WorldWideScience

Sample records for regional brain metabolite

  1. Changes of brain metabolite concentrations during maturation in different brain regions measured by chemical shift imaging.

    Science.gov (United States)

    Bültmann, Eva; Nägele, Thomas; Lanfermann, Heinrich; Klose, Uwe

    2017-01-01

    We examined the effect of maturation on the regional distribution of brain metabolite concentrations using multivoxel chemical shift imaging. From our pool of pediatric MRI examinations, we retrospectively selected patients showing a normal cerebral MRI scan or no pathologic signal abnormalities at the level of the two-dimensional 1H MRS-CSI sequence and an age-appropriate global neurological development, except for focal neurological deficits. Seventy-one patients (4.5 months-20 years) were identified. Using LC Model, spectra were evaluated from voxels in the white matter, caudate head, and corpus callosum. The concentration of total N-acetylaspartate increased in all regions during infancy and childhood except in the right caudate head where it remained constant. The concentration of total creatine decreased in the caudate nucleus and splenium and minimally in the frontal white matter and genu. It remained largely constant in the parietal white matter. The concentration of choline-containing compounds had the tendency to decrease in all regions except in the parietal white matter where it remained constant. The concentration of myoinositol decreased slightly in the splenium and right frontal white matter, remained constant on the left side and in the caudate nucleus, and rose slightly in the parietal white matter and genu. CSI determined metabolite concentrations in multiple cerebral regions during routine MRI. The obtained data will be helpful in future pediatric CSI measurements deciding whether the ratios of the main metabolites are within the range of normal values or have to be considered as probably pathologic.

  2. Changes of brain metabolite concentrations during maturation in different brain regions measured by chemical shift imaging

    International Nuclear Information System (INIS)

    Bueltmann, Eva; Lanfermann, Heinrich; Naegele, Thomas; Klose, Uwe

    2017-01-01

    We examined the effect of maturation on the regional distribution of brain metabolite concentrations using multivoxel chemical shift imaging. From our pool of pediatric MRI examinations, we retrospectively selected patients showing a normal cerebral MRI scan or no pathologic signal abnormalities at the level of the two-dimensional 1H MRS-CSI sequence and an age-appropriate global neurological development, except for focal neurological deficits. Seventy-one patients (4.5 months-20 years) were identified. Using LC Model, spectra were evaluated from voxels in the white matter, caudate head, and corpus callosum. The concentration of total N-acetylaspartate increased in all regions during infancy and childhood except in the right caudate head where it remained constant. The concentration of total creatine decreased in the caudate nucleus and splenium and minimally in the frontal white matter and genu. It remained largely constant in the parietal white matter. The concentration of choline-containing compounds had the tendency to decrease in all regions except in the parietal white matter where it remained constant. The concentration of myoinositol decreased slightly in the splenium and right frontal white matter, remained constant on the left side and in the caudate nucleus, and rose slightly in the parietal white matter and genu. CSI determined metabolite concentrations in multiple cerebral regions during routine MRI. The obtained data will be helpful in future pediatric CSI measurements deciding whether the ratios of the main metabolites are within the range of normal values or have to be considered as probably pathologic. (orig.)

  3. Changes of brain metabolite concentrations during maturation in different brain regions measured by chemical shift imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bueltmann, Eva; Lanfermann, Heinrich [Hannover Medical School, Institute of Diagnostic and Interventional Neuroradiology, Hannover (Germany); Naegele, Thomas [University of Tuebingen, Department of Diagnostic and Interventional Neuroradiology, Radiological University Hospital, Tuebingen (Germany); Klose, Uwe [University of Tuebingen, Section of Experimental MR of the CNS, Department of Neuroradiology, Radiological University Hospital, Tuebingen (Germany)

    2017-01-15

    We examined the effect of maturation on the regional distribution of brain metabolite concentrations using multivoxel chemical shift imaging. From our pool of pediatric MRI examinations, we retrospectively selected patients showing a normal cerebral MRI scan or no pathologic signal abnormalities at the level of the two-dimensional 1H MRS-CSI sequence and an age-appropriate global neurological development, except for focal neurological deficits. Seventy-one patients (4.5 months-20 years) were identified. Using LC Model, spectra were evaluated from voxels in the white matter, caudate head, and corpus callosum. The concentration of total N-acetylaspartate increased in all regions during infancy and childhood except in the right caudate head where it remained constant. The concentration of total creatine decreased in the caudate nucleus and splenium and minimally in the frontal white matter and genu. It remained largely constant in the parietal white matter. The concentration of choline-containing compounds had the tendency to decrease in all regions except in the parietal white matter where it remained constant. The concentration of myoinositol decreased slightly in the splenium and right frontal white matter, remained constant on the left side and in the caudate nucleus, and rose slightly in the parietal white matter and genu. CSI determined metabolite concentrations in multiple cerebral regions during routine MRI. The obtained data will be helpful in future pediatric CSI measurements deciding whether the ratios of the main metabolites are within the range of normal values or have to be considered as probably pathologic. (orig.)

  4. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression

    DEFF Research Database (Denmark)

    Jørgensen, A.; Magnusson, P.; Hanson, Lars G.

    2016-01-01

    , and metabolite changes in 19 patients receiving ECT for severe depression. Other regions of interest included the amygdala, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex, and hypothalamus. Patients received a 3T MR scan before ECT (TP1), 1 week (TP2), and 4 weeks (TP3) after ECT. Results......: Hippocampal and amygdala volume increased significantly at TP2 and continued to be increased at TP3. DLPFC exhibited a transient volume reduction at TP2. DTI revealed a reduced anisotropy and diffusivity of the hippocampus at TP2. We found no significant post-ECT changes in brain metabolite concentrations...

  5. Evaluation of brain metabolite in patients with complex regional pain syndrome by MR spectroscopy

    International Nuclear Information System (INIS)

    Iwashita, Narihito; Fukui, Mikio; Nitta, Kazuhito; Anzawa, Noriyuki; Tomie, Hisashi; Nakanishi, Miho; Matsumoto, Tomikichi; Nosaka, Shuichi

    2010-01-01

    Recently brain imaging studies have shown that patients with chronic pain have an altered cortical processing of nociceptive inputs. We evaluated brain metabolites in patients with complex regional pain syndrome (CRPS) using MR spectroscopy. Absolute concentrations of N-acetylaspartate (NAA) and choline (Cho) were measured in anterior cingulate (ACC) and prefrontal cortices (PFC) of patients and volunteers as matched control. Psychological aspects of patients were also evaluated with Hospital Anxiety and Depression (HAD) scale, in addition to the intensity of pain by visual analog scale. In the ACC, CRPS patients had a significant decrease of NAA and a significant increase of Cho compared to the control. Furthermore, patients with anxiety scored by HAD scale had reduced NAA concentration in ACC compared to the patients without anxiety. In the PFC, there was a reduction of NAA in the patients compared with that in control. No correlation was observed between intensity of pain and these metabolites. These results suggest that metabolite changes in ACC and PFC could reflect the pathogenesis of CRPS. (author)

  6. Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: an 1H-MR spectroscopy study

    International Nuclear Information System (INIS)

    Otsuka, H.; Harada, M.; Hisaoka, S.; Nishitani, H.; Mori, K.

    1999-01-01

    Histological abnormalities of the brain in autism have been investigated extensively. We studied metabolites in the hippocampusamygdala (HA) region and cerebellum. We examined the right HA region and left cerebellar hemisphere of 27 autistic patients 2-18 years old, 21 boys and 6 girls and 10 normal children 6-14 years old, 4 boys and 6 girls, using the STEAM sequence. This sequence was used to minimise the influence of relaxation times. The N-acetyl aspartate (NAA) concentration was significantly lower (P=0.042) in autistic patients than in normal children (9.37 and 10.95 mM, respectively). There was no significant difference in other metabolites. The correlation coefficient (r value) of NAA between the HA region and cerebellum was 0.616. The decreased NAA concentration may be due to neuronal hypofunction or immature neurons. The NAA concentration in the HA region and cerebellum may be related, because of neuronal circuits or networks. (orig.)

  7. Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: an {sup 1}H-MR spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, H; Harada, M; Hisaoka, S; Nishitani, H [Dept. of Radiology, Univ. of Tokushima, Tokushima City (Japan); Mori, K [Dept. of Pediatrics, Univ. of Tokushima (Japan)

    1999-07-01

    Histological abnormalities of the brain in autism have been investigated extensively. We studied metabolites in the hippocampusamygdala (HA) region and cerebellum. We examined the right HA region and left cerebellar hemisphere of 27 autistic patients 2-18 years old, 21 boys and 6 girls and 10 normal children 6-14 years old, 4 boys and 6 girls, using the STEAM sequence. This sequence was used to minimise the influence of relaxation times. The N-acetyl aspartate (NAA) concentration was significantly lower (P=0.042) in autistic patients than in normal children (9.37 and 10.95 mM, respectively). There was no significant difference in other metabolites. The correlation coefficient (r value) of NAA between the HA region and cerebellum was 0.616. The decreased NAA concentration may be due to neuronal hypofunction or immature neurons. The NAA concentration in the HA region and cerebellum may be related, because of neuronal circuits or networks. (orig.)

  8. Simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell cultures and in sub-regions of guinea pig brain

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie Voigt; Hansen, Stine Normann; Tveden-Nyborg, Pernille

    2016-01-01

    In the present paper, we describe a validated chromatographic method for the simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell culture and in sub-regions of the guinea pig brain. Electrochemical...... of intracellular and extracellular amounts of monoamine neurotransmitters and their metabolites in guinea pig frontal cortex and hippocampal primary neuronal cell cultures. Noradrenaline, dopamine and serotonin were found to be in a range from 0.31 to 1.7 pmol per 2 million cells intracellularly, but only...... the biogenic metabolites could be detected extracellularly. Distinct differences in monoamine concentrations were observed when comparing concentrations in guinea pig frontal cortex and cerebellum tissue with higher amounts of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid...

  9. Region-specific effects on brain metabolites of hypoxia and hyperoxia overlaid on cerebral ischemia in young and old rats: a quantitative proton magnetic resonance spectroscopy study

    Directory of Open Access Journals (Sweden)

    Giuliani Patricia

    2010-02-01

    Full Text Available Abstract Background Both hypoxia and hyperoxia, deregulating the oxidative balance, may play a role in the pathology of neurodegenerative disorders underlain by cerebral ischemia. In the present study, quantitative proton magnetic resonance spectroscopy was used to evaluate regional metabolic alterations, following a 24-hour hypoxic or hyperoxic exposure on the background of ischemic brain insult, in two contrasting age-groups of rats: young - 3 months old and aged - 24 months old. Methods Cerebral ischemia was induced by ligation of the right common carotid artery. Concentrations of eight metabolites (alanine, choline-containing compounds, total creatine, γ-aminobutyric acid, glutamate, lactate, myo-inositol and N-acetylaspartate were quantified from extracts in three different brain regions (fronto-parietal and occipital cortices and the hippocampus from both hemispheres. Results In the control normoxic condition, there were significant increases in lactate and myo-inositol concentrations in the hippocampus of the aged rats, compared with the respective values in the young ones. In the ischemia-hypoxia condition, the most prevalent changes in the brain metabolites were found in the hippocampal regions of both young and aged rats; but the effects were more evident in the aged animals. The ischemia-hyperoxia procedure caused less dedicated changes in the brain metabolites, which may reflect more limited tissue damage. Conclusions We conclude that the hippocampus turns out to be particularly susceptible to hypoxia overlaid on cerebral ischemia and that old age further increases this susceptibility.

  10. Long-term multi-species Lactobacillus and Bifidobacterium dietary supplement enhances memory and changes regional brain metabolites in middle-aged rats.

    Science.gov (United States)

    O'Hagan, Caroline; Li, Jia V; Marchesi, Julian R; Plummer, Sue; Garaiova, Iveta; Good, Mark A

    2017-10-01

    Ageing is associated with changes in the gut microbiome that may contribute to age-related changes in cognition. Previous work has shown that dietary supplements with multi-species live microorganisms can influence brain function, including induction of hippocampal synaptic plasticity and production of brain derived neurotrophic factor, in both young and aged rodents. However, the effect of such dietary supplements on memory processes has been less well documented, particularly in the context of aging. The main aim of the present study was to examine the impact of a long-term dietary supplement with a multi-species live Lactobacillus and Bifidobacteria mixture (Lactobacillus acidophilus CUL60, L. acidophilus CUL21, Bifidobacterium bifidum CUL20 and B. lactis CUL34) on tests of memory and behavioural flexibility in 15-17-month-old male rats. Following behavioural testing, the hippocampus and prefrontal cortex was extracted and analysed ex vivo using 1 H nuclear magnetic resonance ( 1 H NMR) spectroscopy to examine brain metabolites. The results showed a small beneficial effect of the dietary supplement on watermaze spatial navigation and robust improvements in long-term object recognition memory and short-term memory for object-in-place associations. Short-term object novelty and object temporal order memory was not influenced by the dietary supplement in aging rats. 1 H NMR analysis revealed diet-related regional-specific changes in brain metabolites; which indicated changes in several pathways contributing to modulation of neural signaling. These data suggest that chronic dietary supplement with multi-species live microorganisms can alter brain metabolites in aging rats and have beneficial effects on memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell cultures and in sub-regions of guinea pig brain.

    Science.gov (United States)

    Schou-Pedersen, Anne Marie V; Hansen, Stine N; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2016-08-15

    In the present paper, we describe a validated chromatographic method for the simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell culture and in sub-regions of the guinea pig brain. Electrochemical detection provided limits of quantifications (LOQs) between 3.6 and 12nM. Within the linear range, obtained recoveries were from 90.9±9.9 to 120±14% and intra-day and inter-day precisions found to be less than 5.5% and 12%, respectively. The analytical method was applicable for quantification of intracellular and extracellular amounts of monoamine neurotransmitters and their metabolites in guinea pig frontal cortex and hippocampal primary neuronal cell cultures. Noradrenaline, dopamine and serotonin were found to be in a range from 0.31 to 1.7pmol per 2 million cells intracellularly, but only the biogenic metabolites could be detected extracellularly. Distinct differences in monoamine concentrations were observed when comparing concentrations in guinea pig frontal cortex and cerebellum tissue with higher amounts of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid in frontal cortex, as compared to cerebellum. The chemical turnover in frontal cortex tissue of guinea pig was for serotonin successfully predicted from the turnover observed in the frontal cortex cell culture. In conclusion, the present analytical method shows high precision, accuracy and sensitivity and is broadly applicable to monoamine measurements in cell cultures as well as brain biopsies from animal models used in preclinical neurochemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Regional brain metabolite abnormalities in inherited prion disease and asymptomatic gene carriers demonstrated in vivo by quantitative proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, A.D.; Cordery, R.J.; Godbolt, A.; Rossor, M.N. [University College London, Dementia Research Group, Department of Neurodegenerative Disease, Institute of Neurology, London (United Kingdom); Imperial College of Science, Technology and Medicine, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, London (United Kingdom); MacManus, D.G. [University College London, NMR Research Unit, Department of Clinical Neurology, Institute of Neurology, London (United Kingdom); Collinge, J. [University College London, MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, London (United Kingdom)

    2006-06-15

    Inherited prion diseases are caused by mutations in the gene which codes for prion protein (PrP), leading to proliferation of abnormal PrP isomers in the brain and neurodegeneration; they include Gerstmann-Straeussler-Scheinker disease (GSS), fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). We studied two patients with symptomatic inherited prion disease (P102L) and two pre-symptomatic P102L gene carriers using quantitative magnetic resonance spectroscopy (MRS). Short echo time spectra were acquired from the thalamus, caudate region and frontal white matter, metabolite levels and ratios were measured and z-scores calculated for individual patients relative to age-matched normal controls. MRS data were compared with structural magnetic resonance imaging. One fCJD case had generalised atrophy and showed increased levels of myo-inositol (MI) in the thalamus (z=3.7). The other had decreased levels of N-acetylaspartate (z=4) and diffuse signal abnormality in the frontal white matter. Both asymptomatic gene carriers had normal imaging, but increased frontal white matter MI (z=4.3, 4.1), and one also had increased MI in the caudate (z=5.3). Isolated MI abnormalities in asymptomatic gene carriers are a novel finding and may reflect early glial proliferation, prior to significant neuronal damage. MRS provides potential non-invasive surrogate markers of early disease and progression in inherited prion disease. (orig.)

  13. Regional brain metabolite abnormalities in inherited prion disease and asymptomatic gene carriers demonstrated in vivo by quantitative proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Waldman, A.D.; Cordery, R.J.; Godbolt, A.; Rossor, M.N.; MacManus, D.G.; Collinge, J.

    2006-01-01

    Inherited prion diseases are caused by mutations in the gene which codes for prion protein (PrP), leading to proliferation of abnormal PrP isomers in the brain and neurodegeneration; they include Gerstmann-Straeussler-Scheinker disease (GSS), fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). We studied two patients with symptomatic inherited prion disease (P102L) and two pre-symptomatic P102L gene carriers using quantitative magnetic resonance spectroscopy (MRS). Short echo time spectra were acquired from the thalamus, caudate region and frontal white matter, metabolite levels and ratios were measured and z-scores calculated for individual patients relative to age-matched normal controls. MRS data were compared with structural magnetic resonance imaging. One fCJD case had generalised atrophy and showed increased levels of myo-inositol (MI) in the thalamus (z=3.7). The other had decreased levels of N-acetylaspartate (z=4) and diffuse signal abnormality in the frontal white matter. Both asymptomatic gene carriers had normal imaging, but increased frontal white matter MI (z=4.3, 4.1), and one also had increased MI in the caudate (z=5.3). Isolated MI abnormalities in asymptomatic gene carriers are a novel finding and may reflect early glial proliferation, prior to significant neuronal damage. MRS provides potential non-invasive surrogate markers of early disease and progression in inherited prion disease. (orig.)

  14. Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission.

    Science.gov (United States)

    Hennebelle, Marie; Zhang, Zhichao; Metherel, Adam H; Kitson, Alex P; Otoki, Yurika; Richardson, Christine E; Yang, Jun; Lee, Kin Sing Stephen; Hammock, Bruce D; Zhang, Liang; Bazinet, Richard P; Taha, Ameer Y

    2017-06-28

    Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO 2 -induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke.

  15. Brain Metabolites in Autonomic Regulatory Insular Sites in Heart Failure

    OpenAIRE

    Woo, Mary A.; Yadav, Santosh K.; Macey, Paul M.; Fonarow, Gregg C.; Harper, Ronald M.; Kumar, Rajesh

    2014-01-01

    © 2014 Elsevier B.V. All rights reserved. Autonomic, pain, and neuropsychologic comorbidities appear in heart failure (HF), likely resulting from brain changes, indicated as loss of structural integrity and functional deficits. Among affected brain sites, the anterior insulae are prominent in serving major regulatory roles in many of the disrupted functions commonly seen in HF. Metabolite levels, including N-acetylaspartate (NAA), creatine (Cr), choline (Cho), and myo-inositol (MI), could ind...

  16. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    Science.gov (United States)

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  17. Brain metabolite alterations in Eisenmenger syndrome: Evaluation with MR proton spectroscopy

    International Nuclear Information System (INIS)

    Dokumacı, Dilek Şen; Doğan, Ferit; Yıldırım, Ali; Boyacı, Fatıma Nurefşan; Bozdoğan, Erol; Koca, Bülent

    2017-01-01

    Objective: Eisenmenger syndrome (ES) is a life-threatening disease characterized by pulmonary hypertension and cyanosis in patients with congenital heart diseases. The aim of this study was to determine the brain metabolite changes in Eisenmenger syndrome compared with a control group using MR proton spectroscopy. Methods and Materials: The study included 10 children (3 male, 7 female) with congenital heart diseases and a diagnosis of Eisenmenger syndrome. The control group consisted of 10 healthy volunteer children. All were examined with a 1.5 T MRI scanner and single voxel spectroscopy was performed to obtain spectra from three different regions; left frontal subcortical white matter, left lentiform nucleus and left thalamus. Peak integral values obtained from the spectra were used as quantitative data. Results: The ages of the children with ES were between 5 and 16 years, and between 5 and 15 years in the control group. Periventricular white matter hyperintensities were observed in 3 patients. On MR spectroscopy study, significantly lower levels of Choline metabolite (Cho) were detected in the frontal subcortical region and thalamus regions of the patients compared with the control group. There was no statistically significant difference between the levels of other metabolites (NAA, Cr, mI and Glx). In the lentiform nucleus, although the average value of Cho in ES patients was lower than that of the control group, it was not statistically significant. Conclusion: Cho metabolite was determined to have an important role in brain metabolism in Eisenmenger syndrome patients. Oral Cho treatment may help to extend survival.

  18. Brain metabolite alterations in Eisenmenger syndrome: Evaluation with MR proton spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dokumacı, Dilek Şen, E-mail: dileksendokumaci@yahoo.com [Harran University School of Medicine, Department of Radiology, Sanliurfa (Turkey); Doğan, Ferit [Children Hospital, Department of Radiology, Sanliurfa (Turkey); Yıldırım, Ali [Children Hospital, Department of Pediatric Cardiology, Sanliurfa (Turkey); Boyacı, Fatıma Nurefşan; Bozdoğan, Erol [Harran University School of Medicine, Department of Radiology, Sanliurfa (Turkey); Koca, Bülent [Harran University School of Medicine, Department of Pediatric Cardiology, Sanliurfa (Turkey)

    2017-01-15

    Objective: Eisenmenger syndrome (ES) is a life-threatening disease characterized by pulmonary hypertension and cyanosis in patients with congenital heart diseases. The aim of this study was to determine the brain metabolite changes in Eisenmenger syndrome compared with a control group using MR proton spectroscopy. Methods and Materials: The study included 10 children (3 male, 7 female) with congenital heart diseases and a diagnosis of Eisenmenger syndrome. The control group consisted of 10 healthy volunteer children. All were examined with a 1.5 T MRI scanner and single voxel spectroscopy was performed to obtain spectra from three different regions; left frontal subcortical white matter, left lentiform nucleus and left thalamus. Peak integral values obtained from the spectra were used as quantitative data. Results: The ages of the children with ES were between 5 and 16 years, and between 5 and 15 years in the control group. Periventricular white matter hyperintensities were observed in 3 patients. On MR spectroscopy study, significantly lower levels of Choline metabolite (Cho) were detected in the frontal subcortical region and thalamus regions of the patients compared with the control group. There was no statistically significant difference between the levels of other metabolites (NAA, Cr, mI and Glx). In the lentiform nucleus, although the average value of Cho in ES patients was lower than that of the control group, it was not statistically significant. Conclusion: Cho metabolite was determined to have an important role in brain metabolism in Eisenmenger syndrome patients. Oral Cho treatment may help to extend survival.

  19. Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Gredal, O; Rosenbaum, S; Topp, S

    1997-01-01

    We performed proton magnetic resonance spectroscopy (1H-MRS) in patients with motor neuron disease (MND) to determine the absolute in vivo concentrations in the brain of the metabolites N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr/PCr). We examined the spectra acquired from a 20 x 20 x...... subjects. We estimated the concentrations of the metabolites using the water signal as an internal standard. The concentrations of Cho and Cr/PCr in both brain regions, as well as the concentration of NAA in the cerebellum, were unaltered in the MND patients compared with the controls. Only MND patients...... with both upper and lower motor neuron signs had a significantly decreased concentration of NAA (9.13 +/- 0.28 mM, mean +/- SEM) in the primary motor cortex when compared with healthy controls (10.03 +/- 0.22 mM). In conclusion, the slightly decreased concentration of NAA in the primary motor cortex from...

  20. Brain metabolite levels and language abilities in preschool children.

    Science.gov (United States)

    Lebel, Catherine; MacMaster, Frank P; Dewey, Deborah

    2016-10-01

    Language acquisition occurs rapidly during early childhood and lays the foundation for future reading success. However, little is known about the brain-language relationships in young children. The goal of this study was to investigate relationships between brain metabolites and prereading language abilities in healthy preschool-aged children. Participants were 67 healthy children aged 3.0-5.4 years scanned on a 3T GE MR750w MRI scanner using short echo proton spectroscopy with a voxel placed in the anterior cingulate gyrus ( n  = 56) and/or near the left angular gyrus ( n  = 45). Children completed the NEPSY-II Phonological Processing and Speeded Naming subtests at the same time as their MRI scan. We calculated glutamate, glutamine, creatine/phosphocreatine, choline, inositol, and NAA concentrations, and correlated these with language skills. In the anterior cingulate, Phonological Processing Scaled Scores were significantly correlated with glutamate, creatine, and inositol concentrations. In the left angular gyrus, Speeded Naming Combined Scaled Scores showed trend correlations with choline and glutamine concentrations. For the first time, we demonstrate relationships between brain metabolites and prereading language abilities in young children. Our results show relationships between language and inositol and glutamate that may reflect glial differences underlying language function, and a relationship of language with creatine. The trend between Speeded Naming and choline is consistent with previous research in older children and adults; however, larger sample sizes are needed to confirm whether this relationship is indeed significant in young children. These findings help understand the brain basis of language, and may ultimately lead to earlier and more effective interventions for reading disabilities.

  1. Regional cerebral metabolic rate for glucose and cerebrospinal fluid monoamine metabolites in subacute sclerosing panencephalitis

    International Nuclear Information System (INIS)

    Yanai, Kazuhiko; Miyabayashi, Shigeaki; Iinuma, Kazuie; Tada, Keiya; Fukuda, Hiroshi; Ito, Masatoshi; Matsuzawa, Taiju.

    1987-01-01

    Regional cerebral metabolic rate for glucose (rCMRglu) and cerebrospinal fluid monoamine metabolites were measured in two cases of subacute sclerosing panencephalitis (SSPE) with different clinical courses. A marked decrease in rCMRglu was found in the cortical gray matter of a patient with rapidly developing SSPE (3.6 - 4.2 mg/100 g brain tissue/min). However, the rCMRglu was preserved in the caudate and lenticular nuclei of the patient (7.7 mg/100 g/min). The rCMRglu in a patient with slowly developing SSPE revealed patterns and values similar to those of the control. Cerebrospinal fluid monoamine metabolites ; homovanilic acid and 5-hydroxyindoleacetic acid, were decreased in both rapidly and slowly developing SSPE. These data indicated that rCMRglu correlated better with the neurological and psychological status and that dopaminergic and serotonergic abnormalities have been implicated in pathophysiology of SSPE. (author)

  2. Characterization of macromolecular baseline of human brain using metabolite cycled semi-LASER at 9.4T.

    Science.gov (United States)

    Giapitzakis, Ioannis-Angelos; Avdievich, Nikolai; Henning, Anke

    2018-08-01

    Macromolecular resonances (MM) arise mainly from cytosolic proteins and overlap with metabolites, influencing metabolite quantification. Macromolecules can serve as valuable biomarkers for diseases and pathologies. The objectives of this study were to characterize MM at 9.4T in the human brain (occipital and left parietal lobe) and to describe the RF coil setup used for MM acquisition in the two regions. An adiabatic inversion pulse was optimised for metabolite nulling at 9.4T using double inversion recovery and was combined for the first time with metabolite cycled (MC) semi-LASER and appropriate coil configuration. MM spectra (seven volunteers) from two brain locations were averaged and smoothed creating MM templates, which were then parametrized using simulated Voigt-shaped lines within LCModel. Quantification was performed on individual data sets, including corrections for different tissue composition and the T 1 and T 2 relaxation of water. Our coil configuration method resulted in efficient B1+ (>30 T/√kW) for both brain regions. The 15 MM components were detected and quantified in MM baselines of the two brain areas. No significant differences in concentration levels of MM between different regions were found. Two new MM peaks were reported (M7 & M8). Double inversion, which was combined with MC semi-LASER, enabled the acquisition of high spectral resolution MM spectra for both brain regions at 9.4T. The 15 MM components were detected and quantified. Two new MM peaks were reported for the first time (M7 & M8) and preliminarily assigned to β-methylene protons of aspartyl-groups. Magn Reson Med 80:462-473, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  3. Liquid Chromatography-Tandem Mass Spectrometry in Studies of Neurotransmitters and Their Metabolites in the Brain

    OpenAIRE

    Uutela, Päivi

    2009-01-01

    Neurotransmitters transfer chemically the electrical impulse from one neuron to another in the brain. The concentration of neurotransmitters in many neurological disorders is altered. The measurement of neurotransmitters in the brain is needed to understand how these diseases develop and how they can be treated. Neurotransmitters can be extracted from the brains of freely moving, alert animals by microdialysis technique. The concentration of neurotransmitters and their metabolites in brain mi...

  4. Radiation-induced changes in human brain metabolites as studied by {sup 1}H nuclear magnetic resonance spectroscopy in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Usenius, Taina; Usenius, Jussi-Pekka; Tenhunen, Mikko; Vainio, Pauli; Johansson, Risto; Soimakallio, Seppo; Kauppinen, Risto

    1995-10-15

    Purpose: External radiation therapy for brain tumors exposes healthy areas of brain to considerable doses of radiation. This may cause cognitive and psychological impairment, which indicate neuronal dysfunction. {sup 1}H-magnetic resonance spectroscopy (MRS) was used to study brain metabolites in the adjacent regions 0.5-13 years after exposure to therapeutic irradiation. Methods and Materials: Eight patients with irradiated brain tumors were examined by means of in vivo{sup 1}H-MRS using a point-resolved spectroscopy (PRESS) sequence with echo times of 60 or 270 ms. The metabolites were quantified by using brain water concentration as internal reference. The volume of interest (VOI) was positioned in irradiated brain areas excluding, however, scar and recurrent tumor. The respective radiation doses were measured based on radiation therapy plans, simulator films, and localization MR images. Results: The concentration of the neuron-specific metabolite N-acetyl-l-aspartate (NAA) was 13.2 {+-} 1.4 mmol/l in controls, whereas it was reduced in the brains of treated patients to 8.6 {+-} 0.9 mmol/l (total radiation dose 59-62 Gy). Concentrations of creatine and choline-containing compounds were unchanged. The T2 of water was longer in irradiated than in unexposed brain areas. Conclusion: Therapeutic brain irradiation causes neuronal damage, which is reflected by reduction of N-acetyl-l-aspartate (NAA) concentrations. {sup 1}H-MRS could serve clinically as a means of evaluating adverse effects in the central nervous system, enabling intervention and rehabilitation.

  5. Radiation-induced changes in human brain metabolites as studied by 1H nuclear magnetic resonance spectroscopy in vivo

    International Nuclear Information System (INIS)

    Usenius, Taina; Usenius, Jussi-Pekka; Tenhunen, Mikko; Vainio, Pauli; Johansson, Risto; Soimakallio, Seppo; Kauppinen, Risto

    1995-01-01

    Purpose: External radiation therapy for brain tumors exposes healthy areas of brain to considerable doses of radiation. This may cause cognitive and psychological impairment, which indicate neuronal dysfunction. 1 H-magnetic resonance spectroscopy (MRS) was used to study brain metabolites in the adjacent regions 0.5-13 years after exposure to therapeutic irradiation. Methods and Materials: Eight patients with irradiated brain tumors were examined by means of in vivo 1 H-MRS using a point-resolved spectroscopy (PRESS) sequence with echo times of 60 or 270 ms. The metabolites were quantified by using brain water concentration as internal reference. The volume of interest (VOI) was positioned in irradiated brain areas excluding, however, scar and recurrent tumor. The respective radiation doses were measured based on radiation therapy plans, simulator films, and localization MR images. Results: The concentration of the neuron-specific metabolite N-acetyl-l-aspartate (NAA) was 13.2 ± 1.4 mmol/l in controls, whereas it was reduced in the brains of treated patients to 8.6 ± 0.9 mmol/l (total radiation dose 59-62 Gy). Concentrations of creatine and choline-containing compounds were unchanged. The T2 of water was longer in irradiated than in unexposed brain areas. Conclusion: Therapeutic brain irradiation causes neuronal damage, which is reflected by reduction of N-acetyl-l-aspartate (NAA) concentrations. 1 H-MRS could serve clinically as a means of evaluating adverse effects in the central nervous system, enabling intervention and rehabilitation

  6. Detection of Normal Aging Effects on Human Brain Metabolite Concentrations and Microstructure with Whole-Brain MR Spectroscopic Imaging and Quantitative MR Imaging.

    Science.gov (United States)

    Eylers, V V; Maudsley, A A; Bronzlik, P; Dellani, P R; Lanfermann, H; Ding, X-Q

    2016-03-01

    Knowledge of age-related physiological changes in the human brain is a prerequisite to identify neurodegenerative diseases. Therefore, in this study whole-brain (1)H-MRS was used in combination with quantitative MR imaging to study the effects of normal aging on healthy human brain metabolites and microstructure. Sixty healthy volunteers, 21-70 years of age, were studied. Brain maps of the metabolites NAA, creatine and phosphocreatine, and Cho and the tissue irreversible and reversible transverse relaxation times T2 and T2' were derived from the datasets. The relative metabolite concentrations and the values of relaxation times were measured with ROIs placed within the frontal and parietal WM, centrum semiovale, splenium of the corpus callosum, hand motor area, occipital GM, putamen, thalamus, pons ventral/dorsal, and cerebellar white matter and posterior lobe. Linear regression analysis and Pearson correlation tests were used to analyze the data. Aging resulted in decreased NAA concentrations in the occipital GM, putamen, splenium of the corpus callosum, and pons ventral and decreased creatine and phosphocreatine concentrations in the pons dorsal and putamen. Cho concentrations did not change significantly in selected brain regions. T2 increased in the cerebellar white matter and decreased in the splenium of the corpus callosum with aging, while the T2' decreased in the occipital GM, hand motor area, and putamen, and increased in the splenium of the corpus callosum. Correlations were found between NAA concentrations and T2' in the occipital GM and putamen and between creatine and phosphocreatine concentrations and T2' in the putamen. The effects of normal aging on brain metabolites and microstructure are region-dependent. Correlations between both processes are evident in the gray matter. The obtained data could be used as references for future studies on patients. © 2016 by American Journal of Neuroradiology.

  7. DISTRIBUTION OF MONOAMINES AND THEIR METABOLITES IN BOTH SIDES OF THE RAT BRAIN AND ITS RELATION WITH FUNCTIONAL MOTOR ASYMMETRY

    OpenAIRE

    E.D. Morenkov; V.S. Kudrin

    2013-01-01

    The purpose of this neurochemical study was to quantitatively determine the regional distribution of monoamines (DA, 5HT, and NE) and their metabolites (DOPAC, HVA, and 5HIAA) in paired brain structures (the frontomedial cortex, hypothalamus, amygdala, hippocampus, striatum, and brainstem tegmentum) of the rat by performing HPLC/ED assays. Further, we aimed to relate these distributions to neuronal mechanisms of lateralized motor behavior. We found differences in monoamine levels and their...

  8. Non-invasive quantitation of phosphorus metabolites in human brain and brain tumors by magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Naruse, Shoji; Higuchi, Toshihiro; Horikawa, Yoshiharu; Tanaka, Chuzo; Roth, K.; Hubesch, B.; Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    In obtaining localized magnetic resonance spectra in the clinical setting, the exact determination of volume of interest (VOI), the relative sensitivity of detection within the VOI, the inhomogeneity of B 1 field, the Q factor of the coil, and saturation factors should be considered. Taking these items into account, a quantitative method for calculating the absolute amount of phosphorus metabolites was developed. Using this method, phosphorus metabolites in the brain were determined in 15 patients with brain tumors - meningioma (8) and astrocytoma (7), and 10 normal volunteers. The integrals for metabolite signals were determined by using the curve-fitting software. The concentrations for ATP, PCr, PDE, inorganic orthophosphate (Pi), and phosphomonosters (PME) were 2.5, 4.9, 11.3, 1.9 and 3.9 mM, respectively, in the normal brain. For the brain tumors, phosphorus metabolites were decreased, except for Pi and PME. These results encourage the clinical use of this method in the quantitative analysis of metabolites of the diseased brain. (Namekawa, K)

  9. In Vivo Detection of Perinatal Brain Metabolite Changes in a Rabbit Model of Intrauterine Growth Restriction (IUGR.

    Directory of Open Access Journals (Sweden)

    Rui V Simões

    Full Text Available Intrauterine growth restriction (IUGR is a risk factor for abnormal neurodevelopment. We studied a rabbit model of IUGR by magnetic resonance imaging (MRI and spectroscopy (MRS, to assess in vivo brain structural and metabolic consequences, and identify potential metabolic biomarkers for clinical translation.IUGR was induced in 3 pregnant rabbits at gestational day 25, by 40-50% uteroplacental vessel ligation in one horn; the contralateral horn was used as control. Fetuses were delivered at day 30 and weighted. A total of 6 controls and 5 IUGR pups underwent T2-w MRI and localized proton MRS within the first 8 hours of life, at 7T. Changes in brain tissue volumes and respective contributions to each MRS voxel were estimated by semi-automated registration of MRI images with a digital atlas of the rabbit brain. MRS data were used for: (i absolute metabolite quantifications, using linear fitting; (ii local temperature estimations, based on the water chemical shift; and (iii classification, using spectral pattern analysis.Lower birth weight was associated with (i smaller brain sizes, (ii slightly lower brain temperatures, and (iii differential metabolite profile changes in specific regions of the brain parenchyma. Specifically, we found estimated lower levels of aspartate and N-acetylaspartate (NAA in the cerebral cortex and hippocampus (suggesting neuronal impairment, and higher glycine levels in the striatum (possible marker of brain injury. Our results also suggest that the metabolic changes in cortical regions are more prevalent than those detected in hippocampus and striatum.IUGR was associated with brain metabolic changes in vivo, which correlate well with the neurostructural changes and neurodevelopment problems described in IUGR. Metabolic parameters could constitute non invasive biomarkers for the diagnosis and abnormal neurodevelopment of perinatal origin.

  10. Inhibiting mitochondrial β-oxidation selectively reduces levels of nonenzymatic oxidative polyunsaturated fatty acid metabolites in the brain.

    Science.gov (United States)

    Chen, Chuck T; Trépanier, Marc-Olivier; Hopperton, Kathryn E; Domenichiello, Anthony F; Masoodi, Mojgan; Bazinet, Richard P

    2014-03-01

    Schönfeld and Reiser recently hypothesized that fatty acid β-oxidation is a source of oxidative stress in the brain. To test this hypothesis, we inhibited brain mitochondrial β-oxidation with methyl palmoxirate (MEP) and measured oxidative polyunsaturated fatty acid (PUFA) metabolites in the rat brain. Upon MEP treatment, levels of several nonenzymatic auto-oxidative PUFA metabolites were reduced with few effects on enzymatically derived metabolites. Our finding confirms the hypothesis that reduced fatty acid β-oxidation decreases oxidative stress in the brain and β-oxidation inhibitors may be a novel therapeutic approach for brain disorders associated with oxidative stress.

  11. [11C]Flumazenil metabolite measurement in plasma is not necessary for accurate brain benzodiazepine receptor quantification

    International Nuclear Information System (INIS)

    Sanabria-Bohorquez, S.M.; Veraart, C.; Labar, D.; Bol, A.; Volder, A.G. de; Michel, C.; Leveque, P.

    2000-01-01

    In this work, a mathematical correction for metabolites has been validated which estimates the relative amount of [ 11 C]flumazenil ([ 11 C]FMZ) in the total plasma curve from the tissue kinetic data without the need for direct metabolite measurement in blood plasma samples. Kinetic data were obtained using a 90-min three-injection protocol on five normal volunteers. First, the relative amount of [ 11 C]FMZ in plasma was modelled by a two-parameter exponential function. The parameters were estimated either directly by fitting this model to the blood plasma metabolite measurements, or indirectly from the simultaneous fitting of tissue time activity curves from several brain regions with a non-linear FMZ kinetic model. Second, the direct and indirect metabolite corrections were fixed and the FMZ compartmental parameters were determined on a regional basis in the brain. The validation was performed by comparing the regional values of benzodiazepine receptor density B max and equilibrium dissociation constant K d obtained with the direct metabolite correction with those values obtained with the indirect correction. For B max , the correlation coefficient r 2 was above 0.97 for all subjects and the slope values of the linear regression were within the interval [0.97, 1.2]. For K d , r 2 was above 0.96, and the slope values of the linear regression were within the interval [0.99, 1.1]. Simulation studies were performed in order to evaluate whether this metabolite correction method could be used in a clinical protocol where only a single [ 11 C]FMZ injection and a linear compartmental model are used. The resulting [ 11 C]FMZ distribution volume estimates were found to be linearly correlated with the true values, with r 2 =1.0 and a slope value of 1.1. The mathematical metabolite correction proved to be a feasible and reliable method to estimate the relative amount of [ 11 C]FMZ in plasma and the compartmental model parameters for three-injection protocols. Although

  12. Depression of brain dopamine and its metabolite after mating in European honeybee (Apis mellifera) queens

    Science.gov (United States)

    Harano, Ken-Ichi; Sasaki, Ken; Nagao, Takashi

    2005-07-01

    To explore neuro-endocrinal changes in the brain of European honeybee (Apis mellifera) queens before and after mating, we measured the amount of several biogenic amines, including dopamine and its metabolite in the brain of 6- and 12-day-old virgins and 12-day-old mated queens. Twelve-day-old mated queens showed significantly lower amounts of dopamine and its metabolite (N-acetyldopamine) than both 6- and 12-day-old virgin queens, whereas significant differences in the amounts of these amines were not detected between 6- and 12-day-old virgin queens. These results are explained by down-regulation of both synthesis and secretion of brain dopamine after mating. It is speculated that higher amounts of brain dopamine in virgin queens might be involved in activation of ovarian follicles arrested in previtellogenic stages, as well as regulation of their characteristic behaviors.

  13. Regional magnetic resonance spectroscopy of the brain in autistic individuals

    International Nuclear Information System (INIS)

    Hisaoka, S.; Harada, M.; Nishitani, H.; Mori, K.

    2001-01-01

    We studied the variations in the concentration of metabolites with brain region and age in autistic individuals and normal controls using multiple analysis of covariance. We examined 55 autistic individuals (2-21 years old, 47 male and eight female) and 51 normal children (3 months-15 years old, 26 boys and 25 girls). Single volumes of interest were placed in the frontal, parietal and temporal region on both sides, the brain stem and cingulate gyrus. The concentration of each metabolite was quantified by the water reference method. The concentration of N-acetylaspartate in the temporal regions (Brodmann's areas 41 and 42) in the autistic individuals were significantly lower than those in the controls (P < 0.05), but concentrations in other regions were not significantly different between the autistic individuals and controls. This suggests low density or dysfunction of neurones in Brodmann's areas 41 and 42 in autistic individual, which might be related to the disturbances of the sensory speech centre (Wernicke's area) in autism. (orig.)

  14. Regional magnetic resonance spectroscopy of the brain in autistic individuals

    Energy Technology Data Exchange (ETDEWEB)

    Hisaoka, S; Harada, M; Nishitani, H [Dept. of Radiology, School of Medicine, University of Tokushima (Japan); Mori, K [Dept. of Paediatrics, School of Medicine, University of Tokushima (Japan)

    2001-06-01

    We studied the variations in the concentration of metabolites with brain region and age in autistic individuals and normal controls using multiple analysis of covariance. We examined 55 autistic individuals (2-21 years old, 47 male and eight female) and 51 normal children (3 months-15 years old, 26 boys and 25 girls). Single volumes of interest were placed in the frontal, parietal and temporal region on both sides, the brain stem and cingulate gyrus. The concentration of each metabolite was quantified by the water reference method. The concentration of N-acetylaspartate in the temporal regions (Brodmann's areas 41 and 42) in the autistic individuals were significantly lower than those in the controls (P < 0.05), but concentrations in other regions were not significantly different between the autistic individuals and controls. This suggests low density or dysfunction of neurones in Brodmann's areas 41 and 42 in autistic individual, which might be related to the disturbances of the sensory speech centre (Wernicke's area) in autism. (orig.)

  15. Regional magnetic resonance spectroscopy of the brain in autistic individuals

    Energy Technology Data Exchange (ETDEWEB)

    Hisaoka, S.; Harada, M.; Nishitani, H. [Dept. of Radiology, School of Medicine, University of Tokushima (Japan); Mori, K. [Dept. of Paediatrics, School of Medicine, University of Tokushima (Japan)

    2001-06-01

    We studied the variations in the concentration of metabolites with brain region and age in autistic individuals and normal controls using multiple analysis of covariance. We examined 55 autistic individuals (2-21 years old, 47 male and eight female) and 51 normal children (3 months-15 years old, 26 boys and 25 girls). Single volumes of interest were placed in the frontal, parietal and temporal region on both sides, the brain stem and cingulate gyrus. The concentration of each metabolite was quantified by the water reference method. The concentration of N-acetylaspartate in the temporal regions (Brodmann's areas 41 and 42) in the autistic individuals were significantly lower than those in the controls (P < 0.05), but concentrations in other regions were not significantly different between the autistic individuals and controls. This suggests low density or dysfunction of neurones in Brodmann's areas 41 and 42 in autistic individual, which might be related to the disturbances of the sensory speech centre (Wernicke's area) in autism. (orig.)

  16. Faster metabolite (1H transverse relaxation in the elder human brain.

    Directory of Open Access Journals (Sweden)

    Małgorzata Marjańska

    Full Text Available (1H magnetic resonance spectroscopy (MRS is unique among imaging modalities because signals from several metabolites are measured during a single examination period. Each metabolite reflects a distinct intracellular process. Furthermore transverse (T2 relaxation times probe the viability of the cell microenvironment, e.g., the viscosity of the cellular fluids, the microscopic susceptibility distribution within the cells, and the iron content. In this study, T2s of brain metabolites were measured in the occipital lobe of eighteen young and fourteen elderly subjects at a field strength of 4 tesla. The T2s of N-acetylaspartate, total creatine, and total choline were 23%, 16% and 10% shorter in elderly than in young subjects. The findings of this study suggest that noninvasive detection of T2 provides useful biological information on changes in the cellular microenvironment that take place during aging.

  17. Disposition of naphthalene and its metabolites in the brain of rainbow trout (Salmo gairdneri)

    International Nuclear Information System (INIS)

    Collier, T.K.; Krahn, M.M.; Malins, D.C.

    1980-01-01

    Rainbow trout (Salmo gairdneri) were exposed to orally administered [ 3 H]naphthalene. Another group received naphthyl glucuronic acid and naphthyl sulfate via iv injection. Brain, liver, and blood were assayed for the parent compound and/or total metabolites. Individual naphthalene derivatives were determined by high-performance liquid chromatography (hplc) using either radiometric or on-line fluorimetric detection systems. Naphthalene concentrations in brain (8.2 pmol/mg dry wt at 16 hr after feeding) approximated those found at the same time in liver (7.4 pmol/mg dry wt). A nonconjugated naphthalene derivative, 1,2-dihydro-1,2-dihydroxynaphthalene, also accumulated in brain (0.041 pmol/mg dry wt after 16 hr), although to a lesser degree than in liver (0.10 pmol/mg dry wt after 16 hr). Conjugated naphthalene derivatives, 1-naphthyl sulfate and 1-naphthyl glucuronic acid, although present in liver and blood, were largely excluded from the brain. Low naphthalene hydroxylase activity (<2.0 pmol product formed/mg protein/min) indicated that the trout brain has a minimal ability to oxidize aromatic hydrocarbons. These findings suggest that the brain of adult trout is substantially different from other tissues (e.g., liver and blood) with respect to the disposition of naphthalene and its metabolites

  18. Influence of neonatal vitamin A or vitamin D treatment on the concentration of biogenic amines and their metabolites in the adult rat brain.

    Science.gov (United States)

    Tekes, K; Gyenge, M; Folyovich, A; Csaba, G

    2009-04-01

    Newborn male rats were treated with a single dose of 3 mg vitamin A (retinol) or 0.05 mg vita-min D (cholecalciferol), and three months later five brain regions (frontopolar cortex, hypothalamus, hippocampus, striatum, and brainstem) were studied for tissue levels of dopamine (DA), serotonin (5HT), and metabolites such as homovanillic acid (HVA), as well as 5-hydroxyindole-3-acetic acid (5HIAA). Vitamin A treatment as hormonal imprinting significantly decreased 5HIAA levels in each brain region. Vitamin D imprinting significantly elevated DA only in the brainstem and HVA levels in striatum and hypothalamus. Present and earlier brain-imprinting results (with brain-produced substances), show that the profound and life-long effect of neonatal hormonal imprinting on neurotransmitter production of the adult brain seems to be well established. As prophylactic treatment with these vitamins is frequent in the perinatal period, the imprinting effect of vitamin A and vitamin D must be taken into consideration.

  19. Short- and long-term quantitation reproducibility of brain metabolites in the medial wall using proton echo planar spectroscopic imaging.

    Science.gov (United States)

    Tsai, Shang-Yueh; Lin, Yi-Ru; Wang, Woan-Chyi; Niddam, David M

    2012-11-15

    Proton echo planar spectroscopic imaging (PEPSI) is a fast magnetic resonance spectroscopic imaging (MRSI) technique that allows mapping spatial metabolite distributions in the brain. Although the medial wall of the cortex is involved in a wide range of pathological conditions, previous MRSI studies have not focused on this region. To decide the magnitude of metabolic changes to be considered significant in this region, the reproducibility of the method needs to be established. The study aims were to establish the short- and long-term reproducibility of metabolites in the right medial wall and to compare regional differences using a constant short-echo time (TE30) and TE averaging (TEavg) optimized to yield glutamatergic information. 2D sagittal PEPSI was implemented at 3T using a 32 channel head coil. Acquisitions were repeated immediately and after approximately 2 weeks to assess the coefficients of variation (COV). COVs were obtained from eight regions-of-interest (ROIs) of varying size and location. TE30 resulted in better spectral quality and similar or lower quantitation uncertainty for all metabolites except glutamate (Glu). When Glu and glutamine (Gln) were quantified together (Glx) reduced quantitation uncertainty and increased reproducibility was observed for TE30. TEavg resulted in lowered quantitation uncertainty for Glu but in less reliable quantification of several other metabolites. TEavg did not result in a systematically improved short- or long-term reproducibility for Glu. The ROI volume was a major factor influencing reproducibility. For both short- and long-term repetitions, the Glu COVs obtained with TEavg were 5-8% for the large ROIs, 12-17% for the medium sized ROIs and 16-26% for the smaller cingulate ROIs. COVs obtained with TE30 for the less specific Glx were 3-5%, 8-10% and 10-15%. COVs for N-acetyl aspartate, creatine and choline using TE30 with long-term repetition were between 2-10%. Our results show that the cost of more specific

  20. Accurate determination of brain metabolite concentrations using ERETIC as external reference.

    Science.gov (United States)

    Zoelch, Niklaus; Hock, Andreas; Heinzer-Schweizer, Susanne; Avdievitch, Nikolai; Henning, Anke

    2017-08-01

    Magnetic Resonance Spectroscopy (MRS) can provide in vivo metabolite concentrations in standard concentration units if a reliable reference signal is available. For 1 H MRS in the human brain, typically the signal from the tissue water is used as the (internal) reference signal. However, a concentration determination based on the tissue water signal most often requires a reliable estimate of the water concentration present in the investigated tissue. Especially in clinically interesting cases, this estimation might be difficult. To avoid assumptions about the water in the investigated tissue, the Electric REference To access In vivo Concentrations (ERETIC) method has been proposed. In this approach, the metabolite signal is compared with a reference signal acquired in a phantom and potential coil-loading differences are corrected using a synthetic reference signal. The aim of this study, conducted with a transceiver quadrature head coil, was to increase the accuracy of the ERETIC method by correcting the influence of spatial B 1 inhomogeneities and to simplify the quantification with ERETIC by incorporating an automatic phase correction for the ERETIC signal. Transmit field ( B1+) differences are minimized with a volume-selective power optimization, whereas reception sensitivity changes are corrected using contrast-minimized images of the brain and by adapting the voxel location in the phantom measurement closely to the position measured in vivo. By applying the proposed B 1 correction scheme, the mean metabolite concentrations determined with ERETIC in 21 healthy subjects at three different positions agree with concentrations derived with the tissue water signal as reference. In addition, brain water concentrations determined with ERETIC were in agreement with estimations derived using tissue segmentation and literature values for relative water densities. Based on the results, the ERETIC method presented here is a valid tool to derive in vivo metabolite

  1. Effect of diet on brain metabolites and behavior in spontaneously hypertensive rats.

    Science.gov (United States)

    Liso Navarro, Ana A; Sikoglu, Elif M; Heinze, Cailin R; Rogan, Ryan C; Russell, Vivienne A; King, Jean A; Moore, Constance M

    2014-08-15

    Attention-deficit hyperactivity disorder (ADHD) is a heterogeneous psychiatric disorder affecting 5-10% of children. One of the suggested mechanisms underlying the pathophysiology of ADHD is insufficient energy supply to neurons. Here, we investigated the role of omega 3 fatty acids in altering neural energy metabolism and behavior of spontaneously hypertensive rats (SHR), which is an animal model of ADHD. To this end, we employed Proton Magnetic Resonance Spectroscopy ((1)H MRS) to evaluate changes in brain neurochemistry in the SHR following consumption of one of three experimental diets (starting PND 21): fish oil enriched (FOE), regular (RD) and animal fat enriched (AFE) diet. Behavioral tests were performed to evaluate differences in locomotor activity and risk-taking behavior (starting PND 44). Comparison of frontal lobe metabolites showed that increased amounts of omega 3 fatty acids decreased total Creatine levels (tCr), but did not change Glutamate (Glu), total N-Acetylaspartate (tNAA), Lactate (Lac), Choline (Cho) or Inositol (Ino) levels. Although behavior was not significantly affected by different diets, significant correlations were observed between brain metabolites and behavior in the open field and elevated plus maze. SHR with higher levels of brain tCr and Glu exhibited greater hyperactivity in a familiar environment. On the other hand, risk-taking exploration of the elevated plus maze's open arms correlated negatively with forebrain tNAA and Lac levels. These findings support the possible alteration in energy metabolites in ADHD, correlating with hyperactivity in the animal model. The data also suggest that omega 3 fatty acids alter brain energy and phospholipid metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Effects of Various Kynurenine Metabolites on Respiratory Parameters of Rat Brain, Liver and Heart Mitochondria

    Directory of Open Access Journals (Sweden)

    Halina Baran*

    2016-01-01

    Full Text Available Previously, we demonstrated that the endogenous glutamate receptor antagonist kynurenic acid dose-dependently and significantly affected rat heart mitochondria. Now we have investigated the effects of L-tryptophan, L-kynurenine, 3-hydroxykynurenine and kynurenic, anthranilic, 3-hydroxyanthranilic, xanthurenic and quinolinic acids on respiratory parameters (ie, state 2, state 3, respiratory control index (RC and ADP/oxygen ratio in brain, liver and heart mitochondria of adult rats. Mitochondria were incubated with glutamate/malate (5 mM or succinate (10 mM and in the presence of L-tryptophan metabolites (1 mM or in the absence, as control. Kynurenic and anthranilic acids significantly reduced RC values of heart mitochondria in the presence of glutamate/malate. Xanthurenic acid significantly reduced RC values of brain mitochondria in the presence of glutamate/malate. Furthermore, 3-hydroxykynurenine and 3-hydroxyanthranilic acid decreased RC values of brain, liver and heart mitochondria using glutamate/malate. In the presence of succinate, 3-hydroxykynurenine and 3-hydroxyanthranilic acid affected RC values of brain mitochondria, whereas in liver and heart mitochondria only 3-hydroxykynurenine lowered RC values significantly. Furthermore, lowered ADP/oxygen ratios were observed in brain mitochondria in the presence of succinate with 3-hydroxykynurenine and 3-hydroxyanthranilic acid, and to a lesser extent with glutamate/malate. In addition, 3-hydroxyanthranilic acid significantly lowered the ADP/oxygen ratio in heart mitochondria exposed to glutamate/malate, while in the liver mitochondria only a mild reduction was found. Tests of the influence of L-tryptophan and its metabolites on complex I in liver mitochondria showed that only 3-hydroxykynurenine, 3-hydroxyanthranilic acid and L-kynurenine led to a significant acceleration of NADH-driven complex I activities. The data indicate that L-tryptophan metabolites had different effects on brain, liver

  3. Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: A 1H-MRS study

    International Nuclear Information System (INIS)

    Reyngoudt, Harmen; Claeys, Tom; Vlerick, Leslie; Verleden, Stijn; Acou, Marjan; Deblaere, Karel; De Deene, Yves; Audenaert, Kurt; Goethals, Ingeborg; Achten, Eric

    2012-01-01

    Objective: To study age-related metabolic changes in N-acetylaspartate (NAA), total creatine (tCr), choline (Cho) and myo-inositol (Ins). Materials and methods: Proton magnetic resonance spectroscopy ( 1 H-MRS) was performed in the posterior cingulate cortex (PCC) and the left hippocampus (HC) of 90 healthy subjects (42 women and 48 men aged 18–76 years, mean ± SD, 48.4 ± 16.8 years). Both metabolite ratios and absolute metabolite concentrations were evaluated. Analysis of covariance (ANCOVA) and linear regression were used for statistical analysis. Results: Metabolite ratios Ins/tCr and Ins/H 2 O were found significantly increased with age in the PCC (P 2 O was only observed in the PCC (P 1 H-MRS results in these specific brain regions can be important to differentiate normal ageing from age-related pathologies such as mild cognitive impairment (MCI) and Alzheimer's disease.

  4. Detection of Amide and Aromatic Proton Resonances of Human Brain Metabolites Using Localized Correlated Spectroscopy Combined with Two Different Water Suppression Schemes

    Directory of Open Access Journals (Sweden)

    Rajakumar Nagarajan

    2010-01-01

    Full Text Available The purpose of the study was to demonstrate the J-coupling connectivity network between the amide, aliphatic, and aromatic proton resonances of metabolites in human brain using two-dimensional (2D localized correlated spectroscopy (L-COSY. Two different global water suppression techniques were combined with L-COSY, one before and another after localizing the volume of interest (VOI. Phantom solutions containing several cerebral metabolites at physiological concentrations were evaluated initially for sequence optimization. Nine healthy volunteers were scanned using a 3T whole body MRI scanner. The VOI for 2D L-COSY was placed in the right occipital white/gray matter region. The 2D cross and diagonal peak volumes were measured for several metabolites such as N-acetyl aspartate (NAA, creatine (Cr, free choline (Ch, glutamate/glutamine (Glx, aspartate (Asp, myo-inositol (mI, GABA, glutathione (GSH, phosphocholine (PCh, phosphoethanolamine (PE, tyrosine (Tyr, lactate (Lac, macromolecules (MM and homocarnosine (Car. Using the pre-water suppression technique with L-COSY, the above mentioned metabolites were clearly identifiable and the relative ratios of metabolites were calculated. In addition to detecting multitude of aliphatic resonances in the high field region, we have demonstrated that the amide and aromatic resonances can also be detected using 2D L-COSY by pre water suppression more reliably than the post-water suppression.

  5. Influence of O-methylated metabolite penetrating the blood-brain barrier to estimation of dopamine synthesis capacity in human L-[β-(11)C]DOPA PET.

    Science.gov (United States)

    Matsubara, Keisuke; Ikoma, Yoko; Okada, Maki; Ibaraki, Masanobu; Suhara, Tetsuya; Kinoshita, Toshibumi; Ito, Hiroshi

    2014-02-01

    O-methyl metabolite (L-[β-(11)C]OMD) of (11)C-labeled L-3,4-dihydroxyphenylalanine (L-[β-(11)C]DOPA) can penetrate into brain tissue through the blood-brain barrier, and can complicate the estimation of dopamine synthesis capacity by positron emission tomography (PET) study with L-[β-(11)C]DOPA. We evaluated the impact of L-[β-(11)C]OMD on the estimation of the dopamine synthesis capacity in a human L-[β-(11)C]DOPA PET study. The metabolite correction with mathematical modeling of L-[β-(11)C]OMD kinetics in a reference region without decarboxylation and further metabolism, proposed by a previous [(18)F]FDOPA PET study, were implemented to estimate radioactivity of tissue L-[β-(11)C]OMD in 10 normal volunteers. The component of L-[β-(11)C]OMD in tissue time-activity curves (TACs) in 10 regions were subtracted by the estimated radioactivity of L-[β-(11)C]OMD. To evaluate the influence of omitting blood sampling and metabolite correction, relative dopamine synthesis rate (kref) was estimated by Gjedde-Patlak analysis with reference tissue input function, as well as the net dopamine synthesis rate (Ki) by Gjedde-Patlak analysis with the arterial input function and TAC without and with metabolite correction. Overestimation of Ki was observed without metabolite correction. However, the kref and Ki with metabolite correction were significantly correlated. These data suggest that the influence of L-[β-(11)C]OMD is minimal for the estimation of kref as dopamine synthesis capacity.

  6. Quantitative analysis of brain metabolites concentrations using MR spectroscopy in acute hypoxia ischemic encephalopathy

    International Nuclear Information System (INIS)

    Xiao Yeyu; Wang HaiYu; Shen Zhiwei; Lin Yan; Chen Yaowen; Xiao Gang; Wu Renhua

    2010-01-01

    Objective: To evaluate the absolute quantification of brain metabolites concentrations using external standard MRS in acute hypoxia ischemia encephalopathy (HIE) piglet model. Method: Eight 7-day-old healthy piglets were subjected to insult of hypoxia ischemia (HI). The animals and an external standard phantom containing detectable metabolites of known concentrations were studied on a 1.5 T GE Signa scanner. The single-voxel proton magnetic resonance spectroscopy ( 1 H-MRS) data were processed using LCModel software, and the quantification of N-acetylaspartate (NAA), creatine (Cr) and lactate (Lac) were accomplished. Multivariate analysis of variance was performed to compare the NAA, Cr, Lac concentration differences in the brains of piglets pre- and post-HI (0h). In addition, the dynamic changes of brain metabolites concentrations of 2 HIE piglets were observed at the time points of 0 h and 2 h. Results: One piglet was excluded because it was over anesthetized to death. Seven piglets' data were analyzed. The concentrations of NAA pre- and post-HI were (6.86±0.49) mmol/kg and (5.73±0.88) mmol/kg respectively, they were (4.65±0.73) mmol/kg and (4.40±0.80) mmol/kg for Cr; and were 0.00 mmol/kg and (0.43±0.39) mmol/kg for Lac. After HI, decreased NAA concentration immediately was observed, and it was of statistical significance (F=8.608, P=0.013). The concentration of Cr was insignificantly decreased (F=0.379, P=0.550). The concentration of Lac was increased, and the difference was of statistical significance (F=8.600, P=0.013). Dynamic observation showed a Lac peak immediately after HI and it decreased after 2 h post-HI. Conclusions: External standard MRS using LCModel has great value in the quantitative analysis of brain metabolites. The changes of NAA and Lac concentrations are sensitive to reflect the early metabolic change of acute HIE. (authors)

  7. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    Energy Technology Data Exchange (ETDEWEB)

    Doormaal, Pieter Jan van [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Division of Neonatology, Groningen (Netherlands); Meander Medical Center Amersfoort, Department of Radiology, PO Box 1502, Amersfoort (Netherlands); Meiners, Linda C.; Sijens, Paul E. [University Medical Center Groningen and University of Groningen, Department of Radiology, Groningen (Netherlands); Horst, Hendrik J. ter; Veere, Christa N. van der [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Division of Neonatology, Groningen (Netherlands)

    2012-04-15

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and grey matter metabolites in a slab cranial to the ventricles and relate these to the outcome. A standard 2D-chemical shift imaging protocol was used for measuring a transverse volume of interest located cranial to the ventricles allowing for direct comparison of the metabolites in white and grey matter brain tissue in 24 term asphyxiated newborns aged 3 to 16 days. Cho, NAA and Lact showed significant differences between four subgroups of asphyxiated infants with more and less favourable outcomes. High levels of Cho and Lact in the grey matter differentiated non-survivors from survivors (P = 0.003 and P = 0.017, respectively). In perinatal asphyxia the levels of Cho, NAA and Lact in both white and grey matter brain tissue are affected. The levels of Cho and Lact measured in the grey matter are the most indicative of survival. It is therefore advised to include grey matter brain tissue in the region of interest examined by multivoxel MR spectroscopy. (orig.)

  8. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    International Nuclear Information System (INIS)

    Doormaal, Pieter Jan van; Meiners, Linda C.; Sijens, Paul E.; Horst, Hendrik J. ter; Veere, Christa N. van der

    2012-01-01

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and grey matter metabolites in a slab cranial to the ventricles and relate these to the outcome. A standard 2D-chemical shift imaging protocol was used for measuring a transverse volume of interest located cranial to the ventricles allowing for direct comparison of the metabolites in white and grey matter brain tissue in 24 term asphyxiated newborns aged 3 to 16 days. Cho, NAA and Lact showed significant differences between four subgroups of asphyxiated infants with more and less favourable outcomes. High levels of Cho and Lact in the grey matter differentiated non-survivors from survivors (P = 0.003 and P = 0.017, respectively). In perinatal asphyxia the levels of Cho, NAA and Lact in both white and grey matter brain tissue are affected. The levels of Cho and Lact measured in the grey matter are the most indicative of survival. It is therefore advised to include grey matter brain tissue in the region of interest examined by multivoxel MR spectroscopy. (orig.)

  9. Evolution of brain region volumes during artificial selection for relative brain size.

    Science.gov (United States)

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-12-01

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  10. Distribution of physostigmine and metabolites in brain subcellular fractions of the rat

    International Nuclear Information System (INIS)

    King, B.F.; Somani, S.M.

    1987-01-01

    The distribution of 3 H-physostigmine (Phy) has been studied in the rat brain subcellular fractions at various time intervals following i.v. injection. 3 H-Phy or its metabolites rapidly accumulate into the cytoplasm of cells and penetrates the intracellular compartments. Kinetic studies of the subcellular distribution of radioactivity (RA) per gm of rat brain following i.v. injection of 3 H-Phy show peak concentrations at 30 min in all subcellular fractions with the exception of mitochondria. In the mitochondrial fraction the RA levels continue to rise from 4682 +/- 875 DPM/gm at 5 min to 27,474 +/- 2825 DPM/gm at 60 min (P < .05). The cytosol contains the highest RA: 223,341 +/- 21,044 DPM/gm at 30 min which declined to 53,475 +/- 3756 DPM/gm at 60 min. RA in synaptosome, microsomes and myelin increases from 5 to 30 min, and declines at 60 min. In vitro studies did not show a greater uptake of RA by the mitochondrial or synaptosomal fractions. The finding of relatively high concentrations of RA in the mitochondrial fraction at 60 min increases the likelihood that Phy or its metabolites could interfere with the physiological function of the organelle. 21 references, 1 figure, 2 tables

  11. Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites

    Science.gov (United States)

    Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source. PMID:22163194

  12. 1H magnetic resonance spectroscopy metabolite profiles of neonatal rat hippocampus and brainstem regions following early postnatal exposure to intermittent hypoxia

    Science.gov (United States)

    Darnall, Robert A.; Chen, Xi; Nemani, Krishnamurthy V.; Sirieix, Chrystelle M.; Gimi, Barjor

    2017-03-01

    Most premature infants born at less than 30 weeks gestation are exposed to periods of mild intermittent hypoxia (IH) associated with apnea of prematurity and periodic breathing. In adults, IH associated with sleep apnea causes neurochemical and structural alterations in the brain. However, it is unknown whether IH in the premature infant leads to neurodevelopmental impairment. Quantification of biochemical markers that can precisely identify infants at risk of adverse neurodevelopmental outcome is essential. In vivo 1H magnetic resonance spectroscopy (1H MRS) facilitates the quantification of metabolites from distinct regions of the developing brain. We report the changes in metabolite profiles in the brainstem and hippocampal regions of developing rat brains, resulting from exposure to IH. Rat pups were chosen for study because there is rapid postnatal hippocampal development that occurs during the first 4 weeks in the developing rat brain, which corresponds to the first 2-3 postnatal years of development in humans. The brainstem was examined because of our interest in respiratory control disorders in the newborn and because of brainstem gliosis described in infants who succumb to Sudden Infant Death Syndrome (SIDS). Metabolite profiles were compared between hypoxia treated rat pups (n = 9) and normoxic controls (n = 6). Metabolite profiles were acquired using the Point-RESolved spectroscopy (PRESS) MRS sequence and were quantified using the TARQUIN software. There was a significant difference in the concentrations of creatine (p = 0.031), total creatine (creatine + phosphocreatine) (p = 0.028), and total choline (p = 0.001) in the brainstem, and glycine (p = 0.031) in the hippocampal region. The changes are consistent with altered cellular bioenergetics and metabolism associated with hypoxic insult.

  13. Brain metabolite changes on proton magnetic resonance spectroscopy in children with poorly controlled type 1 diabetes mellitus

    International Nuclear Information System (INIS)

    Sarac, K.; Alkan, A.; Baysal, T.; Akinci, A.; Aslan, M.; Oezcan, C.

    2005-01-01

    The metabolite changes in the brains of children with poorly controlled type 1 diabetes mellitus (DM) were investigated by proton magnetic resonance spectroscopy (MRS). A total of 30 subjects and 14 age-matched healthy volunteers underwent single-voxel MRS (TE: 136). The duration of disease, medication, presence of hypoglycaemia episodes and the level of haemoglobin A1C (HbA1C) in the patients were noted. Voxels were placed in the pons, left basal ganglion (LBG) and left posterior parietal white matter (PPWM). N-acetylaspartate (NAA)/creatinine (Cr) and choline (Cho)/Cr ratios were calculated. The average HbA1c level was 11.9±3.4 (8.2-19.4). The average number of keto-acidosis episodes was 1.9±2.2 (0-9) and the average number of daily insulin injections was 2.8±0.97 (2-4). MRS revealed lower NAA/Cr and Cho/Cr ratios in the pons and lower NAA/Cr ratio in the PPWM of patients with DM than in control subjects. No significant correlation was observed between the number of hypoglycaemia episodes and metabolite ratios. Metabolic abnormalities have been observed by MRS in the brain of poorly controlled type 1 DM children. These metabolic changes, in particular in the pons region, include a decrease in NAA, indicating neuronal loss or functional impairment, and likely explanations for a decrease in Cho may be dynamic changes in membrane lipids and/or decreased membrane turnover. (orig.)

  14. Brain metabolite changes on proton magnetic resonance spectroscopy in children with poorly controlled type 1 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Sarac, K.; Alkan, A.; Baysal, T. [Inonu University School of Medicine, Department of Radiology, Malatya (Turkey); Akinci, A.; Aslan, M. [Inonu University School of Medicine, Department of Paediatric Endocrinology, Malatya (Turkey); Oezcan, C. [Inonu University School of Medicine, Department of Neurology, Malatya (Turkey)

    2005-07-01

    The metabolite changes in the brains of children with poorly controlled type 1 diabetes mellitus (DM) were investigated by proton magnetic resonance spectroscopy (MRS). A total of 30 subjects and 14 age-matched healthy volunteers underwent single-voxel MRS (TE: 136). The duration of disease, medication, presence of hypoglycaemia episodes and the level of haemoglobin A1C (HbA1C) in the patients were noted. Voxels were placed in the pons, left basal ganglion (LBG) and left posterior parietal white matter (PPWM). N-acetylaspartate (NAA)/creatinine (Cr) and choline (Cho)/Cr ratios were calculated. The average HbA1c level was 11.9{+-}3.4 (8.2-19.4). The average number of keto-acidosis episodes was 1.9{+-}2.2 (0-9) and the average number of daily insulin injections was 2.8{+-}0.97 (2-4). MRS revealed lower NAA/Cr and Cho/Cr ratios in the pons and lower NAA/Cr ratio in the PPWM of patients with DM than in control subjects. No significant correlation was observed between the number of hypoglycaemia episodes and metabolite ratios. Metabolic abnormalities have been observed by MRS in the brain of poorly controlled type 1 DM children. These metabolic changes, in particular in the pons region, include a decrease in NAA, indicating neuronal loss or functional impairment, and likely explanations for a decrease in Cho may be dynamic changes in membrane lipids and/or decreased membrane turnover. (orig.)

  15. Tartrazine induced neurobiochemical alterations in rat brain sub-regions.

    Science.gov (United States)

    Bhatt, Diksha; Vyas, Krati; Singh, Shakuntala; John, P J; Soni, Inderpal

    2018-03-01

    Tartrazine is a synthetic lemon yellow azo dye primarily used as a food coloring. The present study aimed to screen the neurobiochemical effects of Tartrazine in Wistar rats after administering the Acceptable Daily Intake (ADI) level. Tartrazine (7.5 mg/kg b.w.) was administered to 21 day old weanling rats through oral gavage once daily for 40 consecutive days. On 41st day, the animals were sacrificed and brain sub regions namely, frontal cortex, corpus striatum, hippocampus and cerebellum were used to determine activities of anti-oxidant enzymes viz. Superoxide Dismutase (SOD), Catalase (CAT), Glutathione-Stransferase (GST), Glutathione Reductase (GR) and Glutathione Peroxidase (GPx) and levels of lipid peroxides using Thio-barbituric Acid Reactive Substance (TBARS) assay. Our investigation showed a significant decrease in SOD and CAT activity, whereas there occurred a decline in GST and GR activity with an increase in GPx activity to counteract the oxidative damage caused by significantly increased levels of lipid peroxides. The possible mechanism of this oxidative damage might be attributed to the production of sulphanilc acid as a metabolite in azofission of tartrazine. It may be concluded that the ADI levels of food azo dyes adversely affect and alter biochemical markers of brain tissue and cause oxidative damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Spatially localized 1H NMR spectra of metabolites in the human brain

    International Nuclear Information System (INIS)

    Hanstock, C.C.; Rothman, D.L.; Jue, T.; Shulman, R.G.; Prichard, J.W.

    1988-01-01

    Using a surface coil, the authors have obtained 1 H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. 1 H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was ∼0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM

  17. Distribution of trans-resveratrol and its metabolites after acute or sustained administration in mouse heart, brain, and liver.

    Science.gov (United States)

    Menet, Marie-Claude; Baron, Stephanie; Taghi, Meryam; Diestra, Remi; Dargère, Delphine; Laprévote, Olivier; Nivet-Antoine, Valérie; Beaudeux, Jean-Louis; Bédarida, Tatiana; Cottart, Charles-Henry

    2017-08-01

    Trans-resveratrol is widely studied for its potentially beneficial effects on numerous disorders. It is rapidly metabolized and its metabolites can exhibit biological activity. The present study aimed to investigate whether acute or sustained trans-resveratrol administration impacted on the distribution of trans-resveratrol and its metabolites in brain, heart, and liver. We used ultra-HPLC quadrupole-TOF (UHPLC-Q-TOF) in a full-scan mode to identify and assess large numbers of resveratrol metabolites. For acute intake, mice were overfed with a single dose of trans-resveratrol (150 mg/kg) and organs were collected after 30 and 60 min. For sustained intake, trans-resveratrol was given in the chow (0.04% w/w corresponding to 40 mg/kg/day), and plasma and the organs were collected after 3 months of this resveratrol diet. We found that trans-resveratrol-3-O-glucuronide and resveratrol-3-sulfate were the main metabolites found after acute intake, and free trans-resveratrol (in the brain and heart) and dihydroresveratrol derivatives were found after sustained administration CONCLUSIONS: Our results show notable differences between acute and sustained administration of trans-resveratrol and distribution of trans-resveratrol and its metabolites in mouse heart, brain, and liver. The results suggest a strategy for development of galenic forms of resveratrol. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function.

    Science.gov (United States)

    Kennedy, David O; Wightman, Emma L

    2011-01-01

    Humans consume a wide range of foods, drugs, and dietary supplements that are derived from plants and which modify the functioning of the central nervous sytem (CNS). The psychoactive properties of these substances are attributable to the presence of plant secondary metabolites, chemicals that are not required for the immediate survival of the plant but which are synthesized to increase the fitness of the plant to survive by allowing it to interact with its environment, including pathogens and herbivorous and symbiotic insects. In many cases, the effects of these phytochemicals on the human CNS might be linked either to their ecological roles in the life of the plant or to molecular and biochemical similarities in the biology of plants and higher animals. This review assesses the current evidence for the efficacy of a range of readily available plant-based extracts and chemicals that may improve brain function and which have attracted sufficient research in this regard to reach a conclusion as to their potential effectiveness as nootropics. Many of these candidate phytochemicals/extracts can be grouped by the chemical nature of their potentially active secondary metabolite constituents into alkaloids (caffeine, nicotine), terpenes (ginkgo, ginseng, valerian, Melissa officinalis, sage), and phenolic compounds (curcumin, resveratrol, epigallocatechin-3-gallate, Hypericum perforatum, soy isoflavones). They are discussed in terms of how an increased understanding of the relationship between their ecological roles and CNS effects might further the field of natural, phytochemical drug discovery.

  19. Herbal Extracts and Phytochemicals: Plant Secondary Metabolites and the Enhancement of Human Brain Function1

    Science.gov (United States)

    Kennedy, David O.; Wightman, Emma L.

    2011-01-01

    Humans consume a wide range of foods, drugs, and dietary supplements that are derived from plants and which modify the functioning of the central nervous sytem (CNS). The psychoactive properties of these substances are attributable to the presence of plant secondary metabolites, chemicals that are not required for the immediate survival of the plant but which are synthesized to increase the fitness of the plant to survive by allowing it to interact with its environment, including pathogens and herbivorous and symbiotic insects. In many cases, the effects of these phytochemicals on the human CNS might be linked either to their ecological roles in the life of the plant or to molecular and biochemical similarities in the biology of plants and higher animals. This review assesses the current evidence for the efficacy of a range of readily available plant-based extracts and chemicals that may improve brain function and which have attracted sufficient research in this regard to reach a conclusion as to their potential effectiveness as nootropics. Many of these candidate phytochemicals/extracts can be grouped by the chemical nature of their potentially active secondary metabolite constituents into alkaloids (caffeine, nicotine), terpenes (ginkgo, ginseng, valerian, Melissa officinalis, sage), and phenolic compounds (curcumin, resveratrol, epigallocatechin-3-gallate, Hypericum perforatum, soy isoflavones). They are discussed in terms of how an increased understanding of the relationship between their ecological roles and CNS effects might further the field of natural, phytochemical drug discovery. PMID:22211188

  20. Effects of feedborne fusarium mycotoxins on brain regional neurochemistry of turkeys.

    Science.gov (United States)

    Girish, C K; MacDonald, E J; Scheinin, M; Smith, T K

    2008-07-01

    An experiment was conducted to investigate the effects of feeding grains naturally contaminated with Fusarium mycotoxins on brain regional neurochemistry of turkeys. The possible preventative effect of a poly-meric glucomannan mycotoxin adsorbent (GMA) was also determined. Forty-five 1-d-old male turkey poults were fed wheat-, corn-, and soybean meal-based diets up to wk 6, formulated with control grains, contaminated grains, or contaminated grains + 0.2% GMA. Deoxynivalenol was the major contaminant, and the concentrations were 2.2 and 3.3 mg/kg of feed during starter and grower phases, respectively. Concentrations of brain monoamine neurotransmitters and metabolites were measured in discrete regions of the brain including the pons, hypothalamus, and cortex by HPLC with electrochemical detection. Neurotransmitters and metabolites analyzed included norepinephrine, dopamine, 3,4-dihydroxyphenylacetic acid, serotonin (5-hydroxytryptamine, 5-HT), and 5-hydroxyindoleacetic acid (5-HIAA). The concentration of 5-HIAA and the 5-HIAA:5-HT-ratio were significantly decreased in pons after feeding contaminated grains. Dietary supplementation with GMA prevented these effects. In the pons, a significant positive correlation (r = 0.52, P effects on the concentrations of neurotransmitters and metabolites in hypothalamus and cortex. It was concluded that consumption of grains naturally contaminated with Fusarium mycotoxins adversely altered the pons serotonergic system of turkeys. Supplementation with GMA partially inhibited these effects.

  1. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites

    Science.gov (United States)

    Basselin, Mireille; Ramadan, Epolia; Chen, Mei; Rapoport, Stanley I.

    2010-01-01

    Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) to lipoxin A4 (LXA4) and 15-epi-LXA4. However it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE2, TXB2 and leukotriene B4 (LTB4) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE2, but increased LTB4, LXA4 and 15-epi-LXA4 concentrations. Both doses attenuated the LPS effects on PGE2, and TXB2. The increments in LXA4 and 15-epi-LXA4 caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA4 and 15-epi-LXA4 and reduce pro-inflammatory PGE2 and TXB2 suggests considering aspirin further for treating clinical neuroinflammation. PMID:20981485

  2. Stress-sensitive arterial hypertension, haemodynamic changes and brain metabolites in hypertensive ISIAH rats: MRI investigation.

    Science.gov (United States)

    Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel, A L; Akulov, A E

    2017-05-01

    What is the central question of this study? Stress-sensitive arterial hypertension is considered to be controlled by changes in central and peripheral sympathetic regulating mechanisms, which eventually result in haemodynamic alterations and blood pressure elevation. Therefore, study of the early stages of development of hypertension is of particular interest, because it helps in understanding the aetiology of the disease. What is the main finding and its importance? Non-invasive in vivo investigation in ISIAH rats demonstrated that establishment of sustainable stress-sensitive hypertension is accompanied by a decrease in prefrontal cortex activity and mobilization of hypothalamic processes, with considerable correlations between haemodynamic parameters and individual metabolite ratios. The study of early development of arterial hypertension in association with emotional stress is of great importance for better understanding of the aetiology and pathogenesis of the hypertensive disease. Magnetic resonance imaging (MRI) was applied to evaluate the changes in haemodynamics and brain metabolites in 1- and 3-month-old inherited stress-induced arterial hypertension (ISIAH) rats (10 male rats) with stress-sensitive arterial hypertension and in control normotensive Wistar Albino Glaxo (WAG) rats (eight male rats). In the 3-month-old ISIAH rats, the age-dependent increase in blood pressure was associated with increased blood flow through the renal arteries and decreased blood flow in the lower part of the abdominal aorta. The renal vascular resistance in the ISIAH rats decreased during ageing, although at both ages it remained higher than the renal vascular resistance in WAG rats. An integral metabolome portrait demonstrated that development of hypertension in the ISIAH rats was associated with an attenuation of the excitatory and energetic activity in the prefrontal cortex, whereas in the WAG rats the opposite age-dependent changes were observed. In contrast, in the

  3. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study.

    Directory of Open Access Journals (Sweden)

    Vijay R Varma

    2018-01-01

    Full Text Available The metabolic basis of Alzheimer disease (AD is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression.Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180 assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA (N = 44, mean age = 81.33, % female = 36.36 from AD (N = 15, control (CN; N = 14, and "asymptomatic Alzheimer's disease" (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15 participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes-sphingolipids and glycerophospholipids-that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer's Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63 and preclinical (BLSA (N = 207, mean age = 78.68, % female = 42.63 AD, in which we tested their associations with magnetic resonance imaging (MRI measures of AD-related brain atrophy, cerebrospinal fluid (CSF biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that summarized the relative importance of

  4. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study

    Science.gov (United States)

    Oommen, Anup M.; Varma, Sudhir; Casanova, Ramon; An, Yang; O’Brien, Richard; Pletnikova, Olga; Kastenmueller, Gabi; Doraiswamy, P. Murali; Kaddurah-Daouk, Rima; Thambisetty, Madhav

    2018-01-01

    Background The metabolic basis of Alzheimer disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression. Methods and findings Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180) assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA) (N = 44, mean age = 81.33, % female = 36.36) from AD (N = 15), control (CN; N = 14), and “asymptomatic Alzheimer’s disease” (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15) participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes—sphingolipids and glycerophospholipids—that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer’s Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63) and preclinical (BLSA) (N = 207, mean age = 78.68, % female = 42.63) AD, in which we tested their associations with magnetic resonance imaging (MRI) measures of AD-related brain atrophy, cerebrospinal fluid (CSF) biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that

  5. Regional registration of [6-14C]glucose metabolism during brain activation of α-syntrophin knockout mice

    Science.gov (United States)

    Cruz, Nancy F.; Ball, Kelly K.; Froehner, Stanley C.; Adams, Marvin E.; Dienel, Gerald A.

    2013-01-01

    α-Syntrophin is a component of the dystrophin scaffold-protein complex that serves as an adaptor for recruitment of key proteins to the cytoplasmic side of plasma membranes. α-Syntrophin knockout (KO) causes loss of the polarized localization of aquaporin4 (AQP4) at astrocytic endfeet and interferes with water and K+ homeostasis. During brain activation, release of ions and metabolites from endfeet is anticipated to increase perivascular fluid osmolarity, AQP4-mediated osmotic water flow from endfeet, and metabolite washout from brain. This study tests the hypothesis that reduced levels of endfoot AQP4 increase retention of [14C]metabolites during sensory stimulation. Conscious KO and wildtype mice were pulse-labeled with [6-14C]glucose during unilateral acoustic stimulation or bilateral acoustic plus whisker stimulation, and label retention was assayed by computer-assisted brain imaging or analysis of [14C]metabolites in extracts, respectively. High-resolution autoradiographic assays detected a 17% side-to-side difference (P<0.05) in inferior colliculus of KO mice, not wildtype mice. However, there were no labeling differences between KO and wildtype mice for five major HPLC fractions from four dissected regions, presumably due to insufficient anatomical resolution. The results suggest a role for AQP4-mediated water flow in support of washout of metabolites, and underscore the need for greater understanding of astrocytic water and metabolite fluxes. PMID:23346911

  6. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite.

    Directory of Open Access Journals (Sweden)

    Varsha Agarwal

    2008-06-01

    Full Text Available Cytochrome P450 (P450 is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

  7. Brain Levels of the Neurotoxic Pyridinium Metabolite HPP+ and Extrapyramidal Symptoms in Haloperidol-Treated Mice

    Science.gov (United States)

    Crowley, James J.; Ashraf-Khorassani, Mehdi; Castagnoli, Neal; Sullivan, Patrick F.

    2013-01-01

    The typical antipsychotic haloperidol is a highly effective treatment for schizophrenia but its use is limited by a number of serious, and often irreversible, motor side effects. These adverse drug reactions, termed extrapyramidal syndromes (EPS), result from an unknown pathophysiological mechanism. One theory relates to the observation that the haloperidol metabolite HPP+ (4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)-4-oxobutyl]-pyridinium) is structurally similar to MPP+ (1-methyl-4-phenylpyridinium), a neurotoxin responsible for an irreversible neurodegenerative condition similar to Parkinson's disease. To determine whether HPP+ contributes to haloperidol-induced EPS, we measured brain HPP+ and haloperidol levels in strains of mice at high (C57BL/6J and NZO/HILtJ) and low (BALB/cByJ and PWK/PhJ) liability to haloperidol-induced EPS following chronic treatment (7–10 adult male mice per strain). Brain levels of HPP+ and the ratio of HPP+ to haloperidol were not significantly different between the haloperidol-sensitive and haloperidol-resistant strain groups (P = 0.50). Within each group, however, strain differences were seen (P haloperidol treatment, the findings from this study are physiologically relevant to humans. The results suggest that strain differences in steady-state HPP+ levels do not explain sensitivity to haloperidol-induced EPS in the mice we studied. PMID:24107597

  8. Central region morphometry in a child brain; Age and gender ...

    African Journals Online (AJOL)

    Background: Data on central region morphometry of a child brain is important not only in terms of providing us with information about central region anatomy of the brain but also in terms of the help of this information for the plans to be applied in neurosurgery. Objective: In the present study, central region morphometry of a ...

  9. Central region morphometry in a child brain; Age and gender ...

    African Journals Online (AJOL)

    2013-10-10

    Oct 10, 2013 ... Background: Data on central region morphometry of a child brain is important not only in terms of ... brain volume reaches the peak at the age of 14.5 in men ..... child and adolescent brain and effects of genetic variation.

  10. Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases.

    Science.gov (United States)

    Mendelsohn, Andrew R; Larrick, James W

    2013-12-01

    Decline of cognition and increasing risk of neurodegenerative diseases are major problems associated with aging in humans. Of particular importance is how the brain removes potentially toxic biomolecules that accumulate with normal neuronal function. Recently, a biomolecule clearance system using convective flow between the cerebrospinal fluid (CSF) and interstitial fluid (ISF) to remove toxic metabolites in the brain was described. Xie and colleagues now report that in mice the clearance activity of this so-called "glymphatic system" is strongly stimulated by sleep and is associated with an increase in interstitial volume, possibly by shrinkage of astroglial cells. Moreover, anesthesia and attenuation of adrenergic signaling can activate the glymphatic system to clear potentially toxic proteins known to contribute to the pathology of Alzheimer disease (AD) such as beta-amyloid (Abeta). Clearance during sleep is as much as two-fold faster than during waking hours. These results support a new hypothesis to answer the age-old question of why sleep is necessary. Glymphatic dysfunction may pay a hitherto unsuspected role in the pathogenesis of neurodegenerative diseases as well as maintenance of cognition. Furthermore, clinical studies suggest that quality and duration of sleep may be predictive of the onset of AD, and that quality sleep may significantly reduce the risk of AD for apolipoprotein E (ApoE) ɛ4 carriers, who have significantly greater chances of developing AD. Further characterization of the glymphatic system in humans may lead to new therapies and methods of prevention of neurodegenerative diseases. A public health initiative to ensure adequate sleep among middle-aged and older people may prove useful in preventing AD, especially in apolipoprotein E (ApoE) ɛ4 carriers.

  11. Effect of neonatal nociceptin or nocistatin imprinting on the brain concentration of biogenic amines and their metabolites.

    Science.gov (United States)

    Tekes, Kornélia; Gyenge, Melinda; Sótonyi, Péter; Csaba, György

    2009-04-01

    Noradrenaline (NA), dopamine (DA), homovanillic acid (HA), serotonin (5HT) and 5-hydroxyindole acetic acid (5HIAA) content of five brain regions (hypothalamus, hippocampus, brainstem, striatum and frontal cortex) and the cerebrospinal fluid (CSF) was measured in adult (three months old) male and female rats treated neonatally with a single dose of 10 microg nociceptin (NC) or 10 microg nocistatin (NS) for hormonal imprinting. The biogenic amine and metabolite content of cerebrospinal fluid was also determined. In NC treated animals the serotonergic, dopaminergic as well as noradrenergic systems were influenced by the imprinting. The 5HT level increased in hypothalamus, the 5HIAA tissue levels were found increased in hypothalamus. Hippocampus and striatum and the HVA levels increased highly significantly in brainstem. Dopamine level decreased significantly in striatum, however in frontal cortex both noradrenalin and 5HIAA level decreased. Nevertheless, in NS-treated rats decreased NA tissue levels were found in hypothalamus, brainstem and frontal cortex. Decreased DA levels were found in the hypothalamus, brainstem and striatum. NS imprinting resulted in decreased HVA level, but increased one in the brainstem. The 5HT levels decreased in the hypothalamus, brainstem, striatum and frontal cortex, while 5HIAA content of CSF, and frontal cortex decreased, and that of hypothalamus, hippocampus and striatum increased. There was no significant difference between genders except in the 5HT tissue levels of NC treated rats. Data presented show that neonatal imprinting both by NC and NS have long-lasting and brain area specific effects. In earlier experiments endorphin imprinting also influenced the serotonergic system suggesting that during labour release of pain-related substances may durably affect the serotonergic (dopaminergic, adrenergic) system which can impress the animals' later behavior.

  12. In vivo quantification of brain metabolites by 1H-MRS using water as an internal standard

    DEFF Research Database (Denmark)

    Christiansen, P; Henriksen, O; Stubgaard, M

    1993-01-01

    in quantification of N-acetyl aspartate (NAA) concentration was about 1-2 mM (6-12%). Also in vivo a good linearity between water signal and selected voxel size was seen. The same was true for the studied metabolites, N-acetyl aspartate (NAA), creatine/phosphocreatine (Cr/PCr), and choline (Cho). Calculated average...... concentrations of NAA, Cr/PCr, and Cho in the occipital lobe of the brain in five healthy volunteers were (mean +/- 1 SD) 11.6 +/- 1.3 mM, 7.6 +/- 1.4 mM, and 1.7 +/- 0.5 mM. The results indicate that the method presented offers reasonable estimation of metabolite concentrations in the brain in vivo...

  13. In vivo estimation of transverse relaxation time constant (T2 ) of 17 human brain metabolites at 3T.

    Science.gov (United States)

    Wyss, Patrik O; Bianchini, Claudio; Scheidegger, Milan; Giapitzakis, Ioannis A; Hock, Andreas; Fuchs, Alexander; Henning, Anke

    2018-08-01

    The transverse relaxation times T 2 of 17 metabolites in vivo at 3T is reported and region specific differences are addressed. An echo-time series protocol was applied to one, two, or three volumes of interest with different fraction of white and gray matter including a total number of 106 healthy volunteers and acquiring a total number of 128 spectra. The data were fitted with the 2D fitting tool ProFit2, which included individual line shape modeling for all metabolites and allowed the T 2 calculation of 28 moieties of 17 metabolites. The T 2 of 10 metabolites and their moieties have been reported for the first time. Region specific T 2 differences in white and gray matter enriched tissue occur in 16 of 17 metabolites examined including single resonance lines and coupled spin systems. The relaxation time T 2 is regions specific and has to be considered when applying tissue composition correction for internal water referencing. Magn Reson Med 80:452-461, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  14. Environmental monitoring and assessment of antibacterial metabolite producing actinobacteria screened from marine sediments in south coastal regions of Karnataka, India.

    Science.gov (United States)

    Skariyachan, Sinosh; Garka, Shruthi; Puttaswamy, Sushmitha; Shanbhogue, Shobitha; Devaraju, Raksha; Narayanappa, Rajeswari

    2017-06-01

    Assessment of the therapeutic potential of secondary metabolite producing microorganisms from the marine coastal areas imparts scope and application in the field of environmental monitoring. The present study aims to screen metabolites with antibacterial potential from actionbacteria associated with marine sediments collected from south coastal regions of Karnataka, India. The actinobacteria were isolated and characterized from marine sediments by standard protocol. The metabolites were extracted, and antibacterial potential was analyzed against eight hospital associated bacteria. The selected metabolites were partially characterized by proximate analysis, SDS-PAGE, and FTIR-spectroscopy. The antibiogram of the test clinical isolates revealed that they were emerged as multidrug-resistant strains (P ≤ 0.05). Among six actinobacteria (IS1-1S6) screened, 100 μl -1 metabolite from IS1 showed significant antibacterial activities against all the clinical isolates except Pseudomonas aeruginosa. IS2 demonstrated antimicrobial potential towards Proteus mirabilis, Streptococcus pyogenes, and Escherichia coli. The metabolite from IS3 showed activity against Strep. pyogenes and E. coli. The metabolites from IS4, IS5, and IS6 exhibited antimicrobial activities against Ps. aeruginosa (P ≤ 0.05). The two metabolites that depicted highest antibacterial activities against the test strains were suggested to be antimicrobial peptides with low molecular weight. These isolates were characterized and designated as Streptomyces sp. strain mangaluru01 and Streptomyces sp. mangaloreK01 by 16S ribosomal DNA (rDNA) sequencing. This study suggests that south coastal regions of Karnataka, India, are one of the richest sources of antibacterial metabolites producing actinobacteria and monitoring of these regions for therapeutic intervention plays profound role in healthcare management.

  15. Blood metabolite markers of cognitive performance and brain function in aging.

    Science.gov (United States)

    Simpson, Brittany N; Kim, Min; Chuang, Yi-Fang; Beason-Held, Lori; Kitner-Triolo, Melissa; Kraut, Michael; Lirette, Seth T; Windham, B Gwen; Griswold, Michael E; Legido-Quigley, Cristina; Thambisetty, Madhav

    2016-07-01

    We recently showed that Alzheimer's disease patients have lower plasma concentrations of the phosphatidylcholines (PC16:0/20:5; PC16:0/22:6; and PC18:0/22:6) relative to healthy controls. We now extend these findings by examining associations between plasma concentrations of these PCs with cognition and brain function (measured by regional resting state cerebral blood flow; rCBF) in non-demented older individuals. Within the Baltimore Longitudinal Study of Aging neuroimaging substudy, participants underwent cognitive assessments and brain (15)O-water positron emission tomography. Plasma phosphatidylcholines concentrations (PC16:0/20:5, PC16:0/22:6, and PC18:0/22:6), cognition (California Verbal Learning Test (CVLT), Trail Making Test A&B, the Mini-Mental State Examination, Benton Visual Retention, Card Rotation, and Fluencies-Category and Letter), and rCBF were assessed. Lower plasma phosphatidylcholine concentrations were associated with lower baseline memory performance (CVLT long delay recall task-PC16:0/20:5: -2.17-1.39-0.60 p = 0.001 (β with 95% confidence interval subscripts)) and lower rCBF in several brain regions including those associated with memory performance and higher order cognitive processes. Our findings suggest that lower plasma concentrations of PC16:0/20:5, PC16:0/22:6, and PC18:0/22:6 are associated with poorer memory performance as well as widespread decreases in brain function during aging. Dysregulation of peripheral phosphatidylcholine metabolism may therefore be a common feature of both Alzheimer's disease and age-associated differences in cognition. © The Author(s) 2015.

  16. Extraction, separation, and detections of 14C-diazepam and 14C-metabolites from brain tissue of mature and old rats

    International Nuclear Information System (INIS)

    Komiskey, H.L.; Rahman, A.; Weisenburger, W.P.; Hayton, W.L.; Zobrist, R.H.; Silvius, W.

    1985-01-01

    A rapid method for simultaneous determination of brain concentrations of diazepan and each of its three major metabolites in brain tissue by a reverse isotope dilution procedure is presented. Radiolabeled diazepam and metabolites were extracted from brain tissue of mature and senescent rats with ethyl ether. After the ether was evaporated the benzodiazepines were separated from the residue by passing the water soluble portion through C-18 bonded-phase extraction columns. High pressure liquid chromatography (HPLC) was used to separate the benzodiazepines from each other. Reverse isotope dilution analysis was used to quantify diazepam and its metabolites. The percent recovery of diazepam and its metabolites from the brain of mature or senescent rats did not vary significantly

  17. Fused cerebral organoids model interactions between brain regions.

    Science.gov (United States)

    Bagley, Joshua A; Reumann, Daniel; Bian, Shan; Lévi-Strauss, Julie; Knoblich, Juergen A

    2017-07-01

    Human brain development involves complex interactions between different regions, including long-distance neuronal migration or formation of major axonal tracts. Different brain regions can be cultured in vitro within 3D cerebral organoids, but the random arrangement of regional identities limits the reliable analysis of complex phenotypes. Here, we describe a coculture method combining brain regions of choice within one organoid tissue. By fusing organoids of dorsal and ventral forebrain identities, we generate a dorsal-ventral axis. Using fluorescent reporters, we demonstrate CXCR4-dependent GABAergic interneuron migration from ventral to dorsal forebrain and describe methodology for time-lapse imaging of human interneuron migration. Our results demonstrate that cerebral organoid fusion cultures can model complex interactions between different brain regions. Combined with reprogramming technology, fusions should offer researchers the possibility to analyze complex neurodevelopmental defects using cells from neurological disease patients and to test potential therapeutic compounds.

  18. Activation of the sigma-1 receptor by haloperidol metabolites facilitates brain-derived neurotrophic factor secretion from human astroglia.

    Science.gov (United States)

    Dalwadi, Dhwanil A; Kim, Seongcheol; Schetz, John A

    2017-05-01

    Glial cells play a critical role in neuronal support which includes the production and release of the neurotrophin brain-derived neurotrophic factor (BDNF). Activation of the sigma-1 receptor (S1R) has been shown to attenuate inflammatory stress-mediated brain injuries, and there is emerging evidence that this may involve a BDNF-dependent mechanism. In this report we studied S1R-mediated BDNF release from human astrocytic glial cells. Astrocytes express the S1R, which mediates BDNF release when stimulated with the prototypical S1R agonists 4-PPBP and (+)-SKF10047. This effect could be antagonized by a selective concentration of the S1R antagonist BD1063. Haloperidol is known to have high affinity interactions with the S1R, yet it was unable to facilitate BDNF release. Remarkably, however, two metabolites of haloperidol, haloperidol I and haloperidol II (reduced haloperidol), were discovered to facilitate BDNF secretion and this effect was antagonized by BD1063. Neither 4-PPBP, nor either of the haloperidol metabolites affected the level of BDNF mRNA as assessed by qPCR. These results demonstrate for the first time that haloperidol metabolites I and II facilitate the secretion of BDNF from astrocytes by acting as functionally selective S1R agonists. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Comparative test-retest reliability of metabolite values assessed with magnetic resonance spectroscopy of the brain. The LCModel versus the manufacturer software.

    Science.gov (United States)

    Fayed, Nicolas; Modrego, Pedro J; Medrano, Jaime

    2009-06-01

    Reproducibility is an essential strength of any diagnostic technique for cross-sectional and longitudinal works. To determine in vivo short-term comparatively, the test-retest reliability of magnetic resonance spectroscopy (MRS) of the brain was compared using the manufacturer's software package and the widely used linear combination of model (LCModel) technique. Single-voxel H-MRS was performed in a series of patients with different pathologies on a 1.5 T clinical scanner. Four areas of the brain were explored with the point resolved spectroscopy technique acquisition mode; the echo time was 35 milliseconds and the repetition time was 2000 milliseconds. We enrolled 15 patients for every area, and the intra-individual variations of metabolites were studied in two consecutive scans without removing the patient from the scanner. Curve fitting and analysis of metabolites were made with the software of GE and the LCModel. Spectra non-fulfilling the minimum criteria of quality in relation to linewidths and signal/noise ratio were rejected. The intraclass correlation coefficients for the N-acetylaspartate/creatine (NAA/Cr) ratios were 0.93, 0.89, 0.9 and 0.8 for the posterior cingulate gyrus, occipital, prefrontal and temporal regions, respectively, with the GE software. For the LCModel, the coefficients were 0.9, 0.89, 0.87 and 0.84, respectively. For the absolute value of NAA, the GE software was also slightly more reproducible than LCModel. However, for the choline/Cr and myo-inositol/Cr ratios, the LCModel was more reliable than the GE software. The variability we have seen hovers around the percentages observed in previous reports (around 10% for the NAA/Cr ratios). We did not find that the LCModel software is superior to the software of the manufacturer. Reproducibility of metabolite values relies more on the observance of the quality parameters than on the software used.

  20. Age-and Brain Region-Specific Differences in Mitochondrial ...

    Science.gov (United States)

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bio­-energetic parameters in five brain regions [brainstem (BS), frontal cortex (FC), cerebellum (CER), striatum (STR), hippocampus (HIP)] of four diverse age groups [1 Month (young), 4 Month (adult), 12 Month (middle-aged), 24 Month (old age)] to understand age-related differences in selected brain regions and their contribution to age-related chemical sensitivity. Mitochondrial bioenergetics parameters and enzyme activity were measured under identical conditions across multiple age groups and brain regions in Brown Norway rats (n = 5). The results indicate age- and brain region-specific patterns in mitochondrial functional endpoints. For example, an age-specific decline in ATP synthesis (State 111 respiration) was observed in BS and HIP. Similarly, the maximal respiratory capacities (State V1 and V2) showed age-specific declines in all brain regions examined (young > adult > middle-aged > old age). Amongst all regions, HIP had the greatest change in mitochondrial bioenergetics, showing declines in the 4, 12 and 24 Month age groups. Activities of mitochondrial pyruvate dehydrogenase complex (PDHC) and electron transport chain (ETC) complexes I, II, and IV enzymes were also age- and brain-region specific. In general changes associated with age were more pronounced, with

  1. Differentiating functional brain regions using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Gil, Daniel A.; Bow, Hansen C.; Shen, Jin-H.; Joos, Karen M.; Skala, Melissa C.

    2017-02-01

    The human brain is made up of functional regions governing movement, sensation, language, and cognition. Unintentional injury during neurosurgery can result in significant neurological deficits and morbidity. The current standard for localizing function to brain tissue during surgery, intraoperative electrical stimulation or recording, significantly increases the risk, time, and cost of the procedure. There is a need for a fast, cost-effective, and high-resolution intraoperative technique that can avoid damage to functional brain regions. We propose that optical coherence tomography (OCT) can fill this niche by imaging differences in the cellular composition and organization of functional brain areas. We hypothesized this would manifest as differences in the attenuation coefficient measured using OCT. Five functional regions (prefrontal, somatosensory, auditory, visual, and cerebellum) were imaged in ex vivo porcine brains (n=3), a model chosen due to a similar white/gray matter ratio as human brains. The attenuation coefficient was calculated using a depth-resolved model and quantitatively validated with Intralipid phantoms across a physiological range of attenuation coefficients (absolute difference Nissl-stained histology will be used to validate our results and correlate OCT-measured attenuation coefficients to neuronal density. Additional development and validation of OCT algorithms to discriminate brain regions are planned to improve the safety and efficacy of neurosurgical procedures such as biopsy, electrode placement, and tissue resection.

  2. Brain metabolite alterations in infants born preterm with intrauterine growth restriction: association with structural changes and neurodevelopmental outcome.

    Science.gov (United States)

    Simões, Rui V; Muñoz-Moreno, Emma; Cruz-Lemini, Mónica; Eixarch, Elisenda; Bargalló, Núria; Sanz-Cortés, Magdalena; Gratacós, Eduard

    2017-01-01

    Intrauterine growth restriction and premature birth represent 2 independent problems that may occur simultaneously and contribute to impaired neurodevelopment. The objective of the study was to assess changes in the frontal lobe metabolic profiles of 1 year old intrauterine growth restriction infants born prematurely and adequate-for-gestational-age controls, both premature and term adequate for gestational age and their association with brain structural and biophysical parameters and neurodevelopmental outcome at 2 years. A total of 26 prematurely born intrauterine growth restriction infants (birthweight intrauterine growth restriction infants had slightly smaller brain volumes and increased frontal lobe white matter mean diffusivity compared with both prematurely born but adequate for gestational age and term adequate for gestational age controls. Frontal lobe N-acetylaspartate levels were significantly lower in prematurely born intrauterine growth restriction than in prematurely born but adequate for gestational age infants but increased in prematurely born but adequate for gestational age compared with term adequate-for-gestational-age infants. The prematurely born intrauterine growth restriction group also showed slightly lower choline compounds, borderline decrements of estimated glutathione levels, and increased myoinositol to choline ratios, compared with prematurely born but adequate for gestational age controls. These specific metabolite changes were locally correlated to lower gray matter content and increased mean diffusivity and reduced white matter fraction and fractional anisotropy. Prematurely born intrauterine growth restriction infants also showed a tendency for poorer neurodevelopmental outcome at 2 years, associated with lower levels of frontal lobe N-acetylaspartate at 1 year within the preterm subset. Preterm intrauterine growth restriction infants showed altered brain metabolite profiles during a critical stage of brain maturation, which

  3. Brain Metabolite Diffusion from Ultra-Short to Ultra-Long Time Scales: What Do We Learn, Where Should We Go?

    Directory of Open Access Journals (Sweden)

    Julien Valette

    2018-01-01

    Full Text Available In vivo diffusion-weighted MR spectroscopy (DW-MRS allows measuring diffusion properties of brain metabolites. Unlike water, most metabolites are confined within cells. Hence, their diffusion is expected to purely reflect intracellular properties, opening unique possibilities to use metabolites as specific probes to explore cellular organization and structure. However, interpretation and modeling of DW-MRS, and more generally of intracellular diffusion, remains difficult. In this perspective paper, we will focus on the study of the time-dependency of brain metabolite apparent diffusion coefficient (ADC. We will see how measuring ADC over several orders of magnitude of diffusion times, from less than 1 ms to more than 1 s, allows clarifying our understanding of brain metabolite diffusion, by firmly establishing that metabolites are neither massively transported by active mechanisms nor massively confined in subcellular compartments or cell bodies. Metabolites appear to be instead diffusing in long fibers typical of neurons and glial cells such as astrocytes. Furthermore, we will evoke modeling of ADC time-dependency to evaluate the effect of, and possibly quantify, some structural parameters at various spatial scales, departing from a simple model of hollow cylinders and introducing additional complexity, either short-ranged (such as dendritic spines or long-ranged (such as cellular fibers ramification. Finally, we will discuss the experimental feasibility and expected benefits of extending the range of diffusion times toward even shorter and longer values.

  4. Regional growth and atlasing of the developing human brain.

    Science.gov (United States)

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by

  5. Automated recognition of brain region mentions in neuroscience literature

    Directory of Open Access Journals (Sweden)

    Leon French

    2009-09-01

    Full Text Available The ability to computationally extract mentions of neuroanatomical regions from the literature would assist linking to other entities within and outside of an article. Examples include extracting reports of connectivity or region-specific gene expression. To facilitate text mining of neuroscience literature we have created a corpus of manually annotated brain region mentions. The corpus contains 1,377 abstracts with 18,242 brain region annotations. Interannotator agreement was evaluated for a subset of the documents, and was 90.7% and 96.7% for strict and lenient matching respectively. We observed a large vocabulary of over 6,000 unique brain region terms and 17,000 words. For automatic extraction of brain region mentions we evaluated simple dictionary methods and complex natural language processing techniques. The dictionary methods based on neuroanatomical lexicons recalled 36% of the mentions with 57% precision. The best performance was achieved using a conditional random field (CRF with a rich feature set. Features were based on morphological, lexical, syntactic and contextual information. The CRF recalled 76% of mentions at 81% precision, by counting partial matches recall and precision increase to 86% and 92% respectively. We suspect a large amount of error is due to coordinating conjunctions, previously unseen words and brain regions of less commonly studied organisms. We found context windows, lemmatization and abbreviation expansion to be the most informative techniques. The corpus is freely available at http://www.chibi.ubc.ca/WhiteText/.

  6. Regional distribution of serotonin transporter protein in postmortem human brain

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Stephen J. [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)]. E-mail: Stephen_Kish@CAMH.net; Furukawa, Yoshiaki [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Chang Lijan [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Tong Junchao [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Ginovart, Nathalie [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Wilson, Alan [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Meyer, Jeffrey H. [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2005-02-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met.

  7. Regional distribution of serotonin transporter protein in postmortem human brain

    International Nuclear Information System (INIS)

    Kish, Stephen J.; Furukawa, Yoshiaki; Chang Lijan; Tong Junchao; Ginovart, Nathalie; Wilson, Alan; Houle, Sylvain; Meyer, Jeffrey H.

    2005-01-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met

  8. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    Science.gov (United States)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  9. Profiling of primary metabolites and flavonols in leaves of two table grape varieties collected from semiarid and temperate regions.

    Science.gov (United States)

    Harb, Jamil; Alseekh, Saleh; Tohge, Takayuki; Fernie, Alisdair R

    2015-09-01

    Cultivation of grapes in West Bank - Palestine is very old and a large number of grape varieties exist as a result of continuous domestication over thousands of years. This rich biodiversity has highly influenced the consumer behavior of local people, who consume both grape berries and leaves. However, studies that address the contents of health-promoting metabolites in leaves are scarce. Accordingly the aim of this study is to assess metabolite levels in leaves of two grape varieties that were collected from semiarid and temperate regions. Metabolic profiling was conducted using GC-MS and LC-MS. The obtained results show that abiotic stresses in the semiarid region led to clear changes in primary metabolites, in particular in amino acids, which exist at very high levels. By contrast, qualitative and genotype-dependent differences in secondary metabolites were observed, whereas abiotic stresses appear to have negligible effect on the content of these metabolites. The qualitative difference in the flavonol profiles between the two genotypes is most probably related to differential expression of specific genes, in particular flavonol 3-O-rhamnosyltransferase, flavonol-3-O-glycoside pentosyltransferases and flavonol-3-O-d-glucosidel-rhamnosyltransferase by 'Beituni' grape leaves, which led to much higher levels of flavonols with rutinoside, pentoside, and rhamnoside moieties with this genotype. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Morphine metabolites

    DEFF Research Database (Denmark)

    Christrup, Lona Louring

    1997-01-01

    , morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) are the major metabolites of morphine. The metabolism of morphine occurs not only in the liver, but may also take place in the brain and the kidneys. The glucuronides are mainly eliminated via bile and urine. Glucuronides as a rule...... are considered as highly polar metabolites unable to cross the blood-brain barrier. Although morphine glucuronidation has been demonstrated in human brain tissue, the capacity is very low compared to that of the liver, indicating that the M3G and M6G concentrations observed in the cerebrospinal fluid (CSF) after...... systemic administration reflect hepatic metabolism of morphine and that the morphine glucuronides, despite their high polarity, can penetrate into the brain. Like morphine, M6G has been shown to be relatively more selective for mu-receptors than for delta- and kappa-receptors while M3G does not appear...

  11. Relationship between opioid therapy, tissue-damaging procedures, and brain metabolites as measured by proton MRS in asphyxiated term neonates.

    Science.gov (United States)

    Angeles, Danilyn M; Ashwal, Stephen; Wycliffe, Nathaniel D; Ebner, Charlotte; Fayard, Elba; Sowers, Lawrence; Holshouser, Barbara A

    2007-05-01

    To examine the effects of opioid and tissue-damaging procedures (TDPs) [i.e. procedures performed in the neonatal intensive care unit (NICU) known to result in pain, stress, and tissue damage] on brain metabolites, we reviewed the medical records of 28 asphyxiated term neonates (eight opioid-treated, 20 non-opioid treated) who had undergone magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS) within the first month of life as well as eight newborns with no clinical findings of asphyxial injury. We found that lower creatine (Cr), myoinositol (Ins), and N-acetylaspartate (NAA)/choline (Cho) (p OGM) NAA/Cr was decreased (p = 0.03) and lactate (Lac) was present in a significantly higher amount (40%; p = 0.03) in non-opioid-treated neonates compared with opioid-treated neonates. Compared with controls, untreated neonates showed larger changes in more metabolites in basal ganglia (BG), thalami (TH), and OGM with greater significance than treated neonates. Our data suggest that TDPs affect spectral metabolites and that opioids do not cause harm in asphyxiated term neonates exposed to repetitive TDPs in the first 2-4 DOL and may provide a degree of neuroprotection.

  12. Human capital in European peripheral regions: brain - drain and brain - gain

    NARCIS (Netherlands)

    Coenen, Franciscus H.J.M.

    2004-01-01

    Project goal - The overall goal of the project is to build a legitimate transnational network to transfer ideas and experiences and implement measures to reduce brain drain and foster brain gain while reinforcing the economical and spatial development of peripheral regions in NWE. This means a

  13. Brain in complex regional pain syndrome

    OpenAIRE

    Hotta, Jaakko

    2017-01-01

    Complex regional pain syndrome (CRPS) causes disabling and severe limb pain that is difficult to treat. The pain typically increases during motor actions, but is present also at rest. The pathophysiology of CRPS is incompletely understood. Some of the symptoms suggest involvement of the central nervous system, and accordingly, patients have been shown to display alterations in, for instance, the primary sensorimotor cortex (SM1) and indications of neuroinflammation. More thorough pathophysiol...

  14. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2010-10-01

    Full Text Available Cognitive deficits following traumatic brain injury (TBI commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS. Primary outcome measures (HVLT, RBMT were collected at the time of the MRI scan, immediately following therapy, and again at one month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores. We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.

  15. Age-dependent changes in metabolites of the normal brain in childhood. Observation by proton MR spectroscopy

    International Nuclear Information System (INIS)

    Tanouchi, Miki; Harada, Masafumi; Hashimoto, Toshiaki; Nishitani, Hiromu

    1996-01-01

    We investigated aging-dependent changes in proton magnetic resonance spectroscopy ( 1 H-MRS) of the normal brain in childhood, and observed differences in the four portions of the brain. Measurement by 1 H-MRS was carried out on the frontal lobe, parietotemporal lobe, temporal lobe and cerebellum. The NAA/Cho ratio increased rapidly in the period from 0 to 2 years of age in all portions except for the cerebellum, and gradually increased after three years of age. The number of measurements of the cerebellum was not sufficient to reach a conclusion, but no clear aging-related change was found. The Cho/Cr ratio decreased according to the neural development in all portions except the cerebellum. Because the T2 relaxation time of water after four years of age was almost the same as that of young adults, we used the relaxation times specified in the literature to quantify the metabolites observed by 1 H-MRS. The subjects used for quantification were aged from 4 to 12 years. The concentration of NAA in the temporal lobe was the lowest of the four portions, and that of Cho and Cr in the cerebellum was the highest in four portions. These results could not be obtained by signal ratios alone, and we considered that the quantification of metabolites is necessary for a better understanding of 1 H-MRS. This study showed that the results of 1 H-MRS vary depending on age and the portion in the brain. Our results may serve as a normal basis for the detection of pathological changes by 1 H-MRS. (author)

  16. Whole brain and brain regional coexpression network interactions associated with predisposition to alcohol consumption.

    Directory of Open Access Journals (Sweden)

    Lauren A Vanderlinden

    Full Text Available To identify brain transcriptional networks that may predispose an animal to consume alcohol, we used weighted gene coexpression network analysis (WGCNA. Candidate coexpression modules are those with an eigengene expression level that correlates significantly with the level of alcohol consumption across a panel of BXD recombinant inbred mouse strains, and that share a genomic region that regulates the module transcript expression levels (mQTL with a genomic region that regulates alcohol consumption (bQTL. To address a controversy regarding utility of gene expression profiles from whole brain, vs specific brain regions, as indicators of the relationship of gene expression to phenotype, we compared candidate coexpression modules from whole brain gene expression data (gathered with Affymetrix 430 v2 arrays in the Colorado laboratories and from gene expression data from 6 brain regions (nucleus accumbens (NA; prefrontal cortex (PFC; ventral tegmental area (VTA; striatum (ST; hippocampus (HP; cerebellum (CB available from GeneNetwork. The candidate modules were used to construct candidate eigengene networks across brain regions, resulting in three "meta-modules", composed of candidate modules from two or more brain regions (NA, PFC, ST, VTA and whole brain. To mitigate the potential influence of chromosomal location of transcripts and cis-eQTLs in linkage disequilibrium, we calculated a semi-partial correlation of the transcripts in the meta-modules with alcohol consumption conditional on the transcripts' cis-eQTLs. The function of transcripts that retained the correlation with the phenotype after correction for the strong genetic influence, implicates processes of protein metabolism in the ER and Golgi as influencing susceptibility to variation in alcohol consumption. Integration of these data with human GWAS provides further information on the function of polymorphisms associated with alcohol-related traits.

  17. Normalized regional brain atrophy measurements in multiple sclerosis

    International Nuclear Information System (INIS)

    Zivadinov, Robert; Locatelli, Laura; Stival, Barbara; Bratina, Alessio; Nasuelli, Davide; Zorzon, Marino; Grop, Attilio; Brnabic-Razmilic, Ozana

    2003-01-01

    There is still a controversy regarding the best regional brain atrophy measurements in multiple sclerosis (MS) studies. The aim of this study was to establish whether, in a cross-sectional study, the normalized measurements of regional brain atrophy correlate better with the MRI-defined regional brain lesions than the absolute measurements of regional brain atrophy. We assessed 45 patients with clinically definite relapsing-remitting (RR) MS (median disease duration 12 years), and measured T1-lesion load (LL) and T2-LL of frontal lobes and pons, using a reproducible semi-automated technique. The regional brain parenchymal volume (RBPV) of frontal lobes and pons was obtained by use of a computerized interactive program, which incorporates semi-automated and automated segmentation processes. A normalized measurement, the regional brain parenchymal fraction (RBPF), was calculated as the ratio of RBPV to the total volume of the parenchyma and the cerebrospinal fluid (CSF) in the frontal lobes and in the region of the pons. The total regional brain volume fraction (TRBVF) was obtained after we had corrected for the total volume of the parenchyma and the CSF in the frontal lobes and in the region of the pons for the total intracranial volume. The mean coefficient of variation (CV) for RBPF of the pons was 1% for intra-observer reproducibility and 1.4% for inter-observer reproducibility. Generally, the normalized measurements of regional brain atrophy correlated with regional brain volumes and disability better than did the absolute measurements. RBPF and TRBVF correlated with T2-LL of the pons (r=-0.37, P=0.011, and r= -0.40, P=0.0005 respectively) and with T1-LL of the pons (r=-0.27, P=0.046, and r=-0.31, P=0.04, respectively), whereas RBPV did not (r=-0.18, P = NS). T1-LL of the frontal lobes was related to RBPF (r=-0.32, P=0.033) and TRBVF (r=-0.29, P=0.05), but not to RBPV (R=-0.27, P= NS). There was only a trend of correlation between T2-LL of the frontal lobes and

  18. Brain region-dependent differential expression of alpha-synuclein.

    Science.gov (United States)

    Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tsujimura, Atsushi; Tanaka, Masaki

    2016-04-15

    α-Synuclein, the major constituent of Lewy bodies (LBs), is normally expressed in presynapses and is involved in synaptic function. Abnormal intracellular aggregation of α-synuclein is observed as LBs and Lewy neurites in neurodegenerative disorders, such as Parkinson's disease (PD) or dementia with Lewy bodies. Accumulated evidence suggests that abundant intracellular expression of α-synuclein is one of the risk factors for pathological aggregation. Recently, we reported differential expression patterns of α-synuclein between excitatory and inhibitory hippocampal neurons. Here we further investigated the precise expression profile in the adult mouse brain with special reference to vulnerable regions along the progression of idiopathic PD. The results show that α-synuclein was highly expressed in the neuronal cell bodies of some early PD-affected brain regions, such as the olfactory bulb, dorsal motor nucleus of the vagus, and substantia nigra pars compacta. Synaptic expression of α-synuclein was mostly accompanied by expression of vesicular glutamate transporter-1, an excitatory presynaptic marker. In contrast, expression of α-synuclein in the GABAergic inhibitory synapses was different among brain regions. α-Synuclein was clearly expressed in inhibitory synapses in the external plexiform layer of the olfactory bulb, globus pallidus, and substantia nigra pars reticulata, but not in the cerebral cortex, subthalamic nucleus, or thalamus. These results suggest that some neurons in early PD-affected human brain regions express high levels of perikaryal α-synuclein, as happens in the mouse brain. Additionally, synaptic profiles expressing α-synuclein are different in various brain regions. © 2015 Wiley Periodicals, Inc.

  19. Regional cerebral blood flow measurement in brain tumors

    International Nuclear Information System (INIS)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-01-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of 133 Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors. (author)

  20. Regional cerebral blood flow measurement in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-10-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of /sup 133/Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors.

  1. Multivoxel 1H-MR spectroscopy in evaluating perienhancement region of brain tumors

    International Nuclear Information System (INIS)

    Xu Maosheng; Pan Zhiyong; Cao Zhijian; Wang Wei; Zheng Meijun; Ni Guibao

    2003-01-01

    Objective: To investigate the predictive value of multivoxel proton magnetic resonance spectroscopy (MRS) in evaluating the metabolic changes in perienhancement area of brain tumors. Methods: Fifty-one intracranial tumor patients were recruited in this study with 24 astrocytomas [grade II(8), III(7), IV(9)], 15 metastases, and 12 meningiomas. Multivoxel proton MRS was performed on a 1.5 TMR scanner using point-resolved spectroscopy (PRESS) sequence with TE of 144 ms and TR of 1000 ms. Spectra of three voxels were taken from A) enhanced, solid part of the tumor, B) perienhancement region (PER, with T 2 hyperintense areas), and C) corresponding contralateral normal appearing white matter, and those regions were evaluated in every patients. Fitted areas in the spectrum for N-acetylaspartate (NAA), choline (Cho), creatine (Cr), lipid/ lactate, and myo-Inositol (mI) metabolite peaks were measured and NAA/Cho, NAA/Cr, Cho/Cho (normal), Cho/Cr (n) ratios were calculated for each voxel (0.562 cm 3 in size). One way ANOVA (SPSS 11.0 for windows, Chicago, Ill.) was used for statistical analysis in metabolic ratio's difference among the brain tumors. Results: In voxel A (MRS from the solid enhanced part of the lesion), the ratios of NAA/Cho and Cho/Cho (n) changed significantly by comparing with that of normal control brain tissues, but there was no significant difference among gliomas, metastases, and meningiomas (P>0.05). On the contrary, in voxel B of MRS from perienhancement region, NAA/Cho, Cho/Cho (n), and Cho/Cr (n) ratios revealed strong correlations between metabolite concentrations and tumor types, allowing the differentiation of glial tumors from both metastases and meningiomas (P<0.05). The mean values of PER for glial tumor, metastasis, and meningiomas were 0.89, 1.31, and 1.32 for NAA/Cho; 1.54, 1.78, and 1.87 for NAA/Cr; 1.47, 1.01, and 0.96 for Cho/Cho (n); and 1.75, 1.13 and, 1.21 for Cho/Cr (n), respectively. Conclusion: Evaluation of brain tumors and

  2. Brain Regions Underlying Word Finding Difficulties in Temporal Lobe Epilepsy

    Science.gov (United States)

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-01-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance.…

  3. Protein profiles of serum, brain regions and hypophyses of pubertal ...

    African Journals Online (AJOL)

    The effects of dietary fumonisin B1 (FB1 ), a toxin produced mainly by Fusarium verticillioides and F. proliferatum that grow on maize worldwide, on protein profiles of serum, brain regions and hypophyses were studied in 24 male Large White weanling pigs randomly divided into four groups (n = 6). In a completely ...

  4. High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T.

    Science.gov (United States)

    Nassirpour, Sahar; Chang, Paul; Henning, Anke

    2018-03-01

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T 2 relaxation effects) and presents the first metabolite maps acquired at 9.4T in the healthy human brain at both high (voxel size of 97.6µL) and ultra-high (voxel size of 24.4µL) spatial resolutions in a scan time of 11 and 46min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Targeted Serum Metabolite Profiling Identifies Metabolic Signatures in Patients with Alzheimer's Disease, Normal Pressure Hydrocephalus and Brain Tumor

    Directory of Open Access Journals (Sweden)

    Matej Orešič

    2018-01-01

    Full Text Available Progression to AD is preceded by elevated levels of 2,4-dihydroxybutanoic acid (2,4-DHB, implicating hypoxia in early pathogenesis. Since hypoxia may play a role in multiple CNS disorders, we investigated serum metabolite profiles across three disorders, AD, Normal Pressure Hydrocephalus (NPH and brain tumors (BT. Blood samples were collected from 27 NPH and 20 BT patients. The profiles of 21 metabolites were examined. Additionally, data from 37 AD patients and 46 controls from a previous study were analyzed together with the newly acquired data. No differences in 2,4-DHB were found across AD, NPH and BT samples. In the BT group, the fatty acids were increased as compared to HC and NPH groups, while the ketone body 3-hydroxybutyrate was increased as compared to AD. Glutamic acid was increased in AD as compared to the HC group. In the AD group, 3-hydroxybutyrate tended to be decreased with respect to all other groups (mean values −30% or more, but the differences were not statistically significant. Serine was increased in NPH as compared to BT. In conclusion, AD, NPH and BT have different metabolic profiles. This preliminary study may help in identifying the blood based markers that are specific to these three CNS diseases.

  6. Brain metabolite differences in one-year-old infants born small at term and association with neurodevelopmental outcome.

    Science.gov (United States)

    Simões, Rui V; Cruz-Lemini, Mónica; Bargalló, Núria; Gratacós, Eduard; Sanz-Cortés, Magdalena

    2015-08-01

    We assessed brain metabolite levels by magnetic resonance spectroscopy (MRS) in 1-year-old infants born small at term, as compared with infants born appropriate for gestational age (AGA), and their association with neurodevelopment at 2 years of age. A total of 40 infants born small (birthweight growth restriction or as small for gestational age, based on the presence or absence of prenatal Doppler and birthweight predictors of an adverse perinatal outcome, respectively. Single-voxel proton magnetic resonance spectroscopy ((1)H-MRS) data were acquired from the frontal lobe at short echo time. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales of Infant and Toddler Development, Third Edition, assessing cognitive, language, motor, social-emotional, and adaptive behavior scales. As compared with AGA controls, infants born small showed significantly higher levels of glutamate and total N-acetylaspartate (NAAt) to creatine (Cr) ratio at age 1 year, and lower Bayley Scales of Infant and Toddler Development, Third Edition scores at 2 years. The subgroup with late intrauterine growth restriction further showed lower estimated glutathione levels at age 1 year. Significant correlations were observed for estimated glutathione levels with adaptive scores, and for myo-inositol with language scores. Significant associations were also noticed for NAA/Cr with cognitive scores, and for glutamate/Cr with motor scores. Infants born small show brain metabolite differences at 1 year of age, which are correlated with later neurodevelopment. These results support further research on MRS to develop imaging biomarkers of abnormal neurodevelopment. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Influence of ketamine on regional brain glucose use

    International Nuclear Information System (INIS)

    Davis, D.W.; Mans, A.M.; Biebuyck, J.F.; Hawkins, R.A.

    1988-01-01

    The purpose of this study was to determine the effect of different doses of ketamine on cerebral function at the level of individual brain structures as reflected by glucose use. Rats received either 5 or 30 mg/kg ketamine intravenously as a loading dose, followed by an infusion to maintain a steady-state level of the drug. An additional group received 30 mg/kg as a single injection only, and was studied 20 min later, by which time they were recovering consciousness (withdrawal group). Regional brain energy metabolism was evaluated with [6- 14 C]glucose and quantitative autoradiography during a 5-min experimental period. A subhypnotic, steady-state dose (5 mg/kg) of ketamine caused a stimulation of glucose use in most brain areas, with an average increase of 20%. At the larger steady-state dose (30 mg/kg, which is sufficient to cause anesthesia), there was no significant effect on most brain regions; some sensory nuclei were depressed (inferior colliculus, -29%; cerebellar dentate nucleus, -18%; vestibular nucleus, -16%), but glucose use in the ventral posterior hippocampus was increased by 33%. In contrast, during withdrawal from a 30-mg/kg bolus, there was a stimulation of glucose use throughout the brain (21-78%), at a time when plasma ketamine levels were similar to the levels in the 5 mg/kg group. At each steady-state dose, as well as during withdrawal, ketamine caused a notable stimulation of glucose use by the hippocampus

  8. Understanding the protective effects of wine components and their metabolites in the brain function

    Directory of Open Access Journals (Sweden)

    Esteban-Fernández A.

    2016-01-01

    Full Text Available Moderate wine consumption has been suggested to exert a positive effect in prevention of neurodegenerative process and cognitive impairment. With the ultimate aim of achieving a better understanding of the molecular mechanisms behind this benefit, we have investigated the role of certain wine- derived phenolic metabolites and aroma compounds in the MAPK cascade (including ERK1/2, p38, one of the routes directly related to inflammation in neuronal cells. Some of the tested phenolic compounds, especially in the case of 3,4-dihydroxyphenylacetic acid, showed a significant neuroprotective effect against SIN-1-induced neuronal death. Regarding their effect over MAPK phosphorylation, inmunoblotting technique revealed a beneficial and significant decrease on the phosphorylation of p38 and ERK1/2 kinases after incubation with wine constituents. In addition, activity of caspase3-like protease, an executor of neuronal apoptosis and a downstream signal of MAPK, was significantly diminished by 3-(3-hydroxyphenyl propionic acid and linalool, counterbalancing the increase produced by SIN-1. Altogether, these results suggest that wine aroma, phenolic compounds and their gut metabolites could exert neuroprotective actions by modulating MAPK signalling and caspase-3 proteases activation, which are known to play a key role in oxidative/ nitrosative stress-induced response.

  9. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    NARCIS (Netherlands)

    van Doormaal, Pieter Jan; Meiners, Linda C.; ter Horst, Hendrik J.; Veere, van der Christa; Sijens, Paul E.

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and

  10. Differential susceptibility of brain regions to tributyltin chloride toxicity.

    Science.gov (United States)

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2015-12-01

    Tributyltin (TBT), a well-known endocrine disruptor, is an omnipresent environmental pollutant and is explicitly used in many industrial applications. Previously we have shown its neurotoxic potential on cerebral cortex of male Wistar rats. As the effect of TBT on other brain regions is not known, we planned this study to evaluate its effect on four brain regions (cerebellum, hippocampus, hypothalamus, and striatum). Four-week-old male Wistar rats were gavaged with a single dose of TBT-chloride (TBTC) (10, 20, and 30 mg/kg) and sacrificed on days 3 and 7, respectively. Effect of TBTC on blood-brain barrier (BBB) permeability and tin (Sn) accumulation were measured. Oxidative stress indexes such as reactive oxygen species (ROS), reduced and oxidized glutathione (GSH/GSSG) ratio, lipid peroxidation, and protein carbonylation were analyzed as they play an imperative role in various neuropathological conditions. Since metal catalyzed reactions are a major source of oxidant generation, levels of essential metals like iron (Fe), zinc (Zn), and calcium (Ca) were estimated. We found that TBTC disrupted BBB and increased Sn accumulation, both of which appear significantly correlated. Altered metal homeostasis and ROS generation accompanied by elevated lipid peroxidation and protein carbonylation indicated oxidative damage which appeared more pronounced in the striatum than in cerebellum, hippocampus, and hypothalamus. This could be associated to the depleted GSH levels in striatum. These results suggest that striatum is more susceptible to TBTC induced oxidative damage as compared with other brain regions under study. © 2014 Wiley Periodicals, Inc.

  11. Polyunsaturated fatty acids and their metabolites in brain function and disease.

    Science.gov (United States)

    Bazinet, Richard P; Layé, Sophie

    2014-12-01

    The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.

  12. Common DNA methylation alterations in multiple brain regions in autism.

    Science.gov (United States)

    Ladd-Acosta, C; Hansen, K D; Briem, E; Fallin, M D; Kaufmann, W E; Feinberg, A P

    2014-08-01

    Autism spectrum disorders (ASD) are increasingly common neurodevelopmental disorders defined clinically by a triad of features including impairment in social interaction, impairment in communication in social situations and restricted and repetitive patterns of behavior and interests, with considerable phenotypic heterogeneity among individuals. Although heritability estimates for ASD are high, conventional genetic-based efforts to identify genes involved in ASD have yielded only few reproducible candidate genes that account for only a small proportion of ASDs. There is mounting evidence to suggest environmental and epigenetic factors play a stronger role in the etiology of ASD than previously thought. To begin to understand the contribution of epigenetics to ASD, we have examined DNA methylation (DNAm) in a pilot study of postmortem brain tissue from 19 autism cases and 21 unrelated controls, among three brain regions including dorsolateral prefrontal cortex, temporal cortex and cerebellum. We measured over 485,000 CpG loci across a diverse set of functionally relevant genomic regions using the Infinium HumanMethylation450 BeadChip and identified four genome-wide significant differentially methylated regions (DMRs) using a bump hunting approach and a permutation-based multiple testing correction method. We replicated 3/4 DMRs identified in our genome-wide screen in a different set of samples and across different brain regions. The DMRs identified in this study represent suggestive evidence for commonly altered methylation sites in ASD and provide several promising new candidate genes.

  13. Time series analysis of brain regional volume by MR image

    International Nuclear Information System (INIS)

    Tanaka, Mika; Tarusawa, Ayaka; Nihei, Mitsuyo; Fukami, Tadanori; Yuasa, Tetsuya; Wu, Jin; Ishiwata, Kiichi; Ishii, Kenji

    2010-01-01

    The present study proposed a methodology of time series analysis of volumes of frontal, parietal, temporal and occipital lobes and cerebellum because such volumetric reports along the process of individual's aging have been scarcely presented. Subjects analyzed were brain images of 2 healthy males and 18 females of av. age of 69.0 y, of which T1-weighted 3D SPGR (spoiled gradient recalled in the steady state) acquisitions with a GE SIGNA EXCITE HD 1.5T machine were conducted for 4 times in the time series of 42-50 months. The image size was 256 x 256 x (86-124) voxels with digitization level 16 bits. As the template for the regions, the standard gray matter atlas (icbn452 a tlas p robability g ray) and its labeled one (icbn.Labels), provided by UCLA Laboratory of Neuro Imaging, were used for individual's standardization. Segmentation, normalization and coregistration were performed with the MR imaging software SPM8 (Statistic Parametric Mapping 8). Volumes of regions were calculated as their voxel ratio to the whole brain voxel in percent. It was found that the regional volumes decreased with aging in all above lobes examined and cerebellum in average percent per year of -0.11, -0.07, -0.04, -0.02, and -0.03, respectively. The procedure for calculation of the regional volumes, which has been manually operated hitherto, can be automatically conducted for the individual brain using the standard atlases above. (T.T.)

  14. Magnetic resonance spectroscopy metabolite profiles predict survival in paediatric brain tumours.

    Science.gov (United States)

    Wilson, Martin; Cummins, Carole L; Macpherson, Lesley; Sun, Yu; Natarajan, Kal; Grundy, Richard G; Arvanitis, Theodoros N; Kauppinen, Risto A; Peet, Andrew C

    2013-01-01

    Brain tumours cause the highest mortality and morbidity rate of all childhood tumour groups and new methods are required to improve clinical management. (1)H magnetic resonance spectroscopy (MRS) allows non-invasive concentration measurements of small molecules present in tumour tissue, providing clinically useful imaging biomarkers. The primary aim of this study was to investigate whether MRS detectable molecules can predict the survival of paediatric brain tumour patients. Short echo time (30ms) single voxel (1)H MRS was performed on children attending Birmingham Children's Hospital with a suspected brain tumour and 115 patients were included in the survival analysis. Patients were followed-up for a median period of 35 months and Cox-Regression was used to establish the prognostic value of individual MRS detectable molecules. A multivariate model of survival was also investigated to improve prognostic power. Lipids and scyllo-inositol predicted poor survival whilst glutamine and N-acetyl aspartate predicted improved survival (pmodel of survival based on three MRS biomarkers predicted survival with a similar accuracy to histologic grading (p5e-5). A negative correlation between lipids and glutamine was found, suggesting a functional link between these molecules. MRS detectable biomolecules have been identified that predict survival of paediatric brain tumour patients across a range of tumour types. The evaluation of these biomarkers in large prospective studies of specific tumour types should be undertaken. The correlation between lipids and glutamine provides new insight into paediatric brain tumour metabolism that may present novel targets for therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Amiodarone biokinetics, the formation of its major oxidative metabolite and neurotoxicity after acute and repeated exposure of brain cell cultures.

    Science.gov (United States)

    Pomponio, Giuliana; Zurich, Marie-Gabrielle; Schultz, Luise; Weiss, Dieter G; Romanelli, Luca; Gramowski-Voss, Alexandra; Di Consiglio, Emma; Testai, Emanuela

    2015-12-25

    The difficulty in mimicking nervous system complexity and cell-cell interactions as well as the lack of kinetics information has limited the use of in vitro neurotoxicity data. Here, we assessed the biokinetic profile as well as the neurotoxicity of Amiodarone after acute and repeated exposure in two advanced rodent brain cell culture models, consisting of both neurons and glial cells organized in 2 or 3 dimensions to mimic the brain histiotypic structure and function. A strategy was applied to evidence the abiotic processes possibly affecting Amiodarone in vitro bioavailability, showing its ability to adsorb to the plastic devices. At clinically relevant Amiodarone concentrations, known to induce neurotoxicity in some patients during therapeutic treatment, a complete uptake was observed in both models in 24 h, after single exposure. After repeated treatments, bioaccumulation was observed, especially in the 3D cell model, together with a greater alteration of neurotoxicity markers. After 14 days, Amiodarone major oxidative metabolite (mono-N-desethylamiodarone) was detected at limited levels, indicating the presence of active drug metabolism enzymes (i.e. cytochrome P450) in both models. The assessment of biokinetics provides useful information on the relevance of in vitro toxicity data and should be considered in the design of an Integrated Testing Strategy aimed to identify specific neurotoxic alerts, and to improve the neurotoxicity assay predictivity for human acute and repeated exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Symbolic joint entropy reveals the coupling of various brain regions

    Science.gov (United States)

    Ma, Xiaofei; Huang, Xiaolin; Du, Sidan; Liu, Hongxing; Ning, Xinbao

    2018-01-01

    The convergence and divergence of oscillatory behavior of different brain regions are very important for the procedure of information processing. Measurements of coupling or correlation are very useful to study the difference of brain activities. In this study, EEG signals were collected from ten subjects under two conditions, i.e. eyes closed state and idle with eyes open. We propose a nonlinear algorithm, symbolic joint entropy, to compare the coupling strength among the frontal, temporal, parietal and occipital lobes and between two different states. Instead of decomposing the EEG into different frequency bands (theta, alpha, beta, gamma etc.), the novel algorithm is to investigate the coupling from the entire spectrum of brain wave activities above 4Hz. The coupling coefficients in two states with different time delay steps are compared and the group statistics are presented as well. We find that the coupling coefficient of eyes open state with delay consistently lower than that of eyes close state across the group except for one subject, whereas the results without delay are not consistent. The differences between two brain states with non-zero delay can reveal the intrinsic inter-region coupling better. We also use the well-known Hénon map data to validate the algorithm proposed in this paper. The result shows that the method is robust and has a great potential for other physiologic time series.

  17. Somatic transposition in the brain has the potential to influence the biosynthesis of metabolites involved in Parkinson’s disease and schizophrenia

    Directory of Open Access Journals (Sweden)

    Abrusán György

    2012-11-01

    Full Text Available Abstract It has been recently discovered that transposable elements show high activity in the brain of mammals, however, the magnitude of their influence on its functioning is unclear so far. In this paper, I use flux balance analysis to examine the influence of somatic retrotransposition on brain metabolism, and the biosynthesis of its key metabolites, including neurotransmitters. The analysis shows that somatic transposition in the human brain can influence the biosynthesis of more than 250 metabolites, including dopamine, serotonin and glutamate, shows large inter-individual variability in metabolic effects, and may contribute to the development of Parkinson’s disease and schizophrenia. Reviewers This article was reviewed by Dr Kenji Kojima (nominated by Dr Jerzy Jurka and Dr Eugene Koonin.

  18. A probabilistic approach to delineating functional brain regions

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Svarer, Claus; Frokjaer, Vibe G

    2009-01-01

    The purpose of this study was to develop a reliable observer-independent approach to delineating volumes of interest (VOIs) for functional brain regions that are not identifiable on structural MR images. The case is made for the raphe nuclei, a collection of nuclei situated in the brain stem known...... to be densely packed with serotonin transporters (5-hydroxytryptaminic [5-HTT] system). METHODS: A template set for the raphe nuclei, based on their high content of 5-HTT as visualized in parametric (11)C-labeled 3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile PET images, was created for 10...... healthy subjects. The templates were subsequently included in the region sets used in a previously published automatic MRI-based approach to create an observer- and activity-independent probabilistic VOI map. The probabilistic map approach was tested in a different group of 10 subjects and compared...

  19. Quantitative multivoxel proton MR spectroscopy study of brain metabolites in patients with amnestic mild cognitive impairment: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhong-Xian; Cheng, Xiao-Fang; Xu, Zhi-Feng; Cao, Zhen; Xiao, Ye-Yu; You, Ke-Zeng; Liu, Yan-Yan [Medical College of Shantou University, Department of Medical Imaging, The Second Affiliated Hospital, Shantou (China); Huo, Shan-Shan [Science College of Shantou University, Department of Physics, Shantou (China); Zeng, Jie-Xia; Chen, Wei [Medical College of Shantou University, Department of Neurology, The Second Affiliated Hospital, Shantou (China); Wu, Ren-Hua [Medical College of Shantou University, Department of Medical Imaging, The Second Affiliated Hospital, Shantou (China); Medical College of Shantou University, Provincial Key Laboratory of Medical Molecular Imaging, Guangdong, Shantou (China)

    2012-05-15

    The purpose of this study is to investigate brain metabolic changes in patients with amnestic mild cognitive impairment (aMCI) using multivoxel proton MR spectroscopy ({sup 1}H-MVS). Fourteen aMCI patients and fifteen healthy control subjects participated in this experiment. All MR measurements were acquired using a 1.5-T GE scanner. {sup 1}H-MVS point resolved spectroscopy (2D PROBE-CSI PRESS) pulse sequence (TE = 35 ms; TR = 1,500 ms; phase x frequency, 18 x 18) was used for acquiring MRS data. All data were post-processed using Spectroscopy Analysis by General Electric software and linear combination of model (LCModel). The absolute concentrations of N-acetylaspartate (NAA), choline (Cho), myoinositol (MI), creatine (Cr), and the metabolite ratios of NAA/Cr, Cho/Cr, MI/Cr, and NAA/MI were measured bilaterally in the posterior cingulate gyrus (PCG), inferior precuneus (Pr), paratrigonal white matter (PWM), dorsal thalamus (DT), and lentiform nucleus (LN). Patients with aMCI displayed significantly lower NAA levels in the bilateral PCG (p < 0.01), PWM (p < 0.05), and left inferior Pr (p < 0.05). The metabolite ratio of NAA/MI was decreased in the bilateral PCG (p < 0.01) and PWM (p < 0.05) and in the left DT (p < 0.01). NAA/Cr was decreased in the left PCG (p < 0.01), DT (p < 0.05), right PWM (p < 0.05), and LN (p < 0.05). However, MI/Cr was elevated in the right PCG (p < 0.01) and left PWM (p < 0.05). Significantly increased Cho level was also evident in the left PWM (p < 0.05). Our observations of decreased NAA, NAA/Cr, and NAA/MI, in parallel with increased Cho and MI/Cr might be characteristic of aMCI patients. (orig.)

  20. CT scanning of the brain and lumber CSF monoamine metabolites in spinocerebellar degenerative disorders

    International Nuclear Information System (INIS)

    Sasaki, Hidenao; Kanazawa, Ichiro; Nakanishi, Takao; Kuramoto, Kenmei

    1984-01-01

    Eight patients with parenchymatous cerebellar degeneration (PCD) group (3 with late cortical cerebellar atrophy and 5 with Holmes' hereditary ataxia), 14 with olivo-ponto-cerebellar atrophy (OPCA) group (4 with Shy-Drager syndrome, 6 with OPCA without family history and 4 with Menzel type SCS), 15 with Parkinson's disease and 44 control with other neurological diseases were studied. In all the spinocerebellar degenerative disorder s (SCD) cases, CVI values corresponding to the cerebellar atrophy were definitely reduced. On the other hand, PVI values corresponding to the pontine atrophy were only significantly decreased in OPCA group. However, since there were several cases showing only questionable pontine atrpphy, it seems difficult to clearly differentiate individual OPCA cases from other SCD cases on CT films alone. Concerning monoamine metabolites in CSF, it was noted that a significant reduction of HVA and total MHPG was found in the OPCA group. Among them, the patients with overt autonomic failure showed the lowest HVA level and the cases of Menzel type of SCD showed a slight reduction of HVA but an unexpected elevation of free MHPG values. The cases of Parkinson's disease showed a definite reduction of HVA. On the other hand, the cases of PCD group showed no significant difference against controls. 5-HIAA levels were not significantly different among the SCD subgroups. (J.P.N.)

  1. CT scanning of the brain and lumbar CSF monoamine metabolites in spinocerebellar degenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Hidenao; Kanazawa, Ichiro; Nakanishi, Takao; Kuramoto, Kenmei [Tsukuba Univ., Sakura, Ibaraki (Japan)

    1984-08-01

    Eight patients with parenchymatous cerebellar degeneration (PCD) group (3 with late cortical cerebellar atrophy and 5 with Holmes' hereditary ataxia), 14 with olivo-ponto-cerebellar atrophy (OPCA) group (4 with Shy-Drager syndrome, 6 with OPCA without family history and 4 with Menzel type SCS), 15 with Parkinson's disease and 44 control with other neurological diseases were studied. In all the spinocerebellar degenerative disorders (SCD) cases, CVI values corresponding to the cerebellar atrophy were definitely reduced. On the other hand, PVI values corresponding to the pontine atrophy were only significantly decreased in OPCA group. However, since there were several cases showing only questionable pontine atrophy, it seems difficult to clearly differentiate individual OPCA cases from other SCD cases on CT films alone. Concerning monoamine metabolites in CSF, it was noted that a significant reduction of HVA and total MHPG was found in the OPCA group. Among them, the patients with overt autonomic failure showed the lowest HVA level and the cases of Menzel type of SCD showed a slight reduction of HVA but an unexpected elevation of free MHPG values. The cases of Parkinson's disease showed a definite reduction of HVA. On the other hand, the cases of PCD group showed no significant difference against controls. 5-HIAA levels were not significantly different among the SCD subgroups.

  2. Lateralisation with magnetic resonance spectroscopic imaging in temporal lobe epilepsy: an evaluation of visual and region-of-interest analysis of metabolite concentration images

    Energy Technology Data Exchange (ETDEWEB)

    Vikhoff-Baaz, B. [Sahlgrenska University Hospital, Goeteborg (Sweden); Div. of Medical Physics and Biomedical Engineering, Goeteborg Univ. (Sweden); Goeteborg Univ. (Sweden). Dept. of Radiation Physics; Malmgren, K. [Dept. of Neurology, Goeteborg Univ. (Sweden); Joensson, L.; Ekholm, S. [Dept. of Radiology, Goeteborg Univ. (Sweden); Starck, G. [Div. of Medical Physics and Biomedical Engineering, Goeteborg Univ. (Sweden); Ljungberg, M.; Forssell-Aronsson, E. [Goeteborg Univ. (Sweden). Dept. of Radiation Physics; Uvebrant, P. [Dept. of Paediatrics, Goeteborg Univ. (Sweden)

    2001-09-01

    We carried out spectroscopic imaging (MRSI) on nine consecutive patients with temporal lobe epilepsy being assessed for epilepsy surgery, and nine neurologically healthy, age-matched volunteers. A volume of interest (VOI) was angled along the temporal horns on axial and sagittal images, and symmetrically over the temporal lobes on coronal images. Images showing the concentrations of N-acetylaspartate (NAA) and of choline-containing compounds plus creatine and phosphocreatine (Cho + Cr) were used for lateralisation. We compared assessment by visual inspection and by signal analysis from regions of interest (ROI) in different positions, where side-to-side differences in NAA/(Cho + Cr) ratio were used for lateralisation. The NAA/(Cho + Cr) ratio from the different ROI was also compared with that in the brain stem to assess if the latter could be used as an internal reference, e. g., for identification of bilateral changes. The metabolite concentration images were found useful for lateralisation of temporal lobe abnormalities related to epilepsy. Visual analysis can, with high accuracy, be used routinely. ROI analysis is useful for quantifying changes, giving more quantitative information about spatial distribution and the degree of signal loss. There was a large variation in NAA/(Cho + Cr) values in both patients and volunteers. The brain stem may be used as a reference for identification of bilateral changes. (orig.)

  3. Lateralisation with magnetic resonance spectroscopic imaging in temporal lobe epilepsy: an evaluation of visual and region-of-interest analysis of metabolite concentration images

    International Nuclear Information System (INIS)

    Vikhoff-Baaz, B.; Joensson, L.; Ekholm, S.; Starck, G.

    2001-01-01

    We carried out spectroscopic imaging (MRSI) on nine consecutive patients with temporal lobe epilepsy being assessed for epilepsy surgery, and nine neurologically healthy, age-matched volunteers. A volume of interest (VOI) was angled along the temporal horns on axial and sagittal images, and symmetrically over the temporal lobes on coronal images. Images showing the concentrations of N-acetylaspartate (NAA) and of choline-containing compounds plus creatine and phosphocreatine (Cho + Cr) were used for lateralisation. We compared assessment by visual inspection and by signal analysis from regions of interest (ROI) in different positions, where side-to-side differences in NAA/(Cho + Cr) ratio were used for lateralisation. The NAA/(Cho + Cr) ratio from the different ROI was also compared with that in the brain stem to assess if the latter could be used as an internal reference, e. g., for identification of bilateral changes. The metabolite concentration images were found useful for lateralisation of temporal lobe abnormalities related to epilepsy. Visual analysis can, with high accuracy, be used routinely. ROI analysis is useful for quantifying changes, giving more quantitative information about spatial distribution and the degree of signal loss. There was a large variation in NAA/(Cho + Cr) values in both patients and volunteers. The brain stem may be used as a reference for identification of bilateral changes. (orig.)

  4. MR spectroscopy-based brain metabolite profiling in propionic acidaemia: metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation

    Directory of Open Access Journals (Sweden)

    McKiernan Patrick J

    2011-05-01

    Full Text Available Abstract Background Propionic acidaemia (PA results from deficiency of Propionyl CoA carboxylase, the commonest form presenting in the neonatal period. Despite best current management, PA is associated with severe neurological sequelae, in particular movement disorders resulting from basal ganglia infarction, although the pathogenesis remains poorly understood. The role of liver transplantation remains controversial but may confer some neuro-protection. The present study utilises quantitative magnetic resonance spectroscopy (MRS to investigate brain metabolite alterations in propionic acidaemia during metabolic stability and acute encephalopathic episodes. Methods Quantitative MRS was used to evaluate brain metabolites in eight children with neonatal onset propionic acidaemia, with six elective studies acquired during metabolic stability and five studies during acute encephalopathic episodes. MRS studies were acquired concurrently with clinically indicated MR imaging studies at 1.5 Tesla. LCModel software was used to provide metabolite quantification. Comparison was made with a dataset of MRS metabolite concentrations from a cohort of children with normal appearing MR imaging. Results MRI findings confirm the vulnerability of basal ganglia to infarction during acute encephalopathy. We identified statistically significant decreases in basal ganglia glutamate+glutamine and N-Acetylaspartate, and increase in lactate, during encephalopathic episodes. In white matter lactate was significantly elevated but other metabolites not significantly altered. Metabolite data from two children who had received liver transplantation were not significantly different from the comparator group. Conclusions The metabolite alterations seen in propionic acidaemia in the basal ganglia during acute encephalopathy reflect loss of viable neurons, and a switch to anaerobic respiration. The decrease in glutamine + glutamate supports the hypothesis that they are consumed to

  5. Astrocyte oxidative metabolism and metabolite trafficking after fluid percussion brain injury in adult rats.

    Science.gov (United States)

    Bartnik-Olson, Brenda L; Oyoyo, Udochukwu; Hovda, David A; Sutton, Richard L

    2010-12-01

    Despite various lines of evidence pointing to the compartmentation of metabolism within the brain, few studies have reported the effect of a traumatic brain injury (TBI) on neuronal and astrocyte compartments and/or metabolic trafficking between these cells. In this study we used ex vivo ¹³C NMR spectroscopy following an infusion of [1-¹³C] glucose and [1,2-¹³C₂] acetate to study oxidative metabolism in neurons and astrocytes of sham-operated and fluid percussion brain injured (FPI) rats at 1, 5, and 14 days post-surgery. FPI resulted in a decrease in the ¹³C glucose enrichment of glutamate in neurons in the injured hemisphere at day 1. In contrast, enrichment of glutamine in astrocytes from acetate was not significantly decreased at day 1. At day 5 the ¹³C enrichment of glutamate and glutamine from glucose in the injured hemisphere of FPI rats did not differ from sham levels, but glutamine derived from acetate metabolism in astrocytes was significantly increased. The ¹³C glucose enrichment of the C3 position of glutamate (C3) in neurons was significantly decreased ipsilateral to FPI at day 14, whereas the enrichment of glutamine in astrocytes had returned to sham levels at this time point. These findings indicate that the oxidative metabolism of glucose is reduced to a greater extent in neurons compared to astrocytes following a FPI. The increased utilization of acetate to synthesize glutamine, and the acetate enrichment of glutamate via the glutamate-glutamine cycle, suggests an integral protective role for astrocytes in maintaining metabolic function following TBI-induced impairments in glucose metabolism.

  6. Metabolite concentrations in the developing brain estimated with proton MR spectroscopy

    DEFF Research Database (Denmark)

    Toft, P B; Leth, H; Lou, H C

    1995-01-01

    (stimulated-echo acquisition mode) sequences with different TEs and TRs. Water was used as an internal standard. The T1 of choline-containing compounds (Cho) and the T1 of phosphocreatine plus creatine (PCr+Cr) decreased. The T2 of the N-acetyl-L-aspartate (NAA) resonance increased, probably because...... of a relatively larger signal overlap with glutamate in the most immature brains. The concentration of NAA almost doubled, whereas the Cho concentration showed only a nonsignificant tendency to decrease; therefore, the well-known increase in the ratio of NAA to Cho appears to be due mostly to an increase in NAA...

  7. Brain metabolite changes in alcoholism: Localized proton magnetic resonance spectroscopy study of the occipital lobe

    Energy Technology Data Exchange (ETDEWEB)

    Modi, Shilpi; Bhattacharya, Manisha; Kumar, Pawan [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi 110054 (India); Deshpande, Smita N. [Department of Psychiatry, Dr. Ram Manohar Lohia Hospital, New Delhi (India); Tripathi, Rajendra Prasad [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi 110054 (India); Khushu, Subash, E-mail: skhushu@yahoo.com [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi 110054 (India)

    2011-07-15

    Chronic alcoholism is associated with altered brain metabolism, morphology and cognitive abilities. Besides deficits in higher order cognitive functions, alcoholics also show a deficit in the processing of basic sensory information viz. visual stimulation. To assess the metabolic changes associated with this deficit, {sup 1}H MRS was carried out in the occipital lobe of alcohol dependents. A significant increase in Cho/Cr ratio (p < 0.015) was observed in occipital lobe in the alcoholic group indicating altered cell membrane metabolism, which may probably be associated with the alterations in the cognitive abilities associated with vision.

  8. Brain metabolite changes in alcoholism: Localized proton magnetic resonance spectroscopy study of the occipital lobe

    International Nuclear Information System (INIS)

    Modi, Shilpi; Bhattacharya, Manisha; Kumar, Pawan; Deshpande, Smita N.; Tripathi, Rajendra Prasad; Khushu, Subash

    2011-01-01

    Chronic alcoholism is associated with altered brain metabolism, morphology and cognitive abilities. Besides deficits in higher order cognitive functions, alcoholics also show a deficit in the processing of basic sensory information viz. visual stimulation. To assess the metabolic changes associated with this deficit, 1 H MRS was carried out in the occipital lobe of alcohol dependents. A significant increase in Cho/Cr ratio (p < 0.015) was observed in occipital lobe in the alcoholic group indicating altered cell membrane metabolism, which may probably be associated with the alterations in the cognitive abilities associated with vision.

  9. Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Paul M. Macey

    2018-01-01

    Full Text Available RationaleObstructive sleep apnea (OSA affects 2–5% of all children and is associated with cognitive and behavioral deficits, resulting in poor school performance. These psychological deficits may arise from brain injury, as seen in preliminary findings of lower gray matter volume among pediatric OSA patients. However, the psychological deficits in OSA are closely related to functions in the cortex, and such brain areas have not been specifically assessed. The objective was to determine whether cortical thickness, a marker of possible brain injury, is altered in children with OSA.MethodsWe examined regional brain cortical thicknesses using high-resolution T1-weighted magnetic resonance images in 16 pediatric OSA patients (8 males; mean age ± SD = 8.4 ± 1.2 years; mean apnea/hypopnea index ± SD = 11 ± 6 events/h and 138 controls (8.3 ± 1.1 years; 62 male; 138 subjects from the NIH Pediatric MRI database to identify cortical thickness differences in pediatric OSA subjects.ResultsCortical thinning occurred in multiple regions including the superior frontal, ventral medial prefrontal, and superior parietal cortices. The left side showed greater thinning in the superior frontal cortex. Cortical thickening was observed in bilateral precentral gyrus, mid-to-posterior insular cortices, and left central gyrus, as well as right anterior insula cortex.ConclusionChanges in cortical thickness are present in children with OSA and likely indicate disruption to neural developmental processes, including maturational patterns of cortical volume increases and synaptic pruning. Regions with thicker cortices may reflect inflammation or astrocyte activation. Both the thinning and thickening associated with OSA in children may contribute to the cognitive and behavioral dysfunction frequently found in the condition.

  10. Method for simultaneous imaging of endogenous low molecular weight metabolites in mouse brain using TiO2 nanoparticles in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry.

    Science.gov (United States)

    Shrivas, Kamlesh; Hayasaka, Takahiro; Sugiura, Yuki; Setou, Mitsutoshi

    2011-10-01

    We report the detection of a group of endogenous low molecular weight metabolites (LMWM) in mouse brain (80-500 Da) using TiO(2) nanoparticles (NPs) in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry (Nano-PALDI-IMS) without any washing and separation step prior to MS analysis. The identification of metabolites using TiO(2) NPs was compared with a conventional organic matrix 2,5-dihydroxybenzoic acid (DHB) where signals of 179 molecules were specific to TiO(2) NPs, 4 were specific to DHB, and 21 were common to both TiO(2) NPs and DHB. The use of TiO(2) NPs enabled the detection of a higher number of LMWM as compared to DHB and gold NPs as a matrix. This approach is a simple, inexpensive, washing, and separation free for imaging and identification of LMWM in mouse brain. We believe that the biochemical information from distinct regions of the brain using a Nano-PALDI-IMS will be helpful in elucidating the imbalances linked with diseases in biomedical samples.

  11. Region based Brain Computer Interface for a home control application.

    Science.gov (United States)

    Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan

    2015-08-01

    Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.

  12. Brain noise is task dependent and region specific.

    Science.gov (United States)

    Misić, Bratislav; Mills, Travis; Taylor, Margot J; McIntosh, Anthony R

    2010-11-01

    The emerging organization of anatomical and functional connections during human brain development is thought to facilitate global integration of information. Recent empirical and computational studies have shown that this enhanced capacity for information processing enables a diversified dynamic repertoire that manifests in neural activity as irregularity and noise. However, transient functional networks unfold over multiple time, scales and the embedding of a particular region depends not only on development, but also on the manner in which sensory and cognitive systems are engaged. Here we show that noise is a facet of neural activity that is also sensitive to the task context and is highly region specific. Children (6-16 yr) and adults (20-41 yr) performed a one-back face recognition task with inverted and upright faces. Neuromagnetic activity was estimated at several hundred sources in the brain by applying a beamforming technique to the magnetoencephalogram (MEG). During development, neural activity became more variable across the whole brain, with most robust increases in medial parietal regions, such as the precuneus and posterior cingulate cortex. For young children and adults, activity evoked by upright faces was more variable and noisy compared with inverted faces, and this effect was reliable only in the right fusiform gyrus. These results are consistent with the notion that upright faces engender a variety of integrative neural computations, such as the relations among facial features and their holistic constitution. This study shows that transient changes in functional integration modulated by task demand are evident in the variability of regional neural activity.

  13. In vivo quantitation of metabolite concentrations in the brain by means of proton MRS

    DEFF Research Database (Denmark)

    Henriksen, O

    1995-01-01

    MRS offers unique possibilities for non-invasive studies of biochemistry in the human brain in vivo. A growing body of evidence suggests that proton MRS may contribute to the clinical evaluation of a number of pathologies including ischaemia, tumours, epilepsy, metabolic and neuropaediatric...... (kg wet weight)-1 range between 8.2 and 17.2 (mean 10.2), 5.9 and 11.6 (mean 7.2), 1.1 and 2.0 (mean 1.5) and 3.9 and 8.1 (mean 6.1), respectively. So far only a limited number of clinical studies has been published including studies of acute stroke, multiple sclerosis and Alzheimer's disease...

  14. Brain levels of high-energy phosphate metabolites and executive function in geriatric depression.

    Science.gov (United States)

    Harper, David G; Joe, Elizabeth B; Jensen, J Eric; Ravichandran, Caitlin; Forester, Brent P

    2016-11-01

    Depression in late life has been associated with difficulties in cognitive processing, particularly in the domains of executive function, processing speed and memory, and increases the risk of developing dementia suggesting a neurodegenerative phenotype. Mitochondrial dysfunction is frequently an early event in neurodegenerative illnesses and may be operative in patients with late life depression. Phosphorus magnetic resonance spectroscopy (31P MRS) allows for the quantification of bioenergetic molecules produced by mitochondria. Ten patients with late life depression and eight normal elderly controls were studied with Stroop color and interference tests, which are widely used measures of processing speed and executive function, respectively, followed by (31P) MRS 3-dimensional chemical-shift imaging measuring levels of adenosine triphosphate, phosphocreatine, inorganic phosphate, and pH over the whole brain. In all subjects, gray matter phosphocreatine was positively associated with Stroop interference. Levels of white matter adenosine triphosphate were associated with Stroop interference in subjects with late life depression but not normal elderly. There was also a complementary association between white matter inorganic phosphate and Stroop interference in late life depression patients. These findings suggest two independent sources of executive function dependence on bioenergetic state in the aging brain. The dependence of executive function performance in subjects with late life depression on ATP in white matter may be associated with mitochondrial impairment and is consistent with predictions of the vascular depression hypothesis. Further research with wider neuropsychological testing targeting bioenergetic markers could help clarify the scope of these effects. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Radioreceptor assay of opioid peptides in selected canine brain regions

    Energy Technology Data Exchange (ETDEWEB)

    Desiderio, D.M.; Takeshita, H.

    1985-09-01

    A radioreceptor assay using the opioid delta receptor-preferring ligand D-/sup 2/ala, D-/sup 5/leu leucine enkephalin (/sup 3/H-DADL) and the broader-specificity ligand /sup 3/H-etorphine was used to measure five HPLC-purified neuropeptide fractions derived from the peptide-rich fraction of tissue homogenates of nine anatomical regions of the canine brain. The receptoractive peptides studied were methionine enkephalin, alpha-neo-endorphin, dynorphin 1-8, methionine enkephalin-Arg-Phe, and leucine enkephalin. These peptides derive from two larger precursors: proenkephalin A, which contains methionine enkephalin, leucine enkephalin, methionine enkephalin-Arg-Phe; and proenkephalin B, which contains alpha-neo-endorphin and dynorphin 1-8. Receptoractive peptides were measured in the peptide-rich fraction derived from homogenates of canine hypothalamus, pituitary, caudate nucleus, amygdala, hippocampus, mid-brain, thalamus, pons-medulla, and cortex.

  16. Radioreceptor assay of opioid peptides in selected canine brain regions

    International Nuclear Information System (INIS)

    Desiderio, D.M.; Takeshita, H.

    1985-01-01

    A radioreceptor assay using the opioid delta receptor-preferring ligand D- 2 ala, D- 5 leu leucine enkephalin ( 3 H-DADL) and the broader-specificity ligand 3 H-etorphine was used to measure five HPLC-purified neuropeptide fractions derived from the peptide-rich fraction of tissue homogenates of nine anatomical regions of the canine brain. The receptoractive peptides studied were methionine enkephalin, alpha-neo-endorphin, dynorphin 1-8, methionine enkephalin-Arg-Phe, and leucine enkephalin. These peptides derive from two larger precursors: proenkephalin A, which contains methionine enkephalin, leucine enkephalin, methionine enkephalin-Arg-Phe; and proenkephalin B, which contains alpha-neo-endorphin and dynorphin 1-8. Receptoractive peptides were measured in the peptide-rich fraction derived from homogenates of canine hypothalamus, pituitary, caudate nucleus, amygdala, hippocampus, mid-brain, thalamus, pons-medulla, and cortex

  17. [Studies on metabolites from marine microorganism Aspergillus terreus collected from nature reserve region of mangrove].

    Science.gov (United States)

    Shen, Yi; Zou, Jianhua; Dai, Jungui

    2011-09-01

    To search for new antitumor active lead compounds from marine microorganism. A marine strain, Aspergillus terreus, was cultured and up-scaled in artificial seawater media, from which the metabolites were isolated and elucidated by using modern spectroscopy techniques. Twelve compounds were isolated from mycelia and fermentation broth of A. terreus. Compounds 1-4 were steroids, compounds 5-8 were organic acids and esters, compound 9 was an alkaloid, compound 10 was an isocoumarin, compound 11 was ceramide, compound 12 was propenyl cyclic pentanediol.

  18. (S)- and (R)-[11C]nicotine and the metabolite (R/S)-[11C]cotinine. Preparation, metabolite studies and in vivo distribution in the human brain using PET

    International Nuclear Information System (INIS)

    Halldin, C.; Swahn, C.-G.; Nybaeck, H.; Naagren, K.; Laangstroem, B.

    1992-01-01

    In order to investigate [ 11 C]nicotine binding and metabolism in the living human brain by PET, routine protocols were developed for the preparation and purification of (S)-and (R)-[ 11 C]nicotine and the metabolite (R/S)-[ 11 C]cotinine. (S)- and (R)-[ 11 C]nicotine were prepared by N-methylation with [ 11 C]methyl iodide of the appropriate secondary amine, which was liberated in situ by 2,2,6,6,-tetramethylpiperidine (TMP) from its corresponding biscamsylate-salt. (R/S)-[ 11 C]Cotinine was prepared by N-methylation of the amide precursor using tetrabutylammonium hydroxide as a phase transfer catalyst. Straight-phase semipreparative HPLC was in all purifications found to be superior to reversed-phase since the contamination by the norcompounds was eliminated. Reaction in acetonitrile for both (S)- and (R)-[ 11 C]nicotine and (R/S)-[ 11 C]cotinine with subsequent straight-phase HPLC purification resulted in 35-45% radiochemical yield with a total synthesis time of 30-35 min, a specific radioactivity of 1000-1500 Ci/mmol (37-55 GBq/μmol, EOS) and a radiochemical purity >99%. The uptake and distribution of these tracers in the human brain was studied in healthy volunteers by PET. The metabolite (R/S)-[ 11 C]cotinine did not cross the blood-brain barrier to any significant degree. (author)

  19. Regional distribution of enkephalinase in rat brain by autoradiography

    International Nuclear Information System (INIS)

    Waksman, G.; Hamel, E.; Besselievre, R.; Fournie-Zaluski, M.C.; Roques, B.P.; Bouboutou, R.

    1984-01-01

    The first visualization of enkephalinase (neutral metalloendopeptidase, E.C.3.4.24.11) in rat brain was obtained by autoradiography, using a new tritiated inhibitor: [ 3 H]N-[(R, S) 3-(N-hydroxy) carboxamido-2-benzyl propanoyl]-glycine ( 3 H-HCBP-Gly). The preliminary analysis of sections clearly showed a discrete localization of enkephalinase in enkephalin enriched regions, such as caudate nucleus, putamen, globus pallidus, and substantia nigra. Moreover 3 H-HCBP-Gly binding also occured in choroid plexus and spinal cord [fr

  20. Quantifying global-brain metabolite level changes with whole-head proton MR spectroscopy at 3T.

    Science.gov (United States)

    Davitz, Matthew S; Wu, William E; Soher, Brian J; Babb, James S; Kirov, Ivan I; Huang, Jeffrey; Fatterpekar, Girish; Gonen, Oded

    2017-01-01

    To assess the sensitivity of non-localized, whole-head 1 H-MRS to an individual's serial changes in total-brain NAA, Glx, Cr and Cho concentrations - metabolite metrics often used as surrogate markers in neurological pathologies. In this prospective study, four back-to-back (single imaging session) and three serial (successive sessions) non-localizing, ~3min 1 H-MRS (TE/TR/TI=5/10 4 /940ms) scans were performed on 18 healthy young volunteers: 9 women, 9 men: 29.9±7.6 [mean±standard deviation (SD)] years old. These were analyzed by calculating a within-subject coefficient of variation (CV=SD/mean) to assess intra- and inter-scan repeatability and prediction intervals. This study was Health Insurance Portability and Accountability Act compliant. All subjects gave institutional review board-approved written, informed consent. The intra-scan CVs for the NAA, Glx, Cr and Cho were: 3.9±1.8%, 7.3±4.6%, 4.0±3.4% and 2.5±1.6%, and the corresponding inter-scan (longitudinal) values were: 7.0±3.1%, 10.6±5.6%, 7.6±3.5% and 7.0±3.9%. This method is shown to have 80% power to detect changes of 14%, 27%, 26% and 19% between two serial measurements in a given individual. Subject to the assumption that in neurological disorders NAA, Glx, Cr and Cho changes represent brain-only pathology and not muscles, bone marrow, adipose tissue or epithelial cells, this approach enables us to quantify them, thereby adding specificity to the assessment of the total disease load. This will facilitate monitoring diffuse pathologies with faster measurement, more extensive (~90% of the brain) spatial coverage and sensitivity than localized 1 H-MRS. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip.

    Science.gov (United States)

    Dauth, Stephanie; Maoz, Ben M; Sheehy, Sean P; Hemphill, Matthew A; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M; Budnik, Bogdan; Parker, Kevin Kit

    2017-03-01

    Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the

  2. Localized proton 1H MR spectroscopy in different regions of the human brain

    International Nuclear Information System (INIS)

    Fang Hong; Guo Qinglin; Zhang Guixiang

    1997-01-01

    To study the 1 H MR spectrum of normal human brain and the concentration and distribution of main metabolites using 1 H MR spectroscopy eighteen healthy human brains were examined by conventional 1.5 T MRI system. Volume of interest (VOI) included temporal lobe (mainly gray matter), thalamus, cerebellum as well as white matter. Proton MR spectroscopy can detect a variety of metabolites in human brain in vivo. The main detectable metabolites were N-acetyl-aspartate (NAA: at 2.02 ppm), cholineontaining compounds (Cho: at 3.2 ppm), phospho-creating and creatine (PCr + Cr: at 3.0 ppm), glutamine and glutamate (Gln + Glu: at 2.34-2.45 ppm), lipids (Lip: at 1.0 ppm) and lactate (Lac: at 1.3 ppm). the metabolite concentration varied in different parts of the brain. The relative signal intensity calculation showed that: NAA/Cho ratio is the highest in gray matter and lowest in cerebellun. Cr/Cho is the highest in cerebellum and lowest in white matter. The assumed creatine concentration is 10 mmol/L for gray matter and cerebellum, 11 mmol/L for white matter and thalanmus, the absolute concentration of NAA in the brain is about 13-23 mmol/L, and is higher in gray matter than in cerebellum and thalamus. Proton MR spectroscopy is a new noninvasive method which can be used to detect a number of chemical compounds pertaining to energy metabolism, free amino acids, fatty acids and neurotransmitters in the brain. It is useful to assess the cerebral biochemical changes in vivo both in healthy subjects and in patients with various brain disease

  3. Regional cerebral blood flow in the patient with brain tumor

    International Nuclear Information System (INIS)

    Tsuchida, Shohei

    1993-01-01

    Regional cerebral blood flow (rCBF) was measured with xenon-enhanced CT (Xe-CT) in 21 cases of intracranial tumors (13 meningiomas, 5 gliomas, 3 metastatic brain tumors). Peritumoral edema was graded as mild, moderate or severe based on the extent of edema on CT and MRI. According to intratumoral blood flow distribution patterns, three patterns were classified as central type with relatively high blood flow at the center of the tumor, homogeneous type with an almost homogeneous blood flow distribution, and marginal type with relatively high blood flow at the periphery of the tumor. High grade astrocytoma and metastatic brain tumor showed marginal type blood flow and moderate or severe edema except in one case. Five meningiomas with severe peritumoral edema revealed marginal type blood flow and four with mild peritumoral edema showed central type blood flow, except for one case. No correlation was found between the extent of peritumoral edema and histological subtype, tumor size, location, duration of clinical history, vascularization on angiogram, and mean blood flow in the tumor. These results suggest that blood flow distribution patterns within the tumor may affect the extension of peritumoral edema. Pre- and postoperative rCBFs were evaluated with Xe-CT and IMP-SPECT in 7 cases, mean rCBF of peritumoral edema was 6.2 ml/100 g/min preoperatively, and discrepancy between rCBF on Xe-CT and that on IMP-SPECT was shown in the remote cortical region ipsilateral to the tumor. Postoperative rCBF revealed an improved blood flow in both adjacent and remote areas, suggesting that the decreased blood flow associated with brain tumors might be relieved after surgery. (author) 53 refs

  4. Acetamiprid Accumulates in Different Amounts in Murine Brain Regions

    Directory of Open Access Journals (Sweden)

    Hayato Terayama

    2016-09-01

    Full Text Available Neonicotinoids such as acetamiprid (ACE belong to a new and widely used single class of pesticides. Neonicotinoids mimic the chemical structure of nicotine and share agonist activity with the nicotine acetylcholine receptor (nAchR. Neonicotinoids are widely considered to be safe in humans; however, they have recently been implicated in a number of human health disorders. A wide range of musculoskeletal and neuromuscular disorders associated with high doses of neonicotinoids administered to animals have also been reported. Consequently, we used a mouse model to investigate the response of the central nervous system to ACE treatment. Our results show that exposure to ACE-containing water for three or seven days (decuple and centuple of no observable adverse effect level (NOAEL/day caused a decrease in body weight in 10-week old A/JJmsSlc (A/J mice. However, the treatments did not affect brain histology or expression of CD34. ACE concentrations were significantly higher in the midbrain of ACE-treated mice than that of the normal and vehicle groups. Expression levels of α7, α4, and β2 nAChRs were found to be low in the olfactory bulb and midbrain of normal mice. Furthermore, in the experimental group (centuple ACE-containing water for seven days, β2 nAChR expression decreased in many brain regions. Information regarding the amount of accumulated ACE and expression levels of the acetylcholine receptor in each region of the brain is important for understanding any clinical symptoms that may be associated with ACE exposure.

  5. The first insight into the metabolite profiling of grapes from three Vitis vinifera L. cultivars of two controlled appellation (DOC) regions.

    Science.gov (United States)

    Teixeira, António; Martins, Viviana; Noronha, Henrique; Eiras-Dias, José; Gerós, Hernâni

    2014-03-10

    The characterization of the metabolites accumulated in the grapes of specific cultivars grown in different climates is of particular importance for viticulturists and enologists. In the present study, the metabolite profiling of grapes from the cultivars, Alvarinho, Arinto and Padeiro de Basto, of two Portuguese Controlled Denomination of Origin (DOC) regions (Vinho Verde and Lisboa) was investigated by gas chromatography-coupled time-of-flight mass spectrometry (GC-TOF-MS) and an amino acid analyzer. Primary metabolites, including sugars, organic acids and amino acids, and some secondary metabolites were identified. Tartaric and malic acids and free amino acids accumulated more in grapes from vines of the DOC region of Vinho Verde than DOC Lisboa, but a principal component analysis (PCA) plot showed that besides the DOC region, the grape cultivar also accounted for the variance in the relative abundance of metabolites. Grapes from the cultivar, Alvarinho, were particularly rich in malic acid and tartaric acids in both DOC regions, but sucrose accumulated more in the DOC region of Vinho Verde.

  6. The First Insight into the Metabolite Profiling of Grapes from Three Vitis vinifera L. Cultivars of Two Controlled Appellation (DOC Regions

    Directory of Open Access Journals (Sweden)

    António Teixeira

    2014-03-01

    Full Text Available The characterization of the metabolites accumulated in the grapes of specific cultivars grown in different climates is of particular importance for viticulturists and enologists. In the present study, the metabolite profiling of grapes from the cultivars, Alvarinho, Arinto and Padeiro de Basto, of two Portuguese Controlled Denomination of Origin (DOC regions (Vinho Verde and Lisboa was investigated by gas chromatography-coupled time-of-flight mass spectrometry (GC-TOF-MS and an amino acid analyzer. Primary metabolites, including sugars, organic acids and amino acids, and some secondary metabolites were identified. Tartaric and malic acids and free amino acids accumulated more in grapes from vines of the DOC region of Vinho Verde than DOC Lisboa, but a principal component analysis (PCA plot showed that besides the DOC region, the grape cultivar also accounted for the variance in the relative abundance of metabolites. Grapes from the cultivar, Alvarinho, were particularly rich in malic acid and tartaric acids in both DOC regions, but sucrose accumulated more in the DOC region of Vinho Verde.

  7. Brain Region-Specific Activity Patterns after Recent or Remote Memory Retrieval of Auditory Conditioned Fear

    Science.gov (United States)

    Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee

    2012-01-01

    Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or…

  8. Do the metabolites of 6-[F-18]fluoro-L-dopa and of [F-18]fluoro-meta-L-tyrosine contribute to the F-18 accumulation in the human brain?

    International Nuclear Information System (INIS)

    Firnau, G.; Chirakal, R.; Nahmias, C.; Garnett, E.S.

    1990-01-01

    The purpose of this study was to determine if the metabolites of 6-[F-18]fluoro-L-dopa (F-dopa) and of [F-18]fluoro-meta-L-tyrosine (FmLtyr) contribute to the accumulation of fluorine-18 in the brain through unspecific retention. PET studies were conducted on a healthy human subject who was treated with both of the radiopharmaceuticals and their labelled metabolites. Results indicated that in contrast to F-dopa, the metabolite of FmLtyr does not 'contaminate' the brain with extraneous fluorine-18

  9. [Effect of electro-acupuncture on metabolites in the cerebral cortex of ulcerative colitis rats based on Pi/Wei-brain related theory].

    Science.gov (United States)

    Yang, Yang; Zhao, Ji-lan; Hou, Tian-shu; Han, Xiao-xia; Zhao, Zheng-yu; Peng, Xiao-hua; Wu, Qiao-Feng

    2014-10-01

    To study the effect of electro-acupuncture (EA) at points along Foot Yangming Channel on metabolite of ulcerative colitis (UC) rats' cerebral cortex and to identify key metabolites by referring to Pi/Wei-brain related theory in Chinese medicine (CM). The UC rat model was set up by dextran sulfate sodium (DSS) method. Male SD rats were randomly divided into the model group and the EA group, 13 in each group. Another 13 rats were recruited as the blank control group. Rats in the blank control group and the model group received no EA. EA was performed at Zusanli (ST36), Shangjuxu (ST37), and Tianshu (ST25) for 5 days by using disperse-dense wave. Then all rats were sacrificed. Their recto-colon and the ileocecal junction were pathomorphologically observed by light microscope and transmission electron microscope (TEM). Cerebral cortexes were extracted. Water-soluble and lipid-soluble brain tissue metabolites were respectively extracted for metabolic research using 1H nuclear magnetic resonance (1H-NMR). EA could obviously improve the general condition of UC model rats, decrease the value of DAI, reduce the infiltration of inflammatory cells in the intestinal tract, stabilize structures such as mitochondria, endoplasmic reticulum and so on (P theory.

  10. Evaluation and metabolite studies of {sup 125}I- and {sup 123}I-labelled E-(R,R)-IQNP: potential radioligands for visualization of M{sub 1} muscarinic acetylcholine receptors in brain

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Kim A.; Halldin, Christer; Hiltunen, Jukka; Swahn, Carl-Gunnar; Ito, Hiroshi; Ginovart, Nathalie; Hall, Haakan; McPherson, Daniel W.; Knapp, F. F. (Russ); Larsson, Stig; Schnell, Per-Olof; Farde, Lars

    1998-04-01

    A new ligand for the M{sub 1} muscarinic receptor subtype, E-(R,R)-1-azabicyclo[2.2.2]oct-3-yl {alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (E-IQNP), was labelled with {sup 125}I and {sup 123}I for autoradiographic studies on human whole-brain cryosections and SPET studies, respectively, in Cynomolgus monkey. Autoradiography demonstrated E-[{sup 125}I]IQNP binding in M{sub 1} receptor-rich regions such as the neocortex and the striatum. The binding was displaceable by the selective M{sub 1} antagonist biperiden. In vivo single photon emission tomography (SPET) studies with E-[{sup 123}I]IQNP demonstrated a high accumulation of radioactivity in the monkey neocortex. Rapid hydrolysis of the quinuclidinyl ester to the free acid was found to be a major biotransformation route for E-[{sup 123}I]IQNP. The free acid of E-[{sup 123}I]IQNP does not pass the blood-brain barrier, but the plasma concentration was high as compared to the total radioactivity in brain. It is thus necessary to correct for the high concentration of radioactive metabolites in parenchymal blood (CBV) to obtain accurate values for E-[{sup 123}I]IQNP binding in brain.

  11. Bilingualism alters brain functional connectivity between "control" regions and "language" regions: Evidence from bimodal bilinguals.

    Science.gov (United States)

    Li, Le; Abutalebi, Jubin; Zou, Lijuan; Yan, Xin; Liu, Lanfang; Feng, Xiaoxia; Wang, Ruiming; Guo, Taomei; Ding, Guosheng

    2015-05-01

    Previous neuroimaging studies have revealed that bilingualism induces both structural and functional neuroplasticity in the dorsal anterior cingulate cortex (dACC) and the left caudate nucleus (LCN), both of which are associated with cognitive control. Since these "control" regions should work together with other language regions during language processing, we hypothesized that bilingualism may also alter the functional interaction between the dACC/LCN and language regions. Here we tested this hypothesis by exploring the functional connectivity (FC) in bimodal bilinguals and monolinguals using functional MRI when they either performed a picture naming task with spoken language or were in resting state. We found that for bimodal bilinguals who use spoken and sign languages, the FC of the dACC with regions involved in spoken language (e.g. the left superior temporal gyrus) was stronger in performing the task, but weaker in the resting state as compared to monolinguals. For the LCN, its intrinsic FC with sign language regions including the left inferior temporo-occipital part and right inferior and superior parietal lobules was increased in the bilinguals. These results demonstrate that bilingual experience may alter the brain functional interaction between "control" regions and "language" regions. For different control regions, the FC alters in different ways. The findings also deepen our understanding of the functional roles of the dACC and LCN in language processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. c-Fos immunoreactivity in prefrontal, basal ganglia and limbic areas of the rat brain after central and peripheral administration of ethanol and its metabolite acetaldehyde.

    Directory of Open Access Journals (Sweden)

    Kristen N. Segovia

    2013-05-01

    Full Text Available Considerable evidence indicates that the metabolite of ethanol (EtOH, acetaldehyde, is biologically active. Acetaldehyde can be formed from EtOH peripherally mainly by alcohol dehydrogenase, and also centrally by catalase. EtOH and acetaldehyde show differences in their behavioral effects depending upon the route of administration. In terms of their effects on motor activity and motivated behaviors, when administered peripherally acetaldehyde tends to be more potent than EtOH but shows very similar potency administered centrally. Since dopamine (DA rich areas have an important role in regulating both motor activity and motivation, the present studies were undertaken to compare the effects of central (intraventricular, ICV and peripheral (intraperitoneal, IP administration of EtOH and acetaldehyde on a cellular marker of brain activity, c-Fos immunoreactivity, in DA innervated areas. Male Sprague-Dawley rats received an IP injection of vehicle, EtOH (0.5 or 2.5 g/kg or acetaldehyde (0.1 or 0.5 g/kg or an ICV injection of vehicle, EtOH or acetaldehyde (2.8 or 14.0 µmoles. IP administration of EtOH minimally induced c-Fos in some regions of the prefrontal cortex and basal ganglia, mainly at the low dose (0.5 g/kg, while IP acetaldehyde induced c-Fos in virtually all the structures studied at both doses. Acetaldehyde administered centrally increased c-Fos in all areas studied, a pattern that was very similar to EtOH. Thus, IP administered acetaldehyde was more efficacious than EtOH at inducing c-Fos expression. However, the general pattern of c-Fos induction promoted by ICV EtOH and acetaldehyde was similar. These results are consistent with the pattern observed in behavioral studies in which both substances produced the same magnitude of effect when injected centrally, and produced differences in potency after peripheral administration.

  13. Effects of testosterone and its metabolites on aromatase-immunoreactive cells in the quail brain: relationship with the activation of male reproductive behavior.

    Science.gov (United States)

    Balthazart, J; Foidart, A; Absil, P; Harada, N

    1996-01-01

    The enzyme aromatase converts testosterone (T) into 17 beta-estradiol and plays a pivotal role in the control of reproduction. In particular, the aromatase activity (AA) located in the preoptic area (POA) of male Japanese quail is a limiting step in the activation by T of copulatory behavior. Aromatase-immunoreactive (ARO-ir) cells of the POA are specifically localized within the cytoarchitectonic boundaries of the medial preoptic nucleus(POM), a sexually dimorphic and steroid-sensitive structure that is a necessary and sufficient site of steroid action in the activation of behavior. Stereotaxic implantation of aromatase inhibitors in but not around the POM strongly decreases the behavioral effects of a systemic treatment with T of castrated males. AA is decreased by castration and increased by aromatizable androgens and by estrogens. These changes have been independently documented at three levels of analysis: the enzymatic activity measured by radioenzymatic assays in vitro, the enzyme concentration evaluated semi-quantitatively by immunocytochemistry and the concentration of its messenger RNA quantified by reverse transcription-polymerase chain reaction (RT-PCR). These studies demonstrate that T acting mostly through its estrogenic metabolites regulates brain aromatase by acting essentially at the transcriptional level. Estrogens produced by central aromatization of T therefore have two independent roles: they activate male copulatory behavior and they regulate the synthesis of aromatase. Double label immunocytochemical studies demonstrate that estrogen receptors(ER) are found in all brain areas containing ARO-ir cells but the extent to which these markers are colocalized varies from one brain region to the other. More than 70% of ARO-ir cells contain detectable ER in the tuberal hypothalamus but less than 20% of the cells display this colocalization in the POA. This absence of ER in ARO-ir cells is also observed in the POA of the rat brain. This suggests that

  14. (S)- and (R)-[[sup 11]C]nicotine and the metabolite (R/S)-[[sup 11]C]cotinine. Preparation, metabolite studies and in vivo distribution in the human brain using PET

    Energy Technology Data Exchange (ETDEWEB)

    Halldin, C.; Swahn, C.-G.; Nybaeck, H. (Karolinska Hospital, Stockholm (Sweden)); Naagren, K. (Turku Univ. (Finland). Medical Cyclotron-PET Centre/Radiochemistry Lab.); Laangstroem, B. (Uppsala Univ. (Sweden). Dept. of Organic Chemistry)

    1992-11-01

    In order to investigate [[sup 11]C]nicotine binding and metabolism in the living human brain by PET, routine protocols were developed for the preparation and purification of (S)-and (R)-[[sup 11]C]nicotine and the metabolite (R/S)-[[sup 11]C]cotinine. (S)- and (R)-[[sup 11]C]nicotine were prepared by N-methylation with [[sup 11]C]methyl iodide of the appropriate secondary amine, which was liberated in situ by 2,2,6,6,-tetramethylpiperidine (TMP) from its corresponding biscamsylate-salt. (R/S)-[[sup 11]C]Cotinine was prepared by N-methylation of the amide precursor using tetrabutylammonium hydroxide as a phase transfer catalyst. Straight-phase semipreparative HPLC was in all purifications found to be superior to reversed-phase since the contamination by the norcompounds was eliminated. Reaction in acetonitrile for both (S)- and (R)-[[sup 11]C]nicotine and (R/S)-[[sup 11]C]cotinine with subsequent straight-phase HPLC purification resulted in 35-45% radiochemical yield with a total synthesis time of 30-35 min, a specific radioactivity of 1000-1500 Ci/mmol (37-55 GBq/[mu]mol, EOS) and a radiochemical purity >99%. The uptake and distribution of these tracers in the human brain was studied in healthy volunteers by PET. The metabolite (R/S)-[[sup 11]C]cotinine did not cross the blood-brain barrier to any significant degree. (author).

  15. Segmentation of brain parenchymal regions into gray matter and white matter with Alzheimer's disease

    International Nuclear Information System (INIS)

    Tokunaga, Chiaki; Yoshiura, Takashi; Yamashita, Yasuo; Magome, Taiki; Honda, Hiroshi; Arimura, Hidetaka; Toyofuku, Fukai; Ohki, Masafumi

    2010-01-01

    It is very difficult and time consuming for neuroradiologists to estimate the degree of cerebral atrophy based on the volume of cortical regions etc. Our purpose of this study was to develop an automated segmentation of the brain parenchyma into gray and white matter regions with Alzheimer's disease (AD) in three-dimensional (3D) T1-weighted MR images. Our proposed method consisted of extraction of a brain parenchymal region based on a brain model matching and segmentation of the brain parenchyma into gray and white matter regions based on a fuzzy c-means (FCM) algorithm. We applied our proposed method to MR images of the whole brains obtained from 9 cases, including 4 clinically AD cases and 5 control cases. The mean volume percentage of a cortical region (41.7%) to a brain parenchymal region in AD patients was smaller than that (45.2%) in the control subjects (p=0.000462). (author)

  16. A Means for the Scintigraphic Imaging of Regional Brain Dynamics. Regional Cerebral Blood Flow and Regional Cerebral Blood Volume

    Energy Technology Data Exchange (ETDEWEB)

    Potchen, E. J.; Bentley, R.; Gerth, W.; Hill, R. L.; Davis, D. O. [Washington University School Of Medicine, St. Louis, MO (United States)

    1969-05-15

    The use of freely diffusable inert radioactive gas as a washout indicator to measure regional cerebral blood flow has become a standardized kinetic procedure in many laboratories. Recent investigations with this technique have led us to conclude that we can reliably distinguish regional flow with perfusion against regional flow without perfusion from the early portion of the curve. Based on a detailed study of the early curve kinetics in patients with and without cerebral vascular disease we have defined the sampling duration necessary for application of the Anger gamma camera imaging process to regional changes in cerebral radioactivity. Using a standard camera and a small computer, a procedure has been developed and based upon entire field to determine the time of maximum height followed by analysis of the data in a matrix. This will permit a contour plot presentation of calculated regional cerebral blood flow in millilitres per 100 grams perfused brain per minute. In addition, we propose to augment this data by the display of regional non-perfusion blood flow versus regional cerebral flow with perfusion. Preliminary investigation on sampling duration, and Compton scattering were prerequisite to clinical scintigraphy of regional cerebral blood flow. In addition, the method of interface for the conventional Anger gamma camera to digital computers used in this procedure are discussed. Applications to further assess regional cerebral dynamics by scintigraphy are presented. (author)

  17. Transient postnatal fluoxetine decreases brain concentrations of 20-HETE and 15-epi-LXA4, arachidonic acid metabolites in adult mice.

    Science.gov (United States)

    Yuan, Zhi-Xin; Rapoport, Stanley I

    2015-10-01

    Transient postnatal exposure of rodents to the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine alters behavior and brain 5-HT neurotransmission during adulthood, and also reduces brain arachidonic (ARA) metabolic consumption and protein level of the ARA metabolizing enzyme, cytochrome P4504A (CYP4A). Brain 20-hydroxyeicosatetraenoic acid (20-HETE), converted by CYP4A from ARA, will be reduced in adult mice treated transiently and postnatally with fluoxetine. Male mice pups were injected i.p. daily with fluoxetine (10mg/kg) or saline during P4-P21. At P90 their brain was high-energy microwaved and analyzed for 20-HETE and six other ARA metabolites by enzyme immunoassay. Postnatal fluoxetine vs. saline significantly decreased brain concentrations of 20-HETE (-70.3%) and 15-epi-lipoxin A4 (-60%) in adult mice, but did not change other eicosanoid concentrations. Behavioral changes in adult mice treated postnatally with fluoxetine may be related to reduced brain ARA metabolism involving CYP4A and 20-HETE formation. Published by Elsevier Ltd.

  18. Regional cerebral blood flow in psychiatry: The resting and activated brains of schizophrenic patients

    International Nuclear Information System (INIS)

    Gur, R.E.

    1984-01-01

    The investigation of regional brain functioning in schizophrenia has been based on behavioral techniques. Although results are sometimes inconsistent, the behavioral observations suggest left hemispheric dysfunction and left hemispheric overreaction. Recent developments in neuroimaging technology make possible major refinements in assessing regional brain function. Both anatomical and physiological information now be used to study regional brain development in psychiatric disorders. This chapter describes the application of one method - the xenon-133 technique for measuring regional cerebral blood flow (rCBF) - in studying the resting and activated brains of schizoprenic patients

  19. Age- and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    Data.gov (United States)

    U.S. Environmental Protection Agency — Differences in various mitochondrial bioenergetics parameters in different brain regions in different age groups. This dataset is associated with the following...

  20. Automated selection of brain regions for real-time fMRI brain-computer interfaces

    Science.gov (United States)

    Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio

    2017-02-01

    Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.

  1. Measurement of brain metabolites by 1H-MR spectroscopy in patients with alzheimer disease: a Meta analysis

    International Nuclear Information System (INIS)

    Zhang Xiaochun; Wang Xiaoming; Zuo Lin

    2012-01-01

    Objective: To have a systemic review of the association between relative ratio in proton magnetic resonance spectroscopy ( 1 H-MRS) and Alzheimer's disease (AD). Methods: A search in Medline and China National Knowledge Infrastructure (CNKI) was performed, and relevant English and Chinese-language articles about assessing AD with 1 H-MRS were identified. The data of relative metabolic ratios (NAA/Cr, Cho/Cr, mI/Cr) from different brain regions (hippocampus, posterior cingulate gyrus, temporal lobe, parietal lobe, frontal lobe, occipital lobe) were extracted from the articles. The quality of the articles was evaluated according to the standard recommended by Newcastle-Ottawa criteria. The Meta-analysis was done with the Review Manager 4.2 to calculate pooled weighted mean difference (WMD) with 95% confidence interval (95% CI), and linear correlation analysis between NAA/Cr ratio and mI/Cr ratio was done by SPSS 17.0. Results: Thirty six articles (27 English articles, 9 Chinese articles) were included. After heterogeneity test was done,fixed effects model or random effects model was selected. The meta-analysis showed that the NAA/Cr ratio in patients with AD was higher than that in controls (WMD:-0.14, 95% CI: -0.17 to -0.11). The mI/Cr ratio in patients with AD was lower than that in controls (WMD: 0.10, 95% CI: 0.07 to 0.13). There were greatest changes in NAA/Cr ratio and mI/Cr ratio on the hippocampus (WMD of NAA/Cr: -0.27,95% CI: -0.36 to -0.19; WMD of mI/Cr: 0.21, 95% CI: 0.10 to 0.33). There were also no differences between patients with AD and controls with respect to the Cho/Cr ratio (WMD: 0.01, 95% CI:0.00 to 0.01, P>0.05). The NAA/Cr and mI/Cr changes are markedly correlated with each other in different brain regions (r=0.947, P=0.004). Conclusion: The hippocampus region is the first to present neuropathological changes in AD and the changes of NAA/Cr and MI/Cr might reflect the neurodegenerative process of AD. (authors)

  2. Brain Region-Dependent Rejection of Neural Precursor Cell Transplants

    Directory of Open Access Journals (Sweden)

    Nina Fainstein

    2018-04-01

    Full Text Available The concept of CNS as an immune-privileged site has been challenged by the occurrence of immune surveillance and allogeneic graft rejection in the brain. Here we examined whether the immune response to allogeneic neural grafts is determined by the site of implantation in the CNS. Dramatic regional differences were observed between immune responses to allogeneic neural precursor/stem cell (NPC grafts in the striatum vs. the hippocampus. Striatal grafts were heavily infiltrated with IBA-1+ microglia/macrophages and CD3+ T cells and completely rejected. In contrast, hippocampal grafts exhibited milder IBA-1+ cell infiltration, were not penetrated efficiently by CD3+ cells, and survived efficiently for at least 2 months. To evaluate whether the hippocampal protective effect is universal, astrocytes were then transplanted. Allogeneic astrocyte grafts elicited a vigorous rejection process from the hippocampus. CD200, a major immune-inhibitory signal, plays an important role in protecting grafts from rejection. Indeed, CD200 knock out NPC grafts were rejected more efficiently than wild type NPCs from the striatum. However, lack of CD200 expression did not elicit NPC graft rejection from the hippocampus. In conclusion, the hippocampus has partial immune-privilege properties that are restricted to NPCs and are CD200-independent. The unique hippocampal milieu may be protective for allogeneic NPC grafts, through host-graft interactions enabling sustained immune-regulatory properties of transplanted NPCs. These findings have implications for providing adequate immunosuppression in clinical translation of cell therapy.

  3. Regional differences in brain glucose metabolism determined by imaging mass spectrometry

    OpenAIRE

    André Kleinridders; Heather A. Ferris; Michelle L. Reyzer; Michaela Rath; Marion Soto; M. Lisa Manier; Jeffrey Spraggins; Zhihong Yang; Robert C. Stanton; Richard M. Caprioli; C. Ronald Kahn

    2018-01-01

    Objective: Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS). Metho...

  4. Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory.

    Science.gov (United States)

    Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi

    2017-04-12

    Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory. SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We

  5. Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle-initiated chemiluminescence

    International Nuclear Information System (INIS)

    Li Na; Guo Jizhao; Liu Bo; Yu Yuqi; Cui Hua; Mao Lanqun; Lin Yuqing

    2009-01-01

    Our previous work showed that gold nanoparticles could trigger chemiluminescence (CL) between luminol and AgNO 3 . In the present work, the effect of some biologically important reductive compounds, including monoamine neurotransmitters and their metabolites, reductive amino acids, ascorbic acid, uric acid, and glutathione, on the novel CL reaction were investigated for analytical purpose. It was found that all of them could inhibit the CL from the luminol-AgNO 3 -Au colloid system. Among them, monoamine neurotransmitters and their metabolites exhibited strong inhibition effect. Taking dopamine as a model compound, the CL mechanism was studied by measuring absorption spectra during the CL reaction and the reaction kinetics via stopped-flow technique. The CL inhibition mechanism is proposed to be due to that these tested compounds competed with luminol for AgNO 3 to inhibit the formation of luminol radicals and to accelerate deposition of Ag atoms on surface of gold nanoparticles, leading to a decrease in CL intensity. Based on the inhibited CL, a novel method for simultaneous determination of monoamine neurotransmitters and their metabolites was developed by coupling high-performance liquid chromatography with this CL reaction. The new method was successfully applied to determine the compounds in a mouse brain microdialysate. Compared with the reported HPLC-CL methods, the proposed method is simple, fast, and could determine more analytes. Moreover, the limits of linear ranges for NE, E, and DA using the proposed method were one order of magnitude lower than the luminol system without gold nanoparticles.

  6. Postmortem Brain and Blood Reference Concentrations of Alprazolam, Bromazepam, Chlordiazepoxide, Diazepam, and their Metabolites and a Review of the Literature

    DEFF Research Database (Denmark)

    Skov, Louise; Holm, Karen Marie Dollerup; Johansen, Sys Stybe

    2016-01-01

    with median brain-blood ratios ranging from 1.1 to 2.3. A positive correlation between brain and blood concentrations was found with R(2) values from 0.51 to 0.95. Our reported femoral blood concentrations concur with literature values, but sparse information on brain concentration was available. Drug...

  7. Effects of feeding grains naturally contaminated with Fusarium mycotoxins on brain regional neurochemistry of laying hens, turkey poults, and broiler breeder hens.

    Science.gov (United States)

    Yegani, M; Chowdhury, S R; Oinas, N; MacDonald, E J; Smith, T K

    2006-12-01

    Three experiments were conducted to compare the effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on brain regional neurochemistry of laying hens, turkey poults, and broiler breeder hens. In Experiment 1, thirty-six 45-wk-old laying hens were fed diets including the following for 4 wk: 1) control, 2) contaminated grains, and 3) contaminated grains + 0.2% polymeric glucomannan mycotoxin adsorbent (GMA). Concentrations of brain neurotransmitters and metabolites were analyzed in pons, hypothalamus, and cortex by HPLC with electrochemical detection. Neurotransmitters and the metabolites measured included dopamine, 3,4-dihydroxylphenyacetic acid, homovanillic acid, serotonin [5-hydroxytryptamine (5-HT)], 5-hydroxyindolacetic acid, epinephrine, and norepinephrine. The feeding of contaminated grains significantly increased concentrations of 5-HT and decreased the 5-hydroxyindolacetic acid:5-HT in the pons region in the brain stem. Dietary supplementation with GMA prevented these effects. There was no effect of diet on concentrations of other neurotransmitters or metabolites in the pons, hypothalamus, or cortex. In Experiment 2, thirty-six 1-d-old turkey poults were fed diets including the following for 4 wk: 1) control, 2) contaminated grains, and 3) contaminated grains + 0.2% GMA. Hypothalamic, pons, and cortex neurotransmitter concentrations were not affected by diet. In Experiment 3, forty-two 26-wk-old broiler breeder hens were fed diets including the following for 15 wk: 1) control, 2) contaminated grains, and 3) contaminated grains + 0.2% GMA. There was no effect of diet on neurotransmitter concentrations in the pons, hypothalamus, or cortex. It was concluded that differences in intraspecies effects of these mycotoxins on brain neurotransmitter concentrations might explain the intraspecies differences in the severity of Fusarium mycotoxin-induced reductions in feed intake.

  8. Data mining a functional neuroimaging database for functional segregation in brain regions

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Balslev, Daniela; Hansen, Lars Kai

    2006-01-01

    We describe a specialized neuroinformatic data mining technique in connection with a meta-analytic functional neuroimaging database: We mine for functional segregation within brain regions by identifying journal articles that report brain activations within the regions and clustering the abstract...

  9. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    Science.gov (United States)

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Data mining a functional neuroimaging database for functional|segregation in brain regions

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup

    2006-01-01

    We describe a specialized neuroinformatic data mining technique in connection with a meta-analytic functional neuroimaging database: We mine for functional segregation within brain regions by identifying journal articles that report brain activations within the regions and clustering the abstract...

  11. Development and validation of a high performance liquid chromatography quantification method of levo-tetrahydropalmatine and its metabolites in plasma and brain tissues: application to a pharmacokinetic study.

    Science.gov (United States)

    Abdallah, Inas A; Huang, Peng; Liu, Jing; Lee, David Y; Liu-Chen, Lee-Yuan; Hassan, Hazem E

    2017-04-01

    Levo-tetrahydropalmatine (l-THP) is an alkaloid isolated from Chinese medicinal herbs of the Corydalis and Stephania genera. It has been used in China for more than 40 years mainly as an analgesic with sedative/hypnotic effects. Despite its extensive use, its metabolism has not been quantitatively studied, nor there a sensitive reliable bioanalytical method for its quantification simultaneously with its metabolites. As such, the objective of this study was to develop and validate a sensitive and selective HPLC method for simultaneous quantification of l-THP and its desmethyl metabolites l-corydalmine (l-CD) and l-corypalmine (l-CP) in rat plasma and brain tissues. Rat plasma and brain samples were processed by liquid-liquid extraction using ethyl acetate. Chromatographic separation was achieved on a reversed-phase Symmetry® C 18 column (4.6 × 150 mm, 5 μm) at 25°C. The mobile phase consisted of acetonitrile-methanol-10 mm ammonium phosphate (pH 3) (10:30:60, v/v) and was used at a flow rate of 0.8 mL/min. The column eluent was monitored at excitation and emission wavelengths of 230 and 315 nm, respectively. The calibration curves were linear over the concentration range of 1-10,000 ng/mL. The intra- and interday reproducibility studies demonstrated accuracy and precision within the acceptance criteria of bioanalytical guidelines. The validated HPLC method was successfully applied to analyze samples from a pharmacokinetic study of l-THP in rats. Taken together, the developed method can be applied for bioanalysis of l-THP and its metabolites in rodents and potentially can be transferred for bioanalysis of human samples. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Brain regions involved in observing and trying to interpret dog behaviour.

    Science.gov (United States)

    Desmet, Charlotte; van der Wiel, Alko; Brass, Marcel

    2017-01-01

    Humans and dogs have interacted for millennia. As a result, humans (and especially dog owners) sometimes try to interpret dog behaviour. While there is extensive research on the brain regions that are involved in mentalizing about other peoples' behaviour, surprisingly little is known of whether we use these same brain regions to mentalize about animal behaviour. In this fMRI study we investigate whether brain regions involved in mentalizing about human behaviour are also engaged when observing dog behaviour. Here we show that these brain regions are more engaged when observing dog behaviour that is difficult to interpret compared to dog behaviour that is easy to interpret. Interestingly, these results were not only obtained when participants were instructed to infer reasons for the behaviour but also when they passively viewed the behaviour, indicating that these brain regions are activated by spontaneous mentalizing processes.

  13. Pathways linking regional hyperintensities in the brain and slower gait.

    Science.gov (United States)

    Bolandzadeh, Niousha; Liu-Ambrose, Teresa; Aizenstein, Howard; Harris, Tamara; Launer, Lenore; Yaffe, Kristine; Kritchevsky, Stephen B; Newman, Anne; Rosano, Caterina

    2014-10-01

    Cerebral white matter hyperintensities (WMHs) are involved in the evolution of impaired mobility and executive functions. Executive functions and mobility are also associated. Thus, WMHs may impair mobility directly, by disrupting mobility-related circuits, or indirectly, by disrupting circuits responsible for executive functions. Understanding the mechanisms underlying impaired mobility in late life will increase our capacity to develop effective interventions. To identify regional WMHs most related to slower gait and to examine whether these regional WMHs directly impact mobility, or indirectly by executive functions. Cross-sectional study. Twenty-one WMH variables (i.e., total WMH volume and WMHs in 20 tracts), gait speed, global cognition (Modified Mini-Mental State Examination; 3MS), and executive functions and processing speed (Digit-Symbol Substitution Test; DSST) were assessed. An L1-L2 regularized regression (i.e., Elastic Net model) identified the WMH variables most related to slower gait. Multivariable linear regression models quantified the association between these WMH variables and gait speed. Formal tests of mediation were also conducted. Community-based sample. Two hundred fifty-three adults (mean age: 83years, 58% women, 41% black). Gait speed. In older adults with an average gait speed of 0.91m/sec, total WMH volume, WMHs located in the right anterior thalamic radiation (ATRR) and frontal corpuscallosum (CCF) were most associated with slower gait. There was a >10% slower gait for each standard deviation of WMH in CCF, ATRR or total brain (standardized beta in m/sec [p value]: -0.11 [p=0.046], -0.15 [p=0.007] and -0.14 [p=0.010], respectively). These associations were substantially and significantly attenuated after adjustment for DSST. This effect was stronger for WMH in CCF than for ATRR or total WMH (standardized beta in m/sec [p value]: -0.07 [p=0.190], -0.12 [p=0.024] and -0.10 [p=0.049], respectively). Adjustment for 3MS did not change these

  14. Regional infant brain development: an MRI-based morphometric analysis in 3 to 13 month olds.

    Science.gov (United States)

    Choe, Myong-Sun; Ortiz-Mantilla, Silvia; Makris, Nikos; Gregas, Matt; Bacic, Janine; Haehn, Daniel; Kennedy, David; Pienaar, Rudolph; Caviness, Verne S; Benasich, April A; Grant, P Ellen

    2013-09-01

    Elucidation of infant brain development is a critically important goal given the enduring impact of these early processes on various domains including later cognition and language. Although infants' whole-brain growth rates have long been available, regional growth rates have not been reported systematically. Accordingly, relatively less is known about the dynamics and organization of typically developing infant brains. Here we report global and regional volumetric growth of cerebrum, cerebellum, and brainstem with gender dimorphism, in 33 cross-sectional scans, over 3 to 13 months, using T1-weighted 3-dimensional spoiled gradient echo images and detailed semi-automated brain segmentation. Except for the midbrain and lateral ventricles, all absolute volumes of brain regions showed significant growth, with 6 different patterns of volumetric change. When normalized to the whole brain, the regional increase was characterized by 5 differential patterns. The putamen, cerebellar hemispheres, and total cerebellum were the only regions that showed positive growth in the normalized brain. Our results show region-specific patterns of volumetric change and contribute to the systematic understanding of infant brain development. This study greatly expands our knowledge of normal development and in future may provide a basis for identifying early deviation above and beyond normative variation that might signal higher risk for neurological disorders.

  15. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging

    OpenAIRE

    Soreq, Lilach; Rose, Jamie; Soreq, Eyal; Hardy, John; Trabzuni, Daniah; Cookson, Mark R.; Smith, Colin; Ryten, Mina; Patani, Rickie; Ule, Jernej

    2017-01-01

    Summary Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in?age from 16 to 106 years. We show that astrocyte-?and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional express...

  16. Somatic DNA recombination yielding circular DNA and deletion of a genomic region in embryonic brain

    International Nuclear Information System (INIS)

    Maeda, Toyoki; Chijiiwa, Yoshiharu; Tsuji, Hideo; Sakoda, Saburo; Tani, Kenzaburo; Suzuki, Tomokazu

    2004-01-01

    In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis

  17. Automatic detection of the hippocampal region associated with Alzheimer's disease from microscopic images of mice brain

    Science.gov (United States)

    Albaidhani, Tahseen; Hawkes, Cheryl; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    The hippocampus is the region of the brain that is primarily associated with memory and spatial navigation. It is one of the first brain regions to be damaged when a person suffers from Alzheimer's disease. Recent research in this field has focussed on the assessment of damage to different blood vessels within the hippocampal region from a high throughput brain microscopic images. The ultimate aim of our research is the creation of an automatic system to count and classify different blood vessels such as capillaries, veins, and arteries in the hippocampus region. This work should provide biologists with efficient and accurate tools in their investigation of the causes of Alzheimer's disease. Locating the boundary of the Region of Interest in the hippocampus from microscopic images of mice brain is the first essential stage towards developing such a system. This task benefits from the variation in colour channels and texture between the two sides of the hippocampus and the boundary region. Accordingly, the developed initial step of our research to locating the hippocampus edge uses a colour-based segmentation of the brain image followed by Hough transforms on the colour channel that isolate the hippocampus region. The output is then used to split the brain image into two sides of the detected section of the boundary: the inside region and the outside region. Experimental results on a sufficiently number of microscopic images demonstrate the effectiveness of the developed solution.

  18. Brain region specific mitophagy capacity could contribute to selective neuronal vulnerability in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Zabel Claus

    2011-09-01

    Full Text Available Abstract Parkinson's disease (PD is histologically well defined by its characteristic degeneration of dopaminergic neurons in the substantia nigra pars compacta. Remarkably, divergent PD-related mutations can generate comparable brain region specific pathologies. This indicates that some intrinsic region-specificity respecting differential neuron vulnerability exists, which codetermines the disease progression. To gain insight into the pathomechanism of PD, we investigated protein expression and protein oxidation patterns of three different brain regions in a PD mouse model, the PINK1 knockout mice (PINK1-KO, in comparison to wild type control mice. The dysfunction of PINK1 presumably affects mitochondrial turnover by disturbing mitochondrial autophagic pathways. The three brain regions investigated are the midbrain, which is the location of substantia nigra; striatum, the major efferent region of substantia nigra; and cerebral cortex, which is more distal to PD pathology. In all three regions, mitochondrial proteins responsible for energy metabolism and membrane potential were significantly altered in the PINK1-KO mice, but with very different region specific accents in terms of up/down-regulations. This suggests that disturbed mitophagy presumably induced by PINK1 knockout has heterogeneous impacts on different brain regions. Specifically, the midbrain tissue seems to be most severely hit by defective mitochondrial turnover, whereas cortex and striatum could compensate for mitophagy nonfunction by feedback stimulation of other catabolic programs. In addition, cerebral cortex tissues showed the mildest level of protein oxidation in both PINK1-KO and wild type mice, indicating either a better oxidative protection or less reactive oxygen species (ROS pressure in this brain region. Ultra-structural histological examination in normal mouse brain revealed higher incidences of mitophagy vacuoles in cerebral cortex than in striatum and substantia

  19. Quantitative expression profile of distinct functional regions in the adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Takeya Kasukawa

    Full Text Available The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks, feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain regions, we conducted the BrainStars (B* project, in which we profiled the genome-wide expression of ∼50 small brain regions, including sensory centers, and centers for motion, time, memory, fear, and feeding. To avoid confounds from temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the samples for DNA-microarray assays. Therefore, we focused on spatial differences in gene expression. We used informatics to identify candidate genes with expression changes showing high or low expression in specific regions. We also identified candidate genes with stable expression across brain regions that can be used as new internal control genes, and ligand-receptor interactions of neurohormones and neurotransmitters. Through these analyses, we found 8,159 multi-state genes, 2,212 regional marker gene candidates for 44 small brain regions, 915 internal control gene candidates, and 23,864 inferred ligand-receptor interactions. We also found that these sets include well-known genes as well as novel candidate genes that might be related to specific functions in brain regions. We used our findings to develop an integrated database (http://brainstars.org/ for exploring genome-wide expression in the adult mouse brain, and have made this database openly accessible. These new resources will help accelerate the functional analysis of the mammalian brain and the elucidation of its regulatory network systems.

  20. Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle-initiated chemiluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Li Na; Guo Jizhao; Liu Bo; Yu Yuqi [Department of Chemistry, University of Science and Technology of China (USTC), JinZhai Road No: 96, 230026 Hefei, Anhui (China); Cui Hua, E-mail: hcui@ustc.edu.cn [Department of Chemistry, University of Science and Technology of China (USTC), JinZhai Road No: 96, 230026 Hefei, Anhui (China); Mao Lanqun; Lin Yuqing [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100080 Beijing (China)

    2009-07-10

    Our previous work showed that gold nanoparticles could trigger chemiluminescence (CL) between luminol and AgNO{sub 3}. In the present work, the effect of some biologically important reductive compounds, including monoamine neurotransmitters and their metabolites, reductive amino acids, ascorbic acid, uric acid, and glutathione, on the novel CL reaction were investigated for analytical purpose. It was found that all of them could inhibit the CL from the luminol-AgNO{sub 3}-Au colloid system. Among them, monoamine neurotransmitters and their metabolites exhibited strong inhibition effect. Taking dopamine as a model compound, the CL mechanism was studied by measuring absorption spectra during the CL reaction and the reaction kinetics via stopped-flow technique. The CL inhibition mechanism is proposed to be due to that these tested compounds competed with luminol for AgNO{sub 3} to inhibit the formation of luminol radicals and to accelerate deposition of Ag atoms on surface of gold nanoparticles, leading to a decrease in CL intensity. Based on the inhibited CL, a novel method for simultaneous determination of monoamine neurotransmitters and their metabolites was developed by coupling high-performance liquid chromatography with this CL reaction. The new method was successfully applied to determine the compounds in a mouse brain microdialysate. Compared with the reported HPLC-CL methods, the proposed method is simple, fast, and could determine more analytes. Moreover, the limits of linear ranges for NE, E, and DA using the proposed method were one order of magnitude lower than the luminol system without gold nanoparticles.

  1. Multiple determinants of whole and regional brain volume among terrestrial carnivorans.

    Directory of Open Access Journals (Sweden)

    Eli M Swanson

    Full Text Available Mammalian brain volumes vary considerably, even after controlling for body size. Although several hypotheses have been proposed to explain this variation, most research in mammals on the evolution of encephalization has focused on primates, leaving the generality of these explanations uncertain. Furthermore, much research still addresses only one hypothesis at a time, despite the demonstrated importance of considering multiple factors simultaneously. We used phylogenetic comparative methods to investigate simultaneously the importance of several factors previously hypothesized to be important in neural evolution among mammalian carnivores, including social complexity, forelimb use, home range size, diet, life history, phylogeny, and recent evolutionary changes in body size. We also tested hypotheses suggesting roles for these variables in determining the relative volume of four brain regions measured using computed tomography. Our data suggest that, in contrast to brain size in primates, carnivoran brain size may lag behind body size over evolutionary time. Moreover, carnivore species that primarily consume vertebrates have the largest brains. Although we found no support for a role of social complexity in overall encephalization, relative cerebrum volume correlated positively with sociality. Finally, our results support negative relationships among different brain regions after accounting for overall endocranial volume, suggesting that increased size of one brain regions is often accompanied by reduced size in other regions rather than overall brain expansion.

  2. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain

    NARCIS (Netherlands)

    Hoekzema, E.; Schagen, S.E.E.; Kreukels, B.P.C.; Veltman, D.J.; Cohen-Kettenis, P.T.; Delemarre-van d Waal, H.A.; Bakkera, J.

    2015-01-01

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural

  3. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain

    NARCIS (Netherlands)

    Hoekzema, Elseline; Schagen, Sebastian E E; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Delemarre-van de Waal, Henriette; Bakker, J.

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural

  4. Targeted Serum Metabolite Profiling Identifies Metabolic Signatures in Patients with Alzheimer's Disease, Normal Pressure Hydrocephalus and Brain Tumor

    DEFF Research Database (Denmark)

    Orešič, Matej; Anderson, Gabriella; Mattila, Ismo

    2018-01-01

    , NPH and BT samples. In the BT group, the fatty acids were increased as compared to HC and NPH groups, while the ketone body 3-hydroxybutyrate was increased as compared to AD. Glutamic acid was increased in AD as compared to the HC group. In the AD group, 3-hydroxybutyrate tended to be decreased......Progression to AD is preceded by elevated levels of 2,4-dihydroxybutanoic acid (2,4-DHB), implicating hypoxia in early pathogenesis. Since hypoxia may play a role in multiple CNS disorders, we investigated serum metabolite profiles across three disorders, AD, Normal Pressure Hydrocephalus (NPH...

  5. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.; Rizzu, Patrizia; Francescatto, Margherita; Vitezic, Morana; Leday, Gwenaë l G.R.; Sanchez, Javier Simon; Khamis, Abdullah M.; Takahashi, Hazuki; van de Berg, Wilma D.J.; Medvedeva, Yulia A.; van de Wiel, Mark A.; Daub, Carsten O.; Carninci, Piero; Heutink, Peter

    2013-01-01

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites

  6. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease.

    Science.gov (United States)

    Mullins, Roger J; Mustapic, Maja; Goetzl, Edward J; Kapogiannis, Dimitrios

    2017-04-01

    Brain insulin resistance (IR), which depends on insulin-receptor-substrate-1 (IRS-1) phosphorylation, is characteristic of Alzheimer's disease (AD). Previously, we demonstrated higher pSer312-IRS-1 (ineffective insulin signaling) and lower p-panTyr-IRS-1 (effective insulin signaling) in neural origin-enriched plasma exosomes of AD patients vs. Here, we hypothesized that these exosomal biomarkers associate with brain atrophy in AD. We studied 24 subjects with biomarker-supported probable AD (low CSF Aβ 42 ). Exosomes were isolated from plasma, enriched for neural origin using immunoprecipitation for L1CAM, and measured for pSer 312 - and p-panTyr-IRS-1 phosphotypes. MPRAGE images were segmented by brain tissue type and voxel-based morphometry (VBM) analysis for gray matter against pSer 312 - and p-panTyr-IRS-1 was conducted. Given the regionally variable brain expression of IRS-1, we used the Allen Brain Atlas to make spatial comparisons between VBM results and IRS-1 expression. Brain volume was positively associated with P-panTyr-IRS-1 and negatively associated with pSer 312 -IRS-1 in a strikingly similar regional pattern (bilateral parietal-occipital junction, R middle temporal gyrus). This volumetric association pattern was spatially correlated with Allen Human Brain atlas normal brain IRS-1 expression. Exosomal biomarkers of brain IR are thus associated with atrophy in AD as could be expected by their pathophysiological roles and do so in a pattern that reflects regional IRS-1 expression. Furthermore, neural-origin plasma exosomes may recover molecular signals from specific brain regions. Hum Brain Mapp 38:1933-1940, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Regional brain distribution of toluene in rats and in a human autopsy

    Energy Technology Data Exchange (ETDEWEB)

    Ameno, Kiyoshi; Kiriu, Takahiro; Fuke, Chiaki; Ameno, Setsuko; Shinohara, Toyohiko; Ijiri, Iwao (Kagawa Medical School (Japan). Dept. of Forensic Medicine)

    1992-02-01

    Toluene concentrations in 9 brain regions of acutely exposed rats and that in 11 brain regions of a human case who inhaled toluene prior to death are described. After exposure to toluene by inhalation (2000 or 10 000 ppm) for 0.5 h or by oral dosing (400 mg/kg.), rats were killed by decapitation 0.5 and 4 h after onset of inhalation and 2 and 10 h after oral ingestion. After each experimental condition the highest range of brain region/blood toluene concentration ratio (BBCR) was in the brain stem regions (2.85-3.22) such as the pons and medulla oblongata, the middle range (1.77-2.12) in the midbrain, thalamus, caudate-putamen, hypothalamus and cerebellum, and the lowest range (1.22-1.64) in the hippocampus and cerebral cortex. These distribution patterns were quite constant. Toluene concentration in various brain regions were unevenly distributed and directly related blood levels. In a human case who had inhaled toluene vapor, the distribution among brain regions was relatively similar to that in rats, the highest concentration ratios being in the corpus callosum (BBCR:2.66) and the lowest in the hippocampus (BBCR:1.47). (orig.).

  8. Obligatory and facultative brain regions for voice-identity recognition

    Science.gov (United States)

    Roswandowitz, Claudia; Kappes, Claudia; Obrig, Hellmuth; von Kriegstein, Katharina

    2018-01-01

    Abstract Recognizing the identity of others by their voice is an important skill for social interactions. To date, it remains controversial which parts of the brain are critical structures for this skill. Based on neuroimaging findings, standard models of person-identity recognition suggest that the right temporal lobe is the hub for voice-identity recognition. Neuropsychological case studies, however, reported selective deficits of voice-identity recognition in patients predominantly with right inferior parietal lobe lesions. Here, our aim was to work towards resolving the discrepancy between neuroimaging studies and neuropsychological case studies to find out which brain structures are critical for voice-identity recognition in humans. We performed a voxel-based lesion-behaviour mapping study in a cohort of patients (n = 58) with unilateral focal brain lesions. The study included a comprehensive behavioural test battery on voice-identity recognition of newly learned (voice-name, voice-face association learning) and familiar voices (famous voice recognition) as well as visual (face-identity recognition) and acoustic control tests (vocal-pitch and vocal-timbre discrimination). The study also comprised clinically established tests (neuropsychological assessment, audiometry) and high-resolution structural brain images. The three key findings were: (i) a strong association between voice-identity recognition performance and right posterior/mid temporal and right inferior parietal lobe lesions; (ii) a selective association between right posterior/mid temporal lobe lesions and voice-identity recognition performance when face-identity recognition performance was factored out; and (iii) an association of right inferior parietal lobe lesions with tasks requiring the association between voices and faces but not voices and names. The results imply that the right posterior/mid temporal lobe is an obligatory structure for voice-identity recognition, while the inferior parietal

  9. Obligatory and facultative brain regions for voice-identity recognition.

    Science.gov (United States)

    Roswandowitz, Claudia; Kappes, Claudia; Obrig, Hellmuth; von Kriegstein, Katharina

    2018-01-01

    Recognizing the identity of others by their voice is an important skill for social interactions. To date, it remains controversial which parts of the brain are critical structures for this skill. Based on neuroimaging findings, standard models of person-identity recognition suggest that the right temporal lobe is the hub for voice-identity recognition. Neuropsychological case studies, however, reported selective deficits of voice-identity recognition in patients predominantly with right inferior parietal lobe lesions. Here, our aim was to work towards resolving the discrepancy between neuroimaging studies and neuropsychological case studies to find out which brain structures are critical for voice-identity recognition in humans. We performed a voxel-based lesion-behaviour mapping study in a cohort of patients (n = 58) with unilateral focal brain lesions. The study included a comprehensive behavioural test battery on voice-identity recognition of newly learned (voice-name, voice-face association learning) and familiar voices (famous voice recognition) as well as visual (face-identity recognition) and acoustic control tests (vocal-pitch and vocal-timbre discrimination). The study also comprised clinically established tests (neuropsychological assessment, audiometry) and high-resolution structural brain images. The three key findings were: (i) a strong association between voice-identity recognition performance and right posterior/mid temporal and right inferior parietal lobe lesions; (ii) a selective association between right posterior/mid temporal lobe lesions and voice-identity recognition performance when face-identity recognition performance was factored out; and (iii) an association of right inferior parietal lobe lesions with tasks requiring the association between voices and faces but not voices and names. The results imply that the right posterior/mid temporal lobe is an obligatory structure for voice-identity recognition, while the inferior parietal lobe is

  10. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    Science.gov (United States)

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  11. Neural Resilience to Traumatic Brain Injury: Identification of Bioactive Metabolites of Docosahexaenoic Acids Involved in Neuroprotection and Recovery

    Science.gov (United States)

    2015-05-01

    Involved in Neuroprotection and Recovery PRINCIPAL INVESTIGATOR: Hee-Yong Kim CONTRACTING ORGANIZATION: Henry M. Jackson Foundation for the...O’Dell DM, Lyeth BG, Jenkins LW (1994) The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury

  12. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica M. V. Pino

    2017-05-01

    Full Text Available Iron is an essential micronutrient for several physiological functions, including the regulation of dopaminergic neurotransmission. On the other hand, both iron, and dopamine can affect the folding and aggregation of proteins related with neurodegenerative diseases, such as cellular prion protein (PrPC and α-synuclein, suggesting that deregulation of iron homeostasis and the consequential disturbance of dopamine metabolism can be a risk factor for conformational diseases. These proteins, in turn, are known to participate in the regulation of iron and dopamine metabolism. In this study, we evaluated the effects of dietary iron restriction on brain ferritin levels, dopamine metabolism, and the expression levels of PrPC and α-synuclein. To achieve this goal, C57BL/6 mice were fed with iron restricted diet (IR or with normal diet (CTL for 1 month. IR reduced iron and ferritin levels in liver. Ferritin reduction was also observed in the hippocampus. However, in the striatum of IR group, ferritin level was increased, suggesting that under iron-deficient condition, each brain area might acquire distinct capacity to store iron. Increased lipid peroxidation was observed only in hippocampus of IR group, where ferritin level was reduced. IR also generated discrete results regarding dopamine metabolism of distinct brain regions: in striatum, the level of dopamine metabolites (DOPAC and HVA was reduced; in prefrontal cortex, only HVA was increased along with the enhanced MAO-A activity; in hippocampus, no alterations were observed. PrPC levels were increased only in the striatum of IR group, where ferritin level was also increased. PrPC is known to play roles in iron uptake. Thus, the increase of PrPC in striatum of IR group might be related to the increased ferritin level. α-synuclein was not altered in any regions. Abnormal accumulation of ferritin, increased MAO-A activity or lipid peroxidation are molecular features observed in several neurological

  13. Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates

    DEFF Research Database (Denmark)

    Sidaros, Annette; Skimminge, Arnold Jesper Møller; Liptrot, Matthew George

    2009-01-01

    with percent brain volume change (%BVC) ranging between − 0.6% and − 9.4% (mean − 4.0%). %BVC correlated significantly with injury severity, functional status at both scans, and with 1-year outcome. Moreover, %BVC improved prediction of long-term functional status over and above what could be predicted using......Traumatic brain injury (TBI) results in neurodegenerative changes that progress for months, perhaps even years post-injury. However, there is little information on the spatial distribution and the clinical significance of this late atrophy. In 24 patients who had sustained severe TBI we acquired 3D...... scan time point using SIENAX. Regional distribution of atrophy was evaluated using tensor-based morphometry (TBM). At the first scan time point, brain parenchymal volume was reduced by mean 8.4% in patients as compared to controls. During the scan interval, patients exhibited continued atrophy...

  14. Brain Region and Cell Type Transcripts for Informative Diagnostics

    Science.gov (United States)

    2010-09-01

    related with neurological condition and is on average larger in patients with schizophrenia and bipolar disorder. The blue circle region represents the...in a number of neurological conditions. Furthermore, this region is usually larger for schizophrenia , bipolar disorder, and Alzheimer’s disease...pathways such as calcium signaling pathway, mapK signaling pathway, Gaba pathway, and long- term depression pathways etc., are confirmed pathways through

  15. Corallocins A-C, Nerve Growth and Brain-Derived Neurotrophic Factor Inducing Metabolites from the Mushroom Hericium coralloides.

    Science.gov (United States)

    Wittstein, Kathrin; Rascher, Monique; Rupcic, Zeljka; Löwen, Eduard; Winter, Barbara; Köster, Reinhard W; Stadler, Marc

    2016-09-23

    Three new natural products, corallocins A-C (1-3), along with two known compounds were isolated from the mushroom Hericium coralloides. Their benzofuranone and isoindolinone structures were elucidated by spectral methods. All corallocins induced nerve growth factor and/or brain-derived neurotrophic factor expression in human 1321N1 astrocytes. Furthermore, corallocin B showed antiproliferative activity against HUVEC and human cancer cell lines MCF-7 and KB-3-1.

  16. Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts

    Directory of Open Access Journals (Sweden)

    Dong Guangheng

    2012-08-01

    Full Text Available Abstract Backgrounds Internet gaming addiction (IGA, as a subtype of internet addiction disorder, is rapidly becoming a prevalent mental health concern around the world. The neurobiological underpinnings of IGA should be studied to unravel the potential heterogeneity of IGA. This study investigated the brain functions in IGA patients with resting-state fMRI. Methods Fifteen IGA subjects and fourteen healthy controls participated in this study. Regional homogeneity (ReHo measures were used to detect the abnormal functional integrations. Results Comparing to the healthy controls, IGA subjects show enhanced ReHo in brainstem, inferior parietal lobule, left posterior cerebellum, and left middle frontal gyrus. All of these regions are thought related with sensory-motor coordination. In addition, IGA subjects show decreased ReHo in temporal, occipital and parietal brain regions. These regions are thought responsible for visual and auditory functions. Conclusions Our results suggest that long-time online game playing enhanced the brain synchronization in sensory-motor coordination related brain regions and decreased the excitability in visual and auditory related brain regions.

  17. Total regional and global number of synapses in the human brain neocortex

    NARCIS (Netherlands)

    Tang, Y.; Nyengaard, J.R.; Groot, D.M.G. de; Jorgen, H.; Gundersen, G.

    2001-01-01

    An estimator of the total number of synapses in neocortex of human autopsy brains based on unbiased stereological principles is described. Each randomly chosen cerebral hemisphere was stratified into the four major neocortical regions. Uniform sampling with a varying sampling fraction in each region

  18. Longitudinal Regional Brain Development and Clinical Risk Factors in Extremely Preterm Infants.

    Science.gov (United States)

    Kersbergen, Karina J; Makropoulos, Antonios; Aljabar, Paul; Groenendaal, Floris; de Vries, Linda S; Counsell, Serena J; Benders, Manon J N L

    2016-11-01

    To investigate third-trimester extrauterine brain growth and correlate this with clinical risk factors in the neonatal period, using serially acquired brain tissue volumes in a large, unselected cohort of extremely preterm born infants. Preterm infants (gestational age regions covering the entire brain. Multivariable regression analysis was used to determine the influence of clinical variables on volumes at both scans, as well as on volumetric growth. MRIs at term equivalent age were available for 210 infants and serial data were available for 131 infants. Growth over these 10 weeks was greatest for the cerebellum, with an increase of 258%. Sex, birth weight z-score, and prolonged mechanical ventilation showed global effects on brain volumes on both scans. The effect of brain injury on ventricular size was already visible at 30 weeks, whereas growth data and volumes at term-equivalent age revealed the effect of brain injury on the cerebellum. This study provides data about third-trimester extrauterine volumetric brain growth in preterm infants. Both global and local effects of several common clinical risk factors were found to influence serial volumetric measurements, highlighting the vulnerability of the human brain, especially in the presence of brain injury, during this period. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Comparison of regional gene expression differences in the brains of the domestic dog and human

    Directory of Open Access Journals (Sweden)

    Kennerly Erin

    2004-11-01

    Full Text Available Abstract Comparison of the expression profiles of 2,721 genes in the cerebellum, cortex and pituitary gland of three American Staffordshire terriers, one beagle and one fox hound revealed regional expression differences in the brain but failed to reveal marked differences among breeds, or even individual dogs. Approximately 85 per cent (42 of 49 orthologue comparisons of the regional differences in the dog are similar to those that differentiate the analogous human brain regions. A smaller percentage of human differences were replicated in the dog, particularly in the cortex, which may generally be evolving more rapidly than other brain regions in mammals. This study lays the foundation for detailed analysis of the population structure of transcriptional variation as it relates to cognitive and neurological phenotypes in the domestic dog.

  20. Proton MR spectroscopy in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Kubas, Bożena; Łebkowski, Wojciech; Łebkowska, Urszula; Kułak, Wojciech; Tarasow, Eugeniusz; Walecki, Jerzy

    2010-01-01

    To assess the role of 1H MRS in the detection of changes in cerebral metabolite levels in pyramidal tracts after mild traumatic brain injury (MTBI) and to compare metabolite alterations to the clinical status (Glasgow Coma Scale). Study group consisted of 25 patients after mild traumatic brain injury, with a score of 11 to 15 in GCS. The MR studies were performed with a 1.5 T scanner. The results of spectra approximation (presented as metabolite ratios: NAA/Cr, NAA/Cho, Cho/Cr, lac/Cr, lip/Cr, Glx/Cr) were subjected to statistical analysis. MR spectra were recorded from a normal-appearing brain region: internal capsules and cerebral peduncles. Spectra from traumatic patients were compared with a control group including 34 healthy volunteers recorded with the same techniques. The statistical analysis revealed significant differences between the data obtained from various brain regions of the same patients after an MTBI and between the study and the control group. Proton MR spectroscopy detects changes in cerebral metabolite levels in apparently normal regions. In pyramidal tracts (internal capsules, cerebral peduncles), we noticed a significant reduction of NAA /Cho, lip/Cr, lac/Cr and Glx/Cr. In patients with mild brain injury, we can detect some metabolite abnormalities in normal-appearing brain structures. Proton MRS is a very useful tool for evaluation of major changes in metabolite levels in pyramidal tracts after mild traumatic brain injury

  1. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers.

    Science.gov (United States)

    Hirvonen, J; Goodwin, R S; Li, C-T; Terry, G E; Zoghbi, S S; Morse, C; Pike, V W; Volkow, N D; Huestis, M A; Innis, R B

    2012-06-01

    Chronic cannabis (marijuana, hashish) smoking can result in dependence. Rodent studies show reversible downregulation of brain cannabinoid CB(1) (cannabinoid receptor type 1) receptors after chronic exposure to cannabis. However, whether downregulation occurs in humans who chronically smoke cannabis is unknown. Here we show, using positron emission tomography imaging, reversible and regionally selective downregulation of brain cannabinoid CB(1) receptors in human subjects who chronically smoke cannabis. Downregulation correlated with years of cannabis smoking and was selective to cortical brain regions. After ∼4 weeks of continuously monitored abstinence from cannabis on a secure research unit, CB(1) receptor density returned to normal levels. This is the first direct demonstration of cortical cannabinoid CB(1) receptor downregulation as a neuroadaptation that may promote cannabis dependence in human brain.

  2. Differential impact of hyponatremia and hepatic encephalopathy on health-related quality of life and brain metabolite abnormalities in cirrhosis.

    Science.gov (United States)

    Ahluwalia, Vishwadeep; Wade, James B; Thacker, Leroy; Kraft, Kenneth A; Sterling, Richard K; Stravitz, R Todd; Fuchs, Michael; Bouneva, Iliana; Puri, Puneet; Luketic, Velimir; Sanyal, Arun J; Gilles, Hochong; Heuman, Douglas M; Bajaj, Jasmohan S

    2013-09-01

    Hyponatremia (HN) and hepatic encephalopathy (HE) together can impair health-related quality of life (HRQOL) and cognition in cirrhosis. We aimed at studying the effect of hyponatremia on cognition, HRQOL, and brain MR spectroscopy (MRS) independent of HE. Four cirrhotic groups (no HE/HN, HE alone, HN alone (sodium <130 mEq/L), HE+HN) underwent cognitive testing, HRQOL using Sickness Impact Profile (SIP: higher score is worse; has psychosocial and physical sub-scores) and brain MRS (myoinositol (mI) and glutamate+glutamine (Glx)), which were compared across groups. A subset underwent HRQOL testing before/after diuretic withdrawal. 82 cirrhotics (30 no HE/HN, 25 HE, 17 HE+HN, and 10 HN, MELD 12, 63% hepatitis C) were included. Cirrhotics with HN alone and without HE/HN had better cognition compared to HE groups (median abnormal tests no-HE/HN: 3, HN: 3.5, HE: 6.5, HE+HN: 7, p=0.008). Despite better cognition, HN only patients had worse HRQOL in total and psychosocial SIP while both HN groups (with/without HE) had a significantly worse physical SIP (p<0.0001, all comparisons). Brain MRS showed the lowest Glx in HN and the highest in HE groups (p<0.02). mI levels were comparably decreased in the three affected (HE, HE+HN, and HN) groups compared to no HE/HN and were associated with poor HRQOL. Six HE+HN cirrhotics underwent diuretic withdrawal which improved serum sodium and total/psychosocial SIP scores. Hyponatremic cirrhotics without HE have poor HRQOL despite better cognition than those with concomitant HE. Glx levels were lowest in HN without HE but mI was similar across affected groups. HRQOL improved after diuretic withdrawal. Hyponatremia has a complex, non-linear relationship with brain Glx and mI, cognition and HRQOL. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers

    OpenAIRE

    Hirvonen, J; Goodwin, RS; Li, C-T; Terry, GE; Zoghbi, SS; Morse, C; Pike, VW; Volkow, ND; Huestis, MA; Innis, RB

    2011-01-01

    Chronic cannabis (marijuana, hashish) smoking can result in dependence. Rodent studies show reversible downregulation of brain cannabinoid CB1 (cannabinoid receptor type 1) receptors after chronic exposure to cannabis. However, whether downregulation occurs in humans who chronically smoke cannabis is unknown. Here we show, using positron emission tomography imaging, reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in human subjects who chronically smoke ca...

  4. Regional cerebral blood flow and brain atrophy in senile dementia of Alzheimer type (SDAT)

    International Nuclear Information System (INIS)

    Okada, Kazunori; Kobayashi, Shoutai; Yamaguchi, Shuhei; Kitani, Mituhiro; Tsunematsu, Tokugoro

    1987-01-01

    To investigate the relationship between the reduction of cerebal blood flow and brain atrophy in SDAT, these were measured in 13 cases of senile dementia of Alzheimer type, and compared to 15 cases of multi-infarct Dementia, 39 cases of lacunar infarction without dementia (non-demented CVD group) and 69 cases of aged normal control. Brain atrophy was evaluated by two-dimensional method on CT film by digitizer and regional cerebral blood flow (rCBF) was measured by 133 Xe inhalation method. The degree of brain atrophy in SDAT was almost similar of that of MID. But it was more severe than that of non-demented group. MID showed the lowest rCBF among these groups. SDAT showed significantly lower rCBF than that of aged control, but rCBF in SDAT was equal to that of lacunar stroke without dementia. Focal reduction of cerebral blood flow in bilateral fronto-parietal and left occipital regions were observed in SDAT. Verbal intelligence score (Hasegawa's score) correlated with rCBF and brain atrophy index in MID, and a tendency of correlation between rCBF and brain atrophy in MID was also observed. However, there was no correlation among those indices in SDAT. These findings suggest that the loss of brain substance dose not correspond to the reduction of rCBF in SDAT and simultaneous measurement of rCBF and brain atrophy was useful to differ SDAT from MID. (author)

  5. Uptake of [3H]testosterone and its metabolites by the brain and pituitary gland of the fetal macaque

    International Nuclear Information System (INIS)

    Michael, R.P.; Bonsall, R.W.; Rees, H.D.

    1989-01-01

    Testosterone is secreted by the fetal testis during gestation, and this is thought to influence certain aspects of the brain's subsequent development. To study this action at the neuronal level, nine macaque fetuses were injected with 250 microCi [3H]testosterone via the umbilical vein at about 120 days gestation. After 60 min, samples of brain and peripheral tissue were studied by autoradiography or HPLC. Purified nuclear pellets were prepared, and radioactivity in ether extracts was fractionated by HPLC and identified by coelution with internal standard steroids. Concentrations of radioactivity were significantly higher (P less than 0.05) in the hypothalamus-preoptic area than in amygdala, hippocampus, midbrain, and cerebral and cerebellar cortexes, and most of the radioactivity (75%) in the hypothalamus-preoptic area coeluted with 17 beta-estradiol. Radioactivity coeluting with 17 beta-estradiol was also detected in nuclear fractions from amygdala (44%). In contrast, 80% of the radioactivity extracted from pituitary gland nuclei coeluted with testosterone. Most of the neurons labeled in autoradiograms were located in the hypothalamus and preoptic area, fewer were found in the amygdala, and labeling in the frontal or motor cortex did not exceed chance levels. Results suggested that aromatization and, consequently, estrogen receptors play a role in the effects of testosterone on the hypothalamus and amygdala of the primate fetus at this stage of development

  6. Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity.

    Science.gov (United States)

    Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P

    2018-05-18

    An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the

  7. AUTOMATED CLASSIFICATION AND SEGREGATION OF BRAIN MRI IMAGES INTO IMAGES CAPTURED WITH RESPECT TO VENTRICULAR REGION AND EYE-BALL REGION

    Directory of Open Access Journals (Sweden)

    C. Arunkumar

    2014-05-01

    Full Text Available Magnetic Resonance Imaging (MRI images of the brain are used for detection of various brain diseases including tumor. In such cases, classification of MRI images captured with respect to ventricular and eye ball regions helps in automated location and classification of such diseases. The methods employed in the paper can segregate the given MRI images of brain into images of brain captured with respect to ventricular region and images of brain captured with respect to eye ball region. First, the given MRI image of brain is segmented using Particle Swarm Optimization (PSO algorithm, which is an optimized algorithm for MRI image segmentation. The algorithm proposed in the paper is then applied on the segmented image. The algorithm detects whether the image consist of a ventricular region or an eye ball region and classifies it accordingly.

  8. Attentional Performance is Correlated with the Local Regional Efficiency of Intrinsic Brain Networks

    Directory of Open Access Journals (Sweden)

    Junhai eXu

    2015-07-01

    Full Text Available Attention is a crucial brain function for human beings. Using neuropsychological paradigms and task-based functional brain imaging, previous studies have indicated that widely distributed brain regions are engaged in three distinct attention subsystems: alerting, orienting and executive control (EC. Here, we explored the potential contribution of spontaneous brain activity to attention by examining whether resting-state activity could account for individual differences of the attentional performance in normal individuals. The resting-state functional images and behavioral data from attention network test (ANT task were collected in 59 healthy subjects. Graph analysis was conducted to obtain the characteristics of functional brain networks and linear regression analyses were used to explore their relationships with behavioral performances of the three attentional components. We found that there was no significant relationship between the attentional performance and the global measures, while the attentional performance was associated with specific local regional efficiency. These regions related to the scores of alerting, orienting and EC largely overlapped with the regions activated in previous task-related functional imaging studies, and were consistent with the intrinsic dorsal and ventral attention networks (DAN/VAN. In addition, the strong associations between the attentional performance and specific regional efficiency suggested that there was a possible relationship between the DAN/VAN and task performances in the ANT. We concluded that the intrinsic activity of the human brain could reflect the processing efficiency of the attention system. Our findings revealed a robust evidence for the functional significance of the efficiently organized intrinsic brain network for highly productive cognitions and the hypothesized role of the DAN/ VAN at rest.

  9. Moral values are associated with individual differences in regional brain volume.

    Science.gov (United States)

    Lewis, Gary J; Kanai, Ryota; Bates, Timothy C; Rees, Geraint

    2012-08-01

    Moral sentiment has been hypothesized to reflect evolved adaptations to social living. If so, individual differences in moral values may relate to regional variation in brain structure. We tested this hypothesis in a sample of 70 young, healthy adults examining whether differences on two major dimensions of moral values were significantly associated with regional gray matter volume. The two clusters of moral values assessed were "individualizing" (values of harm/care and fairness) and "binding" (deference to authority, in-group loyalty, and purity/sanctity). Individualizing was positively associated with left dorsomedial pFC volume and negatively associated with bilateral precuneus volume. For binding, a significant positive association was found for bilateral subcallosal gyrus and a trend to significance for the left anterior insula volume. These findings demonstrate that variation in moral sentiment reflects individual differences in brain structure and suggest a biological basis for moral sentiment, distributed across multiple brain regions.

  10. Hierarchical clustering into groups of human brain regions according to elemental composition

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1998-01-01

    Thirteen brain regions were dissected from both hemispheres of fifteen 'normal' ageing subjects (8 females, 7 males) of mean age 79±7 years. Elemental compositions were determined by simultaneous application of particle induced X-ray emission (PIXE) and Rutherford backscattering (RBS) analyses using a 2 MeV, 4 nA proton beam scanned over 4 mm 2 of the sample surface. Elemental concentrations were found to be dependent upon the brain region and hemisphere studied. Hierarchical cluster analysis was applied to group the brain regions according to the sample concentrations of eight elements. The resulting dendrogram is presented and its clusters related to the sample compositions of grey and white matter. (author)

  11. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-09-01

    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse.

  12. Regional brain [(11)C]carfentanil binding following tobacco smoking.

    Science.gov (United States)

    Domino, Edward F; Hirasawa-Fujita, Mika; Ni, Lisong; Guthrie, Sally K; Zubieta, Jon Kar

    2015-06-03

    To determine if overnight tobacco abstinent carriers of the AG or GG (*G) vs. the AA variant of the human mu opioid receptor (OPRM1) A118G polymorphism (rs1799971) differ in [(11)C]carfentanil binding after tobacco smoking. Twenty healthy American male smokers who abstained from tobacco overnight were genotyped and completed positron emission tomography (PET) scans with the mu opioid receptor agonist, [(11)C]carfentanil. They smoked deniconized (denic) and average nicotine (avnic) cigarettes during the PET scans. Smoking avnic cigarette decreased the binding potential (BPND) of [(11)C]carfentanil in the right medial prefrontal cortex (mPfc; 6, 56, 18), left anterior medial prefrontal cortex (amPfc; -2, 46, 44), right ventral striatum (vStr; 16, 3, -10), left insula (Ins; -42, 10, -12), right hippocampus (Hippo; 18, -6, -14) and left cerebellum (Cbl; -10, -88, -34), and increased the BPND in left amygdala (Amy; -20, 0, -22), left putamen (Put; -22, 10, -6) and left nucleus accumbens (NAcc; -10, 12, -8). In the AA allele carriers, avnic cigarette smoking significantly changed the BPND compared to after denic smoking in most brain areas listed above. However in the *G carriers the significant BPND changes were confirmed in only amPfc and vStr. Free mu opioid receptor availability was significantly less in the *G than the AA carriers in the Amy and NAcc. The present study demonstrates that BPND changes induced by avnic smoking in OPRM1 *G carriers were blunted compared to the AA carriers. Also *G smokers had less free mu opioid receptor availability in Amy and NAcc. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Regional apparent diffusion coefficient values in 3rd trimester fetal brain

    International Nuclear Information System (INIS)

    Hoffmann, Chen; Weisz, Boaz; Lipitz, Shlomo; Katorza, Eldad; Yaniv, Gal; Bergman, Dafi; Biegon, Anat

    2014-01-01

    Apparent diffusion coefficient (ADC) values in the developing fetus can be used in the diagnosis and prognosis of prenatal brain pathologies. To this end, we measured regional ADC in a relatively large cohort of normal fetal brains in utero. Diffusion-weighted imaging (DWI) was performed in 48 non-sedated 3rd trimester fetuses with normal structural MR imaging results. ADC was measured in white matter (frontal, parietal, temporal, and occipital lobes), basal ganglia, thalamus, pons, and cerebellum. Regional ADC values were compared by one-way ANOVA with gestational age as covariate. Regression analysis was used to examine gestational age-related changes in regional ADC. Four other cases of CMV infection were also examined. Median gestational age was 32 weeks (range, 26-33 weeks). There was a highly significant effect of region on ADC, whereby ADC values were highest in white matter, with significantly lower values in basal ganglia and cerebellum and the lowest values in thalamus and pons. ADC did not significantly change with gestational age in any of the regions tested. In the four cases with fetal CMV infection, ADC value was associated with a global decrease. ADC values in normal fetal brain are relatively stable during the third trimester, show consistent regional variation, and can make an important contribution to the early diagnosis and possibly prognosis of fetal brain pathologies. (orig.)

  14. Regional apparent diffusion coefficient values in 3rd trimester fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Chen [Tel Aviv University, Department of Radiology, Sheba Medical Center, Tel Hashomer (affiliated to the Sackler School of Medicine), Tel Aviv (Israel); Sheba Medical Center, Diagnostic Imaging, 52621, Tel Hashomer (Israel); Weisz, Boaz; Lipitz, Shlomo; Katorza, Eldad [Tel Aviv University, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer (affiliated to the Sackler School of Medicine), Tel Aviv (Israel); Yaniv, Gal; Bergman, Dafi [Tel Aviv University, Department of Radiology, Sheba Medical Center, Tel Hashomer (affiliated to the Sackler School of Medicine), Tel Aviv (Israel); Biegon, Anat [Stony Brook University School of Medicine, Department of Neurology, Stony Brook, NY (United States)

    2014-07-15

    Apparent diffusion coefficient (ADC) values in the developing fetus can be used in the diagnosis and prognosis of prenatal brain pathologies. To this end, we measured regional ADC in a relatively large cohort of normal fetal brains in utero. Diffusion-weighted imaging (DWI) was performed in 48 non-sedated 3rd trimester fetuses with normal structural MR imaging results. ADC was measured in white matter (frontal, parietal, temporal, and occipital lobes), basal ganglia, thalamus, pons, and cerebellum. Regional ADC values were compared by one-way ANOVA with gestational age as covariate. Regression analysis was used to examine gestational age-related changes in regional ADC. Four other cases of CMV infection were also examined. Median gestational age was 32 weeks (range, 26-33 weeks). There was a highly significant effect of region on ADC, whereby ADC values were highest in white matter, with significantly lower values in basal ganglia and cerebellum and the lowest values in thalamus and pons. ADC did not significantly change with gestational age in any of the regions tested. In the four cases with fetal CMV infection, ADC value was associated with a global decrease. ADC values in normal fetal brain are relatively stable during the third trimester, show consistent regional variation, and can make an important contribution to the early diagnosis and possibly prognosis of fetal brain pathologies. (orig.)

  15. Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain.

    Science.gov (United States)

    Gilmore, John H; Lin, Weili; Prastawa, Marcel W; Looney, Christopher B; Vetsa, Y Sampath K; Knickmeyer, Rebecca C; Evans, Dianne D; Smith, J Keith; Hamer, Robert M; Lieberman, Jeffrey A; Gerig, Guido

    2007-02-07

    Although there has been recent interest in the study of childhood and adolescent brain development, very little is known about normal brain development in the first few months of life. In older children, there are regional differences in cortical gray matter development, whereas cortical gray and white matter growth after birth has not been studied to a great extent. The adult human brain is also characterized by cerebral asymmetries and sexual dimorphisms, although very little is known about how these asymmetries and dimorphisms develop. We used magnetic resonance imaging and an automatic segmentation methodology to study brain structure in 74 neonates in the first few weeks after birth. We found robust cortical gray matter growth compared with white matter growth, with occipital regions growing much faster than prefrontal regions. Sexual dimorphism is present at birth, with males having larger total brain cortical gray and white matter volumes than females. In contrast to adults and older children, the left hemisphere is larger than the right hemisphere, and the normal pattern of fronto-occipital asymmetry described in older children and adults is not present. Regional differences in cortical gray matter growth are likely related to differential maturation of sensory and motor systems compared with prefrontal executive function after birth. These findings also indicate that whereas some adult patterns of sexual dimorphism and cerebral asymmetries are present at birth, others develop after birth.

  16. Identification of a set of genes showing regionally enriched expression in the mouse brain

    Directory of Open Access Journals (Sweden)

    Marra Marco A

    2008-07-01

    Full Text Available Abstract Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters ( Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.

  17. Quantitative analyses of regional [{sup 11}C]PE2I binding to the dopamine transporter in the human brain: a PET study

    Energy Technology Data Exchange (ETDEWEB)

    Jucaite, Aurelija [Karolinska Institutet, Department of Woman and Child Health, Stockholm (Sweden); Odano, Ikuo [Niigata University, Department of Sensory and Integrative Medicine, Asahimachi-dori Niigata (Japan); Olsson, Hans; Pauli, Stefan; Halldin, Christer; Farde, Lars [Karolinska Institutet, Psychiatry Section, Department of Clinical Neuroscience, Stockholm (Sweden)

    2006-06-15

    The dopamine transporter (DAT) is a plasma membrane protein of central interest in the pathophysiology of neuropsychiatric disorders and is known to be a target for psychostimulant drugs. [{sup 11}C]PE2I is a new radioligand which binds selectively and with moderate affinity to central DAT, as has been demonstrated in vitro by autoradiography and in vivo by positron emission tomography (PET). The aims of the present PET study were to quantify regional [{sup 11}C]PE2I binding to DAT in the human brain and to compare quantitative methods with regard to suitability for applied clinical studies. One PET measurement was performed in each of eight healthy male subjects. The binding potential (BP) values were obtained by applying kinetic compartment analysis, which uses the metabolite-corrected arterial plasma curve as an input function. They were compared with the BP values quantified by two reference tissue approaches, using cerebellum as a reference region representing free and non-specific radioligand binding. The radioactivity concentration was highest in the striatum, lower in the midbrain and very low in the cerebellum. The regional [{sup 11}C]PE2I binding could be interpreted by kinetic compartment models. However, the BP values in the striatum obtained by the compartment analyses were about 30% higher than the BP values obtained using reference tissue methods. We suggest that the difference may be explained by the inaccurate metabolite correction, small amounts of radioactive metabolites that could account for the presence of non-specific binding in the cerebellum and insufficient data acquisition time. (orig.)

  18. Molecular regionalization in the compact brain of the meiofaunal annelid Dinophilus gyrociliatus (Dinophilidae

    Directory of Open Access Journals (Sweden)

    Alexandra Kerbl

    2016-08-01

    Full Text Available Abstract Background Annelida is a morphologically diverse animal group that exhibits a remarkable variety in nervous system architecture (e.g., number and location of longitudinal cords, architecture of the brain. Despite this heterogeneity of neural arrangements, the molecular profiles related to central nervous system patterning seem to be conserved even between distantly related annelids. In particular, comparative molecular studies on brain and anterior neural region patterning genes have focused so far mainly on indirect-developing macrofaunal taxa. Therefore, analyses on microscopic, direct-developing annelids are important to attain a general picture of the evolutionary events underlying the vast diversity of annelid neuroanatomy. Results We have analyzed the expression domains of 11 evolutionarily conserved genes involved in brain and anterior neural patterning in adult females of the direct-developing meiofaunal annelid Dinophilus gyrociliatus. The small, compact brain shows expression of dimmed, foxg, goosecoid, homeobrain, nk2.1, orthodenticle, orthopedia, pax6, six3/6 and synaptotagmin-1. Although most of the studied markers localize to specific brain areas, the genes six3/6 and synaptotagmin-1 are expressed in nearly all perikarya of the brain. All genes except for goosecoid, pax6 and nk2.2 overlap in the anterior brain region, while the respective expression domains are more separated in the posterior brain. Conclusions Our findings reveal that the expression patterns of the genes foxg, orthodenticle, orthopedia and six3/6 correlate with those described in Platynereis dumerilii larvae, and homeobrain, nk2.1, orthodenticle and synaptotagmin-1 resemble the pattern of late larvae of Capitella teleta. Although data on other annelids are limited, molecular similarities between adult Dinophilus and larval Platynereis and Capitella suggest an overall conservation of molecular mechanisms patterning the anterior neural regions, independent

  19. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Energy Technology Data Exchange (ETDEWEB)

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)

    1992-11-01

    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  20. Tactile interactions activate mirror system regions in the human brain.

    Science.gov (United States)

    McKyton, Ayelet

    2011-12-07

    Communicating with others is essential for the development of a society. Although types of communications, such as language and visual gestures, were thoroughly investigated in the past, little research has been done to investigate interactions through touch. To study this we used functional magnetic resonance imaging. Twelve participants were scanned with their eyes covered while stroking four kinds of items, representing different somatosensory stimuli: a human hand, a realistic rubber hand, an object, and a simple texture. Although the human and the rubber hands had the same overall shape, in three regions there was significantly more blood oxygen level dependent activation when touching the real hand: the anterior medial prefrontal cortex, the ventral premotor cortex, and the posterior superior temporal cortex. The last two regions are part of the mirror network and are known to be activated through visual interactions such as gestures. Interestingly, in this study, these areas were activated through a somatosensory interaction. A control experiment was performed to eliminate confounds of temperature, texture, and imagery, suggesting that the activation in these areas was correlated with the touch of a human hand. These results reveal the neuronal network working behind human tactile interactions, and highlight the participation of the mirror system in such functions.

  1. Brain regional uptake of radioactive Sc, Mn, Zn, Se, Rb and Zr tracers into normal mice during aging

    International Nuclear Information System (INIS)

    Amano, R.; Enomoto, S.

    2001-01-01

    Radioactive multitracer technique was applied to study the brain regional uptake of trace elements by the normal mice during aging. The brain regional radioactivities of 46 Sc, 54 Mn, 65 Zn, 75 Se, 83 Rb and 88 Zr were measured 48 hours after intraperitoneal injection of a solution in normal mice aged 6 to 52 weeks to evaluate the brain regional (corpus striatum, cerebellum, cerebral cortex, hippocampus, and pons and medulla) uptakes. The radioactive distributions of 46 Sc, 54 Mn and 88 Zr tracers were variable and region-specific in the brain, while those of 65 Zn, 75 Se and 83 Rb tracers were comparable among all regions of interest. The brain regional uptakes of all tracers slightly increased with age from 10 to 28 weeks, and then remained constant during aging after 28 weeks. These uptake variations may be involved in the functional degenerative process of the blood-brain barrier during aging. (author)

  2. Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains.

    Science.gov (United States)

    Privat, Nicolas; Levavasseur, Etienne; Yildirim, Serfildan; Hannaoui, Samia; Brandel, Jean-Philippe; Laplanche, Jean-Louis; Béringue, Vincent; Seilhean, Danielle; Haïk, Stéphane

    2017-10-06

    Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrP Sc ). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrP Sc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. An Objective Short Sleep Insomnia Disorder Subtype Is Associated With Reduced Brain Metabolite Concentrations In Vivo: A Preliminary Magnetic Resonance Spectroscopy Assessment.

    Science.gov (United States)

    Miller, Christopher B; Rae, Caroline D; Green, Michael A; Yee, Brendon J; Gordon, Christopher J; D'Rozario, Angela L; Kyle, Simon D; Espie, Colin A; Grunstein, Ronald R; Bartlett, Delwyn J

    2017-11-01

    To evaluate brain metabolites in objective insomnia subtypes defined from polysomnography (PSG): insomnia with short sleep duration (I-SSD) and insomnia with normal sleep duration (I-NSD), relative to good sleeping controls (GSCs). PSG empirically grouped insomnia patients into I-SSD (n = 12: mean [SD] total sleep time [TST] = 294.7 minutes [30.5]) or I-NSD (n = 19: TST = 394.4 minutes [34.9]). 1H magnetic resonance spectroscopy (MRS) acquired in the left occipital cortex (LOCC), left prefrontal cortex, and anterior cingulate cortex was used to determine levels of creatine, aspartate, glutamate, and glutamine (referenced to water). Glutathione, glycerophosphocholine, lactate, myoinositol, and N-acetylaspartate measurements were also obtained. Sixteen GSCs were included for comparison. Multivariate analysis of variance was used to evaluate differences in creatine, aspartate, glutamate, and glutamine. Aspartate and glutamine concentrations were reduced in the LOCC in I-SSD compared with I-NSD (both p sleep onset (r = -.40, p sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR): https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12612000050853. 12612000050853. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  4. Measuring levels of biogenic amines and their metabolites in rat brain tissue using high-performance liquid chromatography with photodiode array detection.

    Science.gov (United States)

    Gu, Min-Jung; Jeon, Ji-Hyun; Oh, Myung Sook; Hong, Seon-Pyo

    2016-01-01

    We developed a method to detect biogenic amines and their metabolites in rat brain tissue using simultaneous high-performance liquid chromatography and a photodiode array detection. Measurements were made using a Hypersil Gold C-18 column (250 × 2.1 mm, 5 µm). The mobile phase was 5 mM perchloric acid containing 5 % acetonitrile. The correlation coefficient was 0.9995-0.9999. LODs (S/N = 3) and LOQs (S/N = 10) were as follows: dopamine 0.4 and 1.3 pg, 3, 4-dihydroxyphenylacetic acid 8.4 and 28.0 pg, serotonin 0.4 and 1.3 pg, 5-hydroxyindolacetic acid 3.4 and 11.3 pg, and homovanillic acid 8.4 and 28.0 pg. This method does not require derivatization steps, and is more sensitive than the widely used HPLC-UV method.

  5. Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae.

    Science.gov (United States)

    Sakai, Sharleen T; Arsznov, Bradley M; Hristova, Ani E; Yoon, Elise J; Lundrigan, Barbara L

    2016-01-01

    Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of four focal species: lions ( Panthera leo ), leopards ( Panthera pardus ), cougars ( Puma concolor ), and cheetahs ( Acinonyx jubatus ). These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography. Skulls ( n = 75) were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC) volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in four focal species revealed that lions and leopards, while not significantly different from one another, have relatively larger AC

  6. Big Cat Coalitions: A comparative analysis of regional brain volumes in Felidae

    Directory of Open Access Journals (Sweden)

    Sharleen T Sakai

    2016-10-01

    Full Text Available Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of 4 focal species: lions (Panthera leo, leopards (Panthera pardus, cougars (Puma concolor, and cheetahs (Acinonyx jubatus. These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography (CT. Skulls (n=75 were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares (PGLS regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in 4 focal species revealed that lions and leopards, while not significantly different from one another, have relatively

  7. Region-Specific Defects of Respiratory Capacities in the Ndufs4(KO Mouse Brain.

    Directory of Open Access Journals (Sweden)

    Ernst-Bernhard Kayser

    Full Text Available Lack of NDUFS4, a subunit of mitochondrial complex I (NADH:ubiquinone oxidoreductase, causes Leigh syndrome (LS, a progressive encephalomyopathy. Knocking out Ndufs4, either systemically or in brain only, elicits LS in mice. In patients as well as in KO mice distinct regions of the brain degenerate while surrounding tissue survives despite systemic complex I dysfunction. For the understanding of disease etiology and ultimately for the development of rationale treatments for LS, it appears important to uncover the mechanisms that govern focal neurodegeneration.Here we used the Ndufs4(KO mouse to investigate whether regional and temporal differences in respiratory capacity of the brain could be correlated with neurodegeneration. In the KO the respiratory capacity of synaptosomes from the degeneration prone regions olfactory bulb, brainstem and cerebellum was significantly decreased. The difference was measurable even before the onset of neurological symptoms. Furthermore, neither compensating nor exacerbating changes in glycolytic capacity of the synaptosomes were found. By contrast, the KO retained near normal levels of synaptosomal respiration in the degeneration-resistant/resilient "rest" of the brain. We also investigated non-synaptic mitochondria. The KO expectedly had diminished capacity for oxidative phosphorylation (state 3 respiration with complex I dependent substrate combinations pyruvate/malate and glutamate/malate but surprisingly had normal activity with α-ketoglutarate/malate. No correlation between oxidative phosphorylation (pyruvate/malate driven state 3 respiration and neurodegeneration was found: Notably, state 3 remained constant in the KO while in controls it tended to increase with time leading to significant differences between the genotypes in older mice in both vulnerable and resilient brain regions. Neither regional ROS damage, measured as HNE-modified protein, nor regional complex I stability, assessed by blue native

  8. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Osterndorff-Kahanek

    Full Text Available Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY, nucleus accumbens (NAC, prefrontal cortex (PFC, and liver after four weekly cycles of chronic intermittent ethanol (CIE vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000 at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600. Within each region, there was little gene overlap across time (~20%. All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.

  9. Regional Brain Activation during Meditation Shows Time and Practice Effects: An Exploratory FMRI Study

    Directory of Open Access Journals (Sweden)

    E. Baron Short

    2010-01-01

    Full Text Available Meditation involves attentional regulation and may lead to increased activity in brain regions associated with attention such as dorsal lateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC. Using functional magnetic resonance imaging, we examined whether DLPFC and ACC were activated during meditation. Subjects who meditate were recruited and scanned on a 3.0 Tesla scanner. Subjects meditated for four sessions of 12 min and performed four sessions of a 6 min control task. Individual and group t-maps were generated of overall meditation response versus control response and late meditation response versus early meditation response for each subject and time courses were plotted. For the overall group (n = 13, and using an overall brain analysis, there were no statistically significant regional activations of interest using conservative thresholds. A region of interest analysis of the entire group time courses of DLPFC and ACC were statistically more active throughout meditation in comparison to the control task. Moreover, dividing the cohort into short (n = 8 and long-term (n = 5 practitioners (>10 years revealed that the time courses of long-term practitioners had significantly more consistent and sustained activation in the DLPFC and the ACC during meditation versus control in comparison to short-term practitioners. The regional brain activations in the more practised subjects may correlate with better sustained attention and attentional error monitoring. In summary, brain regions associated with attention vary over the time of a meditation session and may differ between long- and short-term meditation practitioners.

  10. Combining region- and network-level brain-behavior relationships in a structural equation model.

    Science.gov (United States)

    Bolt, Taylor; Prince, Emily B; Nomi, Jason S; Messinger, Daniel; Llabre, Maria M; Uddin, Lucina Q

    2018-01-15

    Brain-behavior associations in fMRI studies are typically restricted to a single level of analysis: either a circumscribed brain region-of-interest (ROI) or a larger network of brain regions. However, this common practice may not always account for the interdependencies among ROIs of the same network or potentially unique information at the ROI-level, respectively. To account for both sources of information, we combined measurement and structural components of structural equation modeling (SEM) approaches to empirically derive networks from ROI activity, and to assess the association of both individual ROIs and their respective whole-brain activation networks with task performance using three large task-fMRI datasets and two separate brain parcellation schemes. The results for working memory and relational tasks revealed that well-known ROI-performance associations are either non-significant or reversed when accounting for the ROI's common association with its corresponding network, and that the network as a whole is instead robustly associated with task performance. The results for the arithmetic task revealed that in certain cases, an ROI can be robustly associated with task performance, even when accounting for its associated network. The SEM framework described in this study provides researchers additional flexibility in testing brain-behavior relationships, as well as a principled way to combine ROI- and network-levels of analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Regional differences in actomyosin contraction shape the primary vesicles in the embryonic chicken brain

    International Nuclear Information System (INIS)

    Filas, Benjamen A; Oltean, Alina; Majidi, Shabnam; Bayly, Philip V; Taber, Larry A; Beebe, David C

    2012-01-01

    In the early embryo, the brain initially forms as a relatively straight, cylindrical epithelial tube composed of neural stem cells. The brain tube then divides into three primary vesicles (forebrain, midbrain, hindbrain), as well as a series of bulges (rhombomeres) in the hindbrain. The boundaries between these subdivisions have been well studied as regions of differential gene expression, but the morphogenetic mechanisms that generate these constrictions are not well understood. Here, we show that regional variations in actomyosin-based contractility play a major role in vesicle formation in the embryonic chicken brain. In particular, boundaries did not form in brains exposed to the nonmuscle myosin II inhibitor blebbistatin, whereas increasing contractile force using calyculin or ATP deepened boundaries considerably. Tissue staining showed that contraction likely occurs at the inner part of the wall, as F-actin and phosphorylated myosin are concentrated at the apical side. However, relatively little actin and myosin was found in rhombomere boundaries. To determine the specific physical mechanisms that drive vesicle formation, we developed a finite-element model for the brain tube. Regional apical contraction was simulated in the model, with contractile anisotropy and strength estimated from contractile protein distributions and measurements of cell shapes. The model shows that a combination of circumferential contraction in the boundary regions and relatively isotropic contraction between boundaries can generate realistic morphologies for the primary vesicles. In contrast, rhombomere formation likely involves longitudinal contraction between boundaries. Further simulations suggest that these different mechanisms are dictated by regional differences in initial morphology and the need to withstand cerebrospinal fluid pressure. This study provides a new understanding of early brain morphogenesis. (paper)

  12. Regional amino acid transport into brain during diabetes: Effect of plasma amino acids

    International Nuclear Information System (INIS)

    Mans, A.M.; DeJoseph, M.R.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Transport of phenylalanine and lysine into the brain was measured in 4-wk streptozotocin-diabetic rats to assess the effect on the neutral and basic amino acid transport systems at the blood-brain barrier. Amino acid concentrations in plasma and brain were also measured. Regional permeability-times-surface area (PS) products and influx were determined using a continuous infusion method and quantitative autoradiography. The PS of phenylalanine was decreased by an average of 40% throughout the entire brain. Influx was depressed by 35%. The PS of lysine was increased by an average of 44%, but the influx was decreased by 27%. Several plasma neutral amino acids (branched chain) were increased, whereas all basic amino acids were decreased. Brain tryptophan, phenylalanine, tyrosine, methionine, and lysine contents were markedly decreased. The transport changes were almost entirely accounted for by the alterations in the concentrations of the plasma amino acids that compete for the neutral and basic amino acid carriers. The reduced influx could be responsible for the low brain content of some essential amino acids, with possibly deleterious consequences for brain functions

  13. Positron-emission tomography of brain regions activated by recognition of familiar music.

    Science.gov (United States)

    Satoh, M; Takeda, K; Nagata, K; Shimosegawa, E; Kuzuhara, S

    2006-05-01

    We can easily recognize familiar music by listening to only one or 2 of its opening bars, but the brain regions that participate in this cognitive processing remain undetermined. We used positron-emission tomography (PET) to study changes in regional cerebral blood flow (rCBF) that occur during listening to familiar music. We used a PET subtraction technique to elucidate the brain regions associated with the recognition of familiar melodies such as well-known nursery tunes. Nonmusicians performed 2 kinds of musical tasks: judging the familiarity of musical pieces (familiarity task) and detecting deliberately altered notes in the pieces (alteration-detecting task). During the familiarity task, bilateral anterior portions of bilateral temporal lobes, superior temporal regions, and parahippocampal gyri were activated. The alteration-detecting task bilaterally activated regions in the precunei, superior/inferior parietal lobules, and lateral surface of frontal lobes, which seemed to show a correlation with the analysis of music. We hypothesize that during the familiarity task, activated brain regions participate in retrieval from long-term memory and verbal and emotional processing of familiar melodies. Our results reinforced the hypothesis reported in the literature as a result of group and case studies, that temporal lobe regions participate in the recognition of familiar melodies.

  14. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions.

    Science.gov (United States)

    Hu, Ping Ping; Morales, Rodrigo; Duran-Aniotz, Claudia; Moreno-Gonzalez, Ines; Khan, Uffaf; Soto, Claudio

    2016-06-10

    One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrP(Sc) Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrP(C) production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrP(C) present in each part of the brain. Our results suggest that the variable regional distribution of PrP(Sc) in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.

    Science.gov (United States)

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.

  16. Brain region's relative proximity as marker for Alzheimer's disease based on structural MRI

    DEFF Research Database (Denmark)

    Erleben, Lene Lillemark; Sørensen, Lauge Emil; Pai, Akshay Sadananda Uppinakudru

    2014-01-01

    BACKGROUND:Alzheimer's disease (AD) is a progressive, incurable neurodegenerative disease and the most common type of dementia. It cannot be prevented, cured or drastically slowed, even though AD research has increased in the past 5-10 years. Instead of focusing on the brain volume or on the single...... brain structures like hippocampus, this paper investigates the relationship and proximity between regions in the brain and uses this information as a novel way of classifying normal control (NC), mild cognitive impaired (MCI), and AD subjects.METHODS:A longitudinal cohort of 528 subjects (170 NC, 240...... to whole brain and hippocampus volume.RESULTS:We found that both our markers was able to significantly classify the subjects. The surface connectivity marker showed the best results with an area under the curve (AUC) at 0.877 (p...

  17. Study on the radiation-induced biological responses based on the analysis of metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sungkee; Jung, Uhee; Park, Haeran; Roh, Changhyun; Shin, Heejune; Ryu, Dongkyoung

    2013-01-15

    1. Objectives □ Establishment of basis of biological radiation response study by metabolite analysis 2. Project results □ Establishment of analytical basis of radiation-responsive metabolites in biological samples - Large scale collection of tissue samples from irradiated animal for radiation metabolomics research - Establishment of mass spectromety (GC MS, LC MS-MS) analysis methods of biological samples - 3 Standard Operation Protocols (SOP) for ultra high resolution mass spectrometry (FT-ICR MS, Q-TOF MS) analysis of metabolites from biological samples - Establishment of database for radiation metabolites □ Basic research on radiation-responsive metabolites and the interpretation of their functions - Validation of spermidine as a candidate biomarker of acute radiation response in mouse blood - Verification of 5 radiation-responsive steroid hormones and alteration of their metabolic enzyme activities in mouse blood - Verification of 13 radiation-responsive amino acids (related to oxidative stress, neurotransmission, energy metabolism) in regional mouse brain -Verification of 10 radiation-responsive amino acids (related to oxidative stress, neurotransmission, energy metabolism) in regional mouse brain - Verification of 74 radiation-responsive metabolites in whole rat brain by ultra high resolution FT-ICR MS and Q-TOF MS analysis 3. Expected benefits and plan of application □ Establishment of research basis of radiation metabolomics in Korea □ Provision of core technology in radiation bioscience and safety field by application of radiation metabolomics results to the technology development in radiation biodosimetry, and radiation response evaluation and modulation.

  18. Study on the radiation-induced biological responses based on the analysis of metabolites

    International Nuclear Information System (INIS)

    Jo, Sungkee; Jung, Uhee; Park, Haeran; Roh, Changhyun; Shin, Heejune; Ryu, Dongkyoung

    2013-01-01

    1. Objectives □ Establishment of basis of biological radiation response study by metabolite analysis 2. Project results □ Establishment of analytical basis of radiation-responsive metabolites in biological samples - Large scale collection of tissue samples from irradiated animal for radiation metabolomics research - Establishment of mass spectromety (GC MS, LC MS-MS) analysis methods of biological samples - 3 Standard Operation Protocols (SOP) for ultra high resolution mass spectrometry (FT-ICR MS, Q-TOF MS) analysis of metabolites from biological samples - Establishment of database for radiation metabolites □ Basic research on radiation-responsive metabolites and the interpretation of their functions - Validation of spermidine as a candidate biomarker of acute radiation response in mouse blood - Verification of 5 radiation-responsive steroid hormones and alteration of their metabolic enzyme activities in mouse blood - Verification of 13 radiation-responsive amino acids (related to oxidative stress, neurotransmission, energy metabolism) in regional mouse brain -Verification of 10 radiation-responsive amino acids (related to oxidative stress, neurotransmission, energy metabolism) in regional mouse brain - Verification of 74 radiation-responsive metabolites in whole rat brain by ultra high resolution FT-ICR MS and Q-TOF MS analysis 3. Expected benefits and plan of application □ Establishment of research basis of radiation metabolomics in Korea □ Provision of core technology in radiation bioscience and safety field by application of radiation metabolomics results to the technology development in radiation biodosimetry, and radiation response evaluation and modulation

  19. Brain Regions and Neuropsychological Deficits in Obsessive-Compulsive Disorder

    Directory of Open Access Journals (Sweden)

    Murat Erdem

    2013-09-01

    Full Text Available Neurobiological factors had been shown to play an important role in the emergence of obsessive-compulsive disorder by the information obtained from the methods developed over the years. According to the neuropsychological perspective, the defects had been detected mainly in executive functions, in attention, memory, visual-spatial functions; and abnormalities had been described in the frontal lobe, cingulate cortex, basal ganglia, and thalamus regions of the patients with obsessive-compulsive disorder. The main and the most repeated abnormalities in patients with obsessive-compulsive disorder are dysfunctions in executive function and visual memory. Dysfunctions of the inhibitory processes associated with the dominant frontal area lead to an insufficiency on the inhibition of verbal functions. Excessive activation of the orbitofrontal cortex that mediate the behavioral response suppression function in obsessive-compulsive disorder demonstrated by functional imaging techniques. Repeated-resistant behaviors (eg: compulsions are composed by the deteriorations of the inhibitions of motor or cognitive programs in basal ganglions provided through cycles of frontal lobe. The findings of clinical observations in patients with obsessive-compulsive disorder could be considered as a reflection of excessive work in 'error detection system' which is the cause of the thoughts that something goes wrong and efforts to achieve perfection. As neurobiological, this finding is observed as excessive activity in orbitofrontal cortex and anterior cingulate cortex representing the ability of humans to provide and detect errors. It is is expected to develop the vehicles that are more sensitive to the characteristics of cognitive deficits in obsessive-compulsive disorder. In addition to the neuropsychological tests, using electrophysiological and advanced functional imaging techniques will put forward a better underlying the physiopathology of this disorder in order to

  20. Regional brain gray and white matter changes in perinatally HIV-infected adolescents☆

    Science.gov (United States)

    Sarma, Manoj K.; Nagarajan, Rajakumar; Keller, Margaret A.; Kumar, Rajesh; Nielsen-Saines, Karin; Michalik, David E.; Deville, Jaime; Church, Joseph A.; Thomas, M. Albert

    2013-01-01

    Despite the success of antiretroviral therapy (ART), perinatally infected HIV remains a major health problem worldwide. Although advance neuroimaging studies have investigated structural brain changes in HIV-infected adults, regional gray matter (GM) and white matter (WM) volume changes have not been reported in perinatally HIV-infected adolescents and young adults. In this cross-sectional study, we investigated regional GM and WM changes in 16 HIV-infected youths receiving ART (age 17.0 ± 2.9 years) compared with age-matched 14 healthy controls (age 16.3 ± 2.3 years) using magnetic resonance imaging (MRI)-based high-resolution T1-weighted images with voxel based morphometry (VBM) analyses. White matter atrophy appeared in perinatally HIV-infected youths in brain areas including the bilateral posterior corpus callosum (CC), bilateral external capsule, bilateral ventral temporal WM, mid cerebral peduncles, and basal pons over controls. Gray matter volume increase was observed in HIV-infected youths for several regions including the left superior frontal gyrus, inferior occipital gyrus, gyrus rectus, right mid cingulum, parahippocampal gyrus, bilateral inferior temporal gyrus, and middle temporal gyrus compared with controls. Global WM and GM volumes did not differ significantly between groups. These results indicate WM injury in perinatally HIV-infected youths, but the interpretation of the GM results, which appeared as increased regional volumes, is not clear. Further longitudinal studies are needed to clarify if our results represent active ongoing brain infection or toxicity from HIV treatment resulting in neuronal cell swelling and regional increased GM volume. Our findings suggest that assessment of regional GM and WM volume changes, based on VBM procedures, may be an additional measure to assess brain integrity in HIV-infected youths and to evaluate success of current ART therapy for efficacy in the brain. PMID:24380059

  1. Regional brain gray and white matter changes in perinatally HIV-infected adolescents

    Directory of Open Access Journals (Sweden)

    Manoj K. Sarma

    2014-01-01

    Full Text Available Despite the success of antiretroviral therapy (ART, perinatally infected HIV remains a major health problem worldwide. Although advance neuroimaging studies have investigated structural brain changes in HIV-infected adults, regional gray matter (GM and white matter (WM volume changes have not been reported in perinatally HIV-infected adolescents and young adults. In this cross-sectional study, we investigated regional GM and WM changes in 16 HIV-infected youths receiving ART (age 17.0 ± 2.9 years compared with age-matched 14 healthy controls (age 16.3 ± 2.3 years using magnetic resonance imaging (MRI-based high-resolution T1-weighted images with voxel based morphometry (VBM analyses. White matter atrophy appeared in perinatally HIV-infected youths in brain areas including the bilateral posterior corpus callosum (CC, bilateral external capsule, bilateral ventral temporal WM, mid cerebral peduncles, and basal pons over controls. Gray matter volume increase was observed in HIV-infected youths for several regions including the left superior frontal gyrus, inferior occipital gyrus, gyrus rectus, right mid cingulum, parahippocampal gyrus, bilateral inferior temporal gyrus, and middle temporal gyrus compared with controls. Global WM and GM volumes did not differ significantly between groups. These results indicate WM injury in perinatally HIV-infected youths, but the interpretation of the GM results, which appeared as increased regional volumes, is not clear. Further longitudinal studies are needed to clarify if our results represent active ongoing brain infection or toxicity from HIV treatment resulting in neuronal cell swelling and regional increased GM volume. Our findings suggest that assessment of regional GM and WM volume changes, based on VBM procedures, may be an additional measure to assess brain integrity in HIV-infected youths and to evaluate success of current ART therapy for efficacy in the brain.

  2. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Fowler, J.; Wang, G.J.; Telang, F.; Logan, J.; Jayne, M.; Ma, Y.; Pradhan, K.; Wong, C.T.; Swanson, J.M.

    2010-01-01

    Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statistical parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 {+-} 3, post 6 {+-} 3; p < 0.001) but not when subjects were instructed to inhibit craving (pre 3 {+-} 2, post 3 {+-} 3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p < 0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p < 0.005), which was associated with right inferior frontal activation (r = -0.62, p < 0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.

  3. Neuropeptide processing in regional brain slices: Effect of conformation and sequence

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.W.; Bijl, W.A.; van Nispen, J.W.; Brendel, K.; Davis, T.P. (Univ. of Arizona, Tucson (USA))

    1990-05-01

    The central enzymatic stability of des-enkephalin-gamma-endorphin and its synthetic analogs (cycloN alpha 6, C delta 11)beta-endorphin-(6-17) and (Pro7, Lys(Ac)9)-beta-endorphin(6-17) was studied in vitro using a newly developed, regionally dissected rat brain slice, time course incubation procedure. Tissue slice viability was estimated as the ability of the brain slice to take up or release gamma-(3H)aminobutyric acid after high K+ stimulation. Results demonstrated stability of uptake/release up to 5 hr of incubation, suggesting tissue viability over this period. The estimated half-life of peptides based on the results obtained in our incubation protocol suggest that the peptides studied are metabolized at different rates in the individual brain regions tested. A good correlation exists between the high enzyme activity of neutral endopeptidase and the rapid degradation of des-enkephalin-gamma-endorphin and (cycloN alpha 6, C delata 11)beta-endorphin-(6-17) in caudate putamen. Proline substitution combined with lysine acetylation appears to improve resistance to enzymatic metabolism in caudate putamen and hypothalamus. However, cyclization of des-enkephalin-gamma-endorphin forming an amide bond between the alpha-NH2 of the N-terminal threonine and the gamma-COOH of glutamic acid did not improve peptide stability in any brain region tested. The present study has shown that the brain slice technique is a valid and unique approach to study neuropeptide metabolism in small, discrete regions of rat brain where peptides, peptidases and receptors are colocalized and that specific structural modifications can improve peptide stability.

  4. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers

    International Nuclear Information System (INIS)

    Volkow, N.D.; Fowler, J.; Wang, G.J.; Telang, F.; Logan, J.; Jayne, M.; Ma, Y.; Pradhan, K.; Wong, C.T.; Swanson, J.M.

    2010-01-01

    Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statistical parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 ± 3, post 6 ± 3; p < 0.001) but not when subjects were instructed to inhibit craving (pre 3 ± 2, post 3 ± 3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p < 0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p < 0.005), which was associated with right inferior frontal activation (r = -0.62, p < 0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.

  5. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging

    Directory of Open Access Journals (Sweden)

    Lilach Soreq

    2017-01-01

    Full Text Available Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases.

  6. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging.

    Science.gov (United States)

    Soreq, Lilach; Rose, Jamie; Soreq, Eyal; Hardy, John; Trabzuni, Daniah; Cookson, Mark R; Smith, Colin; Ryten, Mina; Patani, Rickie; Ule, Jernej

    2017-01-10

    Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Brain regions for sound processing and song release in a small grasshopper.

    Science.gov (United States)

    Balvantray Bhavsar, Mit; Stumpner, Andreas; Heinrich, Ralf

    2017-05-01

    We investigated brain regions - mostly neuropils - that process auditory information relevant for the initiation of response songs of female grasshoppers Chorthippus biguttulus during bidirectional intraspecific acoustic communication. Male-female acoustic duets in the species Ch. biguttulus require the perception of sounds, their recognition as a species- and gender-specific signal and the initiation of commands that activate thoracic pattern generating circuits to drive the sound-producing stridulatory movements of the hind legs. To study sensory-to-motor processing during acoustic communication we used multielectrodes that allowed simultaneous recordings of acoustically stimulated electrical activity from several ascending auditory interneurons or local brain neurons and subsequent electrical stimulation of the recording site. Auditory activity was detected in the lateral protocerebrum (where most of the described ascending auditory interneurons terminate), in the superior medial protocerebrum and in the central complex, that has previously been implicated in the control of sound production. Neural responses to behaviorally attractive sound stimuli showed no or only poor correlation with behavioral responses. Current injections into the lateral protocerebrum, the central complex and the deuto-/tritocerebrum (close to the cerebro-cervical fascicles), but not into the superior medial protocerebrum, elicited species-typical stridulation with high success rate. Latencies and numbers of phrases produced by electrical stimulation were different between these brain regions. Our results indicate three brain regions (likely neuropils) where auditory activity can be detected with two of these regions being potentially involved in song initiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Age-and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    Science.gov (United States)

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bio­-energetic parameters in five brain regions [brainstem (BS), frontal cortex (FC), cerebellu...

  9. Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults

    Directory of Open Access Journals (Sweden)

    Timothy C. Durazzo

    2015-07-01

    Full Text Available Chronic cigarette smoking is associated with numerous abnormalities in brain neurobiology, but few studies specifically investigated the chronic effects of smoking (compared to the acute effects of smoking, nicotine administration, or nicotine withdrawal on cerebral perfusion (i.e., blood flow. Predominately middle-aged male (47 ± 11 years of age smokers (n = 34 and non-smokers (n = 27 were compared on regional cortical perfusion measured by continuous arterial spin labeling magnetic resonance studies at 4 Tesla. Smokers showed significantly lower perfusion than non-smokers in the bilateral medial and lateral orbitofrontal cortices, bilateral inferior parietal lobules, bilateral superior temporal gyri, left posterior cingulate, right isthmus of cingulate, and right supramarginal gyrus. Greater lifetime duration of smoking (adjusted for age was related to lower perfusion in multiple brain regions. The results indicated smokers showed significant perfusion deficits in anterior cortical regions implicated in the development, progression, and maintenance of all addictive disorders. Smokers concurrently demonstrated reduced blood flow in posterior brain regions that show morphological and metabolic aberrations as well as elevated beta amyloid deposition demonstrated by those with early stage Alzheimer disease. The findings provide additional novel evidence of the adverse effects of cigarette smoking on the human brain.

  10. Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.

    Science.gov (United States)

    Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh

    2017-08-15

    Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Age- and brain region-dependent α-synuclein oligomerization is attributed to alterations in intrinsic enzymes regulating α-synuclein phosphorylation in aging monkey brains.

    Science.gov (United States)

    Chen, Min; Yang, Weiwei; Li, Xin; Li, Xuran; Wang, Peng; Yue, Feng; Yang, Hui; Chan, Piu; Yu, Shun

    2016-02-23

    We previously reported that the levels of α-syn oligomers, which play pivotal pathogenic roles in age-related Parkinson's disease (PD) and dementia with Lewy bodies, increase heterogeneously in the aging brain. Here, we show that exogenous α-syn incubated with brain extracts from older cynomolgus monkeys and in Lewy body pathology (LBP)-susceptible brain regions (striatum and hippocampus) forms higher amounts of phosphorylated and oligomeric α-syn than that in extracts from younger monkeys and LBP-insusceptible brain regions (cerebellum and occipital cortex). The increased α-syn phosphorylation and oligomerization in the brain extracts from older monkeys and in LBP-susceptible brain regions were associated with higher levels of polo-like kinase 2 (PLK2), an enzyme promoting α-syn phosphorylation, and lower activity of protein phosphatase 2A (PP2A), an enzyme inhibiting α-syn phosphorylation, in these brain extracts. Further, the extent of the age- and brain-dependent increase in α-syn phosphorylation and oligomerization was reduced by inhibition of PLK2 and activation of PP2A. Inversely, phosphorylated α-syn oligomers reduced the activity of PP2A and showed potent cytotoxicity. In addition, the activity of GCase and the levels of ceramide, a product of GCase shown to activate PP2A, were lower in brain extracts from older monkeys and in LBP-susceptible brain regions. Our results suggest a role for altered intrinsic metabolic enzymes in age- and brain region-dependent α-syn oligomerization in aging brains.

  12. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    International Nuclear Information System (INIS)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona; Husain, Nuzhat; Srivastava, Savita; Rathore, Ram K.S.; Sarma, Manoj K.; Malik, Gyanendra K.; Das, Vinita; Pradhan, Mandakini; Pandey, Chandra M.; Narayana, Ponnada A.

    2009-01-01

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA ≤ 28 weeks for frontal cortical region and GA≤22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  13. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  14. Delineation of separate brain regions used for scientific versus engineering modes of thinking

    Science.gov (United States)

    Patterson, Clair C.

    1994-08-01

    Powerful, latent abilities for extreme sophistication in abstract rationalization as potential biological adaptive behavioral responses were installed entirely through accident and inadvertence by biological evolution in the Homo sapiens sapiens species of brain. These potentials were never used, either in precursor species as factors in evolutionary increase in hominid brain mass, nor in less sophisticated forms within social environments characterized by Hss tribal brain population densities. Those latent abilities for unnatural biological adaptive behavior were forced to become manifest in various ways by growths in sophistication of communication interactions engendered by large growths in brain population densities brought on by developments in agriculture at the onset of the Holocene. It is proposed that differences probably exist between regions of the Hss brain involved in utilitarian, engineering types of problem conceptualization-solving versus regions of the brain involved in nonutilitarian, artistic-scientific types of problem conceptualization-solving. Populations isolated on separate continents from diffusive contact and influence on cultural developments, and selected for comparison of developments during equivalent stages of technological and social sophistication in matching 4000 year periods, show, at the ends of those periods, marked differences in aesthetic attributes expressed in cosmogonies, music, and writing (nonutilitarian thinking related to science and art). On the other hand the two cultures show virtually identical developments in three major stages of metallurgical technologies (utilitarian thinking related to engineering). Such archaeological data suggest that utilitarian modes of thought may utilize combinations of neuronal circuits in brain regions that are conserved among tribal populations territorially separated from each other for tens of thousands of years. Such conservation may not be true for neuronal circuits involved in

  15. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    Institute of Scientific and Technical Information of China (English)

    De-guo Jiang; Shi-li Jin; Gong-ying Li; Qing-qing Li; Zhi-ruo Li; Hong-xia Ma; Chuan-jun Zhuo; Rong-huan Jiang; Min-jie Ye

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry andin situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no signiifcant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our ifndings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  16. Normal regional brain iron concentration in restless legs syndrome measured by MRI

    Directory of Open Access Journals (Sweden)

    Susanne Knake

    2009-12-01

    Full Text Available Susanne Knake1, Johannes T Heverhagen2, Katja Menzler1, Boris Keil2, Wolfgang H Oertel1, Karin Stiasny-Kolster11Department of Neurology, Center of Nervous Diseases, 2Department of Radiology, Philipps University, Marburg, GermanyAbstract: Using a T2* gradient echo magnetic resonance imaging (MRI sequence, regional T2 signal intensity (SI values, a surrogate marker for T2 values, were determined in 12 regions of interest (substantia nigra, pallidum, caudate head, thalamus, occipital white matter, and frontal white matter bilaterally and in two reference regions (cerebrospinal fluid and bone in 12 patients suffering from moderate to severe idiopathic restless legs syndrome (RLS; mean age 58.5 ± 8.7 years for 12.1 ± 9.1 years and in 12 healthy control subjects (mean age 56.8 ± 10.6 years. Iron deposits shorten T2 relaxation times on T2-weighted MRI. We used regional T2* SI to estimate regional T2-values. A T2-change ratio was calculated for each region of interest relative to the reference regions. We did not find significant differences in any of the investigated brain regions. In addition, serum measures involved in iron metabolism did not correlate with T2 SI values. We could not replicate earlier findings describing reduced regional brain iron concentrations in patients with RLS. Our results do not support the view of substantially impaired regional brain iron in RLS.Keywords: restless legs syndrome, pathophysiology, iron, MRI, substantia nigra

  17. Novel region of interest interrogation technique for diffusion tensor imaging analysis in the canine brain.

    Science.gov (United States)

    Li, Jonathan Y; Middleton, Dana M; Chen, Steven; White, Leonard; Ellinwood, N Matthew; Dickson, Patricia; Vite, Charles; Bradbury, Allison; Provenzale, James M

    2017-08-01

    Purpose We describe a novel technique for measuring diffusion tensor imaging metrics in the canine brain. We hypothesized that a standard method for region of interest placement could be developed that is highly reproducible, with less than 10% difference in measurements between raters. Methods Two sets of canine brains (three seven-week-old full-brains and two 17-week-old single hemispheres) were scanned ex-vivo on a 7T small-animal magnetic resonance imaging system. Strict region of interest placement criteria were developed and then used by two raters to independently measure diffusion tensor imaging metrics within four different white-matter regions within each specimen. Average values of fractional anisotropy, radial diffusivity, and the three eigenvalues (λ1, λ2, and λ3) within each region in each specimen overall and within each individual image slice were compared between raters by calculating the percentage difference between raters for each metric. Results The mean percentage difference between raters for all diffusion tensor imaging metrics when pooled by each region and specimen was 1.44% (range: 0.01-5.17%). The mean percentage difference between raters for all diffusion tensor imaging metrics when compared by individual image slice was 2.23% (range: 0.75-4.58%) per hemisphere. Conclusion Our results indicate that the technique described is highly reproducible, even when applied to canine specimens of differing age, morphology, and image resolution. We propose this technique for future studies of diffusion tensor imaging analysis in canine brains and for cross-sectional and longitudinal studies of canine brain models of human central nervous system disease.

  18. On the blood-brain barrier to peptides: [3H]gonadotropin-releasing hormone accumulation by eighteen regions of the rat brain and by anterior pituitary

    International Nuclear Information System (INIS)

    Ermisch, A.; Ruehle, H.J.; Klauschenz, E.; Kretzschmar, R.

    1984-01-01

    After intracarotid injection of [ 3 H]gonadotropin-releasing hormone ([ 3 H]GnRH) the mean accumulation of radioactivity per unit wet weight of 18 brain samples investigated and the anterior pituitary was 0.38 +- 0.11% g -1 of the injected tracer dose. This indicates a low but measurable brain uptake of the peptide. The brain uptake of [ 3 H]GnRH in blood-brain barrier (BBB)-protected regions is 5% of that of separately investigated [ 3 H]OH. In BBB-free regions the accumulation of radioactivity was more than 25-fold higher than in BBB-protected regions. The accumulation of [ 3 H]GnRH among regions with BBB varies less than among regions with leaky endothelia. The data presented for [ 3 H]GnRH are similar to those for other peptides so far investigated. (author)

  19. Assessment of DDT and Metabolites in Soil and Sediment of Potentially Contaminated Areas of Belém, Amazon Region, Brazil.

    Science.gov (United States)

    Rodrigues, Andreia Oliveira; de Souza, Larissa Costa; da Silva Rocha, Cássia Christina; da Costa, Amilton Cesar Gomes; de Alcântara Mendes, Rosivaldo

    2017-07-01

    The aim of this study was to evaluate the distribution of DDT and metabolites in surface soils and soil profiles from two areas containing deposits of obsolete pesticides in Belém, Amazon Region, Brazil. DDT and metabolites were extracted by microwave assisted extraction and analyzed by gas chromatography with electron capture detection. Concentrations of total DDT in surface soil samples ranged from 64.22 mg kg -1 in area 1 (A1) to 447.84 mg kg -1 in area 2 (A2). Lower levels were found in soil profiles than at the surface (6.21-21.17 mg kg -1 in A1 and 36.13-113.66 mg kg -1 in A2). pp'-DDT, pp'-DDE and pp'-DDD were detected in sediments at levels of 2.01, 0.96 and 0.35 mg kg -1 , respectively. The ratio (DDE + DDD)/ΣDDT was low indicating the recent introduction of DDT to the environment in the two study areas, through the volatilization and atmospheric deposition of the obsolete pesticides.

  20. Individual differences in personality traits reflect structural variance in specific brain regions.

    Science.gov (United States)

    Gardini, Simona; Cloninger, C Robert; Venneri, Annalena

    2009-06-30

    Personality dimensions such as novelty seeking (NS), harm avoidance (HA), reward dependence (RD) and persistence (PER) are said to be heritable, stable across time and dependent on genetic and neurobiological factors. Recently a better understanding of the relationship between personality traits and brain structures/systems has become possible due to advances in neuroimaging techniques. This Magnetic Resonance Imaging (MRI) study investigated if individual differences in these personality traits reflected structural variance in specific brain regions. A large sample of eighty five young adult participants completed the Three-dimensional Personality Questionnaire (TPQ) and had their brain imaged with MRI. A voxel-based correlation analysis was carried out between individuals' personality trait scores and grey matter volume values extracted from 3D brain scans. NS correlated positively with grey matter volume in frontal and posterior cingulate regions. HA showed a negative correlation with grey matter volume in orbito-frontal, occipital and parietal structures. RD was negatively correlated with grey matter volume in the caudate nucleus and in the rectal frontal gyrus. PER showed a positive correlation with grey matter volume in the precuneus, paracentral lobule and parahippocampal gyrus. These results indicate that individual differences in the main personality dimensions of NS, HA, RD and PER, may reflect structural variance in specific brain areas.

  1. Regional brain activation associated with addiction of computer games in adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. H.; Shin, O. J.; Ko, Y. W.; Kim, H. J.; Yun, M. J.; Lee, J. D. [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-07-01

    Excessive computer game (CG) playing may cause not only behavioral addiction, but also potential negative effects on developing brain. It is necessary to reveal how brain is affected by excessive use of CG playing and behavioral addiction of it. By using PET, we address the issue seeking to identifying patterns of regional brain activation associated with behavioral addiction and excessive use of CG playing by adolescents. 6 normal control and 8 adolescents who were met by the criteria of behavioral addiction on the survey as addiction groups with an addiction of CG playing were participated. Initial screening survey which is the adapted version of DSM-IV for pathologic gambling was done. PET were performed twice in each participants both during resting state and after 20 min playing of CG. Psychological test including Youth Self Report (YSR), memory and attention test and vocabulary item from KWAIS were performed. Scores of the vocabulary item from KWAIS and social competence from YSR were significantly lower in the addiction group. On PET, addiction group showed higher resting metabolism on inferior frontal, premotor, prefrontal and superior temporal area. Adolescents with addiction of CG revealed different patterns of regional brain activation comparing to control groups. These suggest behavioral addiction and excessive use of CG may result in functional alteration of developing brain in adolescents.

  2. Regional brain activation associated with addiction of computer games in adolescents

    International Nuclear Information System (INIS)

    Yoo, Y. H.; Shin, O. J.; Ko, Y. W.; Kim, H. J.; Yun, M. J.; Lee, J. D.

    2001-01-01

    Excessive computer game (CG) playing may cause not only behavioral addiction, but also potential negative effects on developing brain. It is necessary to reveal how brain is affected by excessive use of CG playing and behavioral addiction of it. By using PET, we address the issue seeking to identifying patterns of regional brain activation associated with behavioral addiction and excessive use of CG playing by adolescents. 6 normal control and 8 adolescents who were met by the criteria of behavioral addiction on the survey as addiction groups with an addiction of CG playing were participated. Initial screening survey which is the adapted version of DSM-IV for pathologic gambling was done. PET were performed twice in each participants both during resting state and after 20 min playing of CG. Psychological test including Youth Self Report (YSR), memory and attention test and vocabulary item from KWAIS were performed. Scores of the vocabulary item from KWAIS and social competence from YSR were significantly lower in the addiction group. On PET, addiction group showed higher resting metabolism on inferior frontal, premotor, prefrontal and superior temporal area. Adolescents with addiction of CG revealed different patterns of regional brain activation comparing to control groups. These suggest behavioral addiction and excessive use of CG may result in functional alteration of developing brain in adolescents

  3. Regional brain glucose use in unstressed rats after two days of starvation

    International Nuclear Information System (INIS)

    Mans, A.M.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Regional brain glucose use was measured in conscious, unrestrained, fed rats and after 2 days of starvation, using quantitative autoradiography and [6- 14 C]glucose. Plasma glucose, lactate, and ketone body concentrations and brain glucose and lactate content were measured in separate groups of rats. Glucose concentrations were lower in starved rats in both plasma and brain; plasma ketone body concentrations were elevated. Glucose use was found to be lower throughout the brain by about 12%. While some areas seemed to be affected more than others, statistical analysis showed that none were exceptionally different. The results could not be explained by increased loss of 14 C as lactate or pyruvate during the experimental period, because the arteriovenous differences of these species were insignificant. The calculated contribution by ketone bodies to the total energy consumption was between 3 and 9% for the brain as a whole in the starved rats and could, therefore, partially account for the depression seen in glucose use. It was concluded that glucose oxidation is slightly depressed throughout the brain after 2 days of starvation

  4. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer's Disease Affected Brain Regions.

    Directory of Open Access Journals (Sweden)

    Nisha Puthiyedth

    Full Text Available Alzheimer's disease (AD is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation.The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD from the Entorhinal Cortex (EC, Hippocampus (HIP, Middle temporal gyrus (MTG, Posterior cingulate cortex (PC, Superior frontal gyrus (SFG and visual cortex (VCX brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets.We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD. In addition, we

  5. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    2001-01-01

    Full Text Available Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei are involved in the generation of rapid eye movement (REM sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase, the enzyme which inactivates acetylcholine (Ach in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1 were assayed photometrically. The results (mean ± SD obtained showed a statistically significant (Student t-test increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025 and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05. Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05 and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05 were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity

  6. Regional homogeneity of resting-state brain abnormalities in bipolar and unipolar depression.

    Science.gov (United States)

    Liu, Chun-Hong; Ma, Xin; Wu, Xia; Zhang, Yu; Zhou, Fu-Chun; Li, Feng; Tie, Chang-Le; Dong, Jie; Wang, Yong-Jun; Yang, Zhi; Wang, Chuan-Yue

    2013-03-05

    Bipolar disorder patients experiencing a depressive episode (BD-dep) without an observed history of mania are often misdiagnosed and are consequently treated as having unipolar depression (UD), leading to inadequate treatment and poor outcomes. An essential solution to this problem is to identify objective biological markers that distinguish BD-dep and UD patients at an early stage. However, studies directly comparing the brain dysfunctions associated with BD-dep and UD are rare. More importantly, the specificity of the differences in brain activity between these mental disorders has not been examined. With whole-brain regional homogeneity analysis and region-of-interest (ROI) based receiver operating characteristic (ROC) analysis, we aimed to compare the resting-state brain activity of BD-dep and UD patients. Furthermore, we examined the specific differences and whether these differences were attributed to the brain abnormality caused by BD-dep, UD, or both. Twenty-one bipolar and 21 unipolar depressed patients, as well as 26 healthy subjects matched for gender, age, and educational levels, participated in the study. We compared the differences in the regional homogeneity (ReHo) of the BD-dep and UD groups and further identified their pathophysiological abnormality. In the brain regions showing a difference between the BD-dep and UD groups, we further conducted receptive operation characteristic (ROC) analyses to confirm the effectiveness of the identified difference in classifying the patients. We observed ReHo differences between the BD-dep and UD groups in the right ventrolateral middle frontal gyrus, right dorsal anterior insular, right ventral anterior insular, right cerebellum posterior gyrus, right posterior cingulate cortex, right parahippocampal gyrus, and left cerebellum anterior gyrus. Further ROI comparisons and ROC analysis on these ROIs showed that the right parahippocampal gyrus reflected abnormality specific to the BD-dep group, while the right

  7. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-10-01

    Full Text Available Yanping Wang,1,2 Xiaoling Zhang,2 Qiaobing Guan,2 Lihong Wan,2 Yahui Yi,2 Chun-Feng Liu1 1Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 2Department of Neurology, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang Province, People’s Republic of China Abstract: The pathophysiology of idiopathic trigeminal neuralgia (ITN has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected. Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002. Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN. Keywords: trigeminal neuralgia, resting fMRI, brain, chronic pain, local connectivity

  8. Regional brain glucose metabolism and blood flow in streptozocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Jakobsen, J.; Nedergaard, M.; Aarslew-Jensen, M.; Diemer, N.H.

    1990-01-01

    Brain regional glucose metabolism and regional blood flow were measured from autoradiographs by the uptake of [ 3 H]-2-deoxy-D-glucose and [ 14 C]iodoantipyrine in streptozocin-induced diabetic (STZ-D) rats. After 2 days of diabetes, glucose metabolism in the neocortex, basal ganglia, and white matter increased by 34, 37, and 8%, respectively, whereas blood flow was unchanged. After 4 mo, glucose metabolism in the same three regions was decreased by 32, 43, and 60%. This reduction was paralleled by a statistically nonsignificant reduction in blood flow in neocortex and basal ganglia. It is suggested that the decrease of brain glucose metabolism in STZ-D reflects increased ketone body oxidation and reduction of electrochemical work

  9. Effect of CDP-choline on the biosynthesis of phospholipids in brain regions during hypoxic treatment

    International Nuclear Information System (INIS)

    Alberghina, M.; Viola, M.; Serra, I.; Mistretta, A.; Giuffrida, A.M.

    1981-01-01

    Acute administration of CDP-choline (i.p. 100 mg/Kg b.w.), 10 min before the intraventricular injection of labeled precursors, [2-3H] glycerol and [1-14C]-palmitate, was able to correct the impairment caused by hypoxic treatment of lipid metabolism in some brain regions, ie, cerebral hemispheres, cerebellum, and brainstem. After CDP-choline treatment, an increase of the specific radioactivity of total lipids and of phospholipids was observed in mitochondria purified from the three above-mentioned brain regions of the hypoxic animals, while no effect on the other subcellular fractions was found. CDP-Choline had a stimulating effect particularly on the incorporation of both precursors into mitochondrial PC, PE, and polyglycerophosphatides isolated form the three brain regions examined. The results obtained show that the action of CDP-choline in restoring lipid metabolism was more pronounced in brain mitochondria, which, among subcellular fractions, were the most affected by the hypoxic treatment

  10. Repeated verum but not placebo acupuncture normalizes connectivity in brain regions dysregulated in chronic pain

    Directory of Open Access Journals (Sweden)

    Natalia Egorova

    2015-01-01

    Full Text Available Acupuncture, an ancient East Asian therapy, is aimed at rectifying the imbalance within the body caused by disease. Studies evaluating the efficacy of acupuncture with neuroimaging tend to concentrate on brain regions within the pain matrix, associated with acute pain. We, however, focused on the effect of repeated acupuncture treatment specifically on brain regions known to support functions dysregulated in chronic pain disorders. Transition to chronic pain is associated with increased attention to pain, emotional rumination, nociceptive memory and avoidance learning, resulting in brain connectivity changes, specifically affecting the periaqueductal gray (PAG, medial frontal cortex (MFC and bilateral hippocampus (Hpc. We demonstrate that the PAG–MFC and PAG–Hpc connectivity in patients with chronic pain due to knee osteoarthritis indeed correlates with clinical severity scores and further show that verum acupuncture-induced improvement in pain scores (compared to sham is related to the modulation of PAG–MFC and PAG–Hpc connectivity in the predicted direction. This study shows that repeated verum acupuncture might act by restoring the balance in the connectivity of the key pain brain regions, altering pain-related attention and memory.

  11. Regional homogeneity of the resting-state brain activity correlates with individual intelligence.

    Science.gov (United States)

    Wang, Leiqiong; Song, Ming; Jiang, Tianzi; Zhang, Yunting; Yu, Chunshui

    2011-01-25

    Resting-state functional magnetic resonance imaging has confirmed that the strengths of the long distance functional connectivity between different brain areas are correlated with individual differences in intelligence. However, the association between the local connectivity within a specific brain region and intelligence during rest remains largely unknown. The aim of this study is to investigate the relationship between local connectivity and intelligence. Fifty-nine right-handed healthy adults participated in the study. The regional homogeneity (ReHo) was used to assess the strength of local connectivity. The associations between ReHo and full-scale intelligence quotient (FSIQ) scores were studied in a voxel-wise manner using partial correlation analysis controlling for age and sex. We found that the FSIQ scores were positively correlated with the ReHo values of the bilateral inferior parietal lobules, middle frontal, parahippocampal and inferior temporal gyri, the right thalamus, superior frontal and fusiform gyri, and the left superior parietal lobule. The main findings are consistent with the parieto-frontal integration theory (P-FIT) of intelligence, supporting the view that general intelligence involves multiple brain regions throughout the brain. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI-BOLD activation.

    Science.gov (United States)

    Fehr, Thorsten; Code, Chris; Herrmann, Manfred

    2007-10-03

    The issue of how and where arithmetic operations are represented in the brain has been addressed in numerous studies. Lesion studies suggest that a network of different brain areas are involved in mental calculation. Neuroimaging studies have reported inferior parietal and lateral frontal activations during mental arithmetic using tasks of different complexities and using different operators (addition, subtraction, etc.). Indeed, it has been difficult to compare brain activation across studies because of the variety of different operators and different presentation modalities used. The present experiment examined fMRI-BOLD activity in participants during calculation tasks entailing different arithmetic operations -- addition, subtraction, multiplication and division -- of different complexities. Functional imaging data revealed a common activation pattern comprising right precuneus, left and right middle and superior frontal regions during all arithmetic operations. All other regional activations were operation specific and distributed in prominently frontal, parietal and central regions when contrasting complex and simple calculation tasks. The present results largely confirm former studies suggesting that activation patterns due to mental arithmetic appear to reflect a basic anatomical substrate of working memory, numerical knowledge and processing based on finger counting, and derived from a network originally related to finger movement. We emphasize that in mental arithmetic research different arithmetic operations should always be examined and discussed independently of each other in order to avoid invalid generalizations on arithmetics and involved brain areas.

  13. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.

    OpenAIRE

    Hoekzema, Elseline; Schagen, Sebastian E. E.; Kreukels, Baudewijntje P. C.; Veltman, Dick J.; Cohen-Kettenis, Peggy T.; Delemarre-van de Waal, Henriette; Bakker, Julie

    2015-01-01

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was o...

  14. Theory of Mind Performance in Children Correlates with Functional Specialization of a Brain Region for Thinking about Thoughts

    Science.gov (United States)

    Gweon, Hyowon; Dodell-Feder, David; Bedny, Marina; Saxe, Rebecca

    2012-01-01

    Thinking about other people's thoughts recruits a specific group of brain regions, including the temporo-parietal junctions (TPJ), precuneus (PC), and medial prefrontal cortex (MPFC). The same brain regions were recruited when children (N = 20, 5-11 years) and adults (N = 8) listened to descriptions of characters' mental states, compared to…

  15. Lutein Is Differentially Deposited across Brain Regions following Formula or Breast Feeding of Infant Rhesus Macaques.

    Science.gov (United States)

    Jeon, Sookyoung; Ranard, Katherine M; Neuringer, Martha; Johnson, Emily E; Renner, Lauren; Kuchan, Matthew J; Pereira, Suzette L; Johnson, Elizabeth J; Erdman, John W

    2018-01-01

    Lutein, a yellow xanthophyll, selectively accumulates in primate retina and brain. Lutein may play a critical role in neural and retinal development, but few studies have investigated the impact of dietary source on its bioaccumulation in infants. We explored the bioaccumulation of lutein in infant rhesus macaques following breastfeeding or formula-feeding. From birth to 6 mo of age, male and female rhesus macaques (Macaca mulatta) were either breastfed (BF) (n = 8), fed a formula supplemented with lutein, zeaxanthin, β-carotene, and lycopene (237, 19.0, 74.2, and 338 nmol/kg, supplemented formula-fed; SF) (n = 8), or fed a formula with low amounts of these carotenoids (38.6, 2.3, 21.5, and 0 nmol/kg, unsupplemented formula-fed; UF) (n = 7). The concentrations of carotenoids in serum and tissues were analyzed by HPLC. At 6 mo of age, the BF group exhibited significantly higher lutein concentrations in serum, all brain regions, macular and peripheral retina, adipose tissue, liver, and other tissues compared to both formula-fed groups (P Lutein concentrations were higher in the SF group than in the UF group in serum and all tissues, with the exception of macular retina. Lutein was differentially distributed across brain areas, with the highest concentrations in the occipital cortex, regardless of the diet. Zeaxanthin was present in all brain regions but only in the BF infants; it was present in both retinal regions in all groups but was significantly enhanced in BF infants compared to either formula group (P lutein concentrations compared to unsupplemented formula, concentrations were still well below those in BF infants. Regardless of diet, occipital cortex showed selectively higher lutein deposition than other brain regions, suggesting lutein's role in visual processing in early life. © 2018 American Society for Nutrition. All rights reserved.

  16. Regional Brain Shrinkage over Two Years: Individual Differences and Effects of Pro-Inflammatory Genetic Polymorphisms

    Science.gov (United States)

    Persson, N.; Ghisletta, P.; Dahle, C.L.; Bender, A.R.; Yang, Y.; Yuan, P.; Daugherty, A.M.; Raz, N.

    2014-01-01

    We examined regional changes in brain volume in healthy adults (N = 167, age 19-79 years at baseline; N = 90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (HC), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the HC, CbH, In, OF, and the PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants mediated shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1βC-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFRC677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan. PMID:25264227

  17. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development.

    Science.gov (United States)

    Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F

    2018-01-01

    The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.

  18. 1H NMR-based metabolomic fingerprinting to determine metabolite levels in serrano peppers (Capsicum annum L.) grown in two different regions.

    Science.gov (United States)

    Becerra-Martínez, Elvia; Florentino-Ramos, Elideth; Pérez-Hernández, Nury; Gerardo Zepeda-Vallejo, L; Villa-Ruano, Nemesio; Velázquez-Ponce, Manuel; García-Mendoza, Felipe; Bañuelos-Hernández, Angel E

    2017-12-01

    Chili pepper (Capsicum annuum) is the most important and emblematic condiment in Mexican food. Serrano pepper is a variety of C. annuum that is traditionally cultivated in Mexico and commercialized in local markets. The aim of this study was to describe the 1 H NMR metabolomic profiling of the aqueous phase of serrano peppers harvested from two distinct regions, in the states of Veracruz and Oaxaca, Mexico. According to the current results, aspartate citrate, lactate, leucine and sucrose were found at higher amount in the serrano peppers from Veracruz. On the other hand, acetate, formate, fumarate, malonate, phosphocholine, pyruvate and succinate showed the highest abundance in this product from Oaxaca. These are the main metabolites that distinguish one group from the other. The spectrometric method reported presently is characterized by great simplicity, robustness and reproducibility. Thus, this technique can be used for establishing reliable metabolomic fingerprints of serrano peppers grown under different environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Brain region distribution and patterns of bioaccumulative perfluoroalkyl carboxylates and sulfonates in east greenland polar bears (Ursus maritimus).

    Science.gov (United States)

    Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune

    2013-03-01

    The present study investigated the comparative accumulation of perfluoroalkyl acids (PFAAs) in eight brain regions of polar bears (Ursus maritimus, n = 19) collected in 2006 from Scoresby Sound, East Greenland. The PFAAs studied were perfluoroalkyl carboxylates (PFCAs, C(6) -C(15) chain lengths) and sulfonates (C(4) , C(6) , C(8) , and C(10) chain lengths) as well as selected precursors including perfluorooctane sulfonamide. On a wet-weight basis, blood-brain barrier transport of PFAAs occurred for all brain regions, although inner regions of the brain closer to incoming blood flow (pons/medulla, thalamus, and hypothalamus) contained consistently higher PFAA concentrations compared to outer brain regions (cerebellum, striatum, and frontal, occipital, and temporal cortices). For pons/medulla, thalamus, and hypothalamus, the most concentrated PFAAs were perfluorooctane sulfonate (PFOS), ranging from 47 to 58 ng/g wet weight, and perfluorotridecanoic acid, ranging from 43 to 49 ng/g wet weight. However, PFOS and the longer-chain PFCAs (C(10) -C(15) ) were significantly (p  0.05) different among brain regions. The burden of the sum of PFCAs, perfluoroalkyl sulfonates, and perfluorooctane sulfonamide in the brain (average mass, 392 g) was estimated to be 46 µg. The present study demonstrates that both PFCAs and perfluoroalkyl sulfonates cross the blood-brain barrier in polar bears and that wet-weight concentrations are brain region-specific. Copyright © 2012 SETAC.

  20. Functional integration changes in regional brain glucose metabolism from childhood to adulthood.

    Science.gov (United States)

    Trotta, Nicola; Archambaud, Frédérique; Goldman, Serge; Baete, Kristof; Van Laere, Koen; Wens, Vincent; Van Bogaert, Patrick; Chiron, Catherine; De Tiège, Xavier

    2016-08-01

    The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Region-specific changes in presynaptic agmatine and glutamate levels in the aged rat brain.

    Science.gov (United States)

    Jing, Y; Liu, P; Leitch, B

    2016-01-15

    During the normal aging process, the brain undergoes a range of biochemical and structural alterations, which may contribute to deterioration of sensory and cognitive functions. Age-related deficits are associated with altered efficacy of synaptic neurotransmission. Emerging evidence indicates that levels of agmatine, a putative neurotransmitter in the mammalian brain, are altered in a region-specific manner during the aging process. The gross tissue content of agmatine in the prefrontal cortex (PFC) of aged rat brains is decreased whereas levels in the temporal cortex (TE) are increased. However, it is not known whether these changes in gross tissue levels are also mirrored by changes in agmatine levels at synapses and thus could potentially contribute to altered synaptic function with age. In the present study, agmatine levels in presynaptic terminals in the PFC and TE regions (300 terminals/region) of young (3month; n=3) and aged (24month; n=3) brains of male Sprague-Dawley rats were compared using quantitative post-embedding immunogold electron-microscopy. Presynaptic levels of agmatine were significantly increased in the TE region (60%; pagmatine and glutamate were co-localized in the same synaptic terminals, and quantitative analyses revealed significantly reduced glutamate levels in agmatine-immunopositive synaptic terminals in both regions in aged rats compared to young animals. This study, for the first time, demonstrates differential effects of aging on agmatine and glutamate in the presynaptic terminals of PFC and TE. Future research is required to understand the functional significance of these changes and the underlying mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies.

    Science.gov (United States)

    Molenberghs, Pascal; Cunnington, Ross; Mattingley, Jason B

    2012-01-01

    Mirror neurons in macaque area F5 fire when an animal performs an action, such as a mouth or limb movement, and also when the animal passively observes an identical or similar action performed by another individual. Brain-imaging studies in humans conducted over the last 20 years have repeatedly attempted to reveal analogous brain regions with mirror properties in humans, with broad and often speculative claims about their functional significance across a range of cognitive domains, from language to social cognition. Despite such concerted efforts, the likely neural substrates of these mirror regions have remained controversial, and indeed the very existence of a distinct subcategory of human neurons with mirroring properties has been questioned. Here we used activation likelihood estimation (ALE), to provide a quantitative index of the consistency of patterns of fMRI activity measured in human studies of action observation and action execution. From an initial sample of more than 300 published works, data from 125 papers met our strict inclusion and exclusion criteria. The analysis revealed 14 separate clusters in which activation has been consistently attributed to brain regions with mirror properties, encompassing 9 different Brodmann areas. These clusters were located in areas purported to show mirroring properties in the macaque, such as the inferior parietal lobule, inferior frontal gyrus and the adjacent ventral premotor cortex, but surprisingly also in regions such as the primary visual cortex, cerebellum and parts of the limbic system. Our findings suggest a core network of human brain regions that possess mirror properties associated with action observation and execution, with additional areas recruited during tasks that engage non-motor functions, such as auditory, somatosensory and affective components. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  3. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths

    Directory of Open Access Journals (Sweden)

    Liv de Vries

    2017-09-01

    Full Text Available Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species—thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX, lateral complex (LX and anterior optic tubercles (AOTU, it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior

  4. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  5. Molecular and Functional Properties of Regional Astrocytes in the Adult Brain.

    Science.gov (United States)

    Morel, Lydie; Chiang, Ming Sum R; Higashimori, Haruki; Shoneye, Temitope; Iyer, Lakshmanan K; Yelick, Julia; Tai, Albert; Yang, Yongjie

    2017-09-06

    The molecular signature and functional properties of astroglial subtypes in the adult CNS remain largely undefined. By using translational ribosome affinity purification followed by RNA-Seq, we profiled astroglial ribosome-associated (presumably translating) mRNAs in major cortical and subcortical brain regions (cortex, hippocampus, caudate-putamen, nucleus accumbens, thalamus, and hypothalamus) of BAC aldh1l1 -translational ribosome affinity purification (TRAP) mice (both sexes). We found that the expression of astroglial translating mRNAs closely follows the dorsoventral axis, especially from cortex/hippocampus to thalamus/hypothalamus posteriorly. This region-specific expression pattern of genes, such as synaptogenic modulator sparc and transcriptional factors ( emx2 , lhx2 , and hopx ), was validated by qRT-PCR and immunostaining in brain sections. Interestingly, cortical or subcortical astrocytes selectively promote neurite growth and synaptic activity of neurons only from the same region in mismatched cocultures, exhibiting region-matched astrocyte to neuron communication. Overall, these results generated new molecular signature of astrocyte types in the adult CNS, providing insights into their origin and functional diversity. SIGNIFICANCE STATEMENT We investigated the in vivo molecular and functional heterogeneity of astrocytes inter-regionally from adult brain. Our results showed that the expression pattern of ribosome-associated mRNA profiles in astrocytes closely follows the dorsoventral axis, especially posteriorly from cortex/hippocampus to thalamus/hypothalamus. In line with this, our functional results further demonstrated region-selective roles of cortical and subcortical astrocytes in regulating cortical or subcortical neuronal synaptogenesis and maturation. These in vivo studies provide a previously uncharacterized and important molecular atlas for exploring region-specific astroglial functions. Copyright © 2017 the authors 0270-6474/17/378706-12$15.00/0.

  6. Comparing brain graphs in which nodes are regions of interest or independent components: A simulation study.

    Science.gov (United States)

    Yu, Qingbao; Du, Yuhui; Chen, Jiayu; He, Hao; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D

    2017-11-01

    A key challenge in building a brain graph using fMRI data is how to define the nodes. Spatial brain components estimated by independent components analysis (ICA) and regions of interest (ROIs) determined by brain atlas are two popular methods to define nodes in brain graphs. It is difficult to evaluate which method is better in real fMRI data. Here we perform a simulation study and evaluate the accuracies of a few graph metrics in graphs with nodes of ICA components, ROIs, or modified ROIs in four simulation scenarios. Graph measures with ICA nodes are more accurate than graphs with ROI nodes in all cases. Graph measures with modified ROI nodes are modulated by artifacts. The correlations of graph metrics across subjects between graphs with ICA nodes and ground truth are higher than the correlations between graphs with ROI nodes and ground truth in scenarios with large overlapped spatial sources. Moreover, moving the location of ROIs would largely decrease the correlations in all scenarios. Evaluating graphs with different nodes is promising in simulated data rather than real data because different scenarios can be simulated and measures of different graphs can be compared with a known ground truth. Since ROIs defined using brain atlas may not correspond well to real functional boundaries, overall findings of this work suggest that it is more appropriate to define nodes using data-driven ICA than ROI approaches in real fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Enkephalin dipeptidyl carboxypeptidase (enkephalinase) activity: selective radioassay, properties, and regional distribution in human brain

    International Nuclear Information System (INIS)

    Llorens, C.; Malfroy, B.; Schwartz, J.C.; Gacel, G.; Roques, B.P.; Roy, J.; Morgat, J.L.; Javoy-Agid, F.; Agid, Y.

    1982-01-01

    The compound [ 3 H-Tyr 1 ,D-Ala 2 ,Leu-OH 5 ]enkephalin has been synthesised as a potentially selective substrate for enkephalin dipeptidyl carboxypeptidase (enkephalinase) activity in brain. Incubations in the presence of homogenates and particulate fractions from rodent and human brain result in the formation of [ 3 H]Tyr-D-Ala-Gly, which can be conveniently isolated by polystyrene bead column chromatography. The enzyme activity responsible for the hydrolysis of the Gly 3 -Phe 4 amide bond of this substrate displays close resemblance to that hydrolysing the natural enkephalins at the same level. In addition, enkephalinase activity characterised in postmortem human brain is closely similar to that in rodent brain, with regard to optimal pH and apparent affinities of various substrates and inhibitors, including the potent compound thiorphan. Enkephalinase activity is distributed in a highly heterogeneous fashion among regions of human brain, the highest levels being found in globus pallidus and pars reticulata of the substantia nigra. This distribution is poorly correlated with that of opiate receptor binding sites but displays some resemblance to that of reported Met 5 -enkephalin levels. (author)

  8. Abnormal Brain Responses to Action Observation in Complex Regional Pain Syndrome.

    Science.gov (United States)

    Hotta, Jaakko; Saari, Jukka; Koskinen, Miika; Hlushchuk, Yevhen; Forss, Nina; Hari, Riitta

    2017-03-01

    Patients with complex regional pain syndrome (CRPS) display various abnormalities in central motor function, and their pain is intensified when they perform or just observe motor actions. In this study, we examined the abnormalities of brain responses to action observation in CRPS. We analyzed 3-T functional magnetic resonance images from 13 upper limb CRPS patients (all female, ages 31-58 years) and 13 healthy, age- and sex-matched control subjects. The functional magnetic resonance imaging data were acquired while the subjects viewed brief videos of hand actions shown in the first-person perspective. A pattern-classification analysis was applied to characterize brain areas where the activation pattern differed between CRPS patients and healthy subjects. Brain areas with statistically significant group differences (q frontal gyrus, secondary somatosensory cortex, inferior parietal lobule, orbitofrontal cortex, and thalamus. Our findings indicate that CRPS impairs action observation by affecting brain areas related to pain processing and motor control. This article shows that in CRPS, the observation of others' motor actions induces abnormal neural activity in brain areas essential for sensorimotor functions and pain. These results build the cerebral basis for action-observation impairments in CRPS. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  9. A Method for Automatic Extracting Intracranial Region in MR Brain Image

    Science.gov (United States)

    Kurokawa, Keiji; Miura, Shin; Nishida, Makoto; Kageyama, Yoichi; Namura, Ikuro

    It is well known that temporal lobe in MR brain image is in use for estimating the grade of Alzheimer-type dementia. It is difficult to use only region of temporal lobe for estimating the grade of Alzheimer-type dementia. From the standpoint for supporting the medical specialists, this paper proposes a data processing approach on the automatic extraction of the intracranial region from the MR brain image. The method is able to eliminate the cranium region with the laplacian histogram method and the brainstem with the feature points which are related to the observations given by a medical specialist. In order to examine the usefulness of the proposed approach, the percentage of the temporal lobe in the intracranial region was calculated. As a result, the percentage of temporal lobe in the intracranial region on the process of the grade was in agreement with the visual sense standards of temporal lobe atrophy given by the medical specialist. It became clear that intracranial region extracted by the proposed method was good for estimating the grade of Alzheimer-type dementia.

  10. Functional connections between activated and deactivated brain regions mediate emotional interference during externally directed cognition.

    Science.gov (United States)

    Di Plinio, Simone; Ferri, Francesca; Marzetti, Laura; Romani, Gian Luca; Northoff, Georg; Pizzella, Vittorio

    2018-04-24

    Recent evidence shows that task-deactivations are functionally relevant for cognitive performance. Indeed, higher cognitive engagement has been associated with higher suppression of activity in task-deactivated brain regions - usually ascribed to the Default Mode Network (DMN). Moreover, a negative correlation between these regions and areas actively engaged by the task is associated with better performance. DMN regions show positive modulation during autobiographical, social, and emotional tasks. However, it is not clear how processing of emotional stimuli affects the interplay between the DMN and executive brain regions. We studied this interplay in an fMRI experiment using emotional negative stimuli as distractors. Activity modulations induced by the emotional interference of negative stimuli were found in frontal, parietal, and visual areas, and were associated with modulations of functional connectivity between these task-activated areas and DMN regions. A worse performance was predicted both by lower activity in the superior parietal cortex and higher connectivity between visual areas and frontal DMN regions. Connectivity between right inferior frontal gyrus and several DMN regions in the left hemisphere was related to the behavioral performance. This relation was weaker in the negative than in the neutral condition, likely suggesting less functional inhibitions of DMN regions during emotional processing. These results show that both executive and DMN regions are crucial for the emotional interference process and suggest that DMN connections are related to the interplay between externally-directed and internally-focused processes. Among DMN regions, superior frontal gyrus may be a key node in regulating the interference triggered by emotional stimuli. © 2018 Wiley Periodicals, Inc.

  11. Evaluation of chlorpyrifos toxicity through a 28-day study: Cholinesterase activity, oxidative stress responses, parent compound/metabolite levels, and primary DNA damage in blood and brain tissue of adult male Wistar rats.

    Science.gov (United States)

    Kopjar, Nevenka; Žunec, Suzana; Mendaš, Gordana; Micek, Vedran; Kašuba, Vilena; Mikolić, Anja; Lovaković, Blanka Tariba; Milić, Mirta; Pavičić, Ivan; Čermak, Ana Marija Marjanović; Pizent, Alica; Lucić Vrdoljak, Ana; Želježić, Davor

    2018-01-05

    In this 28 day-study, we evaluated the effects of the insecticide chlorpyrifos orally administered to Wistar rats at doses 0.160, 0.015, and 0.010 mg/kg b. w./day. Following treatment, total cholinesterase activity and activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were measured. Oxidative stress responses were evaluated using a battery of endpoints to establish lipid peroxidation, changes in total antioxidant capacity, level of reactive oxygen species (ROS), glutathione (GSH) level and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase. Using HPLC-UV DAD analysis, levels of the parent compound and its main metabolite 3,5,6-trichloro-2-pyridinol in plasma and brain tissue were measured. The genotoxic effect was estimated using alkaline comet assay in leukocytes and brain tissue. The exposure did not result in significant effects on total cholinesterase, AChE and BChE activity in plasma and brain tissue. Lipid peroxidation slightly increased both in plasma and brain tissue. Total antioxidant capacity, ROS and GSH levels were marginally influenced by the exposure. Treatment led to significant increases of GSH-Px activity in blood, SOD activity in erythrocytes and a slight increase of catalase activity in plasma. HPLC-UV DAD analysis revealed the presence of both the parent compound and its main metabolite in the plasma of all of the experimental animals and brain tissue of the animals treated at the two higher doses. All of the tested doses of chlorpyrifos were slightly genotoxic, both to leukocytes and brain tissue. Our results call for further research using other sensitive biomarkers of effect, along with different exposure scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  13. Time-dependent regional brain distribution of methadone and naltrexone in the treatment of opioid addiction.

    Science.gov (United States)

    Teklezgi, Belin G; Pamreddy, Annapurna; Baijnath, Sooraj; Kruger, Hendrik G; Naicker, Tricia; Gopal, Nirmala D; Govender, Thavendran

    2018-02-14

    Opioid addiction is a serious public health concern with severe health and social implications; therefore, extensive therapeutic efforts are required to keep users drug free. The two main pharmacological interventions, in the treatment of addiction, involve management with methadone an mu (μ)-opioid agonist and treatment with naltrexone, μ-opioid, kappa (κ)-opioid and delta (δ)-opioid antagonist. MET and NAL are believed to help individuals to derive maximum benefit from treatment and undergo a full recovery. The aim of this study was to determine the localization and distribution of MET and NAL, over a 24-hour period in rodent brain, in order to investigate the differences in their respective regional brain distributions. This would provide a better understanding of the role of each individual drug in the treatment of addiction, especially NAL, whose efficacy is controversial. Tissue distribution was determined by using mass spectrometric imaging (MSI), in combination with quantification via liquid chromatography tandem mass spectrometry. MSI image analysis showed that MET was highly localized in the striatal and hippocampal regions, including the nucleus caudate, putamen and the upper cortex. NAL was distributed with high intensities in the mesocorticolimbic system including areas of the cortex, caudate putamen and ventral pallidum regions. Our results demonstrate that MET and NAL are highly localized in the brain regions with a high density of μ-receptors, the primary sites of heroin binding. These areas are strongly implicated in the development of addiction and are the major pathways that mediate brain stimulation during reward. © 2018 Society for the Study of Addiction.

  14. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    Science.gov (United States)

    Banerjee, S; Poddar, M K

    2016-04-05

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Altered relationships between rCBF in different brain regions of never-treated schizophrenics

    International Nuclear Information System (INIS)

    Sabri, O.; Schreckenberger, M.; Cremerius, U.; Dickmann, C.; Schulz, G.; Zimny, M.; Buell, U.; Erkwoh, R.; Owega, A.; Sass, H.

    1997-01-01

    Aim of this study was to investigate the relations between regional cerebral blood flow (rCBF) of different brain regions in acute schizophrenia and following neuroleptic treatment. Methods: Twenty-two never-treated, acute schizophrenic patients were examined with HMPAO brain SPECT and assessed psychopathologically, and reexamined following neuroleptic treatment (over 96.8 days) and psychopathological remission. rCBF was determined by region/cerebellar count quotients obtained from 98 irregular regions of interest (ROIs), summed up to 11 ROIs on each hemisphere. In acute schizophrenics, interregional rCBF correlations of each ROI to every other ROI were compared to the interregional correlations following neuroleptic treatment and to those of controls. Results: All significant correlations of rCBF ratios of different brain regions were exclusively positive in controls and patients. In controls, all ROIs of one hemisphere except the mesial temporal ROI correlated significantly to its contralateral ROI. Each hemisphere showed significant frontal-temporal correlations, as well as cortical-subcortical and some cortico-limbic. In contrast, in acute schizophrenics nearly every ROI correlated significantly with every other ROI, without a grouping or relation of the rCBF of certain ROIs as in controls. After neuroleptic treatment and clinical improvement, this diffuse pattern of correlations remained. Conclusions: These results indicate differences in the neuronal interplay between regions in schizophrenic and healthy subjects. In nevertreated schizophrenics, diffuse interregional rCBF correlations can be seen as a sign of change and dysfunction of the systems regulating specificity and diversity of the neuronal functions. Neuroleptic therapy and psychopathologic remission showed no normalizing effect on interregional correlations. (orig.) [de

  16. Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action

    Energy Technology Data Exchange (ETDEWEB)

    Gee, K.W.; Bolger, M.B.; Brinton, R.E.; Coirini, H.; McEwen, B.S.

    1988-08-01

    Further in vitro studies of steroids active at the gamma-aminobutyric acidA (GABAA) receptor regulated Cl- channel labeled by (35S)-t-butylbicyclophosphorothionate ((35S)TBPS) reveal additional structural requirements necessary for activity. Evaluation of selected steroids for activity against TBPS-induced convulsions show similar requirements for activity. Interestingly, steroids (e.g., 5 alpha-pregnan-3 alpha, 20 alpha-diol) were identified that have high potency but limited efficacy as modulators of (35S)TBPS binding. These characteristics are reminiscent of the clinically useful benzodiazepines (BZs) such as clonazepam. However, interactions between the prototypical anesthetic-barbiturate, sodium pentobarbital, and steroids active at the Cl- channel suggest that they do not share a common site of action as allosteric modulators of (35S)TBPS and BZ receptor binding. The most potent steroid evaluated, 5 alpha-pregnan-3 alpha-ol-20-one, modulates (35S)TBPS binding at low concentrations (IC50 approximately 17 nM) in a regionally dependent manner. All (35S)TBPS binding sites appear to be functionally coupled to a steroid modulatory site. Because several of the active steroids are metabolites of progesterone, their ability to inhibit the binding of (3H)promegestrone to the cytosolic progestin receptor in rat uterus was evaluated. Those steroids showing potent activity at the GABAA receptor-Cl- ionophore were inactive at the intracellular progestin receptor. Such specificity coupled with their high potency provide additional support for the hypothesis that some of these steroids may be involved in the homeostatic regulation of brain excitability via the GABAA-BZ receptor complex.

  17. Pain sensitivity is inversely related to regional grey matter density in the brain.

    Science.gov (United States)

    Emerson, Nichole M; Zeidan, Fadel; Lobanov, Oleg V; Hadsel, Morten S; Martucci, Katherine T; Quevedo, Alexandre S; Starr, Christopher J; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C

    2014-03-01

    Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity, we used voxel-based morphometry to investigate the relationship between grey matter density across the whole brain and interindividual differences in pain sensitivity in 116 healthy volunteers (62 women, 54 men). Structural magnetic resonance imaging (MRI) and psychophysical data from 10 previous functional MRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions showed a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  18. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    Science.gov (United States)

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2016-01-01

    Full Text Available Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = -0.609, P = 0.047 and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = -0.737, P = 0.010. Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.

  20. High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation

    International Nuclear Information System (INIS)

    Salvador, R; Miranda, P C; Roth, Y; Zangen, A

    2009-01-01

    Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/√2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.

  1. High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation

    Science.gov (United States)

    Salvador, R.; Miranda, P. C.; Roth, Y.; Zangen, A.

    2009-05-01

    Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/\\sqrt 2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.

  2. High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, R; Miranda, P C [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Roth, Y [Advanced Technology Center, Sheba Medical Center, Tel-Hashomer (Israel); Zangen, A [Neurobiology Department, Weizmann Institute of Science, Rehovot 76100 (Israel)], E-mail: rnsalvador@fc.ul.pt

    2009-05-21

    Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/{radical}2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.

  3. Financial literacy is associated with medial brain region functional connectivity in old age.

    Science.gov (United States)

    Han, S Duke; Boyle, Patricia A; Yu, Lei; Fleischman, Debra A; Arfanakis, Konstantinos; Leurgans, Sue; Bennett, David A

    2014-01-01

    Financial literacy refers to the ability to access and utilize financial information in ways that promote better outcomes. In old age, financial literacy has been associated with a wide range of positive characteristics; however, the neural correlates remain unclear. Recent work has suggested greater co-activity between anterior-posterior medial brain regions is associated with better brain functioning. We hypothesized financial literacy would be associated with this pattern. We assessed whole-brain functional connectivity to a posterior cingulate cortex (PCC) seed region of interest (ROI) in 138 participants of the Rush Memory and Aging Project. Results revealed financial literacy was associated with greater functional connectivity between the PCC and three regions: the right ventromedial prefrontal cortex (vmPFC), the left postcentral gyrus, and the right precuneus. Results also revealed financial literacy was associated negatively with functional connectivity between the PCC and left caudate. Post hoc analyses showed the PCC-vmPFC relationship accounted for the most variance in a regression model adjusted for all four significant functional connectivity relationships, demographic factors, and global cognition. These findings provide information on the neural mechanisms associated with financial literacy in old age. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Effect of cadmium exposure on lipids, lipid peroxidation and metal distribution in rat brain regions

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, T; Ali, M M; Chandra, S V

    1985-01-01

    Effect of cadmium treatment on brain lipids, lipid peroxidation and distribution of Zn, Cu and Fe in rat brain regions was investigated. Adult male rats were exposed to Cd (100 ppm Cd as cadmium acetate) in drinking water for 30 days. The Cd exposure resulted in a significant decrease in the phospholipid content and an increase in the lipid peroxidation in the cerebral cortex and cerebellum. The total lipid content was not affected in any of the regions but a significant decrease in cholesterol and cerebroside contents were observed only in the cerebral cortex. A positive correlation between the increase in lipid peroxidation and decrease in the phospholipid content in the cerebral cortex and cerebellum was observed. A maximum accumulation of Cd occurred in the cerebral cortex. The Cu and Fe contents were significantly increased but the Zn levels decreased in the Cd-treated rats in all but the midbrain region. Results suggest that the increased peroxidation decomposition of structural lipids and the altered distribution of the essential trace metals in brain may play a significant role in Cd-induced neurotoxicity. 27 references, 2 tables.

  5. Regional glucose utilization and blood flow in experimental brain tumors studied by double tracer autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Kato, A.; Sako, K.; Diksic, M.; Yamamoto, Y.L.; Feindel, W.

    1985-01-01

    Coupling of regional glucose utilization (GLU) and blood flow (CBF) was examined in rats with implanted brain tumors (AA ascites tumor) by quantitative double tracer autoradiography using YF-2-fluorodeoxyglucose and 14C-iodoantipyrine. Four to 13 days after implantation, the animals were injected with the two tracers to obtain autoradiograms from the same brain section before and after the decay of YF. The autoradiograms were then analyzed by an image processor to obtain a metabolic coupling index (MCI = GLU/CBF). In the tumor, high GLU and low CBF were uncoupled to give a high MCI which implied anerobic glycolysis. In large tumors, the CBF was even lower. In the peri-tumoral region, GLU was reduced and reduction was lowest around the larger tumors. CBF in the peri-tumoral region was also reduced, but this reduction became less as the distance from the tumor margin increased. The GLU and CBF of white matter was little influenced by the presence of tumors except for some reduction in these values in relation to the larger tumors. The MCI in the tumor was higher than in the cortex of the same as well as the opposite hemisphere. These findings indicate that the metabolism and blood flow of the tumor and surrounding brain are variable and directly related to tumor size.

  6. Anxiety type modulates immediate versus delayed engagement of attention-related brain regions.

    Science.gov (United States)

    Spielberg, Jeffrey M; De Leon, Angeline A; Bredemeier, Keith; Heller, Wendy; Engels, Anna S; Warren, Stacie L; Crocker, Laura D; Sutton, Bradley P; Miller, Gregory A

    2013-09-01

    Background Habituation of the fear response, critical for the treatment of anxiety, is inconsistently observed during exposure to threatening stimuli. One potential explanation for this inconsistency is differential attentional engagement with negatively valenced stimuli as a function of anxiety type. Methods The present study tested this hypothesis by examining patterns of neural habituation associated with anxious arousal, characterized by panic symptoms and immediate engagement with negatively valenced stimuli, versus anxious apprehension, characterized by engagement in worry to distract from negatively valenced stimuli. Results As predicted, the two anxiety types evidenced distinct patterns of attentional engagement. Anxious arousal was associated with immediate activation in attention-related brain regions that habituated over time, whereas anxious apprehension was associated with delayed activation in attention-related brain regions that occurred only after habituation in a worry-related brain region. Conclusions Results further elucidate mechanisms involved in attention to negatively valenced stimuli and indicate that anxiety is a heterogeneous construct with regard to attention to such stimuli.

  7. Relationship between regional brain glucose metabolism and temperament factor of personality

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Temperament factor of personality has been considered to have correlation with activity in a specific central monoaminergic system. In an attempt to explore neuronal substrate of biogenetic personality traits, we examined the relationship between regional brain glucose metabolism and temperament factor of personality. Twenty right-handed healthy subjects (age, 24{+-}4 yr: 10 females and 10 males) were studied with FDG PET. Their temperaments were assessed using the Temperament and Character Inventory (TCI), which consisted of four temperament factors (harm avoidance (HA), novelty seeking (NS), reward dependence (RD), persistency) and three personality factors. The relationship between regional glucose metabolism and each temperament score was tested using SPM99 (P < 0.005, uncorrected). NS score was negatively correlated with glucose metabolism in the frontal areas, insula, and superior temporal gyrus mainly in the right hemisphere. Positive correlation between NS score and glucose metabolism was observed in the left superior temporal gyrus. HA score showed negative correlation with glucose metabolism in the middle and orbitofrontal gyri as well as in the parahippocampal gyrus. RD score was positively correlated with glucose metabolism in the left middle frontal gyrus and negative correlated in the posterior cingulate gyrus and caudate nucleus. We identified the relationship between regional brain glucose metabolism and temperamental personality trait. Each temperament factor had a relation with functions of specific brain areas. These results help understand biological background of personality and specific feedback circuits associated with each temperament factor.

  8. Relationship between regional brain glucose metabolism and temperament factor of personality

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    Temperament factor of personality has been considered to have correlation with activity in a specific central monoaminergic system. In an attempt to explore neuronal substrate of biogenetic personality traits, we examined the relationship between regional brain glucose metabolism and temperament factor of personality. Twenty right-handed healthy subjects (age, 24±4 yr: 10 females and 10 males) were studied with FDG PET. Their temperaments were assessed using the Temperament and Character Inventory (TCI), which consisted of four temperament factors (harm avoidance (HA), novelty seeking (NS), reward dependence (RD), persistency) and three personality factors. The relationship between regional glucose metabolism and each temperament score was tested using SPM99 (P < 0.005, uncorrected). NS score was negatively correlated with glucose metabolism in the frontal areas, insula, and superior temporal gyrus mainly in the right hemisphere. Positive correlation between NS score and glucose metabolism was observed in the left superior temporal gyrus. HA score showed negative correlation with glucose metabolism in the middle and orbitofrontal gyri as well as in the parahippocampal gyrus. RD score was positively correlated with glucose metabolism in the left middle frontal gyrus and negative correlated in the posterior cingulate gyrus and caudate nucleus. We identified the relationship between regional brain glucose metabolism and temperamental personality trait. Each temperament factor had a relation with functions of specific brain areas. These results help understand biological background of personality and specific feedback circuits associated with each temperament factor

  9. A parallel chiral-achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome.

    Science.gov (United States)

    Moaddel, Ruin; Venkata, Swarajya Lakshmi Vattem; Tanga, Mary J; Bupp, James E; Green, Carol E; Iyer, Lalitha; Furimsky, Anna; Goldberg, Michael E; Torjman, Marc C; Wainer, Irving W

    2010-10-15

    A parallel chiral/achiral LC-MS/MS assay has been developed and validated to measure the plasma and urine concentrations of the enantiomers of ketamine, (R)- and (S)-Ket, in complex regional pain syndrome (CRPS) patients receiving a 5-day continuous infusion of a sub-anesthetic dose of (R,S)-Ket. The method was also validated for the determination of the enantiomers of the Ket metabolites norketamine, (R)- and (S)-norKet and dehydronorketamine, (R)- and (S)-DHNK, as well as the diastereomeric metabolites hydroxynorketamine, (2S,6S)-/(2R,6R)-HNK and two hydroxyketamines, (2S,6S)-HKet and (2S,6R)-Hket. In this method, (R,S)-Ket, (R,S)-norKet and (R,S)-DHNK and the diastereomeric hydroxyl-metabolites were separated and quantified using a C(18) stationary phase and the relative enantiomeric concentrations of (R,S)-Ket, (R,S)-norKet and (R,S)-DHNK were determined using an AGP-CSP. The analysis of the results of microsomal incubations of (R)- and (S)-Ket and a plasma and urine sample from a CRPS patient indicated the presence of 10 additional compounds and glucuronides. The data from the analysis of the patient sample also demonstrated that a series of HNK metabolites were the primary metabolites in plasma and (R)- and (S)-DHNK were the major metabolites found in urine. The results suggest that norKet is the initial, but not the primary metabolite and that downstream norKet metabolites play a role in (R,S)-Ket-related pain relief in CRPS patients. Published by Elsevier B.V.

  10. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors.

    Science.gov (United States)

    Lai, J C; Cooper, A J

    1986-11-01

    The substrate and cofactor requirements and some kinetic properties of the alpha-ketoglutarate dehydrogenase complex (KGDHC; EC 1.2.4.2, EC 2.3.1.61, and EC 1.6.4.3) in purified rat brain mitochondria were studied. Brain mitochondrial KGDHC showed absolute requirement for alpha-ketoglutarate, CoA and NAD, and only partial requirement for added thiamine pyrophosphate, but no requirement for Mg2+ under the assay conditions employed in this study. The pH optimum was between 7.2 and 7.4, but, at pH values below 7.0 or above 7.8, KGDHC activity decreased markedly. KGDHC activity in various brain regions followed the rank order: cerebral cortex greater than cerebellum greater than or equal to midbrain greater than striatum = hippocampus greater than hypothalamus greater than pons and medulla greater than olfactory bulb. Significant inhibition of brain mitochondrial KGDHC was noted at pathological concentrations of ammonia (0.2-2 mM). However, the purified bovine heart KGDHC and KGDHC activity in isolated rat heart mitochondria were much less sensitive to inhibition. At 5 mM both beta-methylene-D,L-aspartate and D,L-vinylglycine (inhibitors of cerebral glucose oxidation) inhibited the purified heart but not the brain mitochondrial enzyme complex. At approximately 10 microM, calcium slightly stimulated (by 10-15%) the brain mitochondrial KGDHC. At concentrations above 100 microM, calcium (IC50 = 1 mM) inhibited both brain mitochondrial and purified heart KGDHC. The present results suggest that some of the kinetic properties of the rat brain mitochondrial KGDHC differ from those of the purified bovine heart and rat heart mitochondrial enzyme complexes. They also suggest that the inhibition of KGDHC by ammonia and the consequent effect on the citric acid cycle fluxes may be of pathophysiological and/or pathogenetic importance in hyperammonemia and in diseases (e.g., hepatic encephalopathy, inborn errors of urea metabolism, Reye's syndrome) where hyperammonemia is a

  11. Stability of whole brain and regional network topology within and between resting and cognitive states.

    Science.gov (United States)

    Rzucidlo, Justyna K; Roseman, Paige L; Laurienti, Paul J; Dagenbach, Dale

    2013-01-01

    Graph-theory based analyses of resting state functional Magnetic Resonance Imaging (fMRI) data have been used to map the network organization of the brain. While numerous analyses of resting state brain organization exist, many questions remain unexplored. The present study examines the stability of findings based on this approach over repeated resting state and working memory state sessions within the same individuals. This allows assessment of stability of network topology within the same state for both rest and working memory, and between rest and working memory as well. fMRI scans were performed on five participants while at rest and while performing the 2-back working memory task five times each, with task state alternating while they were in the scanner. Voxel-based whole brain network analyses were performed on the resulting data along with analyses of functional connectivity in regions associated with resting state and working memory. Network topology was fairly stable across repeated sessions of the same task, but varied significantly between rest and working memory. In the whole brain analysis, local efficiency, Eloc, differed significantly between rest and working memory. Analyses of network statistics for the precuneus and dorsolateral prefrontal cortex revealed significant differences in degree as a function of task state for both regions and in local efficiency for the precuneus. Conversely, no significant differences were observed across repeated sessions of the same state. These findings suggest that network topology is fairly stable within individuals across time for the same state, but also fluid between states. Whole brain voxel-based network analyses may prove to be a valuable tool for exploring how functional connectivity changes in response to task demands.

  12. Postmenopausal hormone therapy and regional brain volumes: the WHIMS-MRI Study.

    Science.gov (United States)

    Resnick, S M; Espeland, M A; Jaramillo, S A; Hirsch, C; Stefanick, M L; Murray, A M; Ockene, J; Davatzikos, C

    2009-01-13

    To determine whether menopausal hormone therapy (HT) affects regional brain volumes, including hippocampal and frontal regions. Brain MRI scans were obtained in a subset of 1,403 women aged 71-89 years who participated in the Women's Health Initiative Memory Study (WHIMS). WHIMS was an ancillary study to the Women's Health Initiative, which consisted of two randomized, placebo-controlled trials: 0.625 mg conjugated equine estrogens (CEE) with or without 2.5 mg medroxyprogesterone acetate (MPA) in one daily tablet. Scans were performed, on average, 3.0 years post-trial for the CEE + MPA trial and 1.4 years post-trial for the CEE-Alone trial; average on-trial follow-up intervals were 4.0 years for CEE + MPA and 5.6 years for CEE-Alone. Total brain, ventricular, hippocampal, and frontal lobe volumes, adjusted for age, clinic site, estimated intracranial volume, and dementia risk factors, were the main outcome variables. Compared with placebo, covariate-adjusted mean frontal lobe volume was 2.37 cm(3) lower among women assigned to HT (p = 0.004), mean hippocampal volume was slightly (0.10 cm(3)) lower (p = 0.05), and differences in total brain volume approached significance (p = 0.07). Results were similar for CEE + MPA and CEE-Alone. HT-associated reductions in hippocampal volumes were greatest in women with the lowest baseline Modified Mini-Mental State Examination scores (scores equine estrogens with or without MPA are associated with greater brain atrophy among women aged 65 years and older; however, the adverse effects are most evident in women experiencing cognitive deficits before initiating hormone therapy.

  13. Regional specificity in deltamethrin induced cytochrome P450 expression in rat brain

    International Nuclear Information System (INIS)

    Yadav, Sanjay; Johri, Ashu; Dhawan, Alok; Seth, Prahlad K.; Parmar, Devendra

    2006-01-01

    Oral administration of deltamethrin (5 mg/kg x 7 or 15 or 21 days) was found to produce a time-dependent increase in the mRNA expression of xenobiotic metabolizing cytochrome P450 1A1 (CYP1A1), 1A2 and CYP2B1, 2B2 isoenzymes in rat brain. RT-PCR studies further showed that increase in the mRNA expression of these CYP isoenzymes observed after 21 days of exposure was region specific. Hippocampus exhibited maximum increase in the mRNA expression of CYP1A1, which was followed by pons-medulla, cerebellum and hypothalamus. The mRNA expression of CYP2B1 also exhibited maximum increase in the hypothalamus and hippocampus followed by almost similar increase in midbrain and cerebellum. In contrast, mRNA expression of CYP1A2 and CYP2B2, the constitutive isoenzymes exhibited relatively higher increase in pons-medulla, cerebellum and frontal cortex. Immunoblotting studies carried out with polyclonal antibody raised against rat liver CYP1A1/1A2 or CYP2B1/2B2 isoenzymes also showed increase in immunoreactivity comigrating with CYP1A1/1A2 or 2B1/2B2 in the microsomal fractions isolated from hippocampus, hypothalamus and cerebellum of rat treated with deltamethrin. Though the exact relationship of the xenobiotic metabolizing CYPs with the physiological function of the brain is yet to be clearly understood, the increase in the mRNA expression of the CYPs in the brain regions that regulate specific brain functions affected by deltamethrin have further indicated that modulation of these CYPs could be associated with the various endogenous functions of the brain

  14. Complex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the “non-flipped” data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the “flipped” data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control. PMID:24416397

  15. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  16. Region-specific reduction in brain volume in young adults with perinatal hypoxic-ischaemic encephalopathy.

    Science.gov (United States)

    Bregant, Tina; Rados, Milan; Vasung, Lana; Derganc, Metka; Evans, Alan C; Neubauer, David; Kostovic, Ivica

    2013-11-01

    A severe form of perinatal hypoxic-ischaemic encephalopathy (HIE) carries a high risk of perinatal death and severe neurological sequelae while in mild HIE only discrete cognitive disorders may occur. To compare total brain volumes and region-specific cortical measurements between young adults with mild-moderate perinatal HIE and a healthy control group of the same age. MR imaging was performed in a cohort of 14 young adults (9 males, 5 females) with a history of mild or moderate perinatal HIE. The control group consisted of healthy participants, matched with HIE group by age and gender. Volumetric analysis was done after the processing of MR images using a fully automated CIVET pipeline. We measured gyrification indexes, total brain volume, volume of grey and white matter, and of cerebrospinal fluid. We also measured volume, thickness and area of the cerebral cortex in the parietal, occipital, frontal, and temporal lobe, and of the isthmus cinguli, parahippocampal and cingulated gyrus, and insula. The HIE patient group showed smaller absolute volumetric data. Statistically significant (p right hemisphere, of cortical areas in the right temporal lobe and parahippocampal gyrus, of cortical volumes in the right temporal lobe and of cortical thickness in the right isthmus of the cingulate gyrus were found. Comparison between the healthy group and the HIE group of the same gender showed statistically significant changes in the male HIE patients, where a significant reduction was found in whole brain volume; left parietal, bilateral temporal, and right parahippocampal gyrus cortical areas; and bilateral temporal lobe cortical volume. Our analysis of total brain volumes and region-specific corticometric parameters suggests that mild-moderate forms of perinatal HIE lead to reductions in whole brain volumes. In the study reductions were most pronounced in temporal lobe and parahippocampal gyrus. Copyright © 2013 European Paediatric Neurology Society. All rights reserved.

  17. Stability of whole brain and regional network topology within and between resting and cognitive states.

    Directory of Open Access Journals (Sweden)

    Justyna K Rzucidlo

    Full Text Available BACKGROUND: Graph-theory based analyses of resting state functional Magnetic Resonance Imaging (fMRI data have been used to map the network organization of the brain. While numerous analyses of resting state brain organization exist, many questions remain unexplored. The present study examines the stability of findings based on this approach over repeated resting state and working memory state sessions within the same individuals. This allows assessment of stability of network topology within the same state for both rest and working memory, and between rest and working memory as well. METHODOLOGY/PRINCIPAL FINDINGS: fMRI scans were performed on five participants while at rest and while performing the 2-back working memory task five times each, with task state alternating while they were in the scanner. Voxel-based whole brain network analyses were performed on the resulting data along with analyses of functional connectivity in regions associated with resting state and working memory. Network topology was fairly stable across repeated sessions of the same task, but varied significantly between rest and working memory. In the whole brain analysis, local efficiency, Eloc, differed significantly between rest and working memory. Analyses of network statistics for the precuneus and dorsolateral prefrontal cortex revealed significant differences in degree as a function of task state for both regions and in local efficiency for the precuneus. Conversely, no significant differences were observed across repeated sessions of the same state. CONCLUSIONS/SIGNIFICANCE: These findings suggest that network topology is fairly stable within individuals across time for the same state, but also fluid between states. Whole brain voxel-based network analyses may prove to be a valuable tool for exploring how functional connectivity changes in response to task demands.

  18. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen.

    Science.gov (United States)

    Benedykcinska, Anna; Ferreira, Andreia; Lau, Joanne; Broni, Jessica; Richard-Loendt, Angela; Henriquez, Nico V; Brandner, Sebastian

    2016-02-01

    Targeted cell- or region-specific gene recombination is widely used in the functional analysis of genes implicated in development and disease. In the brain, targeted gene recombination has become a mainstream approach to study neurodegeneration or tumorigenesis. The use of the Cre-loxP system to study tumorigenesis in the adult central nervous system (CNS) can be limited, when the promoter (such as GFAP) is also transiently expressed during development, which can result in the recombination of progenies of different lineages. Engineering of transgenic mice expressing Cre recombinase fused to a mutant of the human oestrogen receptor (ER) allows the circumvention of transient developmental Cre expression by inducing recombination in the adult organism. The recombination of loxP sequences occurs only in the presence of tamoxifen. Systemic administration of tamoxifen can, however, exhibit toxicity and might also recombine unwanted cell populations if the promoter driving Cre expression is active at the time of tamoxifen administration. Here, we report that a single site-specific injection of an active derivative of tamoxifen successfully activates Cre recombinase and selectively recombines tumour suppressor genes in neural progenitor cells of the subventricular zone in mice, and we demonstrate its application in a model for the generation of intrinsic brain tumours. © 2016. Published by The Company of Biologists Ltd.

  19. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen

    Directory of Open Access Journals (Sweden)

    Anna Benedykcinska

    2016-02-01

    Full Text Available Targeted cell- or region-specific gene recombination is widely used in the functional analysis of genes implicated in development and disease. In the brain, targeted gene recombination has become a mainstream approach to study neurodegeneration or tumorigenesis. The use of the Cre-loxP system to study tumorigenesis in the adult central nervous system (CNS can be limited, when the promoter (such as GFAP is also transiently expressed during development, which can result in the recombination of progenies of different lineages. Engineering of transgenic mice expressing Cre recombinase fused to a mutant of the human oestrogen receptor (ER allows the circumvention of transient developmental Cre expression by inducing recombination in the adult organism. The recombination of loxP sequences occurs only in the presence of tamoxifen. Systemic administration of tamoxifen can, however, exhibit toxicity and might also recombine unwanted cell populations if the promoter driving Cre expression is active at the time of tamoxifen administration. Here, we report that a single site-specific injection of an active derivative of tamoxifen successfully activates Cre recombinase and selectively recombines tumour suppressor genes in neural progenitor cells of the subventricular zone in mice, and we demonstrate its application in a model for the generation of intrinsic brain tumours.

  20. Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies.

    Science.gov (United States)

    Tang, D W; Fellows, L K; Small, D M; Dagher, A

    2012-06-06

    In healthy individuals, food cues can trigger hunger and feeding behavior. Likewise, smoking cues can trigger craving and relapse in smokers. Brain imaging studies report that structures involved in appetitive behaviors and reward, notably the insula, striatum, amygdala and orbital frontal cortex, tend to be activated by both visual food and smoking cues. Here, by carrying out a meta-analysis of human neuro-imaging studies, we investigate the neural network activated by: 1) food versus neutral cues (14 studies, 142 foci) 2) smoking versus neutral cues (15 studies, 176 foci) 3) smoking versus neutral cues when correlated with craving scores (7 studies, 108 foci). PubMed was used to identify cue-reactivity imaging studies that compared brain response to visual food or smoking cues to neutral cues. Fourteen articles were identified for the food meta-analysis and fifteen articles were identified for the smoking meta-analysis. Six articles were identified for the smoking cue correlated with craving analysis. Meta-analyses were carried out using activation likelihood estimation. Food cues were associated with increased blood oxygen level dependent (BOLD) response in the left amygdala, bilateral insula, bilateral orbital frontal cortex, and striatum. Smoking cues were associated with increased BOLD signal in the same areas, with the exception of the insula. However, the smoking meta-analysis of brain maps correlating cue-reactivity with subjective craving did identify the insula, suggesting that insula activation is only found when craving levels are high. The brain areas identified here are involved in learning, memory and motivation, and their cue-induced activity is an index of the incentive salience of the cues. Using meta-analytic techniques to combine a series of studies, we found that food and smoking cues activate comparable brain networks. There is significant overlap in brain regions responding to conditioned cues associated with natural and drug rewards

  1. Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies.

    Science.gov (United States)

    Moradi-Afrapoli, Fahimeh; Oufir, Mouhssin; Walter, Fruzsina R; Deli, Maria A; Smiesko, Martin; Zabela, Volha; Butterweck, Veronika; Hamburger, Matthias

    2016-09-05

    Sedative and anxiolytic-like properties of flavonoids such as kaempferol and quercetin, and of some of their intestinal metabolites, have been demonstrated in pharmacological studies. However, routes of administration were shown to be critical for observing in vivo activity. Therefore, the ability to cross intestinal and blood-brain barriers was assessed in cell-based models for kaempferol (KMF), and for the major intestinal metabolite of KMF, 4-hydroxyphenylacetic acid (4-HPAA). Intestinal transport studies were performed with Caco-2 cells, and blood-brain barrier transport studies with an immortalized monoculture human model and a primary triple-co-culture rat model. UHPLC-MS/MS methods for KMF and 4-HPAA in Ringer-HEPES buffer and in Hank's balanced salt solution were validated according to industry guidelines. For all methods, calibration curves were fitted by least-squares quadratic regression with 1/X(2) as weighing factor, and mean coefficients of determination (R(2)) were >0.99. Data obtained with all barrier models showed high intestinal and blood-brain barrier permeation of KMF, and no permeability of 4-HPAA, when compared to barrier integrity markers. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Pam (Peptidylglycine α-amidating monooxygenase) heterozygosity alters brain copper handling with region specificity

    Science.gov (United States)

    Gaier, Eric D; Miller, Megan B; Ralle, Martina; Aryal, Dipendra; Wetsel, William C; Mains, Richard E; Eipper, Betty A

    2013-01-01

    Copper (Cu), an essential trace element present throughout the mammalian nervous system, is crucial for normal synaptic function. Neuronal handling of Cu is poorly understood. We studied the localization and expression of Atp7a, the major intracellular Cu transporter in the brain, and its relation to peptidylglycine α-amidating monooxygenase (PAM), an essential cuproenzyme and regulator of Cu homeostasis in neuroendocrine cells. Based on biochemical fractionation and immunostaining of dissociated neurons, Atp7a was enriched in postsynaptic vesicular fractions. Cu followed a similar pattern, with ~20% of total Cu in synaptosomes. A mouse model heterozygous for the Pam gene (PAM+/−) is selectively Cu deficient in the amygdala. As in cortex and hippocampus, Atp7a and PAM expression overlap in the amygdala, with highest expression in interneurons. Messenger RNA levels of Atox-1 and Atp7a, which deliver Cu to the secretory pathway, were reduced in the amygdala but not the hippocampus in PAM+/− mice, along with GABAB receptor mRNA levels. Consistent with Cu deficiency, dopamine β-monooxygenase function was impaired as evidenced by elevated dopamine metabolites in the amygdala, but not the hippocampus, of PAM+/− mice. These alterations in Cu delivery to the secretory pathway in the PAM+/− amygdala may contribute to the physiological and behavioral deficits observed. PMID:24032518

  3. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain

    Science.gov (United States)

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C. M.; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions

  4. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain.

    Science.gov (United States)

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C M; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions

  5. Differential effects of ethanol on regional glutamatergic and GABAergic neurotransmitter pathways in mouse brain.

    Science.gov (United States)

    Tiwari, Vivek; Veeraiah, Pandichelvam; Subramaniam, Vaidyanathan; Patel, Anant Bahadur

    2014-03-01

    This study investigates the effects of ethanol on neuronal and astroglial metabolism using (1)H-[(13)C]-NMR spectroscopy in conjunction with infusion of [1,6-(13)C2]/[1-(13)C]glucose or [2-(13)C]acetate, respectively. A three-compartment metabolic model was fitted to the (13)C turnover of GluC3 , GluC4, GABAC 2, GABAC 3, AspC3 , and GlnC4 from [1,6-(13)C2 ]glucose to determine the rates of tricarboxylic acid (TCA) and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The ratio of neurotransmitter cycle to TCA cycle fluxes for glutamatergic and GABAegic neurons was obtained from the steady-state [2-(13)C]acetate experiment and used as constraints during the metabolic model fitting. (1)H MRS measurement suggests that depletion of ethanol from cerebral cortex follows zero order kinetics with rate 0.18 ± 0.04 μmol/g/min. Acute exposure of ethanol reduces the level of glutamate and aspartate in cortical region. GlnC4 labeling was found to be unchanged from a 15 min infusion of [2-(13)C]acetate suggesting that acute ethanol exposure does not affect astroglial metabolism in naive mice. Rates of TCA and neurotransmitter cycle associated with glutamatergic and GABAergic neurons were found to be significantly reduced in cortical and subcortical regions. Acute exposure of ethanol perturbs the level of neurometabolites and decreases the excitatory and inhibitory activity differentially across the regions of brain. Depletion of ethanol and its effect on brain functions were measured using (1)H and (1)H-[(13)C]-NMR spectroscopy in conjunction with infusion of (13)C-labeled substrates. Ethanol depletion from brain follows zero order kinetics. Ethanol perturbs level of glutamate, and the excitatory and inhibitory activity in mice brain. © 2013 International Society for Neurochemistry.

  6. Leptin Receptor Deficiency is Associated With Upregulation of Cannabinoid 1 Receptors in Limbic Brain Regions

    Science.gov (United States)

    THANOS, PANAYOTIS K.; RAMALHETE, ROBERTO C.; MICHAELIDES, MICHAEL; PIYIS, YIANNI K.; WANG, GENE-JACK; VOLKOW, NORA D.

    2009-01-01

    Leptin receptor dysfunction results in overeating and obesity. Leptin regulates hypothalamic signaling that underlies the motivation to hyperphagia, but the interaction between leptin and cannabinoid signaling is poorly understood. We evaluated the role of cannabinoid 1 receptors (CB1R) in overeating and the effects of food deprivation on CB1R in the brain. One-month-old Zucker rats were divided into unrestricted and restricted (fed 70% of unrestricted rats) diet groups and maintained until adulthood (4 months). Levels of relative binding sites of CB1R (CB1R binding levels) were assessed using [3H] SR141716A in vitro autoradiography. These levels were higher (except cerebellum and hypothalamus) at 4 months than at 1 month of age. One month CB1R binding levels for most brain regions did not differ between Ob and Lean (Le) rats (except in frontal and cingulate cortices in Le and in the hypothalamus in Ob). Four month Ob rats had higher CB1R binding levels than Le in most brain regions and food restriction was associated with higher CB1R levels in all brain regions in Ob, but not in Le rats. CB1R binding levels increased between adolescence and young adulthood which we believe was influenced by leptin and food availability. The high levels of CB1R in Ob rats suggest that leptin's inhibition of food-intake is in part mediated by downregulation of CB1R and that leptin interferes with CB1R upregulation under food-deprivation conditions. These results are consistent with prior findings showing increased levels of endogenous cannabinoids in the Ob rats corroborating the regulation of cannabinoid signaling by leptin. PMID:18563836

  7. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.

    Science.gov (United States)

    Hoekzema, Elseline; Schagen, Sebastian E E; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Delemarre-van de Waal, Henriette; Bakker, Julie

    2015-05-01

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was observed in the left superior medial frontal cortex, while boys had more volume in the bilateral superior posterior hemispheres of the cerebellum and the hypothalamus. Regarding the GD groups, at whole-brain level they differed only from individuals sharing their gender identity but not from their natal sex. Accordingly, using multivariate pattern recognition analyses, the GD groups could more accurately be automatically discriminated from individuals sharing their gender identity than those sharing their natal sex based on spatially distributed GM patterns. However, region of interest analyses indicated less GM volume in the right cerebellum and more volume in the medial frontal cortex in female-to-males in comparison to girls without GD, while male-to-females had less volume in the bilateral cerebellum and hypothalamus than natal boys. Deviations from the natal sex within sexually dimorphic structures were also observed in the untreated subsamples. Our findings thus indicate that GM distribution and regional volumes in GD adolescents are largely in accordance with their respective natal sex. However, there are subtle deviations from the natal sex in sexually dimorphic structures, which can represent signs of a partial sex-atypical differentiation of the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A tensor-based morphometry analysis of regional differences in brain volume in relation to prenatal alcohol exposure.

    Science.gov (United States)

    Meintjes, E M; Narr, K L; van der Kouwe, A J W; Molteno, C D; Pirnia, T; Gutman, B; Woods, R P; Thompson, P M; Jacobson, J L; Jacobson, S W

    2014-01-01

    Reductions in brain volumes represent a neurobiological signature of fetal alcohol spectrum disorders (FASD). Less clear is how regional brain tissue reductions differ after normalizing for brain size differences linked with FASD and whether these profiles can predict the degree of prenatal exposure to alcohol. To examine associations of regional brain tissue excesses/deficits with degree of prenatal alcohol exposure and diagnosis with and without correction for overall brain volume, tensor-based morphometry (TBM) methods were applied to structural imaging data from a well-characterized, demographically homogeneous sample of children diagnosed with FASD (n = 39, 9.6-11.0 years) and controls (n = 16, 9.5-11.0 years). Degree of prenatal alcohol exposure was significantly associated with regionally pervasive brain tissue reductions in: (1) the thalamus, midbrain, and ventromedial frontal lobe, (2) the superior cerebellum and inferior occipital lobe, (3) the dorsolateral frontal cortex, and (4) the precuneus and superior parietal lobule. When overall brain size was factored out of the analysis on a subject-by-subject basis, no regions showed significant associations with alcohol exposure. FASD diagnosis was associated with a similar deformation pattern, but few of the regions survived FDR correction. In data-driven independent component analyses (ICA) regional brain tissue deformations successfully distinguished individuals based on extent of prenatal alcohol exposure and to a lesser degree, diagnosis. The greater sensitivity of the continuous measure of alcohol exposure compared with the categorical diagnosis across diverse brain regions underscores the dose dependence of these effects. The ICA results illustrate that profiles of brain tissue alterations may be a useful indicator of prenatal alcohol exposure when reliable historical data are not available and facial features are not apparent.

  9. A tensor-based morphometry analysis of regional differences in brain volume in relation to prenatal alcohol exposure

    Directory of Open Access Journals (Sweden)

    E.M. Meintjes

    2014-01-01

    Full Text Available Reductions in brain volumes represent a neurobiological signature of fetal alcohol spectrum disorders (FASD. Less clear is how regional brain tissue reductions differ after normalizing for brain size differences linked with FASD and whether these profiles can predict the degree of prenatal exposure to alcohol. To examine associations of regional brain tissue excesses/deficits with degree of prenatal alcohol exposure and diagnosis with and without correction for overall brain volume, tensor-based morphometry (TBM methods were applied to structural imaging data from a well-characterized, demographically homogeneous sample of children diagnosed with FASD (n = 39, 9.6–11.0 years and controls (n = 16, 9.5–11.0 years. Degree of prenatal alcohol exposure was significantly associated with regionally pervasive brain tissue reductions in: (1 the thalamus, midbrain, and ventromedial frontal lobe, (2 the superior cerebellum and inferior occipital lobe, (3 the dorsolateral frontal cortex, and (4 the precuneus and superior parietal lobule. When overall brain size was factored out of the analysis on a subject-by-subject basis, no regions showed significant associations with alcohol exposure. FASD diagnosis was associated with a similar deformation pattern, but few of the regions survived FDR correction. In data-driven independent component analyses (ICA regional brain tissue deformations successfully distinguished individuals based on extent of prenatal alcohol exposure and to a lesser degree, diagnosis. The greater sensitivity of the continuous measure of alcohol exposure compared with the categorical diagnosis across diverse brain regions underscores the dose dependence of these effects. The ICA results illustrate that profiles of brain tissue alterations may be a useful indicator of prenatal alcohol exposure when reliable historical data are not available and facial features are not apparent.

  10. Analysis and interpretation of specific ethanol metabolites, ethyl sulfate, and ethyl glucuronide in sewage effluent for the quantitative measurement of regional alcohol consumption.

    Science.gov (United States)

    Reid, Malcolm J; Langford, Katherine H; Mørland, Jørg; Thomas, Kevin V

    2011-09-01

    The quantitative measurement of urinary metabolites in sewage streams and the subsequent estimation of consumption rates of the parent compounds have previously been demonstrated for pharmaceuticals and narcotics. Ethyl sulfate and ethyl glucuronide are excreted in urine following the ingestion of alcohol, and are useful biomarkers for the identification of acute alcohol consumption. This study reports a novel ion-exchange-mediated chromatographic method for the quantitative measurement of ethyl sulfate and ethyl glucuronide in sewage effluent, and presents a novel calculation method for the purposes of relating the resulting sewage concentrations with rates of alcohol consumption in the region. A total of 100 sewage samples covering a 25-day period were collected from a treatment plant servicing approximately 500,000 people, and analyzed for levels of ethyl sulfate and ethyl glucuronide. The resulting data were then used to estimate combined alcohol consumption rates for the region, and the results were compared with alcohol related sales statistics for the same region. Ethyl glucuronide was found to be unstable in sewage effluent. Ethyl sulfate was stable and measurable in all samples at concentrations ranging from 16 to 246 nM. The highest concentrations of the alcohol biomarker were observed during weekend periods. Sixty one percent of the total mass of ethyl sulfate in sewage effluent corresponds to alcohol consumption on Friday and Saturday. Sales statistics for alcohol show that consumption in the region is approximately 6,750 kg/d. The quantity of ethyl sulfate passing through the sewage system is consistent with consumption of 4,900 to 7,800 kg/d.   Sewage epidemiology assessments of ethyl sulfate can provide accurate estimates of community alcohol consumption, and detailed examination of the kinetics of this biomarker in sewage streams can also identify time-dependent trends in alcohol consumption patterns. 2011 by the Research Society on Alcoholism.

  11. Mercury distribution and speciation in different brain regions of beluga whales (Delphinapterus leucas)

    International Nuclear Information System (INIS)

    Ostertag, Sonja K.; Stern, Gary A.; Wang, Feiyue; Lemes, Marcos; Chan, Hing Man

    2013-01-01

    The toxicokinetics of mercury (Hg) in key species of Arctic ecosystem are poorly understood. We sampled five brain regions (frontal lobe, temporal lobe, cerebellum, brain stem and spinal cord) from beluga whales (Delphinapterus leucas) harvested in 2006, 2008, and 2010 from the eastern Beaufort Sea, Canada, and measured total Hg (HgT) and total selenium (SeT) by inductively coupled plasma mass spectrometry (ICP-MS), mercury analyzer or cold vapor atomic absorption spectrometry, and the chemical forms using a high performance liquid chromatography ICP-MS. At least 14% of the beluga whales had HgT concentrations higher than the levels of observable adverse effect (6.0 mg kg −1 wet weight (ww)) in primates. The concentrations of HgT differed between brain regions; median concentrations (mg kg −1 ww) were 2.34 (0.06 to 22.6, 81) (range, n) in temporal lobe, 1.84 (0.12 to 21.9, 77) in frontal lobe, 1.84 (0.05 to 16.9, 83) in cerebellum, 1.25 (0.02 to 11.1, 77) in spinal cord and 1.32 (0.13 to 15.2, 39) in brain stem. Total Hg concentrations in the cerebellum increased with age (p −1 ww) was positively associated with HgT concentration, and the percent MeHg (4 to 109%) decreased exponentially with increasing HgT concentration in the spinal cord, cerebellum, frontal lobe and temporal lobe. There was a positive association between SeT and HgT in all brain regions (p < 0.05) suggesting that Se may play a role in the detoxification of Hg in the brain. The concentration of HgT in the cerebellum was significantly associated with HgT in other organs. Therefore, HgT concentrations in organs that are frequently sampled in bio-monitoring studies could be used to estimate HgT concentrations in the cerebellum, which is the target organ of MeHg toxicity. - Highlights: • Mercury concentrations were highest in the temporal lobe of beluga whales. • Selenium and mercury concentrations were strongly correlated. • Total mercury concentrations in the cerebellum increased with

  12. Intrinsic brain networks normalize with treatment in pediatric complex regional pain syndrome

    Science.gov (United States)

    Becerra, Lino; Sava, Simona; Simons, Laura E.; Drosos, Athena M.; Sethna, Navil; Berde, Charles; Lebel, Alyssa A.; Borsook, David

    2014-01-01

    Pediatric complex regional pain syndrome (P-CRPS) offers a unique model of chronic neuropathic pain as it either resolves spontaneously or through therapeutic interventions in most patients. Here we evaluated brain changes in well-characterized children and adolescents with P-CRPS by measuring resting state networks before and following a brief (median = 3 weeks) but intensive physical and psychological treatment program, and compared them to matched healthy controls. Differences in intrinsic brain networks were observed in P-CRPS compared to controls before treatment (disease state) with the most prominent differences in the fronto-parietal, salience, default mode, central executive, and sensorimotor networks. Following treatment, behavioral measures demonstrated a reduction of symptoms and improvement of physical state (pain levels and motor functioning). Correlation of network connectivities with spontaneous pain measures pre- and post-treatment indicated concomitant reductions in connectivity in salience, central executive, default mode and sensorimotor networks (treatment effects). These results suggest a rapid alteration in global brain networks with treatment and provide a venue to assess brain changes in CRPS pre- and post-treatment, and to evaluate therapeutic effects. PMID:25379449

  13. Intrinsic brain networks normalize with treatment in pediatric complex regional pain syndrome

    Directory of Open Access Journals (Sweden)

    Lino Becerra

    2014-01-01

    Full Text Available Pediatric complex regional pain syndrome (P-CRPS offers a unique model of chronic neuropathic pain as it either resolves spontaneously or through therapeutic interventions in most patients. Here we evaluated brain changes in well-characterized children and adolescents with P-CRPS by measuring resting state networks before and following a brief (median = 3 weeks but intensive physical and psychological treatment program, and compared them to matched healthy controls. Differences in intrinsic brain networks were observed in P-CRPS compared to controls before treatment (disease state with the most prominent differences in the fronto-parietal, salience, default mode, central executive, and sensorimotor networks. Following treatment, behavioral measures demonstrated a reduction of symptoms and improvement of physical state (pain levels and motor functioning. Correlation of network connectivities with spontaneous pain measures pre- and post-treatment indicated concomitant reductions in connectivity in salience, central executive, default mode and sensorimotor networks (treatment effects. These results suggest a rapid alteration in global brain networks with treatment and provide a venue to assess brain changes in CRPS pre- and post-treatment, and to evaluate therapeutic effects.

  14. Presentation of regional cerebral blood flow in amphetamine abusers by 99Tcm-HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Kao, C.H.; Wang, S.J.; Yeh, S.H.

    1994-01-01

    The aim of this study was to describe the effectiveness of 99 Tc m -hexamethylpropyleneamine oxime ( 99 Tc m -HMPAO) brain single photon emission computed tomography (SPECT) in the assessment of the regional cerebral blood flow (rCBF) in amphetamine abusers. Twenty-one amphetamine abusers were included and 99 Tc m -HMPAO brain SPECT performed to evaluate rCBF. The drug-using periods ranged from 1 month to several years. The demonstrated neuropsychogenic symptoms and signs of the abusers were from normal presentation to various neurologic complications. The brain SPECT scans were interpreted visually as either normal or abnormal. The degree of abnormality was classified into mild or severe. The results revealed that (a) most SPECT studies in abusers show small defects (95%, 20/21 cases); 71% (15/21) of cases revealed multiple defects over both hemispheres (classified as severe); 24% (5/21) of the cases had focal defects (classified as mild); and only one case (5%, 1/21) demonstrated a normal SPECT finding; (b) the degree of abnormality on SPECT scans was not related to the dose and duration of drug use or the severity of the neuropsychiatric symptoms and signs. In conclusion, 99 Tc m -HMPAO brain SPECT is a sensitive but not specific test for neuropsychogenic abnormalities associated with amphetamine abuse. (Author)

  15. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions

    Directory of Open Access Journals (Sweden)

    Kenta Kobayashi

    2017-08-01

    Full Text Available Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1 with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G and vesicular stomatitis virus glycoprotein (VSV-G enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E, which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease.

  16. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  17. Regional ADC values of the normal brain: differences due to age, gender, and laterality

    Energy Technology Data Exchange (ETDEWEB)

    Naganawa, Shinji; Ishigaki, Takeo [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Shouwa-ku, Nagoya 466-8550 (Japan); Sato, Kimihide; Katagiri, Toshio; Mimura, Takeo [Department of Radiology, First Kamiida General Hospital (Japan)

    2003-01-01

    The purpose of this study was to evaluate the stability of measurement for apparent diffusion coefficient (ADC) values in normal brain, to clarify the effect of aging on ADC values, to compare ADC values between men and women, and to compare ADC values between right and left sides of the brain. To evaluate the stability of measurements, five normal volunteers (four men and one woman) were examined five times on different days. Then, 294 subjects with normal MR imaging (147 men and 147 women; age range 20-89 years) were measured. The ADC measurement in normal volunteers was stable. The ADC values stayed within the 5% deviation of average values in all volunteers (mean{+-}standard deviation 2.3{+-}1.2%). The ADC values gradually increased by aging in all regions. In thalamus, no significant difference was seen between right and left in the subjects under 60 years; however, right side showed higher values in the subjects over 60 years (p<0.01). In the subjects under 60 years, women showed higher values in right frontal, bilateral thalamus, and temporal (p<0.01); however, in the subjects over 60 years, no region showed difference between men and women. The knowledge obtained in this study may be helpful to understand the developmental and aging mechanisms of normal brain and may be useful for the future quantitative study as a reference. (orig.)

  18. Regional ADC values of the normal brain: differences due to age, gender, and laterality

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Ishigaki, Takeo; Sato, Kimihide; Katagiri, Toshio; Mimura, Takeo

    2003-01-01

    The purpose of this study was to evaluate the stability of measurement for apparent diffusion coefficient (ADC) values in normal brain, to clarify the effect of aging on ADC values, to compare ADC values between men and women, and to compare ADC values between right and left sides of the brain. To evaluate the stability of measurements, five normal volunteers (four men and one woman) were examined five times on different days. Then, 294 subjects with normal MR imaging (147 men and 147 women; age range 20-89 years) were measured. The ADC measurement in normal volunteers was stable. The ADC values stayed within the 5% deviation of average values in all volunteers (mean±standard deviation 2.3±1.2%). The ADC values gradually increased by aging in all regions. In thalamus, no significant difference was seen between right and left in the subjects under 60 years; however, right side showed higher values in the subjects over 60 years (p<0.01). In the subjects under 60 years, women showed higher values in right frontal, bilateral thalamus, and temporal (p<0.01); however, in the subjects over 60 years, no region showed difference between men and women. The knowledge obtained in this study may be helpful to understand the developmental and aging mechanisms of normal brain and may be useful for the future quantitative study as a reference. (orig.)

  19. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    Science.gov (United States)

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  20. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation.

    Science.gov (United States)

    Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Razi, Adeel; Geerligs, Linda; Ham, Timothy E; Rowe, James B

    2016-03-16

    -based cohort (n = 602, 18-88 years), separating neural connectivity from vascular components of fMRI signals. Cognitive ability was influenced by the strength of connection within and between functional brain networks, and this positive relationship increased with age. In older adults, there was more rapid decay of intrinsic neuronal activity in multiple regions of the brain networks, which related to cognitive performance. Our data demonstrate increased reliance on network flexibility to maintain cognitive function, in the presence of more rapid decay of neural activity. These insights will facilitate the development of new strategies to maintain cognitive ability. Copyright © 2016 Tsvetanov et al.

  1. Regional distribution of TL-201 in the brain and spinal cord after injection into the cerebrospinal fluid: Imaging of brain tumors

    International Nuclear Information System (INIS)

    Woo, D.V.; Rubertone, J.; Vincent, S.; Brady, L.W. Jr.

    1986-01-01

    Radiotracers are typically employed to evaluate the brain ventricular space; however, there are no agents designed to be taken up into specific neuronal regions after injection into the cerebrospinal fluids (CSF). The authors report studies in which T1-201 was stereotaxically administered into the lateral or fourth ventricles of Sprague-Dawley rats. Brains were removed (n = 42) 2-6 hours after injection and sectioned for apposition to autoradiographic film. Specific uptake was observed in active neurons of the diencephalon, mesencephalon, cerebellum, brain stem, and spinal gray matter. Astrocytoma cell implants into the caudate nucleus of Sprague-Dawley rats induced histologically confirmed brain tumors (n = 5). Significant localization of T1-201 was observed in the tumor 4 hours after injection into the lateral ventricle. These findings suggest that T1-201 may be useful for delineating specific neuronal function via CSF circulation and for imaging actively growing brain tumors

  2. Regional Differences in Brain Volume Predict the Acquisition of Skill in a Complex Real-Time Strategy Videogame

    Science.gov (United States)

    Basak, Chandramallika; Voss, Michelle W.; Erickson, Kirk I.; Boot, Walter R.; Kramer, Arthur F.

    2011-01-01

    Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also…

  3. Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study.

    Science.gov (United States)

    Rule, R R; Suhy, J; Schuff, N; Gelinas, D F; Miller, R G; Weiner, M W

    2004-09-01

    After replication of previous findings we aimed to: 1) determine if previously reported (1)H MRSI differences between ALS patients and control subjects are limited to the motor cortex; and 2) determine the longitudinal metabolic changes corresponding to varying levels of diagnostic certainty. Twenty-one patients with possible/suspected ALS, 24 patients with probable/definite ALS and 17 control subjects underwent multislice (1)H MRSI co-registered with tissue-segmented MRI to obtain concentrations of the brain metabolites N-acetylaspartate (NAA), creatine, and choline in the left and right motor cortex and in gray matter and white matter of non-motor regions in the brain. In the more affected hemisphere, reductions in the ratios, NAA/Cho and NAA/Cre+Cho were observed both within (12.6% and 9.5% respectively) and outside (9.2% and 7.3% respectively) the motor cortex in probable/definite ALS. However, these reductions were significantly greater within the motor cortex (PNAA/Cho and PNAA/Cre+Cho). Longitudinal changes in NAA were observed at three months within the motor cortex of both possible/suspected ALS patients (PNAA ratios are reduced in the motor cortex and outside the motor cortex in ALS, suggesting widespread neuronal injury. Longitudinal changes of NAA are not reliable, suggesting that NAA may not be a useful surrogate marker for treatment trials.

  4. Spatial distributions and enantiomeric signatures of DDT and its metabolites in tree bark from agricultural regions across China.

    Science.gov (United States)

    Niu, Lili; Xu, Chao; Zhang, Chunlong; Zhou, Yuting; Zhu, Siyu; Liu, Weiping

    2017-10-01

    Tree bark is considered as an effective passive sampler for estimating the atmospheric status of pollutants. In this study, we conducted a national scale tree bark sampling campaign across China. Concentration profiles revealed that Eastern China, especially the Jing-Jin-Ji region (including Hebei Province, Beijing and Tianjin) was a hot spot of bark DDT pollution. The enantioselective accumulation of o,p'-DDT was observed in most of the samples and 68% of them showed a preferential depletion of (+)-o,p'-DDT. These results suggest that DDTs in rural bark are likely from combined sources including historical technical DDTs and fresh dicofol usage. The tree bulk DDT levels were found to correlate with soil DDT concentrations, socioeconomy and PM 2.5 of the sampling sites. It thus becomes evident that the reemission from soils and subsequent atmospheric deposition were the major pathways leading to the accumulation of DDTs in bark. Based on a previously established bark-air partitioning model, the concentrations of DDTs in the air were estimated from measured concentrations in tree bark, and the results were comparable to those obtained by the use of passive sampling with polyurethane foam (PUF) disks. Our results demonstrate the feasibility of delineating the spatial variations in atmospheric concentration and tracing sources of DDTs by integrating the use of tree bark with enantiomeric analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Recurrent activity in higher order, modality non-specific brain regions

    DEFF Research Database (Denmark)

    Lou, Hans Olav Christensen; Joensson, Morten; Biermann-Ruben, Katja

    2011-01-01

    It has been proposed that the workings of the brain are mainly intrinsically generated recurrent neuronal activity, with sensory inputs as modifiers of such activity in both sensory and higher order modality non-specific regions. This is supported by the demonstration of recurrent neuronal activity...... in the visual system as a response to visual stimulation. In contrast recurrent activity has never been demonstrated before in higher order modality non-specific regions. Using magneto-encephalography and Granger causality analysis, we tested in a paralimbic network the hypothesis that stimulation may enhance...... causal recurrent interaction between higher-order, modality non-specific regions. The network includes anterior cingulate/medial prefrontal and posterior cingulate/medial parietal cortices together with pulvinar thalami, a network known to be effective in autobiographic memory retrieval and self...

  6. A Novel Histogram Region Merging Based Multithreshold Segmentation Algorithm for MR Brain Images

    Directory of Open Access Journals (Sweden)

    Siyan Liu

    2017-01-01

    Full Text Available Multithreshold segmentation algorithm is time-consuming, and the time complexity will increase exponentially with the increase of thresholds. In order to reduce the time complexity, a novel multithreshold segmentation algorithm is proposed in this paper. First, all gray levels are used as thresholds, so the histogram of the original image is divided into 256 small regions, and each region corresponds to one gray level. Then, two adjacent regions are merged in each iteration by a new designed scheme, and a threshold is removed each time. To improve the accuracy of the merger operation, variance and probability are used as energy. No matter how many the thresholds are, the time complexity of the algorithm is stable at O(L. Finally, the experiment is conducted on many MR brain images to verify the performance of the proposed algorithm. Experiment results show that our method can reduce the running time effectively and obtain segmentation results with high accuracy.

  7. Assessment of regional glucose metabolism in aging brain and dementia with positron-emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Reivich, M.; Alavi, A.; Ferris, S.; Christman, D.; Fowler, J.; MacGregor, R.; Farkas, T.; Greenberg, J.; Dann, R.; Wolf, A.

    1981-01-01

    This paper explores the alterations in regional glucose metabolism that occur in elderly subjects and those with senile dementia compared to normal young volunteers. Results showed a tendency for the frontal regions to have a lower metabolic rate in patients with dementia although this did not reach the level of significance when compared to the elderly control subjects. The changes in glucose metabolism were symmetrical in both the left and right hemispheres. There was a lack of correlation between the mean cortical metabolic rates for glucose and the global mental function in the patients with senile dementia. This is at variance with most of the regional cerebral blood flow data that has been collected. This may be partly related to the use of substrates other than glucose by the brain in elderly and demented subjects. (PSB)

  8. Aberrant regional brain activities in alcohol dependence: a functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Tu XZ

    2018-03-01

    Full Text Available Xianzhu Tu,1 Juanjuan Wang,2 Xuming Liu,3 Jiyong Zheng4 1Department of Psychiatry, Seventh People’s Hospital of Wenzhou City, Wenzhou, Zhejiang, People’s Republic of China; 2Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China; 3Department of Radiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China; 4Department of Medical Imaging, The Affiliated Huai’an No 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, People’s Republic of China Objective: Whether moderate alcohol consumption has health benefits remains controversial, but the harmful effects of excessive alcohol consumption on behavior and brain function are well recognized. The aim of this study was to investigate alcohol-induced regional brain activities and their relationships with behavioral factors. Subjects and methods: A total of 29 alcohol-dependent subjects (9 females and 20 males and 29 status-matched healthy controls (11 females and 18 males were recruited. Severity of alcohol dependence questionnaire (SADQ and alcohol use disorders identification test (AUDIT were used to evaluate the severity of alcohol craving. Regional homogeneity (ReHo analysis was used to explore the alcohol-induced regional brain changes. Receiver operating characteristic (ROC curve was used to investigate the ability of regional brain activities to distinguish alcohol-dependent subjects from healthy controls. Pearson correlations were used to investigate the relationships between alcohol-induced ReHo differences and behavioral factors. Results: Alcohol-dependent subjects related to healthy controls showed higher ReHo areas in the right superior frontal gyrus (SFG, bilateral medial frontal gyrus (MFG, left precentral gyrus (PG, bilateral middle temporal gyrus (MTG, and right inferior temporal gyrus (ITG and lower ReHo areas in

  9. Glutamatergic and GABAergic TCA cycle and neurotransmitter cycling fluxes in different regions of mouse brain.

    Science.gov (United States)

    Tiwari, Vivek; Ambadipudi, Susmitha; Patel, Anant B

    2013-10-01

    The (13)C nuclear magnetic resonance (NMR) studies together with the infusion of (13)C-labeled substrates in rats and humans have provided important insight into brain energy metabolism. In the present study, we have extended a three-compartment metabolic model in mouse to investigate glutamatergic and GABAergic tricarboxylic acid (TCA) cycle and neurotransmitter cycle fluxes across different regions of the brain. The (13)C turnover of amino acids from [1,6-(13)C2]glucose was monitored ex vivo using (1)H-[(13)C]-NMR spectroscopy. The astroglial glutamate pool size, one of the important parameters of the model, was estimated by a short infusion of [2-(13)C]acetate. The ratio Vcyc/VTCA was calculated from the steady-state acetate experiment. The (13)C turnover curves of [4-(13)C]/[3-(13)C]glutamate, [4-(13)C]glutamine, [2-(13)C]/[3-(13)C]GABA, and [3-(13)C]aspartate from [1,6-(13)C2]glucose were analyzed using a three-compartment metabolic model to estimate the rates of the TCA cycle and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The glutamatergic TCA cycle rate was found to be highest in the cerebral cortex (0.91 ± 0.05 μmol/g per minute) and least in the hippocampal region (0.64 ± 0.07 μmol/g per minute) of the mouse brain. In contrast, the GABAergic TCA cycle flux was found to be highest in the thalamus-hypothalamus (0.28 ± 0.01 μmol/g per minute) and least in the cerebral cortex (0.24 ± 0.02 μmol/g per minute). These findings indicate that the energetics of excitatory and inhibitory function is distinct across the mouse brain.

  10. Protective role of Cynodon dactylon in ameliorating the aluminium-induced neurotoxicity in rat brain regions.

    Science.gov (United States)

    Sumathi, Thangarajan; Shobana, Chandrasekar; Kumari, Balasubramanian Rathina; Nandhini, Devarajulu Nisha

    2011-12-01

    Cynodon dactylon (Poaceae) is a creeping grass used as a traditional ayurvedic medicine in India. Aluminium-induced neurotoxicity is well known and different salts of aluminium have been reported to accelerate damage to biomolecules like lipids, proteins and nucleic acids. The objective of the present study was to investigate whether the aqueous extract of C. dactylon (AECD) could potentially prevent aluminium-induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of the rat brain. Male albino rats were administered with AlCl(3) at a dose of 4.2 mg/kg/day i.p. for 4 weeks. Experimental rats were given C. dactylon extract in two different doses of 300 mg and 750 mg/keg/day orally 1 h prior to the AlCl(3) administration for 4 weeks. At the end of the experiments, antioxidant status and activities of ATPases in cerebral cortex, hippocampus and cerebellum of rat brain were measured. Aluminium administration significantly decreased the level of GSH and the activities of SOD, GPx, GST, Na(+)/K(+) ATPase, and Mg(2+) ATPase and increased the level of lipid peroxidation (LPO) in all the brain regions when compared with control rats. Pre-treatment with AECD at a dose of 750 mg/kg b.w increased the antioxidant status and activities of membrane-bound enzymes (Na(+)/K(+) ATPase and Mg(2+) ATPase) and also decreased the level of LPO significantly, when compared with aluminium-induced rats. The results of this study indicated that AECD has potential to protect the various brain regions from aluminium-induced neurotoxicity.

  11. Region of interest evaluation of SPECT image reconstruction methods using a realistic brain phantom

    International Nuclear Information System (INIS)

    Xia, Weishi; Glick, S.J.; Soares, E.J.

    1996-01-01

    A realistic numerical brain phantom, developed by Zubal et al, was used for a region-of-interest evaluation of the accuracy and noise variance of the following SPECT reconstruction methods: (1) Maximum-Likelihood reconstruction using the Expectation-Maximization (ML-EM) algorithm; (2) an EM algorithm using ordered-subsets (OS-EM); (3) a re-scaled block iterative EM algorithm (RBI-EM); and (4) a filtered backprojection algorithm that uses a combination of the Bellini method for attenuation compensation and an iterative spatial blurring correction method using the frequency-distance principle (FDP). The Zubal phantom was made from segmented MRI slices of the brain, so that neuro-anatomical structures are well defined and indexed. Small regions-of-interest (ROIs) from the white matter, grey matter in the center of the brain and grey matter from the peripheral area of the brain were selected for the evaluation. Photon attenuation and distance-dependent collimator blurring were modeled. Multiple independent noise realizations were generated for two different count levels. The simulation study showed that the ROI bias measured for the EM-based algorithms decreased as the iteration number increased, and that the OS-EM and RBI-EM algorithms (16 and 64 subsets were used) achieved the equivalent accuracy of the ML-EM algorithm at about the same noise variance, with much fewer number of iterations. The Bellini-FDP restoration algorithm converged fast and required less computation per iteration. The ML-EM algorithm had a slightly better ROI bias vs. variance trade-off than the other algorithms

  12. Brain regions involved in ingestive behavior and related psychological constructs in people undergoing calorie restriction.

    Science.gov (United States)

    Kahathuduwa, Chanaka N; Boyd, Lori A; Davis, Tyler; O'Boyle, Michael; Binks, Martin

    2016-12-01

    Human food intake is regulated by physiological energy homeostatic mechanisms and hedonic mechanisms. These are affected by both very short-term and longer-term calorie restriction (CR). To date, there are parallel discussions in the literature that fail to integrate across these disciplines and topics. First, much of the available neuroimaging research focusses on specific functional paradigms (e.g. reward, energy homeostasis). These paradigms often fail to consider more complex and inclusive models that examine how potential brain regions of interest interact to influence ingestion. Second, the paradigms used focus primarily on short-term CR (fasting) which has limited generalizability to clinical application. Finally, the behavioral literature, while frequently examining longer-term CR and related psychological constructs in the context of weight management (e.g. hedonic restraint, 'liking', 'wanting' and food craving), fails to adequately tie these phenomena to underlying neural mechanisms. The result is a less than complete picture of the brain's role in the complexity of the human experience of ingestion. This disconnect highlights a major limitation in the CR literature, where attempts are persistently made to exert behavioral control over ingestion, without fully understanding the complex bio behavioral systems involved. In this review we attempt to summarize all potential brain regions important for human ingestion, present a broad conceptual overview of the brain's multifaceted role in ingestive behavior, the human (psychological) experiences related to ingestion and to examine how these factors differ according to three forms of CR. These include short-term fasting, extended CR, and restrained eating. We aim to bring together the neuroimaging literature with the behavioral literature within a conceptual framework that may inform future translational research. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner.

    Science.gov (United States)

    Bollinger, Justin L; Collins, Kaitlyn E; Patel, Rushi; Wellman, Cara L

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  14. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner

    Science.gov (United States)

    Bollinger, Justin L.; Collins, Kaitlyn E.; Patel, Rushi

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  15. Altered spontaneous brain activity in adolescent boys with pure conduct disorder revealed by regional homogeneity analysis.

    Science.gov (United States)

    Wu, Qiong; Zhang, Xiaocui; Dong, Daifeng; Wang, Xiang; Yao, Shuqiao

    2017-07-01

    Functional magnetic resonance imaging (fMRI) studies have revealed abnormal neural activity in several brain regions of adolescents with conduct disorder (CD) performing various tasks. However, little is known about the spontaneous neural activity in people with CD in a resting state. The aims of this study were to investigate CD-associated regional activity abnormalities and to explore the relationship between behavioral impulsivity and regional activity abnormalities. Resting-state fMRI (rs-fMRI) scans were administered to 28 adolescents with CD and 28 age-, gender-, and IQ-matched healthy controls (HCs). The rs-fMRI data were subjected to regional homogeneity (ReHo) analysis. ReHo can demonstrate the temporal synchrony of regional blood oxygen level-dependent signals and reflect the coordination of local neuronal activity facilitating similar goals or representations. Compared to HCs, the CD group showed increased ReHo bilaterally in the insula as well as decreased ReHo in the right inferior parietal lobule, right middle temporal gyrus and right fusiform gyrus, left anterior cerebellum anterior, and right posterior cerebellum. In the CD group, mean ReHo values in the left and the right insula correlated positively with Barratt Impulsivity Scale (BIS) total scores. The results suggest that CD is associated with abnormal intrinsic brain activity, mainly in the cerebellum and temporal-parietal-limbic cortices, regions that are related to emotional and cognitive processing. BIS scores in adolescents with CD may reflect severity of abnormal neuronal synchronization in the insula.

  16. Brain reward region responsivity of adolescents with and without parental substance use disorders.

    Science.gov (United States)

    Stice, Eric; Yokum, Sonja

    2014-09-01

    The present study tested the competing hypotheses that adolescents at risk for future substance abuse and dependence by virtue of parental substance use disorders show either weaker or stronger responsivity of brain regions implicated in reward relative to youth without parental history of substance use disorders. Adolescents (n = 52) matched on demographics with and without parental substance use disorders, as determined by diagnostic interviews, who denied substance use in the past year were compared on functional MRI (fMRI) paradigms assessing neural response to receipt and anticipated receipt of monetary and food reward. Parental-history-positive versus -negative adolescents showed greater activation in the left dorsolateral prefrontal cortex and bilateral putamen, and less activation in the fusiform gyrus and inferior temporal gyrus in response to anticipating winning money, as well as greater activation in the left midbrain and right paracentral lobule, and less activation in the right middle frontal gyrus in response to milkshake receipt. Results indicate that adolescents at risk for future onset of substance use disorders show elevated responsivity of brain regions implicated in reward, extending results from 2 smaller prior studies that found that individuals with versus without parental alcohol use disorders showed greater reward region response to anticipated monetary reward and pictures of alcohol. Collectively, results provide support for the reward surfeit model of substance use disorders, rather than the reward deficit model.

  17. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception.

    Science.gov (United States)

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-02-15

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Region-specific expression of mitochondrial complex I genes during murine brain development.

    Directory of Open Access Journals (Sweden)

    Stefanie Wirtz

    Full Text Available Mutations in the nuclear encoded subunits of mitochondrial complex I (NADH:ubiquinone oxidoreductase may cause circumscribed cerebral lesions ranging from degeneration of the striatal and brainstem gray matter (Leigh syndrome to leukodystrophy. We hypothesized that such pattern of regional pathology might be due to local differences in the dependence on complex I function. Using in situ hybridization we investigated the relative expression of 33 nuclear encoded complex I subunits in different brain regions of the mouse at E11.5, E17.5, P1, P11, P28 and adult (12 weeks. With respect to timing and relative intensity of complex I gene expression we found a highly variant pattern in different regions during development. High average expression levels were detected in periods of intense neurogenesis. In cerebellar Purkinje and in hippocampal CA1/CA3 pyramidal neurons we found a second even higher peak during the period of synaptogenesis and maturation. The extraordinary dependence of these structures on complex I gene expression during synaptogenesis is in accord with our recent findings that gamma oscillations--known to be associated with higher cognitive functions of the mammalian brain--strongly depend on the complex I activity. However, with the exception of the mesencephalon, we detected only average complex I expression levels in the striatum and basal ganglia, which does not explain the exquisite vulnerability of these structures in mitochondrial disorders.

  19. Occurrence of immunosuppressive drugs and their metabolites in the sewage-impacted Vistula and Utrata Rivers and in tap water from the Warsaw region (Poland).

    Science.gov (United States)

    Giebułtowicz, Joanna; Nałęcz-Jawecki, Grzegorz

    2016-04-01

    Immunosuppresive therapy following organ transplant frequently includes treatment with tacrolimus and mycophenolic acid derivatives. These pharmaceuticals may enter the environment through wastewater treatment plant (WWTP) effluents and may have a potentially harmful effect on aquatic biota. Tacrolimus, mycophenolic acid and their metabolites were measured at specific points of a large Polish river (Vistula), a smaller river (Utrata) and in tap water samples from the Warsaw region. Analysis was performed using liquid chromatography tandem mass spectrometry, after solid phase extraction for water samples, or QuEChERS extraction for sediments. Residues of tacrolimus were below quantitation limits in both water and sediment samples. However, in water samples mycophenolic acid concentrations were measured at up to 180 ng L(-1) downstream of WWTP outfalls. No immunosuppressive drugs were detected in tap water. Concentrations of mycophenolic acid exceeded the predicted no effect concentration (PNEC) value in some Polish surface water, and risk calculations predicted at least twice higher concentrations in some other countries of the European Union. To the best of the authors' knowledge, this is the first report of these immunosuppressive drug concentrations in the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Regional brain activity during early visual perception in unaffected siblings of schizophrenia patients.

    Science.gov (United States)

    Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F

    2010-07-01

    Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Revealing the cerebral regions and networks mediating vulnerability to depression: oxidative metabolism mapping of rat brain.

    Science.gov (United States)

    Harro, Jaanus; Kanarik, Margus; Kaart, Tanel; Matrov, Denis; Kõiv, Kadri; Mällo, Tanel; Del Río, Joaquin; Tordera, Rosa M; Ramirez, Maria J

    2014-07-01

    The large variety of available animal models has revealed much on the neurobiology of depression, but each model appears as specific to a significant extent, and distinction between stress response, pathogenesis of depression and underlying vulnerability is difficult to make. Evidence from epidemiological studies suggests that depression occurs in biologically predisposed subjects under impact of adverse life events. We applied the diathesis-stress concept to reveal brain regions and functional networks that mediate vulnerability to depression and response to chronic stress by collapsing data on cerebral long term neuronal activity as measured by cytochrome c oxidase histochemistry in distinct animal models. Rats were rendered vulnerable to depression either by partial serotonergic lesion or by maternal deprivation, or selected for a vulnerable phenotype (low positive affect, low novelty-related activity or high hedonic response). Environmental adversity was brought about by applying chronic variable stress or chronic social defeat. Several brain regions, most significantly median raphe, habenula, retrosplenial cortex and reticular thalamus, were universally implicated in long-term metabolic stress response, vulnerability to depression, or both. Vulnerability was associated with higher oxidative metabolism levels as compared to resilience to chronic stress. Chronic stress, in contrast, had three distinct patterns of effect on oxidative metabolism in vulnerable vs. resilient animals. In general, associations between regional activities in several brain circuits were strongest in vulnerable animals, and chronic stress disrupted this interrelatedness. These findings highlight networks that underlie resilience to stress, and the distinct response to stress that occurs in vulnerable subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Differential Recruitment of Brain Regions During Response Inhibition in Children Prenatally Exposed to Alcohol.

    Science.gov (United States)

    Kodali, Vikas N; Jacobson, Joseph L; Lindinger, Nadine M; Dodge, Neil C; Molteno, Christopher D; Meintjes, Ernesta M; Jacobson, Sandra W

    2017-02-01

    Response inhibition is a distinct aspect of executive function that is frequently impaired in children with fetal alcohol spectrum disorders (FASD). We used a Go/NoGo (GNG) task in a functional MRI protocol to investigate differential activation of brain regions in the response inhibition network in children diagnosed with full or partial fetal alcohol syndrome (FAS/PFAS), compared with healthy controls. A rapid, event-related task with 120 Go and 60 NoGo trials was used to study children aged 8 to 12 years-8 with FAS/PFAS, 17 controls. Letters were projected sequentially, with Go and NoGo trials randomly interspersed across the task. BOLD signal in the whole brain was contrasted for the correct NoGo minus correct Go trials between the FAS/PFAS and control groups. Compared to the FAS/PFAS group, controls showed greater activation of the inferior frontal and anterior cingulate network linked to response inhibition in typically developing children. By contrast, the FAS/PFAS group showed greater BOLD response in dorsolateral prefrontal cortex and other middle prefrontal regions, suggesting compensation for inefficient function of pathways that normally mediate inhibitory processing. All group differences were significant after control for potential confounding variables. None of the effects of prenatal alcohol exposure on activation of the regions associated with response inhibition were attributable to the effects of this exposure on IQ. This is the first FASD GNG study in which all participants in the exposed group met criteria for a diagnosis of full FAS or PFAS. Although FASD is frequently comorbid with attention deficit hyperactivity disorder, the pattern of brain activation seen in these disorders differs, suggesting that different neural pathways mediate response inhibition in FASD and that different interventions for FASD are, therefore, warranted. Copyright © 2017 by the Research Society on Alcoholism.

  3. Regional brain changes occurring during disobedience to "experts" in financial decision-making.

    Directory of Open Access Journals (Sweden)

    Victoria Y M Suen

    Full Text Available It is well recognized that individuals follow "Expert" advice, even when flawed and offers no advantage, and sometimes leads to disadvantages. The neurobiology underlying this is uncertain, and in particular there is an incomplete understanding of which brain regions are most involved when individuals chose to disobey an expert. To study this we examined functional magnetic resonance imaging (fMRI differences during an investment game where subjects received differentially credible investment advice. Participants (n = 42; 32 males played an investment game, in which they could Buy or Not Buy a sequence of stocks. The better they did, the more money they made. Participants received either "Expert" advice or "Peer" advice. Those receiving Expert advice were told the advice came from a certified financial "Expert". Those receiving Peer Advice were told the advice was that of the student administering the scans, who deliberately dressed and acted casually. Both streams of advice were predetermined and identical. The advice was scripted to be helpful initially, but progressively worse as the task continued, becoming 100% wrong by the end of the task. Subjects receiving Expert Advice followed the advice significantly longer on average, even though this was progressively worse advice. Thus, following Expert advice had poorer consequences for individuals, but this did not dissuade them from continuing to follow the advice. In contrast, when subjects disobeyed Expert advice they exhibited significant anterior cingulate cortex (ACC and superior frontal gyrus activation relative to those disobeying Peer advice. These findings may suggest that in subjects who defy authority, or believe they are doing so (in this case by disobeying an "Expert" there is increased activation of these two brain regions. This may have relevance to several areas of behavior, and the potential role of these two brain regions in regard to disobedience behavior requires further

  4. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements.

    Directory of Open Access Journals (Sweden)

    Carl O Olson

    Full Text Available MeCP2 is a critical epigenetic regulator in brain and its abnormal expression or compromised function leads to a spectrum of neurological disorders including Rett Syndrome and autism. Altered expression of the two MeCP2 isoforms, MeCP2E1 and MeCP2E2 has been implicated in neurological complications. However, expression, regulation and functions of the two isoforms are largely uncharacterized. Previously, we showed the role of MeCP2E1 in neuronal maturation and reported MeCP2E1 as the major protein isoform in the adult mouse brain, embryonic neurons and astrocytes. Recently, we showed that DNA methylation at the regulatory elements (REs within the Mecp2 promoter and intron 1 impact the expression of Mecp2 isoforms in differentiating neural stem cells. This current study is aimed for a comparative analysis of temporal, regional and cell type-specific expression of MeCP2 isoforms in the developing and adult mouse brain. MeCP2E2 displayed a later expression onset than MeCP2E1 during mouse brain development. In the adult female and male brain hippocampus, both MeCP2 isoforms were detected in neurons, astrocytes and oligodendrocytes. Furthermore, MeCP2E1 expression was relatively uniform in different brain regions (olfactory bulb, striatum, cortex, hippocampus, thalamus, brainstem and cerebellum, whereas MeCP2E2 showed differential enrichment in these brain regions. Both MeCP2 isoforms showed relatively similar distribution in these brain regions, except for cerebellum. Lastly, a preferential correlation was observed between DNA methylation at specific CpG dinucleotides within the REs and Mecp2 isoform-specific expression in these brain regions. Taken together, we show that MeCP2 isoforms display differential expression patterns during brain development and in adult mouse brain regions. DNA methylation patterns at the Mecp2 REs may impact this differential expression of Mecp2/MeCP2 isoforms in brain regions. Our results significantly contribute

  5. Do spotty high intensity regions found in basal ganglia on MRI T2-weighted brain images of elderly subjects indicate gliosis? Comparison of brain MRI T2-weighted images of elderly subjects and necropsy brain

    International Nuclear Information System (INIS)

    Murai, Hiroshi; Hattori, Hideyuki; Matsumoto, Masayuki

    2001-01-01

    Spotty high intensity regions are frequently found on the MRI T2-weighted brain images (T2WI) of elderly people. High intensity regions with a diameter of 3 mm or less have been considered as expanded perivascular space with no pathological implications on radiological diagnosis. However, its morphometrical basis is not clear. We examined the character of the spotty regions using brain MRI of brain screening subjects, and studied morphometrically arteriolosclerosis and perivascular tissue damage using necropsy brains of subjects aged 65 years and over. The size, number and location of the spotty high intensity regions were examined using the brain MRI of 109 T2WI which is used for brain screening at Kanazawa Medical University Hospital. The frontal lobe, temporal lobe, parietal lobe, hippocampus, midbrain and basal ganglia were sampled from 15 subjects aged 65 years and over, and the tissue sections were processed for HE stain, Elastica van Gieson stain and immunostaining with GFAP. We took photographs of brain arterioli and surrounding parenchyma with a digital telescope camera and the degree of arterioscleosis and tissue damage were assessed by measurements with an image analyzer. Spotty high intensity regions on T2WI with a diameter of 3 mm or less were observed in 95.5% subjects aged 65 years and over. 69.4% spotty region was observed in basal ganglia. There was a significant correlation between age and size. In morphometrical examination, at the basal ganglia, the density of GFAP-positive astrocytes in the perivascular tissue had a significant positive correlation with the proportional thickness of the adventitia, which is an index of arteriosclerosis, and a significant negative correlation with the size of the perivascular space. The results suggested that the spotty regions in the brain MRI of elderly people do not represent dilatations of the perivascular space, but is mild brain damage caused by arteriosclerosis. (author)

  6. Simultaneous determination of 8 neurotransmitters and their metabolite levels in rat brain using liquid chromatography in tandem with mass spectrometry: Application to the murine Nrf2 model of depression.

    Science.gov (United States)

    Wojnicz, Aneta; Avendaño Ortiz, José; Casas, Ana I; Freitas, Andiara E; G López, Manuela; Ruiz-Nuño, Ana

    2016-01-30

    Analysis of neurotransmitters and their metabolites is useful for the diagnosis of central nervous system diseases. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with protein precipitation was developed to monitor levels of adrenaline (AD), noradrenaline (NA), glutamic acid (Glu), γ-aminobutyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT), 5-hydroxyindole acetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) in rat brain tissue. Isoprenaline was used as an internal standard (IS). Neurotransmitters and metabolites were eluted with a reverse phase column under gradient conditions through a mobile phase consisting of 0.2% formic acid water solution/acetonitrile. The compounds were detected and quantified by LC-MS/MS with positive or negative electrospray ionization, which operates in multiple-reaction monitoring mode. The method was linear or polynomial (R(2)>0.99) for AD, NA, Glu, GABA, DA, 5-HT, 5-HIAA, and MHPG in the range of 0.25-200, 0.5-200, 250-20,000, 250-20,000, 0.25-200, 10-3000, 1-50, and 1-50ng/mL, respectively. The validation assays for accuracy and precision, matrix effect, extraction recovery, stability and carry-over of the samples for neurotransmitters and metabolites were consistent with the requirements of regulatory agencies. The method enables rapid quantification of neurotransmitters and their metabolites and has been applied in the nuclear factor (erythroid 2-derived)-like 2 (Nrf2) knockout mouse model of depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The Importance of the Brain Neuro-Programming Technologies in National and Regional Security

    Directory of Open Access Journals (Sweden)

    Vasyl H. Fatkhutdinov

    2018-02-01

    Full Text Available The authors’ understanding of neuro-programming is the result of the impact on the human brain of information and communication technology (including educational one, through which in the human brain the programs of manifestation in the ontogenesis of internal creative potentials are written. This article summarizes the history of the formation of key neuro-programming technologies of the human brain as well as proves that the changes in the society’s worldview are caused by the possibilities and quality of neuro-programming technologies that society uses. Having influence over worldview stereotypes and behaviour set by the society, neuro-programming technologies essentially ensure the national security of any state and the peaceful coexistence of states in the regions and on the planet as a whole. Using historical and philosophical methods, methods of conceptualization, systematization, modeling, etc., the authors have come to the conclusion that the modern world lies in a confrontation of security strategies, in which neuro-programming technologies play a key role.

  8. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing

    Directory of Open Access Journals (Sweden)

    Liao Chun-Chih

    2011-08-01

    Full Text Available Abstract Background In recent years, magnetic resonance imaging (MRI has become important in brain tumor diagnosis. Using this modality, physicians can locate specific pathologies by analyzing differences in tissue character presented in different types of MR images. This paper uses an algorithm integrating fuzzy-c-mean (FCM and region growing techniques for automated tumor image segmentation from patients with menigioma. Only non-contrasted T1 and T2 -weighted MR images are included in the analysis. The study's aims are to correctly locate tumors in the images, and to detect those situated in the midline position of the brain. Methods The study used non-contrasted T1- and T2-weighted MR images from 29 patients with menigioma. After FCM clustering, 32 groups of images from each patient group were put through the region-growing procedure for pixels aggregation. Later, using knowledge-based information, the system selected tumor-containing images from these groups and merged them into one tumor image. An alternative semi-supervised method was added at this stage for comparison with the automatic method. Finally, the tumor image was optimized by a morphology operator. Results from automatic segmentation were compared to the "ground truth" (GT on a pixel level. Overall data were then evaluated using a quantified system. Results The quantified parameters, including the "percent match" (PM and "correlation ratio" (CR, suggested a high match between GT and the present study's system, as well as a fair level of correspondence. The results were compatible with those from other related studies. The system successfully detected all of the tumors situated at the midline of brain. Six cases failed in the automatic group. One also failed in the semi-supervised alternative. The remaining five cases presented noticeable edema inside the brain. In the 23 successful cases, the PM and CR values in the two groups were highly related. Conclusions Results indicated

  9. Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing.

    Science.gov (United States)

    Neltner, Janna H; Abner, Erin L; Baker, Steven; Schmitt, Frederick A; Kryscio, Richard J; Jicha, Gregory A; Smith, Charles D; Hammack, Eleanor; Kukull, Walter A; Brenowitz, Willa D; Van Eldik, Linda J; Nelson, Peter T

    2014-01-01

    Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer's Disease Centre, Nun Study, and National Alzheimer's Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case-control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections immunostained for smooth muscle actin (a marker of arterioles) and CD34 (an endothelial marker), with separate analyses on grey and white matter. A total of 43 834 smooth muscle actin-positive vascular profiles and 603 798 CD34-positive vascular profiles were evaluated. In frontal cortex of cases with hippocampal sclerosis of ageing, smooth muscle actin-immunoreactive arterioles had thicker walls (P < 0.05), larger perimeters (P < 0

  10. Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing

    Science.gov (United States)

    Neltner, Janna H.; Abner, Erin L.; Baker, Steven; Schmitt, Frederick A.; Kryscio, Richard J.; Jicha, Gregory A.; Smith, Charles D.; Hammack, Eleanor; Kukull, Walter A.; Brenowitz, Willa D.; Van Eldik, Linda J.

    2014-01-01

    Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer’s Disease Centre, Nun Study, and National Alzheimer’s Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case–control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P ageing (n = 15) and control (n = 42) cases. Following technical studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections immunostained for smooth muscle actin (a marker of arterioles) and CD34 (an endothelial marker), with separate analyses on grey and white matter. A total of 43 834 smooth muscle actin-positive vascular profiles and 603 798 CD34-positive vascular profiles were evaluated. In frontal cortex of cases with hippocampal sclerosis of ageing, smooth muscle actin

  11. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions

    Directory of Open Access Journals (Sweden)

    Salvadore Christopher

    2004-09-01

    Full Text Available Abstract Background The mitogen-activated protein kinases (MAPKs have been shown to participate in a wide array of cellular functions. A role for some MAPKs (e.g., extracellular signal-regulated kinase, Erk1/2 has been documented in response to certain physiological stimuli, such as ischemia, visceral pain and electroconvulsive shock. We recently demonstrated that restraint stress activates the Erk MAPK pathway, but not c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK or p38MAPK, in several rat brain regions. In the present study, we investigated the effects of a different stressor, acute forced swim stress, on the phosphorylation (P state of these MAPKs in the hippocampus, neocortex, prefrontal cortex, amygdala and striatum. In addition, effects on the phosphorylation state of the upstream activators of the MAPKs, their respective MAPK kinases (MAPKKs; P-MEK1/2, P-MKK4 and P-MKK3/6, were determined. Finally, because the Erk pathway can activate c-AMP response element (CRE binding (CREB protein, and swim stress has recently been reported to enhance CREB phosphorylation, changes in P-CREB were also examined. Results A single 15 min session of forced swimming increased P-Erk2 levels 2–3-fold in the neocortex, prefrontal cortex and striatum, but not in the hippocampus or amygdala. P-JNK levels (P-JNK1 and/or P-JNK2/3 were increased in all brain regions about 2–5-fold, whereas P-p38MAPK levels remained essentially unchanged. Surprisingly, levels of the phosphorylated MAPKKs, P-MEK1/2 and P-MKK4 (activators of the Erk and JNK pathways, respectively were increased in all five brain regions, and much more dramatically (P-MEK1/2, 4.5 to > 100-fold; P-MKK4, 12 to ~300-fold. Consistent with the lack of forced swim on phosphorylation of p38MAPK, there appeared to be no change in levels of its activator, P-MKK3/6. P-CREB was increased in all but cortical (prefrontal, neocortex areas. Conclusions Swim stress specifically and markedly

  12. Pro-region engineering for improved yeast display and secretion of brain derived neurotrophic factor.

    Science.gov (United States)

    Burns, Michael L; Malott, Thomas M; Metcalf, Kevin J; Puguh, Arthya; Chan, Jonah R; Shusta, Eric V

    2016-03-01

    Brain derived neurotrophic factor (BDNF) is a promising therapeutic candidate for a variety of neurological diseases. However, it is difficult to produce as a recombinant protein. In its native mammalian context, BDNF is first produced as a pro-protein with subsequent proteolytic removal of the pro-region to yield mature BDNF protein. Therefore, in an attempt to improve yeast as a host for heterologous BDNF production, the BDNF pro-region was first evaluated for its effects on BDNF surface display and secretion. Addition of the wild-type pro-region to yeast BDNF production constructs improved BDNF folding both as a surface-displayed and secreted protein in terms of binding its natural receptors TrkB and p75, but titers remained low. Looking to further enhance the chaperone-like functions provided by the pro-region, two rounds of directed evolution were performed, yielding mutated pro-regions that further improved the display and secretion properties of BDNF. Subsequent optimization of the protease recognition site was used to control whether the produced protein was in pro- or mature BDNF forms. Taken together, we have demonstrated an effective strategy for improving BDNF compatibility with yeast protein engineering and secretion platforms. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Visual memory and visual mental imagery recruit common control and sensory regions of the brain.

    Science.gov (United States)

    Slotnick, Scott D; Thompson, William L; Kosslyn, Stephen M

    2012-01-01

    Separate lines of research have shown that visual memory and visual mental imagery are mediated by frontal-parietal control regions and can rely on occipital-temporal sensory regions of the brain. We used fMRI to assess the degree to which visual memory and visual mental imagery rely on the same neural substrates. During the familiarization/study phase, participants studied drawings of objects. During the test phase, words corresponding to old and new objects were presented. In the memory test, participants responded "remember," "know," or "new." In the imagery test, participants responded "high vividness," "moderate vividness," or "low vividness." Visual memory (old-remember) and visual imagery (old-high vividness) were commonly associated with activity in frontal-parietal control regions and occipital-temporal sensory regions. In addition, visual memory produced greater activity than visual imagery in parietal and occipital-temporal regions. The present results suggest that visual memory and visual imagery rely on highly similar--but not identical--cognitive processes.

  14. STATISTICAL GROWTH MODELING OF LONGITUDINAL DT-MRI FOR REGIONAL CHARACTERIZATION OF EARLY BRAIN DEVELOPMENT.

    Science.gov (United States)

    Sadeghi, Neda; Prastawa, Marcel; Fletcher, P Thomas; Gilmore, John H; Lin, Weili; Gerig, Guido

    2012-01-01

    A population growth model that represents the growth trajectories of individual subjects is critical to study and understand neurodevelopment. This paper presents a framework for jointly estimating and modeling individual and population growth trajectories, and determining significant regional differences in growth pattern characteristics applied to longitudinal neuroimaging data. We use non-linear mixed effect modeling where temporal change is modeled by the Gompertz function. The Gompertz function uses intuitive parameters related to delay, rate of change, and expected asymptotic value; all descriptive measures which can answer clinical questions related to growth. Our proposed framework combines nonlinear modeling of individual trajectories, population analysis, and testing for regional differences. We apply this framework to the study of early maturation in white matter regions as measured with diffusion tensor imaging (DTI). Regional differences between anatomical regions of interest that are known to mature differently are analyzed and quantified. Experiments with image data from a large ongoing clinical study show that our framework provides descriptive, quantitative information on growth trajectories that can be directly interpreted by clinicians. To our knowledge, this is the first longitudinal analysis of growth functions to explain the trajectory of early brain maturation as it is represented in DTI.

  15. Variations and asymmetries in regional brain surface in the genus Homo.

    Science.gov (United States)

    Balzeau, Antoine; Holloway, Ralph L; Grimaud-Hervé, Dominique

    2012-06-01

    Paleoneurology is an important field of research within human evolution studies. Variations in size and shape of an endocast help to differentiate among fossil hominin species whereas endocranial asymmetries are related to behavior and cognitive function. Here we analyse variations of the surface of the frontal, parieto-temporal and occipital lobes among different species of Homo, including 39 fossil hominins, ten fossil anatomically modern Homo sapiens and 100 endocasts of extant modern humans. We also test for the possible asymmetries of these features in a large sample of modern humans and observe individual particularities in the fossil specimens. This study contributes important new information about the brain evolution in the genus Homo. Our results show that the general pattern of surface asymmetry for the different regional brain surfaces in fossil species of Homo does not seem to be different from the pattern described in a large sample of anatomically modern H. sapiens, i.e., the right hemisphere has a larger surface than the left, as do the right frontal, the right parieto-temporal and the left occipital lobes compared with the contra-lateral side. It also appears that Asian Homo erectus specimens are discriminated from all other samples of Homo, including African and Georgian specimens that are also sometimes included in that taxon. The Asian fossils show a significantly smaller relative size of the parietal and temporal lobes. Neandertals and anatomically modern H. sapiens, who share the largest endocranial volume of all hominins, show differences when considering the relative contribution of the frontal, parieto-temporal and occipital lobes. These results illustrate an original variation in the pattern of brain organization in hominins independent of variations in total size. The globularization of the brain and the enlargement of the parietal lobes could be considered derived features observed uniquely in anatomically modern H. sapiens. Copyright

  16. Dysfunctional involvement of emotion and reward brain regions on social decision making in excess weight adolescents.

    Science.gov (United States)

    Verdejo-García, Antonio; Verdejo-Román, Juan; Rio-Valle, Jacqueline S; Lacomba, Juan A; Lagos, Francisco M; Soriano-Mas, Carles

    2015-01-01

    Obese adolescents suffer negative social experiences, but no studies have examined whether obesity is associated with dysfunction of the social brain or whether social brain abnormalities relate to disadvantageous traits and social decisions. We aimed at mapping functional activation differences in the brain circuitry of social decision making in adolescents with excess versus normal weight, and at examining whether these separate patterns correlate with reward/punishment sensitivity, disordered eating features, and behavioral decisions. In this fMRI study, 80 adolescents aged 12 to 18 years old were classified in two groups based on age adjusted body mass index (BMI) percentiles: normal weight (n = 44, BMI percentiles 5th-84th) and excess weight (n = 36, BMI percentile ≥ 85th). Participants were scanned while performing a social decision-making task (ultimatum game) in which they chose to "accept" or "reject" offers to split monetary stakes made by another peer. Offers varied in fairness (Fair vs. Unfair) but in all cases "accepting" meant both players win the money, whereas "rejecting" meant both lose it. We showed that adolescents with excess weight compared to controls display significantly decreased activation of anterior insula, anterior cingulate, and midbrain during decisions about Unfair versus Fair offers. Moreover, excess weight subjects show lower sensitivity to reward and more maturity fears, which correlate with insula activation. Indeed, blunted insula activation accounted for the relationship between maturity fears and acceptance of unfair offers. Excess weight adolescents have diminished activation of brain regions essential for affective tracking of social decision making, which accounts for the association between maturity fears and social decisions. © 2014 Wiley Periodicals, Inc.

  17. Global and regional annual brain volume loss rates in physiological aging.

    Science.gov (United States)

    Schippling, Sven; Ostwaldt, Ann-Christin; Suppa, Per; Spies, Lothar; Manogaran, Praveena; Gocke, Carola; Huppertz, Hans-Jürgen; Opfer, Roland

    2017-03-01

    The objective is to estimate average global and regional percentage brain volume loss per year (BVL/year) of the physiologically ageing brain. Two independent, cross-sectional single scanner cohorts of healthy subjects were included. The first cohort (n = 248) was acquired at the Medical Prevention Center (MPCH) in Hamburg, Germany. The second cohort (n = 316) was taken from the Open Access Series of Imaging Studies (OASIS). Brain parenchyma (BP), grey matter (GM), white matter (WM), corpus callosum (CC), and thalamus volumes were calculated. A non-parametric technique was applied to fit the resulting age-volume data. For each age, the BVL/year was derived from the age-volume curves. The resulting BVL/year curves were compared between the two cohorts. For the MPCH cohort, the BVL/year curve of the BP was an increasing function starting from 0.20% at the age of 35 years increasing to 0.52% at 70 years (corresponding values for GM ranged from 0.32 to 0.55%, WM from 0.02 to 0.47%, CC from 0.07 to 0.48%, and thalamus from 0.25 to 0.54%). Mean absolute difference between BVL/year trajectories across the age range of 35-70 years was 0.02% for BP, 0.04% for GM, 0.04% for WM, 0.11% for CC, and 0.02% for the thalamus. Physiological BVL/year rates were remarkably consistent between the two cohorts and independent from the scanner applied. Average BVL/year was clearly age and compartment dependent. These results need to be taken into account when defining cut-off values for pathological annual brain volume loss in disease models, such as multiple sclerosis.

  18. Congenital olfactory impairment is linked to cortical changes in prefrontal and limbic brain regions

    DEFF Research Database (Denmark)

    Karstensen, Helena Gásdal; Vestergaard, Martin; Baaré, William F C

    2018-01-01

    differently in individuals who suffer from lifelong olfactory deprivation relative to healthy normosmic individuals. To address this question, we examined if regional variations in gray matter volume were associated with smell ability in seventeen individuals with isolated congenital olfactory impairment (COI...... in left middle frontal gyrus and right superior frontal sulcus (SFS). COI subjects with severe olfactory impairment (anosmia) had reduced grey matter volume in the left mOFC and increased volume in right piriform cortex and SFS. Within the COI group olfactory ability, measured with the "Sniffin' Sticks...... piriform cortex, while olfactory identification was negatively associated with right SFS volume. Our findings suggest that lifelong olfactory deprivation trigger changes in the cortical volume of prefrontal and limbic brain regions previously linked to olfactory memory....

  19. Interactions of early adversity with stress-related gene polymorphisms impact regional brain structure in females.

    Science.gov (United States)

    Gupta, Arpana; Labus, Jennifer; Kilpatrick, Lisa A; Bonyadi, Mariam; Ashe-McNalley, Cody; Heendeniya, Nuwanthi; Bradesi, Sylvie; Chang, Lin; Mayer, Emeran A

    2016-04-01

    Early adverse life events (EALs) have been associated with regional thinning of the subgenual cingulate cortex (sgACC), a brain region implicated in the development of disorders of mood and affect, and often comorbid functional pain disorders, such as irritable bowel syndrome (IBS). Regional neuroinflammation related to chronic stress system activation has been suggested as a possible mechanism underlying these neuroplastic changes. However, the interaction of genetic and environmental factors in these changes is poorly understood. The current study aimed to evaluate the interactions of EALs and candidate gene polymorphisms in influencing thickness of the sgACC. 210 female subjects (137 healthy controls; 73 IBS) were genotyped for stress and inflammation-related gene polymorphisms. Genetic variation with EALs, and diagnosis on sgACC thickness was examined, while controlling for race, age, and total brain volume. Compared to HCs, IBS had significantly reduced sgACC thickness (p = 0.03). Regardless of disease group (IBS vs. HC), thinning of the left sgACC was associated with a significant gene-gene environment interaction between the IL-1β genotype, the NR3C1 haplotype, and a history of EALs (p = 0.05). Reduced sgACC thickness in women with the minor IL-1β allele, was associated with EAL total scores regardless of NR3C1 haplotype status (p = 0.02). In subjects homozygous for the major IL-1β allele, reduced sgACC with increasing levels of EALs was seen only with the less common NR3C1 haplotype (p = 0.02). These findings support an interaction between polymorphisms related to stress and inflammation and early adverse life events in modulating a key region of the emotion arousal circuit.

  20. Notch receptor expression in neurogenic regions of the adult zebrafish brain.

    Directory of Open Access Journals (Sweden)

    Vanessa de Oliveira-Carlos

    Full Text Available The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 [Formula: see text] of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA [Formula: see text] cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA [Formula: see text] cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.

  1. Biochemical responses to dietary α-linolenic acid restriction proceed differently among brain regions in mice.

    Science.gov (United States)

    Miyazawa, Daisuke; Yasui, Yuko; Yamada, Kazuyo; Ohara, Naoki; Okuyama, Harumi

    2011-08-01

    Previously, we noted that the dietary restriction of α-linolenic acid (ALA, n-3) for 4 weeks after weaning brought about significant decreases in the BDNF content and p38 MAPK activity in the striatum of mice, but not in the other regions of the brain, compared with an ALA- and linoleic acid (LNA, n-6)-adequate diet. In this study, we examined whether a prolonged dietary manipulation induces biochemical changes in other regions of the brain as well. Mice were fed a safflower oil (SAF) diet (ALA-restricted, LNA-adequate) or a perilla oil (PER) diet (containing adequate amounts of ALA and LNA) for 8 weeks from weaning. The docosahexaenoic acid (DHA, 22:6n-3) contents and p38 MAPK activities in the cerebral cortex, striatum and hippocampus were significantly lower in the SAF group. The BDNF contents and protein kinase C (PKC) activities in the cerebral cortex as well as in the striatum, but not in the hippocampus, were significantly lower in the SAF group. These data indicate that the biochemical changes induced by the dietary restriction of ALA have a time lag in the striatum and cortex, suggesting that the signal is transmitted through decreased p38 MAPK activity and BDNF content and ultimately decreased PKC activity.

  2. Brain regional networks active during the mismatch negativity vary with paradigm.

    Science.gov (United States)

    MacLean, Shannon E; Blundon, Elizabeth G; Ward, Lawrence M

    2015-08-01

    We used independent component analysis (ICA) of high-density EEG recordings coupled with single dipole fitting to identify the dominant brain regions active during the MMN in two different versions of a passive oddball paradigm: a simple, monotic, frequency-deviant paradigm and a more complex, dichotic, frequency-deviant paradigm with deviants occurring in either ear alone or in both ears at the same time. In both paradigms we found brain regional sources in the temporal and frontal cortices active during the MMN period, consistent with some previous studies. In the simpler paradigm, the scalp-potential variance during the earlier (70-120 ms) MMN was mostly accounted for by a wide array of temporal, frontal, and parietal sources. In the more complex paradigm, however, a generator in the prefrontal cortex accounted for a substantial amount of the variance of the scalp potential during the somewhat later MMN period (120-200 ms). These findings are consistent with a more nuanced view of the MMN and its generators than has been held in the past. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Continuous High Frequency Activity: A peculiar SEEG pattern related to specific brain regions

    Science.gov (United States)

    Melani, Federico; Zelmann, Rina; Mari, Francesco; Gotman, Jean

    2015-01-01

    Objective While visually marking the high frequency oscillations in the stereo-EEG of epileptic patients, we observed a continuous/semicontinuous activity in the ripple band (80–250 Hz), which we defined continuous High Frequency Activity (HFA). We aim to analyze in all brain regions the occurrence and significance of this particular pattern. Methods Twenty patients implanted in mesial temporal and neocortical areas were studied. One minute of slow-wave sleep was reviewed. The background was classified as continuous/semicontinuous, irregular, or sporadic based on the duration of the fast oscillations. Each channel was classified as inside/outside the seizure onset zone (SOZ) or a lesion. Results The continuous/semicontinuous HFA occurred in 54 of the 790 channels analyzed, with a clearly higher prevalence in hippocampus and occipital lobe. No correlation was found with the SOZ or lesions. In the occipital lobe the continuous/semicontinuous HFA was present independently of whether eyes were open or closed. Conclusions We describe what appears to be a new physiological High Frequency Activity, independent of epileptogenicity, present almost exclusively in the hippocampus and occipital cortex but independent of the alpha rhythm. Significance The continuous HFA may be an intrinsic characteristic of specific brain regions, reflecting a particular type of physiological neuronal activity. PMID:23768436

  4. Early cellular responses against tributyltin chloride exposure in primary cultures derived from various brain regions.

    Science.gov (United States)

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2014-05-01

    Tributyltin (TBT) is a potent biocide and commonly used in various industrial sectors. Humans are mainly exposed through the food chain. We have previously demonstrated tin accumulation in brain following TBT-chloride (TBTC) exposure. In this study, effect of TBTC on dissociated cells from different brain regions was evaluated. Cytotoxicity assay (MTT), mode of cell death (Annexin V/PI assay), oxidative stress parameters (ROS and lipid peroxidation), reducing power of the cell (GSH), mitochondrial membrane potential (MMP) and intracellular Ca(2+) were evaluated to ascertain the effect of TBTC. Expression of glial fibrillary acidic protein (GFAP) was measured to understand the effect on astroglial cells. TBTC as low as 30 nM was found to reduce GSH levels, whereas higher doses of 300 and 3000 nM induced ROS generation and marked loss in cell viability mainly through apoptosis. Striatum showed higher susceptibility than other regions, which may have further implications on various neurological aspects. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction.

    Science.gov (United States)

    El Rawas, Rana; Klement, Sabine; Kummer, Kai K; Fritz, Michael; Dechant, Georg; Saria, Alois; Zernig, Gerald

    2012-01-01

    Positive social interaction could play an essential role in switching the preference of the substance dependent individual away from drug related activities. We have previously shown that conditioned place preference (CPP) for cocaine at the dose of 15 mg/kg and CPP for four 15-min episodes of social interaction were equally strong when rats were concurrently conditioned for place preference by pairing cocaine with one compartment and social interaction with the other. The aim of the present study was to investigate the differential activation of brain regions related to the reward circuitry after acquisition/expression of cocaine CPP or social interaction CPP. Our findings indicate that cocaine CPP and social interaction CPP activated almost the same brain regions. However, the granular insular cortex and the dorsal part of the agranular insular cortex were more activated after cocaine CPP, whereas the prelimbic cortex and the core subregion of the nucleus accumbens were more activated after social interaction CPP. These results suggest that the insular cortex appears to be potently activated after drug conditioning learning while activation of the prelimbic cortex-nucleus accumbens core projection seems to be preferentially involved in the conditioning to non-drug stimuli such as social interaction.

  6. RNA-Seq Mouse Brain Regions Expression Data Analysis: Focus on ApoE Functional Network

    Directory of Open Access Journals (Sweden)

    Babenko Vladimir N.

    2017-09-01

    Full Text Available ApoE expression status was proved to be a highly specific marker of energy metabolism rate in the brain. Along with its neighbor, Translocase of Outer Mitochondrial Membrane 40 kDa (TOMM40 which is involved in mitochondrial metabolism, the corresponding genomic region constitutes the neuroenergetic hotspot. Using RNA-Seq data from a murine model of chronic stress a significant positive expression coordination of seven neighboring genes in ApoE locus in five brain regions was observed. ApoE maintains one of the highest absolute expression values genome-wide, implying that ApoE can be the driver of the neighboring gene expression alteration observed under stressful loads. Notably, we revealed the highly statistically significant increase of ApoE expression in the hypothalamus of chronically aggressive (FDR < 0.007 and defeated (FDR < 0.001 mice compared to the control. Correlation analysis revealed a close association of ApoE and proopiomelanocortin (Pomc gene expression profiles implying the putative neuroendocrine stress response background of ApoE expression elevation therein.

  7. Characterization of fungi in office dust: Comparing results of microbial secondary metabolites, fungal internal transcribed spacer region sequencing, viable culture and other microbial indices.

    Science.gov (United States)

    Park, J-H; Sulyok, M; Lemons, A R; Green, B J; Cox-Ganser, J M

    2018-05-04

    Recent developments in molecular and chemical methods have enabled the analysis of fungal DNA and secondary metabolites, often produced during fungal growth, in environmental samples. We compared 3 fungal analytical methods by analysing floor dust samples collected from an office building for fungi using viable culture, internal transcribed spacer (ITS) sequencing and secondary metabolites using liquid chromatography-tandem mass spectrometry. Of the 32 metabolites identified, 29 had a potential link to fungi with levels ranging from 0.04 (minimum for alternariol monomethylether) to 5700 ng/g (maximum for neoechinulin A). The number of fungal metabolites quantified per sample ranged from 8 to 16 (average = 13/sample). We identified 216 fungal operational taxonomic units (OTUs) with the number per sample ranging from 6 to 29 (average = 18/sample). We identified 37 fungal species using culture, and the number per sample ranged from 2 to 13 (average = 8/sample). Agreement in identification between ITS sequencing and culturing was weak (kappa = -0.12 to 0.27). The number of cultured fungal species poorly correlated with OTUs, which did not correlate with the number of metabolites. These suggest that using multiple measurement methods may provide an improved understanding of fungal exposures in indoor environments and that secondary metabolites may be considered as an additional source of exposure. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Effect of aging on phosphate metabolites of rat brain as revealed by the in vivo and in vitro 31P NMR measurements

    International Nuclear Information System (INIS)

    Liu, Hsiuchih; Chi, Chinwen; Liu, Tsungyun; Liu, Lianghui; Luh, Wenming; Hsieh, Changhuain; Wu, Wenguey

    1991-01-01

    Changes of phosphate metabolism in brains of neonate, weaning and adult rats were compared using both in vivo and in vitro nuclear magnetic resonance spectra. Ratios of phosphocreatine/nucleoside triphosphate (PCr/NTP) were the same in neonatal brain in both in vivo and in vitro studies, but not in weaning and adult brains. This discrepancy may have resulted from extended cerebral hypoxia due to slowed freezing of the brain by the increased skull thickness and brain mass in the weaning and adult rats. Variations of in vitro extraction condition for this age-related study may lead to systematic errors in the adult rats. Nevertheless, the phosphomonoester/nucleoside triphosphate (PME/NTP) ratios in extracts of brain from neonatal rats were higher than those obtained in vivo. In addition, the glycerophosphorylethanolamine plus glycerophosphorylcholine/nucleoside triphosphate (GPE+GPC/NTP) ratios, which were not measurable in vivo, showed age-dependent increase in extracts of rat brain. Some of the phosphomonoester and phosphodiester molecules in rat brain may be undetectable in in vivo NMR analysis because of their interaction with cellular components. The total in vitro GPE and GPC concentration in brain from neonatal rat was estimated to be 0.34 mmole/g wet tissue

  9. Restraint of appetite and reduced regional brain volumes in anorexia nervosa: a voxel-based morphometric study

    Directory of Open Access Journals (Sweden)

    Brooks Samantha J

    2011-11-01

    Full Text Available Abstract Background Previous Magnetic Resonance Imaging (MRI studies of people with anorexia nervosa (AN have shown differences in brain structure. This study aimed to provide preliminary extensions of this data by examining how different levels of appetitive restraint impact on brain volume. Methods Voxel based morphometry (VBM, corrected for total intracranial volume, age, BMI, years of education in 14 women with AN (8 RAN and 6 BPAN and 21 women (HC was performed. Correlations between brain volume and dietary restraint were done using Statistical Package for the Social Sciences (SPSS. Results Increased right dorsolateral prefrontal cortex (DLPFC and reduced right anterior insular cortex, bilateral parahippocampal gyrus, left fusiform gyrus, left cerebellum and right posterior cingulate volumes in AN compared to HC. RAN compared to BPAN had reduced left orbitofrontal cortex, right anterior insular cortex, bilateral parahippocampal gyrus and left cerebellum. Age negatively correlated with right DLPFC volume in HC but not in AN; dietary restraint and BMI predicted 57% of variance in right DLPFC volume in AN. Conclusions In AN, brain volume differences were found in appetitive, somatosensory and top-down control brain regions. Differences in regional GMV may be linked to levels of appetitive restraint, but whether they are state or trait is unclear. Nevertheless, these discrete brain volume differences provide candidate brain regions for further structural and functional study in people with eating disorders.

  10. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    International Nuclear Information System (INIS)

    Lind, Annika; Parkkola, Riitta; Lehtonen, Liisa; Maunu, Jonna; Lapinleimu, Helena; Munck, Petriina; Haataja, Leena

    2011-01-01

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  11. Age- and gender-related regional variations of human brain cortical thickness, complexity, and gradient in the third decade.

    Science.gov (United States)

    Creze, Maud; Versheure, Leslie; Besson, Pierre; Sauvage, Chloe; Leclerc, Xavier; Jissendi-Tchofo, Patrice

    2014-06-01

    Brain functional and cytoarchitectural maturation continue until adulthood, but little is known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19-33 years) using a three-dimensional T1 -weighted magnetic resonance imaging sequence and surface-based methods. Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new finding, age- and gender-related variations significantly affected brain complexity (P gender), all in the right hemisphere. Regions of interest analyses showed age and gender significant interaction (P left inferior parietal. In addition, we found significant inverse correlations between CT and CC and between CT and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in details from previous reports and may correlate with late brain maturation and learning plasticity in young adults' brain in the third decade. Copyright © 2013 Wiley Periodicals, Inc.

  12. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children.

    Science.gov (United States)

    Lind, Annika; Parkkola, Riitta; Lehtonen, Liisa; Munck, Petriina; Maunu, Jonna; Lapinleimu, Helena; Haataja, Leena

    2011-08-01

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children.

  13. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Annika [Turku University Hospital, Department of Pediatrics, Turku (Finland); Aabo Akademi University, Department of Psychology, Turku (Finland); Parkkola, Riitta [University of Turku and Turku University Hospital, Department of Radiology and Turku PET Center, PO Box 52, Turku (Finland); Lehtonen, Liisa; Maunu, Jonna; Lapinleimu, Helena [University of Turku and Turku University Hospital, Department of Pediatrics, Turku (Finland); Munck, Petriina [Turku University Hospital, Department of Pediatrics, Turku (Finland); University of Turku, Department of Psychology, Turku (Finland); Haataja, Leena [University of Turku and Turku University Hospital, Department of Pediatric Neurology, Turku (Finland)

    2011-08-15

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  14. Mercury distribution and speciation in different brain regions of beluga whales (Delphinapterus leucas)

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, Sonja K., E-mail: ostertag@unbc.ca [Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 (Canada); Stern, Gary A., E-mail: Gary.Stern@dfo-mpo.gc.ca [Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, R3T 2N6 (Canada); Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Wang, Feiyue, E-mail: feiyue.wang@ad.umanitoba.ca [Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Lemes, Marcos, E-mail: Marcos.lemes@ad.umanitoba.ca [Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Chan, Hing Man, E-mail: laurie.chan@uottawa.ca [Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, 1N 6N5 (Canada)

    2013-07-01

    The toxicokinetics of mercury (Hg) in key species of Arctic ecosystem are poorly understood. We sampled five brain regions (frontal lobe, temporal lobe, cerebellum, brain stem and spinal cord) from beluga whales (Delphinapterus leucas) harvested in 2006, 2008, and 2010 from the eastern Beaufort Sea, Canada, and measured total Hg (HgT) and total selenium (SeT) by inductively coupled plasma mass spectrometry (ICP-MS), mercury analyzer or cold vapor atomic absorption spectrometry, and the chemical forms using a high performance liquid chromatography ICP-MS. At least 14% of the beluga whales had HgT concentrations higher than the levels of observable adverse effect (6.0 mg kg{sup −1} wet weight (ww)) in primates. The concentrations of HgT differed between brain regions; median concentrations (mg kg{sup −1} ww) were 2.34 (0.06 to 22.6, 81) (range, n) in temporal lobe, 1.84 (0.12 to 21.9, 77) in frontal lobe, 1.84 (0.05 to 16.9, 83) in cerebellum, 1.25 (0.02 to 11.1, 77) in spinal cord and 1.32 (0.13 to 15.2, 39) in brain stem. Total Hg concentrations in the cerebellum increased with age (p < 0.05). Between 35 and 45% of HgT was water-soluble, of which, 32 to 41% was methyl mercury (MeHg) and 59 to 68% was labile inorganic Hg. The concentration of MeHg (range: 0.03 to 1.05 mg kg{sup −1} ww) was positively associated with HgT concentration, and the percent MeHg (4 to 109%) decreased exponentially with increasing HgT concentration in the spinal cord, cerebellum, frontal lobe and temporal lobe. There was a positive association between SeT and HgT in all brain regions (p < 0.05) suggesting that Se may play a role in the detoxification of Hg in the brain. The concentration of HgT in the cerebellum was significantly associated with HgT in other organs. Therefore, HgT concentrations in organs that are frequently sampled in bio-monitoring studies could be used to estimate HgT concentrations in the cerebellum, which is the target organ of MeHg toxicity. - Highlights:

  15. Global and regional brain mean diffusivity changes in patients with heart failure.

    Science.gov (United States)

    Woo, Mary A; Palomares, Jose A; Macey, Paul M; Fonarow, Gregg C; Harper, Ronald M; Kumar, Rajesh

    2015-04-01

    Heart failure (HF) patients show gray and white matter changes in multiple brain sites, including autonomic and motor coordination areas. It is unclear whether the changes represent acute or chronic tissue pathology, a distinction necessary for understanding pathological processes that can be resolved with diffusion tensor imaging (DTI)-based mean diffusivity (MD) procedures. We collected four DTI series from 16 HF (age 55.1 ± 7.8 years, 12 male) and 26 control (49.7 ± 10.8 years, 17 male) subjects with a 3.0-Tesla magnetic resonance imaging scanner. MD maps were realigned, averaged, normalized, and smoothed. Global and regional MD values from autonomic and motor coordination sites were calculated by using normalized MD maps and brain masks; group MD values and whole-brain smoothed MD maps were compared by analysis of covariance (covariates; age and gender). Global brain MD (HF vs. controls, units × 10(-6) mm(2) /sec, 1103.8 ± 76.6 vs. 1035.9 ± 69.4, P = 0.038) and regional autonomic and motor control site values (left insula, 1,085.4 ± 95.7 vs. 975.7 ± 65.4, P = 0.001; right insula, 1,050.2 ± 100.6 vs. 965.7 ± 58.4, P = 0.004; left hypothalamus, 1,419.6 ± 165.2 vs. 1,234.9 ± 136.3, P = 0.002; right hypothalamus, 1,446.5 ± 178.8 vs. 1,273.3 ± 136.9, P = 0.004; left cerebellar cortex, 889.1 ± 81.9 vs. 796.6 ± 46.8, P right cerebellar cortex, 797.8 ± 50.8 vs. 750.3 ± 27.5, P = 0.001; cerebellar deep nuclei, 1,236.1 ± 193.8 vs. 1,071.7 ± 107.1, P = 0.002) were significantly higher in HF vs. control subjects, indicating chronic tissue changes. Whole-brain comparisons showed increased MD values in HF subjects, including limbic, basal-ganglia, thalamic, solitary tract nucleus, frontal, and cerebellar regions. Brain injury occurs in autonomic and motor control areas, which may contribute to deficient function in HF patients. The chronic tissue changes likely

  16. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients.

    Science.gov (United States)

    Qiao, Jun; Jin, Guixing; Lei, Licun; Wang, Lan; Du, Yaqiang; Wang, Xueyi

    2016-01-01

    To explore the effect of right dorsolateral prefrontal cortex (DLPFC) repetitive transcranial magnetic stimulation (rTMS) on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy ( 1 H-MRS) in recently detoxified alcohol-dependent patients. In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions) and the control group (sham stimulation). Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) before and after treatment. 1 H-MRS was used to detect the levels of N -acetyl aspartic acid (NAA), choline (Cho), and creatine (Cr) in bilateral hippocampi before and after treatment. Thirty-eight patients (18 in the experimental group and 20 in the control group) were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1 H-MRS in recently detoxified alcohol-dependent patients.

  17. Factor analysis of regional brain activation in bipolar and healthy individuals reveals a consistent modular structure.

    Science.gov (United States)

    Fleck, David E; Welge, Jeffrey A; Eliassen, James C; Adler, Caleb M; DelBello, Melissa P; Strakowski, Stephen M

    2018-07-01

    The neurophysiological substrates of cognition and emotion, as seen with fMRI, are generally explained using modular structures. The present study was designed to probe the modular structure of cognitive-emotional processing in bipolar and healthy individuals using factor analysis and compare the results with current conceptions of the neurophysiology of bipolar disorder. Exploratory factor analysis was used to assess patterns of covariation among brain regions-of-interest activated during the Continuous Performance Task with Emotional and Neutral Distractors in healthy and bipolar individuals without a priori constraints on the number or composition of latent factors. Results indicated a common cognitive-emotional network consisting of prefrontal, medial temporal, limbic, parietal, anterior cingulate and posterior cingulate modules. However, reduced brain activation to emotional stimuli in the frontal, medial temporal and limbic modules was apparent in the bipolar relative to the healthy group, potentially accounting for emotional dysregulation in bipolar disorder. This study is limited by a relatively small sample size recruited at a single site. The results have yet to be validated on a larger independent sample. Although the modular structure of cognitive-emotional processing is similar in bipolar and healthy individuals, activation in response to emotional/neutral cues varies. These findings are not only consistent with recent conceptions of mood regulation in bipolar disorder, but also suggest that regional activation can be considered within tighter modular structures without compromising data interpretation. This demonstration may serve as a template for data reduction in future region-of-interest analyses to increase statistical power. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effects of bilingualism on vocabulary, executive functions, age of dementia onset, and regional brain structure.

    Science.gov (United States)

    Gasquoine, Philip Gerard

    2016-11-01

    To review the current literature on the effects of bilingualism on vocabulary, executive functions, age of dementia onset, and regional brain structure. PubMed and PsycINFO databases were searched (from January 1999 to present) for relevant original research and review articles on bilingualism (but not multilingualism) paired with each target neuropsychological variable published in English. A qualitative review of these articles was conducted. It has long been known that mean scores of bilinguals fall below those of monolinguals on vocabulary and other language, but not visual-perceptual, format cognitive tests. Contemporary studies that have reported higher mean scores for bilinguals than monolinguals on executive function task-switching or inhibition tasks have not always been replicated, leading to concerns of publication bias, statistical flaws, and failures to match groups on potentially confounding variables. Studies suggesting the onset of Alzheimer's disease occurred about 4 years later for bilinguals versus monolinguals have not been confirmed in longitudinal, cohort, community-based, incidence studies that have used neuropsychological testing and diagnostic criteria to establish an age of dementia diagnosis. Neuroimaging studies of regional gray and white matter volume in bilinguals versus monolinguals show inconsistencies in terms of both the regions of difference and the nature of the difference. Resolving inconsistencies in the behavioral data is necessary before searching in the brain for neuroanatomical correlation. Comparisons of balanced versus language-dominant groups within the same ethnoculture combined with objective measurement of bilingualism could better match groups on potentially confounding variables. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Chiral Analysis of Methadone and its Main Metabolite, EDDP, in Postmorten Brain and Blood by Automated SPE and Liquid Chromatography-Mass Spectrometry

    DEFF Research Database (Denmark)

    Holm, Karen Marie Dollerup; Linnet, Kristian

    2012-01-01

    Vi udviklede en metode baseret på væskekromatografi med tandem-massespektrometri til kvantificering af de individuelle enantiomer af metadon og dets primære metabolit, R/S-2-ethyl-1,5-dimethyl- 3,3-diphenylpyrrolinium (EDDP), i postmortem blod og hjernevæv. Prøvebehandlingen blev udført på et Tec...

  20. Metabolite-cycled STEAM and semi-LASER localization for MR spectroscopy of the human brain at 9.4T.

    Science.gov (United States)

    Giapitzakis, Ioannis-Angelos; Shao, Tingting; Avdievich, Nikolai; Mekle, Ralf; Kreis, Roland; Henning, Anke

    2018-04-01

    Metabolite cycling (MC) is an MRS technique for the simultaneous acquisition of water and metabolite spectra that avoids chemical exchange saturation transfer effects and for which water may serve as a reference signal or contain additional information in functional or diffusion studies. Here, MC was developed for human investigations at ultrahigh field. MC-STEAM and MC-semi-LASER are introduced at 9.4T with an optimized inversion pulse and elaborate coil setup. Experimental and simulation results are given for the implementation of adiabatic inversion pulses for MC. The two techniques are compared, and the effect of frequency and phase correction based on the MC water spectra is evaluated. Finally, absolute quantification of metabolites is performed. The proposed coil configuration results in a maximum B1 + of 48 μΤ in a voxel within the occipital lobe. Frequency and phase correction of single acquisitions improve signal-to-noise ratio (SNR) and linewidth, leading to high-resolution spectra. The improvement of SNR of N-acetylaspartate (SNR NAA ) for frequency aligned data, acquired with MC-STEAM and MC-semi-LASER, are 37% and 30%, respectively (P < 0.05). Moreover, a doubling of the SNR NAA for MC-semi-LASER in comparison with MC-STEAM is observed (P < 0.05). Concentration levels for 18 metabolites from the human occipital lobe are reported, as acquired with both MC-STEAM and MC-semi-LASER. This work introduces a novel methodology for single-voxel MRS on a 9.4T whole-body scanner and highlights the advantages of semi-LASER compared to STEAM in terms of excitation profile. In comparison with MC-STEAM, MC-semi-LASER yields spectra with higher SNR. Magn Reson Med 79:1841-1850, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Metabolomics of Neurotransmitters and Related Metabolites in Post-Mortem Tissue from the Dorsal and Ventral Striatum of Alcoholic Human Brain.

    Science.gov (United States)

    Kashem, Mohammed Abul; Ahmed, Selina; Sultana, Nilufa; Ahmed, Eakhlas U; Pickford, Russell; Rae, Caroline; Šerý, Omar; McGregor, Iain S; Balcar, Vladimir J

    2016-02-01

    We report on changes in neurotransmitter metabolome and protein expression in the striatum of humans exposed to heavy long-term consumption of alcohol. Extracts from post mortem striatal tissue (dorsal striatum; DS comprising caudate nucleus; CN and putamen; P and ventral striatum; VS constituted by nucleus accumbens; NAc) were analysed by high performance liquid chromatography coupled with tandem mass spectrometry. Proteomics was studied in CN by two-dimensional gel electrophoresis followed by mass-spectrometry. Proteomics identified 25 unique molecules expressed differently by the alcohol-affected tissue. Two were dopamine-related proteins and one a GABA-synthesizing enzyme GAD65. Two proteins that are related to apoptosis and/or neuronal loss (BiD and amyloid-β A4 precursor protein-binding family B member 3) were increased. There were no differences in the levels of dopamine (DA), 3,4-dihydrophenylacetic acid (DOPAC), serotonin (5HT), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (HIAA), histamine, L-glutamate (Glu), γ-aminobutyric acid (GABA), tyrosine (Tyr) and tryptophan (Tryp) between the DS (CN and P) and VS (NAc) in control brains. Choline (Ch) and acetylcholine (Ach) were higher and norepinephrine (NE) lower, in the VS. Alcoholic striata had lower levels of neurotransmitters except for Glu (30 % higher in the alcoholic ventral striatum). Ratios of DOPAC/DA and HIAA/5HT were higher in alcoholic striatum indicating an increase in the DA and 5HT turnover. Glutathione was significantly reduced in all three regions of alcohol-affected striatum. We conclude that neurotransmitter systems in both the DS (CN and P) and the VS (NAc) were significantly influenced by long-term heavy alcohol intake associated with alcoholism.

  2. Altered metabolites of the rat hippocampus after mild and moderate traumatic brain injury - a combined in vivo and in vitro 1 H-MRS study.

    Science.gov (United States)

    Singh, Kavita; Trivedi, Richa; Verma, Ajay; D'souza, Maria M; Koundal, Sunil; Rana, Poonam; Baishya, Bikash; Khushu, Subash

    2017-10-01

    Traumatic brain injury (TBI) has been shown to affect hippocampus-associated learning, memory and higher cognitive functions, which may be a consequence of metabolic alterations. Hippocampus-associated disorders may vary depending on the severity of injury [mild TBI (miTBI) and moderate TBI (moTBI)] and time since injury. The underlying hippocampal metabolic irregularities may provide an insight into the pathological process following TBI. In this study, in vivo and in vitro proton magnetic resonance spectroscopy ( 1 H-MRS) data were acquired from the hippocampus region of controls and TBI groups (miTBI and moTBI) at D0 (pre-injury), 4 h, Day 1 and Day 5 post-injury (PI). In vitro MRS results indicated trauma-induced changes in both miTBI and moTBI; however, in vivo MRS showed metabolic alterations in moTBI only. miTBI and moTBI showed elevated levels of osmolytes indicating injury-induced edema. Altered levels of citric acid cycle intermediates, glutamine/glutamate and amino acid metabolism indicated injury-induced aberrant bioenergetics, excitotoxicity and oxidative stress. An overall similar pattern of pathological process was observed in both miTBI and moTBI, with the distinction of depleted N-acetylaspartate levels (indicating neuronal loss) at 4 h and Day 1 and enhanced lactate production (indicating heightened energy depletion leading to the commencement of the anaerobic pathway) at Day 5 in moTBI. To the best of our knowledge, this is the first study to investigate the hippocampus metabolic profile in miTBI and moTBI simultaneously using in vivo and in vitro MRS. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Voxel-based lesion analysis of brain regions underlying reading and writing.

    Science.gov (United States)

    Baldo, Juliana V; Kacinik, Natalie; Ludy, Carl; Paulraj, Selvi; Moncrief, Amber; Piai, Vitória; Curran, Brian; Turken, And; Herron, Tim; Dronkers, Nina F

    2018-03-20

    The neural basis of reading and writing has been a source of inquiry as well as controversy in the neuroscience literature. Reading has been associated with both left posterior ventral temporal zones (termed the "visual word form area") as well as more dorsal zones, primarily in left parietal cortex. Writing has also been associated with left parietal cortex, as well as left sensorimotor cortex and prefrontal regions. Typically, the neural basis of reading and writing are examined in separate studies and/or rely on single case studies exhibiting specific deficits. Functional neuroimaging studies of reading and writing typically identify a large number of activated regions but do not necessarily identify the core, critical hubs. Last, due to constraints on the functional imaging environment, many previous studies have been limited to measuring the brain activity associated with single-word reading and writing, rather than sentence-level processing. In the current study, the brain correlates of reading and writing at both the single- and sentence-level were studied in a large sample of 111 individuals with a history of chronic stroke using voxel-based lesion symptom mapping (VLSM). VLSM provides a whole-brain, voxel-by-voxel statistical analysis of the role of distinct regions in a particular behavior by comparing performance of individuals with and without a lesion at every voxel. Rather than comparing individual cases or small groups with particular behavioral dissociations in reading and writing, VLSM allowed us to analyze data from a large, well-characterized sample of stroke patients exhibiting a wide range of reading and writing impairments. The VLSM analyses revealed that reading was associated with a critical left inferior temporo-occipital focus, while writing was primarily associated with the left supramarginal gyrus. Separate VLSM analyses of single-word versus sentence-level reading showed that sentence-level reading was uniquely associated with anterior

  4. Regional Susceptibility to Domoic Acid in Primary Astrocyte Cells Cultured from the Brain Stem and Hippocampus

    Directory of Open Access Journals (Sweden)

    Olga M. Pulido

    2008-02-01

    Full Text Available Domoic acid is a marine biotoxin associated with harmful algal blooms and is the causative agent of amnesic shellfish poisoning in marine animals and humans. It is also an excitatory amino acid analog to glutamate and kainic acid which acts through glutamate receptors eliciting a very rapid and potent neurotoxic response. The hippocampus, among other brain regions, has been identified as a specific target site having high sensitivity to DOM toxicity. Histopathology evidence indicates that in addition to neurons, the astrocytes were also injured. Electron microscopy data reported in this study further supports the light microscopy findings. Furthermore, the effect of DOM was confirmed by culturing primary astrocytes from the hippocampus and the brain stem and subsequently exposing them to domoic acid. The RNA was extracted and used for biomarker analysis. The biomarker analysis was done for the early response genes including c-fos, c-jun, c-myc, Hsp-72; specific marker for the astrocytes- GFAP and the glutamate receptors including GluR 2, NMDAR 1, NMDAR 2A and B. Although, the astrocyte-GFAP and c-fos were not affected, c-jun and GluR 2 were down-regulated. The microarray analysis revealed that the chemokines / cytokines, tyrosine kinases (Trk, and apoptotic genes were altered. The chemokines that were up-regulated included - IL1-a, IL-1B, IL-6, the small inducible cytokine, interferon protein IP-10, CXC chemokine LIX, and IGF binding proteins. The Bax, Bcl-2, Trk A and Trk B were all downregulated. Interestingly, only the hippocampal astrocytes were affected. Our findings suggest that astrocytes may present a possible target for pharmacological interventions for the prevention and treatment of amnesic shellfish poisoning and for other brain pathologies involving excitotoxicity

  5. Brain regions associated with Anhedonia in healthy adults: a PET correlation study

    International Nuclear Information System (INIS)

    Jung, Young Chul; Chun, Ji Won; Kim, Jae Jin; Park, Hae Jeong; Lee, Jong Doo; Seok, Jeong Ho

    2005-01-01

    Anhedonia has been proposed to be the result of a basic neurophysiologic dysfunction and a vulnerability marker that precede and contribute to the liability of developing schizophrenia. We hypothesized that anhedonia, as a construct reflecting the decreased capacity to experience pleasure, should be associated with decreased positive hedonic affect trait. This study examined the relationship between anhedonia and positive hedonic affect trait and searched for the brain regions which correlate with anhedonia in normal subjects. Using 18 F-FDG PET scan, we investigated the brain activity of twenty one subjects during resting state. Questionnaires were administrated after the scan in order to assess the self-rated individual differences in physical/social anhedonia and positive/negative affect traits. Negative correlation between physical anhedonia score and positive affect trait score was significant (Pearson coefficient=-0.440, ρ <0.05). The subjects' physical and social anhedonia scores showed positive correlation with metabolic rates in the cerebellum and negative correlation with metabolic rates in the inferior temporal gyrus and middle frontal gyrus. In addition, the positive affect trait score positively correlated with various areas, most prominent with the inferior temporal gyrus. These results suggest that neural substrates, such as the inferior temporal gyrus and prefrontal-cerebellar circuit, which dysfunction has been proposed to be involved with the cognitive deficits of schizophrenia, may also play a significant role in the liability of affective deficits like anhedonia

  6. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions.

    Science.gov (United States)

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C; Ali, Almas; Tamarina, Natalia; Philipson, Louis H; Enquist, Lynn W; Myers, Martin G; Rhodes, Christopher J

    2016-09-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. © 2016 by the American Diabetes Association.

  7. Brain regions associated with Anhedonia in healthy adults: a PET correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Young Chul; Chun, Ji Won; Kim, Jae Jin; Park, Hae Jeong; Lee, Jong Doo [Yonsei University College of Medicine, Gwangju (Korea, Republic of); Seok, Jeong Ho [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of)

    2005-10-15

    Anhedonia has been proposed to be the result of a basic neurophysiologic dysfunction and a vulnerability marker that precede and contribute to the liability of developing schizophrenia. We hypothesized that anhedonia, as a construct reflecting the decreased capacity to experience pleasure, should be associated with decreased positive hedonic affect trait. This study examined the relationship between anhedonia and positive hedonic affect trait and searched for the brain regions which correlate with anhedonia in normal subjects. Using {sup 18}F-FDG PET scan, we investigated the brain activity of twenty one subjects during resting state. Questionnaires were administrated after the scan in order to assess the self-rated individual differences in physical/social anhedonia and positive/negative affect traits. Negative correlation between physical anhedonia score and positive affect trait score was significant (Pearson coefficient=-0.440, {rho} <0.05). The subjects' physical and social anhedonia scores showed positive correlation with metabolic rates in the cerebellum and negative correlation with metabolic rates in the inferior temporal gyrus and middle frontal gyrus. In addition, the positive affect trait score positively correlated with various areas, most prominent with the inferior temporal gyrus. These results suggest that neural substrates, such as the inferior temporal gyrus and prefrontal-cerebellar circuit, which dysfunction has been proposed to be involved with the cognitive deficits of schizophrenia, may also play a significant role in the liability of affective deficits like anhedonia.

  8. Deficits in Regional Cerebral Blood Flow on Brain SPECT Predict Treatment Resistant Depression.

    Science.gov (United States)

    Amen, Daniel G; Taylor, Derek V; Meysami, Somayeh; Raji, Cyrus A

    2018-03-22

    Depression remains an important risk factor for Alzheimer's disease, yet few neuroimaging biomarkers are available to identify treatment response in depression. To analyze and compare functional perfusion neuroimaging in persons with treatment resistant depression (TRD) compared to those experiencing full remission. A total of 951 subjects from a community psychiatry cohort were scanned with perfusion single photon emission computed tomography (SPECT) of the brain in both resting and task related settings. Of these, 78% experienced either full remission (n = 506) or partial remission (n = 237) and 11% were minimally responsive (n = 103) or non-responsive (11%. n = 106). Severity of depression symptoms were used to define these groups with changes in the Beck Depression Inventory prior to and following treatment. Voxel-based analyses of brain SPECT images from full remission compared to the worsening group was conducted with the statistical parametric mapping software, version 8 (SPM 8). Multiple comparisons were accounted for with a false discovery rate (p <  0.001). Persons with depression that worsened following treatment had reduced cerebral perfusion compared to full remission in the multiple regions including the bilateral frontal lobes, right hippocampus, left precuneus, and cerebellar vermis. Such differences were observed on both resting and concentration SPECT scans. Our findings identify imaging-based biomarkers in persons with depression related to treatment response. These findings have implications in understanding both depression to prognosis and its role as a risk factor for dementia.

  9. Biogenic amines, amino acids and regional blood flow in rat brain after prenatal irradiation

    International Nuclear Information System (INIS)

    Deroo, J.; Gerber, G.B.; Maes, J.

    1986-01-01

    Damage to nerve cells after prenatal irradiation could affect their later ability to function normally. The concentration of several biogenic amines and amino acids was therefore determined at different times after prenatal irradiation with 0.95 Gy on day 10, 12 or 15 of pregnancy. The offspring was sacrified 0.5, 1, 3 and 6 months after birth and the following structures were dissected: Cortex, hippocampus, striatum, thalamus, hypothalamus, cerebellum and medulla. Biogenic amines isolated by HPLC and detected electrochemically were: Dopamine, DOPA, DOPAC, epinephrine, norepinephrine, serotonin and hydroxyindolacetate. Amino acids converted to their dansyl derivatives and separated by HPLC were: Aspartate, glutamate, glutamine, gamma aminobutyrate and taurine. Many neurotransmitters were found increased in brain after prenatal irradiation, particularly on day 12 and 15 p.c. Marked changes were found for serotonin in several brain structures and for dopamin in striatum. An increase was also found in glutamate, glutamine and GABA. Studies on regional blood flow using injection of labelled 15 μ microspheres did not reveal significant alterations after prenatal irradiation. (orig.)

  10. Regional ADC values of the normal brain: differences due to age, gender, and laterality.

    Science.gov (United States)

    Naganawa, Shinji; Sato, Kimihide; Katagiri, Toshio; Mimura, Takeo; Ishigaki, Takeo

    2003-01-01

    The purpose of this study was to evaluate the stability of measurement for apparent diffusion coefficient (ADC) values in normal brain, to clarify the effect of aging on ADC values, to compare ADC values between men and women, and to compare ADC values between right and left sides of the brain. To evaluate the stability of measurements, five normal volunteers (four men and one woman) were examined five times on different days. Then, 294 subjects with normal MR imaging (147 men and 147 women; age range 20-89 years) were measured. The ADC measurement in normal volunteers was stable. The ADC values stayed within the 5% deviation of average values in all volunteers (mean+/-standard deviation 2.3+/-1.2%). The ADC values gradually increased by aging in all regions. In thalamus, no significant difference was seen between right and left in the subjects under 60 years; however, right side showed higher values in the subjects over 60 years (pright frontal, bilateral thalamus, and temporal (pbrain and may be useful for the future quantitative study as a reference.

  11. Region-specific changes in brain diffusivity in fetal isolated mild ventriculomegaly

    International Nuclear Information System (INIS)

    Yaniv, Gal; Katorza, Eldad; Bercovitz, Ronen; Bergman, Dafi; Greenberg, Gahl; Hoffmann, Chen; Biegon, Anat

    2016-01-01

    To evaluate the impact of symmetric and asymmetric isolated mild ventriculomegaly (IMVM, atrial width 10-15 mm) on apparent diffusion coefficient (ADC) values in fetal brain areas. Sixty-seven sequential fetal head magnetic resonance imaging scans (feMRI) of VM cases performed between 2009 and 2014 were compared to 38 normal feMRI scans matched for gestational age (controls). Ultrasound- and MRI-proven IMVM cases were divided into asymmetrical (AVM, ≥2 mm difference in atrial width), symmetrical (SVM, <2 mm difference in atrial width), and asymmetrical IMVM with one normal-sized ventricle (AV1norm). ADC values were significantly elevated in the basal ganglia (BG) of the SVM and AV1norm groups compared to controls (p < 0.004 and p < 0.013, respectively). High diffusivity was constantly detected in the BG ipsilateral to the enlarged atria relative to the normal-sized atria in the AV1norm group (p < 0.03). Frontal lobe ADC values were significantly reduced in the AVM and SVM groups (p < 0.003 and p < 0.003 vs. controls). Temporal lobe ADC values were significantly reduced in the AVM group (p < 0.001 vs. controls). Isolated mild ventriculomegaly is associated with distinct ADC value changes in different brain regions. This phenomenon could reflect the pathophysiology associated with different IMVM patterns. (orig.)

  12. Region-specific changes in brain diffusivity in fetal isolated mild ventriculomegaly

    Energy Technology Data Exchange (ETDEWEB)

    Yaniv, Gal [Sheba Medical Center, Department of Diagnostic Imaging, Tel Aviv (Israel); The Hebrew University of Jerusalem, The Institute for Research in Military Medicine, The Faculty of Medicine, Jerusalem (Israel); Sheba Medical Center, The Dr. Pinchas Bornstein Talpiot Medical Leadership Program, Tel Aviv (Israel); Katorza, Eldad [Sheba Medical Center, Obstetrics and Gynecology Department, Tel Aviv (Israel); Bercovitz, Ronen; Bergman, Dafi; Greenberg, Gahl; Hoffmann, Chen [Sheba Medical Center, Department of Diagnostic Imaging, Tel Aviv (Israel); Biegon, Anat [Stony Brook University School of Medicine, Department of Neurology, Stony Brook, NY (United States)

    2016-03-15

    To evaluate the impact of symmetric and asymmetric isolated mild ventriculomegaly (IMVM, atrial width 10-15 mm) on apparent diffusion coefficient (ADC) values in fetal brain areas. Sixty-seven sequential fetal head magnetic resonance imaging scans (feMRI) of VM cases performed between 2009 and 2014 were compared to 38 normal feMRI scans matched for gestational age (controls). Ultrasound- and MRI-proven IMVM cases were divided into asymmetrical (AVM, ≥2 mm difference in atrial width), symmetrical (SVM, <2 mm difference in atrial width), and asymmetrical IMVM with one normal-sized ventricle (AV1norm). ADC values were significantly elevated in the basal ganglia (BG) of the SVM and AV1norm groups compared to controls (p < 0.004 and p < 0.013, respectively). High diffusivity was constantly detected in the BG ipsilateral to the enlarged atria relative to the normal-sized atria in the AV1norm group (p < 0.03). Frontal lobe ADC values were significantly reduced in the AVM and SVM groups (p < 0.003 and p < 0.003 vs. controls). Temporal lobe ADC values were significantly reduced in the AVM group (p < 0.001 vs. controls). Isolated mild ventriculomegaly is associated with distinct ADC value changes in different brain regions. This phenomenon could reflect the pathophysiology associated with different IMVM patterns. (orig.)

  13. The role of right frontal brain regions in integration of spatial relation.

    Science.gov (United States)

    Han, Jiahui; Cao, Bihua; Cao, Yunfei; Gao, Heming; Li, Fuhong

    2016-06-01

    Previous studies have explored the neural mechanisms of spatial reasoning on a two-dimensional (2D) plane; however, it remains unclear how spatial reasoning is conducted in a three-dimensional (3D) condition. In the present study, we presented 3D geometric objects to 16 adult participants, and asked them to process the spatial relationship between different corners of the geometric objects. In premise-1, the first two corners of a geometric shape (e.g., A vs. B) were displayed. In premise-2, the second and third corners (e.g., B vs. C) were displayed. After integrating the two premises, participants were required to infer the spatial relationship between the first and the third corners (e.g., A and C). Finally, the participants were presented with a conclusion object, and they were required to judge whether the conclusion was true or false based on their inference. The event-related potential evoked by premise-2 revealed that (1) compared with 2D spatial reasoning, 3D reasoning elicited a smaller P3b component, and (2) in the right frontal areas, increased negativities were found in the 3D condition during the N400 and late negative components (LNC). These findings imply that higher brain activity in the right frontal brain regions were related with the integration and maintenance of spatial information in working memory for reasoning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Resting-state, functional MRI on regional homogeneity changes of brain in the heavy smokers

    International Nuclear Information System (INIS)

    Yang Shiqi; Wu Guangyao; Lin Fuchun; Kong Xiangquan; Zhou Guofeng; Pang Haopeng; Zhu Ling; Liu Guobing; Lei Hao

    2012-01-01

    Objective: To explore the mechanism of self-awareness in the heavy smokers (HS) by using regional homogeneity (ReHo) combined with resting-state functional MRI (fMRI). Methods: Thirty HS and 31 healthy non-smokers (NS) matched for age and sex underwent a 3.0 T resting-state fMRI. The data were post-processed by SPM 5 and then the ReHo values were calculated by REST software. The ReHo values between the two groups were compared by two-sample t-test. The brain map with significant difference of ReHo value was obtained. Results: Compared with that in NS group, the regions with decreased ReHo value included the bilateral precuneus, superior frontal gyrus,medial prefrontal cortex, right angular gyrus, inferior frontal gyrus, inferior occipital gyrus, cerebellum, and left middle frontal gyrus in HS group. The regions of increased ReHo value included the bilateral insula, parahippocampal gyrus, white matter of parietal lobe, pons, left inferior parietal lobule, lingual gyrus, thalamus, inferior orbital gyrus, white matter of temporal-frontal lobe, and cerebellum. The difference was more obvious in the left hemisphere. Conclusions: In HS, abnormal ReHo on a resting state which reflects network of smoking addiction. This method may be helpful in understanding the mechanism of self-awareness in HS. (authors)

  15. Acute treatment with fluvoxamine elevates rat brain serotonin synthesis in some terminal regions: An autoradiographic study

    International Nuclear Information System (INIS)

    Muck-Seler, Dorotea; Pivac, Nela; Diksic, Mirko

    2012-01-01

    Introduction: A considerable body of evidence indicates the involvement of the neurotransmitter serotonin (5-HT) in the pathogenesis and treatment of depression. Methods: The acute effect of fluvoxamine, on 5-HT synthesis rates was investigated in rat brain regions, using α- 14 C-methyl-L-tryptophan as a tracer. Fluvoxamine (25 mg/kg) and saline (control) were injected intraperitoneally, one hour before the injection of the tracer (30 μCi). Results: There was no significant effect of fluvoxamine on plasma free tryptophan. After Benjamini–Hochberg False Discovery Rate correction, a significant decrease in the 5-HT synthesis rate in the fluvoxamine treated rats, was found in the raphe magnus (− 32%), but not in the median (− 14%) and dorsal (− 3%) raphe nuclei. In the regions with serotonergic axon terminals, significant increases in synthesis rates were observed in the dorsal (+ 41%) and ventral (+ 43%) hippocampus, visual (+ 38%), auditory (+ 65%) and parietal (+ 37%) cortex, and the substantia nigra pars compacta (+ 56%). There were no significant changes in the 5-HT synthesis rates in the median (+ 11%) and lateral (+ 24%) part of the caudate-putamen, nucleus accumbens (+ 5%), VTA (+ 16%) or frontal cortex (+ 6%). Conclusions: The data show that the acute administration of fluvoxamine affects 5-HT synthesis rates in a regionally specific pattern, with a general elevation of the synthesis in the terminal regions and a reduction in some cell body structures. The reasons for the regional specific effect of fluvoxamine on 5-HT synthesis are unclear, but may be mediated by the presynaptic serotonergic autoreceptors.

  16. Specific Regional and Age-Related Small Noncoding RNA Expression Patterns Within Superior Temporal Gyrus of Typical Human Brains Are Less Distinct in Autism Brains.

    Science.gov (United States)

    Stamova, Boryana; Ander, Bradley P; Barger, Nicole; Sharp, Frank R; Schumann, Cynthia M

    2015-12-01

    Small noncoding RNAs play a critical role in regulating messenger RNA throughout brain development and when altered could have profound effects leading to disorders such as autism spectrum disorders (ASD). We assessed small noncoding RNAs, including microRNA and small nucleolar RNA, in superior temporal sulcus association cortex and primary auditory cortex in typical and ASD brains from early childhood to adulthood. Typical small noncoding RNA expression profiles were less distinct in ASD, both between regions and changes with age. Typical micro-RNA coexpression associations were absent in ASD brains. miR-132, miR-103, and miR-320 micro-RNAs were dysregulated in ASD and have previously been associated with autism spectrum disorders. These diminished region- and age-related micro-RNA expression profiles are in line with previously reported findings of attenuated messenger RNA and long noncoding RNA in ASD brain. This study demonstrates alterations in superior temporal sulcus in ASD, a region implicated in social impairment, and is the first to demonstrate molecular alterations in the primary auditory cortex. © The Author(s) 2015.

  17. Improving Brain Magnetic Resonance Image (MRI Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    Directory of Open Access Journals (Sweden)

    Javadpour A.

    2016-06-01

    Full Text Available Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective: This study describes a new method for brain Magnetic Resonance Image (MRI segmentation via a novel algorithm based on genetic and regional growth. Methods: Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results: By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion: The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases.

  18. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain.

    Science.gov (United States)

    Albuixech-Crespo, Beatriz; López-Blanch, Laura; Burguera, Demian; Maeso, Ignacio; Sánchez-Arrones, Luisa; Moreno-Bravo, Juan Antonio; Somorjai, Ildiko; Pascual-Anaya, Juan; Puelles, Eduardo; Bovolenta, Paola; Garcia-Fernàndez, Jordi; Puelles, Luis; Irimia, Manuel; Ferran, José Luis

    2017-04-01

    All vertebrate brains develop following a common Bauplan defined by anteroposterior (AP) and dorsoventral (DV) subdivisions, characterized by largely conserved differential expression of gene markers. However, it is still unclear how this Bauplan originated during evolution. We studied the relative expression of 48 genes with key roles in vertebrate neural patterning in a representative amphioxus embryonic stage. Unlike nonchordates, amphioxus develops its central nervous system (CNS) from a neural plate that is homologous to that of vertebrates, allowing direct topological comparisons. The resulting genoarchitectonic model revealed that the amphioxus incipient neural tube is unexpectedly complex, consisting of several AP and DV molecular partitions. Strikingly, comparison with vertebrates indicates that the vertebrate thalamus, pretectum, and midbrain domains jointly correspond to a single amphioxus region, which we termed Di-Mesencephalic primordium (DiMes). This suggests that these domains have a common developmental and evolutionary origin, as supported by functional experiments manipulating secondary organizers in zebrafish and mice.

  19. Automatic delineation of brain regions on MRI and PET images from the pig.

    Science.gov (United States)

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M; Keller, Sune H; Andersen, Flemming L; Petersen, Ida N; Knudsen, Gitte M; Svarer, Claus

    2018-01-15

    The increasing use of the pig as a research model in neuroimaging requires standardized processing tools. For example, extraction of regional dynamic time series from brain PET images requires parcellation procedures that benefit from being automated. Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer. MRI and [ 11 C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same space. We developed an automatic procedure for spatial normalization of the averaged PET template to new PET images and hereby facilitated transfer of the atlas regional parcellation. Evaluation of the automatic spatial normalization procedure found the median voxel displacement to be 0.22±0.08mm using the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [ 11 C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames. We here present an automatic procedure for accurate and reproducible spatial normalization and parcellation of pig PET images of any radiotracer with reasonable blood-brain barrier penetration. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multivariate evaluation of brain function by measuring regional cerebral blood flow and event-related potentials

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Yoshihiko; Mochida, Masahiko; Shutara, Yoshikazu; Nakagawa, Kazumi [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine; Nagata, Ken

    1998-07-01

    To measure the effect of events on human cognitive function, effects of odors by measurement regional cerebral blood flow (rCBF) and P300 were evaluated during the auditory odd-ball exercise. PET showed the increase in rCBF on the right hemisphere of the brain by coffee aroma. rCBF was measured by PET in 9 of right-handed healthy adults men, and P300 was by event-related potential (ERP) in each sex of 20 right-handed healthy adults. ERP showed the difference of the P300 amplitude between men and women, and showed the tendency, by odors except the lavender oil, that women had higher in the P300 amplitude than men. These results suggest the presence of effects on the cognitive function through emotional actions. Next, the relationship between rCBF and ERP were evaluated. The subjects were 9 of the right-handed healthy adults (average: 25.6{+-}3.4 years old). rCBF by PET and P300 amplitude by ERP were simultaneously recorded during the auditory odd-ball exercise using the tone-burst method (2 kHz of the low frequency aimed stimuli and 1 kHz of the high frequency non-aimed stimuli). The rCBF value was the highest at the transverse gyrus of Heschl and the lowest at the piriform cortex among 24 regions of interest (ROI) from both sides. The difference of P300 peak latent time among ROI was almost the same. The brain waves from Cz and Pz were similar and the average amplitude was highest at Pz. We found the high correlation in the right piriform cortex (Fz), and right (Fz, Cz) and left (Cz, Pz) transverse gyrus of Heschl between the P300 amplitude and rCBF. (K.H.)

  1. Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions.

    Science.gov (United States)

    Wiech, K; Jbabdi, S; Lin, C S; Andersson, J; Tracey, I

    2014-10-01

    Functional neuroimaging studies suggest that the anterior, mid, and posterior division of the insula subserve different functions in the perception of pain. The anterior insula (AI) has predominantly been associated with cognitive-affective aspects of pain, while the mid and posterior divisions have been implicated in sensory-discriminative processing. We examined whether this functional segregation is paralleled by differences in (1) structural and (2) resting state connectivity and (3) in correlations with pain-relevant psychological traits. Analyses were restricted to the 3 insular subdivisions and other pain-related brain regions. Both type of analyses revealed largely overlapping results. The AI division was predominantly connected to the ventrolateral prefrontal cortex (structural and resting state connectivity) and orbitofrontal cortex (structural connectivity). In contrast, the posterior insula showed strong connections to the primary somatosensory cortex (SI; structural connectivity) and secondary somatosensory cortex (SII; structural and resting state connectivity). The mid insula displayed a hybrid connectivity pattern with strong connections with the ventrolateral prefrontal cortex, SII (structural and resting state connectivity) and SI (structural connectivity). Moreover, resting state connectivity revealed strong connectivity of all 3 subdivisions with the thalamus. On the behavioural level, AI structural connectivity was related to the individual degree of pain vigilance and awareness that showed a positive correlation with AI-amygdala connectivity and a negative correlation with AI-rostral anterior cingulate cortex connectivity. In sum, our findings show a differential structural and resting state connectivity for the anterior, mid, and posterior insula with other pain-relevant brain regions, which might at least partly explain their different functional profiles in pain processing. Copyright © 2014 The Authors. Published by Elsevier B.V. All

  2. Multivariate evaluation of brain function by measuring regional cerebral blood flow and event-related potentials

    International Nuclear Information System (INIS)

    Koga, Yoshihiko; Mochida, Masahiko; Shutara, Yoshikazu; Nakagawa, Kazumi; Nagata, Ken

    1998-01-01

    To measure the effect of events on human cognitive function, effects of odors by measurement regional cerebral blood flow (rCBF) and P300 were evaluated during the auditory odd-ball exercise. PET showed the increase in rCBF on the right hemisphere of the brain by coffee aroma. rCBF was measured by PET in 9 of right-handed healthy adults men, and P300 was by event-related potential (ERP) in each sex of 20 right-handed healthy adults. ERP showed the difference of the P300 amplitude between men and women, and showed the tendency, by odors except the lavender oil, that women had higher in the P300 amplitude than men. These results suggest the presence of effects on the cognitive function through emotional actions. Next, the relationship between rCBF and ERP were evaluated. The subjects were 9 of the right-handed healthy adults (average: 25.6±3.4 years old). rCBF by PET and P300 amplitude by ERP were simultaneously recorded during the auditory odd-ball exercise using the tone-burst method (2 kHz of the low frequency aimed stimuli and 1 kHz of the high frequency non-aimed stimuli). The rCBF value was the highest at the transverse gyrus of Heschl and the lowest at the piriform cortex among 24 regions of interest (ROI) from both sides. The difference of P300 peak latent time among ROI was almost the same. The brain waves from Cz and Pz were similar and the average amplitude was highest at Pz. We found the high correlation in the right piriform cortex (Fz), and right (Fz, Cz) and left (Cz, Pz) transverse gyrus of Heschl between the P300 amplitude and rCBF. (K.H.)

  3. Regional brain network organization distinguishes the combined and inattentive subtypes of Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Saad, Jacqueline F; Griffiths, Kristi R; Kohn, Michael R; Clarke, Simon; Williams, Leanne M; Korgaonkar, Mayuresh S

    2017-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is characterized clinically by hyperactive/impulsive and/or inattentive symptoms which determine diagnostic subtypes as Predominantly Hyperactive-Impulsive (ADHD-HI), Predominantly Inattentive (ADHD-I), and Combined (ADHD-C). Neuroanatomically though we do not yet know if these clinical subtypes reflect distinct aberrations in underlying brain organization. We imaged 34 ADHD participants defined using DSM-IV criteria as ADHD-I ( n  = 16) or as ADHD-C ( n  = 18) and 28 matched typically developing controls, aged 8-17 years, using high-resolution T1 MRI. To quantify neuroanatomical organization we used graph theoretical analysis to assess properties of structural covariance between ADHD subtypes and controls (global network measures: path length, clustering coefficient, and regional network measures: nodal degree). As a context for interpreting network organization differences, we also quantified gray matter volume using voxel-based morphometry. Each ADHD subtype was distinguished by a different organizational profile of the degree to which specific regions were anatomically connected with other regions (i.e., in "nodal degree"). For ADHD-I (compared to both ADHD-C and controls) the nodal degree was higher in the hippocampus. ADHD-I also had a higher nodal degree in the supramarginal gyrus, calcarine sulcus, and superior occipital cortex compared to ADHD-C and in the amygdala compared to controls. By contrast, the nodal degree was higher in the cerebellum for ADHD-C compared to ADHD-I and in the anterior cingulate, middle frontal gyrus and putamen compared to controls. ADHD-C also had reduced nodal degree in the rolandic operculum and middle temporal pole compared to controls. These regional profiles were observed in the context of no differences in gray matter volume or global network organization. Our results suggest that the clinical distinction between the Inattentive and Combined subtypes of ADHD may also be

  4. Brain region-specific altered expression and association of mitochondria-related genes in autism.

    Science.gov (United States)

    Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Yamada, Kazuo; Iwayama, Yoshimi; Toyota, Tomoko; Matsuzaki, Hideo; Miyachi, Taishi; Yamada, Satoru; Tsujii, Masatsugu; Tsuchiya, Kenji J; Matsumoto, Kaori; Iwata, Yasuhide; Suzuki, Katsuaki; Ichikawa, Hironobu; Sugiyama, Toshiro; Yoshikawa, Takeo; Mori, Norio

    2012-11-01

    Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. For gene expression analysis, postmortem