region, outer rise of the Manila subduction zone. To understand what mechanisms control and generate the earthquake cluster, it is important to investigate the deep crustal structure of the Taiwan Shoal region. We present a 2-D seismic tomographic image of the crustal structure along the OBS2012 profile based on ocean bottom seismographic (OBS) data. The structure exhibits that a high velocity anomaly in the upper crust beneath the Taiwan Shoal is flanked by lower velocity anomalies. Based on the crustal structure, we study the 765 earthquakes, which occurred in the period 1991-2015. These epicenters, combined with the regional faults, and crustal structure, allow us to better understand the nature of the active tectonics in this region. The high velocity area is interpreted as representing stronger, defining major asperities where stress is concentrated corresponding to the location of the earthquake cluster. The earthquake cluster is influenced by the fault interactions. However, the 16 September 1994 earthquake is independents of the seismic activities but associated with the reactivation of the preexisting fault. In Taiwan region, the slab-pull was resisted by the exposed pre-collision accretionary prism and the resistive force caused the in-plane compressive stress accumulation. This condition may favor the triggering of future damaging earthquakes in this region. Key words: earthquake cluster; crustal structure; fault interactions; outer rise; Taiwan Shoal

  4. Calibration of the Regional Crustal Waveguide and the Retrieval of Source Parameters Using Waveform Modeling

    Saikia, C. K.; Woods, B. B.; Thio, H. K.

    - Regional crustal waveguide calibration is essential to the retrieval of source parameters and the location of smaller (MPnl waves to the surface waves and the interaction of regional sPmP and pPmP phases being good indicators of event depths. We also found that for deep events a seismic phase which follows an S-wave path to the surface and becomes critical, developing a head wave by S to P conversion is also indicative of depth. The detailed characteristic of this phase is controlled by the crustal waveguide. The key to calibrating regionalized crustal velocity structure is to determine depths for a set of master events by applying the above methods and then by modeling characteristic features that are recorded on the regional waveforms. The regionalization scheme can also incorporate mixed-path crustal waveguide models for cases in which seismic waves traverse two or more distinctly different crustal structures. We also demonstrate that once depths are established, we need only two-stations travel-time data to obtain reliable epicentral locations using a new adaptive grid-search technique which yields locations similar to those determined using travel-time data from local seismic networks with better azimuthal coverage.

  5. Inferring regional vertical crustal velocities from averaged relative sea level trends: A proof of concept

    Bâki Iz, H.; Shum, C. K.; Zhang, C.; Kuo, C. Y.


    This study demonstrates that relative sea level trends calculated from long-term tide gauge records can be used to estimate relative vertical crustal velocities in a region with high accuracy. A comparison of the weighted averages of the relative sea level trends estimated at six tide gauge stations in two clusters along the Eastern coast of United States, in Florida and in Maryland, reveals a statistically significant regional vertical crustal motion of Maryland with respect to Florida with a subsidence rate of -1.15±0.15 mm/yr identified predominantly due to the ongoing glacial isostatic adjustment process. The estimate is a consilience value to validate vertical crustal velocities calculated from GPS time series as well as towards constraining predictive GIA models in these regions.

  6. 3D gravity modelling reveals off-axis crustal thickness variations along the western Gakkel Ridge (Arctic Ocean)

    Schmidt-Aursch, Mechita C.; Jokat, Wilfried


    Near-orthogonal ultra-slow (13.3 mm yr- 1 to 6.5 mm yr- 1) sea floor spreading in the absence of large transform faults make the Arctic Gakkel Ridge ideally suited for the study of magmatic processes. To enable this, we generated a three-dimensional gravity model of crustal thickness over the ridge and parts of the adjacent Nansen and Amundsen basins west of 65° E. The model shows that oceanic crust accreted prior to chrons C5/C6 is generally very thin (1-3 km). Magnetic anomalies over this thin crust are highly variable both parallel and perpendicular to the ridge axis. This is the result of amagmatic or weakly volcanic spreading that started with the opening of the basins 56 Ma ago. The separation of Greenland from Svalbard at chron C5/C6 led to the inflow of North Atlantic mantle into the western Eurasia Basin leading to a change in the mantle convection system and the establishment of a magmatic dichotomy along the Gakkel Ridge. Robust magmatism was established in the Western Volcanic Zone (6° 30‧ W-3° 30‧ E), leading to creation of a 6.6 km thick igneous crust, characterized by a strong positive axial magnetic anomaly, numerous volcanic cones, and widespread thick mid-ocean ridge basalts. The transition to the neighbouring Sparsely Magmatic (3° 30‧ E-29° E) and Eastern Volcanic (29° E-85° E) zones is sharp. Peridotites cover the central valley and the inner rift flanks, the central magnetic anomaly vanishes and crustal thickness decreases to 1-4 km. Transverse basement ridges, extending for as much as 100 km into the adjacent basins, intersect the central valley. Although partly of tectonic origin, the transverse ridges are also an expression of long-living magmatic centres, as revealed by increased magnetic anomaly intensities and local thickening of the crust to values as great as 5.9 km.

  7. Crustal response to lithosphere evolution

    Artemieva, Irina; Thybo, Hans; Cherepanova, Yulia;


    We present a new model for the structure of the crust in an area which stretches from the North Atlantic region in the west to the Verkhoyansk Ridge in the east and encompasses Greenland, Iceland, most of Europe, West Siberian basin, and the Siberian cratons. The model is based on critically...... such as lower crust/lithospheric mantle delamination in the Variscan Europe and large-scale rifting across the entire West Siberian basin. The results are summarized in a series of maps of lateral variations in crustal properties, including the depth to the basement and to the Moho, average crustal velocity......, thicknesses of different crustal layers, and Pn seismic velocities....

  8. Mechanism of crustal deformation in the Sichuan-Yunnan region, southeastern Tibetan Plateau: Insights from numerical modeling

    Li, Yujiang; Liu, Shaofeng; Chen, Lianwang; Du, Yi; Li, Hong; Liu, Dongying


    The characteristics of crustal deformation and its dynamical mechanisms in the Sichuan-Yunnan region are of interest to many researchers because they can help explain the deformation pattern of the eastern Tibetan Plateau. In this paper, we employ a precise three-dimensional viscoelastic finite element model to simulate the crustal deformation in the Sichuan-Yunnan region, southeastern Tibetan Plateau. We investigate the influence of lower crustal flow and rheological variations by comparing the modeled results with GPS observations. The results demonstrate that lower crustal flow plays an important role in crustal deformation in the Sichuan-Yunnan region. The best fitting is achieved when the flow velocity of the lower crust is approximately 10-11 mm/a faster than that of the upper crust. Additionally, crustal rheological properties affect regional crustal deformation. When the viscosity of the middle and lower crust in the South China block reaches 1022 and 1023 Pa·s, respectively, the modeled results match observations well, especially for the magnitude of crustal motion within the South China block. Finally, our dynamic model shows that the maximum principal stress field of the Sichuan-Yunnan region exhibits clear zoning, gradually shifting from an approximately east-west orientation in the northern Bayan Har block to southeast in the South China block, southwest in the western Yunnan block, and a radially divergent distribution in the Middle Yunnan and Southern Yunnan blocks.

  9. Cenozoic geodynamics of the Ross Sea region, Antarctica: Crustal extension, intraplate strike-slip faulting, and tectonic inheritance

    Salvini, Francesco; Brancolini, Giuliano; Busetti, Martina; Storti, Fabrizio; Mazzarini, Francesco; Coren, Franco


    An integrated study of onshore and offshore geology of the Ross Sea region (namely, Victoria Land, north of Ross Island, and the Ross Sea, Antarctica) has revealed a complex, post-Eocene tectonic framework. Regional NW-SE right-lateral, strike-slip faults are the outstanding feature of this framework and overprint an older Mesozoic extensional event, responsible for formation of N-S basins in the Ross Sea. The Cenozoic framework includes kinematic deformation and reactivation along the NW-SE faults, including formation of pull-apart basins, both positive and negative flower structures, and push-up ridges. N-S extensional faults are well developed between NW-SE faults and indicate E-W extension during the Cenozoic, produced by the NW-SE right-lateral strike-slip motion together with regional crustal extension. NNW-SSE compression, induced by the right-lateral, strike-slip kinematics, is indicated by locally inverted NE-SW faults and basins. The evolution, geometry, and location of the Rennick Graben and the Lanterman Range fit well into this model. Variations in the deformational style across the region can be linked to corresponding variations in the bulk crustal rheology, from brittle behavior in the west, to ductile deformation (at subseismic-scale resolution) near the Eastern Basin. A semibrittle region that favors N-S clustering of Cenozoic magmatic activity lies in between. In this region, Cenozoic volcanoes develop at the intersections of the NW-SE and the major N-S faults. The NW-SE faults cut almost continually from the Ross Sea to East Antarctica through lithospheric sectors with different rheology and thickness. At least two of the NW-SE faults correspond to older Paleozoic terrane boundaries in northern Victoria Land. The NW-SE faults link in the Southern Ocean with major transform faults related to the plate motions of Australia, New Zealand, and Antarctica.

  10. 2-D crustal Poisson's ratio from seismic travel time inversion in Changbaishan Tianchi volcanic region

    LIU Zhi; ZHANG Xian-kang; WANG Fu-yun; DUAN Yong-hong; LAI Xiao-ling


    Based on the inversion method of 2D velocity structure and interface, the crustal velocity structures of P-wave and S-wave along the profile L1 are determined simultaneously with deep seismic sounding data in Changbaishan Tianchi volcanic region, and then its Poisson's ratio is obtained. Calculated results show that this technique overcomes some defects of traditional forward calculation method, and it is also very effective to determine Poisson's ratio distribution of deep seismic sounding profile, especially useful for study on volcanic magma and crustal fault zone. Study result indicates that there is an abnormally high Poisson's ratio body that is about 30 km wide and 12 km high in the low velocity region under Tianchi crater. Its value of Poisson's ratio is 8% higher than that of surrounding medium and it should be the magma chamber formed from melted rock with high temperature. There is a high Poisson's ratio zone ranging from magma chamber to the top of crust, which may be the uprise passage of hot substance. The lower part with high Poisson's ratio, which stretches downward to Moho, is possibly the extrusion way of hot substance from the uppermost mantle. The conclusions above are consistent with the study results of both tomographic determination of 3D crustal structure and magnetotelluric survey in this region.

  11. Crustal structure of the Trans-European suture zone region along POLONAISE'97 seismic profile P4

    Grad, Marek; Jensen, Susanne L.; Keller, G. Randy; Guterch, Aleksander; Thybo, Hans; Janik, Tomasz; Tiira, Timo; Yliniemi, Jukka; Luosto, Urmas; Motuza, Gediminas; Nasedkin, Viktor; Czuba, Wojciech; GaczyńSki, Edward; ŚRoda, Piotr; Miller, Kate C.; Wilde-Piórko, Monika; Komminaho, Kari; Jacyna, Juozas; Korabliova, Larisa


    The large-scale POLONAISE'97 seismic experiment investigated the velocity structure of the crust and upper mantle in the Trans-European suture zone (TESZ) region between the Precambrian east European craton (EEC) and Paleozoic platform that comprises terranes added during the Caledonian and Variscan orogenies (530-370 and 370-225 Ma, respectively). This experiment included 64 shots recorded by 613 seismic stations during two deployments. Very good quality data were recorded along five profiles, and the longest and most important one (P4) is the focus of this paper. Clear first arrivals and later phases of waves reflected/refracted in the crust and Moho were interpreted using two-dimensional (2-D) tomographic inversion and ray-tracing techniques. The crustal thickness along the profile varies from 30-35 km in the Paleozoic platform area to ˜40 km below and due northeast of the TESZ, to ˜43 km in the Polish part of the EEC, and to ˜50 km in Lithuania. The Paleozoic platform and EEC are divided by the Polish basin, so the upper crustal structure varies considerably. In the area of the Polish basin, the P wave velocity is very low (VP < 6.1 km/s) down to depths of 15-20 km, indicating that a very thick sedimentary sequence is present. We suggest two possible tectonic interpretations of the velocity models: (1) Baltica indented Avalonia, obducting its upper crust and underthrusting its lower crust in a tectonic flake structure and (2) a rifted margin of Baltica underlies the Polish basin. This model is similar to other interpretations of seismic profiles recorded in the Baltic Sea. The second model implies that the Paleozoic platform solely consists of Avalonian lithosphere and the EEC of Baltica lithosphere. It offers a simple explanation of the difference in crustal thickness of the two platforms. It also implies that the Caledonian and Variscan orogenies in this area were relatively "soft" collisions that left this continental margin largely intact.

  12. Waveform tomography of crustal structure in the south San Francisco Bay region

    Pollitz, F.F.; Fletcher, J.P.


    We utilize a scattering-based seismic tomography technique to constrain crustal tructure around the southern San Francisco Bay region (SFBR). This technique is based on coupled traveling wave scattering theory, which has usually been applied to the interpretation of surface waves in large regional-scale studies. Using fully three-dimensional kernels, this technique is here applied to observed P, S, and surface waves of intermediate period (3-4 s dominant period) observed following eight selected regional events. We use a total of 73 seismograms recorded by a U.S. Geological Survey short-period seismic array in the western Santa Clara Valley, the Berkeley Digital Seismic Network, and the Northern California Seismic Network. Modifications of observed waveforms due to scattering from crustal structure include (positive or negative) amplification, delay, and generation of coda waves. The derived crustal structure explains many of the observed signals which cannot be explained with a simple layered structure. There is sufficient sensitivity to both deep and shallow crustal structure that even with the few sources employed in the present study, we obtain shallow velocity structure which is reasonably consistent with previous P wave tomography results. We find a depth-dependent lateral velocity contrast across the San Andreas fault (SAF), with higher velocities southwest of the SAF in the shallow crust and higher velocities northeast of the SAF in the midcrust. The method does not have the resolution to identify very slow sediment velocities in the upper approximately 3 km since the tomographic models are smooth at a vertical scale of about 5 km. Copyright 2005 by the American Geophysical Union.

  13. Thorium concentrations in the lunar surface. I - Regional values and crustal content

    Metzger, A. E.; Haines, E. L.; Parker, R. E.; Radocinski, R. G.


    The reported investigation is based on data which have been obtained with the aid of a gamma-ray spectrometer which had been installed on the Apollo 15 and 16 spacecraft to map the composition of the overflown lunar regolith to a maximum depth of about 1 m. Two additional techniques for the analysis of orbital gamma-ray data have been developed. These techniques have provided basic confirmation for the Th results reported previously and one of them, the energy band method, has yielded results for Th with a sensitivity greater than previous analyses, particularly at low concentrations. Significant variations of radioactivity exist in highland areas. The lowest concentrations of radioactivity mapped by Apollo are found near the western limb, contrasting with concentrations in the eastern limb which run roughly a factor of two higher. An inverse relation has been found between Th concentration and crustal thickness. It is suggested that Th, once uniformly distributed, has been extracted from a zone of constant depth over much of the moon, and concentrated in crustal blocks of varying thickness.

  14. Crustal seismicity and the earthquake catalog maximum moment magnitudes (Mcmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun


    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  15. Estimation of GNSS Multiscale Strain Field and Detection of Regional Crustal Deformation

    XU Keke


    Full Text Available Using GNSS data,the estimation model for GNSS multiscale strain field was established based on spherical wavelet. The key technologies for wavelet center location, wavelet scale choices and regularization parameter calculation were discussed in detail. For further testing the correctness of the model, the simulated data in locked fault areas was generated according to negative dislocation theory. With spherical wavelet model, the strain field in locked strike-slip fault areas was estimated,and the results agreed well with the characteristics of actual crustal deformation. Meanwhile, the experiments on crustal deformation anomaly detection with multiscale strain field were completed. The results showed that the small fault deformation of 50 km appeared obviously in the small scale(8th scale stain field, but there wasn't signals in the large scale (4 to 7 scale. The large fault deformation of 150 km only showed a part of information in the small scale (8th scale stain field, but showed more completely and clearly in the large scale(4 to 7 scale.So it's concluded that crustal deformation of different spatial coverage scope embody in the different scales strain field, and the small scale strain field have the ability to detect regional deformation anomaly.

  16. The imprint of crustal density heterogeneities on regional seismic wave propagation

    Płonka, Agnieszka; Blom, Nienke; Fichtner, Andreas


    Density heterogeneities are the source of mass transport in the Earth. However, the 3-D density structure remains poorly constrained because travel times of seismic waves are only weakly sensitive to density. Inspired by recent developments in seismic waveform tomography, we investigate whether the visibility of 3-D density heterogeneities may be improved by inverting not only travel times of specific seismic phases but complete seismograms.As a first step in this direction, we perform numerical experiments to estimate the effect of 3-D crustal density heterogeneities on regional seismic wave propagation. While a finite number of numerical experiments may not capture the full range of possible scenarios, our results still indicate that realistic crustal density variations may lead to travel-time shifts of up to ˜ 1 s and amplitude variations of several tens of percent over propagation distances of ˜ 1000 km. Both amplitude and travel-time variations increase with increasing epicentral distance and increasing medium complexity, i.e. decreasing correlation length of the heterogeneities. They are practically negligible when the correlation length of the heterogeneities is much larger than the wavelength. However, when the correlation length approaches the wavelength, density-induced waveform perturbations become prominent. Recent regional-scale full-waveform inversions that resolve structure at the scale of a wavelength already reach this regime.Our numerical experiments suggest that waveform perturbations induced by realistic crustal density variations can be observed in high-quality regional seismic data. While density-induced travel-time differences will often be small, amplitude variations exceeding ±10 % are comparable to those induced by 3-D velocity structure and attenuation. While these results certainly encourage more research on the development of 3-D density tomography, they also suggest that current full-waveform inversions that use amplitude

  17. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.


    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  18. Optical effects of space weathering in lunar crustal magnetic anomaly regions based on CE-1 observations

    Li, H.; Wang, X.; Cui, J.; Fu, X.; Zhang, G.; Yao, M.; Liu, B.; Liu, J.; Li, C.; Ouyang, Z.


    The discovery of mini-magnetospheres above the lunar surface suggests that magnetic shielding could have led to anomalous space weathering (little darkening with limited reddening) in magnetic anomaly regions. Using spectral data from Chang'E 1 Imaging Interferometer (IIM) and data from Lunar Prospector's magnetometer, we instigate the relationship between lunar crustal magnetic anomalies and the optical effects in those areas in association with space weathering. The IIM onboard China's Chang'E 1 (CE-1) spacecraft is a Fourier transform Sagnac imaging spectrometer operating in the visible to near infrared (0.48-0.96 μm) spectral range, with 32 channels at spectral intervals of 325.5 cm-1. We selected four regions with crustal magnetic anomalies to study their albedo properties: three lunar swirls (Gerasimovich, Mare Marginis, and Reiner Gamma) and the area antipodal to Herzsprung. We found that all three of the anomalous albedo areas are associated with magnetic anomalies, however, no anomalous albedo feature is found in the last magnetic anomaly area. In addition, we also studied the correlation between magnetic anomaly strength and albedo anomaly on a global scale. Our initial analysis suggests an overall tread of less darkening with increased magnetic anomaly.

  19. Earthquake sequence in East Vrancea crustal region (Romania): source characteristics and seismotectonics

    Popescu, Emilia; Borleanu, Felix; Otilia Placinta, Anica; Popa, Mihaela; Radulian, Mircea; Moldovan, Iren Adelina


    The goal of the paper is to investigate the crustal earthquake sequence generated in the East Vrancea crustal zone at the end of 2014 (22 November 2014). The main shock, occurred on 22 November 2014, 19:14 (45.860N, 27.160E, h = 39 km, ML = 5.7), is the greatest instrumentally recorded earthquake produced in this region. The aftershocks are unusually small for the sequences characterizing the Vrancea foredeep area (around 200 events with magnitude below 2). The largest aftershocks were recorded on 7 December 2015 (ML = 4.4) and 19 January 2015 (ML = 3.8). We apply cross-correlation analysis together with empirical Green's function (EGF) deconvolution and spectral ratios techniques to optimise the source parameters determination. At the same time we applied inversion techniques to retrieve the moment tensor solution for the largest shocks. For EGF and spectral ratios applications, we associated to the main event many co-located aftershocks (2.0 ≤ ML ≤ 4.4), selected according to the requirements for empirical Green's functions. The source parameters are estimated as mean values for all the available earthquake pairs. Source scaling properties and focal mechanism are investigated and discussed in terms of the regional seismotectonics and comparatively with the source scaling relationships for the Vrancea intermediate-depth earthquakes.

  20. Regional Geophysical Surveys and Crustal Structure of the Gulf of Mexico

    Rodríguez-Chavez, F.; Fucugauchi, J. U.


    Results of processing and modeling of anomaly data from regional geophysical surveys in the southern sector of the Gulf of Mexico are presented. The Gulf of Mexico has been intensively studied for several years, mainly because of the economic potential of the oil and gas resources. The basin may have formed by sea-floor spreading, rifting and lateral translation/rotation of continental slivers ssociated with major break-up and drifting apart of North and South America continental plates in the mid Mesozoic. Major structural features and crustal structure, including the continent-ocean transition and Gulf coastal passive margin are relatively poorly understood. Aerogeophysical gravity and magnetic surveys have been conducted and data are processed and modeled to investigate on the Gulf crustal structure. Spectral statistical estimates of regional basement depths derived from aeromagnetics give mean depths of 8000 m. Estimates derived from gravity anomalies are in the order of 10000 m. Depths derived from 2D and 3D seismic reflection surveys conducted for oil exploration purposes in selected areas indicate average depths to basement from 6000 m to values grater than those derived from potential field data.

  1. Constraints on the crustal structure beneath the Sinai subplate, SE Mediterranean, from analysis of local and regional travel times

    Mohamed K. Salah


    Full Text Available The Sinai Peninsula has been recognized as a subplate of the African Plate located at the triple junction of the Gulf of Suez rift, the Dead Sea Transform fault, and the Red Sea rift. The upper and lower crustal structures of this tectonically active, rapidly developing region are yet poorly understood because of many limitations. For this reason, a set of P- and S-wave travel times recorded at 14 seismic stations belonging to the Egyptian National Seismographic Network (ENSN from 111 local and regional events are analyzed to investigate the crustal structures and the locations of the seismogenic zones beneath central and southern Sinai. Because the velocity model used for routine earthquake location by ENSN is one-dimensional, the travel-time residuals will show lateral heterogeneity of the velocity structures and unmodeled vertical structures. Seismic activity is strong along the eastern and southern borders of the study area but low to moderate along the northern boundary and the Gulf of Suez to the west. The crustal Vp/Vs ratio is 1.74 from shallow (depth ≤ 10 km earthquakes and 1.76 from deeper (depth > 10 km crustal events. The majority of the regional and local travel-time residuals are positive relative to the Preliminary Reference Earth Model (PREM, implying that the seismic stations are located above widely distributed, tectonically-induced low-velocity zones. These low-velocity zones are mostly related to the local crustal faults affecting the sedimentary section and the basement complex as well as the rifting processes prevailing in the northern Red Sea region and the ascending of hot mantle materials along crustal fractures. The delineation of these low-velocity zones and the locations of big crustal earthquakes enable the identification of areas prone to intense seismotectonic activities, which should be excluded from major future development projects and large constructions in central and southern Sinai.

  2. Petrology and geochronology of crustal xenoliths from the Bering Strait region: Linking deep and shallow processes in extending continental crust

    Akinin, V.V.; Miller, E.L.; Wooden, J.L.


    seismic-reflection and refraction data reveal a 30-35-km-thick crust, a sharp Moho and refl ective lower and middle crust. Velocities do not support a largely mafic (underplated) lower crust, but together with xenolith data suggest that Late Cretaceous to early Paleocene maficintrusions are likely increasingly important with depth in the crust and that the elevated temperatures during granulite-facies metamorphism led to large-scale flow of crustal rocks to produce gneiss domes and the observed subhorizontal refl ectivity of the crust. This unique combined data set for the Bering Shelf region provides compelling evidence for the complete reconstitution/re-equilibration of continental crust from the bottom up during mantle-driven magmatic events associated with crustal extension. Thus, despite Precambrian and Paleozoic rocks at the surface and Alaska's accretionary tectonic history, it is likely that a significant portion of the Bering Sea region lower crust is much younger and related to post-accretionary tectonic and magmatic events. ?? 2009 The Geological Society of America.

  3. The influence of crustal scattering on translational and rotational motions in regional and teleseismic coda waves

    Gaebler, Peter J.; Sens-Schönfelder, Christoph; Korn, Michael


    Monte Carlo solutions to the radiative transfer equations are used to model translational and rotational motion seismogram envelopes in random elastic media with deterministic background structure assuming multiple anisotropic scattering. Observation and modelling of the three additional components of rotational motions can provide independent information about wave propagation in the Earth's structure. Rotational motions around the vertical axis observed in the P-wave coda are of particular interest as they can only be excited by horizontally polarized shear waves and therefore indicate the conversion from P to SH energy by multiple scattering at 3-D heterogeneities. To investigate crustal scattering and attenuation parameters in south-east Germany beneath the Gräfenberg array multicomponent seismogram envelopes of rotational and translational motions are synthesized and compared to seismic data from regional swarm-earthquakes and of deep teleseismic events. In the regional case a nonlinear genetic inversion is used to estimate scattering and attenuation parameters at high frequencies (4-8 Hz). Our preferred model of crustal heterogeneity consists of a medium with random velocity and density fluctuations described by an exponential autocorrelation function with a correlation length of a few hundred metres and fluctuations in the range of 3 per cent. The quality factor for elastic S-waves attenuation Q_i^S is around 700. In a second, step simulations of teleseismic P-wave arrivals using this estimated set of scattering and attenuation parameters are compared to observed seismogram envelopes from deep events. Simulations of teleseismic events with the parameters found from the regional inversion show good agreement with the measured seismogram envelopes. This includes ringlaser observations of vertical rotations in the teleseismic P-wave coda that naturally result from the proposed model of wave scattering. The model also predicts, that the elastic energy recorded

  4. Evolution of crustal thickening in the central Andes, Bolivia

    Eichelberger, Nathan; McQuarrie, Nadine; Ryan, Jamie; Karimi, Bobak; Beck, Susan; Zandt, George


    Paleoelevation histories from the central Andes in Bolivia have suggested that the geodynamic evolution of the region has been punctuated by periods of large-scale lithospheric removal that drive rapid increases in elevation at the surface. Here, we evaluate viable times and locations of material loss using a map-view reconstruction of the Bolivian orocline displacement field to forward-model predicted crustal thicknesses. Two volumetric models are presented that test assumed pre-deformation crustal thicknesses of 35 km and 40 km. Both models predict that modern crustal thicknesses were achieved first in the northern Eastern Cordillera (EC) by 30-20 Ma but remained below modern in the southern EC until ≤10 Ma. The Altiplano is predicted to have achieved modern crustal thickness after 10 Ma but only with a pre-deformation thickness of 50 km, including 10 km of sediment. At the final stage, the models predict 8-25% regional excess crustal volume compared to modern thickness, largely concentrated in the northern EC. The excess predicted volume from 20 to 0 Ma can be accounted for by: 1) crustal flow to the WC and/or Peru, 2) localized removal of the lower crust, or 3) a combination of the two. Only models with initial crustal thicknesses >35 km predict excess volumes sufficient to account for potential crustal thickness deficits in Peru and allow for lower crustal loss. However, both initial thickness models predict that modern crustal thicknesses were achieved over the same time periods that paleoelevation histories indicate the development of modern elevations. Localized removal of lower crust is only necessary in the northern EC where crustal thickness exceeds modern by 20 Ma, prior to paleoelevation estimates of modern elevations by 15 Ma. In the Altiplano, crustal thicknesses match modern values at 10 Ma and can only exceed modern values by 5 Ma, post-dating when modern elevations were thought to have been established. Collectively, these models predict that

  5. Estimation of dust thickness in Arabia Terra region on Mars

    Vincendon, C.; Mangold, N.; Masson, P.; Ansan, V.


    The almost totality of Mars planet surface is recovered by aeolian dust deposit whose thickness varies according to regions. Mariner and Viking imagery highlighted this aeolian dust deposit with the presence of smooth geomorphologic surface characteristic of dust recovering, with the apparition of dust wind streaks to leeward area of numerous relief, and with seasonal changes in surface albedo after dust storms (Greeley, 1992). These observations have been recently confirmed by the high resolution Mars Orbiter Camera (MOC) of Mars Global Surveyor (MGS) orbiter (Malin et al., 1998 ; Edgett and Malin, 2000). At present time no method exists to estimate aeolian dust thickness at global scale. Only the geographic distribution of the first top centimeters have been realized with the help of thermal inertia cartography from Thermal Emission Spectrometer (TES) data (Jakosky et al., 2000). The aeolian dust deposits recover first the small impact craters and consequently disturb their distribution at the planet surface. Variations between distributions curves locally measured and Hartmann's Isochrons (Hartmann and Neukum, 2001) for a Martian lands not affected by surface phenomenon, give the diameter of the biggest crater obliterated by the surface process. This diameter allows us to estimate the minimal aeolian dust thickness using geometrical proprieties of impact crater between diameter (D) and the rim height (H) (Garvin et al., 2002) : H=0.07D0.52 (for D<7km). Indeed the rim height is a good approximation of minimal dust thickness needed to completely erase the impact crater from the surface if one suppose that there's no evidence of aeolian erosion. The first objective of this study is to determine the distribution variations of the small impact craters to estimate locally the different thickness of aeolian dust. The second objective is to realize a global cartography of the aeolian dust thickness. We study the region of Arabia Terra to apply this method because this

  6. Crustal structure and regional tectonics of SE Sweden and the Baltic Sea

    Milnes, A.G. [Bergen Univ. (Norway). Dept. of Geology; Gee, D.G.; Lund, C.E. [Uppsala Univ. (Sweden). Dept. of Earth Sciences


    In this desk study, the available geophysical and geological data on the crustal structure and regional tectonics of the wider surroundings of the Aespoe site (SE Sweden and adjacent parts of the Baltic Sea) are compiled and assessed. The aim is to contribute to the knowledge base for long-term rock mechanical modeling, using the Aespoe site as a proxy for a high-level radioactive waste repository site in Swedish bedrock. The geophysical data reviewed includes two new refraction/wide-angle reflection seismic experiments carried out within the EUROBRIDGE project, in addition to the numerous earlier refraction seismic profiles. The BABEL normal-incidence deep seismic profile is also considered. New geological data, presented at EUROBRIDGE workshops, and in recent SGU publications, are reviewed for the same area. In combination with the seismic data, these provide a base for interpreting the present composition and structure, and the Palaeoproterozoic-Mesoproterozoic evolution, of the crustal segment within which the Aespoe site lies - the Smaaland mega-block. This is characterized by having undergone little regionally significant deformation or magmatism since Neoproterozoic times (the last 1000 million years). It is shown that, at this scale of observation (of the order of 100 km), the long-term rheology of the lithosphere can be argued from a relatively tight observational network, when combined with the results of earlier SKB studies (seismo-tectonics, uplift patterns, state of stress, heat flow) and published research. Although many uncertainties exist, the present state of knowledge would suffice for first exploratory calculations and sensitivity studies of long-term, large-scale rock mechanics 101 refs, 22 figs

  7. Current regional stress field and the resultant crustal deformation in SE Korea and their tectonic implication

    Kim, M. C.; Cho, H.; Son, M.


    To determine current regional stress field and to characterize the resultant crustal deformation in SE Korea, Quaternary fault, focal mechanism, and geotechnical in-situ stress data were synthetically analyzed. The Quaternary faults are extensively observed along major inherited fault zones and show compatible orientations with general trends of the inherited faults. Most of the Quaternary faults have a top-to-the-west thrust geometry and kinematics and show a tendency of upward-decreasing dip angle and upward-narrowing gouge zone. Slip-sense indicators and paleo-stress field reconstructions indicate that the faults resulted from reverse or transpressional faulting under an E-W compression. All the magnetic fabrics (AMS) of the fault gouges also indicate the prevailing reverse-slip faulting under an ENE-WNW compression. The dominant oblate magnetic fabrics parallel to fault plane and the degrees of anisotropy increasing in proportion to their oblatenesses indicate that the fabrics have formed by a progressive deformation due to continuous simple shear during the last reactivation stage as reverse faulting. The focal mechanism study in and around the Korean Peninsula show the horizontally clustered P-axes in ENE-WSW direction and the girdle-distributed T-axes in NNW trend. The geotechnical in-situ stress data in south Korea also show NE- or ENE-trending maximum horizontal stress. The current crustal deformation in Korea thus can be characterized by contractional structures produced under a regional E-W or ENE-WSW compression stress field, and most of the Quaternary faults resulted from the local re-activation of appropriately oriented inherited major faults. Considering the tectonic setting and structural features in Asia during the Neogene, the current stress regime is interpreted to have been caused by the cooperation of westward shallow subduction of Pacific Plate and collision of Indian and Eurasian continents since about 5-3.5 Ma.

  8. Crustal structure, seismicity and seismotectonics of the Trentino region (Southern Alps, Italy)

    Viganò, Alfio; Scafidi, Davide; Martin, Silvana; Spallarossa, Daniele; Froner, Luca; Groaz, Oscar


    The Trentino region is located at the junction between the central and eastern Southern Alps (Italy), at the intersection between the Giudicarie, Schio-Vicenza and Valsugana fault systems. This area is characterized by relevant lithological and structural lateral heterogeneities, both at the crustal and lithospheric scales. A low-to-moderate seismicity is located in the upper crust, where faults are seismically active under a dominant compressive with variable strike-slip component regime. Here we study the crustal structure of this portion of the Southern Alps (Adria plate) from interpretation of local earthquake tomography images, in relation with distribution of relocated seismicity and regional tectonic patterns. Local earthquake tomography derives from a set of 476 selected earthquakes in the period 1994-2007, with local magnitudes comprised between 0.8 and 5.3. Hypocenter distribution, and number and quality of manually-repicked phases (6322 P and 5483 S) ensure optimal seismic ray coverage. Original recordings are principally from the Provincia Autonoma di Trento (PAT), that manages the Trentino seismic network since 1981, and from other networks (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - INOGS; Istituto Nazionale di Geofisica e Vulcanologia - INGV; others available via the European Integrated Data Archive). The code HYPOELLIPSE is used to perform initial earthquake relocations. The code VELEST is then used to calculate a new minimum 1-D velocity model, as input for tomography. The 3-D tomographic inversion (V P and V P-V S ratio) is obtained via the code SIMULPS, with the implementation of an accurate shooting ray-tracer. The crustal volume is discretized in order to have a regular grid with a homogenous horizontal spatial resolution of 7.5 km. The resolution in depth varies according to the obtained minimum 1-D velocity model. Reliability and accuracy of results are estimated by analyzing the Resolution Diagonal Elements of the

  9. Precursory pattern of tidal triggering of earthquakes in six regions of China: the possible relation to the crustal heterogeneity

    Q. Li


    Full Text Available We found the possible correlation between the precursory pattern of tidal triggering of earthquakes and the crustal heterogeneities, which is of particular importance to the researchers in earthquake prediction and earthquake hazard prevention. We investigated the connection between the tidal variations and earthquake occurrence in the Liyang, Wunansha, Cangshan, Wenan, Luquan and Yaoan regions of China. Most of the regions show a higher correlation with tidal triggering in several years preceding the large or destructive earthquakes compared to other times, indicating that the tidal triggering may inherently relate to the nucleation of the destructive earthquakes during this time. In addition, the analysis results indicate that the Liyang, Cangshan and Luquan regions, with stronger heterogeneity, show statistically significant effects of tidal triggering preceding the large or destructive earthquakes, while the Wunansha, Wenan and Yaoan regions, with relatively weak heterogeneity, show statistically insignificant effects of it, signifying that the precursory pattern of tidal triggering of earthquakes in these six regions is possibly related to the heterogeneities of the crustal rocks. The above results suggest that when people try to find the potential earthquake hazardous areas or make middle–long-term earthquake forecasting by means of precursory pattern of the tidal triggering, the crustal heterogeneity in these areas has to be taken into consideration for the purpose of increasing the prediction efficiency. If they do not consider the influence of crustal heterogeneity on the tidal triggering of earthquakes, the prediction efficiency might greatly decrease.

  10. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir


    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  11. Paleoproterozoic crustal evolution of the Hengshan–Wutai–Fuping region, North China Craton

    Chunjing Wei


    Full Text Available An arguable point regarding the Neoarchean and Paleoproterozoic crustal evolution of the North China Craton (NCC is whether the tectonic setting in the central belt during the mid-Paleoproterozoic (2.35–2.0 Ga was dominated by an extensional regime or an oceanic subduction–arc regime. A review of the mid-Paleoproterozoic magmatism and sedimentation for the Hengshan–Wutai–Fuping region suggests that a back-arc extension regime was dominant in this region. This conclusion is consistent with the observation that the 2.35–2.0 Ga magmatism shows a typical bimodal distribution where the mafic rocks mostly have arc affinities and the acidic rocks mainly comprise highly-fractioned calc-alkaline to alkaline (or A-type granites, and that this magmatism was coeval with development of extensional basins characteristic of transgressive sequences with volcanic interlayers such as in the Hutuo Group. Although the final amalgamation of the NCC was believed to occur at ∼1.85 Ga, recent zircon U–Pb age dating for mica schist in the Wutai Group suggests a collisional event may have occurred at ∼1.95 Ga. The metamorphic ages of ∼1.85 Ga, obtained mostly from the high-grade rocks using the zircon U–Pb approach, most probably indicate uplifting and cooling of these high-grade terranes. This is because (i phase modeling suggests that newly-grown zircon grains in high-grade rocks with a melt phase cannot date the age of peak pressure and temperature stages, but the age of melt crystallization in cooling stages; (ii the metamorphic P–T paths with isobaric cooling under 6–7 kb for the Hengshan and Fuping granulites suggest their prolonged stay in the middle–lower crust; and (iii the obtained metamorphic age data show a continuous distribution from 1.95 to 1.80 Ga. Thus, an alternative tectonic scenario for the Hengshan–Wutai–Fuping region involves: (i formation of a proto-NCC at ∼2.5 Ga; (ii back-arc extension during 2.35–2.0

  12. Fluid transfer and vein thickness distribution in high and low temperature hydrothermal systems at shallow crustal level in southern Tuscany (Italy

    Francesco Mazzarini


    Full Text Available Geometric analysis of vein systems hosted in upper crustal rocks and developed in high and low temperature hydrothermal systems is presented. The high temperature hydrothermal system consists of tourmaline-rich veins hosted within the contact aureole of the upper Miocene Porto Azzurro pluton in the eastern Elba Island. The low temperature hydrothermal system consists of calcite-rich veins hosted within the Oligocene sandstones of the Tuscan Nappe, exposed along the coast in southern Tuscany. Vein thickness distribution is here used as proxy for inferring some hydraulic properties (transmissivity of the fluid circulation at the time of veins’ formation. We derive estimations of average thickness of veins by using the observed distributions. In the case of power law thickness distributions, the lower the scaling exponent of the distribution the higher the overall transmissivity. Indeed, power law distributions characterised by high scaling exponents have transmissivity three order of magnitude lower than negative exponential thickness distribution. Simple observations of vein thickness may thus provides some clues on the transmissivity in hydrothermal systems.

  13. Tomographic determination of the upper crustal structure in the Jiashi strong earthquake swarm region

    杨卓欣; 赵金仁; 张先康; 张成科; 成双喜; 段玉玲; 张建狮; 王帅军


    A three-dimensional temporary seismic transmission array was arranged in a 50(60 km2 region around Jiashi strong earthquake swarm to receive seismic waves generated by 8 fires from different azimuths. With the inversion method without model blocks and using P and S reflections from Moho at critical distances, the 3-D images of P, S velocity perturbation and ratio vP/vS perturbation of the upper crust under the seismic array were reconstructed. Meanwhile, the seismicity of the Jiashi earthquake swarm was taken into consideration in the analysis of the seismogenesis. The results indicate that the upper crustal structure under the Jiashi strong earthquake swarm region is characterized by significant inhomogeneity both laterally and vertically. From 12 km depth, it is clear that there is an NNW-oriented high P-wave velocity anomalous body corresponding to the epicenter of the swarm with low-velocity anomaly around it, which is the direct cause of the strong earthquakes. High vP/vS is distributed in the same location, which may indicate the decline of shear strength of the source region owing to relative softness of the medium, this can be accounted as an explanation for the seismicity feature of the Jiashi strong earthquake swarm.

  14. Distribution of the Crustal Magnetic Field in Sichuan-Yunnan Region, Southwest China

    Chunhua Bai


    Full Text Available Based on the new and higher degree geomagnetic model NGDC-720-V3, we have investigated the spatial distribution, the altitude decay characteristics of the crustal magnetic anomaly, the contributions from different wavelength bands to the anomaly, and the relationship among the anomaly, the geological structure, and the geophysical field in Sichuan-Yunnan region of China. It is noted that the most outstanding feature in this area is the strong positive magnetic anomaly in Sichuan Basin, a geologically stable block. Contrasting with this feature, a strong negative anomaly can be seen nearby in Longmen Mountain block, an active block. This contradiction implies a possible relationship between the magnetic field and the geological activity. Completely different feature in magnetic field distribution is seen in the central Yunnan block, another active region, where positive and negative anomalies distribute alternatively, showing a complex magnetic anomaly map. Some fault belts, such as the Longmen Mountain fault, Lijiang-Xiaojinhe fault, and the Red River fault, are the transitional zones of strong and weak or negative and positive anomalies. The corresponding relationship between the magnetic anomaly and the geophysical fields was confirmed.

  15. Time-clustering analysis of the 1978–2008 sub-crustal seismicity of Vrancea region

    L. Telesca


    Full Text Available The analysis of time-clustering behaviour of the sub-crustal seismicity (depth larger than 60 km of the Vrancea region has been performed. The time span of the analyzed catalogue is from 1978 to 2008, and only the events with a magnitude of Mw ≥ 3 have been considered. The analysis, carried out on the full and aftershock-depleted catalogues, was performed using the Allan Factor (AF that allows the identificatiion and quantification of correlated temporal structures in temporal point processes. Our results, whose significance was analysed by means of two methods of generation of surrogate series, reveal the presence of time-clustering behaviour in the temporal distribution of seismicity data of the full catalogue. The analysis performed on the aftershock-depleted catalogue indicates that the time-clustering is associated mainly to the aftershocks generated by the two largest events occurred on 30 August 1986 (Mw = 7.1 and 30 May 1990 (Mw = 6.9.

  16. Crustal deformation and seismic measurements in the region of McDonald Observatory, West Texas. [Texas and Northern Chihuahua, Mexico

    Dorman, H. J.


    The arrival times of regional and local earthquakes and located earthquakes in the Basin and Range province of Texas and in the adjacent areas of Chihuahua, Mexico from January 1976 to August 1980 at the UT'NASA seismic array are summarized. The August 1931 Texas earthquake is reevaluated and the seismicity and crustal structure of West Texas is examined. A table of seismic stations is included.

  17. The Glacial BuzzSaw, Isostasy, and Global Crustal Models

    Levander, A.; Oncken, O.; Niu, F.


    The glacial buzzsaw hypothesis predicts that maximum elevations in orogens at high latitudes are depressed relative to temperate latitudes, as maximum elevation and hypsography of glaciated orogens are functions of the glacial equilibrium line altitude (ELA) and the modern and last glacial maximum (LGM) snowlines. As a consequence crustal thickness, density, or both must change with increasing latitude to maintain isostatic balance. For Airy compensation crustal thickness should decrease toward polar latitudes, whereas for Pratt compensation crustal densities should increase. For similar convergence rates, higher latitude orogens should have higher grade, and presumably higher density rocks in the crustal column due to more efficient glacial erosion. We have examined a number of global and regional crustal models to see if these predictions appear in the models. Crustal thickness is straightforward to examine, crustal density less so. The different crustal models generally agree with one another, but do show some major differences. We used a standard tectonic classification scheme of the crust for data selection. The globally averaged orogens show crustal thicknesses that decrease toward high latitudes, almost reflecting topography, in both the individual crustal models and the models averaged together. The most convincing is the western hemisphere cordillera, where elevations and crustal thicknesses decrease toward the poles, and also toward lower latitudes (the equatorial minimum is at ~12oN). The elevation differences and Airy prediction of crustal thickness changes are in reasonable agreement in the North American Cordillera, but in South America the observed crustal thickness change is larger than the Airy prediction. The Alpine-Himalayan chain shows similar trends, however the strike of the chain makes interpretation ambiguous. We also examined cratons with ice sheets during the last glacial period to see if continental glaciation also thins the crust toward

  18. Lower crustal mush generation and evolution

    Karakas, Ozge; Bachmann, Olivier; Dufek, Josef; Wright, Heather; Mangan, Margaret


    Recent seismic, field, and petrologic studies on several active and fossil volcanic settings provide important constraints on the time, volume, and melt fraction of their lower crustal magma bodies. However, these studies provide an incomplete picture of the time and length scales involved during their thermal and compositional evolution. What has been lacking is a thermal model that explains the temporal evolution and state of the lower crustal magma bodies during their growth. Here we use a two-dimensional thermal model and quantify the time and length scales involved in the long-term thermal and compositional evolution of the lower crustal mush regions underlying the Salton Sea Geothermal Field (USA), Mt St Helens (USA), and the Ivrea-Verbano Zone (North Italy). Although a number of seismic, tectonic, petrologic, and field studies explained the tectonic and magmatic evolution of these regions, controversy remains on their lower crustal heat sources, melt fraction, and origin of erupted magmas. Our thermal modeling results suggest that given a geologically reasonable range of basalt fluxes (~10^-3 to 10^-4 km3/yr), a long-lived (>105 yr) crystalline mush is formed in the lower crust. The state of the lower crustal mush is strongly influenced by the magma flux, crustal thickness, and water content of intruded basalt, giving an average melt fraction of mush is mainly evolving through fractional crystallization of basalt with minor crustal assimilation in all regions, in agreement with isotopic studies. Quantification of the lower crustal mush regions is key to understanding the mass and heat balance in the crust, evolution of magma plumbing systems, and geothermal energy exploration.

  19. New insight on the paleoproterozoic evolution of the São Francisco Craton: Reinterpretation of the geology, the suture zones and the thicknesses of the crustal blocks using geophysical and geological data

    Sampaio, Edson E. S.; Barbosa, Johildo S. F.; Correa-Gomes, Luiz C.


    The Archean-Paleoproterozoic Jequié (JB) and Itabuna-Salvador-Curaçá (ISCB) blocks and their tectonic transition zone in the Valença region, Bahia, Brazil are potentially important for ore deposits, but the geological knowledge of the area is still meager. The paucity of geological information restricts the knowledge of the position and of the field characteristics of the tectonic suture zone between these two crustal segments JB and ISCB. Therefore, interpretation of geophysical data is necessary to supplement the regional structural and petrological knowledge of the area as well as to assist mining exploration programs. The analysis of the airborne radiometric and magnetic data of the region has established, respectively, five radiometric domains and five magnetic zones. Modeling of a gravity profile has defined the major density contrasts of the deep structures. The integrated interpretation of the geophysical data fitted to the known geological information substantially improved the suture zone (lower plate JB versus upper plate ISCB) delimitation, the geological map of the area and allowed to estimate the thicknesses of these two blocks, and raised key questions about the São Francisco Craton tectonic evolution.

  20. A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones

    Fullea, J.; Fernàndez, M.; Zeyen, H.; Vergés, J.


    We present a method based on the combination of elevation and geoid anomaly data together with thermal field to map crustal and lithospheric thickness. The main assumptions are local isostasy and a four-layered model composed of crust, lithospheric mantle, sea water and the asthenosphere. We consider a linear density gradient for the crust and a temperature dependent density for the lithospheric mantle. We perform sensitivity tests to evaluate the effect of the variation of the model parameters and the influence of RMS error of elevation and geoid anomaly databases. The application of this method to the Gibraltar Arc System, Atlas Mountains and adjacent zones reveals the presence of a lithospheric thinning zone, SW-NE oriented. This zone affects the High and Middle Atlas and extends from the Canary Islands to the eastern Alboran Basin and is probably linked with a similarly trending zone of thick lithosphere constituting the western Betics, eastern Rif, Rharb Basin, and Gulf of Cadiz. A number of different, even mutually opposite, geodynamic models have been proposed to explain the origin and evolution of the study area. Our results suggest that a plausible slab-retreating model should incorporate tear and asymmetric roll-back of the subducting slab to fit the present-day observed lithosphere geometry. In this context, the lithospheric thinning would be caused by lateral asthenospheric flow. An alternative mechanism responsible for lithospheric thinning is the presence of a hot magmatic reservoir derived from a deep ancient plume centred in the Canary Island, and extending as far as Central Europe.

  1. Development of a first 3D crustal velocity model for the region of Bogotá, Colombia

    Andrea C. Riaño


    Full Text Available Knowledge regarding the characteristics of soils in Bogotá basin has been possible to get through previous microzonation studies. However, there is still insufficient knowledge of the crustal velocity structure of the region. Bogotá is located in a region prone to a significant seismic hazard. Historically, the city has been affected by strong earthquakes, reaching moment magnitudes greater than or equal to 7. Furthermore, the city was built on a lacustrine basin, with soft soils of considerable depth that may strongly amplify the ground motion during an earthquake. In this article, we describe the development of a first crustal structure and material properties model for the region of Bogotá, Colombia, covering an area of about 130 km by 102 km. This effort aims at constructing a realistic 3D seismic velocity model using geological and geotechnical information from several sources. Major geological units have been identified and mapped into the model. The Inverse Distance Weighted (IDW interpolation was used to create continuous surfaces delimiting the geological units. Seismic-wave properties are assigned to any point in the domain using a location-based approach. We expect this model to be useful for a wide range of applications, including dynamic ground motion simulations and fault system modeling.

  2. Crustal thickening and attenuation as revealed by regional fold interference patterns: Ciudad Rodrigo basement area (Salamanca, Spain)

    Díez Fernández, Rubén; Gómez Barreiro, Juan; Martínez Catalán, José R.; Ayarza, Puy


    The structure of the Ciudad Rodrigo area (Iberian Massif, Central Iberian Zone) has been revisited in order to integrate new geological data with recent models of the evolution of the Iberian Massif. Detailed mapping of fold structures along with a compilation of field data have been used to constrain the geometry and relative timing of ductile deformation events in this section of the hinterland of the Variscan belt. The structural evolution shows, in the first place, the development of a regional train of overturned folds with associated axial planar foliation (D1). Towards the lower structural levels, the deflection of the fold limbs and a subhorizontal crenulation cleavage depict the upper structural boundary of a superimposed low angle shear zone (D2), which extends at least to the deepest parts of the basement exposed in the study area. The amplification and rotation of D1 folds about a horizontal axis also occurred within this shear zone. The flat-lying character of the D2 structures accounts for the attenuation of the previously thickened crust, which developed following gravity gradients during thermal re-equilibration. Subsequent deformation led to the formation of two orthogonal sets of upright folds (D3), representing a new shift between crustal thinning and crustal thickening in the region.

  3. Crystalline Bedrock Geology, Faulting, and Crustal Architecture in the Larse Region of the Transverse Ranges, Southern California

    Powell, R. E.


    Spanning the Transverse Ranges (TR) between the northern Los Angeles Basin and the western Mojave Desert (MD), the LARSE lines transect several distinct crystalline blocks: western Transverse Ranges (WTR), San Gabriel Mts-Soledad Basin (SGM), Sierra Pelona (SP), and Liebre Mtn. Juxtaposition of disparate blocks evolved during late Cenozoic (Cz) plate-margin reorganization of early Miocene and older paleogeologic and paleotectonic patterns. Crystalline basement rocks, ranging in age from Proterozoic to mid-Cz, constrain tectonic and near-surface crustal evolution of the region in various ways: (1) by their spatial distribution, (2) by basement-derived clast-types in Cz deposits, and (3) by the age and distribution of weathered zones developed on exhumed basement. Reassembly of paleogeologic patterns in the crystalline terrane of S California provides measurements of overall displacement on strike-slip faults of the San Andreas system. In the LARSE region, right-lateral displacements are demonstrable for the San Gabriel fault (SGF) in the SGM (22-23 km), the Vasquez Creek fault (5-15 km), and the SGF NW of the SGM (42-43 km). Displacement on the San Andreas fault NW of the TR (295 km) is partitioned onto the San Andreas-San Francisquito-Fenner-Clemens Well fault (100 km) and the SGF in the TR, and the post-5 Ma San Andreas fault in and south of the TR (ranging from 160 km along the MD-TR segment to 180 km along the Salton Trough segment). Left-lateral displacement has been demonstrated for the Santa Monica-Raymond fault (11-15 km), the Santa Ynez fault (0 km at its E end to as much as 37 km), and the Garlock fault (48-64 km along its central reach and perhaps as little as 12 km along its western reach). The Vasquez Creek and Santa Monica-Raymond faults are conjugate. Pre-Late Miocene extensional deformation is associated with exhumation of the Pelona Schist in SP and the Chocolate Mts and with ENE-trending left-separation faults in SGM. Reverse displacements are

  4. Crustal velocity structure and earthquake processes of Garhwal-Kumaun Himalaya: Constraints from regional waveform inversion and array beam modeling

    Negi, Sanjay S.; Paul, Ajay; Cesca, Simone; Kamal; Kriegerowski, Marius; Mahesh, P.; Gupta, Sandeep


    In order to understand present day earthquake kinematics at the Indian plate boundary, we analyse seismic broadband data recorded between 2007 and 2015 by the regional network in the Garhwal-Kumaun region, northwest Himalaya. We first estimate a local 1-D velocity model for the computation of reliable Green's functions, based on 2837 P-wave and 2680 S-wave arrivals from 251 well located earthquakes. The resulting 1-D crustal structure yields a 4-layer velocity model down to the depths of 20 km. A fifth homogeneous layer extends down to 46 km, constraining the Moho using travel-time distance curve method. We then employ a multistep moment tensor (MT) inversion algorithm to infer seismic moment tensors of 11 moderate earthquakes with Mw magnitude in the range 4.0-5.0. The method provides a fast MT inversion for future monitoring of local seismicity, since Green's functions database has been prepared. To further support the moment tensor solutions, we additionally model P phase beams at seismic arrays at teleseismic distances. The MT inversion result reveals the presence of dominant thrust fault kinematics persisting along the Himalayan belt. Shallow low and high angle thrust faulting is the dominating mechanism in the Garhwal-Kumaun Himalaya. The centroid depths for these moderate earthquakes are shallow between 1 and 12 km. The beam modeling result confirm hypocentral depth estimates between 1 and 7 km. The updated seismicity, constrained source mechanism and depth results indicate typical setting of duplexes above the mid crustal ramp where slip is confirmed along out-of-sequence thrusting. The involvement of Tons thrust sheet in out-of-sequence thrusting indicate Tons thrust to be the principal active thrust at shallow depth in the Himalayan region. Our results thus support the critical taper wedge theory, where we infer the microseismicity cluster as a result of intense activity within the Lesser Himalayan Duplex (LHD) system.

  5. Crustal thickening in an active margin setting (Philippines): The whys and the hows

    C.B.Dimalanta; G.P.Yumul,Jr.


    A synthesis of crustal thickness estimates was made recently utilizing available field, geochemical, seismicity, shear wave velocity and gravity data in the Philippines. The results show that a significant portion of the Philippine archipelago is generally characterized by crust with a thickness of around 25 to 30 kilometers. However, two zones, which are made up of a thicker crust (from 30 to 65 km) have also been delineated. The Luzon Central Cordillera region is characterized by thick crust. Another belt of thickened crust is observed in the Bicol-Negros-Panay-Central Mindanao region. This paper examines the interplay of tectonic and magmatic processes and their role in modifying Philippine arc crust. The processes, which could account for the observed crustal thicknesses, are presented. The contributions of magmatic arcs as compared to the contribution of the emplacement and accretion of ophiolite complexes to crustal thickness are also discussed.

  6. Role of deep crustal fluids in the genesis of intraplate earthquakes in the Kachchh region, northwestern India

    Pavan Kumar, G.; Mahesh, P.; Nagar, Mehul; Mahender, E.; Kumar, Virendhar; Mohan, Kapil; Ravi Kumar, M.


    Fluids play a prominent role in the genesis of earthquakes, particularly in intraplate settings. In this study, we present evidence for a highly heterogeneous nature of electrical conductivity in the crust and uppermost mantle beneath the Kachchh rift basin of northwestern India, which is host to large, deadly intraplate earthquakes. We interpret our results of high conductive zones inferred from magnetotelluric and 3-D local earthquake tomography investigations in terms of a fluid reservoir in the upper mantle. The South Wagad Fault (SWF) imaged as a near-vertical north dipping low resistivity zone traversing the entire crust and an elongated south dipping conductor demarcating the North Wagad Fault (NWF) serve as conduits for fluid flow from the reservoir to the middle to lower crustal depths. Importantly, the epicentral zone of the 2001 main shock is characterized as a fluid saturated zone at the rooting of NWF onto the SWF.Plain Language SummaryFluids play a significant role in generation of earthquakes in intraplate and interplate settings. However, knowledge of the nature, origin, and localization of crustal fluids in stable continental interiors (intraplate) remains uncertain. The Kachchh rift basin of northwestern India is host to large, deadly intraplate earthquakes like those in 1819 (Mw7.8) and 2001 (Mw7.7). In the present study we carried out extensive geophysical investigations to understand the cause for seismic activity in the region. The study provides the evidence for the presence of fluids in the seismically active intraplate region of northwest India. This study demonstrates that the dynamics of mantle fluids controlled by geological faults could lead to large and moderate-sized earthquakes.

  7. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    Solomon, Sean C.

    During our participation in the NASA Crustal Dynamics Project under NASA contract NAS-27339 and grant NAG5-814 for the period 1982-1991, we published or submitted for publication 30 research papers and 52 abstracts of presentations at scientific meetings. In addition, five M.I.T. Ph.D. students (Eric Bergman, Steven Bratt, Dan Davis, Jeanne Sauber, Anne Sheehan) were supported wholly or in part by this project during their thesis research. Highlights of our research progress during this period include the following: application of geodetic data to determine rates of strain in the Mojave block and in central California and to clarify the relation of such strain to the San Andreas fault and Pacific-North American plate motions; application of geodetic data to infer post seismic deformation associated with large earthquakes in the Imperial Valley, Hebgen Lake, Argentina, and Chile; determination of the state of stress in oceanic lithosphere from a systematic study of the centroid depths and source mechanisms of oceanic intraplate earthquakes; development of models for the state of stress in young oceanic regions arising from the differential cooling of the lithosphere; determination of the depth extent and rupture characteristics of oceanic transform earthquakes; improved determination of earthquake slip vectors in the Gulf of California, an important data set for the estimation of Pacific-North American plate motions; development of models for the state of stress and mechanics of fold-and-thrust belts and accretionary wedges; development of procedures to invert geoid height, residual bathymetry, and differential body wave travel time residuals for lateral variations in the characteristic temperature and bulk composition of the oceanic upper mantle; and initial GPS measurements of crustal deformation associated with the Imperial-Cerro Prieto fault system in southern California and northern Mexico. Full descriptions of the research conducted on these topics may be

  8. Crustal deformation in the south-central Andes backarc terranes as viewed from regional broad-band seismic waveform modelling

    Alvarado, Patricia; Beck, Susan; Zandt, George; Araujo, Mario; Triep, Enrique


    The convergence between the Nazca and South America tectonic plates generates a seismically active backarc region near 31°S. Earthquake locations define the subhorizontal subducted oceanic Nazca plate at depths of 90-120 km. Another seismic region is located within the continental upper plate with events at depths Sierras Pampeanas and is responsible for the large earthquakes that have caused major human and economic losses in Argentina. South of 33°S, the intense shallow continental seismicity is more restricted to the main cordillera over a region where the subducted Nazca plate starts to incline more steeply, and there is an active volcanic arc. We operated a portable broad-band seismic network as part of the Chile-Argentina Geophysical Experiment (CHARGE) from 2000 December to 2002 May. We have studied crustal earthquakes that occurred in the back arc and under the main cordillera in the south-central Andes (29°S-36°S) recorded by the CHARGE network. We obtained the focal mechanisms and source depths for 27 (3.5 Sierras Pampeanas, over the flat-slab segment is dominated by reverse and thrust fault-plane solutions located at an average source depth of 20 km. One moderate-sized earthquake (event 02-117) is very likely related to the northern part of the Precordillera and the Sierras Pampeanas terrane boundary. Another event located near Mendoza at a greater depth (~26 km) (event 02-005) could also be associated with the same ancient suture. We found strike-slip focal mechanisms in the eastern Sierras Pampeanas and under the main cordillera with shallower focal depths of ~5-7 km. Overall, the western part of the entire region is more seismically active than the eastern part. We postulate that this is related to the presence of different pre-Andean geological terranes. We also find evidence for different average crustal models for those terranes. Better-fitting synthetic seismograms result using a higher P-wave velocity, a smaller average S-wave velocity and a

  9. Blood flow and epithelial thickness in different regions of feline oral mucosa and skin.

    Johnson, G K; Squier, C A; Johnson, W T; Todd, G L


    The relationship between epithelial thickness and blood flow was examined in 6 mucosal and 3 skin regions of the cat. Blood flow to these tissues was determined using the radiolabelled microsphere method. From histologic sections the proportion of the tissue biopsy occupied by epithelium and the average epithelial thickness were calculated. The oral tissues had a significantly higher blood flow than the skin regions (p less than 0.05). In terms of epithelial thickness, the tissues could be divided into 4 groups (p less than 0.05). These were: a) palate; b) gingival regions and dorsum of the tongue; c) lip and buccal mucosa; d) all skin regions. When epithelial thickness was related to blood flow there was a significant positive correlation (p less than 0.005) indicating that a thicker epithelium is associated with a higher blood flow. This finding may reflect the greater metabolic demands of the thicker epithelia.

  10. River terrace development in the NE Mediterranean region (Syria and Turkey): Patterns in relation to crustal type

    Bridgland, David R.; Demir, Tuncer; Seyrek, Ali; Daoud, Mohamad; Abou Romieh, Mohammad; Westaway, Rob


    It is widely recognized that the optimal development of river terraces globally has been in the temperate latitudes, with NW and Central Europe being areas of particular importance for the preservation of such archives of Quaternary environmental change. There is also a growing consensus that the principal drivers of terrace formation have been climatic fluctuation against a background of progressive (but variable) uplift. Nonetheless river terraces are widely preserved in the Mediterranean region, where they have often been attributed to the effects of neotectonic activity, with a continuing debate about the relative significance of fluctuating temperature (glacials-interglacials) and precipitation (pluvials-interpluvials). Research in Syria and southern-central Turkey (specifically in the valleys of the Tigris and Ceyhan in Turkey, the Kebir in Syria and the trans-border rivers Orontes and Euphrates) has underlined the importance of uplift rates in dictating the preservation pattern of fluvial archives and has revealed different patterns that can be related to crustal type. The NE Mediterranean coastal region has experienced unusually rapid uplift in the Late Quaternary. The relation between the Kebir terraces and the staircase of interglacial raised beaches preserved along the Mediterranean coastline of NW Syria reinforces previous conclusions that the emplacement of the fluvial terrace deposits in the Mediterranean has occurred during colder climatic episodes.

  11. Characteristics of Recent Horizontal Crustal Movement and Tectonic Deformation in the Northwest China Region

    Liu Wenyi; Wang Shuangxu; Wang Wenping; Zhang Xiaoliang; Cui Duxin; Xue Fuping


    Making use of observation data of GPS in the Northwest China region and infrared distancemeasurements crossing the Qilian-Longshoushan fault zone up to 2004, aided by the least square collocation and inversion of negative dislocation model for the boundaries of elastic blocks and the singular force-source, the dynamic evolution features of deformation and strain fields before and after the Ms = 8. 1 earthquake on the west of Kunlun Mountains Pass,especially the recent tectonic deformation and stress field status three years after this earthquake are studied. The possible regions or segments of active blocks and their boundaries reflecting accumulation background of high strain energy of producing earthquakes over middle magnitude, are obtained, as well as the potential epicenter. The results show that after short-term relaxation and adjustment in the northern margin of Qinghai-Xizang (Tibet) block after the Ms = 8. 1 earthquake, the main control action of background field of northeastward pushing of Indian plate is now recovering. Moreover, the following regions are found to have the background of high strain energy accumulation. They are the middle segment of the northern Tianshan fault zone and its meeting region with the western segment, the middle and western segments of southern Tianshan fault zone and the meeting region with Western Kunlun fault zone, the middle segment of Altun fault, the middle-eastern segment of Qilianshan fault zone and its meeting region with Haiyuan fault, the meeting region of northern margin fault of west Qinling Range and the southeastward expanding line of Zhuanglanghe fault; The Linze and Haiyuan areas also see accumulation of strain energy to some degree.

  12. Crustal structure in the Elko-Carlin Region, Nevada, during Eocene gold mineralization: Ruby-East Humboldt metamorphic core complex as a guide to the deep crust

    Howard, K.A.


    -displacement Cenozoic extensional faulting and flow in the deep crust, would be expected to blur the expression of any regional structural roots that could correlate with mineral belts. Structural mismatch of the mineralized upper crust and the tectonically complex middle crust suggests that the Carlin trend relates not to subjacent deeply penetrating rooted structures but to favorable upper crustal host rocks aligned within a relatively coherent regional block of upper crust.

  13. Crustal structure of the coastal and marine San Francisco Bay region, California

    Parsons, Tom


    As of the time of this writing, the San Francisco Bay region is home to about 6.8 million people, ranking fifth among population centers in the United States. Most of these people live on the coastal lands along San Francisco Bay, the Sacramento River delta, and the Pacific coast. The region straddles the tectonic boundary between the Pacific and North American Plates and is crossed by several strands of the San Andreas Fault system. These faults, which are stressed by about 4 cm of relative plate motion each year, pose an obvious seismic hazard.

  14. Dimensions of the human sclera: Thickness measurement and regional changes with axial length.

    Norman, Richard E; Flanagan, John G; Rausch, Sophie M K; Sigal, Ian A; Tertinegg, Inka; Eilaghi, Armin; Portnoy, Sharon; Sled, John G; Ethier, C Ross


    Scleral thickness, especially near the region of the optic nerve head (ONH), is a potential factor of interest in the development of glaucomatous optic neuropathy. Our goal was to characterize the scleral thickness distribution and other geometric features of human eyes. Eleven enucleated human globes (7 normal and 4 ostensibly glaucomatous) were imaged using high-field microMRI, providing 80 microm isotropic resolution over the whole eye. The MRI scans were segmented to produce 3-D corneoscleral shells. Each shell was divided into 15 slices along the anterior-posterior axis of the eye, and each slice was further subdivided into the anatomical quadrants. Average thickness was measured in each region, producing 60 thickness measurements per eye. Hierarchical clustering was used to identify trends in the thickness distribution, and scleral geometric features were correlated with globe axial length. Thickness over the whole sclera was 670 +/- 80 microm (mean +/- SD; range: 564 microm-832 microm) over the 11 eyes. Maximum thickness occurred at the posterior pole of the eye, with mean thickness of 996 +/- 181 microm. Thickness decreased to a minimum at the equator, where a mean thickness of 491 +/- 91 microm was measured. Eyes with a reported history of glaucoma were found to have longer axial length, smaller ONH canal dimensions and thinner posterior sclera. Several geometrical parameters of the eye, including posterior scleral thickness, axial length, and ONH canal diameter, appear linked. Significant intra-individual and inter-individual variation in scleral thickness was evident. This may be indicative of inter-individual differences in ocular biomechanics. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Finite element modelling of elastic intraplate stresses due to heterogeneities in crustal density and mechanical properties for the Jabalpur earthquake region, central India

    A Manglik; S Thiagarajan; A V Mikhailova; Yu Rebetsky


    Deep lower crustal intraplate earthquakes are infrequent and the mechanism of their occurrence is not well understood. The Narmada–Son-lineament region in central India has experienced two such events, the 1938 Satpura earthquake and the 1997 Jabalpur earthquake, having a focal depth of more than 35 km. We have estimated elastic stresses due to the crustal density and mechanical properties heterogeneities along the Hirapur–Mandla profile passing through the Jabalpur earthquake region to analyse conditions suitable for the concentration of shear stresses in the hypocentral region of this earthquake. Elastic stresses have been computed by a finite element method for a range of material parameters. The results indicate that the shear stresses generated by the density heterogeneities alone are not able to locally enhance the stress concentration in the hypocentral region. The role of mechanical properties of various crustal layers is important in achieving this localization of stresses. Among a range of material parameters analysed, the model with a mechanically strong lower crust overlying a relatively weak sub-Moho layer is able to enhance the stress concentration in the hypocentral region, implying a weaker mantle in comparison to the lower crust for this region of central India.

  16. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter


    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  17. Regional and global crustal context of soil and rock chemistry from ChemCam and APXS at Gale crater

    Newsom, H. E.; Gordon, S.; Jackson, R.; Agee, C. B.; Wiens, R. C.; Clegg, S. M.; Lanza, N.; Cousin, A.; Gasnault, O.; Meslin, P. Y.; Maurice, S.; Forni, O.; McLennan, S. M.; Mangold, N.; Sautter, V.; Clark, B. C.; Anderson, R. B.; Gellert, R.; Schmidt, M. E.; Ollila, A.; Boynton, W. V.; Martín-Torres, J.; Zorzano, M. P.


    The chemistry of rocks and soils analyzed by Curiosity represent a diverse population including mafic and felsic compositions. The data from Gale Crater can be compared with the accumulated data for martian materials from other landing sites, the Gamma Ray Spectrometer (GRS) experiment on the Mars Odyssey Spacecraft, and the data for martian meteorites. Variations in the CaO/Al2O3 ratio in primitive igneous rocks can provide a fundamental signature of crustal formation on Mars. Abundances of other elements like Fe in the surface rocks can reflect later differentiation effects. Comparing the chemistry of Gale samples with other martian data must take into account the different geochemical components in the samples. The most important distinction is between the volatile elements including H, C, Cl, S, and the lithophile elements including Al, Si, Fe, Mn, Ca, Na, Mg, etc. The large enrichments of the volatile elements SO3, Cl, and H2O in the soils may represent contributions from volcanic aerosols or other local sources of volatiles. Alteration and transport of fluid mobile major elements by aqueous or hydrothermal processes could complicate the estimation of crustal abundances of elements such as Ca but early results suggest little or no chemical fractionation attributable to alteration. Other clues to the role of fluids can come from the ChemCam data for the highly fluid mobile elements lithium and manganese. Regional comparisons of chemistry only make sense when considering the absolute abundances and elemental ratios within the different component classes. The use of elemental ratios avoids the problem of the correction required to get volatile-free abundance data for comparison of GRS data with meteorites and landing site rocks measured by the ChemCam Laser Induced Breakdown Spectroscopy (LIBS) experiment and Alpha Particle X-ray Spectrometer (APXS). The huge size of the GRS footprint makes it especially difficult to make the required corrections. Eventually data

  18. Crustal Structure at the North Eastern Tip of Rivera Plate, Nayarit- Marias Islands Region: Scenarios and Tectonic Implications. Tsujal Project

    Danobeitia, J.; Bartolome, R.; Barba, D. C., Sr.; Nunez-Cornu, F. J.; Bandy, W. L.; Prada, M.; Cameselle, A. L.; Nunez, D.; Espindola, J. M.; Estrada, F.; Zamora, A.; Gomez, A.; Ortiz, M.


    A primarily analysis of marine geophysical data acquired aboard the RRS James Cook in the framework of the project "Characterization of seismic hazard and tsunami associated with cortical contact structure Rivera Jalisco Block Plate (TSUJAL)" is presented. This survey was held in the region of Nayarit-Tres Marias Islands between February and March 2014. The examination of data recorded by 16 OBS 's, deployed along 4 wide angle seismic profiles is presented, using an airgun-array seismic source of 6800 c.i., which allows sampling the crustal structure to the Moho. The profiles are located along the margin off the Marias Islands: a profile of over 200 km NNW-SSE direction and parallel to the western flank of the Islas Marias Islands and three orthogonal thereto. These perpendicular sections sample the lithosphere from the north of Maria Madre Island with a profile of 100 km length, across Maria Magdalena and Mari Cleofas Islands, with a profile of 50 km long, till south of Maria Cleofas with a profile of 100 km long. Coincident multichannel seismic profiles with refraction ones are also surveyed, although shooting with a source of 3,540 c. i., and acquired with a digital "streamer" of 6.0 km long. Simultaneously, multibeam, parametric and potential field data were recorded during seismic acquisition A first analysis shows an anomalously thickened crust in the western flank of the Marias Islands, as indicated by relatively short pre-critical distances of 30-35 km. While the moderate dip of 7 ° of the subduction of the Pacific oceanic plate favors somehow this effect, the existence of a remnant crustal fragment is also likely. Moreover, the images provided by the parametric sounding show abundant mass wasting deposits suggesting of recent active tectonics, possibly generated by earthquakes with moderate magnitude as those reported in the Marias Islands. This set of geophysical data, not only provide valuable information for the seismogenic characterization and

  19. Central Andean crustal structure from receiver function analysis

    Ryan, Jamie; Beck, Susan; Zandt, George; Wagner, Lara; Minaya, Estela; Tavera, Hernado


    The Central Andean Plateau (15°-27°S) is a high plateau in excess of 3 km elevation, associated with thickened crust along the western edge of the South America plate, in the convergent margin between the subducting Nazca plate and the Brazilian craton. We have calculated receiver functions using seismic data from a recent portable deployment of broadband seismometers in the Bolivian orocline (12°-21°S) region and combined them with waveforms from 38 other stations in the region to investigate crustal thickness and crust and mantle structures. Results from the receiver functions provide a more detailed map of crustal thickness than previously existed, and highlight mid-crustal features that match well with prior studies. The active volcanic arc and Altiplano have thick crust with Moho depths increasing from the central Altiplano (65 km) to the northern Altiplano (75 km). The Eastern Cordillera shows large along strike variations in crustal thickness. Along a densely sampled SW-NE profile through the Bolivian orocline there is a small region of thin crust beneath the high peaks of the Cordillera Real where the average elevations are near 4 km, and the Moho depth varies from 55 to 60 km, implying the crust is undercompensated by 5 km. In comparison, a broader region of high elevations in the Eastern Cordillera to the southeast near 20°S has a deeper Moho at 65-70 km and appears close to isostatic equilibrium at the Moho. Assuming the modern-day pattern of high precipitation on the flanks of the Andean plateau has existed since the late Miocene, we suggest that climate induced exhumation can explain some of the variations in present day crustal structure across the Bolivian orocline. We also suggest that south of the orocline at 20°S, the thicker and isostatically compensated crust is due to the absence of erosional exhumation and the occurrence of lithospheric delamination.

  20. High-Resolution Aeromagnetic Survey over the Yucatan Peninsula - Implications for Chicxulub Impact, Secondary Craters and Regional Crustal Structures

    Fucugauchi, J. U.; Lopez-Loera, H.; Rebolledo-Vieyra, M.


    followed by a low outside, which extend to the north and northwest. The regional broad anomalies crossing the peninsula and shelf are interpreted as crustal structures on the Yucatan block related to pre- and rifting deformation, which include basement uplift. The southward elongated magnetic anomaly and gravity low may correspond to a pre-impact structure. From analysis of residual anomalies, we found no clear indication of secondary craters or multiple impacts.

  1. Crustal structure and mantle transition zone thickness beneath a hydrothermal vent at the ultra-slow spreading Southwest Indian Ridge (49°39'E): a supplementary study based on passive seismic receiver functions

    Ruan, Aiguo; Hu, Hao; Li, Jiabiao; Niu, Xiongwei; Wei, Xiaodong; Zhang, Jie; Wang, Aoxing


    As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8'E) close to a hydrothermal vent (49°39'E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at 9.0 km is the bottom of a layer (2-3 km thick); the Moho (at depth of 6-7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by 15 km, the 660 discontinuity is elevated by 18 km, and a positive thermal anomaly between 182 and 237 K is inferred.

  2. Lithospheric strength and elastic thickness of the Barents Sea and Kara Sea region

    Gac, Sébastien; Klitzke, Peter; Minakov, Alexander; Faleide, Jan Inge; Scheck-Wenderoth, Magdalena


    Interpretation of tomography data indicates that the Barents Sea region has an asymmetric lithospheric structure characterized by a thin and hot lithosphere in the west and a thick and cold lithosphere in the east. This suggests that the lithosphere is stronger in the east than in the west. This asymmetric lithosphere strength structure may have a strong control on the lithosphere response to tectonic and surface processes. In this paper, we present computed strength and effective elastic thickness maps of the lithosphere of the Barents Sea and Kara Sea region. Those are estimated using physical parameters from a 3D lithospheric model of the Barents Sea and Kara Sea region. The lithospheric strength is computed assuming a temperature-dependent ductile and brittle rheology for sediments, crust and mantle lithosphere. Results show that lithospheric strength and elastic thickness are mostly controlled by the lithosphere thickness. The model generally predicts much larger lithospheric strength and elastic thickness for the Proterozoic parts of the East Barents Sea and Kara Sea. Locally, the thickness and lithology of the continental crust disturb this general trend. At last, the gravitational potential energy (GPE) is computed. Our results show that the difference in GPE between the Barents Sea and the Mid-Atlantic Ridge provides a net horizontal force large enough to cause contraction in the western and central Barents Sea.

  3. Inversion of gravity and topography data for the crust thickness of China and its adjacent region

    HUANG Jian-ping; FU Rong-shan; XU Ping; HUANG Jian-hua; ZHENG Yong


    The data of Bouguer gravity and topography are inverted to obtain the crust thickness of China. In order to reduce the effect of regional non-isostasy we corrected the reference Moho depth in the inversion with regional topography relief, and performed multiple iterations to make the result more reliable. The obtained crust thickness of China is plotted on a map in cells of 1°×1°. Then we analyzed the correlation between the Bouguer gravity anomaly and fluctuation of the Moho depth. A good linear correlation is found, with a correlation coefficient of -0.993.Different correlation coefficients, 0.96 and 0.91, are found for the data in land and ocean region, respectively. The correlation result also shows that the boundary between land and ocean is generally along the bathymetric line of -800 m. In order to examine the influence of the Earth's curvature on the calculated result, we tried two inversion models: the inversion for the whole region and the inversion for 4 sub-regions. The difference in the crust thickness deduced from the two models is less than 5 km. Possible explanation for the difference is discussed. After comparing our result with that of other studies, we suggest that with our method the Bouguer gravity and the topography data can be independently inverted to obtain the crust thickness of China and its adjacency.

  4. Ocular dimensions, corneal thickness, and corneal curvature in quarter horses with hereditary equine regional dermal asthenia.

    Badial, Peres R; Cisneros-Àlvarez, Luis Emiliano; Brandão, Cláudia Valéria S; Ranzani, José Joaquim T; Tomaz, Mayana A R V; Machado, Vania M; Borges, Alexandre S


    The aim of this study was to compare ocular dimensions, corneal curvature, and corneal thickness between horses affected with hereditary equine regional dermal asthenia (HERDA) and unaffected horses. Five HERDA-affected quarter horses and five healthy control quarter horses were used. Schirmer's tear test, tonometry, and corneal diameter measurements were performed in both eyes of all horses prior to ophthalmologic examinations. Ultrasonic pachymetry was performed to measure the central, temporal, nasal, dorsal, and ventral corneal thicknesses in all horses. B-mode ultrasound scanning was performed on both eyes of each horse to determine the dimensions of the ocular structures and to calculate the corneal curvature. Each corneal region examined in this study was thinner in the affected group compared with the healthy control group. However, significant differences in corneal thickness were only observed for the central and dorsal regions. HERDA-affected horses exhibited significant increases in corneal curvature and corneal diameter compared with unaffected animals. The ophthalmologic examinations revealed mild corneal opacity in one eye of one affected horse and in both eyes of three affected horses. No significant between-group differences were observed for Schirmer's tear test, intraocular pressure, or ocular dimensions. Hereditary equine regional dermal asthenia-affected horses exhibit decreased corneal thickness in several regions of the cornea, increased corneal curvature, increased corneal diameter, and mild corneal opacity. Additional research is required to determine whether the increased corneal curvature significantly impacts the visual accuracy of horses with HERDA. © 2014 American College of Veterinary Ophthalmologists.

  5. Upper mantle diapers, lower crustal magmatic underplating, and lithospheric dismemberment of the Great Basin and Colorado Plateau regions, Nevada and Utah; implications from deep MT resistivity surveying

    Wannamaker, P. E.; Doerner, W. M.; Hasterok, D. P.


    In the rifted Basin and Range province of the southwestern U.S., a common faulting model for extensional basins based e.g. on reflection seismology data shows dominant displacement along master faults roughly coincident with the main topographic scarp. On the other hand, complementary data such as drilling, earthquake focal mechanisms, volcanic occurrences, and trace indicators such as helium isotopes suggest that there are alternative geometries of crustal scale faulting and material transport from the deep crust and upper mantle in this province. Recent magnetotelluric (MT) profiling results reveal families of structures commonly dominated by high-angle conductors interpreted to reflect crustal scale fault zones. Based mainly on cross cutting relationships, these faults appear to be late Cenozoic in age and are of low resistivity due to fluids or alteration (including possible graphitization). In the Ruby Mtns area of north-central Nevada, high angle faults along the margins of the core complex connect from near surface to a regional lower crustal conductor interpreted to contain high-temperature fluids and perhaps melts. Such faults may exemplify the high angle normal faults upon which the major earthquakes of the Great Basin appear to nucleate. A larger-scale transect centered on Dixie Valley shows major conductive crustal-scale structures connecting to conductive lower crust below Dixie Valley, the Black Rock desert in NW Nevada, and in east-central Nevada in the Monitor-Diamond Valley area. In the Great Basin-Colorado Plateau transition of Utah, the main structures revealed are a series of nested low-angle detachment structures underlying the incipient development of several rift grabens. All these major fault zones appear to overlie regions of particularly conductive lower crust interpreted to be caused by recent basaltic underplating. In the GB-CP transition, long period data show two, low-resistivity upper mantle diapirs underlying the concentrated

  6. Brain volumes and regional cortical thickness in young females with anorexia nervosa.

    Fuglset, Tone Seim; Endestad, Tor; Hilland, Eva; Bang, Lasse; Tamnes, Christian Krog; Landrø, Nils Inge; Rø, Øyvind


    Anorexia nervosa (AN) is a severe mental illness, with an unknown etiology. Magnetic resonance imaging studies show reduced brain volumes and cortical thickness in patients compared to healthy controls. However, findings are inconsistent, especially concerning the anatomical location and extent of the differences. The purpose of this study was to estimate and compare brain volumes and regional cortical thickness in young females with AN and healthy controls. Magnetic resonance imaging data was acquired from young females with anorexia nervosa (n = 23) and healthy controls (n = 28). Two different scanner sites were used. BMI varied from 13.5 to 20.7 within the patient group, and 11 patients had a BMI > 17.5. FreeSurfer was used to estimate brain volumes and regional cortical thickness. There were no differences between groups in total cerebral cortex volume, white matter volume, or lateral ventricle volume. There were also no volume differences in subcortical grey matter structures. However the results showed reduced cortical thickness bilaterally in the superior parietal gyrus, and in the right inferior parietal and superior frontal gyri. The functional significance of the findings is undetermined as the majority of the included patients was already partially weight-restored. We discuss whether these regions could be related to predisposing factors of the illness, or whether they are regions that are more vulnerable to starvation, malnutrition or associated processes in AN.

  7. Crustal and upper-mantle structure beneath ice-covered regions in Antarctica from S-wave receiver functions and implications for heat flow

    Ramirez, C.; Nyblade, A.; Hansen, S. E.; Wiens, D. A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Shore, P.; Wilson, T.


    S-wave receiver functions (SRFs) are used to investigate crustal and upper-mantle structure beneath several ice-covered areas of Antarctica. Moho S-to-P (Sp) arrivals are observed at ˜6-8 s in SRF stacks for stations in the Gamburtsev Mountains (GAM) and Vostok Highlands (VHIG), ˜5-6 s for stations in the Transantarctic Mountains (TAM) and the Wilkes Basin (WILK), and ˜3-4 s for stations in the West Antarctic Rift System (WARS) and the Marie Byrd Land Dome (MBLD). A grid search is used to model the Moho Sp conversion time with Rayleigh wave phase velocities from 18 to 30 s period to estimate crustal thickness and mean crustal shear wave velocity. The Moho depths obtained are between 43 and 58 km for GAM, 36 and 47 km for VHIG, 39 and 46 km for WILK, 39 and 45 km for TAM, 19 and 29 km for WARS and 20 and 35 km for MBLD. SRF stacks for GAM, VHIG, WILK and TAM show little evidence of Sp arrivals coming from upper-mantle depths. SRF stacks for WARS and MBLD show Sp energy arriving from upper-mantle depths but arrival amplitudes do not rise above bootstrapped uncertainty bounds. The age and thickness of the crust is used as a heat flow proxy through comparison with other similar terrains where heat flow has been measured. Crustal structure in GAM, VHIG and WILK is similar to Precambrian terrains in other continents where heat flow ranges from ˜41 to 58 mW m-2, suggesting that heat flow across those areas of East Antarctica is not elevated. For the WARS, we use the Cretaceous Newfoundland-Iberia rifted margins and the Mesozoic-Tertiary North Sea rift as tectonic analogues. The low-to-moderate heat flow reported for the Newfoundland-Iberia margins (40-65 mW m-2) and North Sea rift (60-85 mW m-2) suggest that heat flow across the WARS also may not be elevated. However, the possibility of high heat flow associated with localized Cenozoic extension or Cenozoic-recent magmatic activity in some parts of the WARS cannot be ruled out.

  8. Regional cortical gray matter thickness differences associated with type 2 diabetes and major depression

    Ajilore, Olusola; Narr, Katherine; Rosenthal, Jonah; Pham, Daniel; Hamilton, Liberty; Watari, Kecia; Elderkin-Thompson, Virginia; Darwin, Christine; Toga, Arthur; Kumar, Anand


    Objective The purpose of this study was to examine the effect of type 2 diabetes with major depression on cortical gray matter using magnetic resonance imaging and cortical pattern matching techniques. We hypothesized that diabetic subjects and depressed diabetic subjects would demonstrate decreased cortical gray matter thickness in prefrontal areas as compared to healthy control subjects. Methods Patients with type 2 diabetes (n=26) and patients diabetes and major depression (n=26) were compared with healthy controls (n=20). Gray matter thickness across the entire cortex was measured using cortical pattern matching methods. Results All subjects with diabetes demonstrated decreased cortical gray matter thickness in the left anterior cingulate region. Additionally, depressed diabetic subjects showed significant cortical gray matter decreases in bilateral prefrontal areas compared with healthy controls. Correlations between clinical variables and cortical gray matter thickness revealed a significant negative relationship with cerebrovascular risk factors across all three groups, most consistently in the left dorsomedial prefrontal cortex. A significant positive relationship between performance on attention and executive function tasks and cortical gray matter thickness predominately in left hemisphere regions was also seen across all subjects. Conclusion Depression and diabetes are associated with significant cortical gray matter thinning in medial prefrontal areas. PMID:20832254

  9. Geochemical and geochronological characteristics of Late Cretaceous to Early Paleocene granitoids in the Tengchong Block, Southwestern China: Implications for crustal anatexis and thickness variations along the eastern Neo-Tethys subduction zone

    Zhao, Shao-wei; Lai, Shao-cong; Qin, Jiang-feng; Zhu, Ren-Zhi; Wang, Jiang-bo


    The Tengchong Block of Southwestern China is key to tracing the eastward subduction of Neo-Tethys and collision between Indian and Asian continents. The block contains a magmatic belt that represents the southeastward continuation of the Gangdese belt, produced by the eastward subduction of eastern Neo-Tethyan oceanic lithosphere. In this paper we present geochemical and geochronological data of Late Cretaceous to Early Paleocene ( 64 Ma) granitic rocks of the Guyong and Husa batholiths in the Tengchong Block. These can be subdivided into high-silica peraluminous granites and low-silica metaluminous granodiorites, and all belong to the high-K calc-alkaline series, are enriched in LILE, and depleted in HFSE. The Guyong granitoids have high initial Sr ratios of 0.706511-0.711753, negative εNd(t) values of - 9.2 to - 11.6, two-stage model ages of 1.39-1.55 Ga, and Pb isotopic compositions that indicate a crustal affinity. The Husa granodiorites also have high initial Sr ratios of 0.716496, negative εNd(t) value of - 16.5, two-stage model age of 1.89 Ga, variable εHf(t) values of 3.4 to - 18.1 and Pb isotopic compositions similar to lower crustal values. These geochemical and isotopic data indicate that the Guyong granitoids were likely derived from partial melting of ancient crustal metapelite or mixed pelite-greywacke sources, while the Husa granodiorites were derived from the partial melting of lower crustal mixed sources involving metasedimentary and metaigneous rocks. To understand the thermal state and architecture of the Late Cretaceous to Early Paleocene magmatic arc crust, the crust-derived intermediate to acidic igneous rocks of the southern-central Lhasa and Tengchong blocks and eastern Himalayan syntaxis are compared. We infer that partial melting of crust occurred at great depth in the southern Lhasa Block, intermediate depths in the eastern Himalayan syntaxis, and shallow depths in the central Lhasa and Tengchong Block. Sr/Y ratios indicate that the

  10. Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome.

    Meda, Shashwath A; Pryweller, Jennifer R; Thornton-Wells, Tricia A


    Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex

  11. Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome.

    Shashwath A Meda

    Full Text Available Williams syndrome (WS is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and

  12. Crustal composition in southern Norway from active and passive source seismology

    Stratford, W. R.; Frassetto, A. M.; Thybo, H.


    Crustal composition and structure beneath the Fennoscandian shield are highly variable due to the method of crustal accretion and the long history of extensional and compressional tectonics. In southern Norway, the Moho and crust are inferred to be the youngest of the shield, however, it is likely that a large discrepancy between crustal age and Moho age exists beneath the high southern Scandes where the Caledonian orogeny was in effect and beneath the Oslo Graben where 60 million years of rifting and magmatism has altered the crust. Crustal structure in southern Norway was targeted with a multi-disciplinary seismic study (Magnus-Rex - Mantle investigations of Norwegian uplift Structure). Three ~400 km long active source seismic profiles across the southern Norway and a region wide array of broadband seismometers were deployed. P and S-wave arrivals were recorded in the Magnus-Rex project, from which Poisson ratios for the crust in southern Norway are calculated from both active source profiling and receiver functions. Unusually strong S-wave arrivals allow rare insight into crustal Poisson’s ratio structure, within crustal layers, that is not normally available from active source data and are usually determined by earthquake tomography studies where only bulk crustal values are available. An average Poisson’s ratio of 0.25 is calculated for the crust in southern Norway, suggesting it is predominantly of felsic-intermediate composition and lacks any significant mafic lower crust. This differs significantly from the adjacent crust in the Svecofennian domain of the Fennoscandian shield where Moho depths reach ~50 km and an up to 20 km thick mafic lower crust is present. The vast difference in Moho depths in the Fennoscandian shield are, therefore, mostly due to the variation in thickness of the high Vp lower crust. Estimates of crustal composition and the effect of Magma intrusion within the Oslo Graben, and possible delamination of the lowermost crust beneath

  13. Lower Crustal Flow and Its Relation to the Surface Deformation and Stress Distribution in Western Sichuan Region, China

    Yujiang Li; Lianwang Chen; Pei Tan; Hong Li


    The channel flow model was gradually being accepted with the more important multidisci-plinary evidences from geology and geophysics, but how the lower crustal flow influenced the surface de-formation quantitatively was unknown. Here, we develop a three-dimensional viscoelastic model to ex-plore the mechanical relations between the lower crustal flow and the surface deformation in western Si-chuan. Based on numerous tests, our results show that the modeled results fit well with the observed GPS data when the lower crust flows faster than the upper crust about 11 mm/a in the rhombic block, which can be useful to understand the possible mechanism of the surface deformation in western Sichuan. Moreover, taking the Xianshuihe fault as an example, we preliminarily analyze the relation between the active fault and stress field, according to the boundary constraints that deduced from the best model. The results show that the maximum shear stress on the Xianshuihe fault zone is mainly located in the fault terminal, intersections and the bend of the fault geometry, the stress level on the northwestern segment that has the high slip rate is relatively high. Additionally, with the reduction of the Young’s modulus in the fault zone, it’s conducive to generate the greater strain distribution, hence forming the high stress level.

  14. Regional Crustal Structures and Their Relationship to the Distribution of Ore Deposits in the Western United States, Based on Magnetic and Gravity Data

    Hildenbrand, T.G.; Berger, B.; Jachens, R.C.; Ludington, S.


    Upgraded gravity and magnetic databases and associated filtered-anomaly maps of western United States define regional crustal fractures or faults that may have guided the emplacement of plutonic rocks and large metallic ore deposits. Fractures, igneous intrusions, and hydrothermal circulation tend to be localized along boundaries of crustal blocks, with geophysical expressions that are enhanced here by wavelength filtering. In particular, we explore the utility of regional gravity and magnetic data to aid in understanding the distribution of large Mesozoic and Cenozoic ore deposits, primarily epithermal and porphyry precious and base metal deposits and sediment-hosted gold deposits in the western United States cordillera. On the broadest scale, most ore deposits lie within areas characterized by low magnetic properties. The Mesozoic Mother Lodge gold belt displays characteristic geophysical signatures (regional gravity high, regional low-to-moderate background magnetic field anomaly, and long curvilinear magnetic highs) that might serve as an exploration guide. Geophysical lineaments characterize the Idaho-Montana porphyry belt and the La Caridad-Mineral Park belt (from northern Mexico to western Arizona) and thus indicate a deep-seated control for these mineral belts. Large metal accumulations represented by the giant Bingham porphyry copper and the Butte polymetallic vein and porphyry copper systems lie at intersections of several geophysical lineaments. At a more local scale, geophysical data define deep-rooted faults and magmatic zones that correspond to patterns of epithermal precious metal deposits in western and northern Nevada. Of particular interest is an interpreted dense crustal block with a shape that resembles the elliptical deposit pattern partly formed by the Carlin trend and the Battle Mountain-Eureka mineral belt. We support previous studies, which on a local scale, conclude that structural elements work together to localize mineral deposits within

  15. The crustal structure of the eastern Fennoscandian Shield and central part of the East-European platform based on seismic, regional geophysic and geological data

    Mints, M. V.; Berzin, R. G.; Babayants, P. S.; Konilov, A. N.; Suleimanov, A. K.; Zamozhniaya, N. G.; Zlobin, V. L.


    The 1-EU and 4B CDP transects worked out during 1998-2002 years by "Spetsgeophyzica", together with previously developed CDP profiles, have crossed most of the main tectonic units of the eastern Fennoscandian Shield and central part of the East-European platform. They provide seismic images of the Early Precambrian crust and upper mantle from the surface to about 80 km depth (25 s). The Neoarchaean granite-greenstone complexes of the Karelia craton along the 4B profile form a series of the tectonic slices descending eastward, some of which can be traced to the Moho. The Palaeoproterozoic structures presented by two main types: (1) volcano-sedimentary (VS) and (2) granulite-gneiss (GN) belts. The Pechenga-Varzuga VS belt has been identified as overthrust-underthrust southward-dipping package. Tectonic slices formed by the Palaeoproterozoic VS belts alternating with slices of the Neoarchaean granite-gneisses form the imbricated crustal unit that extends along the eastern margin of the Neoarchaean Karelia craton. The slices dip steeply northeastward flattening and partially juxtaposing at 20 km depth at the 1-EU cross-section. This level, which can be understood as the surface of main detachment, ascends westward. An imbrication and related thickening of the crust was caused by displacement of crustal slices in western and southwestern directions because of the Palaeoproterozoic collision event. The Palaeoproterozoic Onega unit comprising VS assemblages originated in a setting of the rifted passive margin forms the northwestward displaced thrust nappe complex. It is considered initially belonging to the southern edge of the Svecofennian passive margin. The Lapland GN belt has been transected by the Polar and EGGI profiles. Both cross-sections demonstrated that it constitutes thick composite crustal-scale tectonic slice. According to geophysical data, the continuation of the Lapland GN belt beneath the platform cover of the East European Craton forms an extended arch

  16. The Crustal Structure and Seismicity of Eastern Venezuela

    Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.


    Eastern Venezuela is characterized by a moderate to high seismicity, evidenced recently by the 1997 Cariaco earthquake located on the El Pilar Fault, a right lateral strike slip fault which marks the plate boundary between the Caribbean and South-American plates in this region. Recently, the seismic activity seems to migrate towards the zone of subduction of the Lesser Antilles in the northeast, where a mb 6.0 earthquake occurred in October 2000 at 120 km of depth. Periodical changes in the seismic activity are related to the interaction of the stress fields of the strike-slip and the subduction regimes. The seismic activity decreases rapidly towards to the south with some disperse events on the northern edge of the Guayana Shield, related to the Guri fault system. The crustal models used in the region are derived from the information generated by the national seismological network since 1982 and by microseismicity studies in northeastern Venezuela, coinciding in a crustal thickness of about 35 km in depth. Results of seismic refraction measurements for the region were obtained during field campains in 1998 (ECOGUAY) for the Guayana Shield and the Cariaco sedimentary basin and in 2001 (ECCO) for the Oriental Basin. The total crustal thickness decreases from about 45 km on the northern edge of the Guayana Shield to some 36 km close to El Tigre in the center of the Oriental Basin. The average crustal velocity decreases in the same sense from 6.5 to 5.8 km/s. In the Cariaco sedimentary basin a young sedimentary cover of 1 km thickness with a seismic velocity of 2 km/s was derived. Towards the northern limit of the South-American plate, no deep seismic refraction data are available up to now. The improvement of the crustal models used in that region would constitute a step forward in the analysis of the seismic hazard. Seismic refraction studies funded by CONICIT S1-97002996 and S1-2000000685 projects and PDVSA (additional drilling and blasting), recording equipment

  17. Relaxation, contraction, and polar wander: A study of the evolution of crustal and lithospheric thickness variations on the Moon, Mars, Mercury, and Ganymede

    Mohit, Pundit Surdasji

    The majority of the surfaces of the Moon, Mars, Mercury, and Ganymede were shaped during the first 500-1000 Myr of the Solar System. As a result, they provide great insight into the processes that must have occurred on most, if not all, terrestrial planets and moons during that time period. In this study, a semi-analytic, self-gravitating, viscoelastic model of planetary deformation is developed and applied to the evolution of variations in their mechanical properties. First, the plausibility of viscous relaxation of large multi-ring lunar basins is investigated. This is found to be likely to have occurred during the first few hundred million years of lunar history, which places constraints on the timing and mechanism of crystallization of the lunar magma ocean. Second, the physical parameters of the largest martian basins are analyzed and found to be consistent with the occurrence of viscous relaxation throughout the period of heavy bombardment. The viscoelastic model is then employed to place constraints on the thermal state of early Mars. Third, the model is expanded to include lateral variations in viscosity and applied to the early contraction of Mercury. The results confirm the hypothesis that the amount of radial contraction has previously been underestimated. In addition to its expression through thrust faults, some fraction of the compressive stress was possibly taken up by long-wavelength folding of the mercurian lithosphere. Finally, an explanation of the anomalous cratering asymmetry between the leading and trailing hemispheres of Ganymede is proposed. Rotational dynamics calculations show that the thickness variations induced by the pole-to-equator temperature contrast was likely sufficient to make the axis of rotation unstable and cause the poles to exchange positions with the leading and trailing points.

  18. MeltMigrator: A MATLAB-based software for modeling three-dimensional melt migration and crustal thickness variations at mid-ocean ridges following a rules-based approach

    Bai, Hailong; Montési, Laurent G. J.; Behn, Mark D.


    MeltMigrator is a MATLAB®-based melt migration software developed to process three-dimensional mantle temperature and velocity data from user-supplied numerical models of mid-ocean ridges, calculate melt production and melt migration trajectories in the mantle, estimate melt flux along plate boundaries, and predict crustal thickness distribution on the seafloor. MeltMigrator is also capable of calculating compositional evolution depending on the choice of petrologic melting model. Programmed in modules, MeltMigrator is highly customizable and can be expanded to a wide range of applications. We have applied it to complex mid-ocean ridge model settings, including transform faults, oblique segments, ridge migration, asymmetrical spreading, background mantle flow, and ridge-plume interaction. In this technical report, we include an example application to a segmented mid-ocean ridge. MeltMigrator is available as a supplement to this paper, and it is also available from GitHub and the University of Maryland Geodynamics Group website.

  19. Investigation of radiative effects of the optically thick dust layer over the Indian tropical region

    Das, S.K.; Chen, J.P. [National Taiwan Univ. (China). Dept. of Atmospheric Sciences; Ratnam, M. Venkat; Jayaraman, A. [National Atmospheric Research Laboratory, Tirupati (India)


    Optical and physical properties of aerosols derived from multi-satellite observations (MODIS-Aqua, OMI-Aura, MISR-Terra, CALIOP-CALIPSO) have been used to estimate radiative effects of the dust layer over southern India. The vertical distribution of aerosol radiative forcing and heating rates are calculated with 100m resolution in the lower atmosphere, using temperature and relative humidity data from balloon-borne radiosonde observations. The present study investigates the optically thick dust layer of optical thickness 0.18 {+-} 0.06 at an altitude of 2.5 {+-} 0.7 km over Gadanki, transported from the Thar Desert, producing radiative forcing and heating rate of 11.5 {+-} 3.3 W m{sup -2} and 0.6 {+-} 0.26 K day{sup -1}, respectively, with a forcing efficiency of 43 W m{sup -2} and an effective heating rate of 4Kday-1 per unit dust optical depth. Presence of the dust layer increases radiative forcing by 60% and heating rate by 60 times at that altitude compared to nondusty cloud-free days. Calculation shows that the radiative effects of the dust layer strongly depend on the boundary layer aerosol type and mass loading. An increase of 25% of heating by the dust layer is found over relatively cleaner regions than urban regions in southern India and further 15% of heating increases over the marine region. Such heating differences in free troposphere may have significant consequences in the atmospheric circulation and hydrological cycle over the tropical Indian region. (orig.)

  20. Timing and conditions of regional metamorphism and crustal shearing in the granulite facies basement of south Namibia: Implications for the crustal evolution of the Namaqualand metamorphic basement in the Mesoproterozoic

    Bial, Julia; Büttner, Steffen; Appel, Peter


    and granite emplacement, and after substantial isobaric cooling of the basement. Metamorphism and regional shearing in the Grünau area can be correlated with the crustal evolution in the Kakamas Domain in South Africa, but not with the timing of metamorphism in the Aus area, 230 km to the NW of Grünau, which is significantly younger.

  1. The Precambrian crustal structure of East Africa

    Tugume, Fred Alex

    In this thesis, the Precambrian crustal structure of East African is investigated along with the crustal structures of three Cenozoic rift basins located in the western branch of the East African Rift System (EARS). In the first part of the thesis, P-wave receiver functions are modeled using the H-k method to obtain new insights about the bulk composition and thickness of the crust for Precambrian terrains throughout East Africa. The average crustal thickness for all but one of the terrains is between 37 and 39 km. An exception is the Ubendian terrain, which has an average crustal thickness 42 km. In all terrains, the average Poisson's ratio is similar, ranging from 0.25 to 0.26, indicating a bulk crustal composition that is felsic to intermediate. The main finding of this study is that crustal structure is similar across all terrains, which span more than 4.0 Ga of earth history. There is no discernable difference in the crustal thicknesses and Poisson's ratios between the Archean and Proterozoic terrains, or between the Proterozoic terrains, unlike the variability in Precambrian crustal structure found in many other continents. In the second part of the thesis, a joint inversion of Rayleigh wave phase and group velocities and receiver functions was used to investigate the shear wave velocity structure of the crust and uppermost mantle beneath the Precambrian terrains of East Africa. In comparison with other areas of similar age in southern and western Africa where the same joint inversion method has been applied, I find that while there is little difference in the mean shear wave velocities for the entire crust across all of the Precambrian terrains, and also few differences in the thickness of the crust, there exists substantial variability in lower crustal structure. This variability is reflected primarily in the thickness of the lower crustal layers with shear wave velocities ≥ 4.0 km/s. This variability is found both within terrains of the same age (i

  2. Crustal structure beneath northeast India inferred from receiver function modeling

    Borah, Kajaljyoti; Bora, Dipok K.; Goyal, Ayush; Kumar, Raju


    We estimated crustal shear velocity structure beneath ten broadband seismic stations of northeast India, by using H-Vp/Vs stacking method and a non-linear direct search approach, Neighbourhood Algorithm (NA) technique followed by joint inversion of Rayleigh wave group velocity and receiver function, calculated from teleseismic earthquakes data. Results show significant variations of thickness, shear velocities (Vs) and Vp/Vs ratio in the crust of the study region. The inverted shear wave velocity models show crustal thickness variations of 32-36 km in Shillong Plateau (North), 36-40 in Assam Valley and ∼44 km in Lesser Himalaya (South). Average Vp/Vs ratio in Shillong Plateau is less (1.73-1.77) compared to Assam Valley and Lesser Himalaya (∼1.80). Average crustal shear velocity beneath the study region varies from 3.4 to 3.5 km/s. Sediment structure beneath Shillong Plateau and Assam Valley shows 1-2 km thick sediment layer with low Vs (2.5-2.9 km/s) and high Vp/Vs ratio (1.8-2.1), while it is observed to be of greater thickness (4 km) with similar Vs and high Vp/Vs (∼2.5) in RUP (Lesser Himalaya). Both Shillong Plateau and Assam Valley show thick upper and middle crust (10-20 km), and thin (4-9 km) lower crust. Average Vp/Vs ratio in Assam Valley and Shillong Plateau suggest that the crust is felsic-to-intermediate and intermediate-to-mafic beneath Shillong Plateau and Assam Valley, respectively. Results show that lower crust rocks beneath the Shillong Plateau and Assam Valley lies between mafic granulite and mafic garnet granulite.

  3. Crustal shear velocity structure in the Southern Lau Basin constrained by seafloor compliance

    Zha, Yang; Webb, Spahr C.


    Seafloor morphology and crustal structure vary significantly in the Lau back-arc basin, which contains regions of island arc formation, rifting, and seafloor spreading. We analyze seafloor compliance: deformation under long period ocean wave forcing, at 30 ocean bottom seismometers to constrain crustal shear wave velocity structure along and across the Eastern Lau Spreading Center (ELSC). Velocity models obtained through Monte Carlo inversion of compliance data show systematic variation of crustal structure in the basin. Sediment thicknesses range from zero thickness at the ridge axis to 1400 m near the volcanic arc. Sediment thickness increases faster to the east than to the west of the ELSC, suggesting a more abundant source of sediment near the active arc volcanoes. Along the ELSC, upper crustal velocities increase from the south to the north where the ridge has migrated farther away from the volcanic arc front. Along the axial ELSC, compliance analysis did not detect a crustal low-velocity body, indicating less melt in the ELSC crustal accretion zone compared to the fast spreading East Pacific Rise. Average upper crust shear velocities for the older ELSC crust produced when the ridge was near the volcanic arc are 0.5-0.8 km/s slower than crust produced at the present-day northern ELSC, consistent with a more porous extrusive layer. Crust in the western Lau Basin, which although thought to have been produced through extension and rifting of old arc crust, is found to have upper crustal velocities similar to older oceanic crust produced at the ELSC.

  4. Crustal thickness mapping in Raipur–Katni area of Narmada–Son lineament in central India derived from 3D Euler deconvolution of magnetic data

    G K Ghosh; C L Singh


    The Narmada–Son lineament (NSL) is one of the most prominent tectonic features which divides the Indian peninsula into two subcontinents, northern and southern India since Precambrian times. The area is seismically active and geologically complex with different geological formations. Magnetic data divides the area into two parts and more prominent magnetic highs are observed near Tikwa, Mau and Amarpur regions with 800, 600 and 400 nT, respectively due to the presence of the crystalline basement rock. Tectonic resettlement and lithological changes causes upwarpment of Mahakoshal rocks. In the present study, magnetic data interpretation is carried out for locating depth of causative body and delineating structural fault/dyke boundaries using Euler deconvolution technique. Most of the faults are oriented in the ENE–WSW direction; however, few more faults are identified which are oriented in the SE to NW direction. These fault patterns suggest that the area is exaggerated by tectonic turmoil and distressed both sedimentary to basement rocks isolating the area into numerous faulted blocks. The maximum depths (< 4.5 km) observed at Katni and Umaria area and moderate depths (between 4.0 and 4.5 km) observed towards east of Katni, Ramnagar, Burwa and east of Umaria and Sarna area.

  5. Intima-Media Thickness and Regional Cerebral Blood Flow in Older Adults

    Sojkova, Jitka; Najjar, Samer S.; Beason-Held, Lori L.; Metter, E. Jeffrey; Davatzikos, Christos; Kraut, Michael A; Zonderman, Alan B.; Resnick, Susan M.


    Background and Purpose The relationship between the thickness of the carotid intima (IMT) and brain function remains unclear in those without clinical manifestations of cerebrovascular disease. Understanding the neural correlates of this vascular measure is important in view of emerging evidence linking poorer cognitive performance with increased IMT in individuals without clinical cerebrovascular disease. Methods 73 participants in the Baltimore Longitudinal Study of Aging (70.9(SD 7.3) years) were evaluated with carotid artery ultrasound and resting [15O]H2O-PET. Results After adjusting for age, sex, and grey and white matter volumes in the regions where IMT is related to rCBF, we found that higher IMT was associated with lower rCBF in lingual, inferior occipital, and superior temporal regions. Higher IMT was also associated with higher rCBF in medial frontal gyrus, putamen, and hippocampal-uncal regions (p=0.001). While women had lower IMT (p=0.01) and mean arterial pressure (MAP;p=0.05) than men, they showed more robust associations between IMT and rCBF. The relationship between IMT and rCBF was only minimally affected by additional adjustment for MAP. Conclusions IMT is related to patterns of resting rCBF in older adults without clinical manifestations of cerebrovascular disease, suggesting that there are regional differences in CBF that are associated with subclinical vascular disease. PMID:20044526

  6. Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood.

    Lyall, Amanda E; Shi, Feng; Geng, Xiujuan; Woolson, Sandra; Li, Gang; Wang, Li; Hamer, Robert M; Shen, Dinggang; Gilmore, John H


    Cortical thickness (CT) and surface area (SA) are altered in many neuropsychiatric disorders and are correlated with cognitive functioning. Little is known about how these components of cortical gray matter develop in the first years of life. We studied the longitudinal development of regional CT and SA expansion in healthy infants from birth to 2 years. CT and SA have distinct and heterogeneous patterns of development that are exceptionally dynamic; overall CT increases by an average of 36.1%, while cortical SA increases 114.6%. By age 2, CT is on average 97% of adult values, compared with SA, which is 69%. This suggests that early identification, prevention, and intervention strategies for neuropsychiatric illness need to be targeted to this period of rapid postnatal brain development, and that SA expansion is the principal driving factor in cortical volume after 2 years of age.

  7. Percentiles and regional distribution of skinfold thickness among children and adolescents in Shandong, China.

    Zhang, Ying-Xiu; Zhao, Jin-Shan; Chu, Zun-Hua


    Skinfold thicknesses (SFT) have long been considered important and valid measurements of subcutaneous fat. The present study reported the percentiles and regional distribution of SFT among children and adolescents in Shandong, China. Data for this study were obtained from a large cross-sectional survey of schoolchildren. A total of 42,268 students (21,200 boys and 21,068 girls) aged 7-18 years from 16 districts participated in this study. Triceps, subscapular, and abdomen SFT of all subjects were measured. Shandong children and adolescents had a high SFT level and substantial regional disparities in SFT were observed. Boys and girls resident in high socioeconomic status (SES) districts had higher SFT level than those living in moderate and low SES districts. The SFT level of children and adolescents is associated with regional SES in Shandong, China. This may be interpreted as a result of geographic variation between the districts in the process of urbanization, living standards, nutritional conditions, dietary patterns, and public health. © 2014 Wiley Periodicals, Inc.

  8. A new crustal model of the western Alpine region derived by combining controlled-source seismology and local earthquake tomography data

    Wagner, M.; Kissling, E.; Husen, S.


    We present a newly developed approach of combining controlled-source seismology (CSS) and local earthquake tomography (LET) data to obtain a new 3D crustal model in the western Alpine region. Our approach takes into account the strengths of each seismic method and the quality of each individual seismic information. Therefore, our western Alpine 3D model includes a well-defined Moho, constrained by CSS and LET data, as well as smooth lateral variations in seismic velocities. The consistent combination of results from two different seismic methods is feasible due to the definition of LET Moho elements and their uncertainty estimates. Identification of LET Moho elements is based on a characteristic P-wave velocity (7.25 km/s); uncertainty estimates are derived from the diagonal element of the resolution matrix (RDE), absolute P-wave velocities that are typical for crust and mantle, and a specific velocity gradient around Moho depth. We validate our approach by comparing highest quality Moho elements from both methods coinciding in 353 localities. We find only four Moho elements for which the difference in Moho depth is greater than the error sum of the uncertainty estimates and these four Moho elements are all located close to plate boundaries, where 3D migration of CSS reflector elements is poorly constrained. Our model clearly shows three Moho surfaces, being Europe, Adria, and Liguria, as well as major tectonic structures like suture zones and the high-velocity Ivrea body. Compared to previous studies, our model allows for a more accurate definition of plate boundaries at Moho level. We attribute this to the larger number of available Moho elements derived from LET data. Therefore, the new model allows better insights in the deep crustal structure of the Alpine collision zone.

  9. Combining controlled-source seismology and local earthquake tomography to derive a 3-D crustal model of the western Alpine region

    Wagner, Michael; Kissling, Edi; Husen, Stephan


    We present a newly developed approach of combining controlled-source seismology (CSS) and local earthquake tomography (LET) data to obtain a new 3-D crustal model of the western Alpine region. Our approach combines either data by taking into account the strengths of the individual seismic methods. Our western Alpine 3-D model is primarily based on a well-defined Moho, constrained by CSS and LET data, and includes smooth lateral variations in seismic velocities mainly constrained by LET data, but locally also by CSS data. The consistent combination of results from the two different seismic methods is feasible due to LET Moho elements, as defined by characteristic P-wave velocities and their uncertainty estimates. These uncertainty estimates are based on values of the diagonal element of the resolution matrix, absolute P-wave velocities that are typical for crust and mantle and a specific velocity gradient across the Moho discontinuity. Finally, our definition of LET Moho elements and their uncertainties is validated by comparisons of highest quality Moho results from both methods coinciding in 353 localities. Our model clearly shows three Moho surfaces, being Europe, Adria and Liguria as well as major tectonic structures like suture zones and the high-velocity Ivrea body. In general, it is in a good agreement with previous studies. The biggest differences occur along plate boundaries, where the strong lateral velocity variations are best resolved by LET. Due to the larger number of available Moho reflector elements a more accurate definition of plate boundaries at Moho level is possible and, therefore, new insights in deep lithosphere structures of the Alpine collision zone can be expected. Furthermore, our new 3-D crustal model directly includes a 3-D migrated image of the Ivrea body.

  10. Estimation of the Crustal Bulk Properties Beneath Mainland Portugal from P-Wave Teleseismic Receiver Functions

    Dündar, Süleyman; Dias, Nuno A.; Silveira, Graça; Kind, Rainer; Vinnik, Lev; Matias, Luís; Bianchi, Marcelo


    In this work, we present results from teleseismic P-wave receiver functions (PRFs) obtained in Portugal, Western Iberia. A dense seismic station deployment conducted between 2010 and 2012, in the scope of the WILAS project and covering the entire country, allowed the most spatially extensive probing on the bulk crustal seismic properties of Portugal up to date. The application of the H- κ stacking algorithm to the PRFs enabled us to estimate the crustal thickness ( H) and the average crustal ratio of the P- and S-waves velocities V p/ V s ( κ) for the region. Observations of Moho conversions indicate that this interface is relatively smooth with the crustal thickness ranging between 24 and 34 km, with an average of 30 km. The highest V p/ V s values are found on the Mesozoic-Cenozoic crust beneath the western and southern coastal domain of Portugal, whereas the lowest values correspond to Palaeozoic crust underlying the remaining part of the subject area. An average V p/ V s is found to be 1.72, ranging 1.63-1.86 across the study area, indicating a predominantly felsic composition. Overall, we systematically observe a decrease of V p/ V s with increasing crustal thickness. Taken as a whole, our results indicate a clear distinction between the geological zones of the Variscan Iberian Massif in Portugal, the overall shape of the anomalies conditioned by the shape of the Ibero-Armorican Arc, and associated Late Paleozoic suture zones, and the Meso-Cenozoic basin associated with Atlantic rifting stages. Thickened crust (30-34 km) across the studied region may be inherited from continental collision during the Paleozoic Variscan orogeny. An anomalous crustal thinning to around 28 km is observed beneath the central part of the Central Iberian Zone and the eastern part of South Portuguese Zone.

  11. Shear wave splitting of the 2009 L'Aquila seismic sequence: fluid saturated microcracks and crustal fractures in the Abruzzi region (Central Apennines, Italy)

    Baccheschi, P.; Pastori, M.; Margheriti, L.; Piccinini, D.


    The Abruzzi region is located in the Central Apennines Neogene fold-and-thrust belt and has one of the highest seismogenic potential in Italy, with high and diffuse crustal seismicity related to NE-SW oriented extension. In this study, we investigate the detailed spatial variation in shear wave splitting providing high-resolution anisotropic structure beneath the L'Aquila region. To accomplish this, we performed a systematic analysis of crustal anisotropic parameters: fast polarization direction (ϕ) and delay time (δt). We benefit from the dense coverage of seismic stations operating in the area and from a catalogue of several accurate earthquake locations of the 2009 L'Aquila seismic sequence, related to the Mw 6.1 2009 L'Aquila main shock, to describe in detail the geometry of the anisotropic volume around the active faults that ruptured. The spatial variations both in ϕ and δt suggest a complex anisotropic structure beneath the region caused by a combination of both structural- and stress-induced mechanisms. The average ϕ is NNW-SSE oriented (N141°), showing clear similarity both with the local fault strike and the SHmax. In the central part of the study area fast axes are oriented NW-SE, while moving towards the northeastern and northwestern sectors the fast directions clearly diverge from the general trend of NW-SE and rotate accordingly to the local fault strikes. The above-mentioned fault-parallel ϕ distribution suggests that the observed anisotropy is mostly controlled by the local fault-related structure. Toward the southeast fast directions become orthogonal both to strike of the local mapped faults and to the SHmax. Here, ϕ are predominantly oriented NE-SW; we interpret this orientation as due to the presence of a highly fractured and overpressurized rock volume which should be responsible of the 90° flips in ϕ and the increase in δt. Another possible mechanism for NE-SW orientation of ϕ in the southeastern sector could be ascribed to the

  12. Crustal structure beneath Eastern Greenland

    Reiche, Sönke; Thybo, H.; Kaip, G.


    these mountain belts is needed for assessing the isostatic balance of the crust and to gain insight into possible links between crustal composition, rifting history and present-day topography of the North Atlantic Region. However, the acquisition of geophysical data onshore Greenland is logistically complicated...

  13. Crustal response to lithosphere evolution

    Artemieva, Irina; Thybo, Hans; Cherepanova, Yulia;


    assessed results from various seismic studies, including reflection and refraction profiles and receiver function studies. The region includes a nearly continuous age record for crustal evolution over ca. 3.6-3.8 billion years. We present an analysis of the crustal structure heterogeneity in relation...... to geological and tectono-thermal ages of the crust, and the tectonic setting. The results indicate that the Precambrian crust is as heterogeneous as Phanerozoic, and we do not observe any evidence for thickening from the Archean to Proterozoic crust. If anything, our analysis rather suggests the opposite trend...

  14. Genetic network properties of the human cortex based on regional thickness and surface area measures

    Anna R. Docherty


    Full Text Available We examined network properties of genetic covariance between average cortical thickness (CT and surface area (SA within genetically-identified cortical parcellations that we previously derived from human cortical genetic maps using vertex-wise fuzzy clustering analysis with high spatial resolution. There were 24 hierarchical parcellations based on vertex-wise CT and 24 based on vertex-wise SA expansion/contraction; in both cases the 12 parcellations per hemisphere were largely symmetrical. We utilized three techniques—biometrical genetic modeling, cluster analysis, and graph theory—to examine genetic relationships and network properties within and between the 48 parcellation measures. Biometrical modeling indicated significant shared genetic covariance between size of several of the genetic parcellations. Cluster analysis suggested small distinct groupings of genetic covariance; networks highlighted several significant negative and positive genetic correlations between bilateral parcellations. Graph theoretical analysis suggested that small world, but not rich club, network properties may characterize the genetic relationships between these regional size measures. These findings suggest that cortical genetic parcellations exhibit short characteristic path lengths across a broad network of connections. This property may be protective against network failure. In contrast, previous research with structural data has observed strong rich club properties with tightly interconnected hub networks. Future studies of these genetic networks might provide powerful phenotypes for genetic studies of normal and pathological brain development, aging, and function.

  15. Genetic network properties of the human cortex based on regional thickness and surface area measures

    Docherty, Anna R.; Sawyers, Chelsea K.; Panizzon, Matthew S.; Neale, Michael C.; Eyler, Lisa T.; Fennema-Notestine, Christine; Franz, Carol E.; Chen, Chi-Hua; McEvoy, Linda K.; Verhulst, Brad; Tsuang, Ming T.; Kremen, William S.


    We examined network properties of genetic covariance between average cortical thickness (CT) and surface area (SA) within genetically-identified cortical parcellations that we previously derived from human cortical genetic maps using vertex-wise fuzzy clustering analysis with high spatial resolution. There were 24 hierarchical parcellations based on vertex-wise CT and 24 based on vertex-wise SA expansion/contraction; in both cases the 12 parcellations per hemisphere were largely symmetrical. We utilized three techniques—biometrical genetic modeling, cluster analysis, and graph theory—to examine genetic relationships and network properties within and between the 48 parcellation measures. Biometrical modeling indicated significant shared genetic covariance between size of several of the genetic parcellations. Cluster analysis suggested small distinct groupings of genetic covariance; networks highlighted several significant negative and positive genetic correlations between bilateral parcellations. Graph theoretical analysis suggested that small world, but not rich club, network properties may characterize the genetic relationships between these regional size measures. These findings suggest that cortical genetic parcellations exhibit short characteristic path lengths across a broad network of connections. This property may be protective against network failure. In contrast, previous research with structural data has observed strong rich club properties with tightly interconnected hub networks. Future studies of these genetic networks might provide powerful phenotypes for genetic studies of normal and pathological brain development, aging, and function. PMID:26347632

  16. Crustal extension and magmatism during the mid-Cenozoic ignimbrite flare-up in the Guazapares Mining District and Cerocahui basin regions, northern Sierra Madre Occidental, western Chihuahua, Mexico

    Murray, Bryan Patrick

    Silicic large igneous provinces are significant in the geologic record, due to their unusually extensive areal coverage (>100,000 km2) and large volumes (>250,000 km3), and may be characteristic of continental regions undergoing broad lithospheric extension. The Sierra Madre Occidental of northwestern Mexico is the biggest and best-preserved silicic large igneous province of the Cenozoic and is considered part of the extensive mid-Cenozoic ignimbrite flare-up that affected much of the southwestern North American Cordillera. Despite its size and preservation, very little is known about the geology of the Sierra Madre Occidental, and the timing and spatial extent of ignimbrite flare-up volcanism in relation to crustal extension is relatively unknown. This study presents new geologic mapping, stratigraphy, zircon U-Pb laser ablation ICP-MS dating, modal analysis, and geochemical data from the Guazapares Mining District and Cerocahui basin regions, two adjacent areas of the northern Sierra Madre Occidental in western Chihuahua. The rock exposure and topographic relief in this previously unmapped ~450 km2 area make it ideal for studying the relationships between silicic large igneous province volcanism and crustal extension. Three informal formations are identified in the study area: (1) the ca. 27.5 Ma Parajes formation, a ~1-km-thick succession of primarily welded silicic outflow ignimbrite sheets erupted from sources within ~50--100 km of the study area that were active during the Early Oligocene pulse of the mid-Cenozoic ignimbrite flare-up; (2) the ca. 27--24.5 Ma Temoris formation, composed primarily of locally erupted mafic-intermediate lavas and associated intrusions with interbedded alluvial deposits, likely related to rocks of the Southern Cordillera basaltic andesite province that were intermittently erupted across all of the northern Sierra Madre Occidental following the Early Oligocene ignimbrite pulse; and (3) the ca. 24.5--23 Ma Sierra Guazapares

  17. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    WONG; ManSing; NICHOL; Janet; LEE; Kwon; Ho


    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolution images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the determination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflectance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r = 0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  18. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    WONG ManSing; NICHOL Janet; LEE Kwon Ho; LI ZhanQing


    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolu-tion images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta re-gion. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the deter-mination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflec-tance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r=0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  19. Emplacement of a Debris Ocean on Mars by Regional-Scale Collapse and Flow at the Crustal Dichotomy

    Hoffman, N.; Tanaka, K. L.; Kargel, J. S.; Banerdt, W. B.


    Giant debris flows could have filled the northern lowlands with approx. 2 km of sediment in 10(exp 3) to 10(exp 5) years by catastrophic regional terrain collapse. The outburst floods and chaos zones are probably the waning stage of this process. Additional information is contained in the original extended abstract.

  20. Detailed finite element analysis of Darlington NGS feeder pipes with locally thinned regions below pressure minimum thickness

    Haq, I.; Stojakovic, M.; Li, M. [Ontario Power Generation Inc., Pickering, Ontario (Canada)


    Feeder Pipes in CANDU nuclear stations are experiencing wall thinning due to flow accelerated corrosion (FAC) resulting in locally thinned regions in addition to general thinning. In Darlington NGS these locally thinned regions can be below pressure based minimum thickness (t{sub min}), required as per ASME Code Section III NB-3600 Equation (1). A methodology is presented to qualify the locally thinned regions under NB-3200 (NB-3213 and NB-3221) for internal pressure loading only. Detailed finite element models are used for internal pressure analysis using ANSYS v11.0. All other loadings such as deadweight, thermal and seismic loadings are qualified under NB-3600 using a general purpose piping stress analysis software. The piping stress analysis is based on average thickness equal to t{sub min} along with maximum values of ASME Code stress indices (Table NB-3681(a)-1). The requirement for the use of this methodology is that the average thickness of each cross-section with the locally thinned region shall be at least t{sub min}. The finite element analysis models are thinned to 0.75 t{sub min} (in increments of 0.05 t{sub min}) all-around the circumference in the straight section region allowing for flexible inspection requirements. Two different thicknesses of 1.10 t{sub min} and 1.30 t{sub min} are assigned to the bends. Thickness vs the allowable axial extent curves were developed for different types of feeder pipes in service. Feeders differ in pipe size, straight section length, bend angle and orientation. The stress analysis results show that all Darlington NGS outlet feeder pipes are fit for service with locally thinned regions up to 75% of the pressure based minimum thickness. This paper demonstrates the effectiveness of finite element analysis in extending the useful life of degraded piping components. (author)

  1. Crustal thinning between the Ethiopian and East African Plateaus from modeling Rayleigh wave dispersion

    Benoit, M H; Nyblade, A A; Pasyanos, M E


    The East African and Ethiopian Plateaus have long been recognized to be part of a much larger topographic anomaly on the African Plate called the African Superswell. One of the few places within the African Superswell that exhibit elevations of less than 1 km is southeastern Sudan and northern Kenya, an area containing both Mesozoic and Cenozoic rift basins. Crustal structure and uppermost mantle velocities are investigated in this area by modeling Rayleigh wave dispersion. Modeling results indicate an average crustal thickness of 25 {+-} 5 km, some 10-15 km thinner than the crust beneath the adjacent East African and Ethiopian Plateaus. The low elevations can therefore be readily attributed to an isostatic response from crustal thinning. Low Sn velocities of 4.1-4.3 km/s also characterize this region.

  2. [Myocardial regional thickness in patients with and without cardiomyopathy assessed by cardiac magnetic resonance].

    de Zan, Macarena; Carrascosa, Patricia; Deviggiano, Alejandro; Capuñay, Carlos; Rodríguez-Granillo, Gastón A

    To explore regional differences in myocardial wall thickness (WT) among the most prevalent cardiomyopathies and in individuals without structural heart disease using cardiac magnetic resonance. Patients older than 18 years referred to cardiac magnetic resonance during the period between January 2014 and September 2014, with a diagnosis of hypertrophic cardiomyopathy, idiopathic dilated cardiomyopathy, ischemic cardiomyopathy, and myocarditis were retrospectively selected from our database. One hundred twenty patients patients were included. The control group had an average WT of 5.9±1.1mm, with a WT index of 2.9±0.8. Significantly lower mean WT in the apical segments were identified in both the control group (basal 6.7±1.3 vs. mid 6.0±1.3 vs. apical 4.6±1.0mm, P<.0001) and in all evaluated cardiomyopathies (hypertrophic cardiomyopathy: basal 10.5±2.4 vs. mid 10.8±2.7 vs. apical 7.3±3.3mm, P<.0001; idiopathic dilated cardiomyopathy: basal 7.7±1.7 vs. mid 7.6±1.3 vs. apical 5.4±1.3mm, P<.0001; ischemic cardiomyopathy: basal 7.4±1.7 vs. mid 7.5±1.9 vs. apical 5.5±1.8mm, P<.0001; myocarditis: basal 7.1±1.5 vs. mid 6.4±1.1 vs. apical 5.1±0.8, P<.0001). Significant gender differences were also evident regarding the mean WT both in the control group (male 6.5±2.1 vs. female 5.2±1.7mm, P<.0001), as in hypertrophic cardiomyopathy (10.5±5.3 vs. 8.5±5.7mm, P<.0001) and myocarditis (6.6±2.0 vs. 5.2±1.6mm, P<.0001). We found a relatively high prevalence of segments commonly deemed thinned among patients without structural heart disease. We also observed a marked asymmetry and longitudinal gradient in wall thickness both in controls and in the various cardiomyopathies evaluated. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  3. Regional-scale stratigraphy of surface units in Tyrrhena and Iapygia Terrae, Mars: insights into highland crustal evolution and alteration history

    Rogers, A. Deanne; Fergason, Robin L.


    The compositional, thermophysical and geologic characteristics of surface units in Iapygia and Tyrrhena Terra (60°E-100°E, 0°-30°S) provide new insights into the compositional stratigraphy of the region. Intercrater plains are dominated by two surface units. The older unit (unit 1) is deficient in olivine and more degraded and likely consists of a mixture of impact, volcanic and sedimentary materials. The younger unit (unit 2) is enriched in olivine, exhibits a resistant morphology and higher thermal inertia, and likely represents volcanic infilling of plains. Units 1 and 2 bear a strong resemblance to those previously mapped in Mare Serpentis, a section of highlands crust located northwest of Hellas Basin. Thus, the two major intercrater plains units are even more widespread than previously thought and therefore likely constitute important components of Mars' highland stratigraphy. Many craters in the region contain high thermal inertia deposits (unit 3) that are compositionally identical to unit 2. These may have formed via volcanic infilling or may represent sedimentary materials that have been eroded from crater walls and lithified. Less common units include olivine and/or pyroxene-rich massifs and crater central peaks. These are primarily found within Hellas Basin rim units and may represent mantle materials brought toward the surface during the Hellas impact. Putative chloride deposits are primarily associated with olivine-deficient surfaces (unit 1) that may be heavily degraded occurrences of unit 2. The observations raise a variety of questions related to Martian crustal evolution and alteration that may have more widespread implications outside the study region.

  4. Regional-scale stratigraphy of surface units in Tyrrhena and Iapygia Terrae, Mars: Insights into highland crustal evolution and alteration history

    Rogers, A. Deanne; Fergason, Robin L.


    The compositional, thermophysical and geologic characteristics of surface units in Iapygia and Tyrrhena Terra (60°E-100°E, 0°-30°S) provide new insights into the compositional stratigraphy of the region. Intercrater plains are dominated by two surface units. The older unit (unit 1) is deficient in olivine and more degraded and likely consists of a mixture of impact, volcanic and sedimentary materials. The younger unit (unit 2) is enriched in olivine, exhibits a resistant morphology and higher thermal inertia, and likely represents volcanic infilling of plains. Units 1 and 2 bear a strong resemblance to those previously mapped in Mare Serpentis, a section of highlands crust located northwest of Hellas Basin. Thus, the two major intercrater plains units are even more widespread than previously thought and therefore likely constitute important components of Mars' highland stratigraphy. Many craters in the region contain high thermal inertia deposits (unit 3) that are compositionally identical to unit 2. These may have formed via volcanic infilling or may represent sedimentary materials that have been eroded from crater walls and lithified. Less common units include olivine and/or pyroxene-rich massifs and crater central peaks. These are primarily found within Hellas Basin rim units and may represent mantle materials brought toward the surface during the Hellas impact. Putative chloride deposits are primarily associated with olivine-deficient surfaces (unit 1) that may be heavily degraded occurrences of unit 2. The observations raise a variety of questions related to Martian crustal evolution and alteration that may have more widespread implications outside the study region.

  5. Change of regional choroid thickness after reduced-fluence photodynamic therapy for chronic central serous chorioretinopathy.

    Manabe, Saki; Shiragami, Chieko; Hirooka, Kazuyuki; Izumibata, Saeko; Tsujikawa, Akitaka; Shiraga, Fumio


    To evaluate macular choroidal thickness after reduced-fluence photodynamic therapy (PDT) for chronic central serous chorioretinopathy (CSC). Prospective, consecutive, interventional case series. Twenty-two eyes with chronic CSC were treated with reduced-fluence PDT. Macular choroidal thickness was examined using spectral-domain optical coherence tomography with a 3-dimensinonal radial scan protocol in the choroidal mode before and 1, 3, and 6 months after the treatment. The mean choroidal thickness in the Early Treatment Diabetic Retinopathy Study grid (center, inner circle, and outer circle) was compared between before and after therapy, as well as between treated eyes and 54 volunteer normal eyes. Chronic CSC eyes showed significantly thicker choroids in the macular area compared with normal controls (P Choroidal thickness within the center area and inner circle showed a significant reduction at all time points after treatment (P choroidal thickness in the outer circle showed a statistically significant reduction at 1 and 3 months but not at 6 months. After treatment, the choroidal thickness reduced to the normal values at the center and inner circle, but was still significantly thicker in the outer circle (P choroids in the macular area. After reduced-fluence PDT, macular choroidal thickness became thinner within 6 months of treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Crustal and upper-mantle structure beneath the western Atlas Mountains in SW Morocco derived from receiver functions

    Spieker, Kathrin; Wölbern, Ingo; Thomas, Christine; Harnafi, Mimoun; El Moudnib, Lahcen


    The High Atlas and the Anti Atlas are fold-belts linked to former and still ongoing continent-continent collisions. Despite their high elevation, studies indicate a lack of a deep crustal root (Morocco to analyse teleseismic P- and S-wave receiver functions. Our study yields a crustal thickness ranging from 24 km near the Atlantic coast to 44 km beneath the High Atlas with an average crustal Vp/Vs ratio of 1.77 in the entire region. A crustal thickness of 40 km cannot entirely support the topography in this region. Furthermore, we find the lithosphere-asthenosphere boundary at ˜80 km depth. The lithosphere beneath SW Morocco is thinner than beneath northern Morocco (>150 km). This lithospheric thinning supports the theory of thermal compensation of the mountain ranges. The mantle transition zone thickness amounts to 240 ± 10 km. The transition zone seems to be slightly thinned which might indicate a higher mantle temperature in this region.

  7. Surface effects of Rayleigh-Taylor instability: Feedback between drip dynamics and crustal deformation

    Wang, H.; Currie, C. A.


    deflection as a superposition of the RT drip dynamics and crustal channel flow induced by both shearing by the drip (Couette flow) and the lateral pressure gradient due to the high-density body (Poiseuille flow). We compute the crustal flux associated with these processes and show that the type of surface expression depends on the crustal flux rate, whereas magnitude of surface deflection depend on the density of the foundering body. For a Newtonian crust, the crustal flux scales linearly with crustal viscosity and by the cube of the thickness of the crustal channel. Thus, induced crustal flow is largest for regions with a hot, thick crust. Our results indicate that the presence and/or gravitational removal of a dense lithospheric body can produce a range of surface expressions. Basins may be prevalent in craton areas, and surface uplift or little deflection may be more common along orogenic belts.

  8. Ribbon thickness dependence of the Magnetic Alloy core characteristics in the accelerating frequency region of the J-PARC synchrotrons

    Nomura, M.; Shimada, T.; Tamura, F.; Yamamoto, M.; Hara, K.; Hasegawa, K.; Ohmori, C.; Takata, K.; Toda, M.; Yoshii, M.; Schnase, A.


    We employ Magnetic Alloy (MA) core loaded RF cavities for the J-PARC synchrotrons to achieve a high field gradient. The MA core has a laminated structure of 18 μm thick ribbon layers. We have been developing high shunt impedance MA cores to prepare for an increase of beam power. At low frequencies, it is well known that the eddy current loss in the ribbon is proportional to the square of the ribbon thickness. The MA core shunt impedance can be increased by using thinner ribbons. On the other hand, at high frequencies, the MA core magnetic characteristics are largely different from low frequencies. Using thinner ribbons might be effective to increase the MA core shunt impedance in the accelerating frequency region of the J-PARC synchrotrons. We reviewed the theoretical calculations of the ribbon thickness dependence of the MA core magnetic characteristics and we derived the ribbon thickness dependence from measured data. The measured data show that the MA core shunt impedance is inversely proportional to the ribbon thickness in the accelerating frequency region of the J-PARC synchrotrons, which is consistent with our calculations.

  9. New insights into crustal structure, Cenozoic magmatism, CO2 degassing, and seismogenesis in the southern Apennines and Irpinia region from local earthquake tomography

    Improta, Luigi; De Gori, Pasquale; Chiarabba, Claudio


    We present high-resolution Vp and Vp/Vs models of the southern Apennines (Italy) computed using local earthquakes recorded from 2006 to 2011 with a graded inversion scheme that progressively resolves the crustal structure, from the large scale of the Apennines belt to the local scale of the normal fault system. High-Vp bodies defined in the upper crust and midcrust under the external Apennines are interpreted as extensive mafic intrusions revealing anorogenic magmatism episodes that broadened on the Adriatic domain during Paleogene. Under the mountain belt, a low-Vp region, annular to the Neapolitan volcanic district, indicates the existence of a thermal/fluid anomaly in the midcrust, coinciding with a shallow Moho and diffuse degassing of deeply derived CO2. In the belt axial zone, low-Vp/Vs gas-pressurized rock volumes under the Apulian carbonates correlate to high heat flow, strong CO2-dominated gas emissions of mantle origin, and shallow carbonate reservoirs with pressurized CO2 gas caps. We hypothesize that the pressurized fluid volumes located at the base of the active fault system influence the rupture process of large normal faulting earthquakes, like the 1980 Mw6.9 Irpinia event, and that major asperities are confined within the high-Vp Apulian carbonates. This study confirms once more that preexisting structures of the Pliocene Apulian belt controlled the rupture propagation during the Irpinia earthquake. The main shock broke a ~30 km long, NE dipping seismogenic structure, whereas delayed ruptures (both the 20 s and the 40 s subevents) developed on antithetic faults, reactivating thrust faults located at the eastern edge of the Apulian belt.

  10. Thinned crustal structure and tectonic boundary of the Nansha Block, southern South China Sea

    Dong, Miao; Wu, Shi-Guo; Zhang, Jian


    The southern South China Sea margin consists of the thinned crustal Nansha Block and a compressional collision zone. The Nansha Block's deep structure and tectonic evolution contains critical information about the South China Sea's rifting. Multiple geophysical data sets, including regional magnetic, gravity and reflection seismic data, reveal the deep structure and rifting processes. Curie point depth (CPD), estimated from magnetic anomalies using a windowed wavenumber-domain algorithm, enables us to image thermal structures. To derive a 3D Moho topography and crustal thickness model, we apply Oldenburg algorithm to the gravity anomaly, which was extracted from the observed free air gravity anomaly data after removing the gravity effect of density variations of sediments, and temperature and pressure variations of the lithospheric mantle. We found that the Moho depth (20 km) is shallower than the CPD (24 km) in the Northwest Borneo Trough, possibly caused by thinned crust, low heat flow and a low vertical geothermal gradient. The Nansha Block's northern boundary is a narrow continent-ocean transition zone constrained by magnetic anomalies, reflection seismic data, gravity anomalies and an interpretation of Moho depth (about 13 km). The block extends southward beneath a gravity-driven deformed sediment wedge caused by uplift on land after a collision, with a contribution from deep crustal flow. Its southwestern boundary is close to the Lupar Line defined by a significant negative reduction to the pole (RTP) of magnetic anomaly and short-length-scale variation in crustal thickness, increasing from 18 to 26 km.

  11. Regional Analysis of Soft Tissue Thickness on Korean Buttocks and Application to Fasciocutaneous Flap Design

    Do Yup Kim


    Full Text Available Background Various shapes and designs of the gluteal artery perforator flap have been used for treating sacral pressure sores and reconstructing breasts. To establish the ideal fasciocutaneous flap design for use in the gluteal area, the soft tissue thickness distribution was measured. Methods Twenty-one buttocks of adult Korean cadavers were analyzed through rectangular subfascial dissection. Each buttock was divided horizontally into 10 sections and vertically into 10 sections, and then, the thickness at the corners of the sections was measured. For the sake of comparison and statistical verification with living bodies, computed tomography (CT images of 120 buttocks of patients were randomly selected. Five horizontal sections and 4 vertical sections were made, and the thickness at each corner was recorded. Results According to the dissection and the CT images, the area with the thinnest soft tissues in the buttock was around the posterior superior iliac spine, close to the sacral area. The thickest area was the superolateral area of the buttock, which was 3.24 times and 2.15 times thicker than the thinnest area in the studies on cadaver anatomy and the CT images, respectively. Conclusions The thickness of the soft tissues in the buttocks differed by area. The superolateral area had the thickest soft tissues, and the superomedial area had the thinnest. This study includes information on the distribution of the thickness of the gluteal soft tissues of Koreans. The outcome of this study may contribute to the design of effective local flaps for pressure sore reconstruction and free flaps for breast reconstruction.

  12. Constraining the thickness of tectonic tremor source region on the basis of seismological and geological observations in southwest Japan

    Ohta, K.; Ito, Y.; Ujiie, K.; Fagereng, A.; Katakami, S.; Kinoshita, T.


    Recent progress in seismological observations has revealed that most of tremors and low frequency earthquakes (LFEs) along subduction zones worldwide occur as shear slips on the plate interface of subducting oceanic slab. Although the locations of tremors still have large uncertainties especially in the depth direction, in a seismological view, such tremor region is usually treated as a flat fault with no thickness. On the other hands, the recent geological observation has discovered the records of past tremors and suggested that their deformation zones have several tens of meters thickness [Ujiie et al., this meeting]. Here we try to reconcile these two observations by comparing the accurate hypocenter distribution of tremor sources based on the seismic records with the actual measurements of the thickness of anticipated tremor zones in the geological records.As representatives of tremor sources, we determine the hypocenter locations of LFEs in the Shikoku region, southwest Japan. By using the NCC hypocenter relocation method [Ohta and Ide, 2008, 2011] based on the summed cross-correlation coefficients across the network (network correlation coefficients; NCC), we accurately relocate more than 4,000 LFEs in the catalog of Japan Meteorological Agency (JMA) from 2004 to 2011. Relocated hypocenters of LFEs are highly concentrated in the depth direction and separated to several clusters on the basis of the NCC connections. Each cluster is well fitted by a single plane. The thickness of each cluster orthogonal to the plane ranges from 140m to 1.3km.For the geological measurements, we examine the tectonic mélange in the Shimanto accretionary complex in southwest Japan. The mélange shows the coexistence of shear veins and ductile shear zone, which is thought to be the zone of past episodic tremor and slip [Ujiie et al., this meeting]. We measure the distribution of shear veins in the mélange. Within the entire exposure of 100m thickness, shear veins are concentrated

  13. The crust and lithosphere thicknesses of Greenland revisited: what do recent gravity data tell us?

    Steffen, Rebekka; Lund, Björn


    Crustal and lithospheric thicknesses are nowadays extensively studied and several datasets exist for most parts of the Earth; however, for some regions only a few estimations are available. For high resolution models of glacial isostatic adjustment (GIA), the thickness of the crust and lithosphere beneath the glaciated regions are very important as they affect the calculation of past and future sea level changes. Greenland, with its decreasing ice sheet and rapidly retreating outlet glaciers, is one such region where the GIA estimation is important but where the ice sheet itself prevents extensive studies of the crustal and lithospheric thicknesses. Most of the thickness estimates have so far been obtained from seismological studies, which depend on the density of the station networks. We will present newly obtained crustal and lithospheric thickness maps, which are estimated from gravity data using the Parker-Oldenburg inversion algorithm. The gravity dataset will be presented together with all the necessary corrections which have to be applied before the inversion procedure. The obtained thickness maps will be compared to former results of seismological and gravimetric studies and differences will be discussed, also from a geodynamic point of view.

  14. Constraining the crustal root geometry beneath the Rif Cordillera (North Morocco)

    Diaz, Jordi; Gil, Alba; Carbonell, Ramon; Gallart, Josep; Harnafi, Mimoun


    The analyses of wide-angle reflections of controlled source experiments and receiver functions calculated from teleseismic events provide consistent constraints of an over-thickened crust beneath the Rif Cordillera (North Morocco). Regarding active source data, we investigate now offline arrivals of Moho-reflected phases recorded in RIFSIS project to get new estimations of 3D crustal thickness variations beneath North Morocco. Additional constrains on the onshore-offshore transition are derived from onland recording of marine airgun shots from the coeval Gassis-Topomed profiles. A regional crustal thickness map is computed from all these results. In parallel, we use natural seismicity data collected throughout TopoIberia and PICASSO experiments, and from a new RIFSIS deployment, to obtain teleseismic receiver functions and explore the crustal thickness variations with a H-κ grid-search approach. The use of a larger dataset including new stations covering the complex areas beneath the Rif Cordillera allow us to improve the resolution of previous contributions, revealing abrupt crustal changes beneath the region. A gridded surface is built up by interpolating the Moho depths inferred for each seismic station, then compared with the map from controlled source experiments. A remarkably consistent image is observed in both maps, derived from completely independent data and methods. Both approaches document a large modest root, exceeding 50 km depth in the central part of the Rif, in contrast with the rather small topographic elevations. This large crustal thickness, consistent with the available Bouguer anomaly data, favor models proposing that the high velocity slab imaged by seismic tomography beneath the Alboran Sea is still attached to the lithosphere beneath the Rif, hence pulling down the lithosphere and thickening the crust. The thickened area corresponds to a quiet seismic zone located between the western Morocco arcuate seismic zone, the deep seismicity area

  15. Crustal structure and tectonics of Bangladesh: New constraints from inversion of receiver functions

    Singh, Arun; Bhushan, Kirti; Singh, Chandrani; Steckler, Michael S.; Akhter, S. Humayun; Seeber, Leonardo; Kim, Won-Young; Tiwari, Ashwani K.; Biswas, Rahul


    An understanding of the sedimentary and crustal structure of the Bengal Basin and of the tectonics deforming it remains elusive due to lack of seismic data from Bangladesh. Taking advantage of recently available data from 11 seismic stations deployed over Bangladesh, we determine the crustal structure beneath each station using 2768 high quality receiver functions (RFs). Inversion of the RFs reveals a highly variable thickness of the overlying sediments beneath the Bengal Basin. The thickness of the sediments increases dramatically across the Hinge Zone of the Early Cretaceous passive margin from 3 to 17 km. The thick sediments partly represent progradation of the continental margin due to the influx of clastic sediments from the Himalayas. The Moho shallows across the region. This reflects thinning of the crystalline crust from 38 km in the Indian Craton to 34 km at the Hinge Zone to 4.0 km/s) at lower crustal levels supports an influence of the Kerguelen plume igneous activity during rifting. We invert data for a station near the Dauki Fault, which marks the southern boundary of the uplifted Shillong plateau, for dip and anisotropic effects. Our results show the Dauki as a north-dipping thrust fault at Jaflong with a dip angle of 32° and strike (110°) close to its surficial expression. A strong anisotropy (~ 15%) and the sense of shear (plunge: 24°, trend: 79°) compliment the dipping geometry and deformation seems to be related to the initiation of the Dauki Fault.

  16. Crustal velocity structure of the Deccan Volcanic Province, Indian Peninsula, from observed surface wave dispersion

    Gaddale Suresh


    Full Text Available Through inversion of fundamental mode group velocities of Love and Rayleigh waves, we study the crustal and subcrustal structure across the central Deccan Volcanic Province (DVP, which is one of the world’s largest terrestrial flood basalts. Our analysis is based on broadband seismograms recorded at seismological station Bhopal (BHPL in the central India from earthquakes located near west coast of India, with an average epicentral distance about 768 km. The recording station and epicentral zone are situated respectively on the northern and southern edges of DVP with wave paths across central DVP. The period of group velocity data ranges from 5 to 60 s for Rayleigh waves and 5 to 45 s for Love waves. Using the genetic algorithm, the observed data have been inverted to obtain the crust and subcrustal velocity structure along the wavepaths. Using this procedure, a similar velocity structure was also obtained earlier for the northwestern DVP, which is in the west of the present study region. Comparison of results show that the crustal thickness decreases westward from central DVP (39.6 km to northwestern DVP (37.8 km along with the decrease of thickness of upper crust; while the thickness of lower crust remains nearly same. From east to west S-wave velocity in the upper crust decreases by 2 to 3 per cent, while P-wave velocity in the whole crust and subcrust decreases by 3 to 6 per cent. The P- and S-wave velocities are positively correlated with crustal thickness and negatively correlated with earth’s heat flow. It appears that the elevated crustal and subcrustal temperature in the western side is the main factor for low velocities on this side.

  17. Spatial variations of effective elastic thickness of the Lithosphere in the Southeast Asia regions

    Shi, Xiaobin; Kirby, Jon; Yu, Chuanhai; Swain, Chris; Zhao, Junfeng


    The effective elastic thickness Te corresponds to the thickness of an idealized elastic beam that would bend similarly to the actual lithosphere under the same applied loads, and could provide important insight into rheology and state of stress. Thus, it is helpful to improve our understanding of the relationship between tectonic styles, distribution of earthquakes and lithospheric rheology in various tectonic settings. The Southeast Asia, located in the southeastern part of the Eurasian Plate, comprises a complex collage of continental fragments, volcanic arcs, and suture zones and marginal oceanic basins, and is surrounded by tectonically active margins which exhibit intense seismicity and volcanism. The Cenozoic southeastward extrusion of the rigid Indochina Block due to the Indo-Asian collision resulted in the drastic surface deformation in the western area. Therefore, a high resolution spatial variation map of Te might be a useful tool for the complex Southeast Asia area to examine the relationships between surface deformation, earthquakes, lithospheric structure and mantle dynamics. In this study, we present a high-resolution map of spatial variations of Te in the Southeast Asia area using the wavelet method, which convolves a range of scaled wavelets with the two data sets of Bouguer gravity anomaly and topography. The topography and bathymetry grid data was extracted from the GEBCO_08 Grid of GEBCO digital atlas. The pattern of Te variations agrees well with the tectonic provinces in the study area. On the whole, low lithosphere strength characterizes the oceanic basins, such as the South China Sea, the Banda sea area, the Celebes Sea, the Sulu Sea and the Andaman Sea. Unlike the oceanic basins, the continental fragments show a complex pattern of Te variations. The Khorat plateau and its adjacent area show strong lithosphere characteristics with a Te range of 20-50 km, suggesting that the Khorat plateau is the strong core of the Indochina Block. The West

  18. Assessment of buccal bone thickness of aesthetic maxillary region: a cone-beam computed tomography study

    Fuentes, Ramón; Flores, Tania; Navarro, Pablo; Salamanca, Carlos; Beltrán, Víctor; Borie, Eduardo


    The aim of this study was to analyze the anatomical dimensions of the buccal bone walls of the aesthetic maxillary region for immediate implant placement, based upon cone-beam computed tomography (CBCT...

  19. Crustal Seismic Anisotropy: Implications for Understanding Crustal Dynamics

    Meltzer, A.; Christensen, N.; Okaya, D.


    The Nanga Parbat - Haramosh massif, in the core of the western syntaxis of the Himalaya, represents a unique exposure of mid-lower continental crust from beneath a collisional orogen. The exhumed core of the massif forms a large scale antiformal structure with axial orientation of N10E and associated lineation directed north-south with near-vertical dips. Laboratory measurements of seismic velocity on a suite of quartzofeldspathic gneisses from the massif show a relatively strong degree of anisotropy, up to 12.5% for compressional waves and up to 21% for shear waves. The degree of velocity anisotropy is primarily a function of mica content and rock fabric strength. The strong anisotropy measured in these rocks should be observable in recorded seismic field data and provides a means of mapping rock fabric at depth provided the rock fabric is coherent over appropriate length scales. An IRIS/PASSCAL deployment of 50 short period instruments recorded local and regional earthquakes to characterize seismicity and determine crustal structure beneath the massif as part of a multidisciplinary NSF Continental Dynamics study investigating the active tectonic processes responsible for exhumation and crustal reworking at Nanga Parbat. Microseismicity at Nanga Parbat is distributed along strike beneath the massif but exhibits a sharp drop-off laterally into adjacent terranes and with depth. This data set is ideal for studying crustal seismic anisotropy because the raypaths are restricted to the crust, sharp onsets in P and S allow for clear identification of arrivals, and source-receiver geometries sample a range of azimuths with respect to structure. Preliminary analysis indicates that the majority of local events exhibit some degree of splitting and that splitting patterns, while complicated, are coherent. While splitting delay normally increases with distance traveled through anisotropic material, the range of delay times can be due to heterogeneity in composition, lateral

  20. Missing shortening in the thick-skinned retroarc thrust belt of the central Andes, northwestern Argentina, ~25°S

    Pearson, D. M.; Kapp, P. A.; Decelles, P. G.; Reiners, P. W.


    A very large discrepancy exists among estimated retroarc shortening magnitudes in the thin-skinned thrust belt of Bolivia and the thick-skinned thrust belt of northwestern Argentina. Fieldwork and structural analysis from this study at ~25°S latitude in northwestern Argentina confirm the presence of a mainly west verging, thick-skinned style of shortening in the region which, taken together with thermochronological data ((U-Th)/He in zircon and apatite and published apatite fission track results), imply up to 10 km of rapid, Miocene exhumation. Although these results suggest that significant exhumation occurred in the region, displacements on mapped, discrete faults are insufficient in magnitude (by ~15-20%) to generate the observed ~58 km thick crust (Yuan et al., 2002). We suggest that additional, unrecognized shortening or crustal addition is required in the region to explain the thick crust and occurred by 1) crustal flow from neighboring regions of thickened crust; 2) passive roof thrusting whereby major, likely mid-crustal shortening was fed to higher structural levels; 3) tectonic underplating of trench or forearc rocks; and/or 4) significant penetrative strain not accommodated by through going faults. We do not discard other mechanisms of crustal thickening and/or addition in the region, but magnitudes of upper crustal shortening required by excess area calculations are best explained by penetrative deformation within rheologically weak metaturbidites of the Neoproterozoic to Cambrian Puncoviscana Formation. Although penetrative strain was generally not considered in cross section restorations in the retroarc of Bolivia, a relative lack of these rheologically weak rocks there probably precludes penetrative deformation as a significant mode of deformation and may partially reconcile the discrepancy in along-strike shortening magnitudes. Significant shortening has been accommodated by penetrative strain in other orogens worldwide, including western North

  1. Spectral Properties of the Martian Crustal Magnetic Field

    Lewis, K. W.; Simons, F. J.


    Although the planet Mars no longer possesses an internal dynamo, its crustal rocks retain strong remanent magnetization thought to have been induced by an ancient core-sourced field. The strength and distribution of the crustal field is extremely heterogeneous, and particularly strong in the Terra Cimmeria region of the southern hemisphere. The field as a whole is inconsistent with induction from a single dipolar source, although previous studies have attempted to isolate individual magnetic anomalies to deduce paleopolar orientations. While several areas of the planet appear to have been demagnetized, including large impact basins and the Tharsis volcanic province, the distribution of the field is generally poorly correlated with surface geologic structures. However, beyond the spatial pattern of crustal magnetization, the magnetic power spectrum can provide information about the nature of the source and formation processes. Previous studies have used the power spectrum of the Martian field to estimate the approximate depth of the magnetic anomalies. We extend this approach by applying the spatiospectral localization technique of Wieczorek and Simons (2005) and Dahlen and Simons (2008) to isolate the magnetic power spectra of several areas of the Martian surface. This method allows us to look beyond the strongly magnetized Terra Cimmeria region, which dominates the global power spectrum. Localized spectral estimates, along with their appropriate errors, allow us to examine the significance of observed variations between distinct regions of the planet, and to evaluate the validity of analyses which operate on the whole sphere. Significant differences are observed between spectra of the Terra Cimmeria region and the remainder of the planet, a result of the concentration of power at certain spherical harmonic degrees in this anomalous region. Approximate depths to the magnetic sources are calculated for tiled windows on the planet using the stochastic magnetized

  2. Deep-rooted “thick skinned” model for the High Atlas Mountains (Morocco. Implications for the seismic Eurasia-Africa plate boundary region

    Guiraud, M.


    Full Text Available Previous crustal models of the High Atlas suppose the existence of a mid-crustal detachment where all the surface thrusts merged and below which the lower crust was continuous. However, both seismic refraction data and gravity modeling detected a jump in crustal thickness between the High Atlas and the northern plains. Here we show that this rapid and vertical jump in the depth of Moho discontinuity suggests that a thrust fault may penetrate the lower crust and offset the Moho (deep-rooted “thick skinned” model. The distribution of Neogene and Quaternary volcanisms along and at the northern part of the High Atlas lineament can be related to the beginning of a partial continental subduction of the West African plate to the north underneath Moroccan microplate. Allowing from the complex problem of the plate boundary in the western zone of the Mediterranean, we propose to interpret the South-Atlasic fault zone as the actual northwestern boundary of the stable part of the African plate rather than the Azores-Gibraltar fault currently used.Los modelos geodinámicos existentes sobre la estructura profunda del alto Atlas suponen la existencia de un despegue medio-cortical donde convergen los cabalgamientos superficiales y bajo el cual la corteza inferior es continua. Los datos de sísmica de refracción y gravimetría, sin embargo, indican la existencia de una discontinuidad en el grosor de la corteza (profundidad del Moho bajo el Alto Atlas. En este artículo ponemos de manifiesto que este salto rápido en la profundidad del Moho puede ser causado por un cabalgamiento que penetra la corteza inferior, desplazando la base de la misma ("deeprooted thick skinned model". La distribución del volcanismo Neógeno y Cuaternario a lo largo de y al norte de la alineación del Alto Atlas pueden estar relacionados con el comienzo de una subducción continental parcial de la placa Africana occidental hacia el norte, bajo la microplaca marroquí. La expresi

  3. Crustal structure beneath Eastern Greenland

    Reiche, Sönke; Thybo, H.; Kaip, G.


    is recorded by 350 Reftek Texan receivers for 10 equidistant shot points along the profile. We use forward ray tracing modelling to construct a two-dimensional velocity model from the observed travel times. These results show the first images of the subsurface velocity structure beneath the Greenland ice...... these mountain belts is needed for assessing the isostatic balance of the crust and to gain insight into possible links between crustal composition, rifting history and present-day topography of the North Atlantic Region. However, the acquisition of geophysical data onshore Greenland is logistically complicated...

  4. On the emitting region of X-ray fluorescent lines around Compton-thick AGN

    Liu, Jiren


    X-ray fluorescent lines are unique features of the reflection spectrum of the torus when irradiated by the central AGN. Their intrinsic line width can be used to probe the line-emitting region. Previous studies have focused on the Fe Ka line at 6.4 keV, which is the most prominent fluorescent line. These studies, however, are limited by the spectral resolution of currently available instruments, the best of which is $\\sim1860$ km s$^{-1}$ afforded by the Chandra High-Energy Grating (HEG). The HEG spectral resolution is improved by a factor of 4 at 1.74 keV, where the Si Ka line is located. We measured the FWHM of the Si Ka line for Circinus, Mrk 3, and NGC 1068, which are $570\\pm240$, $730\\pm320$, and $320\\pm280$ km s$^{-1}$, respectively. They are $3-5$ times smaller than those measured with the Fe Ka line previously. It shows that the intrinsic widths of the Fe Ka line are most likely to be over-estimated. The measured widths of the Si Ka line put the line-emitting region outside the dust sublimation radius...

  5. Crustal signatures of the tectonic development of the North American midcontinent

    McGlannan, Austin J.; Gilbert, Hersh


    The stable eastern portion of the North American continent offers an excellent environment to study the tectonic development of intra-continental structures. The midcontinent of North America formed by the accretion of Proterozoic terranes, and has since experienced episodes of deformation during the subsidence of the Illinois Basin and uplift of the Ozark Plateau. Rifting also initiated in eastern North America, but extension did not continue and arms of failed rifts extend across the region. The New Madrid Seismic Zone, situated within a portion of the failed Reelfoot Rift, represents an active zone of intraplate seismicity. Analyzing the structure of the crust and upper mantle within the midcontinent will therefore provide insight into the factors that lead to intraplate deformation. Using data from over 180 Transportable Array seismic stations, we calculate receiver functions to investigate the crust and upper mantle of the midcontinent. At close to 40 km thick, the crust of the New Madrid Seismic Zone is thinner than in the surrounding areas outside of the Reelfoot Rift and Rough Creek Graben. The Illinois Basin cannot be characterized by a single crustal structure, as crust near 50 km thick in the central portion of the basin thins to between 40 and 45 km thick towards the northern and southern portions of the basin. Discontinuities within the crust and upper mantle are prominent in and around the New Madrid Seismic Zone and mark locations of crustal modification and underplating. Comparing changes in crustal structure to the distribution of Bouguer gravity anomalies, the presence of positive gravity anomalies suggests that higher density crust plays a role in maintaining low surface elevations within the Reelfoot Rift. Conversely, a negative gravity anomaly in an area of thinner crust within the Ozark Plateau supports the need for low-density crustal material to influence the uplift of the plateau.


    Schiffer, Christian; Stephenson, Randell Alexander; Oakey, Gordon

    . Preliminary results give estimates of Moho depths and crustal velocity structure and these are discussed with a focus on the relationship to topography, regional geological units and fault zones. The receiver functions reveal crustal roots underneath the Victoria and Albert Mountains (45km) and the Grantland...

  7. Determination of recent horizontal crustal movements and deformations of African and Eurasian plates in western Mediterranean region using geodetic-GPS computations extended to 2006 (from 1997) related to NAFREF and AFREF frames.

    Azzouzi, R.


    Determination of recent horizontal crustal movements and deformations of African and Eurasian plates in western Mediterranean region using geodetic-GPS computations extended to 2006 (from 1997) related to NAFREF and AFREF frames. By: R. Azzouzi*, M. Ettarid*, El H. Semlali*, et A. Rimi+ * Filière de Formation en Topographie Institut Agronomique et Vétérinaire Hassan II B.P. 6202 Rabat-Instituts MAROC + Département de la Physique du Globe Université Mohammed V Rabat MAROC This study focus on the use of the geodetic spatial technique GPS for geodynamic purposes generally in the Western Mediterranean area and particularly in Morocco. It aims to exploit this technique first to determine the geodetic coordinates on some western Mediterranean sites. And also this technique is used to detect and to determine movements cross the boundary line between the two African and Eurasian crustal plates on some well chosen GPS-Geodynamics sites. It will allow us also to estimate crustal dynamic parameters of tension that results. These parameters are linked to deformations of terrestrial crust in the region. They are also associated with tectonic constraints of the study area. The usefulness of repeated measurements of these elements, the estimate of displacements and the determination of their temporal rates is indisputable. Indeed, sismo-tectonique studies allow a good knowledge of the of earthquake processes, their frequency their amplitude and even of their prediction in the world in general and in Moroccan area especially. They allow also contributing to guarantee more security for all most important management projects, as projects of building great works (dams, bridges, nuclear centrals). And also as preliminary study, for the most important joint-project between Europe and Africa through the Strait of Gibraltar. For our application, 23 GPS monitoring stations under the ITRF2000 reference frame are chosen in Eurasian and African plates. The sites are located around the

  8. Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment.

    Yushkevich, Paul A; Pluta, John B; Wang, Hongzhi; Xie, Long; Ding, Song-Lin; Gertje, Eske C; Mancuso, Lauren; Kliot, Daria; Das, Sandhitsu R; Wolk, David A


    We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm(3) resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work on automatic subfield segmentation in T2-weighted MRI [Yushkevich et al., 2010], our approach requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross-validation in 29 subjects from a study of amnestic mild cognitive impairment (aMCI) and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797), and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest nonuniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions. © 2014 Wiley Periodicals, Inc.

  9. Crustal Construction and Magma Chamber Properties along the Eastern Lau Spreading Center

    Dunn, R.; Martinez, F.; Arai, R.; Conder, J. A.


    The Eastern Lau Spreading Center is a key region over which mantle source composition, melt supply, and the general geological and geophysical character of the crust vary in a manner consistent with decreasing "subduction-influence" of slab volatiles in the mantle. One of the key observables is the physical structure of the crust in that it records the changing nature of the mantle as the location of the ridge migrates away from the arc. Using data from the L-SCAN active-source seismic experiment, our group has constructed tomographic images that reveal crustal and mantle structure and the present location and form of the magmatic system beneath ~110 km of the spreading center. When the ridge was closer to the arc, a relatively thick crust was produced with an abnormally low velocity upper crust and an abnormally high velocity lower crust. This can be explained by excess melting in the presence of high water content and a subsequent higher degree of crustal differentiation in the presence of water in the crustal magmatic system. As the ridge moved away from the arc, a step-like transition occurred to more normal crustal velocities and thicknesses, indicating a rapid drop in mantle water content. In addition, the images show that crustal construction was locally variable, consistent with various degrees of volatile influence on mantle melting over short intervals of time. This indicates that slab-derived water exists in variable concentrations in the mantle. Located everywhere beneath the spreading center is a prominent, but narrow, seismic low velocity volume (LVV), presumably due to high temperatures and melt in the crustal magmatic system. The top of the LVV closely follows the ridge axis and steps across 3 overlapping spreading centers. As the offset of the overlap increases, the LVV becomes increasing discontinuous across the ridge limbs. The largest offset, at only 8 km, acted as a major boundary between melts derived from distinct mantle domains for 0.31 Myr

  10. Modes of continental extension in a crustal wedge

    Wu, Guangliang


    © 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  11. Modes of continental extension in a crustal wedge

    Wu, Guangliang; Lavier, Luc L.; Choi, Eunseo


    We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  12. Reports on crustal movements and deformations

    Cohen, S. C.; Peck, T.


    Studies of tectonic plate motions, regional crustal deformations, strain accumulation and release, deformations associated with earthquakes and fault motion, and micro-plate motion, were collected and are summarized. To a limited extent, papers dealing with global models of current plate motions and crustal stress are included. The data base is restricted to articles appearing in reveiwed technical journals during the years 1970-1980. The major journals searched include: Journal of Geophysical Research (solid earth), Tectonophysics, Bulletin of the Seismological Society of America, Geological Society of America Bulletin, Geophysical Journal of the Royal Astronomical Society, and the Journal of Geology.

  13. Influence of aerosol vertical profile variability on retrievals of aerosol optical thickness from NOAA AVHRR measurements in the Baltic region

    Anna Rozwadowska


    Full Text Available The expected influence of variability in atmospheric aerosolprofiles on retrievals of aerosol optical thickness (AOTfrom NOAA AVHRR measurements is analysed. In particular, thebias in the AOT retrieval due to the assumption of a climatologicalaerosol profile in the retrieval algorithm is studied. The biasis defined as the difference between AOT retrieved with analgorithm using a climatological aerosol profile, and the actual AOTemployed in the calculations of radiances at the top of the atmosphere(TOA. The TOA radiances are simulated by means of the MODTRANcode for different aerosol profiles. Atmospheric conditions andsolar and satellite angles used in the bias simulations are typicalof the Baltic region. In the simulations, the maximum absolutevalue of the bias amounts to nearly 40% in channel 2 and 14%in channel 1 of AVHRR.

  14. Horizontal crustal movement in Chinese mainland from 1999 to 2001

    顾国华; 符养; 王武星


    The paper introduces the horizontal crustal movement obtained from GPS observations in the regional networks(including the basic network and the fiducial network) of the Crustal Movement Observation Network of China(CMONOC) carried out in 1999 and 2001. This paper is characterized by the acquisition of the horizontal dis-placement velocities during the period from 1999 to 2001 at the observation stations in the regional networks withdatum definition of a group of stable stations with small mutual displacements in east China. Based on the mostdetailed map of horizontal crustal movement in Chinese mainland, the division of blocks, their displacements anddeformations are studied. An approach to analysis of the intensity of the horizontal crustal deformation is proposed.The general characteristics of the recent horizontal crustal movement in Chinese mainland and that before theKunlunshan earthquake of M=8.1 on November 14, 2001 are analyzed.

  15. Crustal uplift of the Precambrian cratons due to metamorphism in crustal rocks under infiltration of mantle fluids

    Artyushkov, Eugene; Chekhovich, Peter; Korikovsky, Sergey; Massonne, Hans-Joachim


    Precambrian cratons cover about 70% of the total area of the continents. During the last several million years cratonic areas underwent rapid uplift, from 100-200 m in East Europe to 1000-1500 m Southern Africa. Shortening of the Precambrian crust terminated half a billion years ago or earlier and this popular mechanism cannot be applied to its recent uplift. Large thickness of cratonic mantle lithosphere, 100-200 km in most regions, together with its low density precludes delamination of this layer and magmatic underplating as possible causes of recent uplift. It cannot be precluded that in some cratonic regions recent uplift occurred due to delamination of the lower part of mantle lithosphere with the density increased by metasomatism. Even a small uplift of ≥ 100-200 m would require delamination of a thick layer of mantle lithosphere. As a result a temperature drop of > 200 C would arise at the base of the lithosphere producing a shear wave velocities drop of > 2%. According to the seismic tomography data such a drop in VS is observed only in some regions with the Precambrian lithosphere, e.g., in Northeastern Africa. Spatial distribution of the Precambrian cratons is quite different from that predicted by the main models of dynamic topography in the mantle. Moreover, many uplifted blocks are bounded by steep slopes hundreds of meters to one kilometer high and only tens of kilometers wide. Such slopes could not have been formed by bending of thick cratonic lithosphere under the forces acting from below. Their recent formation indicates rock expansion within the crust at shallow depth comparable with the slope width. Rocks formed at the pressure P ˜ 0.5-1.0 GPa are widespread on the Precambrian cratons. This indicates that during their lifetime a layer of rocks ˜ 15-30 km thick has been removed from the crustal surface by denudation. As a result rocks which were initially located in the lower crust emerged to the middle or upper crust. Due to metamorphic

  16. Seismic evidence of crustal heterogeneity beneath the northwestern Deccan volcanic province of India from joint inversion of Rayleigh wave dispersion measurements and P receiver functions

    Deshpande, A. A.; Mohan, G.


    The northwestern Deccan volcanic province (NWDVP) of India, encompassing the Saurashtra peninsula and the adjoining Gulf of Cambay, is investigated through joint inversion of surface wave dispersion measurements and teleseismic P receiver functions, to estimate the crustal and shallow upper mantle shear wave velocity (Vs) structure. The Mw ∼ 7.7 Bhuj earthquake and the post Bhuj regional events, recorded during the period 2001-2010 at 7 stations along 37 source-receiver paths were used along with 35 teleseismic events. A joint curve fitting inversion technique is applied to obtain a best fit for the fundamental mode Rayleigh wave group velocity dispersion curves for time periods 5-50 s and high quality crustal P wave receiver functions obtained at each station. Significant crustal heterogeneity is observed within the study region with the average crustal Vs ranging from 3.5 km/s to 3.8 km/s with the paths cutting across the Gulf of Cambay exhibiting large reduction in shear wave velocities. Utilizing the average crustal Vs ≈ 3.66 km/s estimated for Saurashtra, together with the average crustal P wave velocity (Vp) ≈ 6.54 km/s derived independently through deep seismic sounding studies, yields a bulk Vp/Vs ratio of 1.786 or an equivalent crustal Poisson's ratio of 0.271. A major contribution to the high Poisson's ratio comes from the 12 to 16 km thick lower crustal layers with shear velocities ranging from 3.8 km/s to 4.19 km/s suggesting widespread magmatic underplating due to emplacement of mafic cumulates in the lower crust. The shallow uppermost mantle shear velocities are in the range 4.2-4.5 km/s averaging 4.36 km/s, which is less than that observed for the Indian shield, indicating the effects of residual thermal anomaly. The variation in the crustal Vs, high Poisson's ratios and low upper mantle shear velocities reflect the thermal and compositional effects of the Deccan volcanism which are manifested in terms of pervasive presence of mafic dykes

  17. Thick-skinned tectonics within the intracontinental easternmost Atlas foreland-and-thrust belt (Tunisia): Meso-Cenozoic kinematics and implications for regional geodynamics

    Belkhiria, W.; Boussiga, H.; Inoubli, M. H.


    The transition zone between western and central Mediterranean domains presents a key area to investigate kinematic interactions within the adjacent orogen systems such as the easternmost Atlas foreland-and-thrust belt. Gravity and seismic data revealed a highly structured basement, characterizing a series of structural highs and lows delimited by high-angle N-S, E-W, and NW-SE extensional faults. This basement architecture is inherited from successive extensional events related to the openings of the Triassic-Early Cretaceous Tethys oceans (i.e., Alpine Tethys, Ligurian Tethys, and Mesogea). Throughout this period, this mosaic of continental blocks significantly controlled the thickness and facies distributions. Early stages of diapirism took place along these basement faults and allowed maximum subsidence in minibasins revealed by the development of growth strata. In response to the Late Cretaceous-Eocene shortenings, these extensional faults have been reactivated as trasnpressional shear zones, giving rise to narrow pop-up structures. In addition, gravity modeling indicates crustal thinning and deep-rooted faults affecting the crust south of the Zaghouan Thrust and along E-W transfer zones. From the late Miocene, a drastic change in the stress regime is attributed to the effect of the adjacent Sicily channel on the study area. This promotes crustal thinning, basin subsidence, and channeling up of mantle-derived helium along lithospheric-scale weak zones. Our results give rise to new insights into the reactivation of inherited weakness zones of southern Tethys margin in response to the complex interaction between African and Eurasian plates accommodated by subduction, rollback, collision, and slab segmentation.

  18. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.


    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.


    瞿伟; 王庆良; 张勤; 张明


    On the basis of the "digital seismic network engineering" GPS monitoring results, and combined with regional tectonic features,the 2D finite element model of the Weihe basin central region is built. According to the above, the present crustal deformation-strain distribution characteristics of the studied area are obtained. The results show that the Xi' an-Xianyang area is of significantly high value of the surface expansion and mainly tensile strain within the area, the value respectively reaches more than 2. 0 × 10-6 /a and 3.5×10-6/a. Thus the present crustal tensile tectonic activity of Xi' an-Xianyang area is strong.%基于中国地壳运动观测网络工程项目的GPS监测成果,结合区域构造特点构建了渭河盆地中部区域二维有限元模型,以此获取了该区域现今地壳形变-应变分布特征.结果表明:该区域内西安、咸阳地区是面膨胀及主张应变显著高值区,量值分别为2.0×10-6/a及3.5×10-6/a,说明西安、咸阳地区现今地壳拉张构造活动较强烈.

  20. Crustal and upper mantle structure of Siberia from teleseismic receiver functions

    Soliman, Mohammad Youssof Ahmad; Thybo, Hans; Artemieva, Irina


    -frequency P-RF component as it has about an order of magnitude better resolution than S-RF. We find no indication for significant crustal anisotropy in the cratonic areas of Siberia. The preliminary crustal thickness results from the Hk stacking and from the inversion approach agree with a previous study...

  1. NACr14: A 3D model for the crustal structure of the North American Continent

    Tesauro, Magdala; Kaban, Mikhail; Mooney, Walter; Cloetingh, Sierd


    Based on the large number of crustal seismic experiments carried out in the last decadeswe create NACr14, a 3D crustal model of the North American continent at a resolution of 1° × 1°. We present maps of thickness and average velocities of the main layers that comprise the North American crystalline

  2. NACr14: A 3D model for the crustal structure of the North American Continent

    Tesauro, Magdala; Kaban, Mikhail; Mooney, Walter; Cloetingh, Sierd


    Based on the large number of crustal seismic experiments carried out in the last decadeswe create NACr14, a 3D crustal model of the North American continent at a resolution of 1° × 1°. We present maps of thickness and average velocities of the main layers that comprise the North American crystalline

  3. Crustal and upper mantle structure of Siberia from teleseismic receiver functions

    Soliman, Mohammad Youssof Ahmad; Thybo, Hans; Artemieva, Irina;


    -frequency P-RF component as it has about an order of magnitude better resolution than S-RF. We find no indication for significant crustal anisotropy in the cratonic areas of Siberia. The preliminary crustal thickness results from the Hk stacking and from the inversion approach agree with a previous study...

  4. An Andean tectonic cycle:From crustal thickening to extension in a thin crust (34º-37ºSL)

    Victor A. Ramos; Vanesa D. Litvak; Andrés Folguera; Mauro Spagnuolo


    Several orogenic cycles of mountain building and subsequent collapse associated with periods of shal-lowing and steepening of subduction zones have been recognized in recent years in the Andes. Most of them are characterized by widespread crustal delamination expressed by large calderas and rhyolitic flare-up produced by the injection of hot asthenosphere in the subduction wedge. These processes are related to the increase of the subduction angle during trench roll-back. The Payenia paleoflat-slab, in the southern Central Andes of Argentina and Chile (34º~37º S) recorded a complete cycle from crustal thickening and mountain uplift to extensional collapse and normal faulting, which are related to changes in the subduction geometry. The early stages are associated with magmatic expansion and migration, subsequent deformation and broken foreland. New ages and geochemical data show the middle to late Miocene expansion and migration of arc volcanism towards the foreland region was associated with important deformation in the Andean foothills. However, the main difference of this orogenic cycle with the previously described cycles is that the steepening of the oceanic subducted slab is linked to basaltic flooding of large areas in the retroarc under an extensional setting. Crustal delamination is concentrated only in a narrow central belt along the cordilleran axis. The striking differences between the two types of cycles are interpreted to be related to the crustal thickness when steepening the subducting slab. The crustal thickness of the Altiplano is over 60e80 km, whereas Payenia is less than 42 km in the axial part, and near 30 km in the retroarc foothills. The final extensional regime associated with the slab steepening favors the basaltic flooding of more than 8400 km3 in an area larger than 40,000 km2, through 800 central vents and large fissures. These characteristics are unique in the entire present-day Andes.

  5. Simulation of the mantle and crustal helium isotope signature in the Mediterranean Sea using a high-resolution regional circulation model

    Ayache, M.; Dutay, J.-C.; Jean-Baptiste, P.; Fourré, E.


    Helium isotopes (3He, 4He) are useful tracers for investigating the deep ocean circulation and for evaluating ocean general circulation models, because helium is a stable and conservative nuclide that does not take part in any chemical or biological process. Helium in the ocean originates from three different sources, namely, (i) gas dissolution in equilibrium with atmospheric helium, (ii) helium-3 addition by radioactive decay of tritium (called tritiugenic helium), and (iii) injection of terrigenic helium-3 and helium-4 by the submarine volcanic activity which occurs mainly at plate boundaries, and also addition of (mainly) helium-4 from the crust and sedimentary cover by α-decay of uranium and thorium contained in various minerals. We present the first simulation of the terrigenic helium isotope distribution in the whole Mediterranean Sea using a high-resolution model (NEMO-MED12). For this simulation we build a simple source function for terrigenic helium isotopes based on published estimates of terrestrial helium fluxes. We estimate a hydrothermal flux of 3.5 mol3 He yr-1 and a lower limit for the crustal flux at 1.6 × 10-7 4He mol m-2 yr-1. In addition to providing constraints on helium isotope degassing fluxes in the Mediterranean, our simulations provide information on the ventilation of the deep Mediterranean waters which is useful for assessing NEMO-MED12 performance. This study is part of the work carried out to assess the robustness of the NEMO-MED12 model, which will be used to study the evolution of the climate and its effect on the biogeochemical cycles in the Mediterranean Sea, and to improve our ability to predict the future evolution of the Mediterranean Sea under the increasing anthropogenic pressure.

  6. An improved 3-D constrained stochastic gravity inversion method, adapted to the crustal-scale study of offshore rifted continental margins

    Geng, Meixia; Welford, J. Kim; Farquharson, Colin


    While seismic methods provide the best geophysical methods for characterizing crustal structure, regional potential field studies and, specifically, constrained 3-D potential field inversion studies, provide an efficient means of bridging between seismic lines and obtaining regional views of deep structure. Most existing potential field inversion codes have been developed for the mining industry with the goal of delineating dense bodies within less dense half-spaces. While these codes can be successfully applied to crustal-scale targets, they are not designed to generate models with the kind of depth-dependent layering expected within the crust and upper mantle and consequently, the results must be interpreted with such limitations in mind. The development of improved inversion codes that will produce results that better conform to known density distributions within the crust and uppermost mantle will revolutionize the application of potential field methods for the study of rifted continental margins where only limited seismic constraints are available. Through insights gained from using existing inversion codes, we have developed a 3D inversion algorithm based on the constrained stochastic method and adapted it for use in regional crustal-scale studies. The new method honours existing sparse seismic constraints and generates models that can reproduce sharp boundaries at the base of the crust as well as more gradational density variations with depth for the crust to upper mantle transition. The improved regional crustal models provide crustal thickness estimates and crustal stretching factors that agree with the sparsely available seismic constraints, while also generating more realistic Earth models. Both synthetic and real examples from offshore eastern Canada, will be used to demonstrate the power of the new method.

  7. Kinematics of the crustal velocity field in the western US

    Pollitz, F. F.


    GPS measurements embodied in PBO and PBO Nucleus allow the crustal velocity field of the western US to be constructed in unprecedented detail. Velocity and strain fields span the entire San Andreas fault system and Cascadia subduction zone from Baja California to northern Washington as well as the continental interior including the Great Basin and Wasatch Front. Rationalizing the GPS velocity field over the several tectonic regimes provides key tests of prevailing notions of interseismic crustal deformation. In our interpretation, we begin with the premise that the load-carrying portion of the lithosphere coincides with the (seismogenic) upper crust with an effective elastic thickness of ~20 km at the time scales of interseimic motions (Thatcher and Pollitz, 2008). End member kinematic models include (1) viscoelastic relaxation of the ductile lower crust and upper mantle following large earthquakes, and (2) slip in the lower elastic lithosphere, each of which serves to localize strain around major faults during interseismic periods. More detailed kinematic models emphasize the roles of lateral variations in rigidity and/or effective elastic plate thickness as well as distributed deformation. Our modeling of western US kinematics shows that the GPS velocity field is well explained with a range of models involving a combination of all of the above components; no single endmember suffices. Zones of inferred distributed deformation in the continental interior coincide with well-known seismic belts (Eastern California Shear Zone; Walker Lane; Interseismic Mountain Belt). Continued acquisition of vector constraints on crustal motions and study of available geodetic data are needed to clarify active deformation patterns in several areas. Some outstanding issues are: The nature of distributed faulting at the margins of the Great Basin (southern Nevada Transverse Zone, northern Walker Lane); understanding how dextral shear from the eastern boundary of the Sierra Nevada

  8. Regional characteristics of sea ice thickness in Canadian shelf and Arctic Archipelago measured by Ground Penetrating Radar

    LI Tao; ZHAO Jinping; JIAO Yutian; HOU Jiaqiang; MU Longjiang


    Ground Penetrating Radar (GPR) measurements of sea ice thickness including undeformed ice and ridged ice were carried out in the central north Canadian Archipelago in spring 2010. Results have shown a significant spatial heterogeneity of sea ice thickness across the shelf. The undeformed multi-year fast ice of (2.05±0.09) m thick was investigated southern inshore zone of Borden island located at middle of the observational section, which was the observed maximum thickness in the field work. The less thick sea ice was sampled across a flaw lead with the thicknesses of (1.05±0.11) m for the pack ice and (1.24±0.13) m for the fast ice. At the northernmost spot of the section, the undeformed multi-year pack ice was (1.54±0.22) m thick with a ridged ice of 2.5 to 3 m, comparing to the multi-year fast ice with the thickness of (1.67±0.16) m at the southernmost station in the Prince Gustaf Adolf Sea.

  9. Crustal structure of Nigeria and Southern Ghana, West Africa from P-wave receiver functions

    Akpan, Ofonime; Nyblade, Andrew; Okereke, Chiedu; Oden, Michael; Emry, Erica; Julià, Jordi


    We report new estimates of crustal thickness (Moho depth), Poisson's ratio and shear-wave velocities for eleven broadband seismological stations in Nigeria and Ghana. Data used for this study came from teleseismic earthquakes recorded at epicentral distances between 30° and 95° and with moment magnitudes greater than or equal to 5.5. P-wave receiver functions were modeled using the Moho Ps arrival times, H-k stacking, and joint inversion of receiver functions and Rayleigh wave group velocities. The average crustal thickness of the stations in the Neoproterozoic basement complex of Nigeria is 36 km, and 23 km for the stations in the Cretaceous Benue Trough. The crustal structure of the Paleoproterozoic Birimian Terrain, and Neoproterozoic Dahomeyan Terrain and Togo Structural Unit in southern Ghana is similar, with an average Moho depth of 44 km. Poisson's ratios for all the stations range from 0.24 to 0.26, indicating a bulk felsic to intermediate crustal composition. The crustal structure of the basement complex in Nigeria is similar to the average crustal structure of Neoproterozoic terrains in other parts of Africa, but the two Neoproterozoic terrains in southern Ghana have a thicker crust with a thick mafic lower crust, ranging in thickness from 12 to 17 km. Both the thicker crust and thick mafic lower crustal section are consistent with many Precambrian suture zones, and thus we suggest that both features are relict from the collisional event during the formation of Gondwana.

  10. Folding style controlled by intermediate decollement thickness change in the Lurestan region (NW of the Zagros fold-and-thrust belt), using analogue models

    Farzipour Saein, Ali


    The basal and intermediate decollements play an important role in structural style of fold-and-thrust belts. The decollement units, or different mechanical stratigraphy within the rock units, are not uniform throughout the ZFTB and show a strong spatial variation. The Lurestan region with varied thickness of the intermediate decollement in its northern and southern parts is one of the most important parts of the Zagros fold-and-thrust belt, regarding its hydrocarbon exploration-extraction projects. Thickness variation of the intermediate decollement in different parts of the Lurestan region allows us to address its role on folding style. Based on scaled analogue modeling, this study outlines the impact of thickness and facies variation of sedimentary rocks in the northern and southern parts of this region on folding style. Two models simulated the mechanical stratigraphy and its consequent different folding styles of the northern and southern parts of the region. In the models, only thickness of the intermediate decollement (thick and thin) for the northern and southern parts of the Lurestan region was varied. Detached minor folds above the intermediate decollement were created in response to the presence of the thicker intermediate decollement, northern part of the study area, which consequently deformed complexly and disharmonically folded, in contrast to polyharmonic folding style in the section, compared to polyharmonic folding style in the southern part, where thin intermediate decollement exists. The model results documented that thickness variation of intermediate decollement levels could explain complex and different folding styles in natural examples which must be taken into account for hydrocarbon exploration throughout these areas.

  11. Folding style controlled by intermediate decollement thickness change in the Lurestan region (NW of the Zagros fold-and-thrust belt), using analogue models

    Farzipour Saein, Ali


    The basal and intermediate decollements play an important role in structural style of fold-and-thrust belts. The decollement units, or different mechanical stratigraphy within the rock units, are not uniform throughout the ZFTB and show a strong spatial variation. The Lurestan region with varied thickness of the intermediate decollement in its northern and southern parts is one of the most important parts of the Zagros fold-and-thrust belt, regarding its hydrocarbon exploration-extraction projects. Thickness variation of the intermediate decollement in different parts of the Lurestan region allows us to address its role on folding style. Based on scaled analogue modeling, this study outlines the impact of thickness and facies variation of sedimentary rocks in the northern and southern parts of this region on folding style. Two models simulated the mechanical stratigraphy and its consequent different folding styles of the northern and southern parts of the region. In the models, only thickness of the intermediate decollement (thick and thin) for the northern and southern parts of the Lurestan region was varied. Detached minor folds above the intermediate decollement were created in response to the presence of the thicker intermediate decollement, northern part of the study area, which consequently deformed complexly and disharmonically folded, in contrast to polyharmonic folding style in the section, compared to polyharmonic folding style in the southern part, where thin intermediate decollement exists. The model results documented that thickness variation of intermediate decollement levels could explain complex and different folding styles in natural examples which must be taken into account for hydrocarbon exploration throughout these areas.

  12. Visualization and dissemination of global crustal models on virtual globes

    Zhu, Liang-feng; Pan, Xin; Sun, Jian-zhong


    Global crustal models, such as CRUST 5.1 and its descendants, are very useful in a broad range of geoscience applications. The current method for representing the existing global crustal models relies heavily on dedicated computer programs to read and work with those models. Therefore, it is not suited to visualize and disseminate global crustal information to non-geological users. This shortcoming is becoming obvious as more and more people from both academic and non-academic institutions are interested in understanding the structure and composition of the crust. There is a pressing need to provide a modern, universal and user-friendly method to represent and visualize the existing global crustal models. In this paper, we present a systematic framework to easily visualize and disseminate the global crustal structure on virtual globes. Based on crustal information exported from the existing global crustal models, we first create a variety of KML-formatted crustal models with different levels of detail (LODs). And then the KML-formatted models can be loaded into a virtual globe for 3D visualization and model dissemination. A Keyhole Markup Language (KML) generator (Crust2KML) is developed to automatically convert crustal information obtained from the CRUST 1.0 model into KML-formatted global crustal models, and a web application (VisualCrust) is designed to disseminate and visualize those models over the Internet. The presented framework and associated implementations can be conveniently exported to other applications to support visualizing and analyzing the Earth's internal structure on both regional and global scales in a 3D virtual-globe environment.

  13. Enhanced washout of {sup 99m}Tc-tetrofosmin in hypertrophic cardiomyopathy: quantitative comparisons with regional {sup 123}I-BMIPP uptake and wall thickness determined by MRI

    Thet-Thet-Lwin, Tohoru; Takeda, Jin; Wu, Yuko; Fumikura, Keiji; Iida, Satoru; Kawano, Iwao; Yamaguchi, Yuji; Itai [Institute of Clinical Medicine, University of Tsukuba, Tennodai 1-1-1, 305-8575, Tsukuba-shi, Ibaraki-ken (Japan)


    The diagnostic value of technetium-99m tetrofosmin (TF) washout in hypertrophic cardiomyopathy (HCM) was examined by investigating its relation to the metabolic abnormality depicted by iodine-123 {beta}-methyl-p-iodophenylpentadecanoic acid (BMIPP) uptake and the left ventricular (LV) myocardial wall thickness as measured by magnetic resonance imaging (MRI). TF washout was evaluated in 31 patients with HCM and 23 normal control subjects using 30-min (early) and 3-h (delayed) TF single-photon emission tomography images. The LV myocardial wall was divided into 19 segments and the percentage TF washout, regional BMIPP uptake and LV wall thickness were measured in each segment. Mean TF washout in the patients with HCM was significantly faster than that in normal control subjects (23.7{+-}5.7 vs 13.4{+-}4.1, P<0.0001). In the patients with HCM, TF washout showed an excellent correlation with MRI wall thickness (r=0.82, P<0.0001) and a good inverse correlation with regional BMIPP uptake (r=-0.72, P<0.0001). In addition, a good linear correlation was observed between TF uptake and MRI wall thickness in the 19 regional segments. In conclusion, the degree of TF washout corresponds well with the severity of myocardial wall thickness and the degree of metabolic abnormality in patients with HCM. These results suggest that enhanced TF washout might provide additional clinical information regarding metabolic alterations in HCM. (orig.)

  14. Crustal structure of the SW Iberian passive margin: The westernmost remnant of the Ligurian Tethys?

    Ramos, A.; Fernández, O.; Torne, M.; Sánchez de la Muela, A.; Muñoz, J. A.; Terrinha, P.; Manatschal, G.; Salas, M. C.


    At present, the SW Iberian margin is located along the convergent Iberia-Nubia plate boundary. In Mesozoic times, the margin was located at the triple junction of the Ligurian Tethys, Central Atlantic and Northern Atlantic. The characterization of its crustal structure has allowed us to propose a configuration for this triple junction and to determine the role that this transform margin played within the plate kinematic system. In this paper we present an integrated study based on the interpretation of a 2D regional multichannel seismic survey consisting of 58 profiles, tied with onshore geology and exploratory wells, and on gravimetric modeling performed over four NW-SE trending profiles. Integrated interpretation of MCS data combined with 2D gravity modeling reveals a complex pattern in the southward crustal thinning of SW Iberia and supports the possible presence of oceanic crust under the Gulf of Cadiz. The tapering of Iberian crust is characterized by steps with rapid changes in the thickness of the crust, and thinning to Bank. Margin inversion and the pre-existing extensional crustal structure are responsible for the areal distribution and amplitude of the prominent positive gravity anomaly observed in the Gulf of Cadiz.

  15. Crustal structure of Australia from ambient seismic noise tomography

    Saygin, Erdinc; Kennett, B. L. N.


    Surface wave tomography for Australian crustal structure has been carried out using group velocity measurements in the period range 1-32 s extracted from stacked correlations of ambient noise between station pairs. Both Rayleigh wave and Love wave group velocity maps are constructed for each period using the vertical and transverse component of the Green's function estimates from the ambient noise. The full suite of portable broadband deployments and permanent stations on the continent have been used with over 250 stations in all and up to 7500 paths. The permanent stations provide a useful link between the various shorter-term portable deployments. At each period the group velocity maps are constructed with a fully nonlinear tomographic inversion exploiting a subspace technique and the Fast Marching Method for wavefront tracking. For Rayleigh waves the continental coverage is good enough to allow the construction of a 3D shear wavespeed model in a two stage approach. Local group dispersion information is collated for a distribution of points across the continent and inverted for a 1D SV wavespeed profile using a Neighbourhood Algorithm method. The resulting set of 1D models are then interpolated to produce the final 3D wavespeed model. The group velocity maps show the strong influence of thick sediments at shorter periods, and distinct fast zones associated with cratonic regions. Below the sediments the 3D shear wavespeed model displays significant heterogeneity with only moderate correlation with surface tectonic features. For example, there is no evident expression of the Tasman Line marking the eastern edge of Precambrian outcrop. The large number of available inter-station paths extracted from the ambient noise analysis provide detailed shear wavespeed information for crustal structure across the Australian continent for the first time, including regions where there was no prior sampling because of difficult logistics.

  16. Crustal structure of the Pannonian Basin: The AlCaPa and Tisza Terrains and the Mid-Hungarian Zone

    Hetényi, György; Ren, Yong; Dando, Ben; Stuart, Graham W.; Hegedűs, Endre; Kovács, Attila Csaba; Houseman, Gregory A.


    The Pannonian Basin of Central Europe is one of the key examples of Miocene continental extension that is easily accessible to surface seismological investigation. It comprises two major crustal blocks: AlCaPa and Tisza which abut along a poorly understood structure referred to as the Mid-Hungarian Zone (MHZ), the whole being surrounded by the arc of the Carpathian Mountains, the Alps and the Dinarides. Using data from the CBP (Carpathian Basins Project) temporary broadband seismic array of 46 stations deployed across the western Pannonian Basin in 2006-2007, we calculated receiver functions that constrain the variation of crustal thickness across the basin and derive a map of Moho depth across a NW-SE oriented swath about 450 km long and 75 km wide. The measured Moho depths show no significant change in crustal thickness between AlCaPa and Tisza terrains, but the Moho is not or very weakly imaged along a ca. 40 km wide strip centred on the MHZ. Moho depths within the Pannonian Basin are typically in the range 25-30 km, and increase toward the periphery of the basin. Our measurements are generally consistent with earlier VP models from controlled-source seismic surveys and recent VS models determined by tomographic analysis of ambient noise signals. The lack of a sharp Moho image beneath the MHZ suggests that the crust-mantle boundary in that zone may consist of a gradual increase in velocity with depth. The relatively constant crustal thickness across the two domains of the Pannonian Basin suggests that thinning to the same final state is controlled thermally. This structural characteristic seems to be governed by a large-scale balance of gravitational potential energy that is insensitive to the separate prior histories of the two regions.

  17. Crustal structure and tectonic history of the Kermadec arc inferred from MANGO seismic refraction profiles

    Bassett, D.; Kopp, H.; Sutherland, R.; Henrys, S.; Watts, A. B.; Timm, C.; Scherwath, M.; Grevemeyer, I.; de Ronde, C. E. J.


    We have analyzed three wide-angle seismic reflection and refraction profiles and applied spectral averaging techniques to regional grids of bathymetry and free-air gravity anomaly to place the first regional constraints on the crustal structure of the Kermadec arc. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure, across which, 1) the remnant Lau-Colville and active Kermadec arc ridges narrow by >50%; 2) the backarc and forearc deepen by 1 km, and 3) the active volcanic arc is deflected west into the deepest known backarc basin. We use residual bathymetric anomalies to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the forearc with VP 6.5-7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110±20 km) and strike ( 005° south of 25°S). South of the CKD the forearc is structurally homogeneous down-dip with VP 5.7-7.3 km s-1. Lower crustal velocities are similar to the northern Kermadec forearc, but there is no seismic or gravimetric evidence for an extinct arc ridge within the forearc. In the Havre Trough backarc, crustal thickness south of the CKD is 8-9 km, which is up-to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. The northern Kermadec/Tonga arc preserves a substrate of the Eocene arc, the southern Kermadec forearc preserves Mesozoic forearc rocks accreted at the Gondwana margin, and the central Kermadec arc may have fomed in the Kupe Abyssal Plain. The oldest arc related rocks recovered north and south of the CKD are 52 Ma and 16.7 Ma respectively, and plate tectonic reconstruction suggest the Eocene arc was originally conjoined with the Three Kings Ridge. The separation of these ridges during the early Oligocene likely formed the CKD. In contrast to previous interpretations, we

  18. A New System for Understanding Mid-crustal Sheeted Complexes in a Tilted Crustal Section, Joshua Tree National Park, California

    Ianno, A. J.; Paterson, S. R.


    The western portion of Joshua Tree National Park exposes a tilted crustal section through continental arc crust from 0-30 km. A significant portion of the middle crust is represented by Mesozoic, tabular, intrusive, igneous bodies ranging from 0.1 to 100 m in thickness. While these igneous bodies range in composition (gabbro to peraluminous granites), texture (equigranular to porphyritic), and grain size (very fine to coarse), patterns emerge between different regions of "sheeted complexes" that may be related to their emplacement and geochemical history. No consistent method of describing and comparing sheeted complexes exists in the literature, so we have developed a method of classifying sheeted complexes at Joshua Tree NP, which may be broadly applicable to all sheeted bodies. We classify these sheeted complexes using the terms homogeneous/heterogeneous and focused/defocused. A homogeneous sheeted complex generally contains magmas within a 10 wt% SiO2 range, although we are still testing the validity of this number. A focused sheeted complex has adjacent sheets or close spacing between sheets and Jurassic to Cretaceous sheeted complexes in western Joshua Tree NP. At Keys View, we observe a heterogeneous, spatially focused sheeted complex with 0.1-2 m thick sheets recording pressures indicating 15-22 km depth from top to bottom. Compositions range from gabbro to peraluminous granite, although tonalites-granodiorites and two-mica garnet granites are volumetrically dominant. A zone of elongate plutons (in map view) lying structurally above this could potentially be considered as a very thickly sheeted, homogeneous, focused sheeted complex and is composed of granodiorites, granites, and two-mica garnet granites. A more thickly sheeted (2-10 m), homogeneous, focused, sheeted granite complex with pressures indicating a depth of approximately 12 km is found along the northern edge of the park. The number of sheets decreases and the average thickness increases as this

  19. Brain volumetrics, regional cortical thickness and radiographic findings in children with cyanotic congenital heart disease using quantitative magnetic resonance imaging

    Alsiagy A. Salama, M.D.


    Conclusions: Children with CCHD show MRI evidence of micro- and macro vascular injury, reduced brain volume and cortical thickness. Brain volume loss correlated with hsCRP, oxygen saturation and packed cell volume.

  20. Effects of closed chain exercises for the lumbar region performed with local vibration applied to an unstable support surface on the thickness and length of the transverse abdominis.

    Yun, Kihyun; Lee, Sangyong; Park, Jinsik


    [Purpose] This study examined the effects of closed chain exercises performed with local vibration applied to an unstable support surface on the thickness and length of the transverse abdominis. [Subjects] The subjects were 64 healthy university students who were randomly assigned to a bridge exercise with sling and vibration group (BESVG, n=30) and a bridge exercise with sling group (BESG, n=34). [Methods] The bridge exercise was repeated four times per set and a total of 18 sets were performed: 9 sets in a supine position and 9 sets in a prone position. In both the BESVG and the BESG groups, the thickness and length of the transverse abdominis (TrA) were measured using ultrasonography with the abdomen "drawn-in" and the pressure of a biofeedback unit maintained at 40 mmHg, both before and after the intervention. [Results] In intra-group comparisons, the BESVG showed significant increases in the thickness of the TrA and significant decreases in the length of the TrA. The BESG showed significant increases in the thickness of the TrA. The BESVG showed significant increases in the thickness of the TrA and significant decreases in the length of the TrA compared to BESG. [Conclusion] Closed chain exercises for the lumbar region performed with local vibration applied to slings, which are unstable support surfaces, are an effective intervention for altering the thickness and length of the TrA.

  1. Effects of Crustal Fields on the Ionosphere of Mars as seen by MAVEN

    Vogt, Marissa F.; Withers, Paul; Flynn, Casey L.; Andersson, Laila; Brain, David; Mitchell, David; Connerney, Jack; Espley, Jared R.


    Mars lacks a global intrinsic magnetic field but possesses regions of strong crustal magnetic field that are concentrated in the southern hemisphere. Previous studies have used Mars Global Surveyor or Mars Express data to show that these crustal fields influence the electron densities in the Martian ionosphere. However, many of these studies relied on remote radio occultation or radar sounding measurements and therefore relied on models to infer the crustal magnetic field strength and direction. In fall 2015 the MAVEN spacecraft passed through these crustal field regions at low altitudes, on the day side, and collected comprehensive measurements of the local plasma and magnetic field properties. The MAVEN observations therefore provide an excellent dataset with which to examine the effects of crustal fields on the ionosphere. We report on the MAVEN electron density measurements in the southern crustal field regions and discuss the influence of the magnetic field direction and topology on the dayside Martian ionosphere.

  2. The role of crustal quartz in controlling Cordilleran deformation.

    Lowry, Anthony R; Pérez-Gussinyé, Marta


    Large-scale deformation of continents remains poorly understood more than 40 years after the plate tectonic revolution. Rock flow strength and mass density variations both contribute to stress, so both are certain to be important, but these depend (somewhat nebulously) on rock type, temperature and whether or not unbound water is present. Hence, it is unclear precisely how Earth material properties translate to continental deformation zones ranging from tens to thousands of kilometres in width, why deforming zones are sometimes interspersed with non-deforming blocks and why large earthquakes occasionally rupture in otherwise stable continental interiors. An important clue comes from observations that mountain belts and rift zones cyclically form at the same locations despite separation across vast gulfs of time (dubbed the Wilson tectonic cycle), accompanied by inversion of extensional basins and reactivation of faults and other structures formed in previous deformation events. Here we show that the abundance of crustal quartz, the weakest mineral in continental rocks, may strongly condition continental temperature and deformation. We use EarthScope seismic receiver functions, gravity and surface heat flow measurements to estimate thickness and seismic velocity ratio, v(P)/v(S), of continental crust in the western United States. The ratio v(P)/v(S) is relatively insensitive to temperature but very sensitive to quartz abundance. Our results demonstrate a surprising correlation of low crustal v(P)/v(S) with both higher lithospheric temperature and deformation of the Cordillera, the mountainous region of the western United States. The most plausible explanation for the relationship to temperature is a robust dynamical feedback, in which ductile strain first localizes in relatively weak, quartz-rich crust, and then initiates processes that promote advective warming, hydration and further weakening. The feedback mechanism proposed here would not only explain

  3. Structural asymmetry of the human cerebral cortex: Regional and between-subject variability of surface area, cortical thickness, and local gyrification.

    Chiarello, Christine; Vazquez, David; Felton, Adam; McDowell, Alessandra


    Structural asymmetry varies across individuals, brain regions, and metrics of cortical organization. The current study investigated regional differences in asymmetry of cortical surface area, thickness, and local gyrification, and the extent of between-subject variability in these metrics, in a sample of healthy young adults (N=200). Between-subject variability in cortical structure may provide a means to assess the extent of biological flexibility or constraint of brain regions, and we explored the potential influence of this variability on the phenotypic expression of structural asymmetry. The findings demonstrate that structural asymmetries are nearly ubiquitous across the cortex, with differing regional organization for the three cortical metrics. This implies that there are multiple, only partially overlapping, maps of structural asymmetry. The results further indicate that the degree of asymmetry of a brain region can be predicted by the extent of the region's between-subject variability. These findings provide evidence that reduced biological constraint promotes the expression of strong structural asymmetry.

  4. Basement and crustal structure of the Davis Sea region (East Antarctica): implications for tectonic setting and continent to oceanic boundary definition

    Guseva, Y.B.; Leitchenkov, G.L.; Gandyukhin, V.V.; Ivanov, S.V.


    This study is based on about 8400 km of MCS, magnetic and gravity data as well as 20 sonobuoys collected by the Russian Antarctic Expedition during 2003 and 2004 in the Davis Sea and adjacent areas between 80°E and 102°E. Major tectonic provinces and features are identified and mapped in the study region including: 1) A marginal rift with a the extended continental crust ranging 130 to more than 200 km in width; 2) The marginal volcanic plateau of the Bruce Bank consisting of the Early Cretaceous igneous rocks; 3) The Early Cretaceous and Late Cretaceous−Paleogene oceanic basins; and 4) The Early Cretaceous igneous province of the Kerguelen Plateau. Four major horizons identified in the sedimentary cover of the Davis Sea region are attributed to main tectonic events and/or paleoenvironmental changes.

  5. Source and Path Calibration in Regions of Poor Crustal Propagation Using Temporary, Large-Aperture, High-Resolution Seismic Arrays (Postprint). Annual Report 3


    Soc. Am., 101: 1938–1947. Jackson, J. A., and N. J. White (1989), Normal faulting in the upper continental crust : observations from regions of...dipping plane or along a listric fault near the base of the seismogenic crust , but satellite imagery does not support either scenario. Resolving the 3... processing filters to remove spurious detections and erroneous phase and event associations. Main considerations are (1) stations close to each other have

  6. Petrogenesis of Oceanic Crust at Back-Arc Spreading Centers: Modeling the Effects of Slab-Derived Water on Crustal Accretion in the Lau Basin

    Eason, D. E.; Dunn, R. A.


    Oceanic crust formed along spreading centers in the Lau back-arc basin exhibits a dramatic change in crustal structure and composition with proximity to the nearby Tofua Arc. Results from seismic studies indicate that crust formed near the arc is abnormally thick (~8-9 km) and compositionally stratified, with a thick low-velocity upper crust and an abnormally high-velocity (7.2-7.4+ km/s) lower crust. Lava samples from this area show arc-like compositional enrichments and tend to be more evolved than typical mid-ocean ridge basalts (MgO contents as low as ~1 wt%). We propose that slab-derived water entrained in the near-arc ridge system not only enhances mantle melting, as commonly proposed to explain high crustal production in back-arc environments, but also affects magmatic differentiation and crustal accretion processes. Phase equilibria modeling of the observed compositional trends suggests that the high water contents found in near-arc parental melts can lead to crystallization of an unusually mafic cumulate layer by suppressing plagioclase crystallization relative to olivine and clinopyroxene. Model runs with ~1-2 wt% H2O in the parental melts successfully reproduce the geochemical trends of the erupted lavas while crystallizing a cumulate assemblage with calculated seismic velocities consistent with those observed in the near-arc lower crust. The resulting residual melts are also water-rich, which lowers their density and aids in the extraction and eventual eruption of unusually evolved magmas. We present preliminary results of this petrological model for the formation of back-arc oceanic crust, which successfully predicts the unusual crustal stratification observed in the near-arc regions of the Lau basin, and helps explain the highly fractionated andesites and dacites that erupt there. We also comment on alternative proposed hypotheses for back-arc crustal accretion and discuss some of the challenges facing them in this particular region.

  7. Bay sedimentation as controlled by regional crustal behaviour, local tectonics and eustatic sea-level changes: Coquimbo Formation (Miocene Pliocene), Bay of Tongoy, central Chile

    Le Roux, J. P.; Olivares, Danisa M.; Nielsen, Sven N.; Smith, Norman D.; Middleton, Heather; Fenner, Juliane; Ishman, Scott E.


    The north-facing Bay of Tongoy in central Chile is flanked by topographic highs in the west and east. During the Miocene and Pliocene, the bay extended inland at least 30 km farther south than a present. It was filled with muds, sands, coquinas and gravel during a series of transgressions and regressions related to regional and local tectonic movements combined with global sea-level variations. 87Sr/ 86Sr and microfossil dating indicates transgressions between 11.9-11.2 Ma, 10.1-9.5 Ma, 9.0-7.3 Ma, 6.3-5.3 Ma, 4.3-2.2 Ma and 1.7-1.4 Ma. The regional tectonic behaviour of the crust shows general uplifting from 10.5 Ma to 6.9 Ma, associated with subduction of the Juan Fernández Ridge (JFR) beneath this part of the continent. Subsidence followed between 6.9 and 2.1 Ma, in the wake of the southeastward-migrating JFR. The subsequent subduction of an oceanic plateau similar to the JFR caused rapid uplift that led to the final emergence of the bay above sea level. The Puerto Aldea normal fault along the western limit of the study area was reactivated during the regional uplift and subsidence events, with reverse faulting occurring during the latter phase. Sporadic fault reactivation probably triggered the rapid changes in water depth reflected in the recorded vertical succession of facies.

  8. U-Pb zircon geochronology of rocks in the Salinas Valley region of California: A reevaluation of the crustal structure and origin of the Salinian block

    Barth, A.P.; Wooden, J.L.; Grove, M.; Jacobson, C.E.; Pedrick, J.N.


    The Salinian block in the Salinas Valley region of central California consists of arc granitic and metasedimentary rocks (schist of Sierra de Salinas) sandwiched between coeval high-pressure, low-temperature me??lange belts. U-Pb zircon ages of three granitic plutons from this region range from 88 to 82 Ma, and coexisting biotite yielded 40Ar/39Ar cooling ages of 76-75 Ma. The U-Pb ages from detrital zircons indicate derivation of the protolith of the schist from a 117-81 Ma igneous provenance. Muscovite and biotite 40Ar/ 39Ar cooling ages of 72-68 Ma from the nearby schist are distinctly younger than those from the granitic plutons. These data indicate that deposition and metamorphism of the schist occurred after emplacement of adjacent granitic rocks, contradicting the prevailing view that the schist comprises the local framework for the Salinian arc. We propose that the schist of Sierra de Salinas was thrust beneath the Salinian magmatic arc along a Campanian thrust fault that has not been recognized. This hypothesis implies that the Salinian arc originated as a klippe of basement rocks derived from the vicinity of the western Mojave Desert. Thrusting initiated southeastward-migrating Laramide tectonism of a style similar to that which formed the Vincent thrust and the latest Cretaceous and Paleocene Pelona and Orocopia Schists of southern California and southwestern Arizona.

  9. The crustal composition of the Falkland Plateau

    Klemt, Claudia; Jokat, Wilfried


    The Falkland Islands are situated in the South Atlantic Ocean 500 km east of Patagonia, South America. The islands are part of the Falkland Plateau, which stretches eastward for more than 1500 km. A bathymetric high, the Maurice Ewing Bank, terminates the plateau in the east. Until Late Jurassic the Falkland Islands were part of Gondwana and were located adjacent to the east coast of South Africa. While the Falkland Islands and Maurice Ewing Bank are proved to be of continental composition, the nature and structure of the Falkland Plateau's basement in between is debatable. The first crustal model derived from sonobuoy data contradicts an only recently published 3D-gravity model. To enhance the understanding of Gondwana break-up considering timing, geometry and amount of volcanism, further knowledge about the structure and thickness of the crust is inevitable. During the ANT-XXIX/5 Polarstern cruise seismic refraction measurements were conducted using Ocean Bottom Seismometers (OBS) and Reftek land stations onshore of East Falkland. The OBS were deployed at 78 locations along an approximately 1500 km east-west stretching profile. For the western transect a P-wave velocity model is calculated using 2D-raytracing techniques. The results are presented in combination with potential field data showing the extension of the Falkland Islands basement, the continent-ocean transition zone and the crustal structure of the plateau. On the Falkland Plateau Basin sediment thickness is about 6 km with velocities ranging from 1.7 to 4.1 km/s in the upper part and about 4.7 km/s above basement. The crust is of oceanic composition with an igneous section that is considerably thicker than average oceanic crust (up to 17 km). The velocity structure in the upper crustal part is typical for layer 2 with a velocity gradient ranging from 5.4 km/s to 6.5 km/s and thicknesses between 1.5 km and 4 km. Layer 3 is about 14 km thick with a velocity gradient from 6.6 km/s to 7.6 km/s, which is

  10. The Computation of Potential Harmonic Coefficients Using Global Crustal Information

    Tsoulis, D.

    Topographic/isostatic potential harmonic coefficients can be computed from a global elevation model, when one accounts for the compensation of the upper crust according to a certain model of isostasy. The theory is based on a series expansion of the inverse distance function, which enables an efficient computation of the dimensionless poten- tial coefficients on the sphere. The availability of global crustal models permits the application of the same theory, with the exception that here the theoretically defined boundary between upper crust and mantle is replaced with crustal thickness informa- tion derived mainly from processing repeated seismic observations. The present paper deals with the spherical harmonic analysis of such a model, namely the CRUST 2.0 global crustal model, and compares the derived spectrum with the respective coeffi- cient sets delivered by the application of idealized isostatic models such as those of Airy/Heiskanen or Pratt/Hayford.

  11. Crustal Structure across Rivera Plate and Jalisco Block (MEXICO): TsuJal Project

    Nuñez-Cornu, F. J.; Nunez, D.; Barba, D. C., Sr.; Trejo, E.; Escalona, F.; Danobeitia, J.; Gutierrez Pena, Q. J.


    Located on the western margin of Mexico, the collision zone between Rivera, Cocos and North American plates is a complex tectonic collage with high seismic hazards and potential tsunamigenic sources. During the spring of 2014, within the framework of TSUJAL project, Spanish and Mexican scientists investigated this region with the main objective of defining the crustal architecture of this active margin and recognizing potential structural sources that can trigger earthquakes and tsunamis at the convergence between Rivera plate-Jalisco block with the North American Plate. To achieve these goals, a wide-ranging of geophysical data was acquired in this region both offshore and onshore. In this paper, we present the preliminary results obtained from this project about bathymetric, structural geology and wide-angle seismic data of the southern coast of Bahía de Banderas. A crustal P-wave velocity model for the southern coast of Bahía de Banderas was obtained using WAS data recorded by OBS and land seismic stations for more than 150 km across Rivera Plate and Jalisco Block. The thickness of the slab in this area is about 10 km and presents a dip angle about 8º. Continental crustal thickness below Puerto Vallarta is about 20 km, no evidence of continental Moho was found in this study. This model support that due to the convergence of Rivera Plate against Jalisco Block, the region of Bahía de Banderas is under strong crustal stresses that generate structural lineaments and have the same trends offshore and inland. Most of the seismicity reported can be associated to the main structural lineaments. The Banderas Canyon apparently is in an opening process from west to east, which seems to continue through the Rio Pitillal river valley. There is no seismic or morphological evidence to consider that the Banderas Canyon is a continuation of Vallarta Graben.South of María Cleofas Island, the SC marks the limit between RP and JB, possibly being the result of the RP against JB

  12. Crustal structure of the Kermadec arc from MANGO seismic refraction profiles

    Bassett, Dan; Kopp, Heidrun; Sutherland, Rupert; Henrys, Stuart; Watts, Anthony B.; Timm, Christian; Scherwath, Martin; Grevemeyer, Ingo; de Ronde, Cornel E. J.


    Three active-source seismic refraction profiles are integrated with morphological and potential field data to place the first regional constraints on the structure of the Kermadec subduction zone. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure previously known as the 32°S boundary. We use residual bathymetry to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the fore-arc with VP 6.5-7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110 ± 20 km), and strike ( 005° south of 25°S). South of the CKD the fore-arc is structurally homogeneous downdip with VP 5.7-7.3 km s-1. In the Havre Trough back-arc, crustal thickness south of the CKD is 8-9 km, which is up to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. We suggest that the Eocene arc did not extend along the current length of the Tonga-Kermadec trench. The Eocene arc was originally connected to the Three Kings Ridge, and the CKD was likely formed during separation and easterly translation of an Eocene arc substrate during the early Oligocene. We suggest that the first-order crustal thickness variations along the Kermadec arc were inherited from before the Neogene and reflect Mesozoic crustal structure, the Cenozoic evolution of the Tonga-Kermadec-Hikurangi margin and along-strike variations in the duration of arc volcanism.

  13. Crustal structure in Gulf of Mexico from OBS refraction and multichannel reflection data

    Ibrahim, A.K.; Carye, J.; Latham, G.; Buffler, R.T.


    Results from 12 reversed refraction profiles each 110 km long have been combined with multichannel reflection data to produce a series of crustal structure sections across the Gulf of Mexico. The refraction data were collected using ocean bottom seismographs (OBS) and explosive charges ranging in size from 1 to 120 lb (0.45 to 54.42 kg). These data show as many as three layers of sedimentary rocks with total thickness between 5 and 9 km and layer velocities between 1.7 and 3.5 km/sec. Beneath most of the Gulf, this sedimentary section is underlain by a layer with velocity between 4.5 and 5.4 km/sec. The acoustic basement as defined by reflection data is confined within this layer. This basement layer, which may be the top of volcanic layer 2, is too thin to be detected in the refraction results. Beneath this layer in most of the deep Gulf is an oceanic crustal layer (layer 3), 3 to 6 km thick which thickens to about 12 km under the Mississippi fan and 10 km in the southeastern Gulf where it is interpreted to be transitional crust. Oceanic layer 3 has a velocity between 6.4 and 7.0 km/sec and overlies a mantle with velocity between 7.6 and 8.2 km/sec. The top of oceanic layer 3 was not observed on regional multichannel seismic profiles. These data confirm earlier refraction interpretation that most of the deep Gulf basin is underlain by an oceanic crustal layer flanked by transitional crust. This layer may have been formed by a mantle thermal event accompanied by a period of rapid sea-floor spreading. 16 figures, 1 table.

  14. Scaling behaviour in temporal fluctuations of crustal seismicity in Taiwan

    L. Telesca


    Full Text Available The crustal seismicity of Taiwan was investigated by means of the Allan Factor analysis and Count-based Periodogram, which allow to identify scaling behaviour in point processes and to quantify their temporal fluctuations by means of the estimate of the scaling exponent. Our findings point out to the presence of two time-scaling regions in the crustal Taiwanese seismicity. The first region, involving the intermediate timescales can be probably linked with aftershock activity, while the second region, involving the large timescales could be related with the background seismicity.

  15. Crustal deformation rates in Assam Valley, Shillong Plateau, Eastern Himalaya, and Indo-Burmese region from 11 years (2002-2013) of GPS measurements

    Barman, Prakash; Jade, Sridevi; Shrungeshwara, T. S.; Kumar, Ashok; Bhattacharyya, Sanjeev; Ray, Jagat Dwipendra; Jagannathan, Saigeetha; Jamir, Wangshi Menla


    The present study reports the contemporary deformation of the tectonically complex northeast India using 11 years (2002-2013) of GPS observations. The central Shillong Plateau and few sites north of Plateau located in Assam Valley behave like a rigid block with 7 mm/year India-fixed southward velocity. The Euler pole of rotation of this central Shillong Plateau-Assam Valley (SH-AS) block is estimated to be at -25.1° ± 0.2°N, -97.8° ± 1.8°E with an angular velocity of 0.533° ± 0.10° Myr-1 relative to India-fixed reference frame. Kopili fault located between Shillong Plateau and Mikir massif records a dextral slip of 4.7 ± 1.3 mm/year with a locking depth of 10.2 ± 1.4 km indicating the fragmentation of Assam Valley across the fault. Presently, western edge of Mikir massif appears to be locked to Assam block indicating strain accumulation in this region. First-order elastic dislocation modelling of the GPS velocities estimates a slip rate of 16 mm/year along the Main Himalayan Thrust in Eastern Himalaya which is locked over a width of 130 km from the surface to a depth of 17 km with underthrusting Indian plate. Around 9 mm/year arc-normal convergence is accommodated in Lesser Himalaya just south of Main Central Thrust indicating high strain accumulation. Out of 36 mm/year (SSE) India-Sunda plate motion, about 16 mm/year motion is accommodated in Indo-Burmese Fold and Thrust Belt, both as normal convergence ( 6 mm/year) and active slip ( 7-11 mm/year) in this region.

  16. Upper crustal structure from the Santa Monica Mountains to the Sierra Nevada, Southern California: Tomographic results from the Los Angeles Regional Seismic Experiment, Phase II (LARSE II)

    Lutter, W.J.; Fuis, G.S.; Ryberg, T.; Okaya, D.A.; Clayton, R.W.; Davis, P.M.; Prodehl, C.; Murphy, J.M.; Langenheim, V.E.; Benthien, M.L.; Godfrey, N.J.; Christensen, N.I.; Thygesen, K.; Thurber, C.H.; Simila, G.; Keller, Gordon R.


    In 1999, the U.S. Geological Survey and the Southern California Earthquake Center (SCEC) collected refraction and low-fold reflection data along a 150-km-long corridor extending from the Santa Monica Mountains northward to the Sierra Nevada. This profile was part of the second phase of the Los Angeles Region Seismic Experiment (LARSE II). Chief imaging targets included sedimentary basins beneath the San Fernando and Santa Clarita Valleys and the deep structure of major faults along the transect, including causative faults for the 1971 M 6.7 San Fernando and 1994 M 6.7 Northridge earthquakes, the San Gabriel Fault, and the San Andreas Fault. Tomographic modeling of first arrivals using the methods of Hole (1992) and Lutter et al. (1999) produces velocity models that are similar to each other and are well resolved to depths of 5-7.5 km. These models, together with oil-test well data and independent forward modeling of LARSE II refraction data, suggest that regions of relatively low velocity and high velocity gradient in the San Fernando Valley and the northern Santa Clarita Valley (north of the San Gabriel Fault) correspond to Cenozoic sedimentary basin fill and reach maximum depths along the profile of ???4.3 km and >3 km , respectively. The Antelope Valley, within the western Mojave Desert, is also underlain by low-velocity, high-gradient sedimentary fill to an interpreted maximum depth of ???2.4 km. Below depths of ???2 km, velocities of basement rocks in the Santa Monica Mountains and the central Transverse Ranges vary between 5.5 and 6.0 km/sec, but in the Mojave Desert, basement rocks vary in velocity between 5.25 and 6.25 km/sec. The San Andreas Fault separates differing velocity structures of the central Transverse Ranges and Mojave Desert. A weak low-velocity zone is centered approximately on the north-dipping aftershock zone of the 1971 San Fernando earthquake and possibly along the deep projection of the San Gabriel Fault. Modeling of gravity data, using

  17. Tectono-stratigraphic evolution and crustal architecture of the Orphan Basin during North Atlantic rifting

    Gouiza, Mohamed; Hall, Jeremy; Welford, J. Kim


    The Orphan Basin is located in the deep offshore of the Newfoundland margin, and it is bounded by the continental shelf to the west, the Grand Banks to the south, and the continental blocks of Orphan Knoll and Flemish Cap to the east. The Orphan Basin formed in Mesozoic time during the opening of the North Atlantic Ocean between eastern Canada and western Iberia-Europe. This work, based on well data and regional seismic reflection profiles across the basin, indicates that the continental crust was affected by several extensional episodes between the Jurassic and the Early Cretaceous, separated by events of uplift and erosion. The preserved tectono-stratigraphic sequences in the basin reveal that deformation initiated in the eastern part of the Orphan Basin in the Jurassic and spread towards the west in the Early Cretaceous, resulting in numerous rift structures filled with a Jurassic-Lower Cretaceous syn-rift succession and overlain by thick Upper Cretaceous to Cenozoic post-rift sediments. The seismic data show an extremely thinned crust (4-16 km thick) underneath the eastern and western parts of the Orphan Basin, forming two sub-basins separated by a wide structural high with a relatively thick crust (17 km thick). Quantifying the crustal architecture in the basin highlights the large discrepancy between brittle extension localized in the upper crust and the overall crustal thinning. This suggests that continental deformation in the Orphan Basin involved, in addition to the documented Jurassic and Early Cretaceous rifting, an earlier brittle rift phase which is unidentifiable in seismic data and a depth-dependent thinning of the crust driven by localized lower crust ductile flow.

  18. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian plate and surrounding regions in the Middle East

    Toksoz, M. Nafi; Reilinger, Robert


    A detailed study was made of the consequences of the Arabian plate convergence against Eurasia and its effects on the tectonics of Anatolia and surrounding regions of the eastern Mediterranean. A primary source of information is time rates of change of baseline lengths and relative heights determined by repeated SLR measurements. These SLR observations are augmented by a network of GPS stations in Anatolia, Aegea, and Greece, established and twice surveyed since 1988. The existing SLR and GPS networks provide the spatial resolution necessary to reveal the details of ongoing tectonic processes in this area of continental collision. The effort has involved examining the state of stress in the lithosphere and relative plate motions as revealed by these space based geodetic measurements, seismicity, and earthquake mechanisms as well as the aseismic deformations of the plates from conventional geodetic data and geological evidence. These observations are used to constrain theoretical calculations of the relative effects of: (1) the push of the Arabian plate; (2) high topography of Eastern Anatolia; (3) the geometry and properties of African-Eurasian plate boundary; (4) subduction under the Hellenic Arc and southwestern Turkey; and (5) internal deformation and rotation of the Anatolian plate.

  19. Reports on crustal movements and deformations. [bibliography

    Cohen, S. C.; Peck, T.


    This Catalog of Reports on Crustal Movements and Deformation is a structured bibliography of scientific papers on the movements of the Earth crust. The catalog summarizes by various subjects papers containing data on the movement of the Earth's surface due to tectonic processes. In preparing the catalog we have included studies of tectonic plate motions, spreading and convergence, microplate rotation, regional crustal deformation strain accumulation and deformations associated with the earthquake cycle, and fault motion. We have also included several papers dealing with models of tectonic plate motion and with crustal stress. Papers which discuss tectonic and geologic history but which do not present rates of movements or deformations and papers which are primarily theoretical analyses have been excluded from the catalog. An index of authors cross-referenced to their publications also appears in the catalog. The catalog covers articles appearing in reviewed technical journals during the years 1970-1981. Although there are citations from about twenty journals most of the items come from the following publications: Journal of Geophysical Research, Tectonophysics, Geological Society of America Bulletin of the Seismological Society of America, Nature, Science, Geophysical Journal of the Royal Astronomical Society, Earth and Planetary Science Letters, and Geology.

  20. Crustal structure across the Filchner Ronne Shelf, Antarctica

    Herter, U.; Jokat, W.


    Crustal structure across the Filchner Ronne Shelf, Antarctica U. Herter, W. Jokat One large gap in understanding the tectonic evolution of Antarctica beside the few rock outcrops on the continent is the missing information on crustal thickness along its margins but also in its interior. E.g., the few marine deep seismic lines are located mainly along the Antarctic Peninsula/Pacific margin, but for most of the East Antarctic margins such information is not available. In this contribution we concentrate on one of the most remote areas in Antarctica, the Filchner Ronne Shelf (FRS). The area is underlain by approximately 12 km of sediments, but its crustal fabric is questionable. Thus, some existing deep seismic sounding data were modeled and reinterpreted. Especially, data gathered in 1995 have been analyzed, and a more detailed 2D P-wave velocity model has been calculated. For the profiles in total 12 RefTek stations each with nine geophone chains were placed on the ice shelf and 3175 airgun shots along a 480 km transect were fired by two 32 l BOLT-Airguns each 60 s. Signals were recorded up to distances of 180 km. Due to the ice coverage it was not possible to acquire the data without gaps or along straight lines, which caused some difficulties in the modeling process. Furthermore, in the new model all data from older experiments of the AWI and Soviet Antarctic expeditions acquired with dynamite sources were incorporated. The model shows a sedimentary basin with a thickness up to 12 km and a large velocity inversion in a deeper sediment unit. The crustal thickness varies from 40 km beneath the Antarctic Peninsula, and 14 km of basement in the center part of the profile. Towards Berkner Island the crust thickens again, but the top of the basement is still 11 km deep. The lower crustal velocities range between 6.8 and 7.2 km/s. We interpret the crustal structure as clear evidence for the presence of a failed rift. The initial stretching of the continental crust

  1. An Andean tectonic cycle: From crustal thickening to extension in a thin crust (34°–37°SL

    Victor A. Ramos


    Full Text Available Several orogenic cycles of mountain building and subsequent collapse associated with periods of shallowing and steepening of subduction zones have been recognized in recent years in the Andes. Most of them are characterized by widespread crustal delamination expressed by large calderas and rhyolitic flare-up produced by the injection of hot asthenosphere in the subduction wedge. These processes are related to the increase of the subduction angle during trench roll-back. The Payenia paleoflat-slab, in the southern Central Andes of Argentina and Chile (34°–37°S recorded a complete cycle from crustal thickening and mountain uplift to extensional collapse and normal faulting, which are related to changes in the subduction geometry. The early stages are associated with magmatic expansion and migration, subsequent deformation and broken foreland. New ages and geochemical data show the middle to late Miocene expansion and migration of arc volcanism towards the foreland region was associated with important deformation in the Andean foothills. However, the main difference of this orogenic cycle with the previously described cycles is that the steepening of the oceanic subducted slab is linked to basaltic flooding of large areas in the retroarc under an extensional setting. Crustal delamination is concentrated only in a narrow central belt along the cordilleran axis. The striking differences between the two types of cycles are interpreted to be related to the crustal thickness when steepening the subducting slab. The crustal thickness of the Altiplano is over 60–80 km, whereas Payenia is less than 42 km in the axial part, and near 30 km in the retroarc foothills. The final extensional regime associated with the slab steepening favors the basaltic flooding of more than 8400 km3 in an area larger than 40,000 km2, through 800 central vents and large fissures. These characteristics are unique in the entire present-day Andes.

  2. Carrier dynamics in active regions for ultraviolet optoelectronics grown on thick, relaxed AlGaN on semipolar bulk GaN

    Garrett, Gregory A.; Rotella, Paul; Shen, Hongen; Wraback, Michael [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Haeger, Daniel A.; Chung, Roy B.; Pfaff, Nathan; Young, Erin C.; DenBaars, Steven P.; Speck, James S.; Cohen, Daniel A. [Electrical and Computer Engineering and Materials Department, University of California, Santa Barbara, CA 93106 (United States)


    Active regions for mid-ultraviolet laser diodes grown on bulk AlGaN templates are investigated by time-resolved photoluminescence. The active regions were grown pseudomorphically on thick, relaxed AlGaN on bulk GaN in the semi-polar orientation where it has been shown that the glide of dislocations create strain relieving defects confined to the AlGaN/GaN interface, away from the active region. The photoluminescence lifetimes were found to have mono-exponential decays of around 500 ps and calculated radiative and non-radiative lifetimes are compared to previously reported results for active regions on bulk m-plane GaN. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Measurement of thick target neutron yields for protons and deuterons in Ten's of MeV region

    Baba, M.; Aoki, T.; Kawata, N.; Hagiwara, M.; Miura, T.; Yamadera, A.; Yonai, S.; Nakamura, T. [Tohoku Univ., Sendai (Japan)


    We have measured energy-angular differential thick target neutron yields (TTY) for C, Al, Ta, W(p,n) reactions at 50 MeV, and Li, Be (d,n) reactions for 25 MeV deuterons with the TOF method using Tohoku University K=110 MeV cyclotron equipped with a beam swinger system and a well collimated TOF line. Neutron spectrum data have been obtained down to {approx} 0.8 MeV from the highest energy at several laboratory angles from 0-deg to 90-deg. The results are compared with other experiments and a recent data library LA-150.

  4. Regional distance shear-coupled PL propagation within the northern Altiplano, central Andes

    Swenson, Jennifer L.; Beck, Susan L.; Zandt, George


    Properties of the shear-coupled P wavetrain (SPL) from regional earthquakes provide important information about the structure of the crust and upper mantle. We investigate broad-band seismic data from intermediate-depth earthquakes and develop a grid search technique using synthetic seismograms to study the sensitivity of SPL and to model the crustal structure of the northern Altiplano, central Andes. Waveforms from an earthquake that occurred on 1994 December 12 within the Nazca slab beneath the Altiplano display a clear SPL wavetrain at the temporary stations deployed during the BANJO and SEDA experiments. We relocate this event and determine the moment tensor by inverting the complete long-period waveforms. With these source parameters fixed, we perform sensitivity analyses using a reflectivity technique to compute synthetic seismograms at a distance of 313 km (BANJO station 2, SALI). We find that, at this distance, the long-period SPL wavetrain is sensitive to the following model parameters, in order of decreasing sensitivity: crustal VP/VS, mantle VP/VS, average crustal velocity, crustal thickness, focal depth, distance (location), crustal Qα and Qβ, and mantle velocity. We develop a grid search method to investigate the four parameters of the crust/upper mantle model to which the synthetic seismograms are most sensitive at SALI (crustal VP/VS, mantle VP/VS, average crustal velocity, crustal thickness). Trade-offs exist among all four of the model parameters, resulting in a range of acceptable crustal models that provide excellent fits between the data and synthetic seismograms in the passband of 15-100 s at a single station. However, by using data at a range of distances (150-450 km) we find that the model that provides the best overall fit between the data and synthetic seismograms, and thus best approximates the average characteristics of the crust and upper mantle structure of the northern Altiplano, is characterized by an average crustal velocity of 6

  5. Fabrication of a nanometer thick nitrogen delta doped layer at the sub-surface region of (100) diamond

    Chandran, Maneesh; Michaelson, Shaul; Saguy, Cecile; Hoffman, Alon


    In this letter, we report on the proof of a concept of an innovative delta doping technique to fabricate an ensemble of nitrogen vacancy centers at shallow depths in (100) diamond. A nitrogen delta doped layer with a concentration of ˜1.8 × 1020 cm-3 and a thickness of a few nanometers was produced using this method. Nitrogen delta doping was realized by producing a stable nitrogen terminated (N-terminated) diamond surface using the RF nitridation process and subsequently depositing a thin layer of diamond on the N-terminated diamond surface. The concentration of nitrogen on the N-terminated diamond surface and its stability upon exposure to chemical vapor deposition conditions are determined by x-ray photoelectron spectroscopy analysis. The SIMS profile exhibits a positive concentration gradient of 1.9 nm/decade and a negative gradient of 4.2 nm/decade. The proposed method offers a finer control on the thickness of the delta doped layer than the currently used ion implantation and delta doping techniques.

  6. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.


    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  7. Variations in Crustal Structure, Lithospheric Flexural Strength, and Isostatic Compensation Mechanisms of Mars

    Ding, M.; Lin, J.; Zuber, M. T.


    We analyze gravity and topography of Mars to investigate the spatial variations in crustal thickness, lithospheric strength, and mechanisms of support of prominent topographic features on Mars. The latest gravity model JGMRO110c (released in 2012) from the Mars Reconnaissance Orbiter mission has a spatial block size resolution of ~97 km (corresponding to degree-110), enabling us to resolve crustal structures at higher spatial resolution than those determined from previous degree-80 and 85 gravity models [Zuber et al., 2000; McGovern et al., 2002, 2004; Neumann et al., 2004; Belleguic et al., 2005]. Using the latest gravity data, we first inverted for a new version of crustal thickness model of Mars assuming homogeneous crust and mantle densities of 2.9 and 3.5 g/cm3. We calculated "isostatic" topography for the Airy local isostatic compensation mechanism, and "non-isostatic" topography after removing the isostatic part. We find that about 92% of the Martian surface is in relatively isostatic state, indicating either relatively small lithospheric strength and/or small vertical loading. Relatively isostatic regions include the hemispheric dichotomy, Hellas and Argyre Planitia, Noachis and Arabia Terra, and Terra Cimmeria. In contrast, regions with significant amount of non-isostatic topography include the Olympus, Ascraeus, Arsia, Pavonis, Alba, and Elysium Mons, Isidis Planitia and Valles Marineris. Their relatively large "non-isostatc topography" implies relatively strong lithospheric strength and large vertical loading. Spectral analysis of the admittance and correlation relationship between gravity and topography were conducted for the non-isostatic regions using the localized spectra method [Wieczorek and Simons, 2005, 2007] and thin-shell lithospheric flexural approximation [Forsyth, 1985; McGovern et al., 2002, 2004]. The best-fitting models reveal significant variations in the effective lithospheric thickness with the greatest values for the Olympus Mon

  8. Crustal and upper mantle S-wave velocity structures across the Taiwan Strait from ambient seismic noise and teleseismic Rayleigh wave analyses

    Huang, Y.; Yao, H.; Wu, F. T.; Liang, W.; Huang, B.; Lin, C.; Wen, K.


    Although orogeny seems to have stopped in western Taiwan large and small earthquakes do occur in the Taiwan Strait. Limited studies have focused on this region before and were barely within reach for comprehensive projects like TAICRUST and TAIGER for logistical reasons; thus, the overall crustal structures of the Taiwan Strait remain unknown. Time domain empirical Green's function (TDEGF) from ambient seismic noise to determine crustal velocity structure allows us to study an area using station pairs on its periphery. This research aims to resolve 1-D average crustal and upper mantle S-wave velocity (Vs) structures alone paths of several broadband station-pairs across the Taiwan Strait; 5-120 s Rayleigh wave phase velocity dispersion data derived by combining TDEGF and traditional surface wave two-station method (TS). The average Vs structures show significant differences in the upper 15 km as expected. In general, the highest Vs are observed in the coastal area of Mainland China and the lowest Vs appear along the southwest offshore of the Taiwan Island; they differ by about 0.6-1.1 km/s. For different parts of the Strait, the Vs are lower in the middle by about 0.1-0.2 km/s relative to those in the northern and southern parts. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island.

  9. Crustal and tectonic controls on large-explosive volcanic eruptions

    Sheldrake, Tom; Caricchi, Luca


    Quantifying the frequency-Magnitude (f-M) relationship for volcanic eruptions is important to estimate volcanic hazard. Furthermore, understanding how this relationship varies between different groups of volcanoes can provide insights into the processes that control the size and rate of volcanic events. Using a Bayesian framework, which allows us to conceptualise the volcanic record as a series of individual and unique time series, associated by a common group behaviour, we identify variations in the size and rate of volcanism in different volcanic arcs. These variations in behaviour are linked to key parameters that include the motion of subduction, rate of subduction, age of the slab and thickness of the crust. The effects of these parameters on volcanism are interpreted in terms of variations in mantle productivity and the thermal efficiency of magma transfer in arc crustal systems. Understanding the link between subduction architecture, heat content of magmatic systems, and volcanic activity will serve to improve our capacity to quantify volcanic hazard in regions with limited geological and historical records of volcanic activity.

  10. Crustal recycling by subduction erosion in the central Mexican Volcanic Belt

    Straub, Susanne M.; Gómez-Tuena, Arturo; Bindeman, Ilya N.; Bolge, Louise L.; Brandl, Philipp A.; Espinasa-Perena, Ramón; Solari, Luigi; Stuart, Finlay M.; Vannucchi, Paola; Zellmer, Georg F.


    Recycling of upper plate crust in subduction zones, or 'subduction erosion', is a major mechanism of crustal destruction at convergent margins. However, assessing the impact of eroded crust on arc magmas is difficult owing to the compositional similarity between the eroded crust, trench sediment and arc crustal basement that may all contribute to arc magma formation. Here we compare Sr-Nd-Pb-Hf and trace element data of crustal input material to Sr-Nd-Pb-Hf-He-O isotope chemistry of a well-characterized series of olivine-phyric, high-Mg# basalts to dacites in the central Mexican Volcanic Belt (MVB). Basaltic to andesitic magmas crystallize high-Ni olivines that have high mantle-like 3He/4He = 7-8 Ra and high crustal δ18Omelt = +6.3-8.5‰ implying their host magmas to be near-primary melts from a mantle infiltrated by slab-derived crustal components. Remarkably, their Hf-Nd isotope and Nd/Hf trace element systematics rule out the trench sediment as the recycled crust end member, and imply that the coastal and offshore granodiorites are the dominant recycled crust component. Sr-Nd-Pb-Hf isotope modeling shows that the granodiorites control the highly to moderately incompatible elements in the calc-alkaline arc magmas, together with lesser additions of Pb- and Sr-rich fluids from subducted mid-oceanic ridge basalt (MORB)-type altered oceanic crust (AOC). Nd-Hf mass balance suggests that the granodiorite exceeds the flux of the trench sediment by at least 9-10 times, corresponding to a flux of ⩾79-88 km3/km/Myr into the subduction zone. At an estimated thickness of 1500-1700 m, the granodiorite may buoyantly rise as bulk 'slab diapirs' into the mantle melt region and impose its trace element signature (e.g., Th/La, Nb/Ta) on the prevalent calc-alkaline arc magmas. Deep slab melting and local recycling of other slab components such as oceanic seamounts further diversify the MVB magmas by producing rare, strongly fractionated high-La magmas and a minor population of

  11. The influence of isotropic and anisotropic crustal permeability on hydrothermal flow at fast spreading ridges

    Hasenclever, Jörg; Rüpke, Lars; Theissen-Krah, Sonja; Morgan, Jason


    We use 3-D numerical models of hydrothermal fluid flow to assess the magnitude and spatial distribution of hydrothermal mass and energy fluxes within the upper and lower oceanic crust. A better understanding of the hydrothermal flow pattern (e.g. predominantly on-axis above the axial melt lens vs. predominantly off-axis and ridge-perpendicular over the entire crustal thickness) is essential for quantifying the volume of oceanic crust exposed to high-temperature fluid flow and the associated leaching and redistribution of economically interesting metals. The initial setup of all 3-D models is based on our previous 2-D studies (Theissen-Krah et al., 2011), in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these 2-D calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data at the East Pacific Rise. Our reference 3-D model for hydrothermal flow at fast-spreading ridges predicts the existence of a hybrid hydrothermal system (Hasenclever et al., 2014) with two interacting flow components that are controlled by different physical mechanisms. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle-ductile transition. About ˜60% of the discharging fluid mass is replenished on-axis by warm (up to 300oC) recharge flow surrounding the hot thermal plumes. The remaining ˜40%, however, occurs as colder and broader recharge up to several kilometres away from the ridge axis that feeds hot (500-700oC) deep off-axis flow in the lower crust towards the ridge. Both flow components merge above the melt lens to feed ridge-centred vent sites. In a suite of 3-D model calculations we vary the isotropic crustal permeability to quantify its influence on on-axis vs. off-axis hydrothermal fluxes as well as on along-axis hydrothermal

  12. ~55Ma Aged High Topography of the Lhasa Block From Stable and Clumped Isotope Paleoaltimetry: Implications for ~50±25% Crustal Mass Deficit in the India-Asia Collisional System

    Rowley, D. B.; Ingalls, M.; Colman, A. S.; Currie, B.; Li, S.; Olack, G.; Lin, D.


    We reconstruct the ~55 Ma paleo-elevation of the pre- to syn-collisional Linzizong arc by coupling carbonate-derived oxygen stable isotope measurements (d18Oc) with paleotemperatures derived from the Δ47-'clumped' isotope paleothermometer (T(Δ47)). We estimate a pre- to early syn-collisional (~54 ± 2 Ma) paleo-elevation of the Penbo/Linzhou region of >4100 ± 550 meters. This provides the first well-constrained elevation estimate of the pre-collisional Linzizong Volcanic arc in the southern Tibetan Plateau. Our results indicate that high relief at low latitude did indeed prevail on the Asian "Andean" margin prior to collision. We use the most recent plate kinematic constraints to compute the mass flux associated with India-Asia convergence with uncertainty as a function of time. Integration of mass flux as a function of time, together with estimates of the diachronous collision age with uncertainty and corresponding suture zone length with uncertainty allow explicit estimates with uncertainties of pre-collisional crustal mass. Mass balance is estimated using estimates of pre-collisional elevation and crustal thickness with their associated uncertainties relative to the pre-collisional mass. We find that ~50±25% of the collision-related crustal mass cannot be accounted for by the mass preserved in excess crustal thickness (in Himalaya, Tibet, and adjacent Asia), southeast Asian tectonic escape, and exported eroded sediments. This implies large-scale subduction of continental crust, amounting to ~15% of the total oceanic subduction flux since 56 Ma during this continent-continent collision. Contamination of the mantle by direct input of continental crustal materials rather than crust-derived sediments may be more significant than previously thought and may be responsible for crustal geochemical anomalies in mantle-derived melts.

  13. Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil

    de Castroa, David L.; Fuck, Reinhardt A.; Phillips, Jeffrey D. Phillips; Vidotti, Roberta M.; Bezerra, Francisco H.R.; Dantas, Elton L.


    The Parnaíba Basin is a large Paleozoic syneclise in northeastern Brazil underlain by Precambrian crystalline basement, which comprises a complex lithostructural and tectonic framework formed during the Neoproterozoic–Eopaleozoic Brasiliano–Pan African orogenic collage. A sag basin up to 3.5 km thick and 1000 km long formed after the collage. The lithologic composition, structure, and role in the basin evolution of the underlying basement are the focus of this study. Airborne gravity and magnetic data were modeled to reveal the general crustal structure underneath the Parnaíba Basin. Results indicate that gravity and magnetic signatures delineate the main boundaries and structural trends of three cratonic areas and surrounding Neoproterozoic fold belts in the basement. Triangular-shaped basement inliers are geophysically defined in the central region of this continental-scale Neoproterozoic convergence zone. A 3-D gravity inversion constrained by seismological data reveals that basement inliers exhibit a 36–40.5 km deep crustal root, with borders defined by a high-density and thinner crust. Forward modeling of gravity and magnetic data indicates that lateral boundaries between crustal units are limited by Brasiliano shear zones, representing lithospheric sutures of the Amazonian and São Francisco Cratons, Tocantins Province and Parnaíba Block. In addition, coincident residual gravity, residual magnetic, and pseudo-gravity lows indicate two complex systems of Eopaleozoic rifts related to the initial phase of the sag deposition, which follow basement trends in several directions.

  14. P-wave crustal tomography of Greece with use of an accurate two-point ray tracer

    G. N. Stavrakakis


    Full Text Available The three-dimensional velocity structure of the crust in the Aegean sea and the surrounding regions (34.0º-42.OºN, 19.0ºE-29.0ºE is investigated by inversion of about 10000 residuals of arrival times of P-wave from local events. The resulting velocity structure shows strong horizontal variations due to the complicated crustal structure and the variations of crustal thickness. The northern part of the region generally shows high velocities. In the inner part of the volcanic arc (Southern Aegean area, relatively low velocities are observed, suggesting a large-scale absorption of seismic energy as confirmed by the low seismicity of the region. A low velocity zone was observed along the subduction zone of the region, up to a depth of 4 km. The existence of such a zone could be due to granitic or other intrusions in the crust during the uplift of the region during Alpidic orogenesis.

  15. Crustal structure and rift tectonics across the Cauvery–Palar basin, Eastern Continental Margin of India based on seismic and potential field modelling

    D Twinkle; G Srinivasa Rao; M Radhakrishna; K S R Murthy


    The Cauvery–Palar basin is a major peri-cratonic rift basin located along the Eastern Continental Margin of India (ECMI) that had formed during the rift-drift events associated with the breakup of eastern Gondwanaland (mainly India–Sri Lanka–East Antarctica). In the present study, we carry out an integrated analysis of the potential field data across the basin to understand the crustal structure and the associated rift tectonics. The composite-magnetic anomaly map of the basin clearly shows the onshore-tooffshore structural continuity, and presence of several high-low trends related to either intrusive rocks or the faults. The Curie depth estimated from the spectral analysis of offshore magnetic anomaly data gave rise to 23 km in the offshore Cauvery–Palar basin. The 2D gravity and magnetic crustal models indicate several crustal blocks separated by major structures or faults, and the rift-related volcanic intrusiverocks that characterize the basin. The crustal models further reveal that the crust below southeast Indian shield margin is ∼36 km thick and thins down to as much as 13–16 km in the Ocean Continent Transition (OCT) region and increases to around 19–21 km towards deep oceanic areas of the basin. Thefaulted Moho geometry with maximum stretching in the Cauvery basin indicates shearing or low angle rifting at the time of breakup between India–Sri Lanka and the East Antarctica. However, the additional stretching observed in the Cauvery basin region could be ascribed to the subsequent rifting of Sri Lanka from India. The abnormal thinning of crust at the OCT is interpreted as the probable zone of emplaced Proto-Oceanic Crust (POC) rocks during the breakup. The derived crustal structure along with other geophysical data further reiterates sheared nature of the southern part of the ECMI.

  16. Total bremsstrahlung spectra of thick lead compounds produced by {sup 90}Sr beta emitter in photon energy region of 10–100 keV

    Sharma, Suhansar Jit [Department of Physics, B.B.S.B Polytechnic, Fatehgarh Sahib, Punjab (India); Singh, Tajinder, E-mail: [Department of Physics, Mata Gujri College, Fatehgarh Sahib, Punjab (India); Singh, Doordarshi [Department of Mechanical Engineering, B.B.S.B Engineering College, Fatehgarh Sahib, Punjab (India); Singh, Amrit [Department of Physics, Baba Ajay Singh Khalsa College, Gurdas Nangal, Gurdaspur, Punjab (India); Dhaliwal, A.S. [Department of Physics, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab (India)


    Highlights: • Total bremsstrahlung spectra in thick targets of Pb compounds by {sup 90}Sr in energy range 10–100 keV. • Experimental results show better agreement with the model which includes PB in SA up to 30 keV. • At higher photon energy region 30–100 keV the model which describes OB is more accurate. • Experimental results show positive deviations from the entire models at higher energy end spectrum. - Abstract: The total bremsstrahlung spectra in the thick targets of lead acetate trihydrate (Pb(CH{sub 3}COO){sub 2}·3H{sub 2}O), lead nitrate Pb(NO{sub 3}){sub 2} and lead chloride (PbCl{sub 2}) produced by {sup 90}Sr beta particles have been investigated in the photon energy region of 10–100 keV. The experimental bremsstrahlung spectra have been compared with the theoretical models Elwert corrected (non relativistic) Bethe Heitler theory, modified Elwert factor (relativistic) Bethe Heitler theory for ordinary bremsstrahlung and modified Elwert factor (relativistic) Bethe Heitler theory which includes polarization bremsstrahlung in the stripped atom approximation. The experimental results show better agreement with theoretical model that includes polarization bremsstrahlung in stripped approximation in the photon energy region below 30 keV. However, at higher photon energy region 30–100 keV, the theoretical model which describes ordinary bremsstrahlung is more accurate to describe the experimental bremsstrahlung spectra. The experimental results show positive deviations from the entire theoretical models at higher energy end of the spectrum. The results indicate that polarization bremsstrahlung plays important role in the formation of total bremsstrahlung spectra in lead compounds produced by continuous beta particles at low photon energy region of 10–30 keV.

  17. Crustal evolution in Asia: Correlations and connections

    Tsunogae, Toshiaki; Kwon, Sanghoon; Santosh, M.


    The Asian region records multiple subduction, accretion and collision processes related to the breakup of Gondwana and Pangea, and the ongoing formation of the future supercontinent Amasia. The oldest geological record of Asia is preserved in Archean crustal fragments which were welded together by later collisional events related to the assembly of several supercontinents. The Asian region also records recent geological events such as volcanic activities and mega-earthquakes related to subduction of oceanic plates along active continental margins and collision of microplates. This region is thus regarded as an excellent field laboratory for examining the evolution of continental crust and cratons, formation and destruction of continents and supercontinents, and related metallogenic and surface environmental processes.

  18. Effect of a thick inverted sedimentary package on seismic wave propagation in the lower crust

    Roy-Chowdhury, K.; Dobreflection Working Group


    High quality seismic deep reflection data was acquired across the Donbas inverted basin in The Ukraine during the summer of 2000. The 80-fold (nominal) vibrator operation supported by lower-fold explosive acquisition resulted in a good data quality. Detailed analysis of the shallower (basin) part of the wave-field - not reported here - has produced a good 2-D velocity model for the thick sedimentary cover overlying the middle and the lower crust in this area. The sedimentary structures show the effects of large-scale tectonic disturbances involving folding and both normal- and thrust- faulting. Seismic waves propagating on their way to- and from- the lower crustal region interact with this shallower medium and undergo complex interaction involving scattering, focussing and defocussing. This effect will be studied by analysing the lower-crustal signals for coherent arrivals with/without the effect of the overburden. An attempt will be made to quantify the effect using an empirical technique.

  19. Emplacement ages, geochemical and Sr-Nd-Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal growth and regional tectonic evolution

    Jahn, Bor-ming; Valui, Galina; Kruk, Nikolai; Gonevchuk, V.; Usuki, Masako; Wu, Jeremy T. J.


    The Sikhote-Alin Range of the Russian Far East is an important accretionary orogen of the Western Pacific Orogenic Belt. In order to study the formation and tectonic evolution of the orogen, we performed zircon U-Pb dating, as well as geochemical and Sr-Nd-Hf isotopic analyses on 24 granitoid samples from various massifs in the Primorye and Khabarovsk regions. The zircon dating revealed that the granitoids were emplaced from 131 to 56 Ma (Cretaceous to Paleogene). In the Primorye Region, granitoids in the coastal Sikhote-Alin intruded the Cretaceous Taukha Accretionary Terrane from ca. 90 to 56 Ma, whereas those along the Central Sikhote-Alin Fault zone intruded the Jurassic Samarka Accretionary Terrane during ca. 110-75 Ma. The "oldest" monzogranite (131 Ma) was emplaced in the Lermontovka area of the NW Primorye Region. Granitoid massifs along the Central Sikhote-Alin Fault zone in the Khabarovsk Region formed from 109 to 58 Ma. Thus, the most important tectonothermal events in the Sikhote-Alin orogen took place in the Cretaceous. Geochemical analysis indicates that most samples are I-type granitoids. They have initial 87Sr/86Sr ratios ranging from 0.7040 to 0.7083, and initial Nd isotopic ratios, expressed as εNd(t) values, from +3.0 to -5.0 (mostly 0 to -5). The data suggest that the granitoid magmas were generated by partial melting of sources with mixed lithologies, including the subducted accretionary complex ± hidden Paleozoic-Proterozoic basement rocks. Based on whole-rock Nd isotopic data, we estimated variable proportions (36-77%) of juvenile component (=mantle-derived basaltic rocks) in the generation of the granitic magmas. Furthermore, zircon Hf isotopic data (εHf(t) = 0 to +15) indicate that the zircon grains crystallized from melts of mixed sources and that crustal assimilation occurred during magmatic differentiation. The quasi-continuous magmatism in the Sikhote-Alin orogen suggests that the Paleo-Pacific plate subduction was very active in the

  20. Crustal Ages of the Ocean Floor - Poster

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crustal Ages of the Ocean Floor Poster was created at NGDC using the Crustal Ages of the Ocean Floor database draped digitally over a relief of the ocean floor...

  1. Normal values of regional left ventricular myocardial thickness, mass and distribution-assessed by 320-detector computed tomography angiography in the Copenhagen General Population Study.

    Hindsø, Louise; Fuchs, Andreas; Kühl, Jørgen Tobias; Nilsson, Emma Julia P; Sigvardsen, Per Ejlstrup; Køber, Lars; Nordestgaard, Børge G; Kofoed, Klaus Fuglsang


    Left ventricular (LV) hypertrophy is associated with cardiovascular complications and the geometry is important for prognosis. In some cardiovascular diseases, myocardial hypertrophy or dilation occurs regionally without modifying the global size of the heart. It is therefore relevant to determine regional normal reference values of the left ventricle. The aim of this study was to derive reference values of regional LV myocardial thickness (LVMT) and mass (LVMM) from a healthy study group of the general population using cardiac computed tomography angiography (CCTA). We wanted to introduce LV myocardial distribution (LVMD) as a measure of regional variation of the LVMT. Moreover, we wanted to determine whether these parameters varied between men and women. We studied 568 (181 men; 32%) adults, free of cardiovascular disease and risk factors, who underwent 320-detector CCTA. Mean age was 55 (range 40-84) years. Regional LVMT and LVMM were measured, according to the American Heart Association's 17 segment model, using semi-automatic software. Mean LVMT were 6.6 mm for men and 5.4 mm for women (p normal LV was thickest in the basal septum (segment 3; men = 8.3 mm; women = 7.2 mm) and thinnest in the mid-ventricular anterior wall (segment 7; men = 5.6 mm; women = 4.5 mm) for both men and women. However, the regional LVMD differed between men and women, with the LV being most heterogenic in women. The normal human LV is morphologically heterogenic, and showed same overall pattern but different regional distribution for men and women. This study introduces LVMD and provides gender specific reference values for regional LVMT, LVMM, and LVMD.

  2. Sedimentary record of regional deformation and dynamics of the thick-skinned southern Puna Plateau, central Andes (26-27°S)

    Zhou, Renjie; Schoenbohm, Lindsay M.; Sobel, Edward R.; Carrapa, Barbara; Davis, Donald W.


    The Puna Plateau, adjacent Eastern Cordillera and the Sierras Pampeanas of the central Andes are largely characterized by thick-skinned, basement-involved deformation. The Puna Plateau hosts ∼N-S trending bedrock ranges bounded by deep-seated reverse faults and sedimentary basins. We contribute to the understanding of thick-skinned dynamics in the Puna Plateau by constraining regional kinematics of the poorly understood southern Puna Plateau through a multidisciplinary approach. On the southeastern plateau, sandstone modal composition and detrital zircon U-Pb and apatite fission-track data from Cenozoic strata indicate basin accumulation during the late Eocene to early Oligocene (∼38-28 Ma). Provenance analysis reveals the existence of a regional-scale basin covering the southern Puna Plateau during late Eocene to early Oligocene time (∼38-28 Ma) that was sourced from both the western plateau and the eastern plateau margin and had a depocenter located to the west. Petrographic and detrital zircon U-Pb data reveal erosion of proximal western and eastern sources after ∼12 Ma, in mid-late Miocene time. This indicates that the regional basin was compartmentalized into small-scale depocenters by the growth of basement-cored ranges continuing into the late Miocene (∼12-8 Ma). We suggest that the Cenozoic history of the southern Puna Plateau records the formation of a regional basin that was possibly driven by lithospheric flexure during the late Eocene to early Oligocene, before the growth of distributed basement-cored ranges starting as early as the late Oligocene.

  3. Lateral variations of crustal structure beneath the Indochina Peninsula

    Yu, Youqiang; Hung, Tran D.; Yang, Ting; Xue, Mei; Liu, Kelly H.; Gao, Stephen S.


    Crustal thickness (H) and Vp/Vs (κ) measurements obtained by stacking P-to-S receiver functions recorded at 32 broadband seismic stations covering the Indochina Peninsula reveal systematic spatial variations in crustal properties. Mafic bulk crustal composition as indicated by high κ (>1.81) observations is found to exist along major strike-slip faults and the southern part of the Peninsula, where pervasive basaltic magmatism is found and is believed to be the results of lithospheric thinning associated with the indentation of the Indian into the Eurasian plates. In contrast, crust beneath the Khorat Plateau, which occupies the core of the Indochina Block, has relatively large H values with a mean of 36.9 ± 3 km and small κ measurements with an average of 1.74 ± 0.04, which indicates an overall felsic bulk composition. Those observations for the Khorat Plateau are comparable to the undeformed part of the South China Block. The laterally heterogeneous distribution of crustal properties and its correspondence with indentation-related tectonic features suggest that the Indochina lithosphere is extruded as rigid blocks rather than as a viscous flow.

  4. Crustal Structure of the Pakistan Himalayas from Ambient Noise and Seismic Rayleigh Wave Inversion

    Li, A.


    The western Himalayan syntaxi is a unique feature resulted from the India-Asia collision and its formation remains poorly understood. To image crustal structure in the western syntaxi, we analyze Rayleigh waves from ambient seismic noise and earthquake data recorded during the Pakistan Broadband Seismic Experiment. The Pakistan experiment included 9 broadband stations with an aperture of ~200 km and operated from September to December in 1992. We compute cross-correlations of ambient noise data on an hourly base and stack all the cross-correlations for 70 days to produce the estimated Green functions. Power spectrum analysis shows that the dominant energy is from 0.15 to 0.25 Hz and from 0.05 to 0.07 Hz, consistent with the well-know background seismic noise. A phase with large amplitude appears at near zero time on almost all stacked cross- correlations and its origin is not clear to us at this moment. Rayleigh waves can be clearly observed for station pairs at the distance of 80 km and larger but are contaminated by the near zero time phase at shorter station spacing. Rayleigh wave phase velocities at periods of 4 to 15 s will be produced from the ambient noise data. Using regional and teleseismic earthquakes, we expect to obtain Rayleigh wave dispersions at periods from 15 to 50 s. The phase velocities from both datasets will be inverted for crustal thickness and shear-wave structure beneath the Pakistan Himalayas.

  5. The crustal structure beneath Mauritius from teleseismic P-receiver functions - oceanic or continental?

    Singh, Manvendra; Kaviani, Ayoub; Rümpker, Georg


    It has recently been suggested that the volcanic island of Mauritius may be underlain by a remnant of continental origin termed "Mauritia". To constrain the crustal thickness beneath Mauritius, we analyzed data from 11 land stations, 10 of which were deployed recently by the RHUM-RUM project. From the recordings, we obtained 382 P-receiver functions (RFs). By applying the H-κ stacking technique, we derive crustal thicknesses of approximately 10-15 km. We observe a considerable variation in the Vp/Vs-ratio caused by a lack of clear multiples. Using forward modeling of RFs, we show that the lack of clear multiples can be explained by a transitional Moho, where the velocity increases gradually. The modeling further indicates that the thickness of this gradient zone is estimated to be approximately 10 km. We argue that our findings suggest oceanic crust thickened by crustal underplating due the mantle plume currently located beneath the La Réunion.

  6. Quantifying Precambrian crustal extraction: the root is the answer

    Abbott, Dallas; Sparks, David; Herzberg, Claude; Mooney, Walter; Nikishin, Anatoly; Zhang, Yu Shen


    We use two different methods to estimate the total amount of continental crust that was extracted by the end of the Archean and the Proterozoic. The first method uses the sum of the seismic thickness of the crust, the eroded thickness of the crust, and the trapped melt within the lithospheric root to estimate the total crustal volume. This summation method yields an average equivalent thickness of Archean crust of 49±6 km and an average equivalent thickness of Proterozoic crust of 48± 9 km. Between 7 and 9% of this crust never reached the surface, but remained within the continental root as congealed, iron-rich komatiitic melt. The second method uses experimental models of melting, mantle xenolith compositions, and corrected lithospheric thickness to estimate the amount of crust extracted through time. This melt column method reveals that the average equivalent thickness of Archean crust was 65±6 km, and the average equivalent thickness of Early Proterozoic crust was 60±7 km. It is likely that some of this crust remained trapped within the lithospheric root. The discrepancy between the two estimates is attributed to uncertainties in estimates of the amount of trapped, congealed melt, overall crustal erosion, and crustal recycling. Overall, we find that between 29 and 45% of continental crust was extracted by the end of the Archean, most likely by 2.7 Ga. Between 51 and 79% of continental crust was extracted by the end of the Early Proterozoic, most likely by 1.8-2.0 Ga. Our results are most consistent with geochemical models that call upon moderate amounts of recycling of early extracted continental crust coupled with continuing crustal growth (e.g. McLennan, S.M., Taylor, S.R., 1982. Geochemical constraints on the growth of the continental crust. Journal of Geology, 90, 347-361; Veizer, J., Jansen, S.L., 1985. Basement and sedimentary recycling — 2: time dimension to global tectonics. Journal of Geology 93(6), 625-643). Trapped, congealed, iron-rich melt

  7. Crustal Heat Production and Mantle Heat Flow in Southeast China

    胡圣标; 汪集旸


    The correlation between seismic velocity (vp) and radiogenic heat production (A) en-ables the distribution of crustal heat production to be evaluated,from which the mantle heat flow for 21seismic velocity-depth profiles located along the two continental geotraverses in Southeast China can bededuced.Several approaches have been proposed to special problems connected with the conversion ofseismic velocities into heat production in orogenic areas.The results show that the crustal heat flow inSoutheast China is quite inhomogeneous,varying between 17.8 and 46 mW·m-2,which can be attribut-ed to the complicated crustal structure related to overthrusting and overlapping in the upper crust.The re-markable regional variation in the mantle heat flow,ranging from 23.2 to 41.6 mW·m-2,correspondsto the large-scale tectonothermal evolution of the orogenic belts.

  8. Crustal structure of southern Madagascar from receiver functions and ambient noise correlation: Implications for crustal evolution

    Rindraharisaona, E. J.; Tilmann, F.; Yuan, X.; Rümpker, G.; Giese, J.; Rambolamanana, G.; Barruol, G.


    The Precambrian rocks of Madagascar were formed and/or modified during continental collision known as the Pan-African orogeny. Aborted Permo-Triassic Karoo rifting and the subsequent separation from Africa and India resulted in the formation of sedimentary basins in the west and volcanic activity predominantly along the margins. Many geological studies have documented the imprint of these processes, but little was known about the deeper structure. We therefore deployed seismic stations along an SE-NW trending profile spanning nearly all geological domains of southern Madagascar. Here we focus on the crustal structure, which we determined based on joint analysis of receiver functions and surface waves derived from ambient noise measurements. For the sedimentary basin we document a thinning of the underlying crystalline basement by up to ˜60% to 13 km. The crustal velocity structure demonstrates that the thinning was accomplished by removal or exhumation of the lower crust. Both the Proterozoic and Archean crust have a 10 km thick upper crust and 10-12 km thick midcrust. However, in contrast to the typical structure of Proterozoic and Archean aged crust, the Archean lower crust is thicker and faster than the Proterozoic one, indicating possible magmatic intrusions; an underplated layer of 2-8 km thickness is present only below the Archean crust. The Proterozoic mafic lower crust might have been lost during continental collision by delamination or subduction or thinned as a result of extensional collapse. Finally, the Cretaceous volcanics along the east coast are characterized by thin crust (30 km) and very large VP/VS ratios.

  9. Crustal construction along arc-backarc transition zone in the Japan Sea and implications for seismogenic processes

    Kodaira, S.; No, T.; Sato, T.; Sato, H.


    The Japan Sea, which is a backarc basin between Japanese island arc and the Asian continent, has a unique setting in terms of a formation process as well as a seismogenic process. The opening of the Japan Sea was initiated by crustal rifting and the separation of Japan Island Arcs from the Asian continent in the early Oligocene (~ 32 Ma), with subsequent ocean floor spreading in the late Oligocene (~ 28 Ma). Then, the opening stopped, between 10 and 3.5 Ma, and at 3.5 Ma, the crustal shortening occurred under a strong compressional stress regime in the eastern margin of the Japan Sea. Several seismic surveys had been conducted in this region since the last more than two decades, however, a conclusive discussion concerning a crustal construction in the arc-backarc transition zone had not been made, due to lack of resolution of structural models and sparse distribution of profiles. Moreover, magnitude-7 class earthquakes repeatedly occurred along this margin, such as, the 1964 Niigata earthquake (M7.5), 1983 Nihonkai-Chubu earthquake (M7.7), 1993 Hokkaido Nansei-oki earthquake (M7.8), and those events are recognized to have compressional fault mechanisms by reflecting a present-day stress regime. However, structural factor controlling the distribution and mechanism of those compressional events has not been well studied. In order to understand a crustal formation process in this margin and its relation to the seismogenic process at the present, we have been carrying our series of active-source seismic survey to cover the eastern margin of the central to northern Japan Sea. Results from those surveys successfully mapped a distribution of the arc crust, the oceanic crust and the amorously thick oceanic crust in the transition zone. From a comparison the rupture zones of the magnitude-7 class earthquake with the detailed crustal structure, we conclude that the large compressional events, more than M>7.5, occurred in a seismogenic zone fault which used to be formed a

  10. Crustal and upper mantle velocity structure of the Salton Trough, southeast California

    Parsons, T.; McCarthy, J.


    This paper presents data and modelling results from a crustal and upper mantle wide-angle seismic transect across the Salton Trough region in southeast California. The Salton Trough is a unique part of the Basin and Range province where mid-ocean ridge/transform spreading in the Gulf of California has evolved northward into the continent. In 1992, the U.S. Geological Survey (USGS) conducted the final leg of the Pacific to Arizona Crustal Experiment (PACE). Two perpendicular models of the crust and upper mantle were fit to wide-angle reflection and refraction travel times, seismic amplitudes, and Bouguer gravity anomalies. The first profile crossed the Salton Trough from the southwest to the northeast, and the second was a strike line that paralleled the Salton Sea along its western edge. We found thin crust (???21-22 km thick) beneath the axis of the Salton Trough (Imperial Valley) and locally thicker crust (???27 km) beneath the Chocolate Mountains to the northeast. We modelled a slight thinning of the crust further to the northeast beneath the Colorado River (???24 km) and subsequent thickening beneath the metamorphic core complex belt northeast of the Colorado River. There is a deep, apparently young basin (???5-6 km unmetamorphosed sediments) beneath the Imperial Valley and a shallower (???2-3 km) basin beneath the Colorado River. A regional 6.9-km/s layer (between ???15-km depth and the Moho) underlies the Salton Trough as well as the Chocolate Mountains where it pinches out at the Moho. This lower crustal layer is spatially associated with a low-velocity (7.6-7.7 km/s) upper mantle. We found that our crustal model is locally compatible with the previously suggested notion that the crust of the Salton Trough has formed almost entirely from magmatism in the lower crust and sedimentation in the upper crust. However, we observe an apparently magmatically emplaced lower crust to the northeast, outside of the Salton Trough, and propose that this layer in part

  11. Along-Strike Variations in Crustal Seismicity in the Central Andes and Geodynamic Implications

    Metcalf, K.; Pearson, D. M.; Kapp, P. A.; McGroder, M.; Kendall, J. J.


    For the central Andes, we compiled relocated crustal earthquakes (magnitude ≥ 4.5) from the EHB Bulletin and Nipress et al. [2007] and focal mechanisms from the Global CMT catalog and published literature [Alvarado et al., 2005]. These data were plotted in map, cross section, and 3D views in the context of local tomography [Koulakov et al., 2006] and lithospheric boundaries [Tassara et al., in prep]. The results imply major along-strike variations in the mechanisms of crustal deformation. At the latitude of the Altiplano, there is scarce forearc seismicity. The thin-skinned Bolivian retroarc thrust belt shows no seismic events (magnitude ≥ 4.5), suggesting that it is deforming aseismically or locked. In contrast, at the latitude of the Puna to the south (20-25°S), crustal seismicity is more prevalent in both the forearc and retroarc. Within this region, active deformation in the Coastal Cordillera near Antofagasta is occurring along steeply east-dipping normal faults at 15-41 km depth; this is the only part of the central Andean forearc that displays prominent extension. Outboard of this, thrust events at ~15 km depth in the forearc wedge display gently dipping nodal planes, and may be signatures of underplating crust that was tectonically eroded at the trench. Underplating is a likely process by which this region of the forearc has undergone ~1 km of surface uplift during the Neogene. Seismicity with thrust or reverse and oblique focal mechanisms in the retroarc wedge is localized beneath the frontal part of the thick-skinned Eastern Cordilleran thrust belt and the Santa Barbara ranges. Seismicity along discrete, east- and west-dipping planes occurs to near Moho depths (~50 km). While retroarc crustal seismicity continues to the south toward the Juan Fernandez flat slab, there is a concentration of seismic events in the retroarc at the latitude (22-23°S) where there is prominent normal faulting in the forearc. We interpret the compiled data to suggest that

  12. Mantle melting factors and amagmatic crustal accretion of the Gakkel ridge, Arctic Ocean

    ZHANG Tao; GAO Jinyao; CHEN Mei; YANG Chunguo; SHEN Zhongyan; ZHOU Zhiyuan; WU Zhaocai; SUN Yunfan


    Spreading rate is a primary factor of mantle melting and tectonic behavior of the global mid-ocean ridges. The spreading rate of the Gakkel ridge decreases gradually from west to east. However, the Gakkel ridge can be divided into four thick-and-thin zones with varying crustal thicknesses along ridge axis. This phenomenon indicates that mantle melting of the Gakkel ridge is not a simple function of spreading rate. Mantle temperature, water content, mantle composition, and other factors are important in crustal accretion processes. Based on gravity-derived crustal thickness and wet melting model, we estimate that the mantle potential temperatures of the four zones are 1 270, 1 220, 1 280, and 1 280°C (assuming that mantle water content equals to global average value), with corresponding mantle water contents of 210, 0, 340, and 280 mg/kg (assuming that mantle potential temperature is 1 260°C), respectivly. The western thinned crust zone is best modeled with low mantle temperature, whereas the other zones are mainly controlled by the enhanced conduction caused by the slower spreading rate. Along the Gakkel ridge, the crustal thickness is consistent with rock samples types. Predominated serpentinized peridotite and basalt are found in the area with crustal thickness 2.5 km, respectively. The rock samples are including from basalt to peridotite in the area with crustal thickness between 1.5 and 2.5 km. Based on this consistency, the traditional magmatic accretion zone accounted for only 44% and amagmatic accretion accounted for 29% of the Gakkel ridge. The amagmatic accretion is a significant characteristic of the ultra-slow spreading ridge.

  13. Effects of Martian crustal magnetic field on its ionosphere


    The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere.The studies on this topic are summarized in this paper.Main data of the Martian ionosphere were resulted from radio occultation experiments.According to the observations,the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field.The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region.In the cusp-like regions with strong vertical magnetic field,the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region.The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field.The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere.The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines,and the amount of the enhancement was much larger than that observed by the radio occultation experiment.There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions:One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities.It’s difficult to determine which one is the key mechanism for the peak electron density enhancement.Based on these studies,several interesting problems on the Martian ionosphere and plasma environment are presented.

  14. Moho depth and crustal composition in Southern Africa

    Soliman, Mohammad Youssof Ahmad; Thybo, Hans; Artemieva, Irina;


    heterogeneous crustal structure with short wavelength variations in thickness (H), Vp/Vs-ratio (composition), and Moho sharpness, which defines ~20 blocks that do not everywhere coincide with surface tectonic features. In the Zimbabwe Craton, the Tokwe block has H = 35–38 km and Vp/Vs = 1.74–1.79 whereas...... the thicker crust in the Tati block (H = 47–51 km)may be related to deformation of the Archean crust along the cratonicmargin. Two distinct crustal blocks with similar crustal thickness (42–46 km) but significantly different Vp/Vs-ratios are recognized in the Limpopo Belt. Extreme values of 1......-existing lower crust, which is further supported by a very sharp Moho transition. The exposed cross-section in the Vredefort impact crater is non-representative of cratonic crust due to shallowMoho (34 km) and high Vp/Vs ~ 1.80 attributed to shock metamorphism. High Vp/Vs = 1.76 is typical of the Witwatersrand...

  15. Crustal structure of Tolfa domes complex (northern Latium - Italy) inferred from receiver functions analysis: an interplay between tectonics and magmatism

    Buttinelli, M.; Bianchi, I.; Anselmi, M.; Chiarabba, C.; de Rita, D.; Quattrocchi, F.


    The Tolfa-Cerite volcanic district developed along the Tyrrhenian passive margin of central Italy, as part of magmatic processes started during the middle Pliocene. In this area the uncertainties on the deep crustal structures and the definition of the intrusive bodies geometry are focal issues that still need to be addressed. After the onset of the spreading of the Tyrrhenian sea during the Late Miocene, the emplacement of the intrusive bodies of the Tolfa complex (TDC), in a general back-arc geodynamical regime, generally occurred in a low stretching rate, in correspondence of the junctions between major lithospheric discontinuities. Normal faults, located at the edge of Mio-Pliocene basins, were used as preferential pathways for the rising of magmatic masses from the mantle to the surface. We used teleseismic recordings at the TOLF and MAON broad band station of the INGV seismic network (located between the Argentario promontory and Tolfa-Ceriti dome complexes -TDC-) to image the principal seismic velocity discontinuities by receiver function analysis (RF's). Together with RF’s velocity models of the area computed using the teleseismic events recorded by a temporary network of eight stations deployed around the TDC, we achieve a general crustal model of this area. The geometry of the seismic network has been defined to focus on the crustal structure beneath the TDC, trying to define the main velocity changes attributable to the intrusive bodies, the calcareous basal complex, the deep metamorphic basement, the lower crust and the Moho. The analysis of these data show the Moho at a depth of 23 km in the TDC area and 20 km in the Argentario area. Crustal models also show an unexpected velocity decrease between 12 and 18 km, consistent with a slight dropdown of the Vp/Vs ratio, imputable to a regional mid-crustal shear zone inherited from the previous alpine orogenesis, re-activated in extensional tectonic by the early opening phases of the Tyrrhenian sea. Above

  16. Hydrophobic thickness, lipid surface area and polar region hydration in monounsaturated diacylphosphatidylcholine bilayers: SANS study of effects of cholesterol and beta-sitosterol in unilamellar vesicles.

    Gallová, J; Uhríková, D; Kucerka, N; Teixeira, J; Balgavý, P


    The influence of a mammalian sterol cholesterol and a plant sterol beta-sitosterol on the structural parameters and hydration of bilayers in unilamellar vesicles made of monounsaturated diacylphosphatidylcholines (diCn:1PC, n=14-22 is the even number of acyl chain carbons) was studied at 30 degrees C using small-angle neutron scattering (SANS). Recently published advanced model of lipid bilayer as a three-strip structure was used with a triangular shape of polar head group probability distribution (Kucerka et al., Models to analyze small-angle neutron scattering from unilamellar lipid vesicles, Physical Review E 69 (2004) Art. No. 051903). It was found that 33 mol% of both sterols increased the thickness of diCn:1PC bilayers with n=18-22 similarly. beta-sitosterol increased the thickness of diC14:1PC and diC16:1PC bilayers a little more than cholesterol. Both sterols increased the surface area per unit cell by cca 12 A(2) and the number of water molecules located in the head group region by cca 4 molecules, irrespective to the acyl chain length of diCn:1PC. The structural difference in the side chain between cholesterol and beta-sitosterol plays a negligible role in influencing the structural parameters of bilayers studied.

  17. Geoid, topography, and convection-driven crustal deformation on Venus

    Simons, Mark; Hager, Bradford H.; Solomon, Sean C.


    High-resolution Magellan images and altimetry of Venus reveal a wide range of styles and scales of surface deformation that cannot readily be explained within the classical terrestrial plate tectonic paradigm. The high correlation of long-wavelength topography and gravity and the large apparent depths of compensation suggest that Venus lacks an upper-mantle low-viscosity zone. A key difference between Earth and Venus may be the degree of coupling between the convecting mantle and the overlying lithosphere. Mantle flow should then have recognizable signatures in the relationships between the observed surface topography, crustal deformation, and the gravity field. Therefore, comparison of model results with observational data can help to constrain such parameters as crustal and thermal boundary layer thicknesses as well as the character of mantle flow below different Venusian features. We explore in this paper the effects of this coupling by means of a finite element modelling technique.

  18. Hybrid pn-junction solar cells based on layers of inorganic nanocrystals and organic semiconductors: optimization of layer thickness by considering the width of the depletion region.

    Saha, Sudip K; Guchhait, Asim; Pal, Amlan J


    We report the formation and characterization of hybrid pn-junction solar cells based on a layer of copper diffused silver indium disulfide (AgInS2@Cu) nanoparticles and another layer of copper phthalocyanine (CuPc) molecules. With copper diffusion in the nanocrystals, their optical absorption and hence the activity of the hybrid pn-junction solar cells was extended towards the near-IR region. To decrease the particle-to-particle separation for improved carrier transport through the inorganic layer, we replaced the long-chain ligands of copper-diffused nanocrystals in each monolayer with short-ones. Under illumination, the hybrid pn-junctions yielded a higher short-circuit current as compared to the combined contribution of the Schottky junctions based on the components. A wider depletion region at the interface between the two active layers in the pn-junction device as compared to that of the Schottky junctions has been considered to analyze the results. Capacitance-voltage characteristics under a dark condition supported such a hypothesis. We also determined the width of the depletion region in the two layers separately so that a pn-junction could be formed with a tailored thickness of the two materials. Such a "fully-depleted" device resulted in an improved photovoltaic performance, primarily due to lessening of the internal resistance of the hybrid pn-junction solar cells.

  19. Crustal structure of the northern Perth Basin, southwest margin of Australia: insights from three-dimensional density models

    Holzrichter, Nils; Hackney, Ron; Johnston, Stephen


    The northern Perth Basin formed from the Palaeozoic to Mesozoic within an obliquely oriented extensional rift system on the southwest continental margin of Australia. Knowledge of the basin in onshore and inboard areas reflects better accessibility and the existence of proven hydrocarbon resources. In contrast, outboard parts of the basin have poorer data coverage and hydrocarbon potential remains to be proven. In order to better constrain sediment thickness and crustal structure in the northern Perth Basin, particularly in offshore areas where coverage of seismic data is less extensive, we adopted a 3-D density modelling approach whereby simple models were initially constructed as a means to highlight the level of agreement between measured and calculated gravity. These initial models are based only on available constraints, automated extrapolation of interpreted horizons into areas without constraints, and different interpretations of Moho depth. The initial models show that the processes leading to formation of sediment depocentres in the northern Perth Basin are not governed by simple local isostasy. We show instead that a model incorporating an existing Moho model for the Australian region leads to a better fit. In this model, the Moho is deeper under the thick sediments of the onshore Dandaragan Trough. As a result, the crystalline crust between the Beagle Ridge and basin-bounding Darling Fault has a relatively constant thickness that is consistent with crustal-scale tilting and normal displacement on a steeply west-dipping Darling Fault. In the outboard parts of the basin, our modelling suggests that the deep water Zeewyck Sub-basin is a deep and steep-sided depocentre, but this area lacks constraints and uncertainty in its interpretation cannot be resolved without additional data. Despite this, the steep edges, thick sediments and the large lateral variations in Moho depth are consistent with the geometry expected of a transtensional basin. We also present

  20. Upper-crustal structure beneath the strait of Georgia, Southwest British Columbia

    Dash, R.K.; Spence, G.D.; Riedel, M.; Hyndman, R.D.; Brocher, T.M.


    We present a new three-dimensional (3-D) P-wave velocity model for the upper-crustal structure beneath the Strait of Georgia, southwestern British Columbia based on non-linear tomographic inversion of wide-angle seismic refraction data. Our study, part of the Georgia Basin Geohazards Initiative (GBGI) is primarily aimed at mapping the depth of the Cenozoic sedimentary basin and delineating the near-surface crustal faults associated with recent seismic activities (e.g. M = 4.6 in 1997 and M = 5.0 in 1975) in the region. Joint inversion of first-arrival traveltimes from the 1998 Seismic Hazards Investigation in Puget Sound (SHIPS) and the 2002 Georgia Basin experiment provides a high-resolution velocity model of the subsurface to a depth of ???7 km. In the southcentral Georgia Basin, sedimentary rocks of the Cretaceous Nanaimo Group and early Tertiary rocks have seismic velocities between 3.0 and 5.5 km s-1. The basin thickness increases from north to south with a maximum thickness of 7 (??1) km (depth to velocities of 5.5 km s-1) at the southeast end of the strait. The underlying basement rocks, probably representing the Wrangellia terrane, have velocities of 5.5-6.5 km-1 with considerable lateral variation. Our tomographic model reveals that the Strait of Georgia is underlain by a fault-bounded block within the central Georgia Basin. It also shows a correlation between microearthquakes and areas of rapid change in basin thickness. The 1997/1975 earthquakes are located near a northeast-trending hinge line where the thicknesses of sedimentary rocks increase rapidly to the southeast. Given its association with instrumentally recorded, moderate sized earthquakes, we infer that the hinge region is cored by an active fault that we informally name the Gabriola Island fault. A northwest-trending, southwest dipping velocity discontinuity along the eastern side of Vancouver Island correlates spatially with the surface expression of the Outer Island fault. The Outer Island

  1. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Points for the thickness of the regional middle confining unit

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  2. Bulk arc strain, crustal thickening, magma emplacement, and mass balances in the Mesozoic Sierra Nevada arc

    Cao, Wenrong; Paterson, Scott; Saleeby, Jason; Zalunardo, Sean


    Quantifying crustal deformation is important for evaluating mass balance, material transfer, and the interplay between tectonism and magmatism in continental arcs. We present a dataset of >650 finite strain analyses compiled from published works and our own studies with associated structural, geochronologic, and geobarometric information in central and southern Sierra Nevada, California, to quantify the arc crust deformation. Our results show that Mesozoic tectonism results in 65% arc-perpendicular bulk crust shortening under a more or less plane strain condition. Mesozoic arc magmatism replaced ∼80% of this actively deforming arc crust with plutons requiring significantly greater crustal thickening. We suggest that by ∼85 Ma, the arc crust thickness was ∼80 km with a 30-km-thick arc root, resulting in a ∼5 km elevation. Most tectonic shortening and magma emplacement must be accommodated by downward displacements of crustal materials into growing crustal roots at the estimated downward transfer rate of 2-13 km/Myr. The downward transfer of crustal materials must occur in active magma channels, or in "escape channels" in between solidified plutons that decrease in size with time and depth resulting in an increase in the intensity of constrictional strain with depth. We argue that both tectonism and magmatism control the thickness of the crust and surface elevation with slight modification by surface erosion. The downward transported crustal materials initially fertilize the MASH zone thus enhancing to the generation of additional magmas. As the crustal root grows it may potentially pinch out and cool the mantle wedge and thus cause reduction of arc magmatism.

  3. Crustal growth in subduction zones

    Vogt, Katharina; Castro, Antonio; Gerya, Taras


    There is a broad interest in understanding the physical principles leading to arc magmatisim at active continental margins and different mechanisms have been proposed to account for the composition and evolution of the continental crust. It is widely accepted that water released from the subducting plate lowers the melting temperature of the overlying mantle allowing for "flux melting" of the hydrated mantle. However, relamination of subducted crustal material to the base of the continental crust has been recently suggested to account for the growth and composition of the continental crust. We use petrological-thermo-mechanical models of active subduction zones to demonstrate that subduction of crustal material to sublithospheric depth may result in the formation of a tectonic rock mélange composed of basalt, sediment and hydrated /serpentinized mantle. This rock mélange may evolve into a partially molten diapir at asthenospheric depth and rise through the mantle because of its intrinsic buoyancy prior to emplacement at crustal levels (relamination). This process can be episodic and long-lived, forming successive diapirs that represent multiple magma pulses. Recent laboratory experiments of Castro et al. (2013) have demonstrated that reactions between these crustal components (i.e. basalt and sediment) produce andesitic melt typical for rocks of the continental crust. However, melt derived from a composite diapir will inherit the geochemical characteristics of its source and show distinct temporal variations of radiogenic isotopes based on the proportions of basalt and sediment in the source (Vogt et al., 2013). Hence, partial melting of a composite diapir is expected to produce melt with a constant major element composition, but substantial changes in terms of radiogenic isotopes. However, crustal growth at active continental margins may also involve accretionary processes by which new material is added to the continental crust. Oceanic plateaus and other

  4. Deep crustal reflection results from the central Eromanga Basin, Australia

    Mathur, S. P.


    From 1980 to 1982 deep seismic reflection profiles were recorded across the central Eromanga Basin in eastern Australia to study the regional structure, stratigraphy and geological history of the Eromanga Basin and infra-basins. The reflection data were recorded to 20 s to obtain additional information on the nature and structure of the crust below the sediments and their relationship to the development of the basins. The seismic sections show good quality reflections from the deep crust as well as from the sedimentary layers. Based on the character, strength, coherence, continuity and spatial distribution of the reflections, the sections can be divided into four zones. The tope zone between 0 and 2.5 s shows fairly uniform, coherent and continuous events which correlate with the Mesozoic and Late Palaeozoic sediments. The zone from 2.5 to 8 s (4 to 22 km) does not show any primary reflections and is interpreted as the highly-deformed metasedimentary and metavolcanic rocks of the Early Palaeozoic Thomson Orogen underlying the sediments. Without any recognisable reflection or diffraction patterns in this zone, it is difficult to say whether the faulting and folding observed in the sediments extend into the upper crustal basement. The deeper zone of numerous reflection segments between 8 and 12.5 s (22 to 36 km) is interpreted as thin laminae of alternating low and high velocity (intermediate and basic) rocks, and correlates with the lower crust bounded by refraction velocity discontinuities. The lowest zone of no reflections below 12.5 s corresponds with the upper mantle. The reflection character and thickness as well as the refraction velocity structure of the crust under the central Eromanga Basin area are significantly different from those of the Precambrian crust under the Georgina Basin to the northwest. It is proposed that the crust under the Eromanga Basin is extensionally attenuated crust which had been intruded by sills of basaltic melt from the underlying

  5. Role of volcanics in formation of new crust during hyperextension of the Death Valley region

    Norton, I. O.


    Death Valley (DV) is a pull-apart basin formed in the last 3 million years by extensional dextral strike slip linked to eastward propagation of the Pacific - North America plate boundary. From 15-18 Ma until 6 Ma, DV was part of the Basin and Range extensional province, with large-magnitude generally east-west extension. Several structural features in the region have been proposed as pinning points for restoration of this extension, allowing for quantitative palinspastic reconstructions. These reconstructions show over 100 km of motion between some pinning points. Depending on how initial geometries are restored, these offsets can imply over 200% extension. In a continental margin setting, this amount of extension would produce thin crust (assuming the horizontal extension factor equals the inverse of the crust thinning factor) and ultimately the mantle would probably be exhumed, like in the Iberia-Newfoundland rift. In the Death Valley region, however, the crust is still about 30 km thick. With 200% extension, original crustal thickness would have been nearly 90 km (defining %extension as {original-present}/original%, thickness or length). In this presentation I suggest that original crustal thickness was a more reasonable 40-45 km. 200% extension of this crust would have reduced crustal thickness to 15 km. Based on the observation of voluminous syn-extensional volcanics, both extrusive and intrusive, in the DV region, I also suggest that the difference in crustal thickness was made up of new volcanic material that has become a part of the crust during extension. The same hypothesis can be applied to the Basin and Range province, where syn-extensional volcanics make up nearly 50% of the exposed pre-Quaternary outcrop. These volcanics could have increased crustal thickness to the observed 30km, in spite of the large amount of extension in the province. Applying the same hypothesis to passive margins, where the presence or absence of syn-extensional volcanics is the

  6. Constraints on Crustal Viscosity from Geodetic Observations

    Houseman, Gregory


    Laboratory measurements of the ductile deformation of crustal rocks demonstrate a range of crystal deformation mechanisms that may be represented by a viscous deformation law, albeit one in which the effective viscosity may vary by orders of magnitude, depending on temperature, stress, grain size, water content and other factors. In such measurements these factors can be separately controlled and effective viscosities can be estimated more or less accurately, though the measured deformation occurs on much shorter time scales and length scales than are typical of geological deformation. To obtain bulk measures of the in situ crustal viscosity law for actual geological processes, estimated stress differences are balanced against measured surface displacement or strain rates: at the continental scale, surface displacement and strain rates can be effectively measured using GPS, and stress differences can be estimated from the distribution of gravitational potential energy; this method has provided constraints on a depth-averaged effective viscosity for the lithosphere as a whole in regions that are actively deforming. Another technique measures the post-seismic displacements that are interpreted to occur in the aftermath of a large crustal earthquake. Stress-differences here are basically constrained by the co-seismic deformation and the elastic rigidity (obtained from seismic velocity) and the strain rates are again provided by GPS. In this technique the strain is a strong function of position relative to the fault, so in general the interpretation of this type of data depends on a complex calculation in which various simplifying assumptions must be made. The spatial variation of displacement history on the surface in this case contains information about the spatial variation of viscosity within the crust. Recent post-seismic studies have shown the potential for obtaining measurements of both depth variation and lateral variation of viscosity in the crust beneath

  7. Effect of Crustal Density Structures on GOCE Gravity Gradient Observables

    Robert Tenzer and Pavel Novák


    Full Text Available We investigate the gravity gradient components corrected for major known anomalous density structures within the _ crust. Heterogeneous mantle density structures are disregarded. The gravimetric forward modeling technique is utilized to compute the gravity gradients based on methods for a spherical harmonic analysis and synthesis of a gravity field. The _ gravity gradient components are generated using the global geopotential model GOCO-03s. The topographic and stripping gravity corrections due to the density contrasts of the ocean and ice are computed from the global topographic/bathymetric model DTM2006.0 (which also includes the ice-thickness dataset. The discrete data of sediments and crust layers taken from the CRUST2.0 global crustal model are then used to apply the additional stripping corrections for sediments and remaining anomalous crustal density structures. All computations are realized globally on a one arc-deg geographical grid at a mean satellite elevation of 255 km. The global map of the consolidated crust-stripped gravity gradients reveals distinctive features which are attributed to global tectonics, lithospheric plate configuration, lithosphere structure and mantle dynamics (e.g., glacial isostatic adjustment, mantle convection. The Moho signature, which is the most pronounced signal in these refined gravity gradients, is superimposed over a weaker gravity signal of the lithospheric mantle. An interpretational quality of the computed (refined gravity gradient components is mainly limited by a low accuracy and resolution of the CRUST2.0 sediment and crustal layer data and unmodeled mantle structures.

  8. Fractal behavior in continental crustal heat production

    N. Vedanti


    Full Text Available The distribution of crustal heat production, which is the most important component in the elucidation of continental thermal structure, still remains a theoretical assumption. In general the heat production values must decrease with depth, but the form of decrease of heat production in the crust is not well understood. The commonly used heat production models are: "block model", in which heat production is constant from the surface to a given depth and the "exponential model", in which heat production diminishes as an exponential function of depth. The exponential model is more widely used wherein sources of the errors are heterogeneity of rock and long wavelength changes due to changes in lithology and tectonic elements, and as such exponential distribution does not work satisfactorily for the entire crust. In the present study, we analyze for the first time, deep crustal heat production data of six global areas namely Dharwar craton (India, Kaapvaal craton (South Africa, Baltic shield (Kola, Russia, Hidaka metamorphic belt (Japan, Nissho pluton (Japan and Continental Deep Drilling site (KTB, Germany. The power spectrum of all the studied data sets exhibits power law behaviour. This would mean slower decay of heat production with depth, which conforms to the known geologic composition of the crust. Minimum value of the scaling exponent has been found for the KTB borehole, which is apparently related to higher heat production of gneisses, however for other study areas, scaling exponent is almost similar. We also found that the lower values of scaling exponents are related to higher heat production in the crust as is the case in KTB. Present finding has a direct relevance in computation of temperature-depth profiles in continental regions.

  9. Analytical model for an asymmetric double-gate MOSFET with gate-oxide thickness and flat-band voltage variations in the subthreshold region

    Shin, Yong Hyeon; Yun, Ilgu


    This paper proposes an analytical model for an asymmetric double-gate metal-oxide-semiconductor field-effect transistor (DG MOSFET) with varying gate-oxide thickness (tox) and flat-band voltage (Vfb) in the subthreshold region. Since such variations cannot be completely avoided, the modeling of their behaviors is essential. The analytical model is developed by solving a 2D Poisson equation with a varying channel doping concentration (NA). To solve the 2D Poisson equation of the asymmetric DG MOSFET, a perturbation method is used to separate the solution of the channel potential into basic and perturbed terms. Since the basic terms can be regarded as the equations derived from a general symmetric doped DG MOSFET, the conventional analytical model is adopted. In addition, a solution related to the perturbed terms for the asymmetric structures is obtained using Fourier series. Based on the obtained channel potential, the electrical characteristics of the drive current (IDS) are expressed in the analytical model. The prediction of the electrical characteristics by the analytical model shows excellent agreement when compared with commercially available 2D numerical device simulation results with respect to not only tox and Vfb variations but also channel length and NA variations.

  10. Mechanisms of crustal deformation in the western US

    Turcotte, Donald L.


    The deformation processes in the western United States were studied, considering both deterministic models and random or statistical models. The role of the intracrustal delamination and mechanisms of crustal thinning were also examined. The application of fractal techniques to understand how the crust is deforming was studied in complex regions. Work continued on the development of a fractal based model for deformation in the western United States. Fractal studies were also extended to the study of topography and the geoid.

  11. Constraints on Moho Depth and Crustal Thickness in the Liguro-Provençal Basin from a 3d Gravity Inversion : Geodynamic Implications Contraintes sur la profondeur du moho et l'épaisseur crustale dans le bassin liguro-provençal à partir de l'inversion 3D de données gravimétriques : implications géodynamiques

    Gaulier J. M.


    Full Text Available 3D gravity modelling is combined with seismic refraction and reflection data to constrain a new Moho depth map in the Liguro-Provençal Basin (Western Mediterranean Sea. At seismically controlled points, the misfit between the gravimetric solution and the seismic data is about 2 km for a range of Moho depth between 12 km (deep basin and 30 km (mainlands. The oceanic crust thickness in the deep basin (5 km is smaller than the average oceanic crust thickness reported in open oceans (7 km, pointing to a potential mantle temperature 30°C to 50°C below normal and/or very slow oceanic spreading rate. Oceanic crust thickness is decreasing towards the Ligurian Sea and towards the continent-ocean boundary to values as small as 2 km. Poor magma supply is a result of low potential mantle temperature at depth, lateral thermal conduction towards unextended continental margin, and decrease of the oceanic spreading rate close to the pole of opening in the Ligurian Sea. Re-examination of magnetic data (paleomagnetic data and magnetic lineations indicates that opening of the Liguro-Provençal Basin may have ceased as late as Late Burdigalian (16. 5 Ma or even later. The absence of significant time gap between cessation of opening in the Liguro-Provençal Basin and rifting of the Tyrrhenian domain favours a continuous extension mechanism since Upper Oligocene driven by the African trench retreat. Ce rapport présente un travail commun avec le Laboratoire de géodynamique de l'École normale supérieure (ENS. Ce travail doit être resitué dans son contexte : l'étude régionale du golfe du Lion a été possible dans le cadre du projet européen Integrated Basin Studies. Le développement du code d'inversion 3D avait fait l'objet de conventions avec l'ENS pendant les années précédentes. La mise en Suvre d'une telle inversion est désormais possible à l'IFP. Il n'y a pas d'interface pour ce calculateur. L'aide des collègues de l'ENS est souhaitable pour la

  12. Crustal types, distribution of salt and the early evolution of the Gulf of Mexico basin

    Buffler, R.T. (Univ. of Texas, Austin (USA))


    A new contour map on the top of basement shows the overall configuration of the entire Gulf of Mexico basin. Basement, as used here, is all rocks lying below (older than) the extensive Middle Jurassic (Callovian ) premarine evaporites (Louann Salt, etc.) plus the Late Jurassic oceanic crust in the deep part of the basin. The contour map combined with all other available geophysical data has been used to subdivide the gulf basin into four crustal types: continental, thick transitional, thin transitional, and oceanic crust. The broad region of transitional crust and the basic architecture of the basin shown by the map is believed to have formed mainly during a separate Middle Jurassic period of widespread attenuation of the entire gulf region. The area of thick transitional crust around the periphery of the northern gulf is characterized by broad basement highs and lows with wave lengths of 200-300 km. These features controlled the general distribution and thickness of salt and the overlying Jurassic through Lower Cretaceous rocks. In the area of thin transitional crust Mesozoic basins tend to be assymetrical and generally trend more parallel to the overall basin. The boundary between thin transitional crust and oceanic crust is characterized by various salt-related features. For example, the northwest and north-central boundaries are defined by two northeast trending salt-cored foldbelts, the Perdido and Mississippi fan foldbelts, respectively. The offset between the two foldbelts may represent a major transform boundary related to the northwest opening of the gulf basin. All these data put important constraints on models for early gulf evolution.

  13. Regional Equivalent Water Thickness Modeling from Remote Sensing across a Tree Cover/LAI Gradient in Mediterranean Forests of Northern Tunisia

    Hedia Chakroun


    Full Text Available The performance of vegetation indexes derived from moderate resolution imaging spectroradiometer (MODIS sensors is explored for drought monitoring in the forests of Northern Tunisia; representing a transition zone between the Mediterranean Sea and the Sahara Desert. We investigated the suitability of biomass and moisture vegetation indexes for vegetation water content expressed by the equivalent water thickness (EWT in a Mediterranean forest ecosystem with contrasted water budgets and desiccation rates. We proposed a revised EWT at canopy level (EWTCAN based on weekly field measurements of fuel moisture in seven species during the 2010 dry period; considering the mixture of plant functional types for water use (trees; shrubs and herbaceous layers and a varying vegetation cover. MODIS vegetation indexes computed and smoothed over the dry season were highly correlated with the EWTCAN. The performances of moisture indexes (Normalized Difference Infrared Index (NDII6 and NDII7; and Global Moisture Vegetation Index (GVMI6 and GVMI7 were comparable; whereas; for biomass vegetation indexes; Normalized Difference Vegetation Index (NDVI; Modified Soil Adjusted Vegetation Index (MSAVI and Adjusted Normalized Difference Vegetation Index (ANDVI performed better than Enhanced Vegetation Index (EVI and Soil Adjusted Vegetation Index (SAVI. We also identified the effect of Leaf Area Index (LAI on EWTCAN monitoring at the regional scale under the tree cover/LAI gradient of the region from relatively dense to open forest. Statistical analysis revealed a significant decreasing linear relationship; indicating that for LAI less than two; the greater the LAI; the less responsive are the vegetation indexes to changes in EWTCAN; whereas for higher LAI; its influence becomes less significant and was not considered in the inversion models based on vegetation indexes. The EWTCAN time-course from LAI-adapted inversion models; based on significantly-related vegetation

  14. Computed tomography scan measurement of abdominal wall thickness for application of near-infrared spectroscopy probes to monitor regional oxygen saturation index of gastrointestinal and renal circulations in children.

    Balaguru, Duraisamy; Bhalala, Utpal; Haghighi, Mohammad; Norton, Karen


    To measure abdominal wall thickness to determine the depth at which the renal vascular bed and mesenteric vascular bed are located, and to determine the appropriate site for placement of near-infrared spectroscopy probes for accurate monitoring regional oxygen saturation index in children. Abdominal computerized tomography scans in children were used to measure the abdominal wall thickness and to ascertain the location of kidneys. Tertiary care children's hospital. Children 0-18 yrs of age; n = 38. None. The main mass of the kidneys is located between vertebral levels T12 and L2 on both sides. The left kidney is located about a half-vertebral length higher than the right kidney. Posterior abdominal wall thickness ranged from 6.6 to 115.8 mm (median, 22.1 mm). Posterolateral abdominal wall thickness ranged from 6.7 to 114.5 mm (median, 19.6 mm). Anterior abdominal wall thickness in the supraumbilical level ranged from 3.5 to 62.9 mm (median, 16.0 mm). All abdominal wall thicknesses correlated better with weight of the subjects than their age. Abdominal wall thickness potentially exceeds the sampling depth of currently used near-infrared spectroscopy probes above a certain body size. Application of current near-infrared spectroscopy probes and design of future probes should consider patient size variations in the pediatric population.

  15. Spatial variation of crustal coda Q in California

    Philips, W.S.; Lee, W.H.K.; Newberry, J.T.


    Coda wave data from California microearthquakes were studied in order to delineate regional fluctuations of apparent crustal attenuation in the band 1.5 to 24 Hz. Apparent attenuation was estimated using a single back scattering model of coda waves. The coda wave data were restricted to ???30 s following the origin time; this insures that crustal effects dominate the results as the backscattered shear waves thought to form the coda would not have had time to penetrate much deeper. Results indicate a strong variation in apparent crustal attenuation at high frequencies between the Franciscan and Salinian regions of central California and the Long Valley area of the Sierra Nevada. Although the coda Q measurements coincide at 1.5 Hz (Qc=100), at 24 Hz there is a factor of four difference between the measurements made in Franciscan (Qc=525) and Long Valley (Qc=2100) with the Salinian midway between (Qc=900). These are extremely large variations compared to measures of seismic velocities of comparable resolution, demonstrating the exceptional sensitivity of the high frequency coda Q measurement to regional geology. In addition, the frequency trend of the results is opposite to that seen in a compilation of coda Q measurements made worldwide by other authors which tend to converge at high and diverge at low frequencies, however, the worldwide results generally were obtained without limiting the coda lengths and probably reflect upper mantle rather than crustal properties. Our results match those expected due to scattering in random media represented by Von Karman autocorrelation functions of orders 1/2 to 1/3. The Von Karman medium of order 1/3 corresponding to the Franciscan coda Q measurement contains greater amounts of high wavenumber fluctuations. This indicates relatively large medium fluctuations with wavelengths on the order of 100 m in the highly deformed crust associated with the Franciscan, however, the influence of scattering on the coda Q measurement is

  16. Crustal structure of western Hispaniola (Haiti) from a teleseismic receiver function study

    Corbeau, J.; Rolandone, F.; Leroy, S.; Guerrier, K.; Keir, D.; Stuart, G.; Clouard, V.; Gallacher, R.; Ulysse, S.; Boisson, D.; Bien-aimé Momplaisir, R.; Saint Preux, F.; Prépetit, C.; Saurel, J.-M.; Mercier de Lépinay, B.; Meyer, B.


    Haiti, located at the northern Caribbean plate boundary, records a geological history of terrane accretion from Cretaceous island arc formations to the Eocene to Recent oblique collision with the Bahamas platform. Little is presently known about the underlying crustal structure of the island. We analyze P-waveforms arriving at 27 temporary broadband seismic stations deployed over a distance of 200 km across the major terrane boundaries in Haiti to determine the crustal structure of western Hispaniola. We compute teleseismic receiver functions using the Extended-Time Multi-Taper method and determine crustal thickness and bulk composition (Vp/Vs) using the H-k stacking method. Three distinctive and fault-bounded crustal domains, defined by their characteristic Moho depth distributions and bulk crustal Vp/Vs, are imaged across Haiti. We relate these domains to three crustal terranes that have been accreted along the plate boundary during the northeastwards displacement of the Caribbean plate and are presently being deformed in a localized fold and thrust belt. In the northern domain, made up of volcanic arc facies, the crust has a thickness of 23 km and Vp/Vs of 1.75 ± 0.1 typical of average continental crust. The crust in the southern domain is part of the Caribbean Large Igneous Province (Caribbean LIP), and is 22 km thick with Vp/Vs of 1.80 ± 0.03 consistent with plume-related rocks of late Cretaceous age. Significantly thicker, the crust in central Haiti has values of Moho depths averaging 41 km and with Vp/Vs of 1.80 ± 0.05. We propose that the central domain is likely constructed of an island arc upper crust with fragments of dense material originating from mafic lavas or LIP material. We produce a crustal profile along a N-S transect across Haiti accounting for the surface geology, shallow structural history, and new seismological constraints provided by variations of crustal thickness and bulk composition.

  17. Crustal wedging triggering recent deformation in the Andean thrust front between 31°S and 33°S: Sierras Pampeanas-Precordillera interaction

    VergéS, J.; Ramos, V. A.; Meigs, A.; Cristallini, E.; Bettini, F. H.; CortéS, J. M.


    We document a new model of crustal structure of the Andean front in Argentina where numerous historic earthquakes destroyed the cities of Mendoza in 1861 (Ms = ˜7) and San Juan in 1944 (Mw = 7.0). The Cerro Salinas anticline is formed above the west directed Cerro Salinas thrust. An east facing monocline with an amplitude of about 2 km folds the Cerro Salinas thrust and overlying Neogene succession. This monocline is formed above a blind crustal thrust in the basement. Its dip of 14° west is inferred from fold geometry. This thick-skinned east directed blind thrust and the thin-skinned west directed Cerro Salinas thrust define a tectonic wedge; the wedge tip occurs at a depth of 5.4 km. Growth of the monocline after ˜8.5 Ma is revealed on multichannel seismic (MSC) profile 31017 (Repsol-YPF). Rates of Cerro Salinas thrust displacement are of the order of 1 mm/yr, whereas vertical uplift of ˜0.45 mm/yr results from the combined displacement on the Cerro Salinas thrust and growth of east facing monocline. The lateral extent of the east directed crustal blind ramp corresponds with the along-strike extent of the Eastern Precordillera. When combined with the low displacement rate, a long earthquake recurrence interval is implied. Smaller magnitude earthquakes, however, indicate that segments of the blind thrust ramps ruptured in historic events. If all the segments of the blind thrust ruptured together the fault area is ˜7000 km2 and could produce a Mw ˜ 7.7 earthquake. The crustal wedge model provides new constraints on the origin and potential size of earthquakes that threaten the densely populated region.

  18. Crustal Structure of Iraq from Receiver Functions and Surface Wave Dispersion

    Gok, R; Mahdi, H; Al-Shukri, H; Rodgers, A J


    We report the crustal structure of Iraq, located in the northeastern Arabian plate, estimated by joint inversion of P-wave receiver functions and surface wave group velocity dispersion. Receiver functions were computed from teleseismic recordings at two temporary broadband seismic stations in Mosul (MSL) and Baghdad (BHD), separated by approximately 360 km. Group velocity dispersion curves at the sites were derived from continental-scale tomography of Pasyanos (2006). The inversion results show that the crustal thicknesses are 39 km at MSL and 43 km at BHD. Both sites reveal low velocity surface layers consistent with sedimentary thickness of about 3 km at station MSL and 7 km at BHD, agreeing well with the existing models. Ignoring the sediments, the crustal velocities and thicknesses are remarkably similar between the two stations, suggesting that the crustal structure of the proto-Arabian Platform in northern Iraq was uniform before subsidence and deposition of the sediments in the Cenozoic. Deeper low velocity sediments at BHD are expected to result in higher ground motions for earthquakes.

  19. Crustal shortening and Eocene extension in the southeastern Canadian Cordillera: Some thermal and rheological considerations

    Liu, Mian; Furlong, Kevin P.


    Metamorphic core complexes in the southeastern Canadian Cordillera were formed during Eocene crustal extension, shortly (within a few millions of years) after Late Jurassic-Paleocene crustal shortening. Thermal-rheological modeling, constrained by geological and geochronological studies of the Valhalla core complex and other core complexes in this region, is used to investigate two major problems concerning the formation of these core complexes: (1) the dynamic links between crustal shortening and extension and (2) the cooling history and unroofing rates during extension. Thermal-rheological effects associated with crustal shortening are integrated through the history of crustal compression, since crustal shortening in this region was a long and slow process and cannot be treated as an instantaneous event. Our results suggest that crustal shortening may have played an important role in Eocene extension in the southeastern Canadian Cordillera by (1) producing a thickened and therefore unstable crust and (2) thermally weakening the lithosphere. However, heat generated by crustal shortening is not enough to account for the thermal state of the Valhalla complex, and additional heat sources at depth may be necessary. We then investigate thermal evolution during extension in both a simple shear model and a progressive pure stretching model. We show that the geotherm in an extensional region is time-and space-dependent and is affected by many variables including the preextensional thermal history and the mode of extension. Thus caution needs to be exercised when inferring unroofing rates from thermochronologic data. The cooling history of the Valhalla core complex may be explained by unroofing at rates of 1-2 mm/yr.

  20. Crustal structure of northern Italy from the ellipticity of Rayleigh waves

    Berbellini, Andrea; Morelli, Andrea; Ferreira, Ana M. G.


    Northern Italy is a diverse geological region, including the wide and thick Po Plain sedimentary basin, which is bounded by the Alps and the Apennines. The seismically slow shallow structure of the Po Plain is difficult to retrieve with classical seismic measurements such as surface wave dispersion, yet the detailed structure of the region greatly affects seismic wave propagation and hence seismic ground shaking. Here we invert Rayleigh wave ellipticity measurements in the period range 10-60 s for 95 stations in northern Italy using a fully non linear approach to constrain vertical vS,vP and density profiles of the crust beneath each station. The ellipticity of Rayleigh wave ground motion is primarily sensitive to shear-wave velocity beneath the recording station, which reduces along-path contamination effects. We use the 3D layering structure in MAMBo, a previous model based on a compilation of geological and geophysical information for the Po Plain and surrounding regions of northern Italy, and employ ellipticity data to constrain vS,vP and density within its layers. We show that ellipticity data from ballistic teleseismic wave trains alone constrain the crustal structure well. This leads to MAMBo-E, an updated seismic model of the region's crust that inherits information available from previous seismic prospection and geological studies, while fitting new seismic data well. MAMBo-E brings new insights into lateral heterogeneity in the region's subsurface. Compared to MAMBo, it shows overall faster seismic anomalies in the region's Quaternary, Pliocene and Oligo-Miocene layers and better delineates the seismic structures of the Po Plain at depth. Two low velocity regions are mapped in the Mesozoic layer in the western and eastern parts of the Plain, which seem to correspond to the Monferrato sedimentary basin and to the Ferrara-Romagna thrust system, respectively.

  1. Exploring Geothermal Energy Potential in Ireland through 3-D Geophysical-Petrological Modelling of Surface Heat-Flow and Crustal and Upper-Mantle Structure

    Fullea, J.; Muller, M. R.; Jones, A. G.


    regional controls on surface heat-flow and crustal temperatures are (a) crustal thickness, (b) crustal heat-production and (c) lithospheric thickness. These unknown geological variables are modelled in LitMod3D against geophysical observations at surface - heat-flow, topography, gravity and geoid data - to identify a crustal and lithospheric-mantle model that satisfies and accounts for all the observations at surface (most importantly in our context, heat-flow). We present a range of 3-D crustal and lithospheric-mantle models that satisfy all observable constraints and account for the regional sources of heat in Ireland. These models provide the basis for isolating local temperature anomalies and for assessing the extent to which local lithological variation in heat-production and thermal conductivity affects the distribution of temperatures in our target depth range of 2000 - 6000 m. Significant, well defined temperature anomalies that emerge from this work will be targeted for further assessment during IRETHERM's planned field program of magnetotelluric and controlled source electromagnetic surveys.

  2. Crustal displacements in Greenland caused by ice mass variability

    Nielsen, Karina

    The climate of the Earth is changing. A consequence of this is observed at the polar regions such as Greenland, where the ice sheet is melting with an increasing rate. The unloading of ice causes the Earth to respond elastically in terms of uplift and an outward horizontal deformation of the crust....... This motion can be measured by permanent Global Positioning System (GPS) receivers. Hence, the rates of crustal displacement are an indirect measure of the occurring mass changes. Currently, 55 GPS sites are located around the margin of the Greenland ice sheet, continuously providing information about...... the state of the ice sheet. However, the Earth is also adjusting viscoelastically to variations in the late Pleistocene ice sheets i.e. glacial isostatic adjustment (GIA). Observed rates of crustal displacement therefor contain signals from both past and present ice mass variations. Hence, to interpret...

  3. Crustal structure of the Gulf of Aden southern margin: Evidence from receiver functions on Socotra Island (Yemen)

    Ahmed, Abdulhakim; Leroy, Sylvie; Keir, Derek; Korostelev, Félicie; Khanbari, Khaled; Rolandone, Frédérique; Stuart, Graham; Obrebski, Mathias


    Breakup of continents in magma-poor setting occurs primarily by faulting and plate thinning. Spatial and temporal variations in these processes can be influenced by the pre-rift basement structure as well as by early syn-rift segmentation of the rift. In order to better understand crustal deformation and influence of pre-rift architecture on breakup we use receiver functions from teleseismic recordings from Socotra which is part of the subaerial Oligo-Miocene age southern margin of the Gulf of Aden. We determine variations in crustal thickness and elastic properties, from which we interpret the degree of extension related thinning and crustal composition. Our computed receiver functions show an average crustal thickness of ~ 28 km for central Socotra, which decreases westward along the margin to an average of ~ 21 km. In addition, the crust thins with proximity to the continent-ocean transition to ~ 16 km in the northwest. Assuming an initial pre-rift crustal thickness of 35 km (undeformed Arabian plate), we estimate a stretching factor in the range of ~ 2.1-2.4 beneath Socotra. Our results show considerable differences between the crustal structure of Socotra's eastern and western sides on either side of the Hadibo transfer zone; the east displays a clear intracrustal conversion phase and thick crust when compared with the western part. The majority of measurements across Socotra show Vp/Vs ratios of between 1.70 and 1.77 and are broadly consistent with the Vp/Vs values expected from the granitic and carbonate rock type exposed at the surface. Our results strongly suggest that intrusion of mafic rock is absent or minimal, providing evidence that mechanical thinning accommodated the majority of crustal extension. From our observations we interpret that the western part of Socotra corresponds to the necking zone of a classic magma-poor continental margin, while the eastern part corresponds to the proximal domain.

  4. A New Comprehensive Model for Crustal and Upper Mantle Structure of the European Plate

    Morelli, A.; Danecek, P.; Molinari, I.; Postpischl, L.; Schivardi, R.; Serretti, P.; Tondi, M. R.


    We present a new comprehensive model of crustal and upper mantle structure of the whole European Plate — from the North Atlantic ridge to Urals, and from North Africa to the North Pole — describing seismic speeds (P and S) and density. Our description of crustal structure merges information from previous studies: large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness and seismic parameters. Most original information refers to P-wave speed, from which we derive S speed and density from scaling relations. This a priori crustal model by itself improves the overall fit to observed Bouguer anomaly maps, as derived from GRACE satellite data, over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. In the inversion for transversely isotropic mantle structure, we use group speed measurements made on European event-to-station paths, and use a global a priori model (S20RTS) to ensure fair rendition of earth structure at depth and in border areas with little coverage from our data. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies beneath the Alpine mobile belt, and fast lithospheric signatures under the two main Mediterranean subduction systems (Aegean and Tyrrhenian). We map compressional wave speed inverting ISC travel times (reprocessed by Engdahl et al.) with a non linear inversion scheme making use of finite-difference travel time calculation. The inversion is based on an a priori model obtained by scaling the 3D mantle S-wave speed to P. The new model substantially confirms images of descending lithospheric slabs and back-arc shallow asthenospheric regions, shown in

  5. Early Archaean crustal collapse structures and sedimentary basin dynamics

    Nijman, W.; de Vries, S. T.


    Observations in the Lower Archaean (>3.3 Ga) of the Pilbara and Kaapvaal Cratons point to a direct genetic relationship between the thickness and facies distribution of volcano-sedimentary basin fills and non-linear patterns of extensional faults in early Earth. The basin fills consist of mafic volcanic products, largely pillow basalts, with distinct phases of intermediate to felsic volcanism and concentration of silica, either primary or secondary, in sediments deposited near base-level. The extensional structures are listric growth-faults, arranged in superposed arrays, that migrated upwards with the growth of the Early Archaean stratigraphical column. The faults linked intermittently occurring shallow-level felsic intrusions via porphyry pipes, veins and hydrothermal circulations with the surficial sedimentary basin fill of cherty sediments, concurrent mineralisation and alteration products. The non-linear pattern of the fault systems is recorded by their restored facing directions over large areas and corresponds best with over 100 km-wide (semi)circular crustal collapse structures. Crustal collapse, and therefore basin formation, did not represent a reaction to compression and crustal thickening. It also had no relationship with the present-day distribution of granitoid domes and greenstone belts. Collapse followed crustal uplift recorded by shallowing of the basin fill from a general subaqueous level of deposition of pillow basalts towards zero water level for the sediments and low-relief emersion. Maxima of extension coincide with the appearance of intermediate or felsic volcanic rocks in the overall mafic environment. The geodynamical setting is most appropriately explained by crustal delamination and related plume activity. Although individual features may be compared to Phanerozoic and Recent geological phenomena, like calderas, for the collapse structures as a whole such younger counterparts cannot be found. Rather they have their equivalents in collapse

  6. Along-Strike Variations in Focal Mechanisms of Central Andean Crustal Earthquakes: Northern Peru through the Argentina Sierras Pampeanas

    Devlin, S.; Isacks, B. L.


    120 shallow focal mechanisms in the crust above the subducted Nazca plate were assembled from the Harvard CMT catalog and published studies covering over 40 years of seismicity. The study area included the Andes crust above three major segments of the subducted plate, the Peruvian and Argentinean flat-slab segments and the intervening segment where the subducted Nazca plate dips more steeply. The most seismically active regions continue to be the thick-skinned foreland thrust belts in the eastern Andes of Peru and the Sierras Pampeanas. The earthquakes there are clearly associated with youthful tectonic structures with strong topographic signatures as revealed by the new 90 m SRTM digital elevation models. The mechanisms are dominantly of the thrust type but include a minority of strike-slip orientations. However the P axes remain consistent. The thin-skinned thrust belts east of the central Andean Plateau show significant activity only near Santa Cruz, Bolivia and northern Argentina; most of the Sub-Andean thrust belt of Bolivia and southern Peru remains aseismic. The central Andean plateau itself also remains aseismic except for the region of southern Peru and two earthquakes in the Puna. The crustal seismicity in southern Peru is largely concentrated on the western side of the plateau. The focal mechanisms show a strong grouping of T axes in a horizontal, north-south orientation. Both normal and strike-slip mechanisms occur in this region, with no obvious correlation with elevation or surface structures. Remarkably, with the exception of one normal fault type mechanism near the Cusco basin, the earthquakes occur in regions of the western parts of the Altiplano that do not exhibit topographic evidence of substantial crustal deformation. These results are consistent with a model in which the Altiplano of southern Peru, with a trend most oblique to the overall direction of convergence, manifests a left-lateral shearing component across the orogen.

  7. Viability of full-thickness skin grafts used for correction of cicatricial ectropion of lower eyelid in previously irradiated field in the periocular region

    Kim, Hee Joon; Hayek, Brent; Nasser, Qasiem; Esmaeli, Bita


    Purpose To evaluate the viability of skin grafts used for correction of cicatricial ectropion resulting from previous ablative surgery and radiotherapy for head and neck cancer and to report overall outcomes of cicatricial ectropion repair. Methods This is a retrospective, non-comparative case series of all consecutive head and neck cancer patients who had been exposed to high-dose radiation therapy in their periocular region and had surgical correction of their lower eyelid cicatricial ectropion through placement of a full-thickness skin graft and a lower eyelid tightening procedure by the same surgeon. The primary outcome measure was skin graft viability. Secondary outcome measures comprised of post-operative complications, the overall outcome of ectropion repair as judged by improvement in symptoms of exposure keratopathy and dependence on lubricating eye drops and ointments, as well as cosmetic improvement measured through a grading scale determined based on the degree of inferior scleral show and/or tarsal conjunctival eversion. Results 25 patients were eligible for the study. 19 men and 6 women had a median age of 63 years (range: 20–84 years). All 25 patients had high-dose radiation therapy for their head and neck cancer. All but 1 patient had major cancer ablative surgery performed prior to radiation therapy. Thirteen of 25 patients also received chemotherapy. There was 100% viability of the skin grafts used for the repair of lower eyelid cicatricial ectropion. There were a few post-operative complications including the need for revision surgery to correct residual ectropion in the lower eyelid in 2 patients and a third patient required a revision surgery due to upper lid retraction and lagophthalmos after harvest of skin graft from the upper eyelid. Improvement was noted in the subjective symptoms in 22 of 25 patients (88%) while 17 patients (68%) were noted to have improvement in their clinical findings on slit lamp examination. All 20 patients for whom

  8. Contrasted terrace systems of the lower Moulouya valley as indicator of crustal deformation in NE Morocco

    Rixhon, Gilles; Bartz, Melanie; El Ouahabi, Meriam; Szemkus, Nina; Brueckner, Helmut


    The Moulouya river has the largest catchment in Morocco and drains an area which is characterized by active crustal deformation during the Late Cenozoic due to the convergence between the African and Eurasian plates. As yet, its Pleistocene terrace sequence remains poorly documented. Our study focuses on the lowermost reach of the river in NE Morocco, which drains the Triffa sedimentary basin directly upstream of the estuary. New field observations, measurements and sedimentological data reveal contrasted fluvial environments on either side of a newly identified thrust zone, which disrupts the whole sedimentary basin and is associated with N-S compressive shortening in this region (Barcos et al., 2014). Long-lasting fluvial aggradation, materialized by ≥37 m-thick stacked fill terraces, and the development of a well-preserved terrace staircase, with (at least) three Pleistocene terrace levels, occur in the footwall and the hanging wall of the thrust, respectively. Same as for the Pleistocene terrace sediments of the middle Moulouya, a recurrent sedimentary pattern, characterized by fining-upward sequences was observed in the studied terrace profiles. Assessing the rates of crustal deformation along this main thrust zone requires age estimations for these Pleistocene terrace deposits of the lower Moulouya on each side of the thrust. Samples for luminescence (OSL/IRSL), electron spin resonance (ESR, on quartz) and cosmogenic nuclide dating (26Al/10Be, burial dating) were collected in terrace deposits located both in the foot- and hanging walls. Sample preparation and analysis as well as age determination are in progress. The preliminary data mentioned above, soon to be completed by chronological data, agree well with morphometric indicators stating that the whole Moulouya catchment is at disequilibrium state (Barcos et al., 2014). This is confirmed by several knickpoints in its longitudinal profile. Late Cenozoic uplift associated with crustal shortening, which

  9. Crustal Structure and Extension from Slope to Deepsea Basin in the Northern South China Sea

    Hu Dengke; Zhou Di; Wu Xiangjie; He Min; Pang Xiong; Wang Yuwei


    The newly acquired long-cable multi-channel seismic (MCS) lines were used to study the crustal structure and extension in an NW-SE elongated 150 km by 260 Van strip from the slope to the deepsea basin in the northern South China Sea (SCS).These profdes are of good penetration that Moho is recognizable in ~70% length of the lines.Seismostrattgraphic interpretation and time-depth conversion were conducted.A power function D = atb+ c was used in the time-depth conversion,which avoided the under-or over-estimation of the depths of deep-seated interfaces by cubic or quadratic polynomial functions.Contour maps of basement depth,Moho depth,crustal thickness,and crustal stretching factor were obtained for the study area.In the dip direction,the Moho depth decreases stepwisely from 28 km in the outer shelf southwards to 19,15,and 12 km in the deepsea basin,with ramps at the shelf break,lower slope,and the continent ocean boundary (COB),respectively.Accordingly,the crustal thickness decreased southwards from 3,and 7 km spectively.Under the center of the Balynn (白云) sag,the crust thins significantly to < 7 kin.The crustal stretching factor βc was calculated by assuming the original crust thickness of 30 km.In the centers of the Baiyun sag,βc exceeds 5.Tertiary and Quaternary volcanic activities show a general trend of intensifying towards the COB.An important finding of this study is the along-strike variation of the crustal structure.A Moho rise extends from the COB NW-ward until the shelf break,about 170 km long and 50-100 km wide,with Moho depth < 20 kin.This is called the Balyun Moho Nose,which is bounded to the east,west,and north by belts of high Moho gradients indicative of crustal or even lithospheric faults.The doming of Moho in the nose area might he the cause of the W-E segmentation of the crustal and geological structures along the slope of the northern South China Sea,and the cause of the strong crustal

  10. Crustal architecture beneath Madurai Block, southern India deduced from magnetotelluric studies: Implications for subduction-accretion tectonics associated with Gondwana assembly

    Naganjaneyulu, K.; Santosh, M.


    The Madurai Block in southern India is considered to represent the eroded roots of an arc-accretionary complex that developed during the subduction-collision tectonics associated with the closure of the Mozambique Ocean and final suturing of the crustal fragments within the Gondwana supercontinent in the Late Neoproterozoic-Cambrian. Here we present a magnetotelluric (MT) model covering the main collisional suture (Palghat-Cauvery Suture Zone) in the north into the central part of the Madurai Block in the south comprising data from 11 stations. Together with a synthesis of the available seismic reflection data along a N-S transect further south within the Madurai Block, we evaluate the crustal architecture and its implications on the tectonic development of this region. According to our model, the predominantly south dipping seismic reflectors beneath the Madurai Block define a prominent south-dipping lithological layering with northward vergence resembling a thrust sequence. We interpret these stacked layers as imbricate structures or mega duplexes developed during subduction-accretion tectonics. The layered nature and stacking of contrasting velocity domains as imaged from the seismic profile, and the presence of thick (>20 km) low resistivity layers 'floating' within high resistivity domains as seen from MT model, suggest the subduction of a moderately thick oceanic crust. We identify several low resistivity domains beneath the Madurai Block from the MT model which probably represent eclogitised remnants of oceanic lithosphere. Their metamorphosed and exhumed equivalents in association with ultrahigh-temperature metamorphic orogens have been identified from surface geological studies. Both seismic reflections and MT model confirm a southward subduction polarity with a progressive accretion history during the northward migration of the trench prior to the final collisional assembly of the crustal blocks along the Palghat-Cauvery Suture Zone, the trace of the

  11. Crustal seismicity of the Black Sea areal

    Diaconescu, Mihail; Moldovan, Iren-Adelina; Petruta Constantin, Angela


    ), concerning international practice and IAEA recommendation, (ii) applying the observed maximum magnitude or intensity and (iii) using statistical distributions (Cornell and extreme values Gumbel I) to model the seismogenic process for all the earthquake sources from the Black Sea region. The advantage of the statistical method is the possibility to compute all the quantities used in probabilistic hazard assessment, including recurrence times for different magnitudes. Another important issue is to evaluate the seismic hazard for the Black Sea using a probabilistic approach. The major contribution to the total sesimic hazard in the western part of the Black Sea is given by the Shabla crustal source that has a maximum epicentral intensity equal with VIII ½.

  12. Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle

    Wang, Jian; Li, Chun-Feng


    The western North American lithosphere experienced extensive magmatism and large-scale crustal deformation due to the interactions between the Farallon and North American plates. To further understand such subduction-related dynamic processes, we characterize crustal structure, magmatism and lithospheric thermal state of western North America based on various data processing and interpretation of gravimetric, magnetic and surface heat flow data. A fractal exponent of 2.5 for the 3D magnetization model is used in the Curie-point depth inversion. Curie depths are mostly small to the north of the Yellowstone-Snake River Plain hotspot track, including the Steens Mountain and McDermitt caldera that are the incipient eruption locations of the Columbia River Basalts and Yellowstone hotspot track. To the south of the Yellowstone hotspot track, larger Curie depths are found in the Great Basin. The distinct Curie depths across the Yellowstone-Snake River Plain hotspot track can be attributed to subduction-related magmatism induced by edge flow around fractured slabs. Curie depths confirm that the Great Valley ophiolite is underlain by the Sierra Nevada batholith, which can extend further west to the California Coast Range. The Curie depths, thermal lithospheric thickness and surface heat flow together define the western edge of the North American craton near the Roberts Mountains Thrust (RMT). To the east of the RMT, large Curie depths, large thermal lithospheric thickness, and low thermal gradient are found. From the differences between Curie-point and Moho depth, we argue that the uppermost mantle in the oceanic region is serpentinized. The low temperature gradients beneath the eastern Great Basin, Montana and Wyoming permit magnetic uppermost mantle, either by serpentinization/metasomatism or in-situ magnetization, which can contribute to long-wavelength and low-amplitude magnetic anomalies and thereby large Curie-point depths.

  13. Crustal structure beneath two seismic stations in the Sunda-Banda arc transition zone derived from receiver function analysis

    Syuhada, E-mail: [Graduate Research on Earthquake and Active Tectonics (GREAT), Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132 (Indonesia); Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia); Hananto, Nugroho D.; Handayani, Lina [Research Centre for Geotechnology - Indonesian Institute of Sciences (LIPI), Jl. Sangkuriang (Kompleks LIPI) Bandung 40135 (Indonesia); Puspito, Nanang T; Yudistira, Tedi [Faculty of Mining and Petroleum Engineering ITB, Jalan Ganesha 10, Bandung 40132 (Indonesia); Anggono, Titi [Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia)


    We analyzed receiver functions to estimate the crustal thickness and velocity structure beneath two stations of Geofon (GE) network in the Sunda-Banda arc transition zone. The stations are located in two different tectonic regimes: Sumbawa Island (station PLAI) and Timor Island (station SOEI) representing the oceanic and continental characters, respectively. We analyzed teleseismic events of 80 earthquakes to calculate the receiver functions using the time-domain iterative deconvolution technique. We employed 2D grid search (H-κ) algorithm based on the Moho interaction phases to estimate crustal thickness and Vp/Vs ratio. We also derived the S-wave velocity variation with depth beneath both stations by inverting the receiver functions. We obtained that beneath station PLAI the crustal thickness is about 27.8 km with Vp/Vs ratio 2.01. As station SOEI is covered by very thick low-velocity sediment causing unstable solution for the inversion, we modified the initial velocity model by adding the sediment thickness estimated using high frequency content of receiver functions in H-κ stacking process. We obtained the crustal thickness is about 37 km with VP/Vs ratio 2.2 beneath station SOEI. We suggest that the high Vp/Vs in station PLAI may indicate the presence of fluid ascending from the subducted plate to the volcanic arc, whereas the high Vp/Vs in station SOEI could be due to the presence of sediment and rich mafic composition in the upper crust and possibly related to the serpentinization process in the lower crust. We also suggest that the difference in velocity models and crustal thicknesses between stations PLAI and SOEI are consistent with their contrasting tectonic environments.

  14. Crustal structure beneath two seismic stations in the Sunda-Banda arc transition zone derived from receiver function analysis

    Syuhada, Hananto, Nugroho D.; Puspito, Nanang T.; Anggono, Titi; Handayani, Lina; Yudistira, Tedi


    We analyzed receiver functions to estimate the crustal thickness and velocity structure beneath two stations of Geofon (GE) network in the Sunda-Banda arc transition zone. The stations are located in two different tectonic regimes: Sumbawa Island (station PLAI) and Timor Island (station SOEI) representing the oceanic and continental characters, respectively. We analyzed teleseismic events of 80 earthquakes to calculate the receiver functions using the time-domain iterative deconvolution technique. We employed 2D grid search (H-κ) algorithm based on the Moho interaction phases to estimate crustal thickness and Vp/Vs ratio. We also derived the S-wave velocity variation with depth beneath both stations by inverting the receiver functions. We obtained that beneath station PLAI the crustal thickness is about 27.8 km with Vp/Vs ratio 2.01. As station SOEI is covered by very thick low-velocity sediment causing unstable solution for the inversion, we modified the initial velocity model by adding the sediment thickness estimated using high frequency content of receiver functions in H-κ stacking process. We obtained the crustal thickness is about 37 km with VP/Vs ratio 2.2 beneath station SOEI. We suggest that the high Vp/Vs in station PLAI may indicate the presence of fluid ascending from the subducted plate to the volcanic arc, whereas the high Vp/Vs in station SOEI could be due to the presence of sediment and rich mafic composition in the upper crust and possibly related to the serpentinization process in the lower crust. We also suggest that the difference in velocity models and crustal thicknesses between stations PLAI and SOEI are consistent with their contrasting tectonic environments.

  15. Crustal structure and origin of the Eggvin Bank west of Jan Mayen, NE Atlantic

    Tan, Pingchuan; Breivik, Asbjørn Johan; Trønnes, Reidar G.; Mjelde, Rolf; Azuma, Ryosuke; Eide, Sigurd


    The Eggvin Bank, located between the Jan Mayen Island and Greenland, is an unusually shallow area containing several submarine volcanic peaks, confined by two transforms on the Northern Kolbeinsey Ridge (NKR). We represent P and S wave velocity models for the Eggvin Bank based on an Ocean Bottom Seismometer profile collected in 2011, showing igneous crustal thickness variations from 8 km to 13 km. A 2-5 km increase is associated with two separate 20-30 km wide segments under the main seamounts. The oceanic crust has three layers: upper crust (L2A: 2.8-4.8 km/s), middle crust (L2B: 5.5-6.5 km/s), and lower crust (L3: 6.7-7.35 km/s). Both the thick layer 2(A/B) and the high ratio of layer 2(A/B) thickness to total crustal thickness indicate that secondary, intraplate magmatism built the seamounts of the Eggvin Bank. The seamount in the north where the crust is thickest has a flat top indicating subaerial exposure but is deeper than those with rounded tops in the south and is therefore probably older. Comparing lower crustal seismic velocity with crustal thickness also indicates that the degree of mantle melting may be higher in the north than in the south. An enriched mantle source presently feeds the NKR magmatism and probably influenced the Eggvin Bank development also at earlier times. To what extent the Eggvin Bank has been influenced by the Iceland plume is uncertain, both an enriched mantle component and elevated mantle temperature may have played a role at different times and locations.

  16. Magmatic underplating and crustal growth in the Emeishan Large Igneous Province, SW China, revealed by a passive seismic experiment

    Chen, Yun; Xu, Yigang; Xu, Tao; Si, Shaokun; Liang, Xiaofeng; Tian, Xiaobo; Deng, Yangfan; Chen, Lin; Wang, Peng; Xu, Yihe; Lan, Haiqiang; Xiao, Fuhui; Li, Wei; Zhang, Xi; Yuan, Xiaohui; Badal, José; Teng, Jiwen


    In an attempt to characterize the subsurface structure that is related to fossil mantle plume activity, a comprehensive geophysical investigation was conducted in the Emeishan Large Igneous Province (ELIP). The nature and geometry of the crust were examined within the scheme of the domal structure of ELIP, which comprises the Inner, Intermediate and Outer zones, which are defined on the basis of the biostratigraphy of pre-volcanic sediments. The bulk crustal properties within the Inner Zone are characterized by high density, high P-wave velocity, high Vp/Vs ratios and large crustal thickness. A visible continuous seismic converter is present in the upper part of the crust in the whole Intermediate Zone and the eastern part of the Inner Zone, but it is absent in the Inner Zone, where another seismic converter is observed in the lower part of the crust. The geometric configuration of these converters is attributable to the addition of mantle-derived melts to the pre-existing crust and subsequent interaction between them. The crustal geometry, which is delineated by the migrated image of receiver functions from the passive seismic experiment, and the crustal properties collectively suggest that a mafic layer of 15-20 km thickness and 150-180 km width exists at the base of the crust in the Inner Zone. Such a mafic layer reflects a vertical crustal growth through magmatic underplating at the base of the crust and intraplating within the upper crust. The salient spatial correlation between the deep crustal structure and the dome strongly supports a genetic link between crustal thickening and plume activity, if the pre-volcanic domal uplift is generated by the Permian Emeishan mantle plume. This arrangement is further supported by the consistency of the extent of crustal uplift estimated by isostatic equilibrium modeling and sedimentary data. This study therefore characterizes and provides evidence for a plume-modified crust in a large igneous province.

  17. Geophysical Modeling of Tectonostratigraphic Terrane Boundaries and Crustal Structure Across a Pacific Ocean-Gulf of Mexico Transect, Southern Mexico

    Urrutia-Fucugauchi, J.; Flores-Ruiz, J. H.; Spranger, M.


    Geophysical models of terrane boundaries and lithospheric structure beneath southern Mexico derived from gravity and aeromagnetic surveys are presented. The transect crosses southern Mexico from the active Pacific margin to the passive Gulf of Mexico margin, across four distinct terranes (Xolapa, Oaxaca, Juarez and Maya) with Precambrian, Paleozoic and Mesozoic basements and contrasting tectonostratigraphic records. The crust/mantle boundary displays a smooth large amplitude variation along the transect from Puerto Escondido at the Pacific margin to Los Tuxtlas-Alvarado at the Gulf of Mexico, roughly between 28 km and 44 km deep. Crustal thickness variations correspond well with inferred terrane distribution and major surface discontinuities. Suture zones are complex as a result of the kinematics of terrane accretion, contrasting crustal rheological properties, shallow level detachments, post-accretion deformation, thermal conditions and characteristics of relative terrane/plate motions. Pre-suturing characteristics of terranes including crustal structure are difficult to document because of deformation resulting from suturing and any subsequent post-accretion processes. In a simplified way, gravity anomalies from the Pacific margin to the Gulf of Mexico show: large positive 50 mgal anomaly above the continental slope units and the intrusive and metamorphic rocks of the Xolapa complex, then anomalies increasingly negative (with minimum values of -180 mgal over the Acatlan and Oaxaca metamorphics. The Juchatengo mylonitic zone is characterized by a gradient change, while minimum gravity values approximately coincide with the wide mylonitic zone north of Oaxaca city. The Juarez terrane and the region over the Sierra de Juarez is characterized by positive gradient. Finally, the Gulf coastal plain is marked by a positive anomaly in the order of -40 mgal. Geophysical models are combined with the seismic models of the Geolimex profile and used to evaluate the crustal

  18. Topographic Expression of Deep Crustal and Mantle Processes

    Whipple, K. X.; Ouimet, W. B.; Baldwin, J. A.


    The topography of mountain ranges records much information about the history of tectonic events and climatic conditions. Although this record is not easily read, as there are many imperfectly understood factors that influence landscape morphology, there is much encouraging evidence that the river steepness index (a cousin of the Hack gradient index) exhibits a robust correlation with rock uplift rate. Published, and soon to be published, examples span a wide range of field conditions from sites around the globe (e.g., Western US, Bolivia, Nepal, China, Taiwan). Differences in substrate rock properties can have a pronounced influence on channel steepness for a given rock uplift rate, however, and analyses are best limited to regional studies where climatic conditions and lithology are largely uniform. In such settings, careful analysis of river profiles and the relief structure of the landscape can reveal important information about the history of rock uplift, recording temporal changes in uplift/river incision rates. This potential adds considerably to the value of topographic analyses, especially where uplift is driven by deep crustal or mantle processes and not clearly expressed in upper crustal structures and geodetic shortening data. However, this potential comes at the price of complicating the interpretation of the relationship between topography and the modern snapshot of deep crustal/mantle conditions provided by geophysical imaging techniques. Over what timescales does topography retain a record of past events in earth's interior? Important questions remain unanswered about the age of topography in many landscapes where deep crustal or mantle dynamics have been invoked. We discuss the factors that control landscape response time, both to an increase in rock uplift rate and to the cessation of tectonic activity, and present constraints on the antiquity of topography in several field settings.

  19. History of crustal recycling recorded in transition zone diamonds

    Pearson, D. G.; Stachel, T.; Palot, M.; Ickert, R. B.


    The Earth's transition zone (TZ) is a key region within the Earth that, from seismology, may be composed of a mixture of relatively primitive material together with the products of crustal recycling throughout the history of plate tectonics. The only samples of the TZ come in the form of inclusions in diamonds, that, for the most-part are retrogressed lower pressure equivalents of their precursor phases that formed at depth. Recent work by our group and others [1] on transition zone diamonds indicate that both peridotite and eclogitic paragenesis diamonds may record the products of crustal recycling. In-situ ion probe nitrogen and carbon isotopic measurements indicate the crystallisation of TZ diamonds from fluids bearing crustal signatures, of both oxidised and reduced forms. At the same time, majoritic garnets record extreme oxygen isotope compositions that track the interaction of oceanic crust with seawater at low temperature [2]. Such an origin is consistent with the few measured Sr-Nd isotope compositions of majorite garnet inclusions which resemble depleted MORB [3]. We have found considerably more enriched Sr isotope compositions (87Sr/86S ranging to > 0.8) in CaSiO3 inclusions that are from deep asthenosphere to TZ depths, supporting an origin that includes incorporation of recycled crustal sediment, in addition to the basaltic oceanic crust required to explain the phase equilibria [4]. Lastly, the discovery of hydrous ringwoodite in a diamond [5] containing more water than is soluble at the lower TZ adiabat indicates the possible role of recycling in transporting water as well as carbon into the TZ via a cool thermally unequilibrated slab. [1] Thomson et al (2014) CMP, 168, 1081. [2] Ickert et al (2015) Geochemical perspectives Letters, 1, 65-74. [3] Harte & Richardson (2011) Gondwana Research, 21, 236-235. [4] Walter et al. (2011) Science, 334, 54-57.[Pearson et al. (2014) Nature, 507, 221-224.

  20. Crustal radial anisotropy beneath Cameroon from ambient noise tomography

    Ojo, Adebayo Oluwaseun; Ni, Sidao; Li, Zhiwei


    To increase the understanding of crustal deformation and crustal flow patterns due to tectonic processes in Cameroon, we study the lateral variability of the crustal isotropic velocity and radial anisotropy estimated using Ambient Noise Tomography (ANT). Rayleigh and Love wave Noise Correlation Functions (NCFs) were retrieved from the cross-correlation of seismic ambient noise data recorded in Cameroon, and phase velocities at periods of 8 to 30 s were measured to perform surface wave tomography. Joint inversion of Rayleigh and Love wave data for isotropic velocity models could not fit the observed dispersions simultaneously. We attribute the Love-Rayleigh discrepancy to the presence of radial anisotropy in the crust and estimated its magnitude. Our 3-D radial anisotropic model reveals the spatial variation of strong to weak positive (Vsh > Vsv) and negative (Vsv > Vsh) radial anisotropy in the crust. We observe negative radial anisotropy in the upper crust that is associated mainly with the location of a previously reported mantle plume. The anisotropy could be attributed to the vertical alignment of fossil microcracks or metamorphic foliations due to the upwelling of plume material. A strong positive radial anisotropy is centered at the location of an inferred boundary between the Congo Craton and the Oubanguides Belt that might be related to the preferred orientation of crustal anisotropic minerals associated with shearing in this fault zone. The middle crust is characterized by a widespread negative radial anisotropy that is likely caused by the flow-induced alignment of anisotropic minerals that crystallized during magma intrusion. The magnitude of the radial anisotropy varies systematically from predominantly negative in the middle crust to positive in the lower crust. The imaged patterns of the isotropic velocity and radial anisotropy are consistent with previous studies and agree with regional tectonics.

  1. Crustal architecture across Phanerozoic Australia along the Eromanga-Brisbane Geoscience Transect: evolution and analogues

    Finlayson, D. M.


    The crustal architecture across Phanerozoic Australia has been established from seismic data along an 1100-km-long east-west transect, the Eromanga-Brisbane Geoscience Transect. This has enabled a better understanding of deep structures and processes that have controlled the development of major sedimentary basin systems. It has shown that crustal dynamics throughout geological history have played an important role in the development of these sedimentary basins and that structures developed during the early Palaeozoic have influenced, and continue to influence, basin systems. The transect crosses three major basement provinces of the Tasman Orogenic System in eastern Australia - the Thomson, northern Lachlan, and New England Orogens. The basement geology in the transect region has, until now, been only poorly understood because it is largely obscured by the Mesozoic cover rocks of the Eromanga, Surat and Clarence-Moreton Basins. The transect interpretation has firmly identified crustal-scale ramp structures, multiple intra-crustal detachment surfaces, strike-slip fault architecture, lower-crustal magmatism/underplating, Mono remobilisation, and intra-crustal terranes in the geological reconstructions of southern Queensland. The boundaries between the orogens, the Foyleview and Burunga—Mooki Geosutures, have been identified as lithospheric-scale structures that have influenced the evolution of the Tasman Orogenic System as a whole.

  2. The crustal structure of the Guayana Shield, Venezuela, from seismic refraction and gravity data

    Schmitz, Michael; Chalbaud, Daniel; Castillo, Jesús; Izarra, Carlos


    We present results from a seismic refraction experiment on the northern margin of the Guayana Shield performed during June 1998, along nine profiles of up to 320 km length, using the daily blasts of the Cerro Bolı´var mines as energy source, as well as from gravimetric measurements. Clear Moho arrivals can be observed on the main E-W profile on the shield, whereas the profiles entering the Oriental Basin to the north are more noisy. The crustal thickness of the shield is unusually high with up to 46 km on the Archean segment in the west and 43 km on the Proterozoic segment in the east. A 20 km thick upper crust with P-wave velocities between 6.0 and 6.3 km/s can be separated from a lower crust with velocities ranging from 6.5 to 7.2 km/s. A lower crustal low velocity zone with a velocity reduction to 6.3 km/s is observed between 25 and 25 km depth. The average crustal velocity is 6.5 km/s. The changes in the Bouguer Anomaly, positive (30 mGal) in the west and negative (-20 mGal) in the east, cannot be explained by the observed seismic crustal features alone. Lateral variations in the crust or in the upper mantle must be responsible for these observations.

  3. Crustal structure and evolution of the southern Juan de Fuca plate from wide-angle seismic data: Insights into the hydration state of the incoming plate off Cascadia subduction zone

    Horning, G.; Canales, J. P.; Carbotte, S. M.; Nedimovic, M. R.; Carton, H. D.


    A multi-channel seismic reflection and wide-angle refraction seismic experiment was conducted on the Juan de Fuca (JdF) plate to investigate the evolution of the plate from accretion to its subduction at the Cascadia margin. Hydration of the upper crust (UC) of the JdF Plate is well documented, but the state of hydration of the lower crust (LC) and upper mantle (UM] remains to be investigated. A 2D P-wave velocity model of the plate is derived from a joint reflection-refraction travel-time inversion of wide-angle seismic data. Stacked MCS reflection images together with modeled sedimentary velocities define an increasing thickness of sedimentary cover of up to 2.7km. Evidence for bending-related faulting is identified in coincident MCS images both indirectly as faulting in the sedimentary layer [Gibson, et al., this meeting] and directly as dipping crustal reflectors [Han et al., this meeting]. Three first order features are evident in the patterns of crustal velocity variations along the profile. 1: Crustal velocities at 150-250 km landward of the spreading ridge (~5 Ma age) show reduced velocities up to -0.20 km/s in comparison to velocities in younger crust (~3 Ma) 100-150 km from the ridge. This decrease in velocities is coincident with a propagator wake. 2: Upper crustal velocities begin to increase at 170km from the deformation front (DF), which coincides with the first evidence of faulting from sedimentary offsets. Crustal velocities start a decreasing trend at 80km from the DF where fault throws are seen to begin increasing trend landward. 3: UC velocities in the region of directly imaged crustal faulting (40km from trench) increase ~0.5km/s at the DF, while LC velocities decrease ~0.3km/s. The contrasting behavior in the upper and lower crust may indicate that bending promotes hydrothermal circulation in the outer rise. Circulation may be vigorous enough within the sediments/UC so that any residual shallow porosity is clogged with alteration products

  4. Crustal structure beneath the Songpan-Garze orogenic belt

    王椿镛; 韩渭宾; 吴建平; 楼海; 白志明


    The Benzilan-Tangke deep seismic sounding profile in the western Sichuan region passes through the Songpan-Garze orogenic belt with trend of NNE. Based on the travel times and the related amplitudes of phases in the record sections, the 2-DP-wave crustal structure was ascertained in this paper. The velocity structure has quite strong lateral variation along the profile. The crust is divided into 5 layers, where the first, second and third layer belong to the upper crust, theforth and fifth layer belong to the lower crust. The low velocity anomaly zone generally exists in the central part of the upper crust on the profile, and it integrates into the overlying low velocity basement in the area to the north of Ma.erkang. The crustal structure in the section can be divided into 4 parts: in the south of Garze-Litang fault, between Garze-Litang fault and Xianshuihe fault,between Xianshuihe fault and Longriba fault and in the north of Longriba fault,which are basically coincided with the regional tectonics division. The crustalthickness decreases from southwest to northeast along the profile, that is, from 62 km in the region of the Jinshajiang River to 52 km in the region of the Yellow River. The Moho discontinuity does not obviously change across the Xianshuihe fault based on the PmP phase analysis. The crustal average velocity along the profile is lower, about 6.30 km/s. The Benzilan-Tangke profile reveals that the crust in the study area is orogenic. The Xianshuihe fault belt is located in thecentral part of the profile, and the velocity is positive anomaly on the upper crust, and negative anomaly on the lower crust and upper mantle. It is considered as a deep tectonic setting in favor of strong earthquake's accumulation and occurrence.

  5. Mapping and interpretation of satellite magnetic anomalies from POGO data over the Antarctic region

    P. T. Taylor


    Full Text Available A satellite magnetic anomaly map made using the POGO magnetic field data is compared to three maps made using Magsat data. A total of 14 anomalies with magnitudes greater than 3 nT can be identified in all four of the maps poleward of 60°S latitude. Forward models of the Antarctic continental and oceanic lithosphere are produced which use magnetic crustal thickness based on seismic and heat flow data, and which also use the distribution of the Cretaceous Quiet Zone from marine geophysics. These simple models can explain significant parts of eight of the 14 identified anomalies. The remaining anomalies may be caused by lateral variations of magnetization, inadequate models of the magnetic crustal thickness, or remanent magnetizations in directions other than the present field. In addition, contamination of the magnetic anomaly maps by fields of time-varying external origin (and their corresponding internal parts is still a significant problem in the Antarctic region.

  6. Mercury's Crustal Magnetic Field from Low-Altitude Measurements by MESSENGER.

    Johnson, C. L.; Phillips, R. J.; Purucker, M. E.; Anderson, B. J.; Byrne, P. K.; Denevi, B. W.; Fan, K. A.; Feinberg, J. M.; Hauck, S. A., II; Head, J. W., III; Korth, H.; James, P. B.; Mazarico, E.; Neumann, G. A.; Philpott, L. C.; Siegler, M. A.; Strauss, B. E.; Tsyganenko, N. A.; Solomon, S. C.


    Magnetized rocks can record the history of a planet's magnetic field, a key constraint for understanding interior evolution. From orbital vector magnetic field measurements of Mercury taken by the MESSENGER spacecraft at altitudes below 150 km, we have detected fields indicative of crustal magnetization. Fields from non-crustal sources, which dominate the observations even at low altitudes, were estimated and subtracted from the observations using both magnetospheric models and signal filtering. The resulting high-pass filtered fields have amplitudes of a few to 20 nT. The first low-altitude signals were detected over the Suisei Planitia region and were confirmed by upward continuation to be of crustal origin. At least some contribution from thermoremanent magnetization is required to account for these signals, and we infer a lower bound on the average age of magnetization of 3.7-3.9 Ga on the basis of correlation of crustal magnetic fields with volcanic units of that age range. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust derived from MESSENGER elemental composition data. Here, we extend these initial results with observations obtained at spacecraft altitudes below 60 km at all body-fixed longitudes from ~40°N to ~75°N. The strongest crustal fields occur in the region 120°E to 210°E, and weaker signals characterize the northern volcanic plains. We test the hypothesis that the longest-wavelength crustal field signals in this region reflect magnetization contrasts between the Caloris basin and the surrounding intercrater plains and circum-Caloris plains. We report the spatial distribution of observed crustal fields, together with magnetization models derived from them and the implications of these models, particularly for the depth distribution of sources compatible with the observations.

  7. Effect of Crustal Density Structures on GOCE Gravity Gradient Observables

    Robert Tenzer Pavel Novák


    Full Text Available We investigate the gravity gradient components corrected for major known anomalous density structures within the Earth¡¦s crust. Heterogeneous mantle density structures are disregarded. The gravimetric forward modeling technique is utilized to compute the gravity gradients based on methods for a spherical harmonic analysis and synthesis of a gravity field. The Earth¡¦s gravity gradient components are generated using the global geopotential model GOCO-03s. The topographic and stripping gravity corrections due to the density contrasts of the ocean and ice are computed from the global topographic/bathymetric model DTM2006.0 (which also includes the ice-thickness dataset. The discrete data of sediments and crust layers taken from the CRUST2.0 global crustal model are then used to apply the additional stripping corrections for sediments and remaining anomalous crustal density structures. All computations are realized globally on a one arc-deg geographical grid at a mean satellite elevation of 255 km. The global map of the consolidated crust-stripped gravity gradients reveals distinctive features which are attributed to global tectonics, lithospheric plate configuration, lithosphere structure and mantle dynamics (e.g., glacial isostatic adjustment, mantle convection. The Moho signature, which is the most pronounced signal in these refined gravity gradients, is superimposed over a weaker gravity signal of the lithospheric mantle. An interpretational quality of the computed (refined gravity gradient components is mainly limited by a low accuracy and resolution of the CRUST2.0 sediment and crustal layer data and unmodeled mantle structures.

  8. Earthquake focal parameters and lithospheric structure of the anatolian plateau from complete regional waveform modeling

    Rodgers, A


    This is an informal report on preliminary efforts to investigate earthquake focal mechanisms and earth structure in the Anatolian (Turkish) Plateau. Seismic velocity structure of the crust and upper mantle and earthquake focal parameters for event in the Anatolian Plateau are estimated from complete regional waveforms. Focal mechanisms, depths and seismic moments of moderately large crustal events are inferred from long-period (40-100 seconds) waveforms and compared with focal parameters derived from global teleseismic data. Using shorter periods (10-100 seconds) we estimate the shear and compressional velocity structure of the crust and uppermost mantle. Results are broadly consistent with previous studies and imply relatively little crustal thickening beneath the central Anatolian Plateau. Crustal thickness is about 35 km in western Anatolia and greater than 40 km in eastern Anatolia, however the long regional paths require considerable averaging and limit resolution. Crustal velocities are lower than typical continental averages, and even lower than typical active orogens. The mantle P-wave velocity was fixed to 7.9 km/s, in accord with tomographic models. A high sub-Moho Poisson's Ratio of 0.29 was required to fit the Sn-Pn differential times. This is suggestive of high sub-Moho temperatures, high shear wave attenuation and possibly partial melt. The combination of relatively thin crust in a region of high topography and high mantle temperatures suggests that the mantle plays a substantial role in maintaining the elevation.

  9. Crustal Structure Across the Three Gorges Dam from Wide-Angle Seismic Data

    Zhang, Z.; Bai, Z.; Mooney, W. D.; Wang, C.; Chen, X.; Wang, E.; Teng, J.


    The Three Gorges Dam (TGD) is one of the biggest engineering projects in the world. In order to understand the crustal structure across the TGD, a wide-angle seismic profile was acquired from Fengjie, Sichuan Province, to Guanyindang, Hubei Province. The crustal velocity and reflectivity cross-section across the TGD shows lateral velocity variation and a northward-slipping, crustal-scale, strong reflector. The TGD is located at a transition in crustal thickness from about 45 km in the northwest to about 35 km in the southeast. The topography of China is characterized by three terraces. The Qinghai-Tibet Plateau is the first terrace with a surface elevation above sea level of >4500 m; the second terrace lies north and east of the Qinghai-Tibet Plateau at an elevation of 1000-2000 m; the third terrace is in the eastern part of China with an elevation of named after the three gorges of Xiling Xia, Wu Xia, and Qutang Xia (Xia means "gorge" in Chinese), is located at the middle segmentations of the Yangtze River, extending from Fengjie, Sichuan Province, to Yichang, Hubei Province, with a total length of about 200 km. Due to the abrupt relief from the second to third topographic terrace of China, the unstopping, huge amounts of river stream provide the best place for the construction of the largest hydro power plant ever in the world. In order to provide a background of the crustal environment for the dam project, a wide-angle seismic profile along the Yangtze River was carried out. Tectonically, the studied area belongs to the Yangtze block and cut several sub-tectonic units: the Wanxian depression fold belt, the Zigui platform fold belt, the southwestern Hubei province complex fold belt, the Huangling Faulted Dome (HLFD), and the Jiangling Depression (JLD). We present the interpretation results of the crustal structure along the Three Gorges extension which shows: there are strong lateral variations both of crustal thickness and P-wave velocity, the Jiangling

  10. Subduction zone and crustal dynamics of western Washington; a tectonic model for earthquake hazards evaluation

    Stanley, Dal; Villaseñor, Antonio; Benz, Harley


    The Cascadia subduction zone is extremely complex in the western Washington region, involving local deformation of the subducting Juan de Fuca plate and complicated block structures in the crust. It has been postulated that the Cascadia subduction zone could be the source for a large thrust earthquake, possibly as large as M9.0. Large intraplate earthquakes from within the subducting Juan de Fuca plate beneath the Puget Sound region have accounted for most of the energy release in this century and future such large earthquakes are expected. Added to these possible hazards is clear evidence for strong crustal deformation events in the Puget Sound region near faults such as the Seattle fault, which passes through the southern Seattle metropolitan area. In order to understand the nature of these individual earthquake sources and their possible interrelationship, we have conducted an extensive seismotectonic study of the region. We have employed P-wave velocity models developed using local earthquake tomography as a key tool in this research. Other information utilized includes geological, paleoseismic, gravity, magnetic, magnetotelluric, deformation, seismicity, focal mechanism and geodetic data. Neotectonic concepts were tested and augmented through use of anelastic (creep) deformation models based on thin-plate, finite-element techniques developed by Peter Bird, UCLA. These programs model anelastic strain rate, stress, and velocity fields for given rheological parameters, variable crust and lithosphere thicknesses, heat flow, and elevation. Known faults in western Washington and the main Cascadia subduction thrust were incorporated in the modeling process. Significant results from the velocity models include delineation of a previously studied arch in the subducting Juan de Fuca plate. The axis of the arch is oriented in the direction of current subduction and asymmetrically deformed due to the effects of a northern buttress mapped in the velocity models. This

  11. Crustal strain-dependent serpentinisation in the Porcupine Basin, offshore Ireland

    Prada, Manel; Watremez, Louise; Chen, Chen; O'Reilly, Brian M.; Minshull, Timothy A.; Reston, Tim J.; Shannon, Patrick M.; Klaeschen, Dirk; Wagner, Gerlind; Gaw, Viola


    Mantle hydration (serpentinisation) at magma-poor rifted margins is thought to play a key role in controlling the kinematics of low-angle faults and thus, hyperextension and crustal breakup. However, because geophysical data principally provide observations of the final structure of a margin, little is known about the evolution of serpentinisation and how this governs tectonics during hyperextension. Here we present new observational evidence on how crustal strain-dependent serpentinisation influences hyperextension from rifting to possible crustal breakup along the axis of the Porcupine Basin, offshore Ireland. We present three new P-wave seismic velocity models that show the seismic structure of the uppermost lithosphere and the geometry of the Moho across and along the basin axis. We use neighbouring seismic reflection lines to our tomographic models to estimate crustal stretching (βc) of ∼2.5 in the north at 52.5° N and >10 in the south at 51.7° N. These values suggest that no crustal embrittlement occurred in the northernmost region, and that rifting may have progressed to crustal breakup in the southern part of the study area. We observed a decrease in mantle velocities across the basin axis from east to west. These variations occur in a region where βc is within the range at which crustal embrittlement and serpentinisation are possible (βc 3-4). Across the basin axis, the lowest seismic velocity in the mantle spatially coincides with the maximum amount of crustal faulting, indicating fault-controlled mantle hydration. Mantle velocities also suggest that the degree of serpentinisation, together with the amount of crustal faulting, increases southwards along the basin axis. Seismic reflection lines show a major detachment fault surface that grows southwards along the basin axis and is only visible where the inferred degree of serpentinisation is >15%. This observation is consistent with laboratory measurements that show that at this degree of

  12. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes

    Fontanesi Luca


    Full Text Available Abstract Background Carcass fatness is an important trait in most pig breeding programs. Following market requests, breeding plans for fresh pork consumption are usually designed to reduce carcass fat content and increase lean meat deposition. However, the Italian pig industry is mainly devoted to the production of Protected Designation of Origin dry cured hams: pigs are slaughtered at around 160 kg of live weight and the breeding goal aims at maintaining fat coverage, measured as backfat thickness to avoid excessive desiccation of the hams. This objective has shaped the genetic pool of Italian heavy pig breeds for a few decades. In this study we applied a selective genotyping approach within a population of ~ 12,000 performance tested Italian Large White pigs. Within this population, we selectively genotyped 304 pigs with extreme and divergent backfat thickness estimated breeding value by the Illumina PorcineSNP60 BeadChip and performed a genome wide association study to identify loci associated to this trait. Results We identified 4 single nucleotide polymorphisms with P≤5.0E-07 and additional 119 ones with 5.0E-07 Conclusions Further investigations are needed to evaluate the effects of the identified single nucleotide polymorphisms associated with backfat thickness on other traits as a pre-requisite for practical applications in breeding programs. Reported results could improve our understanding of the biology of fat metabolism and deposition that could also be relevant for other mammalian species including humans, confirming the role of neuronal genes on obesity.


    Schiffer, Christian; Stephenson, Randell Alexander; Oakey, Gordon

    Atlantic region. The intraplate Eurekan orogeny in the Cenozoic caused additional crustal shortening in the area, related to the opening of Baffin Bay, the North Atlantic and the Arctic Ocean basins and the complex plate tectonic responses to these plate boundary reconfigurations. Geophysically Ellesmere...... stations was installed and maintained from 2010 to 2012 with the support of the Geological Survey of Canada and SEIS-UK. The two closest permanent stations (Eureka and Alert) in the area as well as two wide angle seismic profiles across the Canadian Arctic margin have been included to the interpretation...

  14. Change in the pattern of crustal seismicity at the Southern Central Andes from a local seismic network

    Nacif, Silvina; Lupari, Marianela; Triep, Enrique G.; Nacif, Andrés; Álvarez, Orlando; Folguera, Andrés; Gímenez, Mario


    Shallow seismicity in the Southern Central Andes is associated with interplate earthquakes due to the subduction of the Nazca plate beneath the South American plate and neotectonic activity, mainly located in the retro-arc region. However, this pattern changes drastically south of 34°S within the transition zone at the Southern Central Andes where crustal seismicity associated with mountain-building processes concentrates at the fore-arc and intra-arc region. In order to define more accurately this transition we used data from a high density-seismic network over the Chilean fore-arc and axial Andean sector ( 33-34.5°S). We obtained a constraint data set of 77 seismic events located mostly in the Principal Cordillera western flank in the first 10 km of the upper crust. This cluster implies an abrupt change in the pattern of seismicity at the Southern Central Andes with a set of structures in the fore-arc and intra-arc accommodating shortening. This change in the locus of crustal seismicity and particularly its location on the fore-arc and intra-arc south of 34°S is discussed on the light of different hypotheses among which changes in the precipitation pattern and erosion along the Andes were favored. Focalized erosion associated with direction of prevailing Pacific winds south of 34°S could determine subcritical conditions that could be adjusted by out-of-sequence deformation causing crustal earthquakes in the fore-arc region, becoming the retro-arc zone nearly fossilized from a deformational point of view. Additionally, trench sediments associated with this change in the precipitation pattern could also favor decoupling of the subduction zone inhibiting retro-arc seismicity, although it does not explain activation of fore-arc structures south of 34°S and their absence north of this latitude. Finally, inhomogeneous distribution of seismicity through the fore-arc zone south of 34°S is discussed on the light of variable elastic thicknesses.

  15. On crustal movement in Mt. Qomolangma area

    陈俊勇; 王泽民; 庞尚益; 张骥; 张全德


    Mt. Qomolangma lies in the collision zone between the fringe of Eurasia plate and Indian plate. The crustal movement there is still very active so far. In the past three decades China carried out five geodetic campaigns in Mt. Qomolangma and its north vicinal area, independently or cooperatively with other countries, including triangulation, leveling, GPS positioning, atmospheric, astronomical and gravity measurements. On the basis of the observation results achieved in the campaigns the crustal movements in the area were studied and explored. A non-stationary phenomenon both in time and space of the crustal vertical movement in the area is found. There seems to be some relevance between the phenomenon of non-stationary in time and seismic episode in China. The phenomenon of non-stationary in space is possibly relevant to the no-homo- geneity of crustal medium and non-uniform absorption of terrestrial stress. The horizontal crustal movement in the area is in the direction of NEE at a speed of 6—7 cm per year, and the trend of strike slip movement is manifested evidently in the collision fringe of Indian plate and Qinghai-Xizang block.


    宋春燕; 李志海


    利用射线追踪方法对新疆伽师地区的重复地震进行位置归—处理,提高走时精度以达到观测伽师—乌恰和伽师—阿合奇地区地壳介质变化的目的.计算了伽师地区2005年1月至2011年3月ML≥2.5重复地震序列经射线追踪和波形互相关方法校正后的P波走时差.结果显示,在2009年2月20日柯坪5.4级地震前阿合奇台的记录观察到该地区短期的地壳介质速度明显升高现象,2010年6月10日乌恰5.2级地震前乌恰台也同样记录观察到该现象.%This article applied ray tracing method to normalize location of repeating earthquakes in Jiashi region, Xinjiang, and improve travel-time precision to observe variation of crustal medium in Jiashi-Wuqia region and Jiashi-Aheqi region. They calculated the travel-time difference of P wave u-sing ML ≥ 2. 5 repeating earthquake sequence corrected by ray tracing and waveform correlation method from Jan, 2005 to March,2011 in Jiashi region. The result showed that the crust velocity apparently increased in this region before Keping earthquake with Ms5. 4 on February 20th, 2009 recorded by Aheqi station. Such phenomenon also was observed before Wuqia earthquake with MS5.2 on Jun 10th, 2010 recorded by Wuqia station.

  17. Three-dimensional crustal velocity structure of P-wave in East China from wide-angle reflection and refraction surveys

    ZHAO ZhiXin; XU JiRen


    The 3-D crustal structure of P-wave velocity in East China is studied based on the data obtained by wide-angle seismic reflection and refraction surveys.The results suggest that a deep Moho disconti-nuity exists in the western zone of the study region,being 35-48 thick.High-velocity structure zones exist in the upper crust shallower than 20 km beneath the Sulu and Dabie regions.The cause of high-velocity zones is attributable to high-pressure metamorphic (HPM) and ultra-high-pressure metamorphic (UHPM) terranes with high velocity and density exhuming up to the upper crust in the Sulu and Dabie orogenies.Anomalous zones of low velocity are in the lower crust,about 30 km beneath the Sulu and Dabie regions.The Moho discontinuity is as deep as 38 km beneath the Dabie region,deeper than those in the surrounding areas.The Moho discontinuity beneath the Sulu orogenic region is also a little deeper than those in its vicinity,being about 32 km.The deep Moho discontinuity zone implies that the low crustal velocity structure zone is in that region.The low-velocity characteristics in the lower crust are probably related to the remnant crustal root of the old mountains due to the orogeny in the Sulu and Dabie regions.The high-velocity anomalous zones in the upper crust and low-velocity anomalous zones in the lower crust beneath the Sulu region are all located northeast of the northern segment of the Tan-Lu fault.However,the high- and low-velocity anomalous zones beneath the Dabie region are located southwest of the southern segment of the Tan-Lu fault.Such a distribution of the velocity-anomalous zones looks to be attributable a left lateral slip motion along the Tan-Lu fault.The distribution pattern of the velocity-anomalous zones may show some evidence for the left strike-slip motion regime of the Tan-Lu fault.

  18. Current knowledge on the crustal properties of Italy

    C. Morelli


    Full Text Available The recent advances in experimental petrography together with the information derived from the super-deep drilling projects have provided additional constraints for the interpretation of refraction and reflection seismic data. These constraints can also be used in the interpretation of magnetic and gravity data to resolve nonuniqueness. In this study, we re-interpret the magnetic and gravity data of the Italian peninsula and neighbouring areas. In view of the constraints mentioned above, it is now possible to find an agreement between the seismic and gravity models of the Central Alps. By taking into account the overall crustal thickness, we have recognized the existence of three types of Moho: 1 European which extends to the north and west of the peninsula and in the Corsican-Sardinian block. Its margin was the foreland in the Alpine Orogeny and it was the ramp on which European and Adriatic mantle and crustal slices were overthrusted. This additional load caused bending and deepening and the Moho which now lies beneath the Adriatic plate reaching a maximum depth of approximately 75 km. 2 Adriatic (or African which lies beneath the Po plain, the Apennines and the Adriatic Sea. The average depth of the Moho is about 30-35 km below the Po plain and the Adriatic Sea and it increases toward the Alps and the Tyrrhenian Sea (acting as foreland along this margin. The maximum depth (50 km is reached in Calabria. 3 Pery-Tyrrhenian. This is an oceanic or thinned continental crust type of Moho. It borders the oceanic Moho of the Tyrrhenian Sea and it acquires a transitional character in the Ligurian and Provençal basins (<15 km thickness while further thickening occurs toward the East where the Adriatic plate is overthrusted. In addition, the interpretation of the heat flow data appears to confirm the origin of this Moho and its geodynamic allocation.

  19. Distinct crustal isostasy trends east and west of the Rocky Mountain Front

    Schmandt, Brandon


    © 2015. American Geophysical Union. All Rights Reserved. Seismic structure beneath the contiguous U.S. was imaged with multimode receiver function stacking and inversion of Rayleigh wave dispersion and ellipticity measurements. Crust thickness and elevation are weakly correlated across the contiguous U.S., but the correlation is ∼3-4 times greater for separate areas east and west of the Rocky Mountain Front (RMF). Greater lower crustal shear velocities east of the RMF, particularly in low-elevation areas with thick crust, are consistent with deep crustal density as the primary cause of the contrasting crust thickness versus elevation trends. Separate eastern and western trends are best fit by Airy isostasy models that assume lower crust to uppermost mantle density increases of 0.18 g/cm3 and 0.40 g/cm3, respectively. The former value is near the minimum that is plausible for felsic lower crust. Location of the transition at the RMF suggests that Laramide to post-Laramide processes reduced western U.S. lower crustal density.

  20. Normal values of regional left ventricular myocardial thickness, mass and distribution-assessed by 320-detector computed tomography angiography in the Copenhagen General Population Study

    Hindsø, Louise; Fuchs, Andreas; Kühl, Jørgen Tobias


    Left ventricular (LV) hypertrophy is associated with cardiovascular complications and the geometry is important for prognosis. In some cardiovascular diseases, myocardial hypertrophy or dilation occurs regionally without modifying the global size of the heart. It is therefore relevant to determine...... myocardial distribution (LVMD) as a measure of regional variation of the LVMT. Moreover, we wanted to determine whether these parameters varied between men and women. We studied 568 (181 men; 32%) adults, free of cardiovascular disease and risk factors, who underwent 320-detector CCTA. Mean age was 55 (range...... but different regional distribution for men and women. This study introduces LVMD and provides gender specific reference values for regional LVMT, LVMM, and LVMD....

  1. Foreland shortening and crustal balancing in the Andes at 30°S latitude

    Allmendinger, R. W.; Figueroa, D.; Synder, D.; Beer, J.; Mpodozis, C.; Isaacks, B. L.


    Excellent surface exposures, known Benioff zone geometry, a dynamic morphology, and the availability of industry seismic reflection data all make the Andes at 30°S an excellent transect for investigating crustal-scale balanced sections. 150-170 km of horizontal shortening has occurred in three major belts located between the trench and the foreland. The thin-skinned, east-verging Precordillera of western Argentina accounts for 60-75% of the total shortening and formed mostly since major volcanism ceased at ˜10 Ma. Industry seismic reflection data show that the décollement of the Precordillera belt is located anomalously deep at ˜15 km. The belt is dominated by fault propagation folds and contains several prominent out-of-sequence thrust faults. Seismic stratigraphie analysis shows that Miocene strata in the Iglesia Valley, located between the Precordillera and the crest of the Andes, accumulated in a piggy-back basin. Onlap relations on the western side indicate that the High Cordillera was uplifted as a major fault bend fold over a buried ramp. Thrusting in the two western belts, both in the High Cordillera of Chile, formed during the waning stages of arc volcanism, 11-16 Ma. and account for 25-40% of the shortening. The observed shortening is probably greater than can be accounted for with reasonable crustal thicknesses, indicating the possibility of continental truncation or erosion along the plate margin or an anomalously thick root held down by the nearly flat subducted Nazca Plate. Our preferred crustal geometry puts the ramp between upper and lower crustal deformation west of the high topography, requiring crustal scale tectonic wedging to thicken the crust beneath the crest of the Andes. This non-unique model provides a simple explanation of the first order morphology of the Andes at this latitude.

  2. Local high-resolution crustal magnetic field analysis from satellite data

    Plattner, Alain; Simons, Frederik J.


    Planetary crustal magnetic fields are key to understanding a planet or moon's structure and history. Due to satellite orbit parameters such as aerobraking (Mars) or only partial coverage (Mercury), or simply because of the strongly heterogeneous crustal field strength, satellite data of planetary magnetic fields vary regionally in their signal-to noise ratio and data coverage. To take full advantage of data quality within one region of a planet or moon without diluting the data with lower quality measurements outside of that region we resort to local methods. Slepian functions are linear combinations of spherical harmonics that provide local sensitivity to structure. Here we present a selection of crustal magnetic field models obtained from vector-valued variable-altitude satellite observations using an altitude-cognizant gradient-vector Slepian approach. This method is based on locally maximizing energy concentration within the region of data availability while simultaneously bandlimiting the model in terms of its spherical-harmonic degree and minimizing noise amplification due to downward continuation. For simple regions such as spherical caps, our method is computationally efficient and allows us to calculate local crustal magnetic field solutions beyond spherical harmonic degree 800, if the data permit. We furthermore discuss extensions of the method that are optimized for the analysis and separation of internal and external magnetic fields.

  3. Trace element differences between Archean, Proterozoic and Phanerozoic crustal components: Implications for crustal growth processes

    Tarney, J.; Wyborn, L. E. A.; Sheraton, J. W.; Wyborn, D.


    Critical to models for continental crust growth and recycling are the processes through which crustal growth takes place. In particular, it is important to know whether these processes have changed fundamentally with time in response to the earth's thermal evolution, and whether the crustal compositions generated are compatible with crustal remobilization, crustal recycling, or represent primary additions. There are some significant and consistent differences in the major and trace element compositions of crustal components with time which have important implications for crustal growth processes. These will be illustrated with reference to Archean rocks from a number of shield areas, Proterozoic granitoids from Australia and elsewhere, Palaeozoic granitoids from Australia and Scotland, and Mesozoic - recent granitoids from present continental margin belts. Surprisingly some rather simple and consistent patterns energy using this technique. There are then significant differences in compositions of granitoid crustal additions throughout geological time, with a particular type of granitoid apparently dominating a particular time period. This implies that the tectonic processes giving rise to granite generation have changed in response to the earth's thermal evolution.

  4. Crustal structure of the Khartoum Basin, Sudan

    El Tahir, N


    Full Text Available Tectonophysics Vol. 593 (2013) 151–160 Crustal structure of the Khartoum Basin, Sudan Nada El Tahir a,b,*, Andrew Nyblade a,b, Jordi Julià c, Raymond Durrheim a,d a School of Geosciences, The University of the Witwatersrand, Johannesburg, South... Centre for Mining Innovation, Johannesburg, South Africa *Corresponding author: Abstract The crustal structure of the northern part of the Khartoum Basin has been investigated using data from 3 permanent seismic stations...

  5. Phase equilibria constraints on Archean crustal genesis from crystallization experiments on trondhjemite with water at 10-17 kbar

    van der Laan, Sieger R.; Johnston, A. Dana; Wyllie, Peter J.


    The formation of continental crust during the Archean and early Proterozoic occurred through a different mechanisms than the currently active processes of calc-alkaline volcanism in orogenic regions. In view that most crustal growth models imply that by the end of the Archean a continental mass equivalent to 75% or more of the current crust had evolved, it seems highly relevant to study early crustal genesis.

  6. A new model of crustal structure of Siberia

    Cherepanova, Yulia; Artemieva, Irina; Thybo, Hans


    We report a new model of the structure of the crust in Siberia that encompasses two large tectonic regions, the Paleozoic West Siberian Basin and the Precambrian Siberian craton. The area of study covers a significant part of the north Eurasia and extends from the Ural mountains in the west...... and receiver functions studies, based on old and newly acquired seismic data (from the late 1960-ies until present). Seismic structure along seismic profiles is digitized with a 50 km lateral spacing which is comparable with the resolution of seismic models. Structural parameters based on gravity modeling...... is paid to the data quality problem, and quality parameters are incorporated into the new database of regional crustal structure. The present database comprises detailed and reliable information on the seismic structure of the crust for most of the tectonic structures of the region and provides valuable...

  7. The crustal micro-deformation anomaly and the credible precursor*

    张雁滨; 蒋骏; 钱家栋; 陈京; 和升棋; 张燕; 和平


    @@ What is a credible seismic precursor in observation of deformation A real seismic precursor ought to be resulted from the variations in the earth strain and stress. The deformation observation can provide the information during earthquake gestation and occurrence period for us. Usually the seismic precursors can be divided into field and epicentral region precursors. The precursor information is very useful for seismic prediction from epicentral region or near epicentral region. Micro-deformation observation mainly includes tilt, strain and gravity observation. Compared with GPS, geodesy and mobile deformation observation, micro-deformation (tilt, strain) shows the change of deformation which is continual in a limited volume with dominant observed range of 10(6~10(10 m. Because the variation of the crustal nature and cracking can be directly obtained by micro-deformation observation, it is an effective way to find middle-short term and short-term precursor.

  8. "Storms of crustal stress" and AE earthquake precursors

    G. P. Gregori


    Colfiorito – and (maybe in 2002 also the Molise earthquake can be reckoned to this "storm". During the "storm", started in 2008, the l'Aquila earthquake occurred.

    Additional logical analysis envisages the possibility of distinguishing some kind of "elementary" constituents of a "crustal storm", which can be briefly called "crustal substorms". The concept of "storm" and "substorm" is a common logical aspect, which is shared by several phenomena, depending on their common intrinsic and primary logical properties that can be called lognormality and fractality. Compared to a "crustal storm", a "crustal substorm" is likely to be reckoned to some specific seismic event. Owing to brevity purposes, however, the discussion of "substorms" is given elsewhere.

    AE is an effective tool for monitoring these phenomena, and other processes that are ongoing within the crust. Eventually they result to be precursors of some more or less violent earthquake. It should be stressed, however, that the target of AE monitoring is diagnosing the Earth's crust. In contrast, earthquake prediction implies a much different perspective, which makes sense only by means of more detailed multiparametric monitoring. An AE array can provide real physical information only about the processes that are objectively ongoing inside different and contiguous large slabs of the crust. The purpose is to monitor the stress propagation that crosses different regions, in order to envisage where and when it can eventually trigger a catastrophe of the system. The conclusion is that continental – or planetary – scale arrays of AE monitoring stations, which record a few different AE frequencies, appear to be the likely first step for diagnosing the evolution of local structures preceding an earthquake. On the other hand, as it is well known, the magnitude of the shock is to be related to the elastic energy stored in

  9. Gravitational radiation from neutron stars deformed by crustal Hall drift

    Suvorov, A. G.; Mastrano, A.; Geppert, U.


    A precondition for the radio emission of pulsars is the existence of strong, small-scale magnetic field structures (`magnetic spots') in the polar cap region. Their creation can proceed via crustal Hall drift out of two qualitatively and quantitatively different initial magnetic field configurations: a field confined completely to the crust and another which penetrates the whole star. The aim of this study is to explore whether these magnetic structures in the crust can deform the star sufficiently to make it an observable source of gravitational waves. We model the evolution of these field configurations, which can develop, within ˜104-105 yr, magnetic spots with local surface field strengths ˜1014 G maintained over ≳106 yr. Deformations caused by the magnetic forces are calculated. We show that, under favourable initial conditions, a star undergoing crustal Hall drift can have ellipticity ɛ ˜ 10-6, even with sub-magnetar polar field strengths, after ˜105 yr. A pulsar rotating at ˜102 Hz with such ɛ is a promising gravitational wave source candidate. Since such large deformations can be caused only by a particular magnetic field configuration that penetrates the whole star and whose maximum magnetic energy is concentrated in the outer core region, gravitational wave emission observed from radio pulsars can thus inform us about the internal field structures of young neutron stars.

  10. Lithospheric architecture of the Levant Basin (Eastern Mediterranean region): A 2D modeling approach

    Inati, Lama; Zeyen, Hermann; Nader, Fadi-Henri; Adelinet, Mathilde; Sursock, Alexandre; Rahhal, Muhsin Elie; Roure, Francois


    One of the major uncertainties regarding the Levant Basin, known to be the site of rifting in the Late Paleozoic and Early Mesozoic, concerns its deep crustal configuration despite numerous old and recent geophysical studies in this region. The aim of this study is to deduce the deep structure of the lithosphere underlying the easternmost Mediterranean region, in particular the Levant Basin and its margins, where the nature of the crust, continental versus oceanic, remains debated and has major implications on understanding the regional tectonic and thermal evolution, and on constraining potential petroleum systems. The algorithm used is a trial and error method that delivers the crustal thickness and the depth of the lithosphere-asthenosphere boundary (LAB) as well as the crustal density distribution by integrating surface heat flow data, free-air gravity anomaly, Geoid and topography data. Moho depth and crustal thickness were locally constrained by refraction data where available. The models representing two EW sections show a progressively attenuated crystalline crust in an EW direction (35 to 8 km). The SN section represents a 12 km thick crust to the south, thins to 9-7 km towards the Lebanese coast and reaches 20 km in the north. The crystalline crust is best interpreted as a strongly thinned continental crust under the Levant Basin, represented by two distinct components, an upper and a lower crust. Nevertheless, the Herodotus Basin shows a thin crust, likely oceanic, with a thickness between 6 and 10 kms. West of the Eratosthenes Seamount, a local crustal anomaly is interpreted to be the result of an underlying continental crust with a thickness of 13 kms. The Moho under the Arabian plate is 35-40 km deep and becomes shallower towards the Mediterranean coast. Within the Levant Basin, the Moho appears to be situated between 20 and 23 km, reaching 26 km in the Herodotus Basin. While depth to LAB is around 110 km under the Arabian and the Eurasian plates, it

  11. Imaging the Western Iberia Crustal Structure by Noise Analysis

    Silveira, G. M.; Dias, N. A.; Custodio, S.; Kiselev, S.; Dündar, S.


    Portugal lies close to the Eurasian-African boundary, a region of tectonic regime transition from convergence in the Mediterranean to strike-slip in the Atlantic. Such broad convergence area, characterized by a slow rate of about 4.5-5.6 mm/yr, translates unto a scattered seismicity concentrated mainly in the offshore. Therefore, the irregular source-receiver geometry resulting from the inland seismic stations networks does not permit to derive high-resolution models of the Portuguese crustal structure using traditional passive seismology. Seismic interferometry/ambient noise surface-waves tomography allows imaging regions with a resolution that mainly depends on the seismic network coverage. Over the last decade, both Portuguese and Spanish permanent broadband (BB) seismic networks expanded significantly. This densification enabled to build a detailed image of the crustal structure of the Iberian Peninsula using ambient seismic noise. However, due to the existing network gaps towards west, the crustal image of Western Iberia is on the limit of resolution. The two years temporary deployment by the WILAS project contributed to fill those gaps and provide an excellent opportunity to study the Portuguese crustal structure. Dispersion measurements were computed for each pair of stations using empirical Green's functions generated by cross-correlating one-day-length seismic ambient-noise records. To improve the signal-to-noise ratio of the empirical Green functions computed from ambient noise records, we applied a phase cross-correlation method, followed by time-frequency domain phase weighted stack. Group-velocities were computed using the S-transform and we use the Fast Marching Surface Tomography algoritm to compute group velocity perturbation maps. Group velocities were then inverted as a function of depth to obtain S-wave velocity maps for diferent depths. The models will be compared with results from Ps receiver functions. The results obtained for the crust using

  12. Crustal Structure of the Caribbean-South American Diffuse Plate Boundary: Subduction Zone Migration and Polarity Reversal Along BOLIVAR Profile 64W

    Clark, S. A.; Levander, A.; Magnani, M.; Zelt, C. A.; Sawyer, D. S.; Ave Lallemant, H. G.


    The BOLIVAR (Broadband Ocean-Land Investigation of Venezuela and the Antilles arc Region) project is an NSF funded, collaborative seismic experiment in the southeast Caribbean region. The purpose of the project is to understand the diffuse plate boundary created by the oblique collision between the Caribbean and South American plates. Profile 64W of the BOLIVAR experiment, a 450 km-long, N-S transect onshore and offshore Venezuela located at ~64°W longitude, images the deep crustal structures formed by this collision. The active source components of profile 64W include 300 km of MCS reflection data, 33 coincident OBSs, and 344 land seismic stations which recorded 7500 offshore airgun shots and 2 explosive land shots. Results from the reflection and refraction seismic data along 64W show complex crustal structure across the entire span of the diffuse plate boundary. The onshore portion of 64W crosses the fold and thrust belt of the Serrania del Interior, which formed at ~16 Ma by collision of the Caribbean forearc with the northern South American passive margin. Underlying the Serrania del Interior is a south-vergent, remnant Lesser Antillean subduction zone. As this Lesser Antilles subduction impinged on continental crust, it caused a polarity reversal and jump offshore to the north. Convergence was initially localized in the closure and inversion of the Grenada Basin. However, subduction could not develop because of the ~20-km-thick crust of the Aves Ridge; instead, north-vergent subduction initiated further to the north, where ~12-km-thick Caribbean oceanic crust of the Venezuela Basin began to subduct beneath the Aves Ridge in the Pliocene (~4 Ma) and appears to continue subducting today. Between the remnant subduction zone and the modern one, the El Pilar and Coche dextral strike-slip faults accommodate most of the transform motion of the plate boundary. From the Serrania del Interior to the Aves Ridge, ~260 km of accreted orogenic float comprises the diffuse

  13. Crustal and uppermost mantle structure of the eastern margin of the Yilgarn Craton (Australia) from passive seismic data

    Sippl, Christian; Tkalčić, Hrvoje; Kennett, Brian; Spaggiari, Catherine; Gessner, Klaus


    The Yilgarn Craton in Western Australia is one of the largest units of Archean lithosphere on earth. Along its southern and southeastern margin, it is bounded by the Albany-Fraser Orogen (AFO), a Paleo- to Mesoproterozoic extensioal-accretionary orogen. In this contribution, we investigate the crustal and upper mantle structure of the AFO and adjacent regions using passive seismic data collected during the recent ALFREX experiment. Since the entire region has not been significantly reactivated since the Mesoproterozoic, the old signature of craton edge modification should have been well preserved until today. From November 2013 until January 2016, we operated a temporary passive seismic network consisting of 70 stations in the eastern Albany-Fraser Orogen. The array had an average station spacing of about 40 km and was designed to fill the gap between recently acquired active seismic profiles. We present results from the analysis of P receiver functions and ambient noise tomography using the ALFREX data. Receiver functions were used to derive a Moho depth map via H-K stacking, for direct imaging (common conversion point stacking) as well as joint inversion with surface wave dispersion data to derive 1D S-velocity profiles beneath the stations. The obtained receiver functions show a marked change of character from west to east across the array. Whereas they feature clear and sharp Moho phases for stations on the Yilgarn Craton, significantly more crustal complexity and fainter Moho phases are seen throughout the AFO. Crustal thickness increases from 36-39 km for the Yilgarn Craton to values between 42 and 48 km across the AFO, decreasing to around 40 km in the east. Ambient noise cross-correlations were used to derive maps of phase and group velocities of Rayleigh waves at periods between 1 and 30 seconds. A three-dimensional model of S wavespeeds throughout the area was then computed by pixelwise inversion of dispersion curves. Obtained S wavespeeds are generally

  14. Heat flow, heat production, and crustal dynamics in the Central Alps, Switzerland

    Rybach, L. (Inst. of Geophysics, Zurich); Werner, D.; Mueller, S.; Berset, G.


    Interrelations between temperature field, crustal structure, and crustal dynamics (vertical crustal movements) were investigated along a selected profile: the Swiss Geotraverse which cross-sects in a NW--SE direction the following tectonic units: Rhine-Graben, Jura Mountains, Molasse Basin, Helvetic Nappes, Central Massifs with autochthonous cover, Penninic units, basement and sedimentary units of the Southern Alps (total length: 220 km). The corrected heat flow is slightly elevated along or close to the traverse (approximately equal to 75 mW/m/sup 2/). Thermal effects of Alpine overthrusting and metamorphism on the surface gradient are negligible today. For steady-state calculations of the temperature field heat production was determined experimentally for surface samples; for deep crustal rocks it was inferred from an empirical relationship between heat production and seismic compressional wave velocity or density. The temperature field shows downwarped isotherms where a pronounced inversion of seismic velocity and density occurs in the upper crust. The same area of the Central Alps (Lepontine gneiss region) exhibits the strongest recent crustal movements (vertical uplift approximately equal to 1 mm/yr). The Mohorovicic discontinuity is clearly not an isothermal surface; its asymmetric shape found by seismic and gravimetric measurements is likely to be a result of the early Alpine subduction tectonics.

  15. The role of rheology, crustal structures and lithology in the seismicity distribution of the northern Apennines

    Chiaraluce, L.; Barchi, M. R.; Carannante, S.; Collettini, C.; Mirabella, F.; Pauselli, C.; Valoroso, L.


    The Northern Apennines of Italy is a unique area to study active crustal processes due to the availability of high-resolution subsurface geology (deep borehole and seismic profiles) and seismicity (back-ground and seismic sequences) data. In this work we have investigated the relationship between crustal structures and lithologies, rheological profiles and seismicity cut-off by constructing three integrated profiles across the Umbria-Marche Apennines. At first approximation we observe a good correspondence between the background seismicity cut-off and the modelled brittle ductile transition (BDT): 90% of the seismic activity is located above the transition. In the area characterized by active extension, where the majority of the seismicity is occurring, most of the crustal earthquakes are confined within the brittle layer at depth rheology and therefore the position of the brittle ductile transition exerts a role at regional scale for the occurrence of crustal seismicity, however crustal structures and lithology play the major role at a more local scale and therefore they need to be considered for a better understanding of earthquake distribution within the seismogenic layer.

  16. Seismological constraints on the crustal structures generated by continental rejuvenation in northeastern China.

    Zheng, Tian-Yu; He, Yu-Mei; Yang, Jin-Hui; Zhao, Liang


    Crustal rejuvenation is a key process that has shaped the characteristics of current continental structures and components in tectonic active continental regions. Geological and geochemical observations have provided insights into crustal rejuvenation, although the crustal structural fabrics have not been well constrained. Here, we present a seismic image across the North China Craton (NCC) and Central Asian Orogenic Belt (CAOB) using a velocity structure imaging technique for receiver functions from a dense array. The crustal evolution of the eastern NCC was delineated during the Mesozoic by a dominant low seismic wave velocity with velocity inversion, a relatively shallow Moho discontinuity, and a Moho offset beneath the Tanlu Fault Zone. The imaged structures and geochemical evidence, including changes in the components and ages of continental crusts and significant continental crustal growth during the Mesozoic, provide insight into the rejuvenation processes of the evolving crust in the eastern NCC caused by structural, magmatic and metamorphic processes in an extensional setting. The fossil structural fabric of the convergent boundary in the eastern CAOB indicates that the back-arc action of the Paleo-Pacific Plate subduction did not reach the hinterland of Asia.

  17. Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia

    Troll, Valentin R.; Hilton, David R.; Jolis, Ester M.; Chadwick, Jane P.; Blythe, Lara S.; Deegan, Frances M.; Schwarzkopf, Lothar M.; Zimmer, Martin


    High-temperature volcanic gas is widely considered to originate from ascending, mantle-derived magma. In volcanic arc systems, crustal inputs to magmatic gases mainly occur via subducted sediments in the mantle source region. Our data from Merapi volcano, Indonesia imply, however, that during the April-October 2006 eruption significant quantities of CO2 were added from shallow crustal sources. We show that prior to the 2006 events, summit fumarole gas δ13C(CO2) is virtually constant (δ13C1994-2005 = -4.1 ± 0.3‰), but during the 2006 eruption and after the shallow Yogyakarta earthquake of late May, 2006 (M6.4; hypocentres at 10-15 km depth), carbon isotope ratios increased to -2.4 ± 0.2‰. This rise in δ13C is consistent with considerable addition of crustal CO2 and coincided with an increase in eruptive intensity by a factor of ˜3 to 5. We postulate that this shallow crustal volatile input supplemented the mantle-derived volatile flux at Merapi, intensifying and sustaining the 2006 eruption. Late-stage volatile additions from crustal contamination may thus provide a trigger for explosive eruptions independently of conventional magmatic processes.

  18. Crustal Flows beneath the Eastern Tibetan Plateau Revealed by Magnetotelluric Observations

    BAI Denghai; TENG Jiwen; MA Xiaobing; KONG Xiangru


    @@ The ongoing collision of the Indian and Asian continents has created the Himalayan and Tibetan plateau through a range of deformation processes that include crustal thickening, delamination, lateral extrusion and crustal flow.A debate continues as to which of these processes are most significant in terms of the overall mass balance of this continent-continent collision.In eastern Tibet GPS data show large-scale motion of the surface has been occurring around the eastern Himalayan syntaxis (EHS), but the nature of deformation at depth remains unresolved.A large-scale crustal flow has been proposed as an explanation for regional uplift in eastern Tibet, but existing geophysical data do not constrain the pattern of flow.

  19. Contemporary velocity field of crustal movement of Chinese mainland from Global Positioning System measurements

    NIU Zhijun; WANG Yongqing; WANG Yongxiang; LI Bai; WANG Min; SUN Hanrong; SUN Jianzhong; YOU Xinzhao; GAN Weijun; XUE Guijiang; HAO Jinxin; XIN Shaohua


    @@ Significant advancement for the monitoring of crustal deformation in the Chinese mainland was accomplished in 1998 when the Crustal Movement Observation Network of China (CMONOC) was established. This National Key Scientific Infrastructural Project provides important information on present-day crustal deformation that can be used for many aspects of earth sciences such as navigation, positioning, and surveying. The principal GPS data used for this study come from the CMONOC collected from 1998 to 2004, including 27 fiducial stations which operate continuously since 1988, 56 basic stations observed annually with an occupation of at least 7 days (~168 hours' data collection) in each survey, and 961 regional stations observed in 1999, 2001, and 2004 with an occupation of at least 3 days (~72 hours' data collection) in each survey[1,2].

  20. Crustal Movement Patterns of China Continent Measured by GPS

    YAO Yibin


    This paper uses multi-quadric equations interpolation to es-tablish a widely covered and valuablespeed field model of China, withwhich the horizontal crustal movementpatterns are obtained. The present-dayvertical crustal movement velocity im-age of China is also expressed by GPSobservations, from which we canknow the vertical crustal movementpatterns.

  1. Comparative seismic and petrographic crustal study between the Western and Eastern Sierras Pampeanas region (31°S Estudio sísmico y petrográfico cortical comparativo entre las Sierras Pampeanas Occidentales y Orientales (31°S

    P. Alvarado


    Full Text Available The ancient Sierras Pampeanas in the central west part of Argentina are a seismically active region in the back-arc of the Andes. Their crystalline basement cored uplifts extend up to 800 km east of the oceanic trench over the flat subduction segment of the Nazca plate. Approximately 40 felt crustal earthquakes, are reported per year for this region. Historic and modern seismicity indicates that the Western Sierras Pampeanas (WSP have more crustal earthquakes of greater-size than the Eastern Sierras Pampeanas (ESP. Remarkable changes in composition and structure also characterize the WSP and ESP basements. We have quantitatively compared both regions using seismological constrains. A recent regional study of moderate earthquakes shows reverse and thrust focal mechanisms occurring at depths down to 25 km in the WSP. In contrast, the ESP have reverse and strike-slip focal mechanisms of shallower depths (Los antiguos bloques montañosos de las Sierras Pampeanas del centro-oeste argentino constituyen una región sísmicamente activa en la zona andina de trasarco. Estos bloques de basamento cristalino afloran hasta 800 km al este de la trinchera oceánica sobre el segmento de subducción horizontal. Más de 40 sismos «sentidos», son reportados por año para esta región. La distribución de la sismicidad moderna e histórica, muestra que las Sierras Pampeanas Occidentales experimentan más sismos de mayor magnitud que las Sierras Pampeanas Orientales. Geológicamente, existen marcados contrastes en la composición litológica y estructura del basamento en ambas regiones. Un estudio sismológico reciente indica que las Sierras Pampeanas occidentales son más activas sísmicamente que las orientales, con mecanismos focales inversos que alcanzan profundidades de hasta 25 km. Las Sierras Pampeanas orientales presentan mecanismos focales inversos y de desplazamiento de rumbo con profundidades focales < 10 km. Diferentes estructuras corticales de

  2. Precambrian crustal evolution and Cretaceous–Palaeogene faulting in West Greenland: Zircon geochronology from the Kangaatsiaq–Qasigiannguit region, the northern part of the 1.9–1.8 Ga Nagssugtoqidian orogen, West Greenland

    Conelly, James N.


    Full Text Available The Kangaatsiaq–Qasigiannguit region in the northern part of the Palaeoproterozoic Nagssugtoqidian orogen of West Greenland consists of poly-deformed orthogneisses and minor occurrences of interleaved, discontinuous supracrustal belts. Laser ablation ICP-MS 207Pb/206Pb analyses of detrital zircons from four metasedimentary rocks (supplemented by ion probe analysis of one sample and igneous zircons from six granitoid rocks cutting metasedimentary units indicate that the supracrustal rocks in the Kangaatsiaq–Qasigiannguit (Christianshåb region are predominantly Archaean in age. Four occurrences of metasedimentary rocks are clearly Archaean, two have equivocal ages, and only one metasedimentary unit, from within the Naternaq (Lersletten supracrustal belt, is demonstrably Palaeoproterozoic and readily defines a large fold complex of this age at Naternaq. The 2.9–2.8 Ga ages of detrital Archaean grains are compatible with derivation from the local basement orthogneisses within the Nagssugtoqidian orogen. The detrital age patterns are similar to those of metasediments within the central Nagssugtoqidian orogen but distinct from age patterns in metasediments of the Rinkian belt to the north, where there is an additional component of pre-2.9 Ga zircons. Synkinematic intrusive granitoid rocks constrain the ages of some Archaean deformation at 2748 ± 19 Ma and some Palaeoproterozoic deformation at 1837 ± 12 Ma.

  3. High-resolution teleseismic tomography of upper-mantle structure using an a priori three-dimensional crustal model

    Waldhauser, Felix; Lippitsch, Regina; Kissling, Edi; Ansorge, Jörg


    The effect of an a priori known 3-D crustal model in teleseismic tomography of upper-mantle structure is investigated. We developed a 3-D crustal P-wave velocity model for the greater Alpine region, encompassing the central and western Alps and the northern Apennines, to estimate the crustal contribution to teleseismic traveltimes. The model is constructed by comparative use of published information from active and passive seismic surveys. The model components are chosen to represent the present large-scale Alpine crustal structure and for their significant effect on the propagation of seismic wavefields. They are first-order structures such as the crust-mantle boundary, sedimentary basins and the high-velocity Ivrea body. Teleseismic traveltime residuals are calculated for a realistic distribution of azimuths and distances by coupling a finite-difference technique to the IASP91 traveltime tables. Residuals are produced for a synthetic upper-mantle model featuring two slab structures and the 3-D crustal model on top of it. The crustal model produces traveltime residuals in the range between -0.7 and 1.5 s that vary strongly as a function of backazimuth and epicentral distance. We find that the non-linear inversion of the synthetic residuals without correcting for the 3-D crustal structure erroneously maps the crustal anomalies into the upper mantle. Correction of the residuals for crustal structure before inversion properly recovers the synthetic slab structures placed in the upper mantle. We conclude that with the increasing amount of high-quality seismic traveltime data, correction for near-surface structure is essential for increasing resolution in tomographic images of upper-mantle structure.

  4. Long wavelength gravity anomalies over India: Crustal and lithospheric structures and its flexure

    Tiwari, V. M.; Ravi Kumar, M.; Mishra, D. C.


    Long wavelength gravity anomalies over India were obtained from terrestrial gravity data through two independent methods: (i) wavelength filtering and (ii) removing crustal effects. The gravity fields due to the lithospheric mantle obtained from two methods were quite comparable. The long wavelength gravity anomalies were interpreted in terms of variations in the depth of the lithosphere-asthenosphere boundary (LAB) and the Moho with appropriate densities, that are constrained from seismic results at certain points. Modeling of the long wavelength gravity anomaly along a N-S profile (77°E) suggest that the thickness of the lithosphere for a density contrast of 0.05 g/cm3 with the asthenosphere is maximum of ˜190 km along the Himalayan front that reduces to ˜155 km under the southern part of the Ganga and the Vindhyan basins increasing to ˜175 km south of the Satpura Mobile belt, reducing to ˜155-140 km under the Eastern Dharwar craton (EDC) and from there consistently decreasing south wards to ˜120 km under the southernmost part of India, known as Southern Granulite Terrain (SGT). The crustal model clearly shows three distinct terrains of different bulk densities, and thicknesses, north of the SMB under the Ganga and the Vindhyan basins, and south of it the Eastern Dharwar Craton (EDC) and the Southern Granulite Terrain (SGT) of bulk densities 2.87, 2.90 and 2.96 g/cm3, respectively. It is confirmed from the exposed rock types as the SGT is composed of high bulk density lower crustal rocks and mafic/ultramafic intrusives while the EDC represent typical granite/gneisses rocks and the basement under the Vindhyan and Ganga basins towards the north are composed of Bundelkhand granite massif of the lower density. The crustal thickness along this profile varies from ˜37-38 km under the EDC, increasing to ˜40-45 km under the SGT and ˜40-42 km under the northern part of the Ganga basin with a bulge up to ˜36 km under its southern part. Reduced lithospheric and

  5. The Cora Lake Shear Zone, an Exhumed Deep Crustal Lithotectonic Discontinuity, Western Churchill Province, Canada

    Regan, S.; Leslie, S.; Holland, M. E.; Williams, M. L.; Mahan, K. H.; Jercinovic, M. J.


    Deep crustal flow is a fundamental tectonic process that may serve to reduce topographic gradients, especially in overthickened collisional orogens. Recent studies have utilized numerical models and seismic interpretations, but generally in two dimensions. Although useful, two dimensional models can not fully characterize lower crustal flow or coupling of crustal layers because they cannot fully incorporate lateral heterogeneity in the flow field. The Athabasca Granulite terrane, in northern Saskatchewan, is an exposed deep crustal terrane that underwent granulite grade deformation during the Neoarchean (ca. 2.55), then cooled isobarically for 600 m.y., and then was reactivated during the Paleoproterozoic (ca. 1.9 Ga). Regional exhumation occurred at roughly 1.85 Ga. This exposure, is a field laboratory for studying lower crustal flow, stabilization, and reactivation. Recent work suggests that the northwestern domain, dominated by the multiphase, opx-bearing, Mary batholith, underwent top-to-the-east lower crustal flow during the Neoarchean. The Chipman domain, to the SE , is primarily underlain by the 3.2 Ga, Chipman tonalite straight gneiss, which was likely restitic, and rheologically strong during the 2.6 Ga flow event. The Cora Lake shear zone (CLsz), which divides the two domains, is interpreted to represent a lithotectonic, compositional, and rheologic boundary within the deep crust. Recent mapping of the western gradient of the CLsz has provided insight into the role and evolution of the rheologic discontinuity and its relationship to crustal flow. The Mary granite (gneiss) contains excellent assemblages for P-T and pseudosection analysis. Interlayered felsic granulite contain abundant monazite for in-situ geochronology. An intense subhorizontal tectonic fabric (S1), interpreted to be the product of crustal flow, is present in both units. This early fabric was locally crenulated, folded, and transposed, by a sub-vertical S2 fabric. Current work involves

  6. Crustal structure in the southern part of West Java based on analysis of teleseismic receiver function

    Syuhada, Anggono, Titi


    We analyzed teleseismic receiver functions from five broadband stations to determine the crustal thickness and Vp/vs ratios in the southern part of west Java. We observed that the study area is characterized by crustal thickness around 31-37 km with Vp/Vs varying between 1.66 and 1.87. We suggest that lower values of Vp/Vs obtained in some stations indicate more felsic crustal composition. The mid-crust low velocity zone is observed beneath a seismic station located near the volcanic zones with high values of Vp/Vs ratio suggesting the presence of partial melt due to geothermal activities in the upper mantle. Furthermore, a seismic station located near the active fault zone also has high Vp/Vs ratio, which may indicate the presence of fluid filled fracture zone. However, this station exhibits complicated receiver functions, thus it needs further research involving a larger dataset with good backazimuth coverage of the teleseismic data to resolve this issue.

  7. Mantle and crustal processes in the magmatism of the Campania region: inferences from mineralogy, geochemistry, and Sr-Nd-O isotopes of young hybrid volcanics of the Ischia island (South Italy)

    D'Antonio, Massimo; Tonarini, Sonia; Arienzo, Ilenia; Civetta, Lucia; Dallai, Luigi; Moretti, Roberto; Orsi, Giovanni; Andria, Mariachiara; Trecalli, Alberto


    Ischia, one active volcano of the Phlegraean Volcanic District, prone to very high risk, is dominated by a caldera formed 55 ka BP, followed by resurgence of the collapsed area. Over the past 3 ka, the activity extruded evolved potassic magmas; only a few low-energy explosive events were fed by less evolved magmas. A geochemical and Sr-Nd-O isotope investigation has been performed on minerals and glass from products of three of such eruptions, Molara, Vateliero, and Cava Nocelle (Ischia volcanism in the past. Detailed study on the most mafic magma has permitted to investigate its origin. The mantle sector below Ischia underwent subduction processes that modified its pristine chemical, isotopic, and redox conditions by addition of ≤1 % of sediment fluids/melts. Similar processes occurred from Southeast to Northwest along the Apennine compressive margin, with addition of up to 2.5 % of sediment-derived material. This is shown by volcanics with poorly variable, typical δ18O mantle values, and 87Sr/86Sr progressively increasing toward typical continental crust values. Multiple partial melting of this modified mantle generated distinct primary magmas that occasionally assimilated continental crust, acquiring more 18O than 87Sr. At Ischia, 7 % of Hercynian granodiorite assimilation produced isotopically distinct, K-basaltic to latitic magmas. A SW-NE regional tectonic structure gave these magmas coming from large depth the opportunity to mingle/mix with felsic magmas stagnating in shallower reservoirs, eventually triggering explosive eruptions.

  8. Comparative riftology: insights from crustal structure into the evolution of continental rifts and passive continental margins

    Kley, Jonas; Stein, Carol; Stein, Seth; Keller, Randy; Wysession, Michael; Frederiksen, Andrew


    Continental rifts evolve to seafloor spreading and are preserved in passive margins, or fail and remain as fossil features in continents. Rifts at different stages give insight into these different evolutionary paths. Of particular interest is how volcanic passive margins evolve. These features are characterized by sequences of volcanic rocks yielding magnetic anomalies landward of and sometimes larger than the oldest spreading anomalies. Seaward-dipping reflectors (SDR) occur in stretched continental crust landward of the oldest oceanic crust and are underplated by high-velocity lower crustal bodies. How and when these features form remains unclear. Insights are given by the Midcontinent Rift (MCR), formed by 1.1 Ga rifting of Amazonia from Laurentia, that failed once seafloor spreading was established elsewhere. MCR volcanics are much thicker than other continental flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift's geometry but a LIP's magma volume. The MCR provides a snapshot of the deposition of a thick highly magnetized volcanic section during rifting. Surface exposures and seismic-reflection data in and near Lake Superior show a rift basin filled by inward-dipping flood basalt layers. Had the rift evolved to seafloor spreading, the basin would have split into two sets of volcanics with opposite-facing SDRs, each with a strong magnetic anomaly. Because the rift formed as a series of alternating half-grabens, structural asymmetries between conjugate margins can naturally occur. Hence the MCR shows that many features form prior to breakup. Because the MCR was massively inverted by regional compression long after it failed and was uplifted, its structure is better known than failed rifts that incurred lesser degrees of inversion. It provides an end member for the evolution of actively extending rifts, characterized by upwelling mantle and negative gravity anomalies, in contrast to failed and inverted rifts without

  9. Evidence for a deep crustal hot zone beneath the Diamante Caldera-Maipo volcanic complex, Southern Volcanic Zone

    Drew, D.; Murray, T.; Sruoga, P.; Feineman, M. D.


    Subduction zones at convergent continental margins are dynamic environments that control the long-term evolution and interaction of the crust and residual mantle. The Southern Volcanic Zone (SVZ) of the Andes formed as a result of volcanic activity and uplift due to the eastern subduction of the Nazca Plate beneath the South American Plate. Maipo and neighboring volcanoes in the northern SVZ are unique in that the continental crust is exceptionally thick (~50 km), causing the mantle-derived magma to stall and interact with the crust at multiple levels prior to eruption. Maipo is an andesite/dacite stratovolcano that lies within the Diamante Caldera, which formed approximately 450 Ka during an explosive eruption that produced 350 km3 of rhyolitic ignimbrite. Following post-caldera reactivation Maipo has undergone a complex evolution, first erupting 86 Ka and experiencing seven eruptive events extending to historic times. The Maipo lavas represent a unique geochemical evolution resulting from fractional crystallization, crustal assimilation, and magma mixing in the lower and upper crust. By analyzing trace element compositions, major element compositions, and 87Sr/86Sr ratios in sixteen samples, we have begun to constrain the complex geochemical processes that formed this volcano and contribute to the differentiation of Andean continental crust. The major element analysis of the samples reflects the extent of differentiation resulting in dacite to andesite volcanic rock, and was used to distinguish between the seven eruptive events. The trace elements and Sr isotope ratios reflect the composition of the source rock, the extent of crustal assimilation, and the crystallization of minerals from the resulting mantle derived magma. The SiO2 weight percent (ranging from 54.3 to 68.5%) and 87Sr/86Sr ratios (0.7048 to 0.7057) show a linear correlation nearly identical to that reported by Hildreth and Moorbath (1988, CMP 98, 455-489) for nearby Cerro Marmolejo, suggesting a

  10. Rheomorphic ignimbrites of the Rogerson Formation, central Snake River plain, USA: record of mid-Miocene rhyolitic explosive eruptions and associated crustal subsidence along the Yellowstone hotspot track

    Knott, Thomas R.; Reichow, Marc K.; Branney, Michael J.; Finn, David R.; Coe, Robert S.; Storey, Michael; Bonnichsen, Bill


    Rogerson Graben, USA, is critically placed at the intersection between the Yellowstone hotspot track and the southern projection of the west Snake River rift. Eleven rhyolitic members of the re-defined, ≥420-m-thick, Rogerson Formation record voluminous high-temperature explosive eruptions, emplacing extensive ashfall and rheomorphic ignimbrite sheets. Yet, each member has subtly distinct field, chemical and palaeomagnetic characteristics. New regional correlations reveal that the Brown's View ignimbrite covers ≥3300 km2, and the Wooden Shoe ignimbrite covers ≥4400 km2 and extends into Nevada. Between 11.9 and ˜8 Ma, the average frequency of large explosive eruptions in this region was 1 per 354 ky, about twice that at Yellowstone. The chemistry and mineralogy of the early rhyolites show increasing maturity with time possibly by progressive fractional crystallisation. This was followed by a trend towards less-evolved rhyolites that may record melting and hybridisation of a mid-crustal source region. Contemporaneous magmatism-induced crustal subsidence of the central Snake River Basin is recorded by successive ignimbrites offlapping and thinning up the N-facing limb of a regional basin-margin monocline, which developed between 10.59 and 8 Ma. The syn-volcanic basin topography contrasted significantly with the present-day elevated Yellowstone hotspot plateau. Concurrent basin-and-range extension produced the N-trending Rogerson Graben: early uplift of the Shoshone Hills (≥10.34 Ma) was followed by initiation of the Shoshone Fault and an E-sloping half-graben (˜10.3-10.1 Ma). The graben asymmetry then reversed with initiation of the Brown's Bench Fault (≥8 Ma), which remained intermittently active until the Pliocene.

  11. Crustal thinning in the northern Tyrrhenian Rift: Insights from multichannel and wide-angle seismic data across the basin

    Moeller, S.; Grevemeyer, I.; Ranero, C. R.; Berndt, C.; Klaeschen, D.; Sallares, V.; Zitellini, N.; Franco, R.


    Extension of the continental lithosphere leads to the formation of rift basins or rifted continental margins if breakup occurs. Seismic investigations have repeatedly shown that conjugate margins have asymmetric tectonic structures and different amount of extension and crustal thinning. Here we compare two coincident wide-angle and multichannel seismic profiles across the northern Tyrrhenian rift system sampling crust that underwent different stages of extension from north to south and from the flanks to the basin center. Tomographic inversion reveals that the crust has thinned homogeneously from ~24 km to ~17 km between the Corsica Margin and the Latium Margin implying a β factor of ~1.3-1.5. On the transect 80 km to the south, the crust thinned from ~24 km beneath Sardinia to a maximum of ~11 km in the eastern region near the Campania Margin (β factor of ~2.2). The increased crustal thinning is accompanied by a zone of reduced velocities in the upper crust that expands progressively toward the southeast. We interpret that the velocity reduction is related to rock fracturing caused by a higher degree of brittle faulting, as observed on multichannel seismic images. Locally, basalt flows are imaged intruding sediment in this zone, and heat flow values locally exceed 100 mW/m2. Velocities within the entire crust range 4.0-6.7 km/s, which are typical for continental rocks and indicate that significant rift-related magmatic underplating may not be present. The characteristics of the pre-tectonic, syn-tectonic and post-tectonic sedimentary units allow us to infer the spatial and temporal evolution of active rifting. In the western part of the southern transect, thick postrift sediments were deposited in half grabens that are bounded by large fault blocks. Fault spacing and block size diminish to the east as crustal thinning increases. Recent tectonic activity is expressed by faults cutting the seafloor in the east, near the mainland of Italy. The two transects show

  12. Glacio-Seismotectonics: Ice Sheets, Crustal Deformation and Seismicity

    Sauber, Jeanne; Stewart, Iain S.; Rose, James


    The last decade has witnessed a significant growth in our understanding of the past and continuing effects of ice sheets and glaciers on contemporary crustal deformation and seismicity. This growth has been driven largely by the emergence of postglacial rebound models (PGM) constrained by new field observations that incorporate increasingly realistic rheological, mechanical, and glacial parameters. In this paper, we highlight some of these recent field-based investigations and new PGMs, and examine their implications for understanding crustal deformation and seismicity during glaciation and following deglaciation. The emerging glacial rebound models outlined in the paper support the view that both tectonic stresses and glacial rebound stresses are needed to explain the distribution and style of contemporary earthquake activity in former glaciated shields of eastern Canada and Fennoscandia. However, many of these models neglect important parameters, such as topography, lateral variations in lithospheric strength and tectonic strain built up during glaciation. In glaciated mountainous terrains, glacial erosion may directly modulate tectonic deformation by resetting the orogenic topography and thereby providing an additional compensatory uplift mechanism. Such effects are likely to be important both in tectonically active orogens and in the mountainous regions of glaciated shields.

  13. Gravitational radiation from neutron stars deformed by crustal Hall drift

    Suvorov, Arthur George; Geppert, Ulrich


    A precondition for the radio emission of pulsars is the existence of strong, small-scale magnetic field structures (`magnetic spots') in the polar cap region. Their creation can proceed via crustal Hall drift out of two qualitatively and quantitatively different initial magnetic field configurations: a field confined completely to the crust and another which penetrates the whole star. The aim of this study is to explore whether these magnetic structures in the crust can deform the star sufficiently to make it an observable source of gravitational waves. We model the evolution of these field configurations, which can develop, within $\\sim 10^4$ -- $10^5$ yr, magnetic spots with local surface field strengths $\\sim 10^{14}$ G maintained over $\\gtrsim 10^6$ yr. Deformations caused by the magnetic forces are calculated. We show that, under favourable initial conditions, a star undergoing crustal Hall drift can have ellipticity $\\epsilon\\sim 10^{-6}$, even with sub-magnetar polar field strengths, after $\\sim 10^5$ ...

  14. Reconstructing the Mid-Tertiary Southwestern North America Cordilleran Crust: Crustal Anisotropy

    Porter, R. C.; Zandt, G.; McQuarrie, N.; Gilbert, H. J.; Hacker, B. R.


    The deployment of EarthScope USArray stations provides researchers with unprecedented quantities and coverage of publicly available seismic data that can be combined with other techniques to better understand the tectonic evolution of western North America. We utilize the receiver function method to map the crustal thickness and investigate the occurrence and orientation of lower crustal anisotropy for the southwestern U.S. Using the tectonic reconstruction of McQuarrie and Wernicke (2005), we then reconstruct the location and orientation of the anisotropy back to 36 Ma. We have completed the reconstruction for central and southern California, and found a dominant SW-NE oriented trend that we interpret as a fossilized fabric within underplated schists created from top-to-southwest sense of shear that existed along the length of coastal California during pre-transform, early-Tertiary subduction. Initial results from the Basin and Range show a generally consistent E-W anisotropy trend within the northern and central Basin and Range, orthogonal to modern faulting and mountain ranges. Within this area there is a correlation of generally stronger crustal anisotropy and thinner crust in the eastern Basin and Range. In the southern Basin and Range we observe more scatter in our anisotropy results, with a majority of stations exhibiting either a SW-NE or NNW-SSE orientation. Despite the variability in results, most anisotropy orientations appear to be orthogonal to nearby mountain ranges. These observations suggest that Tertiary extension in the Basin and Range is producing a lower crustal zone of anisotropy throughout the province. We are currently working to expand on these results by integrating elasticity tensors calculated from electron-backscatter diffraction measurements of samples of lower crustal rocks from the southwestern U.S.

  15. S-wave crustal and upper mantle’s velocity structure in the eastern Tibetan Plateau——Deep environment of lower crustal flow

    Paul; SILVER


    A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (~72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57―64 km in the Bayan Har block, and to 40―45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30―60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern

  16. S-wave crustal and upper mantle's velocity structure in the eastern Tibetan Plateau-Deep environment of lower crustal flow

    WANG ChunYong; Paul SILVER; L(U) Hai; LOU ZhiYong; WU JianPing; CHANG LiJun; DAI ShiGui; YOU HuiChuan; TANG FangTou; ZHU LuPei


    A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (~72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57-64 km in the Bayan Har block, and to 40-45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Mono and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30-60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ= 0.247) in the Lhasa block, 1.78 (σ= 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ= 0.294) in the Bayan Har blocks, and 1.77 (σ=0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio,indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau

  17. Crustal Structure And Magmatism, Coast Mountains Orogen, Latitude 52-53 degrees North, British Columbia, Canada

    Rusmore, M. E.; Gehrels, G.; Woodsworth, G. J.


    New geologic data and U-Pb ages reveal complex history of arc accretion, crustal thickening and migration of magmatic fronts during deformation. Plutonic ages define distinct western and eastern Jurassic - mid Cretaceous arcs that share a common history after ~90 Ma. Juxtaposition of these arcs occurred during mid- Cretaceous crustal shortening in a dominantly SW-vergent crustal-scale thrust belt. Significant crustal thickening buried 151 Ma granitic clasts to pressures > 6 kb, and mid-Cretaceous plutons were emplaced at this depth along the axis of the orogen. Thrusting continued after establishment of the 90 Ma arc; a regional SW-verging thrust emplaced high-grade metamorphic rocks of the Yukon-Tanana terrane and deep-seated plutons over low- grade rocks of the Alexander and Wrangellia terranes. The shear zone is coincident with the western boundary of 82-89 Ma plutons and a regionally extensive, late-kinematic, sill-like pluton. Dextral shear zones preserved on the flanks of the orogen suggest a component of Late Cretaceous transpression. By 75 Ma, metamorphism, deformation, and magmatism had migrated central portions of the orogen and there is no evidence of ductile deformation and syn-kinematic metarmorphism younger than ~70 - 65 along the western flank of the orogen. The Coast shear zone localized 62-58 Ma synkinematic plutons during NE-side up displacement, creating a sharp western magmatic front. Sparse cooling ages suggest plutons and metamorphic rocks adjacent to the CSZ cooled through 500-600 deg between 54-58 Ma during exhumation along the shear zone. Voluminous granitic plutons were emplaced from ~55-50 Ma, but significant crustal extension that affected the eastern side of the orogen farther north is not evident along this transect. This history supports previous models of crustal subcretion and the generation of arc magmas in thickened crust. Definition of two pre-90 Ma arcs negates models calling for simple Andean-style orogen prior to mid

  18. Crustal stress regime in Italy

    M. Cesaro


    Full Text Available In order to obtain a reliable map of the present-day stress field in Italy, needed to better understand the active tectonic processes and to contribute to the assessment of seismic hazard, in 1992 we started to collect and analyze new data from borehole breakouts in deep oil and geothermal wells and focal mechanisms of earthquakes (2.5 < M <5 occurred in Italy between 1988 and 1995. From about 200 deep wells and 300 focal mechanisms analyzed to date, we infer that: the internal (SW sector of the Northern Apenninic arc is extending with minimum compressional stress (Shmin oriented ? ENE, while the external front is thrusting over the Adriatic foreland (Shmin ? NW-SE. The entire Southern Apennine is extending in NE direction (from the Tyrrhenian margin to the Apulian foreland and compression (in the foredeep is no longer active at the outer (NE thrust front. Between these two arcs, an abrupt change in the tectonic regime is detected with directions of horizontal stress changing by as much as 90º in the external front, around latitude 430N. Along the Ionian side of the Calabrian arc the stress directions inferred from breakouts and focal mechanisms are scattered with a hint of rotation from N-S Shmin close to the Southern Apennines, to ~ E-W directions in the Messina Strait. In Sicily, a NW-SE direction of SHmax is evident in the Hyblean foreland, parallel to the direction of plate motion between Africa and Europe. A more complex pattern of stress directions is observed in the thrust belt zone, with rotations from the regional trend (NW í directed SHmax to NE oriented SHmax. A predominant NW direction of SHmax is also detected in mainland Sicily from earthquake focal mechanisms, but no well data are available in this region. In the northern part of Sicily (Aeolian Islands a ~N-S direction of SHmax is observed.

  19. The thickness of cover sequences in the Western Desert of Iraq from a power spectrum analysis of gravity and magnetic data

    Mousa, Ahmed; Mickus, Kevin; Al-Rahim, Ali


    The Western Desert of Iraq is part of the stable shelf region on the Arabian Plate where the subsurface structural makeup is relatively unknown due to the lack of cropping out rocks, deep drill holes and deep seismic refraction and reflection profiles. To remedy this situation, magnetic and gravity data were analyzed to determine the thickness of the Phanerozoic cover sequences. The 2-D power spectrum method was used to estimate the depth to density and magnetic susceptibility interfaces by using 0.5° square windows. Additionally, the gravity data were analyzed using isostatic residual and decompensative methods to isolate gravity anomalies due to upper crustal density sources. The decompensative gravity anomaly and the differentially reduced to the pole magnetic map indicate a series of mainly north-south and northwest-southeast trending maxima and minima anomalies related to Proterozoic basement lithologies and the varying thickness of cover sequences. The magnetic and gravity derived thickness of cover sequences maps indicate that these thicknesses range from 4.5 to 11.5 km. Both maps in general are in agreement but more detail in the cover thicknesses was determined by the gravity analysis. The gravity-based cover thickness maps indicates regions with shallower depths than the magnetic-based cover thickness t map which may be due to density differences between limestone and shale units within the Paleozoic sediments. The final thickness maps indicate that the Western Desert is a complicated region of basins and uplifts that are more complex than have been shown on previous structural maps of the Western Desert. These basins and uplifts may be related to Paleozoic compressional tectonic events and possibly to the opening of the Tethys Ocean. In addition, petroleum exploration could be extended to three basins outlined by our analysis within the relatively unexplored western portions of the Western Desert.

  20. Seismic-refraction measurements of crustal structure between Nevada Test Site and Ludlow, California

    Gibbs, J.F.; Roller, J.C.


    Seismic-refraction measurements from nuclear and chemical explosions were made along a line from the Nevada Test Site (NTS) to Ludlow, California, and additional recordings from nuclear explosions were made southward toward Calexico, California. The time of first arrivals from the Ludlow shotpoint is expressed as T0 = 0.00 + Δ/2.50 (assumed), T1 = 1.00 + Δ6.10, T2 = 2.81 + Δ/6.80, and T3 = 5.48 + ~7.76, where T is in seconds and distance Δ is in km. First arrival times from NTS fit the lines T1 = 0.74 + Δ/6.10, T2 = 2.81 + Δ/6.80 (assumed), T3 = 6.70 + Δ/8.04 to a distance of 265 km, beyond 265 km T3 = 5.83 + Δ/7.75. The difference in the apparent velocities of the Pn (T3) arrival is caused by variations in the dip of the Mohorovicic discontinuity. The thickness of the successive layers at NTS are H0 s 1.0 km (V0 ~ 2.5 km/sec), H1 = 13 km (v1 = 6.1 km/sec), and H2 = 20 km (v2 = 6.8 km/ sec); the total crustal thickness is 34 km. The successive crustal layers at Ludlow have a thickness of H0 = 1.4 km, H1 = 13 km, and H2 = 13 km; the total crustal thickness is 27 km.

  1. Cretaceous to Recent extension in the Bering Strait region, Alaska

    Dumitru, Trevor A.; Miller, Elizabeth L.; O'Sullivan, Paul B.; Amato, Jeffrey M.; Hannula, Kimberly A.; Calvert, Andrew T.; Gans, Phillip B.


    A key issue presented by the geology of northern Alaska concerns the demise of the Brooks Range going west toward the Bering Strait region. The main Brookian tectonic and stratigraphic elements continue into the Russian Far East, but the thick crustal root and high elevations that define the modern physiographic Brooks Range die out approaching the Bering and Chukchi shelves, which form an unusually broad area of submerged continental crust. Structural, geochronologic, and apatite fission-track data indicate that at least three episodes of extension may have affected the crust beneath the Bering Strait region, in the middle to Late Cretaceous, Eocene-early Oligocene, and Pliocene(?)-Recent. This extension may explain the present thinner crust of the region, the formation of extensive continental shelves, and the dismemberment and southward translation of tectonic elements as they are traced from the Brooks Range toward Russia. Evidence for these events is recorded within a gently tilted 10- to 15-km thick crustal section exposed on the western Seward Peninsula. The earliest episode is documented at high structural levels by the postcollision exhumation history of blueschists. Structural data indicate exhumation was accomplished in part by thinning of the crust during north-south extension bracketed between 120 and 90 Ma by 40Ar/39Ar and U-Pb ages. The Kigluaik Mountains gneiss dome rose through the crust during the later stages of this extension at 91 Ma. Similar gneiss domes occur within a broad, discontinuous belt of Cretaceous magmatism linking interior Alaska with northeast Russia; mantle-derived melts within this belt likely heated the crust and facilitated extension. Apatite fission-track ages indicate cooling below ≈120-85°C occurred sometime between 100 and 70 Ma, and the area subsequently resided at shallow crustal depths (<3-4 km) until the present. This suggests that denudation of deep levels of the crust by erosion and/or tectonism was mostly

  2. Magnetar Field Evolution and Crustal Plasticity

    Lander, S. K.


    The activity of magnetars is believed to be powered by colossal magnetic energy reservoirs. We sketch an evolutionary picture in which internal field evolution in magnetars generates a twisted corona, from which energy may be released suddenly in a single giant flare, or more gradually through smaller outbursts and persistent emission. Given the ages of magnetars and the energy of their giant flares, we suggest that their evolution is driven by a novel mechanism: magnetic flux transport/decay due to persistent plastic flow in the crust, which would invalidate the common assumption that the crustal lattice is static and evolves only under Hall drift and Ohmic decay. We estimate the field strength required to induce plastic flow as a function of crustal depth, and the viscosity of the plastic phase. The star’s superconducting core may also play a role in magnetar field evolution, depending on the star’s spindown history and how rotational vortices and magnetic fluxtubes interact.

  3. Implications for the crustal Architecture in West Antarctica revealed by the means of depth-to-the-bottom of the magnetic source (DBMS) mapping and 3D FEM geothermal heat flux models

    Dziadek, Ricarda; Gohl, Karsten; Kaul, Norbert


    The West Antarctic Rift System (WARS) is one of the largest rift systems in the world, which displays unique coupled relationships between tectonic processes and ice sheet dynamics. Palaeo-ice streams have eroded troughs across the Amundsen Sea Embayment (ASE) that today route warm ocean deep water to the West Antarctic Ice Sheet (WAIS) grounding zone and reinforce dynamic ice sheet thinning. Rift basins, which cut across West Antarctica's landward-sloping shelves, promote ice sheet instability. Young, continental rift systems are regions with significantly elevated geothermal heat flux (GHF), because the transient thermal perturbation to the lithosphere caused by rifting requires 100 m.y. to reach long-term thermal equilibrium. The GHF in this region is, especially on small scales, poorly constrained and suspected to be heterogeneous as a reflection of the distribution of tectonic and volcanic activity along the complex branching geometry of the WARS, which reflects its multi-stage history and structural inheritance. We investigate the crustal architecture and the possible effects of rifting history from the WARS on the ASE ice sheet dynamics, by the use of depth-to-the-bottom of the magnetic source (DBMS) estimates. These are based on airborne-magnetic anomaly data and provide an additional insight into the deeper crustal properties. With the DBMS estimates we reveal spatial changes at the bottom of the igneous crust and the thickness of the magnetic layer, which can be further incorporated into tectonic interpretations. The DBMS also marks an important temperature transition zone of approximately 580°C and therefore serves as a boundary condition for our numerical FEM models in 2D and 3D. On balance, and by comparison to global values, we find average GHF of 90 mWm-2 with spatial variations due to crustal heterogeneities and volcanic activities. This estimate is 30% more than commonly used in ice sheet models in the ASE region.

  4. Peripapillary choroidal thickness in childhood.

    Read, Scott A; Alonso-Caneiro, David; Vincent, Stephen J; Collins, Michael J


    Changes in the thickness of the invivo peripapillary choroid have been documented in a range of ocular conditions in adults; however, choroidal thickness in the peripapillary region of children has not been examined in detail. This study therefore aimed to investigate the thickness of the peripapillary choroid and the overlying retinal nerve fibre layer (RNFL) in a population of normal children with a range of refractive errors. Ninety-three children (37 myopes and 56 non-myopes) aged between 11 and 16 years, had measurements of peripapillary choroidal and RNFL thickness derived from enhanced depth imaging optical coherence tomography images (EDI-OCT, Heidelberg Spectralis). The average thickness was determined in a series of five 0.25 mm width concentric annuli (each divided into 8 equal sized 45° sectors) centred on the optic nerve head boundary, accounting for individual ocular magnification factors and the disc-fovea angle. Significant variations in peripapillary choroidal thickness were found to occur with both annulus location (p choroid (mean 77 ± 16 μm) and the outermost annulus, the thickest choroid (191 ± 52 μm). The choroid was thinnest inferior to the optic nerve head (139 ± 38 μm) and was thickest in the superior temporal sector (157 ± 40 μm). Significant differences in the distribution of choroidal thickness were also associated with myopia, with myopic children having significantly thinner choroids in the inner and outer annuli of the nasal and temporal sectors respectively (p thickness also varied significantly with annulus location and sector (p thickness distribution associated with refractive error. This study establishes the normal variations in the thickness of the peripapillary choroid with radial distance and azimuthal angle from the optic nerve head boundary. A significant thinning of the peripapillary choroid associated with myopia in childhood was also observed in both nasal and temporal regions. The changes in peripapillary RNFL

  5. Crustal evolution and recycling in a juvenile continent: Oxygen isotope ratio of zircon in the northern Arabian Nubian Shield

    Be'eri-Shlevin, Yaron; Katzir, Yaron; Valley, John W.


    lithospheric-mantle, respectively. However, while in the northwestern belt these magmas intruded a thick crustal section and assimilated ~ 15-35%, high- δ18O IAC+CA1 material, magmas in the southeastern region intruded a thinner crust and little or no contamination occurred. The proposed NW-SE variance in crustal thickness during the late Neoproterozoic fits well with the geometry of the fan shaped rifting model proposed by Stern [Stern, R.J., 1985. The Najd Fault System, Saudi Arabia and Egypt: a late Precambrian rift related transform system. Tectonics 4, 497-511.] for this region. Deep parts of the lithosphere were beginning to rift at ~ 630 Ma, allowing the asthenospheric mantle to rise and transfer heat to the lithosphere. This resulted in vast melting of the mafic lower-crust to produce the batholithic CA2 magmas. Later (~ 610 Ma) percolation of lithospheric-mantle melts (possibly along deep seated lithospheric-scale faults) introduced AL magmas to shallow levels of the crust. Intrusion of CA2 and AL mantle-like δ18O parent magmas into the thinned southeastern crust did not involve assimilation of older crust whereas similar intrusion into the thicker northwestern crust resulted in mild assimilation of high- δ18O pre-635 Ma crust. An important implication from our results is that petrogenesis of some high- δ18O AL magmas of the northernmost ANS involved assimilation of supracrustal material. Felsic intrusions of the AL suite were previously described as A-type granites derived solely from mantle melts with no crustal components. Our results contribute to the "A-type petrogenesis debate" by showing that their formation can involve recycling of crustal material.

  6. Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field

    Voorhies, C.


    The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.

  7. Deep crustal structure of Baiyun Sag, northern South China Sea revealed from deep seismic reflection profile

    HUANG Chunju; ZHOU Di; SUN Zhen; CHEN Changmin; HAO Hujun


    This paper discusses deep crustal architecture of the Baiyun Sag of the Pearl River Mouth Basin, northern South China Sea based on velocity analysis, time-depth conversion and seismic interpretation of the deep seismic reflection profile DSRP-2002. The profile was acquired and processed to 14 S TWT by the China National Offshore Oil Corp. (CNOOC) in 2002. It extends across the Baiyun Sag of the Pearl River Mouth Basin, from the northern continental shelf of the SCS to the deepwater province. As the first deep seismic reflection profile in the Pearl River Mouth Basin,this profile reveals seismic phases from basement down to upper most mantle. The Moho surface appears in the profile as an undulating layer of varying thickness of 1-3 km. It is not a single reflector interface, but a velocity gradient or intercon- version layer. The crust thins stepwisely from the shelf to the continental slope and the abyssal plain (from north to south), and also thins under depocenters. The crustal thickness is only 7 km in the depocenter of the main Baiyun Sag, which corresponds to a Moho upwelling mirroring the basement topography. In the lower slope and the ocean-continental transition zone of the southernmost portion of the profile, three sub-parallel, NW-dipping strong reflectors found at depths around 10-21 km are interpreted as indications of a subducted Mesozoic oceanic crust. Crustal faults exist in the northern and southern boundaries of the Baiyun Sag. The intense and persistent subsidence of the Baiyun Sag might be related to the long-term activity of the crustal faults.

  8. Discussion on Characteristics of Crustal Deformation along the Zhangjiakou-Bohai Sea Seismotectonic Zone

    Wang Ruobai; Gu Guohua; Xu Jie; Zhou Wei


    The Zhangjiakou-Bohai Sea fault zone located in the northern part of the North China region is a seismotectonic zone controlling the present-day strong earthquake activities. Under the effect of regional principal compressive stress with the direction of NEE-SWW, a series of NEtrending active tectonic zones have developed, which form a group of conjugated shear fracturing systems and control the occurrence of the present-day strong earthquakes. The feature of crustal deformation around this fault zone is studied in the paper. The long-term crustal deformation pattern from GPS measurements exhibits a relatively complete left-lateral strike-slip movement along the active fault zone. However, studies on crustal deformation by stages indicate that a series of NE-trending large-scale anomalous gradient zones have appeared along the Zhangjiakou~Bohai Sea fault zone before moderately strong earthquakes. They are represented respectively by the activities of the Tangshan-Hejian, the Sanhe-Laishui and the Yanhuai-Shanxi seismotectonic zones. This may indicate the occurrence of med-term precursors to moderately strong earthquakes along Zhangjiakou-Bohai Sea zone. The results in the paper show that the crustal deformation pattern before strong earthquake reveals the information of strain status in the deep seismogenic zone, while the chaotic pattern after the occurrence of strong earthquake represents the adjustment of the covering strata.

  9. Crust and mantle lithospheric structure of the South China Sea and adjacent regions deduced from geophysical potential data

    Fang, J.


    In order to investigate the lithospheric structure of the South China Sea and adjacent regions and it's lateral crustal density variations, we using a two-step approach. First the crustal and lithospheric mantle structure is calculated from the geoid height and elevation data combined with thermal analysis further constrained by seismic data. We then compute the 3D gravity effect of the resulting lithospheric structure to separate the measured Bouguer anomaly into its regional and local components. Our results show that for the majority of the study area the crustal thickness does correlate with the regional topography pattern. Moho depth varies from ˜10 km at the Central basin to ˜35 km at the continental shelf and slope zones. The lithosphere is thinner beneath the Central basin (˜70 km) and thicker underneath the continental shelf and slope zones (˜100 km). The residual gravity anomaly, obtained by subtraction of the regional components to the measured field, is analyzed in terms of the dominating upper crustal structures. Central basins and areas with high velocity layer are characterized by positive values (20 100 mGal), whereas the negative values are related to the Trough and Trench, such as Nansha Trough and Manila Trench and shallow basement depths(-100 -20 mGal). The transform boundary of continental-oceanic is consistent with the residual gravity anomaly gradient zone and is proposed accordingly. The variation of Moho and the residual gravity anomaly exists between the conjugate margins which demonstrated the asymmetric crustal extension of the South China Sea margin.

  10. Automatic 1D integrated geophysical modelling of lithospheric discontinuities: a case study from Carpathian-Pannonian Basin region

    Grinč, Michal; Zeyen, Hermann; Bielik, Miroslav


    Using a very fast 1D method of integrated geophysical modelling, we calculated models of the Moho discontinuity and the lithosphere-asthenosphere boundary in the Carpathian-Pannonian Basin region and its surrounding tectonic units. This method is capable to constrain complicated lithospheric structures by using joint interpretation of different geophysical data sets (geoid and topography) at the same time. The Moho depth map shows significant crustal thickness variations. The thickest crust is found underneath the Carpathian arc and its immediate Foredeep. High values are found in the Eastern Carpathians and Vrancea area (44 km). The thickest crust modelled in the Southern Carpathians is 42 km. The Dinarides crust is characterized by thicknesses more than 40 km. In the East European Platform, crust has a thickness of about 34 km. In the Apuseni Mountains, the depth of the Moho is about 36 km. The Pannonian Basin and the Moesian Platform have thinner crust than the surrounding areas. Here the crustal thicknesses are less than 30 km on average. The thinnest crust can be found in the SE part of the Pannonian Basin near the contact with the Southern Carpathians where it is only 26 km. The thickest lithosphere is placed in the East European Platform, Eastern Carpathians and Southern Carpathians. The East European Platform lithosphere thickness is on average more than 120 km. A strip of thicker lithosphere follows the Eastern Carpathians and its Foredeep, where the values reach in average 160 km. A lithosphere thickness minimum can be observed at the southern border of the Southern Carpathians and in the SE part of the Pannonian Basin. Here, it is only 60 km. The extremely low values of lithospheric thickness in this area were not shown before. The Moesian Platform is characterized by an E-W trend of lithospheric thickness decrease. In the East, the thickness is about 110 km and in the west it is only 80 km. The Pannonian Basin lithospheric thickness ranges from 80 to

  11. The crustal structure of Beira High, central Mozambique-Combined investigation of wide-angle seismic and potential field data

    Mueller, Christian Olaf; Jokat, Wilfried; Schreckenberger, Bernd


    The timing and geometry of the initial Gondwana break-up between Africa and East Antarctica is still poorly known due to missing information about the continent-ocean boundaries along the rifted margins. In this context, the Beira High off central Mozambique forms a critical geological feature of uncertain crustal fabric. Based on new wide-angle seismic and potential field data across Beira High a P-wave velocity model, supported by amplitude and gravity modelling, provides constraints on the crustal composition of this area. In the Mozambique Basin mainly normal oceanic crust of 5.5-7 km thickness with velocities of 6.5-7.0 km/s in the lower crust is present. A sharp transition towards Beira High marks the continent-ocean boundary. Here the crust thickens to 23 km at maximum. A small velocity-depth gradient and a constant increase in velocity with basal velocities of maximum 7.0 km/s are in good agreement with typical velocities of continental crust and continental fragments. The density model indicates the existence of felsic material in greater depths and supports a fabric of stretched, but highly intruded continental crust below Beira High. A gradual decrease in crustal thickness characterizes the transition towards the Mozambican shelf area. Here, in the Zambezi Delta Depression 12 km of sediments cover the underlying 7 km thick crust. The presence of a high-velocity lower crustal body with velocities of 7.1-7.4 km/s indicates underplated, magmatic material in this part of the profile. However, the velocity structure in the shelf area allows no definite interpretation because of the experimental setup. Thus, the crustal nature below the Zambezi Delta and consequently the landward position of the continent-ocean boundary remains unknown. The difference in stretching below the margins of Beira High suggests the presence of different thinning directions and a rift jump during the early rifting stage.

  12. Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan Plateau and tectonic implications

    Zhao, J.; Mooney, W.D.; Zhang, X.; Li, Z.; Jin, Z.; Okaya, N.


    We present new seismic refraction/wide-angle-reflection data across the Altyn Tagh Range and its adjacent basins. We find that the crustal velocity structure, and by inference, the composition of the crust changes abruptly beneath the Cherchen fault, i.e., ???100 km north of the northern margin of the Tibetan plateau. North of the Cherchen fault, beneath the Tarim basin, a platform-type crust is evident. In contrast, south the Cherchen fault the crust is characterized by a missing high-velocity lower-crustal layer. Our seismic model indicates that the high topography (???3 km) of the Altyn Tagh Range is supported by a wedge-shaped region with a seismic velocity of 7.6-7.8 km/s that we interpret as a zone of crust-mantle mix. We infer that the Altyn Tagh Range formed by crustal-scale strike-slip motion along the North Altyn Tagh fault and northeast-southwest contraction over the range. The contraction is accommodated by (1) crustal thickening via upper-crustal thrusting and lower-crustal flow (i.e., creep), and (2) slip-parallel (SW-directed) underthrusting of only the lower crust and mantle of the eastern Tarim basin beneath the Altyn Tagh Range. ?? 2005 Elsevier B.V. All rights reserved.

  13. Studies of total bremsstrahlung in thick targets of Al, Ti, Sn and Pb for 90Sr beta particles in the photon energy region of 1-100 keV

    Singh, Amrit; Dhaliwal, A. S.


    Total bremsstrahlung (BS) spectra in thick targets of Al, Ti, Sn and Pb produced by beta emitter 90Sr (End point energy=546 keV) are studied in the photon energy range of 1-100 keV. The experimentally measured BS spectra are compared with the theoretical spectral distributions calculated from Elwert corrected (non relativistic) Bethe-Heitler [EBH] theory, modified Elwert factor (relativistic) Bethe-Heitler [Fmod BH] theory for ordinary bremsstrahlung (OB) and the Avdonina and Pratt [Fmod BH+PB] theory, which include the contribution of polarization bremsstrahlung (PB) into OB. The present results are indicating the correctness of Fmod BH+PB theory in the low energy region, where PB dominates into the BS, but at the middle and higher photon energy region of the bremsstrahlung spectrum, the Fmod BH theory is more close to the experimental results. The description of the bremsstrahlung process in stripped atom (SA) approximation, which indicates the suppression of the bremsstrahlung at higher energy ends due to the production of PB in the low energy region, needs further considerations. Hence, the present measurements for BS for different target materials indicates that the considerations of the screening effects along with other secondary effects during the interaction of incident electrons with the target nuclei are important while describing the production of bremsstrahlung, particularly for the higher energy regions.

  14. Deep crustal structure of the Walvis Ridge at the junction with the Namibian coast

    Fromm, Tanja; Jokat, Wilfried; Behrmann, Jan H.; Ryberg, Trond; Weber, Michael


    The Walvis Ridge perpendicular to the African coast offshore Namibia is believed to be caused by a long-lived hotspot, which started to erupt with the opening of the South Atlantic in mid Cretaceous. The ridge in combination with the large igneous provinces (Etendeka and Parana) in South America and Namibia is today considered to be a classical model for hotspot driven continental break-up. To unravel details on how the crust and mantle were modified by such a major thermal event, a large-scale geophysical on- and offshore experiment was conducted in 2011. We present p-wave velocity models of two active seismic profiles along and across Walvis Ridge. The profile along the ridge continues onshore, has a total length of ~730 km and consists of 28 ocean bottom stations, 50 land stations and 8 dynamite shots. This section reveals a complex structure with multiple buried seamounts, strong lateral velocity gradients and indication of a high velocity body at the crust-mantle boundary beneath the shelf area. Lower crustal velocities range from 6.5 km/s in the west to 7.0 km/s in the east while the crustal thickness is approximately 28 km at the coast thinning westwards. The second profile perpendicular to the ridge is located about 140 km west of the first profile, has a length of ~480 km and consists of 27 ocean bottom stations. The crustal thickness is well constrained by multiple Moho reflections showing a thickness of 20km under the crest of the ridge and gradually thinning to 8km towards north and south. A seamount marks the northern termination of the ridge leading to an abrupt thickening of the crust to 14km before reaching the Angola Basin. While crustal velocities of 5.5 km/s and 6.5 km/s in the upper and lower crust are similar to the first profile, lower crustal velocities north of the crest are approximately 6% higher.

  15. Geochemical Relationships between Middle- to Upper-Crustal Exposures of the Alisitos Oceanic Arc (Baja California, Mexico): An Outstanding Field Analog to Active Extensional Oceanic Arcs

    Morris, R.; DeBari, S. M.; Busby, C.; Medynski, S.


    The southern volcano-bounded basin of the Rosario segment of the Cretaceous Alisitos oceanic arc provides outstanding 3-D exposures of an extensional arc, where crustal generation processes are recorded in the upper-crustal volcanic units and underlying middle-crustal plutonic rocks. Geochemical linkages between exposed crustal levels provide an analog for extensional arc systems such as the Izu-Bonin-Mariana (IBM) Arc. Upper-crustal units comprise a 3-5 km thick volcanic-volcaniclastic stratigraphy with hypabyssal intrusions. Deep-seated plutonic rocks intrude these units over a transition of overlap. The most mafic compositions occur in upper-crustal hypabyssal units, and as amphibole cumulates in the plutonic rocks ( 51% SiO2). The most felsic compositions occur in welded ignimbrites and a tonalite pluton ( 71% SiO2). All units are low K with flat REE patterns, and show LILE enrichment and HFSE depletion. Trace element ratios show limited variation throughout the crustal section. Zr/Y and Nb/Y ratios are similar to the Izu active ( 3 Ma to present) zone of extension immediately behind the arc front, suggesting comparable mantle melt % during extension. Th/Zr ratios are more enriched in Alisitos compared to Izu, suggesting greater subducted sediment input. The Alisitos crustal section shows a limited range in ɛNd (5.7-7.1), but a wider range in 87Sr/86Sr (0.7035-0.7055) and 206Pb/204Pb (18.12-19.12); the latter is likely alteration effects. Arc magmas were derived from a subduction-modified MORB mantle source, less depleted than Izu arc front and less enriched than the rear arc, but is a good match with the zone of extension that lies between. Differentiation occurred in a closed system (i.e., fractional crystallization/self-melting with back mixing), producing the entire crustal section in <3 Ma.

  16. The crustal structure under Sanjiang and its dynamic implications: Revealed by seismic reflection/refraction profile between Zhefang and Binchuan, Yunnan

    ZHANG Zhongjie; BAI Zhiming; WANG Chunyong; TENG Jiwen; L(U) Qingtian; LI Jiliang; LIU Yifeng; LIU Zhenkuan


    The fault belts in Sanjiang mainly include Jinshajiang-Honghe fault, Lancangjiang fault and Nujiang fault (called Sanjiang faults) in western Yunnan Province, China. By interpreting the wide-angle seismic reflection/refraction profile between Zhefang and Binchuan, which crosses Tengchong and Baoshan blocks in Dianxi (western Yunnan) tectonic zone, we reconstruct the crustal structure with seismic traveltime tomography for crustal P-wave velocity and the seismic scattering image for crustal seismic reflection structure. In this paper, we firstly present the crustal structure images of P-wave velocity and seismic reflection under the wide-angle seismic profile. These results demonstrate that, the crustal velocity structure and seismic reflection structure along the profile can be divided into 3 segments, and there is an obvious difference of crustal structure among the eastern, the western and the middle segment. Generally, crustal P-wave velocities in the Baoshan segment are 0.1-0.2 km/s slower and seismic reflection amplitudes from Moho discontinuity are stronger than the other 2 segments. In the studied area, crustal thickness is about 40 km, and shows the thickening tendency from west to east along the profile. Additionally, it can be seen that there is one strong-amplitude seismic reflection event as bright points at the depths of 8-10 km, along the segment of 80-115 km of the profile (southward of Tengchong); and seismic reflection wave-field from Moho discontinuity varies obviously along the lateral direction. Finally, we make some discussions on the crustal thickening pattern in the Sanjiang fault belt, structural environment of earthquake development and the contact relationship between the Tengchong block, Banshan block and Luxi trough.

  17. Present-day crustal deformation around Sagaing fault, Myanmar

    Vigny, Christophe; Socquet, Anne; Rangin, Claude; Chamot-Rooke, Nicolas; Pubellier, Manuel; Bouin, Marie-NoëLle; Bertrand, Guillaume; Becker, M.


    Global Positioning System (GPS) measurement campaigns in Myanmar, conducted in 1998 and 2000, allow quantifying the present-day crustal deformation around the Sagaing fault system in central Myanmar. Both a regional network installed at four points within the country and a local 18-station network centered on the city of Mandalay across the Sagaing fault demonstrate that active deformation related to the northward motion of India is distributed across Myanmar in a platelet that extends from the western edge of the Shan Plateau in the east to the Andaman Trench in the west. In this platelet, deformation is rather diffuse and distributed over distinct fault systems. In the east, the Sagaing/Shan Scarp fault system absorbs 10 mm/yr). This GPS study combined with an on land geotectonic survey demonstrate that oblique slip of India along the rigid Sundaland block is accommodated by a partitioned system characterized by distribution of deformation over a wide zone.

  18. A view into crustal evolution at mantle depths

    Kooijman, Ellen; Smit, Matthijs A.; Ratschbacher, Lothar; Kylander-Clark, Andrew R. C.


    melted, densified, and buried to 80-90 km depth - 20 km deeper than the present-day Moho - at 930 ± 35°C. The material descended rapidly, accelerating from 0.9-1.7 mm yr-1 to 4.7-5.8 mm yr-1 within 10-12 Myr, and continued descending after reaching mantle depth at 14-13 Ma. The data reflect the foundering of differentiated deep-crustal fragments (2.9-3.5 g cm-3) into a metasomatized and less dense mantle wedge. Through our new approach in constraining the burial history of rocks, we provided the first time-resolved record of this crustal-recycling process. Foundering introduced vestiges of old evolved crust into the mantle wedge over a relatively short period (c. 10 Myr). The recycling process could explain the variability in the degree of crustal contamination of mantle-derived magmatic rocks in the Pamir and neighboring Tibet during the Cenozoic without requiring a change in plate dynamics or source region.

  19. Non - Vegetated Standard Bioretention Structure Hydrodynamic Soil Characterization For Ponding - Layer Optimum Thickness Determination With A Distinctive Urban - Region Rainfall Event In Bogota

    Velasco Ávila, Frank; Acero Rivero, Germán Eduardo; Angulo Jaramillo, Rafael


    bioretention structures' operation condition retention time and outflow. A storage layer in the base of the structure, which is made up by rocks to settle an appropriate retention volume, was suggested after computing model results. A Hydrus-1D direct model was also made as an application example for an urban zone in Bogota in order to observe the structure's behaviour and the runoff - peak mitigation percentage under normal functioning conditions, using hydrological data from the study region given by the water and sewage - service provider in Bogota city.

  20. Crustal and upper mantle seismic structure of the Svalbard Archipelago from the receiver function analysis

    Wilde−Piórko Monika


    Full Text Available Receiver function provides the signature of sharp seismic discontinuities and the information about the shear wave (S−wave velocity distribution beneath the seismic station. This information is very valuable in areas where any or few reflection and/or refraction studies are available and global and/or regional models give only rough information about the seismic velocities. The data recorded by broadband seismic stations have been analysed to investigate the crustal and upper mantle structure of the Svalbard Archipelago. Svalbard Archipelago is a group of islands located in Arctic, at the north−western part of the Barents Sea continental platform, which is bordered to the west and to the north by passive continental margins. The new procedure of parameterization and selection of receiver functions (RFs has been proposed. The back−azimuthal sections of RF show a strong variation for the HSPB and KBS stations. Significant amplitudes of transversal component of RF (T−RF for the HSPB station indicate a shallow dipping layer towards the southwest. The structure of the crust beneath the SPITS array seems to be less heterogeneous, with very low amplitudes of converted phase comparing to the KBS and HSPB stations. Forward modelling by trial−and−error method shows a division of the crust into 3-4 layers beneath all stations and layering of the uppermost mantle beneath the SPITS array and the HSPB stations. The thickness of the mantle transition zone is larger for western part of archipelago and smaller for eastern part comparing to iasp91 model.

  1. Contrasting terrace systems of the lower Moulouya river as indicator of crustal deformation in NE Morocco

    Rixhon, Gilles; Bartz, Melanie; El Ouahabi, Meriam; Szemkus, Nina; Brückner, Helmut


    The Moulouya river has the largest catchment in Morocco and drains an area characterized by active crustal deformation during the Late Cenozoic due to the N-S convergence between the African and Eurasian plates. As yet, its Pleistocene terrace sequence remains poorly documented. Our study focuses on the lowermost reach of the river in north-eastern Morocco, which drains the Zebra-Triffa sedimentary basin directly upstream of the estuary. New field observations, measurements and sedimentological data reveal contrasting fluvial environments on each side of a newly identified, W-E striking thrust zone disrupting the sedimentary basin. On the one hand, long-lasting fluvial aggradation, materialized by 37 m-thick stacked terraces, has occurred in the footwall of the thrust. On the other hand, the hanging wall is characterized by a well-preserved terrace staircase, with three Pleistocene terrace levels. Whilst the identification of this thrust zone question some previous interpretations about the local (hydro-)geology, it is consistent with the statement that most of the Plio-Quaternary deformation in the eastern Rif mountains has concentrated in this region of Morocco. Our new data and interpretations also agree with morphometric indicators showing that the whole Moulouya catchment is at desequilibrium state (i.e. several knickzones in its longitudinal profile), showing several knickzones in its longitudinal profile, is at disequilibrium state. We also suggest that the knickzone in the Beni Snassen gorge, located directly upstream of the Zebra-Triffa sedimentary basin, could (partly) result from a transient fluvial reaction to Late Cenozoic thrusting activity and correlated uplift in the hanging wall.

  2. The thickness of glaciers

    Faraoni, Valerio; Vokey, Marshall W.


    Basic formulae and results of glacier physics appearing in glaciology textbooks can be derived from first principles introduced in algebra-based first year physics courses. We discuss the maximum thickness of alpine glaciers and ice sheets and the relation between maximum thickness and length of an ice sheet. Knowledge of ordinary differential equations allows one to derive also the local ice thickness.

  3. [Association between the level of fasting blood glucose over 35-year-old and carotid intima-media thickness in Han, Uygur and Kazak population from Xinjiang Uygur Autonomous Region from 2007 to 2010].

    Li, Xiaomei; Li, Haixia; Liu, Fen; Chen, Bangdang; Yang, Yining; Ma, Yitong


    To analyze the relationship between different levels of fasting blood glucose over 35-year old and carotid intima-media thickness (IMT) in Han, Uygur and Kazak adult population from Xinjiang Uygur Autonomous Region. From October 2007 to April 2010, the present study was performed in 13 935 inhabitants among Han, Uygur and Kazak adult population of aged 35 years old and over by multi-stage stratified cluster random sampling principles from 7 regions in Xinjiang Uygur Autonomous and we excluded the IMT over 0.9 millimeter, long-term out and the floating population. All subjects were measured fasting blood glucose and IMT values of carotid artery. The subjects were divided into three groups according to different fasting blood glucose levels: normal, impaired fasting glucose (IFG) and diabetes mellitus (DM) and we used the analysis of variance to compare the differences among groups of IMT. Multiple linear regression model was used to explore factors of carotid IMT. The IMT of males of Han, Uygur and Kazak were (0.81 ± 0.29), (0.71 ± 0.27) and (0.79 ± 0.21) mm respectively, the differences were significant (F = 88.50, P population of Xinjiang Autonomous Region.

  4. Seismological study on the crustal structure of Tengchong volcanic-geothermal area

    王椿镛; 楼海; 吴建平; 白志明; 皇甫岗; 秦嘉政


    Based upon the deep seismic sounding profile conducted in the Tengchong volcanic-geothermal area, a two-dimensional crustal P velocity structure is obtained by use of the finite-difference inversion and the forward travel-time fitting method. The crustal model shows that there is a low velocity zone in upper crust in the Tengchong area, which may be related to the volcanic-geothermal activities, and two intracrustal faults (the Longling-Ruili fault and Tengchong fault) exist on the profile, where the Tengchong fault may extend to the Moho discontinuity. Meanwhile, based on teleseismic data recorded by a temporary seismic network, we obtained the S-wave velocity structures beneath the Rehai-Retian region in the Tengchong area, which show the low S-wave velocity anomaly in upper crust. The authors discuss the causes of Tengchong volcanic eruption based on the deep crustal structure. The crustal structure in the Tengchong volcanic-geothermal area is characterized by low P-wave and S-wave velocity, low resistivity, high heat-flow value and low Q value. The P-wave velocity in the upper mantle is also low. For this information, it can be induced that the magma in the crust is derived from the upper mantle, and the low velocity anomaly in upper crust in the Tengchong area may be related to the differentiation of magma. The Tengchong volcanoes are close to an active plate boundary and belong to "plate boundary" volcanoes.

  5. Shallow and Deep Crustal Seismicity under the Precordilleran Belt, Northern Chile

    Kummerow, Joern; Salazar, Pablo; Wigger, Peter; Shapiro, Serge A.; Asch, Guenter


    We have analyzed crustal and Nazca slab- related seismicity around 21°S in Northern Chile, which has been recorded by a temporary local seismic network in the years 2005-2009. The focus of this study is the high-resolution location of more than 1000 crustal earthquakes in the Precordilleran region with local magnitudes Ml in the range between -0.5 < Ml < 5.4. We have applied a largely automized earthquake location algorithm, which includes cluster identification and optimization of arrival times for events within each cluster. Seismicity shows different patterns north and south of 21°S, respectively. It is distributed along several distinct active segments of the West Fissure Fault System at shallow depths (< 10km). A west-dipping major crustal interface, which has been unrevealed before, can be clearly imaged from a few kilometers depth near the West Fissure Fault system at 69°W down to about 25km depth. We have also detected two deep crustal earthquake clusters (35 - 40km depth). Their position and orientation correlate remarkably well with previously found bands of high seismic reflectivity, supporting the interpretation as being images related to ongoing fluid migration.

  6. Rifting Thick Lithosphere - Canning Basin, Western Australia

    Czarnota, Karol; White, Nicky


    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the Canning Basin is adequately explained by mild Ordovician extension (β≈1.2) of ~120 km thick lithosphere followed by post-rift thermal subsidence. This is consistent with the established model, described above, albeit with perturbations due to transient dynamic topography support which are expressed as basin-wide unconformities. In contrast the Canning Basin reveals an almost continuous period of normal faulting between the Ordovician and Carboniferous (βCanning Basin to rifting of thick lithosphere beneath the eastern part, verified by the presence of ~20 Ma diamond-bearing lamproites intruded into the basin depocentre. In order to account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic considerations. Together, these results suggest that thick lithosphere thinned to > 120 km is thermally stable and is not accompanied by post-rift thermal subsidence driven by thermal re-thickening of the lithospheric mantle. Our results show that variations in lithospheric thickness place a fundamental control on basin architecture

  7. Crustal shortening, exhumation, and strain localization in a collisional orogen: The Bajo Pequeño Shear Zone, Sierra de Pie de Palo, Argentina

    Garber, Joshua M.; Roeske, Sarah M.; Warren, Jessica; Mulcahy, Sean R.; McClelland, William C.; Austin, Lauren J.; Renne, Paul R.; Vujovich, Graciela I.


    The Bajo Pequeño Shear Zone (BPSZ) is a lower-crustal shear zone that records shortening and exhumation associated with the establishment of a new plate boundary, and its placement in a regional structural context suggests that local- to regional-scale strain localization occurred with progressive deformation. A kilometer-scale field and analytical cross section through the ~80 m thick BPSZ and its adjacent rocks indicates an early Devonian (405-400 Ma) phase of deformation on the western margin of Gondwanan continental crust. The earliest stages of the BPSZ, recorded by metamorphic and microstructural data, involved thrusting of a hotter orthogneiss over a relatively cool pelitic unit, which resulted in footwall garnet growth and reset footwall white mica 40Ar/39Ar ages in proximity to the shear zone. Later stages of BPSZ activity, as recorded by additional microstructures and quartz c-axis opening angles, were characterized by strain localization to the center of the shear zone coincident with cooling and exhumation. These and other data suggest that significant regional tectonism persisted in the Famatinian orogenic system for 60-70 million years after one microplate collision (the Precordillera) but ceased 5-10 million years prior to another (Chilenia). A survey of other synchronous structures shows that strain was accommodated on progressively narrower structures with time, indicating a regional pattern of strain localization and broad thermal relaxation as the Precordillera collision evolved.


    Gu Guohua; Zhang Jing


    A preliminary analysis of the time series of displacements at fiducial stations obtained from continuous GPS observations during the period of Sept. 1998 to Oct. 2001 in the Crustal Movement Observation Network of China (CMONOC) is made. The selection of datum for producing displacement time series suitable for earthquake prediction is discussed. Time series of horizontal crustal displacements are obtained by using a datum of a stable group of 9 stations with very small relative horizontal displacements in eastern China as reference. Time series of vertical crustal displacements are obtained by using a stable group of 7 stations scattered in different regions with relatively small relative vertical displacements as reference. During the period of 2000 to 2001, anomalous horizontal and vertical displacements occurred twice at the fiducial stations in western China. These anomalies may be related to seismic activities of magnitudes about 6 in the Yunnan region on the North-South seismic belt.

  9. Mapping sub-crustal reflectors in southwestern Spain

    Palomeras, I.; Ayarza, P.; Carbonell, R.; Ehsan, S. A.; Afonso, J. C.; Diaz Cusi, J.


    During the last 15 years, the IBERSEIS and ALCUDIA controlled source experiments have acquired vertical incidence and wide angle seismic reflection data in southwest Spain, in the Variscan Sub-Portuguese, Ossa-Morena and Central-Iberian Zones. Apart from providing detailed information of the crust, these datasets have also imaged a conspicuous sub-crustal reflector. First identified on the IBERSEIS wide-angle reflection dataset, this interface seemed to feature a positive seismic impedance contrast. A boundary located between 61-72 km depth, with a Vp increase from 8.2 km/s to 8.3 km/s allowed us to model clear wide-angle reflections found above 180 km offsets. The fact that this reflector was not identified in the coincident vertical incidence dataset led us to interpret it as a gradient zone. A correlation with the 'Hales gradient zone', i.e. the boundary between spinel and garnet peridotites was our preferred interpretation. The ALCUDIA experiment, later acquired northwards of the IBERSEIS profiles, also shows prominent sub-crustal arrivals with the same characteristics as those observed in the IBERSEIS wide-angle data. However, these reflections also appear, locally and at 19 s TWT, in the vertical incidence dataset, further constraining the depth at which this feature is located. In addition, the ALCUDIA wide-angle dataset shows deeper sub-horizontal reflectivity (at Vred=8 km/s) that maybe preliminarily associated with mantle anisotropy or even, with the lithosphere-astenosphere boundary. Integration of the information provided by the IBERSEIS and ALCUDIA datasets with older and lower resolution data from the ILIHA project, where three sub-crustal phases were identified in SW Iberia, allows us to conclude that, in this area, mantle reflectivity is outstanding. Also, modeling of all the datasets contributes to map, at a regional scale, the Hales discontinuity or gradient zone in southwest Iberia. Further research, involving receiver function analysis is


    胡亚轩; 崔笃信; 郝明; 秦姗兰; 王文萍


    对新疆地区2009-2011年223个GPS区域站观测资料的分析结果表明,该地区水平运动速率分区性比较明显,以85°E、43°N为界,东西和南北不同区域的测站表现出不同的运动特征.GPS资料揭示的面膨胀率高值区分布在喀什和伊宁-阿克苏等地震多发地区.对2011.08-2012.25年期间29个GPS连续站坐标时间序列的去线性后站坐标变化分析表明,各观测站坐标变化量在2011.4年后整体上变大,2011.8年后多数观测站存在由小-增大-减小的过程.形变分析结果表明天山中部分界线附近存在明显的能量积累.位于准噶尔地块的XJKL和西昆仑地块的观测站坐标变化幅度较大.坐标变化反映整个新疆地区地壳活动的增强过程,是这个时间段地震多发的背景场,但具体到每个测站的坐标变化,对6.0级以下地震反映不很明显.%On the basis of velocity analysis of the 223 GPS regional sites in Xinjiang region during 2009 to 2011, the horizontal movement characteristics of the sites are obvious different from each other in the east to west and north to south partitioned by 85 °E and 43 °N . The high surface expansion rates appear in two areas; Kashi region and Yining-Aksu region from the GPS observations where the earthquakes are prone to happening. Analysis of time series of the coordinate changes of 29 GPS stations during 2011. 08 to 2012. 25 shows that the variation of each station becomes larger after 2011. 4 and after 2011.8, the value of the majority of observation stations appear in a process of small-increase-decrease. The deformation results show there the energy accumulate obviously in the middle area of Tianshan mountain. The coordinate changes of the observation station XJKL located in the Junggar block and the stations in West Kunlun block show bigger fluctuation. The changes reflect that the crustal movement of the whole Xinjiang region becomes more active which is the background that earthquakes have

  11. Revised Thickness of the Lunar Crust from GRAIL Data: Implications for Lunar Bulk Composition

    Taylor, G. Jeffrey; Wieczorek, Mark A.; Neumann, Gregory A.; Nimmo, Francis; Kiefer, Walter S.; Melosh, H. Jay; Phillips, Roger J.; Solomon, Sean C.; Andrews-Hanna, Jeffrey C.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.; Smith, David E.; Watkins, Michael W.; Williams, James G.; Zuber, Maria T.


    High-resolution gravity data from GRAIL have yielded new estimates of the bulk density and thickness of the lunar crust. The bulk density of the highlands crust is 2550 kg m-3. From a comparison with crustal composition measured remotely, this density implies a mean porosity of 12%. With this bulk density and constraints from the Apollo seismic experiment, the average global crustal thickness is found to lie between 34 and 43 km, a value 10 to 20 km less than several previous estimates. Crustal thickness is a central parameter in estimating bulk lunar composition. Estimates of the concentrations of refractory elements in the Moon from heat flow, remote sensing and sample data, and geophysical data fall into two categories: those with refractory element abundances enriched by 50% or more relative to Earth, and those with abundances the same as Earth. Settling this issue has implications for processes operating during lunar formation. The crustal thickness resulting from analysis of GRAIL data is less than several previous estimates. We show here that a refractory-enriched Moon is not required

  12. Geodetic constraint on the motion of a slab window: Implication for the Mendocino Crustal Conveyor model

    Peng, Y.; Dong, D.; Yan, J.; Chen, W.


    The migration of the slab window in the Northern California Coast Ranges provides a unique setting to study the viscous coupling between crust and asthenosphere flow. The mechanisms of these dynamic processes are explained by the Mendocino Crustal Conveyor model, which predicts a 2-D "double-humped" surface uplift rate pattern on a 400 km long profile. To evaluate the Mendocino Crustal Conveyor (MCC) model using accurate geodetic measurements, we derive the vertical velocity field from 43 continuous GPS (CGPS) stations in the Coast Ranges region and project it onto the profile along three possible orientations of the slab window. The CGPS measured uplift rates are in good agreement with the MCC prediction, when the slab window orientation is parallel to the symmetry axis of the region of thickened crust. Thus, the CGPS solutions not only provide a complementary means to diagnose the MCC model but also provide an effective way to constrain the orientation of the slab window.

  13. Crustal and upper mantle structure of central Qiangtang terrane (Tibet Plateau) imaged with magnetotelluric data

    Zeng, S.; Hu, X.; Li, J.


    profiles. In the west profile, the crust is a relatively integrated high resistivity body. In the other two profiles, the high conductivity anomalies nearly spread all over the mid- to lower crust. The result is supported by the areomagnetic data that there is a buried aulacogen in the deep, which acts as a path for the upwelling of mantle-derived magma. The upwelling of the mantle-derived magma through the weak zone may contribute to the balance between the changeless of crustal thickness and the northward underthrusting of the Indian lithosphere from at least the Oligocene to the present, which provide a complementary mechanism for the deformation of the Tibet Plateau.

  14. Crustal transects across the Rif domains in North Morocco, from the RIFSIS seismic survey

    Gil de la Iglesia, A.; Gallart, J.; Diaz Cusi, J.; Carbonell, R.; Levander, A.; Palomeras, I.; Harnafi, M.


    , although the absence of Pn arrivals prevents to constrain upper mantle velocities. Average velocity values for the different layers in the models are, respectively: 3.5 and 4.7 km/s for the sediments, 5.9, 6.3, and 6.8 km/s within the crust, and 8 km/s below Moho. These velocity-depth models obtained at the Rif Cordillera hold major variations in crustal thickness, especially along the EW profile, that shows a rapid change of 20 km in Moho depths within 30 km horizontal distances. Maximum depths around 50 km are found below the external Rif Domain, while thinnest values of about 28 km are located eastwards of Nekor fault zone, in the foreland and Atlasic terranes up to the Algerian border. The model along NS profile displays also marked differences in crustal thicknesses, ranging from 40 km beneath the Betics and internal Rif sampled domains, to 48 km beneath external Rif, and a progressive thinning southwards till Middle Atlas domain where the Moho is found at 30 km depth. Such strong lateral variations in crustal structure and particularly the importance of the crustal root beneath the external Rif areas, rather unexpected according to surface topography or potential field datasets, is a major finding of this experiment that should be integrated in any further geodynamic modeling.

  15. Establishment of gravity stations and inference of crustal thickness around Mormugao Harbour and NIO

    Subbaraju, L.V.; Krishna, K.S.

    stream_size 5 stream_content_type text/plain stream_name J_Geol_Soc_India_45_317.pdf.txt stream_source_info J_Geol_Soc_India_45_317.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  16. Establishment of gravity stations and inference of crustal thickness around Mormugao Harbour and NIO

    Subbaraju, L.V.; Krishna, K.S.

    stream_size 5 stream_content_type text/plain stream_name J_Geol_Soc_India_45_317.pdf.txt stream_source_info J_Geol_Soc_India_45_317.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  17. Smoothing impact of isostatic crustal thickness models on local integral inversion of satellite gravity gradiometry data

    Eshagh, Mehdi; Bagherbandi, Mohammad


    The effects of topographic masses on satellite gradiometric data are large and in order to reduce the magnitude of these effects some compensation mechanisms should be considered. Here we use the isostatic hypotheses of Airy-Heiskanen and the recent Vening Meinesz-Moritz for compensating these effects and to smooth the data prior to their downward continuation to gravity anomaly. The second-order partial derivatives of extended Stokes' formula are used for the continuations over a topographically rough territory like Persia. The inversions are performed and compared based on two schemes of the remove-compute-restore technique and direct downward continuation. Numerical results show that the topographic-isostatic effect based on Vening Meinesz-Mortiz's hypothesis smoothes the data better than that based on Airy-Heiskanen's hypothesis. Also the quality of inversions of the smoothed data by this mechanism is twice better than that of the nonsmoothed ones.

  18. Saudi Arabian seismic-refraction profile: A traveltime interpretation of crustal and upper mantle structure

    Mooney, W. D.; Gettings, M. E.; Blank, H. R.; Healy, J. H.


    The crustal and upper mantle compressional-wave velocity structure across the southwestern Arabian Shield has been investigated by a 1000-km-long seismic refraction profile. The profile begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, trends southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan, and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, and six shot points were used, including one in the Red Sea. Two-dimensional ray-tracing techniques, used to analyze amplitude-normalized record sections indicate that the Arabian Shield is composed, to first order, of two layers, each about 20 km thick, with average velocities of about 6.3 km/s and 7.0 km/s, respectively. West of the Shield-Red Sea margin, the crust thins to a total thickness of less than 20 km, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust. A major crustal inhomogeneity at the northeast end of the profile probably represents the suture zone between two crustal blocks of different composition. Elsewhere along the profile, several high-velocity anomalies in the upper crust correlate with mapped gneiss domes, the most prominent of which is the Khamis Mushayt gneiss. Based on their velocities, these domes may constitute areas where lower crustal rocks have been raised some 20 km. Two intracrustal reflectors in the center of the Shield at 13 km depth probably represent the tops of mafic intrusives. The Mohorovičić discontinuity beneath the Shield varies from a depth of 43 km and mantle velocity of 8.2 km/s in the northeast to a depth of 38 km and mantle velocity of 8.0 km/s depth in the southwest near the Shield-Red Sea transition. Two velocity discontinuities occur in the upper mantle, at 59 and 70 km depth. The crustal and upper mantle velocity structure of the Arabian Shield is interpreted

  19. Distribution of crustal types in Canada Basin, Arctic Ocean

    Chian, D.; Jackson, H. R.; Hutchinson, D. R.; Shimeld, J. W.; Oakey, G. N.; Lebedeva-Ivanova, N.; Li, Q.; Saltus, R. W.; Mosher, D. C.


    Seismic velocities determined from 70 sonobuoys widely distributed in Canada Basin were used to discriminate crustal types. Velocities of oceanic layer 3 (6.7-7.1 km/s), transitional (7.2-7.6 km/s) and continental crust (5.5-6.6 km/s) were used to distinguish crustal types. Potential field data supports the distribution of oceanic crust as a polygon with maximum dimensions of 340 km (east-west) by 590 km (north-south) and identification of the ocean-continent boundary (OCB). Paired magnetic anomalies are associated only with crust that has oceanic velocities. Furthermore, the interpreted top of oceanic crust on seismic reflection profiles is more irregular and sometimes shallower than adjacent transitional crust. The northern segment of the narrow Canada Basin Gravity Low (CBGL), often interpreted as a spreading center, bisects this zone of oceanic crust and coincides with the location of a prominent valley in seismic reflection profiles. Data coverage near the southern segment of CBGL is sparse. Velocities typical of transitional crust are determined east of it. Extension in this region, close to the inferred pole of rotation, may have been amagmatic. Offshore Alaska is a wide zone of thinned continental crust up to 300 km across. Published longer offset refraction experiments in the Basin confirm the depth to Moho and the lack of oceanic layer 3 velocities. Further north, toward Alpha Ridge and along Northwind Ridge, transitional crust is interpreted to be underplated or intruded by magmatism related to the emplacement of the High Arctic Large Igneous Province (HALIP). Although a rotational plate tectonic model is consistent with the extent of the conjugate magnetic anomalies that occupy only a portion of Canada Basin, it does not explain the asymmetrical configuration of the oceanic crust in the deep water portion of Canada Basin, and the unequal distribution of transitional and continental crust around the basin.

  20. Radioactive waste disposal in thick unsaturated zones.

    Winogard, I J


    Portions of the Great Basin are undergoing crustal extension and have unsaturated zones as much as 600 meters thick. These areas contain multiple natural barriers capable of isolating solidified toxic wastes from the biosphere for tens of thousands to perhaps hundreds of thousands of years. An example of the potential utilization of such arid zone environments for toxic waste isolatic is the burial of transuranic radioactive wastes at relatively shallow depths (15 to 100 meters) in Sedan Crater, Yucca Flat, Nevada. The volume of this man-made crater is several times that of the projected volume of such wastes to the year 2000. Disposal in Sedan Crater could be accomplished at a savings on the order of $0.5 billion, in comparison with current schemes for burial of such wastes in mined repositories at depths of 600 to 900 meters, and with an apparently equal likelihood of waste isolation from the biosphere.

  1. Crustal permeability: Introduction to the special issue

    Ingebritsen, Steven E.; Gleeson, Tom


    The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

  2. Horizontal crustal deformation in Chinese Mainland analyzed by CMONOC GPS data from 2009–2013

    Wang Wei


    Full Text Available In this study, we analyze the regional GPS data of Crustal Movement Observation Network of China (CMONOC observed from 2009–2013 using the BERNESE GPS software, and then the preliminary results of horizontal velocity field and strain rate field are presented, which could reflect the overall deformation features in the Chinese mainland from 2009–2013. Besides, the velocity error and the probable factors that could influence the estimate of long-term deformation are also discussed.

  3. An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings

    Zhang, Zhongjie; Deng, Yangfan; Teng, Jiwen; Wang, Chunyong; Gao, Rui; Chen, Yun; Fan, Weiming


    Since the pioneer wide-angle seismic profile along the Yadong-Gulu rift acquired in 1974 by the ex-Institute of Geophysics, Chinese Academy of Sciences (CAS), several research programs aimed to deep geophysics, performed thanks to the participation of Chinese national and international institutions, have been developed during last 35 years, including 23 wide-angle seismic profiles with total length of about 6000 km. These profiles are unevenly distributed, most of them in eastern Tibet and few profiles in western Tibet. In this paper, we make a summarized presentation of all these wide-angle seismic profiles and provide an overall view of the seismic velocity structure of the crust beneath the broad Tibetan plateau, which is the product of the continuous convergence and collision of the Indian and Eurasian plates since about 50 Ma ago. Different patterns of crustal thickness variation related to the tectonic blocks and along suture zones of the region are displayed. The crust thickness is confirmed to be about 70-75 km under southern Tibet, and 60-65 km under northern, northeastern and southeastern Tibet. The leading edge of the subducted lithosphere reaches the northern margin of the plateau and directly contacts with Tarim Basin. Westward of the 90°E boundary, the Indian crust is moving towards the northern edge of the plateau and collides with Tarim Basin at 80°E while reach the Bangong-Nujiang suture belt at 88°E; eastward of the 90°E boundary, the northern edge of the crust should be at 50-100 km south of Bangong-Nujiang suture. The results supply helpful constrains to understand the mechanism of the continent-continent collision and its consequences in the plateau and neighbouring areas.

  4. Limitations of H- κ stacking: ambiguous results caused by crustal layering

    Wölbern, I.; Rümpker, G.


    Over the past decade, the H- κ stacking technique of Zhu and Kanamori (J Geophys Res 105:2969-2980, 2000) has become a standard tool to determine the crustal thickness H and the bulk crustal vP/vS ratio κ from teleseismic receiver functions. It is obvious that unfavorable noise conditions as well as a complex 3D velocity structure can severely hamper the interpretation of receiver-function data. However, we observe that ambiguities can even arise from a simple 1D layered velocity structure which raises a high potential for misinterpretations. To analyze the feasibility and basic limitations of the H- κ stacking method, we conduct a series of tests based on synthetic data. The impact of different given elementary parameters, related either to the velocity structure or to the data processing, is evaluated in a series of eight individual tests. We deliberately exclude complications such as 3D structural variations and/or noise to show that even a simple 1D velocity structure, involving, e.g., an additional inter-crustal discontinuity, can have significant consequences for the interpretation of the results. However, our modeling suggests that more complex crustal structures may lead to even less reliable results. Additionally, our tests illustrate that time shifts of the maxima in the H- κ domain due to the superposition and merging of individual phases can lead to significantly overestimated vP/vS ratios. In general, the depth to the Moho (or other discontinuities of interest) is less significantly affected. Our tests indicate the necessity to accurately check delay times derived from the maxima of the H- κ stacks against corresponding phases in the receiver functions. Repeating the stacking with varied weighting factors and filter ranges can help to reduce the ambiguities and to avoid possible misinterpretation.

  5. The diverse crustal structure and magmatic evolution of the Manihiki Plateau, central Pacific

    K. Hochmuth


    Full Text Available The Manihiki Plateau is a Large Igneous Province (LIP in the central Pacific. It was emplaced as part of the "Super-LIP" Ontong Java Nui and experienced fragmentation into three sub-plateaus, possibly during the break-up of Ontong Java Nui. The Manihiki Plateau is presumably the centerpiece of this "Super-LIP" and its investigation can therefore decipher the break-up mechanisms as well as the evolution of the plateau after its initial emplacement. By analyzing two seismic refraction/wide-angle reflection profiles crossing the two largest sub-plateaus of the Manihiki Plateau, the High Plateau and the Western Plateaus, we give new insights into their crustal structure and magmatic evolution. The High Plateau shows a crustal structure of 20 km thickness and a seismic P wave velocity distribution, which is comparable to other LIPs. The High Plateau experienced a strong secondary volcanism, which can be seen in relicts of seamount chain volcanism. The Western Plateaus on the other hand show no extensive secondary volcanism and are mainly structured by fault systems and sedimentary basins. A constant decrease in Moho depth (9–17 km is a further indicator of crustal stretching on the Western Plateaus. Those findings lead to the conclusion, that the two sub-plateaus of the Manihiki Plateau experienced a different magmatic and tectonic history. Whereas the High Plateau experienced a secondary volcanism, the Western Plateaus underwent crustal stretching during and after the break-up of Ontong Java Nui. This indicates, that the sub-plateaus of the Manihiki Plateau play an individual part in the break-up history of Ontong Java Nui.

  6. Crustal structure and extension mode in the northwestern margin of the South China Sea

    Gao, Jinwei; Wu, Shiguo; McIntosh, Kirk; Mi, Lijun; Liu, Zheng; Spence, George


    Combining multi-channel seismic reflection and gravity modeling, this study has investigated the crustal structure of the northwestern South China Sea margin. These data constrain a hyper-extended crustal area bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a subparallel fossil ridge in the adjacent Northwest Sub-basin. The thinnest crust is located in the Xisha Trough, where it is remnant lower crust with a thickness of less than 3 km. Gravity modeling also revealed a hyper-extended crust across the Xisha Trough. The postrift magmatism is well developed and more active in the Xisha Trough and farther southeast than on the northwestern continental margin of the South China Sea; and the magmatic intrusion/extrusion was relatively active during the rifting of Xisha Trough and the Northwest Sub-basin. A narrow continent-ocean transition zone with a width of ˜65 km bounded seaward by a volcanic buried seamount is characterized by crustal thinning, rift depression, low gravity anomaly and the termination of the break-up unconformity seismic reflection. The aborted rift near the continental margin means that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric rift, extreme hyper-extended continental crust and hotter mantle materials indicate that continental crust underwent stretching phase (pure-shear deformation), thinning phase and breakup followed by onset of seafloor spreading and the mantle-lithosphere may break up before crustal-necking in the northwestern South China Sea margin.

  7. Crustal architecture and tectonic evolution in the South Pole frontier, East Antarctica, in light of recent aerogeophysical observations

    Ferraccioli, Fausto; Jordan, Tom; Forsberg, Rene; Olesen, Arne; Eagles, Graeme; Matsuoka, Kenichi; Casal, Tania


    Our knowledge of interior East Antarctica has increased significantly in recent years, aided by major aerogeophysical exploration efforts conducted by the geosciences community since the International Polar Year. Aerogeophysical and satellite imaging is helping unveil cryptic crustal provinces and this is enabling new studies of the major tectonic process that shaped East Antarctica through the supercontinent cycle (e.g. Ferraccioli et al., 2011, Nature; Aitken et al., 2014, GRL). However, the South Pole itself has remained one of the largest "poles of ignorance", as very little data have been acquired here since pioneering aerogeophysical surveys performed in the 1970's and a single more detailed US survey flown in the late 1990's from the Transantarctic Mountains to South Pole (Studinger et al., 2006, EPSL). During the 2015-2016 Antarctic campaign we flew a major aerogeophysical survey over the South Pole frontier, collecting ca 30,000 line km of new radio echo sounding, laser altimetry, airborne gravity and aeromagnetic data. The main aim of the PolarGAP project, supported by the European Space Agency was to fill in the data void in GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) satellite gravity south of 83.3°S. Here we present the new ice thickness, bedrock topography, and gravity and magnetic anomaly images derived from the survey and interpret them to investigate the crustal architecture and tectonic evolution of the South Pole region. The Free-air gravity and radar data reveal the form and extent of the Pensacola-Pole Subglacial Basin that stretches from the Weddell Sea to South Pole. Linear free-air gravity lows within the basin are interpreted here as a system of glacially overdeepened grabens flanked by uplifted horst blocks, including the Pensacola Mountains, Patuxent Range and the Argentine Range. The grabens are inferred to be linked to the Jurassic Transantarctic rift system, which at regional to continental-scale, is associated

  8. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors Over Coastal Regions and Open Oceans

    Ahmad, Ziauddin; Franz, Bryan A.; McClain, Charles R.; Kwiatkowska, Ewa J.; Werdell, Jeremy; Shettle, Eric P.; Holben, Brent N.


    We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFs and MODIS sensors, including aerosol optical thickness (tau), angstrom coefficient (alpha), and water-leaving radiance (L(sub w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity, These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity, From those findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%. and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all. 80 distributions (8Rh x 10 fine-mode fractions) were created to process the satellite data. We. also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data,

  9. Slab detachment during continental collision: Influence of crustal rheology and interaction with lithospheric delamination

    Duretz, T.; Gerya, T. V.


    Collision between continents can lead to the subduction of continental material. If the crust remains coupled to the downgoing slab, a large buoyancy force is generated. This force slows down convergence and promotes slab detachment. If the crust resists to subduction, it may decouple from the downgoing slab and be subjected to buoyant extrusion. We employ two-dimensional thermo-mechanical modelling to study the importance of crustal rheology on the evolution of subduction-collision systems. We propose simple quantifications of the mechanical decoupling between lithospheric levels (σ*) and the potential for buoyant extrusion of the crust (ξ*). The modelling results indicate that a variable crustal rheological structure results in slab detachment, delamination, or the combination of both mechanisms. A strong crust provides coupling at the Moho (low σ*) and remains coherent during subduction (low ξ). It promotes deep subduction of the crust (180 km) and slab detachment. Exhumation occurs in coherent manners via eduction and thrusting. Slab detachment triggers the development of topography (> 4.5 km) close to the suture. A contrasting style of collision occurs using a weak crustal rheology. Mechanical decoupling at the Moho (high σ*) promotes the extrusion of the crust (high ξ), disabling slab detachment. Ongoing shortening leads to buckling of the crust and development of topography on the lower plate. Collisions involving rheologically layered crust allow decoupling at mid-crustal depths. This structure favours both the extrusion of upper crust and the subduction of the lower crust. Such collisions are successively affected by delamination and slab detachment. Topography develops together with the buoyant extrusion of crust onto the foreland and is further amplified by slab detachment. Our results suggest that the occurrence of both delamination (Apennines) and slab detachment (Himalayas) in orogens may indicate differences in the initial crustal structure of

  10. A study on physical property of crustal material and seismogenic environment in northeastern Pamir

    刘志; 张先康; 周雪松; 赵金仁; 张成科; 潘纪顺


    2-D crustal structure and velocity ratio are obtained by processing S-wave data from two wide-angle reflection/refraction profiles in and around Jiashi in northeastern Pamir, with the result of P-wave data taken into consideration. The result shows that: 1) Average crustal velocity ratio is obviously higher in Tarim block than in West Kunlun Mts. and Tianshan fold zone, which reflects its crustal physical property of (hardness( and stability. The relatively low but normal velocity ratio (Poisson(s ratio) of the lower crust indicates that the (downward thrusting( of Tarim basin is the main feature of crustal movement in this area. 2)The rock layer in the upper crust of Tianshan fold zone is relatively (soft(, which makes it prone to rupture and stress energy release. This is the primary tectonic factor for the concentration of small ear