Sample records for regional admittivity spectra

  1. Derivation of Piezoelectric Losses from Admittance Spectra

    Zhuang, Yuan; Ural, Seyit O.; Rajapurkar, Aditya; Tuncdemir, Safakcan; Amin, Ahmed; Uchino, Kenji


    High power density piezoelectrics are required to miniaturize devices such as ultrasonic motors, transformers, and sound projectors. The power density is limited by the heat generation in piezoelectrics, therefore, clarification of the loss mechanisms is necessary. This paper provides a methodology to determine the electromechanical losses, i.e., dielectric, elastic and piezoelectric loss factors in piezoelectrics by means of a detailed analysis of the admittance/impedance spectra. This method was applied to determine the piezoelectric losses for lead zirconate titanate ceramics and lead magnesium niobate-lead titanate single crystals. The analytical solution provides a new method for obtaining the piezoelectric loss factor, which is usually neglected in practice by transducer designers. Finite element simulation demonstrated the importance of piezoelectric losses to yield a more accurate fitting to the experimental data. A phenomenological model based on two phase-shifts and the Devonshire theory of a polarizable-deformable insulator is developed to interpret the experimentally observed magnitudes of the mechanical quality factor at resonance and anti-resonance.

  2. Admittance of a one-channel conductor containing a scat-tering region and Andreev reflection in an N-S mesoscopic system

    ZHANG; Gang(张刚); CAO; Zhiliang(曹志良); DUAN; Wenhui(段文晖); GU; Binglin(顾秉林)


    We introduce local density of states in normal-conductor-superconductor compound systems and injectivity, emissivity to describe the transmission properties in these systems. Then we study the admittance of a one-channel conductor which contains a scattering region and Andreev reflection with the discrete potential model and efiective scattering approach.

  3. Magnetic Energy Spectra in Active Regions

    Abramenko, Valentyna


    Line-of-sight magnetograms for 217 active regions (ARs) of different flare rate observed at the solar disk center from January 1997 until December 2006 are utilized to study the turbulence regime and its relationship to the flare productivity. Data from {\\it SOHO}/MDI instrument recorded in the high resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs of higher flare productivity. We also report that both the power index, $\\alpha$, of the energy spectrum, $E(k) \\sim k^{-\\alpha}$, and the total spectral energy $W=\\int E(k)dk$ are comparably correlated with the flare index, $A$, of an active region. The correlations are found to be stronger than that found between the flare index and total unsigned flux. The flare index for an AR can be estimated based on measurements of $\\alpha$ and $W$ as $A=10^b (\\alpha W)^c$, with $b=-7.92 \\pm 0.58$ and $c=1.85 \\pm 0.13$. We found ...

  4. [Raman spectra of fossil dinosaurs from different regions].

    Yang, Qun; Wang, Yi-lin


    Raman microscopic spectra in the higher wave number region were obtained from 7 fossil dinosaurs specimens from different regions. The specimens of fossil dinosaurs are different parts of bone. The Raman spectra of fossil dinosaurs indicate the high similarity among peak positions of different fossil dinosaurs; but important differences exist in the spectral peak figures. In the wave number region of 1000-1800 cm(-1) the Raman spectra of the same bone part fossils from different regions are very similar, example similarities between spectra of Lufeing backbone head and Yua nmou backbone head; Lufeng limb bone and Wuding limb bone. There are relations between the same bone part spectra of different fossil dinosaurs. The characteristic does not relate to regions. Raman spectra of fossil dinosaurs cannot be used to distinguish fossil source, although the part of bone can be used as an indicator to narrow the range of possible geographical origins.

  5. Objective Identification of Informative Wavelength Regions in Galaxy Spectra

    Yip, Ching-Wa; Szalay, Alex; Csabai, Istvan; Budavari, Tamas; Wyse, Rosemary; Dobos, Laszlo


    Understanding the diversity in spectra is the key to determining the physical parameters of galaxies. The optical spectra of galaxies are highly convoluted with continuum and lines which are potentially sensitive to different physical parameters. Defining the wavelength regions of interest is therefore an important question. In this work, we identify informative wavelength regions in a single-burst stellar populations model by using the CUR Matrix Decomposition. The region identification method can be applied to any set of spectra of the user's interest, so that we eliminate the need for a common, fixed-resolution index system. We discuss future directions in extending the current analysis to late-type galaxies. (Abridged)

  6. Dynamic characterization of partially saturated engineered porous media and gas diffusion layers using hydraulic admittance

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.


    Simple laboratory methods for determining liquid water distribution in polymer electrolyte membrane fuel cell gas diffusion layers (GDLs) are needed to engineer better GDL materials. Capillary pressure vs. liquid saturation measurements are attractive, but lack the ability to probe the hydraulic interconnectivity and distribution within the pore structure. Hydraulic admittance measurements of simple capillary bundles have recently been shown to nicely measure characteristics of the free-interfaces and hydraulic path. Here we examine the use of hydraulic admittance with a succession of increasingly complex porous media, starting with a laser-drilled sample with 154 asymmetric pores and progress to the behavior of Toray TGP-H090 carbon papers. The asymmetric laser-drilled sample clearly shows hydraulic admittance measurements are sensitive to sample orientation, especially when examined as a function of saturation state. Finite element modeling of the hydraulic admittance is consistent with experimental measurements. The hydraulic admittance spectra from GDL samples are complex, so we examine trends in the spectra as a function of wet proofing (0% and 40% Teflon loadings) as well as saturation state of the GDL. The presence of clear peaks in the admittance spectra for both GDL samples suggests a few pore types are largely responsible for transporting liquid water.

  7. Optimal design of smart panel using admittance analysis

    Kim, Heung Soo; Kim, Jae Hwan [Inha University, Incheon (Korea, Republic of); Zhao, Lijie [Shenyang Institute of Aeronautical Engineering, Shenyang (China)


    Optimal configuration of piezoelectric shunt structures is obtained by analyzing admittance of the system. The dissipated energy in the shunt circuit is a function of admittance. Therefore, admittance was selected as the cost function in the process of optimization. Taguchi method was used to determine the optimal configuration of piezoceramic patch bonded on the host structure. Full three dimensional finite element models were analyzed to simulate vibration modes of smart panel and to obtain the admittances of the system. Numerical admittance was validated by experiment. After optimizing process using admittance, the optimal configuration of piezoceramic patch was obtained. It is observed that the performance of smart panel can be predicted by analyzing admittance of piezoelectric structure and admittance can be used as a design index of smart panel.

  8. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan

    , and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version...... of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent fluctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel tests....... In the present work we have extended the laminar oncoming flow in DVMFLOW to a turbulent one, modelled by seeding the upstream flow with vortex particles synthesized from prescribed atmospheric turbulence velocity spectra [3] . The discrete spectrum is sampled from the continuous spectrum subject to a lower cutoff...

  9. Magnetic helicity and energy spectra of a solar active region

    Zhang, Hongqi; Sokoloff, D D


    We compute magnetic helicity and energy spectra of the solar active region NOAA 11158 during 11-15 February 2011 at 20 degr southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The relative magnetic helicity is around 8% and strongest at intermediate wavenumbers of k ~ 0.4 Mm^{-1}, corresponding to a scale of 2 pi/k ~ 16 Mm. The same sign and a somewhat smaller value is also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The current helicity spectrum is estimated from the magnetic helicity spectrum and its modulus shows a k^{-5/3} spectrum at large wavenumbers. A similar power law is also obtained for...

  10. Primary Cosmic-Ray Spectra in the Knee Region

    Ter-Antonyan, Samvel V.; Biermann, P. L.


    Using EAS inverse approach and KASCADE EAS data the primary energy spectra for different primary nuclei at energies 1015 - 1017 eV are obtained in the framework of multi-comp onent model of primary cosmic ray origin and QGSJET and SIBYLL interaction models. The rigidity-dep endent behavior of spectra is the same for two interaction models. The extrap olation of the obtained primary spectra in a 1017 - 1018 eV energy range displays a presence of the extragalactic component of primary cosmic rays.

  11. Admittance to specialized palliative care (SPC) of patients with an assessed need: a study from the Danish palliative care database (DPD).

    Adsersen, Mathilde; Thygesen, Lau Caspar; Neergaard, Mette Asbjoern; Bonde Jensen, Anders; Sjøgren, Per; Damkier, Anette; Groenvold, Mogens


    Admittance to specialized palliative care (SPC) has been discussed in the literature, but previous studies examined exclusively those admitted, not those with an assessed need for SPC but not admitted. The aim was to investigate whether admittance to SPC for referred adult patients with cancer was related to sex, age, diagnosis, geographic region or referral unit. A register-based study with data from the Danish Palliative Care Database (DPD). From DPD we identified all adult patients with cancer, who died in 2010-2012 and who were referred to and assessed to have a need for SPC (N = 21,597).The associations were investigated using logistic regression models, which also evaluated whether time from referral to death influenced the associations. In the adjusted analysis, we found that admittance was higher for younger patients [e.g., 50-59 versus 80 + years: odds ratio (OR) = 2.03; 1.78-2.33]. There was lower odds of admittance for patients with hematological malignancies and patients from two regions: Capital Region of Denmark and Region of Southern Denmark. Lower admittance among men and patients referred from hospital departments was explained by later referral. In this first nationwide study of admittance to SPC among patients with a SPC need, we found difference in admittance according to age, diagnosis and region. This indicates that prioritization of the limited resources means that certain subgroups with a documented need have reduced likelihood of admission to SPC.

  12. Baseline Correction of Diffuse Reflection Near-Infrared Spectra Using Searching Region Standard Normal Variate (SRSNV).

    Genkawa, Takuma; Shinzawa, Hideyuki; Kato, Hideaki; Ishikawa, Daitaro; Murayama, Kodai; Komiyama, Makoto; Ozaki, Yukihiro


    An alternative baseline correction method for diffuse reflection near-infrared (NIR) spectra, searching region standard normal variate (SRSNV), was proposed. Standard normal variate (SNV) is an effective pretreatment method for baseline correction of diffuse reflection NIR spectra of powder and granular samples; however, its baseline correction performance depends on the NIR region used for SNV calculation. To search for an optimal NIR region for baseline correction using SNV, SRSNV employs moving window partial least squares regression (MWPLSR), and an optimal NIR region is identified based on the root mean square error (RMSE) of cross-validation of the partial least squares regression (PLSR) models with the first latent variable (LV). The performance of SRSNV was evaluated using diffuse reflection NIR spectra of mixture samples consisting of wheat flour and granular glucose (0-100% glucose at 5% intervals). From the obtained NIR spectra of the mixture in the 10 000-4000 cm(-1) region at 4 cm intervals (1501 spectral channels), a series of spectral windows consisting of 80 spectral channels was constructed, and then SNV spectra were calculated for each spectral window. Using these SNV spectra, a series of PLSR models with the first LV for glucose concentration was built. A plot of RMSE versus the spectral window position obtained using the PLSR models revealed that the 8680–8364 cm(-1) region was optimal for baseline correction using SNV. In the SNV spectra calculated using the 8680–8364 cm(-1) region (SRSNV spectra), a remarkable relative intensity change between a band due to wheat flour at 8500 cm(-1) and that due to glucose at 8364 cm(-1) was observed owing to successful baseline correction using SNV. A PLSR model with the first LV based on the SRSNV spectra yielded a determination coefficient (R2) of 0.999 and an RMSE of 0.70%, while a PLSR model with three LVs based on SNV spectra calculated in the full spectral region gave an R2 of 0.995 and an RMSE of

  13. Effect of Oxygen Admittance Temperature on the Growth of ZnO Microcrystals by Thermal Evaporation Technique

    K.M.K. Srivatsa; Deepak Chhikara; d M. Senthil Kumar


    Hexagonally well-faceted microcrystals of ZnO have been grown by thermal evaporation of Zn powder in oxygen ambient at 700℃ under atmospheric pressure. It has been observed that the properties (size and quality) of ZnO microcrystals have a strong dependence on the reactor temperature at which the oxygen gas is admitted into the growth zone. The microcrystals grown with oxygen admittance at 450℃ have a length of 1 μm and a diameter of 0.75 μm while that grown with oxygen admittance at 600 ℃ have a length of 1.5-2 μm and a diameter of 1 μm. Room temperature photoluminescence spectra show a ultraviolet (UV) emission peak at 385 nm with a green band emission at around 500 nm. The UV-to-green band emission ratio for the microcrystals grown with oxygen admittance at 450℃ is observed to be 1.25 and the ratio decreases to 0.45 for the sample grown with oxygen admittance at 600℃.

  14. Acoustic transfer admittance of cylindrical cavities

    Guianvarc'h, C.; Durocher, J.-N.; Bruneau, M.; Bruneau, A.-M.


    The reciprocity calibration method uses two microphones acoustically connected by a coupler, a cylindrical cavity closed at each end by the diaphragms of the transmitting and receiving microphones. The acoustic transfer admittance of the coupler, including the thermal conductivity effect of the fluid, must be modelled precisely to obtain the accurate sensitivity of the microphones from the electrical transfer impedance measurement. It appears that the analytical model quoted in the current standard [International Electrotechnical Commission IEC 61064-2, Measurement Microphones, Part 2: Primary Method for Pressure Calibration of Laboratory Standard Microphones by the Reciprocity Technique, 1992] is not the appropriate one and that it should be revised, as also suggested by a recent EUROMET project report [K. Rasmussen, Datafiles simulating a pressure reciprocity calibration of microphones, EUROMET Project 294 Report PL-13, 2001]. Thus, it is the aim of the paper to investigate analytically the acoustic field inside the coupler, revisiting the assumptions of the earlier work, leading to a coherent description and therefore providing clarity which should facilitate discussion of a possible revised standard.

  15. Measurements of reactive gaseous rocket injector admittances

    Janardan, B. A.; Daniel, B. R.; Bell, W. A.; Zinn, B. T.


    The paper describes the results of an experimental study of the quantitative determination of the capabilities of the combustion processes associated with coaxial gaseous propellant rocket injectors to drive combustor pressure oscillations. The data, obtained by employing the modified impedance tube technique with compressed air as the oxidizer and acetylene gas as the fuel, describe the frequency dependence of the admittance of the combined injector-combustion process. The measured data are compared with the predictions of the Feiler and Heidmann analytical model utilizing different values for the characteristic combustion time tau sub b. The values of tau sub b which result in a best fit between the measured and predicted data are indicated for different equivalence ratios. It is shown that for the coaxial injector investigated in this study the tau sub b varies between 0.7 and 1.2 msec for equivalence ratios in the range of 0.57 to 1.31. In addition, the experimental data indicate that the tested injector system could drive combustion instabilities over a frequency range that is in qualitative agreement with the predictions of the Feiler and Heidmann model.

  16. Evolution of Magnetic Helicity and Energy Spectra of Solar Active Regions

    Zhang, Hongqi; Sokoloff, D D


    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field for estimating magnetic energy and helicity spectra as well as current helicity spectra of individual active regions and the change of their spectral indices with the solar cycle. The departure of the spectral index of current helicity from 5/3 is analyzed, and it is found that it is lower than that of magnetic energy. There is no obvious relationship between the change of the normalized magnetic helicity and the integral scale of the magnetic field for individual active regions. The evolution of the spectral index reflects the development and distribution of various scales of magnetic structures in active regions. It is found that around solar maximum the magnetic energy and helicity spectra are steeper.

  17. Transmittance and Reflectance Spectra of Doped-Polyanisidine-Derived Film in the Visible Light Region

    Tapia, A K G [Physics Divisio, Institute of Mathematical Sciences and Physics and University of the Philippines Los Banos, College, Laguna, Philippines, 4031 (Philippines); Catedral, M D [Physics Divisio, Institute of Mathematical Sciences and Physics and University of the Philippines Los Banos, College, Laguna, Philippines, 4031 (Philippines); Herrera, M U [Physics Divisio, Institute of Mathematical Sciences and Physics and University of the Philippines Los Banos, College, Laguna, Philippines, 4031 (Philippines); Tamayo, J P [Institute of Chemistry, University of the Philippines Los Banos, College, Laguna, Philippines, 4031 (Philippines); Rosario, E J R del [Institute of Chemistry, University of the Philippines Los Banos, College, Laguna, Philippines, 4031 (Philippines)


    Polyanisidine (PAnis) powder was synthesized using a standard procedure. It was doped with Hydrochloric (HCl) and Perchloric (HClO{sub 4}) Acids. The air-dried PAnis powder was then diluted using Dimethyl Formamide (DMF) as solvent and was spread out in a SiOx transparent glass substrate. An amorphous and semi-transparent film was fabricated seen in a polarizing microscope. The spectral analysis was carried out in the visible region from 400 nm to 700 nm. For HCl-doped sample, the high intensity region in the transmittance spectra occurred at the green portion while the high intensity region for the reflectance spectra was seen at the violet portion. Lastly, for the HClO4-doped sample, the peak intensities are at 536 nm and 516 nm for the transmittance and the reflectance spectra, respectively.

  18. Similarity between turbulent kinetic energy and temperature spectra in the near-wall region

    Antonia, R. A.; Kim, J.


    The similarity between turbulent kinetic energy and temperature spectra, previously confirmed using experimental data in various turbulent shear flows, is validated in the near-wall region using direct numerical simulation data in a fully developed turbulent channel flow. The dependence of this similarity on the molecular Prandtl number is also examined.

  19. Automatic Estimation of Peak Regions in Gamma-Ray Spectra Measured by NaI Detector

    ZHU Meng-Hua; LIU Liang-Gang; XU Ao-Ao; Ma Tao


    We present an approach to estimate the width of peak regions for the background elimination of gamma ray spectrum. The synthetic and experimental data are used to test this method. With the estimated peak regions using the proposed method in the whole spectra, we find that the approach is simple and effective enough for the background elimination cooperating with the statistics-sensitive nonlinear iterative peak-clipping method.

  20. Comparison between parallel transfer matrix method and admittance sum method.

    Verdière, Kévin; Panneton, Raymond; Elkoun, Saïd; Dupont, Thomas; Leclaire, Philippe


    A transfer matrix method to predict absorption coefficient and transmission loss of parallel assemblies of materials which can be expressed by a 2 × 2 transfer matrix was published recently. However, the usual method based on the sum of admittances is largely used to predict also surface admittance of parallel assemblies. This paper aims to highlight differences between both methods through three examples on a parallel assembly backed by (1) a rigid wall, (2) an air cavity, and (3) an anechoic termination.

  1. "No admittance except on business" 

    Mathilde Bourrier


     sociologie embarquée », soit s’en dégager radicalement.“No admittance except on business”. Issues in negotiating entry into organisationsThis article has a history. The first reason for wanting to write it was linked to the development in 2007 of a master course in sociology on the conditions associated with being able to enter organisations. To my great surprise, and in spite of my efforts during the preparation of the course, I found few texts which discussed real entry conditions. This article reflects then this disappointment. The second reason concerns repeated observations of the hardening conditions in relation with studies undertaken within organisations, whether in France or the United States. Reports I have received confirm my observations that the field of high risk organisations has become particularly more and more difficult for young researchers or doctoral students to freely organize their work. Paradoxically, whilst more efforts are undertaken so that sociologists (amongst others have access to risk industries, researchers are confronted with conditions that are often rigid and hardly generous. As for the issues themselves that are studied, they are very aligned with the industrials’ own managerial questions. Ethnographic studies by immersion are abandoned in favour of action-research, in form de theses obliged, at the end of the day, to make propositions for improvements and recommendations about management tools. I have a feeling that what is happening in high-risk organisations is also the case for the sociology of organisations in general. In the first part of this article, I propose a partial revue of the way that the sociology of organisations has treated the question of entering into organisations. I will reflect on why there are so few works devoted to this question and on what the consequences may well be for the field itself. Secondly, I will examine the possibilities offered today as well as the efforts to make in order to, either, resolutely

  2. Primary energy spectra of cosmic rays selected by mass groups in the knee region

    Ulrich, H.; KASCADE Collaboration

    The KASCADE experiment measures the electron and muon number of extensive air showers in the knee region with high precision. From these data shower size spectra for electrons and muons are constructed. An analysis is presented in which electron and muon size spectra in three different zenith angle bins are analysed simultaneously. With a four component assumption for the mass composition of primary cosmic rays (hydrogen, helium, carbon and iron) and using unfolding methods taking into account shower fluctuations and experimental effects energy spectra of these mass groups in the range between 1015 and 1017 eV are reconstructed. Each energy spectrum shows a steepening of the index of the resulting power law with a knee-like structure. The positions of the individual knees suggest a rigidity dependence.

  3. Bathymetry Prediction Based on the Admittance Theory of Gravity Anomalies

    OUYANG Mingda


    Full Text Available Based on the admittance theory of gravity anomalies, the method of bathymetry prediction was studied in detail in this paper. In frequency domains, the correlation between gravity anomalies and bathymetry was analyzed, which suggests that the wavelength band correlated strongly was in a range of 20—300 km, this band was appropriated to inverse bathymetry by gravity anomalies. Took the Emperor Chain as an example, the uncompensated admittance model and flexural isostatic admittance model were used for researching, respectively, the included parameter of crust thickness and effective elastic thickness were calculated by the isostatic response function. As the down continuation factor was unstable, a high-cut filter was proposed in the inversion procedure to ensure convergence of series. The results showed that, the admittance theory of gravity anomalies can be used effectively in the bathymetry prediction, the predicted result was real and reliable, the relative precision was approximately 6%, which was equal to ETOPO1 model, and the detailed feature of sea floor which was not showed in ETOPO1 model can also be depicted; the precisions were not so well in areas of ocean mountains intensively distributed because of the complexion of the sea floor.

  4. 9 CFR 117.3 - Admittance of animals.


    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Admittance of animals. 117.3 Section 117.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS ANIMALS AT...

  5. Self-affine roughness influence on redox reaction charge admittance

    Palasantzas, G


    In this work we investigate the influence of self-affine electrode roughness on the admittance of redox reactions during facile charge transfer kinetics. The self-affine roughness is characterized by the rms roughness amplitude w, the correlation length xi and the roughness exponent H (0

  6. Admittance Spectroscopy in CZTSSe: Metastability Behavior and Voltage Dependent Defect Study

    Koeper, Mark J.; Hages, Charles J.; Li, Jian V.; Levi, Dean; Agrawal, Rakesh


    Admittance spectroscopy has been performed on a CZTSSe device with a carrier injection pretreatment and under electronically relaxed conditions to demonstrate metastability behavior. We show that the measurements with the carrier injection pretreatment demonstrate two admittance signatures while the relaxed measurement demonstrates only one admittance signature with a different activation energy. Additionally, voltage dependent admittance spectroscopy was performed using the carrier injection pretreatment method at each of the applied voltage bias. The activation energies of the two admittance signatures were calculated and are shown to be independent of the voltage bias.

  7. Naturally enhanced ion-line spectra around the equatorial 150-km region

    J. L. Chau


    Full Text Available For many years strong radar echoes coming from 140–170 km altitudes at low latitudes have been associated to the existence of field-aligned irregularities (FAIs (the so called 150-km echoes. In this work, we present frequency spectra as well as angular distribution of 150-km echoes. When the 150-km region is observed with beams perpendicular to the magnetic field (B the observed radar spectra are very narrow with spectral widths between 3–12 m/s. On the other hand, when few-degrees off-perpendicular beams are used, the radar spectra are wide with spectral widths comparable to those expected from ion-acoustic waves at these altitudes (>1000 m/s. Moreover the off-perpendicular spectral width increases with increasing altitude. The strength of the received echoes is one to two orders of magnitude stronger than the expected level of waves in thermal equilibrium at these altitudes. Such enhancement is not due to an increase in electron density. Except for the enhancement in power, the spectra characteristics of off-perpendicular and perpendicular echoes are in reasonable agreement with expected incoherent scatter spectra at these angles and altitudes. 150-km echoes are usually observed in narrow layers (2 to 5. Bistatic common volume observations as well as observations made few kilometers apart show that, for most of the layers, there is very high correlation on power fluctuations without a noticeable time separation between simultaneous echoes observed with Off-perpendicular and Perpendicular beams. However, in one of the central layers, the echoes are the strongest in the perpendicular beam and absent or very weak in the off-perpendicular beams, suggesting that they are generated by a plasma instability. Our results indicate that most echoes around 150-km region are not as aspect sensitive as originally thought, and they come from waves that have been enhanced above waves in thermal equilibrium.


    Cohen, J.; Lang, D.; Harbison, J.; Sergent, A.


    A full numerical analysis of the nonequilibrium response of a Schottkybarrier space charge region for a semiconductor with an arbitrary density of states, g(E), has been developed. These methods are applied to measurements of admittance vs temperature, thermally stimulated capacitance (TSCAP), and Deep Level Transient Spectroscopy (DLTS) of n-type a-Si:H samples in a 200°C dark annealed state (State A) as well as several partially dark annealed states following initial preparation in a light ...

  9. The Nuclear Region of Low Luminosity Flat Radio Spectrum Sources. II. Emission-Line Spectra

    Gonçalves, A C


    We report on the spectroscopic study of 19 low luminosity Flat Radio Spectrum (LL FRS) sources selected from Marcha's et al. (1996) 200 mJy sample. In the optical, these objects are mainly dominated by the host galaxy starlight. After correcting the data for this effect, we obtain a new set of spectra clearly displaying weak emission lines; such features carry valuable information concerning the excitation mechanisms at work in the nuclear regions of LL FRS sources. We have used a special routine to model the spectra and assess the intensities and velocities of the emission lines; we have analyzed the results in terms of diagnostic diagrams. Our analysis shows that 79% of the studied objects harbour a Low Ionization Nuclear Emission-line Region (or LINER) whose contribution was swamped by the host galaxy starlight. The remaining objects display a higher ionization spectrum, more typical of Seyferts; due to the poor quality of the spectra, it was not possible to identify any possible large Balmer components. T...

  10. Resolving the bulk ion region of millimeter-wave collective Thomson scattering spectra at ASDEX Upgrade

    Stejner, M., E-mail:; Nielsen, S.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Rasmussen, J.; Salewski, M. [Department of Physics, Association EURATOM-DTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Moseev, D. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Boltzmannstr. 2, 85748 Garching (Germany); Association Euratom-FOM Institute DIFFER, 3430 BE Nieuwegein (Netherlands); Schubert, M.; Stober, J.; Wagner, D. H. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Boltzmannstr. 2, 85748 Garching (Germany)


    Collective Thomson scattering (CTS) measurements provide information about the composition and velocity distribution of confined ion populations in fusion plasmas. The bulk ion part of the CTS spectrum is dominated by scattering off fluctuations driven by the motion of thermalized ion populations. It thus contains information about the ion temperature, rotation velocity, and plasma composition. To resolve the bulk ion region and access this information, we installed a fast acquisition system capable of sampling rates up to 12.5 GS/s in the CTS system at ASDEX Upgrade. CTS spectra with frequency resolution in the range of 1 MHz are then obtained through direct digitization and Fourier analysis of the CTS signal. We here describe the design, calibration, and operation of the fast receiver system and give examples of measured bulk ion CTS spectra showing the effects of changing ion temperature, rotation velocity, and plasma composition.

  11. Admittance measurements in the quantum Hall effect regime

    Hernández, C., E-mail: [Departamento de Física, Universidad Militar Nueva Granada, Carrera 11 # 101-80, Bogotá D.C. (Colombia); Laboratorio de Magnetismo, Departamento de Física, Universidad de los Andes, A.A. 4976, Bogotá D.C. (Colombia); Consejo, C.; Chaubet, C. [Laboratoire Charles Coulomb L2C, Université Montpellier II, Pl. E. Bataillon, 34095 Montpellier Cedex 5 (France)


    In this work we present an admittance study of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime. We have studied several Hall bars in different contacts configurations in the frequency range 100 Hz–1 MHz. Our interpretation is based on the Landauer–Büttiker theory and takes into account both the capacitance and the topology of the coaxial cables which are connected to the sample holder. We show that we always observe losses through the capacitive impedance of the coaxial cables, except in the two contacts configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the 2DEG and show its dependence with the filling factor ν.

  12. Admittance plethysmographic evaluation of undulatory massage for the edematous limb.

    Yamazaki, Z; Fujimori, Y; Wada, T; Togawa, T; Yamakoshi, K; Shimazu, H


    A new apparatus, called Hadomer has been developed for the treatment of peripheral lymphedema and venous disorder. It has cuffs with 5 rooms, through which the air pressure moves from periphery to proximal point, just like surging waves. The peripheral stagnant lymph and venous blood are displaced toward the heart by this pneumatic massage. Hadomer has been applied to more than 400 patients with the edematous limbs, with satisfactory results, such as decrease of swelling, pain and induration. These clinical results have been also confirmed by electrical admittance plethysmography which is useful to measure noninvasively the edematous volume and the blood flow. The admittance of the edematous limbs is high and after massaging with Hadomer it approaches normal range. The blood flow in the diseased limbs is less than the healthy one and it is observed better after pneumatically massaging.

  13. First E- and D-region incoherent scatter spectra observed over Jicamarca

    J. L. Chau


    Full Text Available We present here the first Jicamarca observations of incoherent scatter radar (ISR spectra detected from E- and D-region altitudes. In the past such observations have not been possible at Jicamarca due a combined effect of strong equatorial electrojet (EEJ clutter and hardware limitations in the receiving system. The observations presented here were made during weak EEJ conditions (i.e., almost zero zonal electric field using an improved digital receiving system with a wide dynamic range and a high data throughput.

    The observed ISR spectra from E- and D-region altitudes are, as expected, narrow and get even narrower with decreasing altitude due to increasing ion-neutral collision frequencies. Therefore, it was possible to obtain accurate spectral measurements using a pulse-to-pulse data analysis. At lower altitudes in the D-region where signal correlation times are relatively long we used coherent integration to improve the signal-to-noise ratio of the collected data samples. The spectral estimates were fitted using a standard incoherent scatter (IS spectral model between 87 and 120 km, and a Lorentzian function below 110 km. Our preliminary estimates of temperature and ion-neutral collisions frequencies above 87 km are in good agreement with the MSISE-90 model. Below 87 km, the measured spectral widths are larger than expected, causing an overestimation of the temperatures, most likely due to spectral distortions caused by atmospheric turbulence.

  14. Examining molecular clouds in the Galactic Centre region using X-ray reflection spectra simulations

    Walls, M.; Chernyakova, M.; Terrier, R.; Goldwurm, A.


    In the centre of our Galaxy lies a supermassive black hole, identified with the radio source Sagittarius A⋆. This black hole has an estimated mass of around 4 million solar masses. Although Sagittarius A⋆ is quite dim in terms of total radiated energy, having a luminosity that is a factor of 1010 lower than its Eddington luminosity, there is now compelling evidence that this source was far brighter in the past. Evidence derived from the detection of reflected X-ray emission from the giant molecular clouds in the Galactic Centre region. However, the interpretation of the reflected emission spectra cannot be done correctly without detailed modelling of the reflection process. Attempts to do so can lead to an incorrect interpretation of the data. In this paper, we present the results of a Monte Carlo simulation code we developed in order to fully model the complex processes involved in the emerging reflection spectra. The simulated spectra can be compared to real data in order to derive model parameters and constrain the past activity of the black hole. In particular, we apply our code to observations of Sagittarius B2, in order to constrain the position and density of the cloud and the incident luminosity of the central source. The results of the code have been adapted to be used in XSPEC by a large community of astronomers.


    Zhang, Hongqi [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Brandenburg, Axel [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Sokoloff, D. D., E-mail: [Department of Physics, Moscow University, 119992 Moscow (Russian Federation)


    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30–60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field.

  16. Examining molecular clouds in the Galactic Centre region using X-ray reflection spectra simulations

    Walls, Michael; Terrier, Regis; Goldwurm, Andrea


    In the centre of our galaxy lies a super-massive black hole, identified with the radio source Sagittarius A*. This black hole has an estimated mass of around 4 million solar masses. Although Sagittarius A* is quite dim in terms of total radiated energy, having a luminosity that is a factor of $10^{10}$ lower than its Eddington luminosity, there is now compelling evidence that this source was far brighter in the past. Evidence derived from the detection of reflected X-ray emission from the giant molecular clouds in the galactic centre region. However, the interpretation of the reflected emission spectra cannot be done correctly without detailed modelling of the reflection process. Attempts to do so can lead to an incorrect interpretation of the data. In this paper we present the results of a Monte Carlo simulation code we developed in order to fully model the complex processes involved in the emerging reflection spectra. The simulated spectra can be compared to real data in order to derive model parameters and...

  17. Vibration characteristic analysis method for the quartz microgyroscope based on the admittance circle

    Wang, Haoxu; Dong, Peitao; Xie, Liqiang; Wu, Xuezhong


    The vibration characteristic analysis method for a quartz microgyroscope based on the admittance circle is reported in this paper. Admittance theory is introduced and the admittance circle principle is analysed to study the vibration characteristics of the quartz microgyroscope. The prototype gyroscope was fabricated by micro-electromechanical systems (MEMS) technology. The admittance and phase diagram of the work mode were obtained by vibration mode test systems. Then the admittance circle of the work mode was drawn, and the parameter identification of the transfer function between the voltage and current was completed to analyse the vibration characteristics. Therefore, the vibration characteristic analysis method based on the admittance circle can be used to build the transfer function of the quartz microgyroscope, which is helpful for the design of a high performance quartz microgyroscope.

  18. Vibration characteristic analysis method for the quartz microgyroscope based on the admittance circle

    Haoxu Wang


    Full Text Available The vibration characteristic analysis method for a quartz microgyroscope based on the admittance circle is reported in this paper. Admittance theory is introduced and the admittance circle principle is analysed to study the vibration characteristics of the quartz microgyroscope. The prototype gyroscope was fabricated by micro-electromechanical systems (MEMS technology. The admittance and phase diagram of the work mode were obtained by vibration mode test systems. Then the admittance circle of the work mode was drawn, and the parameter identification of the transfer function between the voltage and current was completed to analyse the vibration characteristics. Therefore, the vibration characteristic analysis method based on the admittance circle can be used to build the transfer function of the quartz microgyroscope, which is helpful for the design of a high performance quartz microgyroscope.

  19. Oxygen abundance distributions in six late-type galaxies based on SALT spectra of HII regions

    Zinchenko, I A; Grebel, E K; Pilyugin, L S


    Spectra of 34 H II regions in the late-type galaxies NGC1087, NGC2967, NGC3023, NGC4030, NGC4123, and NGC4517A were observed with the South African Large Telescope (SALT). In all 34 H II regions, oxygen abundances were determined through the "counterpart" method (C method). Additionally, in two H II regions in which the auroral lines were detected oxygen abundances were measured through the classic Te method. We also estimated the abundances in our H II regions using the O3N2 and N2 calibrations and compared those with the C-based abundances. With these data we examined the radial abundance distributions in the disks of our target galaxies. We derived surface-brightness profiles and other characteristics of the disks (the surface brightness at the disk center and the disk scale length) in three photometric bands for each galaxy using publicly available photometric imaging data. The radial distributions of the oxygen abundances predicted by the relation between abundance and disk surface brightness in the W1 b...

  20. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter

    Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K.


    Excitation-emission matrix (EEM) fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in water and soil. However, interpreting the >10,000 wavelength-dependent fluorescence intensity data points represented in EEMs has posed a significant challenge. Fluorescence regional integration, a quantitative technique that integrates the volume beneath an EEM, was developed to analyze EEMs. EEMs were delineated into five excitation-emission regions based on fluorescence of model compounds, DOM fractions, and marine waters or freshwaters. Volumetric integration under the EEM within each region, normalized to the projected excitation-emission area within that region and dissolved organic carbon concentration, resulted in a normalized region-specific EEM volume (??i,n). Solid-state carbon nuclear magnetic resonance (13C NMR), Fourier transform infrared (FTIR) analysis, ultraviolet-visible absorption spectra, and EEMs were obtained for standard Suwannee River fulvic acid and 15 hydrophobic or hydrophilic acid, neutral, and base DOM fractions plus nonfractionated DOM from wastewater effluents and rivers in the southwestern United States. DOM fractions fluoresced in one or more EEM regions. The highest cumulative EEM volume (??T,n = ????i,n) was observed for hydrophobic neutral DOM fractions, followed by lower ??T,n values for hydrophobic acid, base, and hydrophilic acid DOM fractions, respectively. An extracted wastewater biomass DOM sample contained aromatic protein- and humic-like material and was characteristic of bacterial-soluble microbial products. Aromatic carbon and the presence of specific aromatic compounds (as indicated by solid-state 13C NMR and FTIR data) resulted in EEMs that aided in differentiating wastewater effluent DOM from drinking water DOM.

  1. Photoluminescence excitation spectra of lanthanide doped YAlO3 in vacuum ultraviolet region

    Shimizu, Yuhei; Ueda, Kazushige; Inaguma, Yoshiyuki


    To understand luminescent mechanisms of lanthanide (Ln) doped phosphors, it is important to know the energy positions of unoccupied Ln2+ 4f and Ln3+ 5d states, as well as occupied Ln3+ 4f states, relative to the energy bands of host materials. Photoluminescence excitation (PLE) spectra of Ln doped YAlO3 were measured in a vacuum ultraviolet (VUV) region and the energy positions of Ln2+ 4f and Ln3+ 5d states in the wide-gap YAlO3 were elucidated. Peaks assignable to host lattice excitation were observed in all samples at approximately 8 eV in the PLE spectra. PLE peaks derived from charge transfer (CT) and 4f-5d transitions were observed at lower energy than the bandgap energy. Ln2+ 4f energy levels were obtained from the PLE peak energies for the CT transitions along with the valence band maximum. In contrast, Ln3+ 5d energy levels were evaluated from those for the 4f-5d transitions along with the Ln3+ 4f energy levels, which were obtained previously from X-ray photoelectron spectroscopy measurements. The elucidated Ln2+ 4f and Ln3+ 5d energy levels were exhibited in an energy diagram together with Ln3+ 4f energy levels and host energy bands. The experimental Ln2+ 4f and Ln3+ 5d energy levels were in good agreement with the reported theoretical data.

  2. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan;

    , and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version...... of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent fluctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel tests....

  3. Bias stress instability in organic transistors investigated by ac admittance measurements

    Di Girolamo, F. V.; Barra, M.; Capello, V.; Oronzio, M.; Romano, C.; Cassinese, A.


    In this paper, the bias stress effect (BSE) in organic field-effect transistors has been analyzed by an alternative experimental approach based on ac admittance (Y=G+jωC) measurements. conductance (C) and capacitance (G) curves have been recorded as a function of frequency at different times of the bias stress experiments and simultaneously fitted through a transmission line circuit, able to separately model the conducting properties of the channel and contact regions. The determination of the time behavior of the model fitting parameters is assumed as the starting point for a quantitative analysis of the BSE occurrence. This experimental procedure clarifies that both channel resistance (Rch) and contact resistance (Rc) are largely affected by the BSE, while the channel capacitance (Cch), related to the charge accumulation sheet, and the contact capacitance (Cc) result almost unchanged.

  4. Three-dimensional admittance analysis of lithospheric elastic thickness over the Louisville Ridge

    Hu, Minzhang; Li, Hui; Shen, Chongyang; Xing, Lelin; Hao, Hongtao


    Using bathymetry and altimetric gravity anomalies, a 1° × 1° lithospheric effective elastic thickness ( T e) model over the Louisville Ridge and its adjacent regions is calculated using the moving window admittance technique. For comparison, three bathymetry models are used: general bathymetric charts of the oceans, SIO V15.1, and BAT_VGG. The results show that BAT_VGG is more suitable for calculating T e than the other two models. T e along the Louisville Ridge was re-evaluated. The southeast of the ridge has a medium T e of 10-20 km, while T e increases dramatically seaward of the Tonga-Kermadec trench as a result of the collision of the Pacific and Indo-Australian plates.

  5. Theoretical Analysis of Ionic Autoionization Spectra of Lanthanum in the Energy Region of 90650-91500 cm-1

    张新峰; 彭永伦; 钟志萍; 屈一至; 孙玮; 夏丹; 薛平; 许祥源


    Eigenquantum defects μα and transformation matrix Uiα of La+ are calculated from the first principles by relativistic multichannel theory, and dipole matrix elements Dα axe obtained by fitting the experimental spectra.With these parameters, ionic autoionization spectra of lanthanum via an intermediate state (Xe)5d6d 1P1 of La+in the energy region of 90650-91500 cm -1 are calculated within the framework of multichannel quantum defect theory. Our calculated spectra are in general agreement with the experimental data.

  6. Effective Admittivity of Biological Tissues as a Coefficient of Elliptic PDE

    Jin Keun Seo


    can be computed from pointwise admittivity by solving Maxwell equations. We compute the effective admittivity of simple models as a function of frequency to obtain Maxwell-Wagner interface effects and Debye relaxation starting from mathematical formulations. Finally, layer potentials are used to obtain the Maxwell-Wagner-Fricke expression for a dilute suspension of ellipses and membrane-covered spheres.

  7. Non-contact structural damage detection using magnetic admittance approach with circuitry tuning

    Wang, X.; Tang, J.


    One limitation of piezoelectric impedance/admittance approach is that the sensor is permanently fixed after it is bonded/embedded into the mechanical structure to be monitored. Recently, the magnetic transducer, which is essentially an electrical coil inserted with a permanent magnet, is explored for impedance/admittance-based damage detection. Since there is no direct contact between the magnetic sensor and the host structure, the magnetic impedance/admittance approach is capable of online health monitoring of structures with complicated geometries and boundaries. Also, the magnetic impedance/admittance sensor is moveable above the structure surface, which may reduce the number of sensors needed to cover a large structural area. In an earlier study a new magnetic impedance sensing scheme with circuitry integration is proposed, which can greatly enhance the signal-to-noise ratio and amplify the damage induced admittance change. In this research, we systematically study the sensor location on the performance of the magnetic impedance/admittance-based damage detection scheme with circuitry integration. By examining the resonant peaks in the circuitry impedance curves, the damage-induced change of circuitry admittance and the two-way magneto-mechanical coupling, the different amplification effects of the magnetic sensor on the dynamical responses around mechanical modes is investigated. The criteria of tuning the capacitance of the tunable capacitor to achieve significantly amplified admittance changes in a wide frequency range are also developed. Correlated numerical and experimental studies are carried out to validate our proposed tuning criteria.

  8. Admittance to specialized palliative care (SPC) of patients with an assessed need

    Adsersen, Mathilde; Thygesen, Lau Caspar; Neergaard, Mette Asbjørn


    BACKGROUND: Admittance to specialized palliative care (SPC) has been discussed in the literature, but previous studies examined exclusively those admitted, not those with an assessed need for SPC but not admitted. The aim was to investigate whether admittance to SPC for referred adult patients...

  9. An analysis of infrared emission spectra from the regions near the Galactic Center

    Contini, M


    We present consistent modelling of line and continuum IR spectra in the region close to the Galactic center. The models account for the coupled effect of shocks and photoionization from an external source. The results show that the shock velocities range between 65 and 80 km/s, the pre-shock densities between 1 cm-3 in the ISM to 200 cm-3 in the filamentary structures. The pre-shock magnetic field increases from 5. 10^{-6} gauss in the surrounding ISM to ~8. 10^{-5} gauss in the Arched Filaments. The stellar temperatures are ~38000 K in the Quintuplet cluster and ~27000 K in the Arches Cluster. The ionization parameter is relatively low (0.01 near the Arches Cluster. Depletion from the gaseous phase of Si is found throughout the whole observed region, indicating the presence of silicate dust. Grains including iron, are concentrated throughout the Arched Filaments. The modelling of the continuum SED in the IR range, indicates that a component of dust at temperatures of ~100-200 K is present in the central regi...

  10. Fine Structure in the Mm-Wavelength Spectra of the Active Region

    Sawant, H. S.; Cecatto, J. R.


    RESUMEN. Faltan observaciones solares espectrosc6picas en la longitud de onda milimetrica. Hay sugerencias de que se puede superponer una fi na estructura en frecuencia a la componente-S de la regi6n solar activa, asi como a la componente del brote en las longitudes de onda milimetri- cas. Se ha desarrollado un receptor de alta sensibilidad de pasos de frecuencia que opera en el intervalo de 23-18 GHz con una resoluci6n de 1 GHz y resoluci6n de tiempo variable entre 1.2 y 96 sec, usando la an- tena de Itapetinga de 13.7-m para estudiar la estructura fina en frecuencia y tiempo. Discutimos el espectro en longitud de onda-mm en re- giones activas y su evoluci6n en el tiempo. El estudio de Ia evoluci6n en el tiempo de la regi6n activa en AR 5569 observada el 29 de junio de 1989, sugiere la existencia de estructuras finas como funci6n deltiempo. ABSTRACT. There is a lack of mm-wavelength spectroscopic solar observations. There are suggestions that a fine structure in frequency may be superimposed on the S-component of solar active region as well as on the burst component at inm-wavelengths. To study fine structure in frequency and time, a high sensitivity step frequency receiver operating in the frequency range 23-18 GHz with frequency resolution of 1 GHz and variable time resolution 1.2 to 96 sec, using 13.7 m diameter Itapetinga radome covered antenna, has been developed. Here, we discuss mm-wavelength spectra of active regions and their time evolution. Study of time evolution of an active region AR 5569 observed on 29th June, 1989 suggests existence of fine structures as a function of time. ( Ck : SUN-ACTIVITY - SUN-RADIO RADIATION

  11. Game Analysis of Rational FRS on Market Admittance

    曹志东; 刘春红; 俞自由


    The dynamic signaling game-model is employed to study countermeasures of Q, U and C for supply-demand on financial market. As the game result, the mixed equilibrium of Q and U exists naturally without FRS. It is concluded that FRS on market admittance is objective demand of financial market, also the rational management behavior of government FRSI. And in addition to the empirical criteria, the FRS agreements between FRSI and financial-institutions should be considered as one of advanced FRS techniques. These must cover:① the regulation conformed status investigation with sufficient frequency,② corresponding punitive measures with sufficient strength. Thus the information can be delivered FRSI have ensured only qualified and regulation-conformed financial-institutions could be allowed to enter. That could safeguard the steadiness of the financial market.

  12. Spectra calculations in central and wing regions of CO{sub 2} IR bands between 10 and 20 {mu}m. II. Atmospheric solar occultation spectra

    Niro, F.; Hase, F.; Camy-Peyret, C.; Payan, S.; Hartmann, J.-M. E-mail:


    The theoretical approach based on the Energy Corrected Sudden Approximation presented in the previous companion paper is used in order to account for line-mixing effects in infrared bands of CO{sub 2}. Its performance, which was demonstrated using laboratory spectra is confirmed here by considering atmospheric transmission in the 10-14 {mu}m region. Comparisons are made between forward calculations of atmospheric transmission spectra and values measured using two different solar occultation experiments based on high resolution Fourier transform instruments. The results demonstrate that neglecting line-mixing and using a Voigt model can lead to a very large overestimation of absorption that may extend over more than 300 cm{sup -1} in the wing of the CO{sub 2} {nu}{sub 2} band. They also demonstrate the capability of our model to represent accurately the absorption in the entire region for a variety of atmospheric paths. Among positive consequences of the quality of the model, the possibility of retrieving amounts of (heavy) trace gases with weak and broad absorption features is demonstrated.

  13. Experimental and mumerical validation of the technique for concrete cure monitoring using piezoelectric admittance measurement

    Kim, Wan Cheol; Park, Gyu Hae [Dept. of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of)


    This paper presents a new technique for monitoring the concrete curing process using embedded piezoelectric transducers via admittance measurements. When a piezoelectric transducer is embedded in a structure, the electrical impedance (admittance) of the transducer is coupled with the mechanical impedance of the host structure, which allows monitoring of the structural condition. In this study, the admittance signatures are used for monitoring the concrete curing process. This new method is based on an admittance-based sensor diagnostic process, in which the capacitance values of the piezoelectric transducers are dependent on the strength of the host structure. We numerically and experimentally investigated the variations in capacitive value during the curing process. The results demonstrate that there is a clear relationship between the concrete curing status and the slope, this indicates that the proposed method could be efficiently used for monitoring the curing status of a concrete structure.

  14. Applications of Admittance Spectroscopy in Photovoltaic Devices Beyond Majority Carrier Trapping Defects: Preprint

    Li, J. V.; Crandall, R. S.; Repins, I. L.; Nardes, A. M.; Levi, D. H.; Sulima, O.


    Admittance spectroscopy is commonly used to characterize majority-carrier trapping defects. In today's practical photovoltaic devices, however, a number of other physical mechanisms may contribute to the admittance measurement and interfere with the data interpretation. Such challenges arise due to the violation of basic assumptions of conventional admittance spectroscopy such as single-junction, ohmic contact, highly conductive absorbers, and measurement in reverse bias. We exploit such violations to devise admittance spectroscopy-based methods for studying the respective origins of 'interference': majority-carrier mobility, non-ohmic contact potential barrier, minority-carrier inversion at hetero-interface, and minority-carrier lifetime in a device environment. These methods are applied to a variety of photovoltaic technologies: CdTe, Cu(In,Ga)Se2, Si HIT cells, and organic photovoltaic materials.

  15. Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator

    Du, Zhijiang; Wang, Wei; Yan, Zhiyuan; Dong, Wei; Wang, Weidong


    In order to get natural and intuitive physical interaction in the pose adjustment of the minimally invasive surgery manipulator, a hybrid variable admittance model based on Fuzzy Sarsa(?)-learning is proposed in this paper. The proposed model provides continuous variable virtual damping to the admittance controller to respond to human intentions, and it effectively enhances the comfort level during the task execution by modifying the generated virtual damping dynamically. A fuzzy partition de...

  16. Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond

    Zubkov, V. I., E-mail:; Kucherova, O. V.; Zubkova, A. V.; Ilyin, V. A.; Afanas' ev, A. V. [St. Petersburg State Electrotechnical University (LETI), Professor Popov Street 5, 197376 St. Petersburg (Russian Federation); Bogdanov, S. A.; Vikharev, A. L. [Institute of Applied Physics of the Russian Academy of Sciences, Ul' yanov Street 46, 603950 Nizhny Novgorod (Russian Federation); Butler, J. E. [St. Petersburg State Electrotechnical University (LETI), Professor Popov Street 5, 197376 St. Petersburg (Russian Federation); Institute of Applied Physics of the Russian Academy of Sciences, Ul' yanov Street 46, 603950 Nizhny Novgorod (Russian Federation); National Museum of Natural History (NMNH), P.O. Box 37012 Smithsonian Inst., Washington, D.C. 20013-7012 (United States)


    Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120–150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10{sup −13} down to 2 × 10{sup −17} cm{sup 2} was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (∼2 × 10{sup −20} cm{sup 2}). At T > T{sub room} in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.

  17. Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region.

    Asner, Gregory P; Martin, Roberta E; Carranza-Jiménez, Loreli; Sinca, Felipe; Tupayachi, Raul; Anderson, Christopher B; Martinez, Paola


    Spectral properties of foliage express fundamental chemical interactions of canopies with solar radiation. However, the degree to which leaf spectra track chemical traits across environmental gradients in tropical forests is unknown. We analyzed leaf reflectance and transmittance spectra in 2567 tropical canopy trees comprising 1449 species in 17 forests along a 3400-m elevation and soil fertility gradient from the Amazonian lowlands to the Andean treeline. We developed quantitative links between 21 leaf traits and 400-2500-nm spectra, and developed classifications of tree taxa based on spectral traits. Our results reveal enormous inter-specific variation in spectral and chemical traits among canopy trees of the western Amazon. Chemical traits mediating primary production were tightly linked to elevational changes in foliar spectral signatures. By contrast, defense compounds and rock-derived nutrients tracked foliar spectral variation with changing soil fertility in the lowlands. Despite the effects of abiotic filtering on mean foliar spectral properties of tree communities, the spectra were dominated by phylogeny within any given community, and spectroscopy accurately classified 85-93% of Amazonian tree species. Our findings quantify how tropical tree canopies interact with sunlight, and indicate how to measure the functional and biological diversity of forests with spectroscopy.

  18. High density trans-admittance mammography development and preliminary phantom tests

    Zhao Mingkang


    Full Text Available Abstract Background Malignant breast tumor tissue has a significantly different electrical impedance spectrum than surrounding normal tissues. This has led to the development of impedance imaging as a supplementary or alternative method to X-ray mammography for screening and assessment of breast cancers. However low spatial resolution and poor signal to noise ratio has limited the clinical application. Methods In order to improve spatial resolution we developed a trans-admittance mammography (TAM system including an array of 60×60 current sensing electrodes. We adopted a similar setup to X-ray mammography where the breast is situated between two holding plates. The top plate is a large solid metal electrode for applying a sinusoidal voltage over a range of frequencies from 50 Hz to 500 kHz. The bottom plate has 3600 current sensing electrodes that are kept at the ground potential. Currents are generated from the top voltage-applying electrode and spread throughout the breast, entering the TAM system through the array of current sensing electrodes on the bottom plate. The TAM system measures the exit currents through 6 switching modules connected to 600 electrodes each. Each switching module is connected to 12 ammeter channels which are switched sequentially to 50 of the 600 electrodes each measurement time. Each ammeter channel is comprised of a current-to-voltage converter, a gain amplifier, filters, an analog to digital converter, and a digital phase sensitive demodulator. Results We found an average noise level of 38 nA, amplitude stability of less than 0.2%, crosstalk of better than -60 dB and 70 dB signal to noise ratio over all channels and operating frequencies. Images were obtained in time difference and frequency difference modes in a saline phantom. Conclusion We describe the design, construction, and calibration of a high density TAM system in detail. Successful high resolution time and frequency difference images showed regions of

  19. The effects of attenuation and site on the spectra of microearthquakes in the Jubilee Hills region of Hyderabad, India

    Saurabh Baruah; Devajit Hazarika; Naba K Gogoi; P Solomon Raju


    Microearthquake spectra from Jubilee Hills, Hyderabad are analyzed to observe the effect of attenuation and site on these spectra. The ratios of spectral amplitudes at lower and higher frequency are measured for three different stations at varying epicentral distances to estimate Q value for both P- and S-wave in near and sub-surface layer. Average estimates of Qp and Qs are 235 and 278 respectively. Value of Qs/Qp larger than 1.0 suggests dry crust for most of the Jubilee Hills region. The near-surface low Qp and Qs for 0 km to 0.9 km depth coincide with the soil layer, top and semi-weathered and highly fractured zone. In contrast, at a shallower depth beneath the Jubilee Hills area, Hyderabad, we obtain high Qp and Qs zone, which corresponds to the dense and high velocity rocks of the region. The varying corner frequencies for these spectra are inferred to be characteristics of site. Comparisons of disparity in spectral content with reference to hard rock site conclude that lithology of the northwest part of Jubilee Hills area amplify about twice the incoming seismic signal, as compared to the southern part best outlined at 8 to 10Hz only.

  20. Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra.

    Peng, Yi; Xiong, Xiong; Adhikari, Kabindra; Knadel, Maria; Grunwald, Sabine; Greve, Mogens Humlekrog


    There is a great challenge in combining soil proximal spectra and remote sensing spectra to improve the accuracy of soil organic carbon (SOC) models. This is primarily because mixing of spectral data from different sources and technologies to improve soil models is still in its infancy. The first objective of this study was to integrate information of SOC derived from visible near-infrared reflectance (Vis-NIR) spectra in the laboratory with remote sensing (RS) images to improve predictions of topsoil SOC in the Skjern river catchment, Denmark. The second objective was to improve SOC prediction results by separately modeling uplands and wetlands. A total of 328 topsoil samples were collected and analyzed for SOC. Satellite Pour l'Observation de la Terre (SPOT5), Landsat Data Continuity Mission (Landsat 8) images, laboratory Vis-NIR and other ancillary environmental data including terrain parameters and soil maps were compiled to predict topsoil SOC using Cubist regression and Bayesian kriging. The results showed that the model developed from RS data, ancillary environmental data and laboratory spectral data yielded a lower root mean square error (RMSE) (2.8%) and higher R2 (0.59) than the model developed from only RS data and ancillary environmental data (RMSE: 3.6%, R2: 0.46). Plant-available water (PAW) was the most important predictor for all the models because of its close relationship with soil organic matter content. Moreover, vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), were very important predictors in SOC spatial models. Furthermore, the 'upland model' was able to more accurately predict SOC compared with the 'upland & wetland model'. However, the separately calibrated 'upland and wetland model' did not improve the prediction accuracy for wetland sites, since it was not possible to adequately discriminate the vegetation in the RS summer images. We conclude that laboratory Vis

  1. An assessment of the accuracy of admittance and coherence estimates using synthetic data

    Crosby, A. G.


    Previous work has shown that estimates of the admittance between topography and free-air gravity anomalies are often biased by spectral leakage, even after the application of multiple prolate spheroidal wavefunction data-tapers. Despite this, a number of authors who have used the free-air admittance method to estimate the weighted-average effective elastic thickness of the lithosphere (Te) and to identify topography supported by mantle convection have not tested their methods using synthetic data with a known relationship between topography and gravity. In this paper, I perform a range of such tests using both synthetic surface data and synthetic line-of-sight (LOS) accelerations of satellites orbiting around an extra-terrestrial planet. It is found that spectral leakage can cause the estimated admittance and coherence to be significantly in error-but only if the box in which they are estimated is too small. The definition of `small' depends on the redness of the gravity spectrum. There is minimal error in the whole-box weighted-average estimate of Te if the admittance between surface gravity and topography is estimated within a box at least 3000-km-wide. When the synthetic (uniform) Te is less than 20 km and the coherence is high, the errors in Te are mostly +/-5 km for all box sizes greater than 1000 km. On the other hand, when the true Te is greater than 20 km and the box size is 1000 km, the best-fitting Te is likely to be at least 5-10 km less than the true Te. However, even when the coherence is high, it is not possible to use elastic plate admittance models to distinguish between real and spurious small fractions of internal loading when the boxes are smaller than 2000 km in width. Noise in the gravity introduces error and uncertainty, but no additional bias, into the estimates of the admittance. It does, however, bias estimates of Te calculated using the coherence between Bouguer gravity and topography. The admittance at wavelengths between 1000 and 4000 km

  2. Application of the A.C. Admittance Technique to Double Layer Studies on Polycrystalline Gold Electrodes


    Chemistry University of California Davis, CA 95616 U.S.A. tOn leave from the Instituto de Fisica e Quimica de Sao Carlos, USP, Sao Carlos, SP 13560...input of the PAR 174A through an attentuator. The attentuator was introduced in order to avoid signal noise from the a.c. signal generator which is...surface begins. A.C. Admittance Measurements A.C. admittance data were gathered as a function of d.c. potential and frequency. In general , the gold

  3. Frequency dispersion in the admittance of the polycrystalline Cu2S/CdS solar cell

    Hmurcik, L. V.; Serway, R. A.


    The admittance versus frequency for the Cu2S/CdS solar cell was measured. In the dark, the dispersion fits a model of a simple Debye capacitor, with deviation due to grain-boundary scattering at low frequencies. Under illumination, the dispersion becomes a function of surface roughness. Modeled in fractal geometry, the admittance varies as (i x omega) exp m. A second term of this type occurs at high frequencies and at illuminations greater than 0.1 percent AM 1. In this case, the depletion layer extends deep into the CdS due to insufficient charge states at the interface.

  4. Electrical admittance of piezoelectric parallelepipeds: application to tensorial characterization of piezoceramics

    Diallo, O.; Bavencoffe, M.; Feuillard, G. [Laboratoire GREMAN UMR CNRS 7347. École Nationale d’Ingénieurs du Val de Loire Université François Rabelais de Tours 3 Rue de la Chocolaterie BP 3410 41034 BLOIS CEDEX France (France); Clezio, E. Le; Delaunay, T. [Institut d’Electronique du Sud UMR CNRS 5214 IES - MIRA case 082Université Montpellier 2 Place Eugène Bataillon 34095 MONTPELLIER CEDEX 5 France (France)


    This work deals with the characterization of functional properties, including determination of mechanical and electrical losses, of piezoelectric materials using only one sample and one measurement. First, the natural resonant frequencies of a piezoelectric parallelepiped are calculated and the electrical admittance is determined from calculations of the charge quantity on both electrodes of the parallelepiped. A first validation of the model is performed using a comparison with Mason's model. Results are reported for a PMN-34.5PT ceramic cube and a good agreement is found between experimental admittance measurements and their modeling. The functional properties of the PMN-34.5PT are then extracted.

  5. Localizing epileptogenic regions in partial epilepsy using three-dimensional statistical parametric maps of background EEG source spectra.

    Alper, Kenneth; Raghavan, Manoj; Isenhart, Robert; Howard, Bryant; Doyle, Werner; John, Roy; Prichep, Leslie


    This preliminary study sought to localize epileptogenic regions in patients with partial epilepsy by analysis of interictal EEG activity utilizing variable resolution electromagnetic tomography (VARETA), a three-dimensional quantitative electroencephalographic (QEEG) frequency-domain distributed source modeling technique. The very narrow band (VNB) spectra spanned the frequency range 0.39 Hz to 19.1 Hz, in 0.39 Hz steps. These VNB spectra were compared to normative data and transformed to provide Z-scores for every scalp derivation, and the spatial distributions of the probable EEG generators of the most abnormal values were displayed on slices from a probabilistic MRI atlas. Each voxel was color-coded to represent the significance of the deviation relative to age appropriate normative values. We compared the resulting three-dimensional images to the localization of epileptogenic regions based on invasive intracranial EEG recordings of seizure onsets. The VARETA image indicated abnormal interictal spectral power values in regions of seizure onset identified by invasive monitoring, mainly in delta and theta range (1.5 to 8.0 Hz). The VARETA localization of the most abnormal voxel was congruent with the epileptogenic regions identified by intracranial recordings with regard to hemisphere in all 6 cases, and with regard to lobe in 5 cases. In contrast, abnormal findings with routine EEG agreed with invasive monitoring with regard to hemisphere in 3 cases and with regard to lobe in 2 cases. These results suggest that analysis of background interictal EEG utilizing distributed source models should be investigated further in clinical epilepsy.

  6. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.


    Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm(-1) were measured in the temperature range 30-42 C in steps of 2 degreesC. Measurements were carried out with an FT-IR spectrometer and a variable pathlength...... degreesC water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between...... transmission cell controlled within 0.02 degreesC. Pathlengths of 50 mum and 0.4 mm were used in the mid- and near-infrared spectral region, respectively. Difference spectra were used to determine the effect of temperature on the water spectra quantitatively. These spectra were obtained by subtracting the 37...

  7. Effects of mode coupling on the admittance of an AT-cut quartz thickness-shear resonator

    He Hui-Jing; Yang Jia-Shi; Zhang Wei-Ping; Wang Ji


    We study the effects of couplings to flexure and face-shear modes on the admittance of an AT-cut quartz plate thickness-shear mode resonator.Mindlin's two-dimensional equations for piezoelectric plates are employed.Electrically forced vibration solutions are obtained for three cases:pure thickness-shear mode alone; two coupled modes of thickness shear and flexure; and three coupled modes of thickness shear,flexure,and face shear.Admittance is calculated and its dependence on the driving frequency and the length/thickness ratio of the resonator is examined.Results show that near the thickness-shear resonance,admittance assumes maxima,and that for certain values of the length/thickness ratio,the coupling to flexure causes severe admittance drops,while the coupling to the face-shear mode causes additional admittance changes that were previously unknown and hence are not considered in current resonator design practice.

  8. Determination of the complex refractivity of Au, Cu and Al in terahertz and far-infrared regions from reflection spectra measurements

    Mou, Yuan; Wu, Zhen-sen; Gao, Yan-qing; Yang, Zhi-qiang; Yang, Qiu-jie; Zhang, Geng


    A scheme to determine the complex refractivity of gold (Au), Copper (Cu) and Aluminum (Al) from measurements of ellipsometer and spectrometer are proposed in this paper. The reflection spectra of the metals from 4 THz to 40 THz are measured with spectrometer. The determined refractivity by Kramers-Kronig (KK) algorithm coincides with the measured results from ellipsometer in far infrared region. Drude model is invited to make the wing correction on the terahertz reflection spectra, which helps to eliminate the effects of the noises from spectrometer on KK algorithm. The calculated refractive indexes from measured spectra in terahertz region are in consistent with those from corrected reflection spectra. The advantage of the scheme is to obtain terahertz dispersion properties based on limited information in infrared region.

  9. Laser-induced breakdown spectra of Zn2 molecule in the violet region

    Subhash C Singh; K S Ojha; R Gopal


    Laser-induced breakdown spectrum has been recorded in the region of 380-455 nm using second harmonics of Nd:YAG laser, computer-controlled TRIAX 320 M monochromator with a reciprocal linear dispersion 2.64 nm/mm fitted with ICCD detector. The spectrum consists of 108 bands, which are classified into four new subsystems E0$_{u}^{+}$ $(^{1}\\sum_{u}^{+}) → A1_{g} (^{3}_{g}), JO_{g}^{±}\\backslash 1_{g} (^{3}\\sum_{g}^{+}) → D1_{u} (^{1}_{u}), F1_{u} → A0_{g}^{±} (^{3}_{g})$ and $F1_{u} → A2_{g} (^{3}_{g})$ along with additional bands of the known system $E0_{u}^{+} (^{1}\\sum_{u}^{+}) → A0_{g}^{±} (^{3}_{g})$. The molecular constants for these systems have also been determined.

  10. Use of paravascular admittance waveforms to monitor relative change in arterial blood pressure

    Zielinski, Todd M.; Hettrick, Doug; Cho, Yong


    Non-invasive methods to monitor ambulatory blood pressure often have limitations that can affect measurement accuracy and patient adherence [1]. Minimally invasive measurement of a relative blood pressure surrogate with an implantable device may provide a useful chronic diagnostic and monitoring tool. We assessed a technique that uses electrocardiogram and paravascular admittance waveform morphology analysis to one, measure a time duration (vascular tone index, VTI in milliseconds) change from the electrocardiogram R-wave to admittance waveform peak and two, measure the admittance waveform minimum, maximum and magnitude as indicators of change in arterial compliance/distensibility or pulse pressure secondary to change in afterload. Methods: Five anesthetized domestic pigs (32 ± 4.2 kg) were used to study the effects of phenylephrine (1-5 ug/kg/min) on femoral artery pressure and admittance waveform morphology measured with a quadrapolar electrode array catheter placed next to the femoral artery to assess the relative change in arterial compliance due to change in peripheral vascular tone. Results: Statistical difference was observed (p blood pressure may be suitable for implantable devices to detect progression of cardiovascular disease such as hypertension.

  11. Probing liquid distribution in partially saturated porous materials with hydraulic admittance.

    Cheung, P; Fairweather, J F; Schwartz, D T


    The distribution of two immiscible fluids in a complex porous material during displacement is often central to understanding its function. Characterization of this distribution is traditionally determined via optically transparent flow cells. However, for opaque or thin porous materials of the order of hundreds of microns, optical visualization proves to be difficult and requires sophisticated imaging techniques that are expensive and difficult to come by. We describe here a bench-top tool that dynamically probes the hydraulic pathways leading to each free-interface within a single capillary and a bundle of seven capillaries at various saturations (i.e., hydraulic path lengths). A small volumetric displacement was applied to each interface such that the interfaces remained pinned at the capillary walls and the resultant oscillatory pressure drop was measured to determine the hydraulic admittance at each applied oscillation frequency. When the magnitude of the hydraulic admittance was plotted vs. applied oscillation frequency, a resonance peak was found for each degenerately filled capillary. The corresponding peaks were represented by a half-loop (100% filled) and full loops (partially filled) in a Nyquist plot. We compared the theoretical and measured admittance curves and found good agreement for both capillary systems at high filled states. The theoretical predictions became worse when the hydraulic path length was comparable to the capillary radius. The analysis for the hydraulic admittance of a bundle of capillaries is developed here and experimentally validated for the first time.

  12. Experimental determination of the admittances of aluminized propellants by the impedance tube method

    Baum, J. D.; Daniel, B. R.; Zinn, B. T.


    The adaptation of the impedance tube concept for the determination of the pressure coupled admittances and response functions of burning solid propellants is discussed. The results obtained in experiments with UTP-3001 and UTP-19360 aluminized propellants are presented. It is shown that the admittance Y remains constant during the quasi-steady burn period of a test, indicating constant driving of the gas phase disturbance by the burning solid propellant. The measured real part of the admittance is positive, indicating that the burning aluminized propellant is driving the gas phase oscillations. In addition, the measured high gas phase damping, provided by the aluminum oxide particles in the gas phase, suggests that the latter can significantly increase the damping in unstable solid rockets over the investigated frequency range. Finally, it is shown that the wave structure obtained by numerically solving the impedance tube wave equations which utilize the determined propellant admittance as an initial condition and the determined value of G to describe the gas phase losses is in excellent agreement with the measured wave structure.

  13. Interface studies of the MOS-structure by transfer-admittance measurements

    Koomen, Jan


    The transfer-admittance of n- and p-channel MOS transistors has been measured under the condition of a uniform channel. These MOS transistors all showed a measurable “slow interface state drift” <0·1–0·2 V. The transfer-susceptance has been found to show a significant peak value in moderate inversio

  14. Multiple solutions provided by analytical synthesis in admittance matching; application to dichroic mirrors

    Dinca, Andreea; Miclea, P. T.; Lupei, V.;


    The paper describes the application of the complete-admittance matching in the design of two dichroic mirrors. The matching stacks were analytically synthesized and all solutions with 1, 2 and 3 periods were investigated in order to obtain a large transmission band and preserve the high reflectan...

  15. Discrete vortex method simulations of the aerodynamic admittance in bridge aerodynamics

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan;


    We present a novel method for the simulation of the aerodynamic admittance in bluff body aerodynamics. The method introduces a model for describing oncoming turbulence in two-dimensional discrete vortex method simulations by seeding the upstream flow with vortex particles. The turbulence...

  16. First observation of natural circular dichroism spectra in the extreme ultraviolet region using a polarizing undulator-based optical system and its polarization characteristics.

    Tanaka, Masahito; Yagi-Watanabe, Kazutoshi; Kaneko, Fusae; Nakagawa, Kazumichi


    Natural circular dichroism (CD) spectra in the extreme ultraviolet (EUV) region down to a wavelength of 80 nm have been observed for the first time, using an alanine thin film deposited on sodium salicylate coated glass as a sample. Calibrated EUV-CD spectra of L-alanine exhibited a large negative peak at around 120 nm and a positive CD signal below 90 nm, which were roughly predicted by theoretical calculations. A CD measurement system with an Onuki-type polarizing undulator was used to obtain the EUV-CD spectra. This CD system, the development of which took five years, can be used to observe even weak natural CD spectra. The polarization characteristics of this system were also evaluated in order to calibrate the recorded CD spectra.

  17. Experimental and simulated neon spectra in the 10 nm wavelength region from the Tore Supra Tokamak and the reversed field pinch RFX

    Mattioli, M.; DeMichelis, C.; Monier-Garbet, P. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Fournier, K.B. [Lawrence Livermore National Lab., CA (United States); Carraro, L.; Puiatti, M.E.; Sattin, F.; Scarin, P.; Valisa, M. [Conzorzio RFX, Padova (Italy)


    Experimental neon spectra (in the 10 nm region), from the tokamak Tore Supra and the reversed field pinch RFX, have been simulated. The spectra include lines from three neon ionization states, Ne{sup 7+}, Ne{sup 6+}, and Ne{sup 5+} ions. Collisional radiative models have been built for these three Ne ions, considering electron collisional excitation and radiative decay as populating processes of the excited states. These models give photon emission coefficients for the emitted lines at electron density and temperature values corresponding to the experimental situations. Impurity modelling is performed using a 1-D impurity transport code, calculating the steady state radial distribution of the Ne ions. The Ne line brightnesses are evaluated in a post-process subroutine and simulated spectra are obtained. The parts of the spectra corresponding to a single ionization state do not depend on the experimental conditions and show good agreement with the simulated single ionization state spectra. On the other hand, the superposition of the three spectra depends on the experimental conditions, as a consequence of the fact that the ion charge distribution depends not only on the radial profiles of the electron density and temperature, but also of the impurity transport coefficients. Simulations of the Ne spectra (including transport) give confidence in the atomic physics calculations; moreover, they allow the determination of the transport coefficients in the plasma region emitting the considered ionization states. (authors)

  18. Validation of admittance computed left ventricular volumes against real-time three-dimensional echocardiography in the porcine heart.

    Kutty, Shelby; Kottam, Anil T; Padiyath, Asif; Bidasee, Keshore R; Li, Ling; Gao, Shunji; Wu, Juefei; Lof, John; Danford, David A; Kuehne, Titus


    The admittance and Wei's equation is a new technique for ventricular volumetry to determine pressure-volume relations that addresses traditional conductance-related issues of parallel conductance and field correction factor. These issues with conductance have prevented researchers from obtaining real-time absolute ventricular volumes. Moreover, the time-consuming steps involved in processing conductance catheter data warrant the need for a better catheter-based technique for ventricular volumetry. We aimed to compare the accuracy of left ventricular (LV) volumetry between the new admittance catheterization technique and transoesophageal real-time three-dimensional echocardiography (RT3DE) in a large-animal model. Eight anaesthetized pigs were used. A 7 French admittance catheter was positioned in the LV via the right carotid artery. The catheter was connected to an admittance control unit (ADVantage; Transonic Scisense Inc.), and data were recorded on a four-channel acquisition system (FA404; iWorx Systems). Admittance catheterization data and transoesophageal RT3DE (X7-2; Philips) data were simultaneously obtained with the animal ventilated, under neuromuscular blockade and monitored in baseline conditions and during dobutamine infusion. Left ventricular volumes measured from admittance catheterization (Labscribe; iWorx Systems) and RT3DE (Qlab; Philips) were compared. In a subset of four animals, admittance volumes were compared with those obtained from traditional conductance catheterization (MPVS Ultra; Millar Instruments). Of 37 sets of measurements compared, admittance- and RT3DE-derived LV volumes and ejection fractions at baseline and in the presence of dobutamine exhibited general agreement, with mean percentage intermethod differences of 10% for end-diastolic volumes, 14% for end-systolic volumes and 9% for ejection fraction; the respective intermethod differences between admittance and conductance in eight data sets compared were 11, 11 and 12

  19. A Correction Method for Attenuated Total Reflection-Far Ultraviolet Spectra Via the Use of Charge Transfer to Solvent Band Intensities of Iodide in the Ultraviolet Region.

    Ikehata, Akifumi; Goto, Takeyoshi; Morisawa, Yusuke


    Attenuated total reflection (ATR) spectra, which are often used in IR analysis, can be transformed into extinction and refraction spectra by Kramers-Kronig transformation (KKT) with Fresnel equations. However, it is often difficult to obtain correct optical indices due to the inherent instrumental functions. This paper proposes a simple practical method for correction of KKT with two parameters, which include all the effects of the instrumental function. In order to obtain the parameters of the instrumental function, absorption ratios of charge transfer to solvent (CTTS) transitions of aqueous iodide ions observed at 195 nm and 230 nm were used as a standard. The absorption indices calculated from the ATR spectra with the parameters correspond reasonably well to those given by the transmittance spectra not only in the UV region but also in the far-ultraviolet (FUV, 120-200 nm) region. By applying the corrected KKT to the ATR-FUV spectra of aqueous potassium halide solutions in the range of 0-2 M, correct features of the absorption spectra of KCl and KBr, whose CTTS bands are thought to be observed in FUV region, were confirmed. It is possible to use the parameters representing the instrument function as long as the instrument is not changed.

  20. Applying coda envelope measurements to local and regional waveforms for stable estimates of magnitude, source spectra and energy

    Hofstetter, R.; Mayeda, K.; Rodgers, A.; Walter, W.


    Magnitude estimation forms an integral part in any seismic monitoring endeavor. For monitoring compliance of the Comprehensive Nuclear-Test-Ban Treaty, regional seismic discriminants are often functions of magnitude such as m{sub b}:M{sub 0} high-to-low spectral ratios, and nuclear yield estimation. For small-to-moderate magnitude events that cannot be studied by a large regional or global network of stations, there is a need for stable magnitudes that can be obtained from as few as one station. To date, magnitudes based on coda envelopes are by far the most stable because of the coda's averaging properties. Unlike conventional magnitudes which utilize the direct phases such as P (P{sub n}, P{sub g}) or S (S{sub n}, L{sub g}), or M{sub g}, a coda envelope magnitude is not as sensitive to the undesirable effects of source radiation pattern, 3-D path heterogeneity, and constructive/destructive interference near the recording site. The stability of the coda comes from a time-domain measurement made over a large portion of the seismogram thereby averaging over the scattered wavefield. This approach has been applied to earthquakes in the western United States where it was found that a single-station coda magnitude was approximately equivalent to an average over a 64 station network which used only the direct waves such as L{sub g} (Mayeda and Walter, JGR, 1996). In this paper we describe in detail our calibration procedure starting with a broadband recording, correlation with independent moment estimates, formation of narrowband envelopes, coda envelope fitting with synthetics, and finally the resultant moment-rate spectra. Our procedure accounts for all propagation, site, and S-to-coda transfer function effects. The resultant coda-derived moment-rate spectra are then used to estimate seismic moment (M{sub o}), narrowband magnitudes such as m{sub b} or M{sub L}, and total seismic energy. For the eastern Mediterranean region a preliminary study was completed for

  1. S-wave velocity structure in the Nankai accretionary prism derived from Rayleigh admittance

    Tonegawa, Takashi; Araki, Eiichiro; Kimura, Toshinori; Nakamura, Takeshi; Nakano, Masaru; Suzuki, Kensuke


    Two cabled seafloor networks with 22 and 29 stations (DONET 1 and 2: Dense Oceanfloor Network System for Earthquake and Tsunamis) have been constructed on the accretionary prism at the Nankai subduction zone of Japan since March 2010. The observation periods of DONET 1 and 2 exceed more than 5 years and 10 months, respectively. Each station contains broadband seismometers and absolute and differential pressure gauges. In this study, using Rayleigh waves of microseisms and earthquakes, we calculate the Rayleigh admittance (Ruan et al., 2014, JGR) at the seafloor for each station, i.e., an amplitude transfer function from pressure to displacement, particularly for the frequencies of 0.1-0.2 Hz (ambient noise) and 0.04-0.1 Hz (earthquake signal), and estimate S-wave velocity (Vs) structure beneath stations in DONET 1 and 2. We calculated the displacement seismogram by removing the instrument response from the velocity seismogram for each station. The pressure record observed at the differential pressure gauge was used in this study because of a high resolution of the pressure observation. In addition to Rayleigh waves of microseisms, we collected waveforms of Rayleigh waves for earthquakes with an epicentral distance of 15-90°, M>5.0, and focal depth shallower than 50 km. In the frequency domain, we smoothed the transfer function of displacement/pressure with the Parzen window of ±0.01 Hz. In order to determine one-dimensional Vs profiles, we performed a nonlinear inversion technique, i.e., simulated annealing. As a result, Vs profiles obtained at stations near the land show simple Vs structure, i.e., Vs increases with depth. However, some profiles located at the toe of the acceretionary prism have a low-velocity zone (LVZ) at a depth of 5-7 km within the accretinary sediment. The velocity reduction is approximately 5-20 %. Park et al. (2010) reported such a large reduction in P-wave velocity in the region of DONET 1 (eastern network and southeast of the Kii

  2. Monte Carlo computations of F-region incoherent radar spectra at high latitudes and the use of a simple method for non-Maxwellian spectral calculations

    Kikuchi, K.; Barakat, A.; St-Maurice, J.-P.


    Monte Carlo simulations of ion velocity distributions in the high-latitude F region have been performed in order to improve the calculation of incoherent radar spectra in the auroral ionosphere. The results confirm that when the ion temperature becomes large due to frictional heating in the presence of collisions with the neutral background constituent, F region spectra evolve from a normal double hump, to a triple hump, to a spectrum with a single maximum. An empirical approach is developed to overcome the inadequacy of the Maxwellian assumption for the case of radar aspect angles of between 30 and 70 deg.

  3. Dielectric studies of boron sub phthalocyanine chloride thin films by admittance spectroscopic techniques

    Kalia, Sameer; Neerja [Department of Physics, DAV College, Amritsar-143301 (India); Mahajan, Aman, E-mail:; Sharma, Anshul Kumar; Kumar, Sanjeev; Bedi, R. K. [Material Research Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar-143005 (India)


    The dielectric properties of Boron Sub Phthalocyanine Chloride (Cl-SubPc) thermally deposited on ITO substrate have been studied using admittance spectroscopic techniques. The I-V and capacitance –frequency (C-F) studies at various bias voltages reveal that the mobility of charge carriers decrease with bias voltage, however the conduction phenomenon still remain hopping in nature. From the differential susceptance curve, the contribution of the Schottky barrier contact in the charge carrier concentration was found to be absent. The mobility of charge carriers have been determined using differential susceptance variation and from the phase of admittance curve. The values obtained in two cases have been found to be in agreement with each other.

  4. Surface acoustic admittance and absorption of highly porous, layered, fibrous materials

    Tesar, J. S.; Lambert, R. F.


    Some acoustic properties of Kevlar-29 - a fine fibered, layered material is investigated. Kevlar is characterized by very high strength, uniform filaments arranged in a parallel batt where most filaments are random in the x-y plane but ordered as planes in the z direction. For experimental purposes, volume porosity, static flow resistance and mean filament diameter are used to identify the material. To determine the acoustic surface admittance of Kevlar, batts of the material are cut into small pads and placed into a standing wave tube terminated by a rigid brass plug. The attenuation and relative phase shift are recorded at each frequency in the range of 50 to 6000 Hz. Normalized conductance and susceptance are combined to form the acoustic absorption coefficient. The data are compared with theory by plotting the normalized admittance and normal incident absorption coefficient versus cyclic frequency.

  5. Universal properties of two-port scattering, impedance, and admittance matrices of wave-chaotic systems.

    Hemmady, Sameer; Zheng, Xing; Hart, James; Antonsen, Thomas M; Ott, Edward; Anlage, Steven M


    Statistical fluctuations in the eigenvalues of the scattering, impedance, and admittance matrices of two-port wave-chaotic systems are studied experimentally using a chaotic microwave cavity. These fluctuations are universal in that their properties are dependent only upon the degree of loss in the cavity. We remove the direct processes introduced by the nonideally coupled driving ports through a matrix normalization process that involves the radiation-impedance matrix of the two driving ports. We find good agreement between the experimentally obtained marginal probability density functions (PDFs) of the eigenvalues of the normalized impedance, admittance, and scattering matrix and those from random matrix theory (RMT). We also experimentally study the evolution of the joint PDF of the eigenphases of the normalized scattering matrix as a function of loss. Experimental agreement with the theory by Brouwer and Beenakker for the joint PDF of the magnitude of the eigenvalues of the normalized scattering matrix is also shown.

  6. Theoretical Analysis of Vcd Spectra of α and β L-Fucopyranoside in the CH Stretching Region

    Moussi, Sofiane; Ouamerali, Ourida


    Fucose is a deoxyhexose that is present in a wide variety of organisms. The stereochemical information, namely, glycosidic linkages α or β, gives significant features of the carbohydrate glycosidation position of the glycosylic acceptor [1]. Due to its applicability to all organic molecules and the reliability of ab initio quantum calculation, Vibrational Circular Dichroism VCD has some advantages over conventional electronic spectroscopy. However, for a molecule with many chiral centers such as carbohydrate, determination of the absolute configuration tends to be difficult because the information from each stereochemical center are mixed and averaged over the spectrum. T. Taniguchi et al [2] reported that in the CH stretching region of carbohydrate, methyl glycosides exhibit a characteristic VCD peak at 2840 wn, the sign solely reflects the anomeric carbon absolute configuration. This work is an investigation of theoretical VCD spectra of α-L-fucopyranoside and β-L-fucopyranoside with an implicit (PCM) and explicit consideration of water molecules using density functional theory DFT and the Potential Energy Distribution's analysis (PED). [1]. a) C.-H. Wong, Carbohydrate -Based Drug Discovery, Wiley-VCH Weinheinium 2003; b) T. Taniguchi, K. Monde, Wiley VCH Verlag GmbH§ Co. KGaA, Weinhein chem asian J. 2007, 2,1258-1266 [2]. T. Taniguchi et al. Tetrahedron Letters 45 (2004) 8451-8453

  7. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter


    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  8. Tracing Quasar Narrow-Line Regions Across Redshift: A Library of High S/N Optical Spectra

    Tammour, A; Richards, G T


    In a single optical spectrum, the quasar narrow-line region (NLR) reveals low density, photoionized gas in the host galaxy interstellar medium, while the immediate vicinity of the central engine generates the accretion disk continuum and broad emission lines. To isolate these two components, we construct a library of high S/N optical composite spectra created from the Sloan Digital Sky Survey (SDSS-DR7). We divide the sample into bins of continuum luminosity and Hbeta FWHM that are used to construct median composites at different redshift steps up to 0.75. We measure the luminosities of the narrow-emission lines [NeV]3427, [NeIII]3870, [OIII]5007, and [OII]3728 with ionization potentials (IPs) of 97, 40, 35, and 13.6 eV respectively. The high IP lines' luminosities show no evidence of increase with redshift consistent with no evolution in the AGN SED or the host galaxy ISM illuminated by the continuum. In contrast, we find that the [OII] line becomes stronger at higher redshifts, and we interpret this as a co...

  9. Measurements and modeling of cold 13CH4 spectra in the 3750-4700 cm-1 region

    Brown, L. R.; Nikitin, A. V.; Sung, K.; Rey, M.; Tashkun, S. A.; Tyuterev, Vl. G.; Crawford, T. J.; Smith, M. A. H.; Mantz, A. W.


    A new study of 13CH4 line intensities and positions was performed in the Octad region between 3750 and 4700 cm-1. Using 13C-enriched samples, spectra were recorded with both the McMath-Pierce FTS at Kitt Peak Observatory in Arizona and the Bruker IFS-125HR at JPL. Sample temperatures ranged between 80 and 296 K. Line positions and intensities of ~15,000 features were retrieved at different temperatures by non-linear least squares curve-fitting procedures. Intensities were used to estimate the lower state energies for 60% of the features in order to determine quantum assignments up to J=10. A preliminary analysis was performed using the effective Hamiltonian and the effective dipole transition moment expressed in terms of irreducible tensor operators adapted to spherical top molecules. Selected assignments were made up to J=10 for all 24 sub-vibrational states of the Octad; these were modeled for 4752 experimental line positions and 3301 selected line intensities fitted with RMS standard deviations of 0.004 cm-1 and 6.9%, respectively. Integrated intensities of the eight Octad bands are compared to ab initio variational calculations. A prediction of the 13CH4 is given, but further analysis to improve the calculation will be reported in the future.

  10. Development of a trans-admittance mammography (TAM) using 60×60 electrode array

    Zhao, Mingkang; Liu, Qin; In Oh, Tong; Woo, Eung Je; Seo, Jin Keun


    We have developed a trans-admittance mammography (TAM) system as a supplementary or alternative method of the X-ray mammography to diagnose the breast cancer. Mechanical structure of the system is similar to the X-ray mammography with the breast placed between two plates. The pair of plates is movable to accommodate breasts with different sizes and rotatable to provide multiple images with different projection angles. Without using ionizing radiation, it acquires a projection image of tissue admittivity values. One plate is a flat solid electrode where we apply a constant sinusoidal voltage with a variable frequency. The other is equipped with 60×60 array of current-sensing electrodes, of which potentials are kept at the signal reference level. The electrode array is connected to six switching modules and each module routes current signals from 600 electrodes to two ammeter modules. Each ammeter module includes six channels of ammeters and each one of them comprises an independent current-to-voltage converter, voltage amplifier, ADC and digital phase-sensitive demodulator. Each ammeter sequentially measures exit currents from 50 electrodes chosen by the corresponding switching module. An FPGA controls six ammeters to collect real- and imaginary-parts of trans-admittance data from 300 electrodes. A separate FPGA arbitrates data and command exchanges between a DSP-based main controller and ammeter modules. It also generates a sinusoidal voltage signal to be applied to the breast. All the 3600 complex current data from 12 ammeter modules are transferred to the main controller, which is interfaced to a PC through an isolated USB. The system is provided with a program to display real- and imaginary-parts of measured trans-admittance maps. The measured maps at multiple frequencies are incorporated into a frequency-difference anomaly detection algorithm. In this paper, we describe the design and construction of the system.

  11. Admittance Control of a Multi-Finger Arm Based on Manipulability of Fingers

    Takayuki Hori


    Full Text Available In the previous studies, admittance control and impedance control for a finger‐arm robot using the manipulability of the finger were studied and methods of realizing the controls have been proposed. In this study, two 3‐DOF fingers are attached to the end‐effector of a 6‐DOF arm to configure a multi‐finger arm robot. Based on the previous methods, the authors have proposed an admittance control for a multi‐finger arm robot using the manipulability of the fingers in this study. Algorithms of the averaging method and the mini‐max method were introduced to establish a manipulability criterion of the two fingers in order to generate a cooperative movement of the arm. Comparison of the admittance controls combined with the top search method and local optimization method for the multi‐finger arm robot was made and features of the control methods were also discussed. The stiffness control and damping control were experimentally evaluated to demonstrate the effectiveness of the proposed methods.


    J. D. SAKALA


    Full Text Available Line-to-line-to-line unsymmetrical faults either involving or not involving ground are in the classical fault analysis approach difficult to analyse. This is because the classical solution requires use of the knowledge of connection of symmetrical component sequence networks for various common faults. In this approach, the phase fault constraints are converted into symmetrical sequence constraints and the sequence networks connected in a way that satisfies the constraints. The symmetrical component constraints for an unsymmetrical three-phase fault not involving ground do not lend themselves easy to the connection of the sequence networks. The exception is that, because the phase currents at the fault summate to zero, the zero sequence current is zero and therefore the zero sequence network is not connected. The connection of the positive and negative sequence networks is difficult to deduce when the fault is unsymmetrical. A classical solution is therefore difficult to find. In contrast, a solution by the general method of fault admittance matrix does not require prior knowledge of how the sequence networks are connected. It is therefore more versatile than the classical methods. The paper presents a procedure for solving a three-phase unsymmetrical fault, with different fault impedances, hence fault admittances in each phase. A computer program based on the general fault admittance method is developed and used to analyse an unsymmetrical three-phase fault on a simple power system with a delta-earthed-star connected transformer.

  13. A New system for Measuring Electrical Conductivity of Water as a Function of Admittance

    Haval Yacoob


    Full Text Available This paper presents a new system for measuring water conductivity as a function of electrophysical property (admittance. The system is cheap and its manufacturing is easy. In addition, it dose not require any sort of electrolysis and calibration. The system consists of four electrodes made of silver (Ag 92.5 g to Cu 7.5 g fixed in a plastic tube filled by water which allows the use of two and four electrode setups. The admittance (reciprocal of impedance is measured for different water sources (distilled, rainfall, mineral, river and tap water using different frequencies between 50 Hz and 100 kHz. These measurements were taken twice, once with four electrodes and another with two electrodes of two modes (inner and outer electrodes. The results have shown good correlation between the measured admittance and the conductivity of all the water sources and the best correlation was found at low frequencies between 50 Hz and 20 kHz. The highest efficiency can be achieved by performing the four electrodes system which allows circumventing the effect of the electrode impedance. This result makes the system efficient compared to traditional conductivity meters which usually require high frequencies for good operation. doi:10.5617/jeb.203 J Electr Bioimp, vol. 2, pp. 86-92, 2011

  14. Coulometric differential FFT admittance voltammetry determination of Amlodipine in pharmaceutical formulation by nano-composite electrode.

    Norouzi, Parviz; Gupta, Vinod Kumar; Larijani, Bagher; Rasoolipour, Solmaz; Faridbod, Farnoush; Ganjali, Mohammad R


    An electrochemical detection technique based on combination of was coulometric differential fast Fourier transformation admittance voltammetry (CDFFTAV) and nano-composite film modified glassy carbon electrode was successfully applied for sensitive determination of Amlodipine. The nano-composite film was made by a mixture of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), multiwall carbon nanotube and Au nanoparticles as electrochemical mediators. Studies reveal that the irreversible oxidation of Amlodipine was highly facile on the electrode surface. The electrochemical response was established on calculation of the charge under the admittance peak, which was obtained by discrete integration of the admittance response in a selected potential range, obtained in a flow injection analysis. Once established the best operative optimum conditions, the resulting nano-composite film electrode showed a catalytic effect on the oxidation of the analyte. The response is linear in the Amlodipine concentration range of 1.0 × 10(-9) to 2.0 × 10(-7)M with a detection limit of 1.25 × 10(-10)M. Moreover, the proposed technique exhibited high sensitivity, fast response time (less than 6s) and long-term stability and reproducibility around 96%, and it was successfully used to the determination of Amlodipine content in the pharmaceutical formulation.

  15. Total bremsstrahlung spectra of thick lead compounds produced by {sup 90}Sr beta emitter in photon energy region of 10–100 keV

    Sharma, Suhansar Jit [Department of Physics, B.B.S.B Polytechnic, Fatehgarh Sahib, Punjab (India); Singh, Tajinder, E-mail: [Department of Physics, Mata Gujri College, Fatehgarh Sahib, Punjab (India); Singh, Doordarshi [Department of Mechanical Engineering, B.B.S.B Engineering College, Fatehgarh Sahib, Punjab (India); Singh, Amrit [Department of Physics, Baba Ajay Singh Khalsa College, Gurdas Nangal, Gurdaspur, Punjab (India); Dhaliwal, A.S. [Department of Physics, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab (India)


    Highlights: • Total bremsstrahlung spectra in thick targets of Pb compounds by {sup 90}Sr in energy range 10–100 keV. • Experimental results show better agreement with the model which includes PB in SA up to 30 keV. • At higher photon energy region 30–100 keV the model which describes OB is more accurate. • Experimental results show positive deviations from the entire models at higher energy end spectrum. - Abstract: The total bremsstrahlung spectra in the thick targets of lead acetate trihydrate (Pb(CH{sub 3}COO){sub 2}·3H{sub 2}O), lead nitrate Pb(NO{sub 3}){sub 2} and lead chloride (PbCl{sub 2}) produced by {sup 90}Sr beta particles have been investigated in the photon energy region of 10–100 keV. The experimental bremsstrahlung spectra have been compared with the theoretical models Elwert corrected (non relativistic) Bethe Heitler theory, modified Elwert factor (relativistic) Bethe Heitler theory for ordinary bremsstrahlung and modified Elwert factor (relativistic) Bethe Heitler theory which includes polarization bremsstrahlung in the stripped atom approximation. The experimental results show better agreement with theoretical model that includes polarization bremsstrahlung in stripped approximation in the photon energy region below 30 keV. However, at higher photon energy region 30–100 keV, the theoretical model which describes ordinary bremsstrahlung is more accurate to describe the experimental bremsstrahlung spectra. The experimental results show positive deviations from the entire theoretical models at higher energy end of the spectrum. The results indicate that polarization bremsstrahlung plays important role in the formation of total bremsstrahlung spectra in lead compounds produced by continuous beta particles at low photon energy region of 10–30 keV.

  16. Delays in Admittance-Controlled Haptic Devices Make Simulated Masses Feel Heavier.

    Irene A Kuling

    Full Text Available In an admittance-controlled haptic device, input forces are used to calculate the movement of the device. Although developers try to minimize delays, there will always be delays between the applied force and the corresponding movement in such systems, which might affect what the user of the device perceives. In this experiment we tested whether these delays in a haptic human-robot interaction influence the perception of mass. In the experiment an admittance-controlled manipulator was used to simulate various masses. In a staircase design subjects had to decide which of two virtual masses was heavier after gently pushing them leftward with the right hand in mid-air (no friction, no gravity. The manipulator responded as quickly as possible or with an additional delay (25 or 50 ms to the forces exerted by the subject on the handle of the haptic device. The perceived mass was ~10% larger for a delay of 25 ms and ~20% larger for a delay of 50 ms. Based on these results, we estimated that the delays that are present in nowadays admittance-controlled haptic devices (up to 20ms will give an increase in perceived mass which is smaller than the Weber fraction for mass (~10% for inertial mass. Additional analyses showed that the subjects' decision on mass when the perceptual differences were small did not correlate with intuitive variables such as force, velocity or a combination of these, nor with any other measured variable, suggesting that subjects did not have a consistent strategy during guessing or used other sources of information, for example the efference copy of their pushes.

  17. Admittance Modeling of Voltage and Current Controlled Inverter for Harmonic Instability Studies

    Hoseinzadeh, Bakhtyar; Bak, Claus Leth


    This paper proposes an impedance/admittance based model for voltage and current controlled inverters with passive elements suitable for harmonic instability study of grid connected inverters in frequency domain. This linearized model of inverters, significantly simplifies investigation of resonance...... instability and control loop interaction of wind turbines with each other and/or with the grid, while they are installed in wind farms. The derived impedance ratio at point of common connection demonstrates how the inverters participate in harmonic stability of the grid....

  18. Dynamic virtual fixture on the Euclidean group for admittance-type manipulator in deforming environments.

    Zhang, Dongwen; Zhu, Qingsong; Xiong, Jing; Wang, Lei


    In a deforming anatomic environment, the motion of an instrument suffers from complex geometrical and dynamic constraints, robot assisted minimally invasive surgery therefore requires more sophisticated skills for surgeons. This paper proposes a novel dynamic virtual fixture (DVF) to enhance the surgical operation accuracy of admittance-type medical robotics in the deforming environment. A framework for DVF on the Euclidean Group SE(3) is presented, which unites rotation and translation in a compact form. First, we constructed the holonomic/non-holonomic constraints, and then searched for the corresponded reference to make a distinction between preferred and non-preferred directions. Second, different control strategies are employed to deal with the tasks along the distinguished directions. The desired spatial compliance matrix is synthesized from an allowable motion screw set to filter out the task unrelated components from manual input, the operator has complete control over the preferred directions; while the relative motion between the surgical instrument and the anatomy structures is actively tracked and cancelled, the deviation relative to the reference is compensated jointly by the operator and DVF controllers. The operator, haptic device, admittance-type proxy and virtual deforming environment are involved in a hardware-in-the-loop experiment, human-robot cooperation with the assistance of DVF controller is carried out on a deforming sphere to simulate beating heart surgery, performance of the proposed DVF on admittance-type proxy is evaluated, and both human factors and control parameters are analyzed. The DVF can improve the dynamic properties of human-robot cooperation in a low-frequency (0 ~ 40 rad/sec) deforming environment, and maintain synergy of orientation and translation during the operation. Statistical analysis reveals that the operator has intuitive control over the preferred directions, human and the DVF controller jointly control the

  19. General Fault Admittance Method Solution of a Line-to-Line Fault

    J.D. Sakala


    Full Text Available In the classical approach, line-to-line faults are usually analysed using a parallel connection of symmetrical component sequence networks. The sequence networks are solved separately, and then the positive and negative sequence networks are connected in parallel for a line-to-line fault, and solved to obtain the phase quantities. The solution proceeds by identifying the connection of the sequence networks at the fault point and then solving for the symmetrical component currents and voltages. These are then used to determine the symmetrical component voltages at the other busbars and hence the symmetrical component currents in the lines. The approach requires that the connection of the sequence networks be known for the common fault types. However, a solution by the general method of fault admittance matrix does not require prior knowledge of how the sequence networks are connected. This makes the general method more versatile than the classical methods. The paper presents a procedure for simulating a short circuit, which is a requirement for using the general fault admittance method. A simple power system containing a delta earthed star transformer is analysed for a line-to-line fault. The results obtained are as accurate as those obtained using the classical approaches.

  20. Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator.

    Du, Zhijiang; Wang, Wei; Yan, Zhiyuan; Dong, Wei; Wang, Weidong


    In order to get natural and intuitive physical interaction in the pose adjustment of the minimally invasive surgery manipulator, a hybrid variable admittance model based on Fuzzy Sarsa(λ)-learning is proposed in this paper. The proposed model provides continuous variable virtual damping to the admittance controller to respond to human intentions, and it effectively enhances the comfort level during the task execution by modifying the generated virtual damping dynamically. A fuzzy partition defined over the state space is used to capture the characteristics of the operator in physical human-robot interaction. For the purpose of maximizing the performance index in the long run, according to the identification of the current state input, the virtual damping compensations are determined by a trained strategy which can be learned through the experience generated from interaction with humans, and the influence caused by humans and the changing dynamics in the robot are also considered in the learning process. To evaluate the performance of the proposed model, some comparative experiments in joint space are conducted on our experimental minimally invasive surgical manipulator.

  1. Measurement and Analysis of Mechanical Admittance of Gun-Shoulder System

    BAO Jian-dong; WANG Chang-ming; HE Yun-feng


    Lots of factors have influence on the firing accuracy of automatic weapon. During firing, the movement state of gun-shoulder system can be varied due to the impulsion of powder gases and the impact of moving parts, resulting in a gunpoint being deviated from initial value to decrease the firing accuracy of weapon. The development of intelligent con-trolling gun carriage for weapon system is necessary for reflect its automatic firing accuracy objectively. An electronic mea-suring system for measuring the receiving force and movement of gun-shoulder system under initiative state is built based on the characteristics of standing non-rest automatic weapon. The constitutes of measuring system and the correction method of shoulder receiving force are described, and the mechanical admittance function of gun-shoulder system is ob-tained using dectronicaUy measured data, the modal identification of admittance functions of gun-shoulder system is made by adopting the orthogonal component method, and the key difference between the passive state and initiative state of standing non-rest automatic weapon is discussed.

  2. Admittance-based Upper Limb Robotic Active and Active-assistive Movements

    Cristóbal Ochoa Luna


    Full Text Available This paper presents two rehabilitation schemes for patients with upper limb impairments. The first is an active-assistive scheme based on the trajectory tracking of predefined paths in Cartesian space. In it, the system allows for an adjustable degree of variation with respect to ideal tracking. The amount of variation is determined through an admittance function that depends on the opposition forces exerted on the system by the user, due to possible impairments. The coefficients of the function allow the adjustment of the degree of assistance the robot will provide in order to complete the target trajectory. The second scheme corresponds to active movements in a constrained space. Here, the same admittance function is applied; however, in this case, it is unattached to a predefined trajectory and instead connected to one generated in real time, according to the user’s intended movements. This allows the user to move freely with the robot in order to track a given path. The free movement is bounded through the use of virtual walls that do not allow users to exceed certain limits. A human-machine interface was developed to guide the robot’s user.

  3. Design of a ×4 subharmonic sub-millimeter wave diode mixer, based on an analytic expression for small-signal conversion admittance parameters

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Krozer, Viktor


    of the small-signal admittance in a Schottky-diode mixer where the phase can be set arbitrarily. It is shown that only for the case of a fundamental frequency mixer this admittance becomes a purely real valued conductance. To test the theory a ×4 subharmonic sub-millimeter wave mixer is designed and simulated...

  4. An experiment to measure the spectra of primary proton, helium and iron nuclei at the 'knee' region at a high altitude

    Xu, X W; Ding, L K; Zhang, C S; Ohnishi, M


    The possibility of measuring the energy spectra of some single elements (proton, helium and iron) in primary cosmic rays at the 'knee' energies, by setting up an air shower (AS) core detector in the AS gamma array (4300 m a.s.l., Tibet, China) is investigated. Taking into account the sensitivity and the acceptance needed for this measurement, the feasibility of construction and operation of the apparatus at a high altitude, and the cost, it is shown that this aim can be achieved by a simple AS core detector that mainly measures the high-energy electromagnetic components in AS cores. In this paper, such a detector is described. With a three-year exposure, proton, helium and iron spectra at the 'knee' energy region can be obtained with three event samples selected by an artificial neural network (ANN).

  5. High Resolution Spectroscopy of Halo Stars in the Near UV and Blue Region I. Spectra in the Wavelength Region 3550-5000(A)

    V. G. Klochkova; Gang Zhao; S. V. Ermakov; V. E. Panchuk


    An atlas of high resolution (R = 60 000) CCD-spectra in the wavelength range 3500-5000(A) is presented for four objects in metallicity range -3.0 < [Fe/H] < -0.6,temperature range 4750 < Teff < 5900K, and surface gravity range 1.6 < lgg < 5.0.We describe the calibration of the stellar atmospheric parameters using Alonso's formula based on the method of infrared flux and outline the determination of the abundances of a total number of 25 chemical elements. An analysis of the abundance determination errors for different chemical elements is carried out, and a method is provided for the observations and reduction of spectral material. Properties of the method of producing an atlas of spectra and line identifications are described.

  6. Normal incidence X-ray telescope power spectra of X-ray emission from solar active regions. I - Observations. II - Theory

    Gomez, Daniel O.; Martens, Petrus C. H.; Golub, Leon


    Fourier analysis is applied to very high resolution image of coronal active regions obtained by the Normal Incidence X-Ray Telescope is used to find a broad isotropic power-law spectrum of the spatial distribution of soft X-ray intensities. Magnetic structures of all sizes are present down to the resolution limit of the instrument. Power spectra for the X-ray intensities of a sample of topologically different active regions are found which fall off with increasing wavenumber as 1/k-cubed. A model is presented that relates the basic features of coronal magnetic fluctuations to the subphotospheric hydrodynamic turbulence that generates them. The model is used to find a theoretical power spectrum for the X-ray intensity which falls off with increasing wavenumber as 1/k-cubed. The implications of a turbulent regime in active regions are discussed.

  7. Chinchilla middle-ear admittance and sound power: high-frequency estimates and effects of inner-ear modifications.

    Ravicz, Michael E; Rosowski, John J


    The middle-ear input admittance relates sound power into the middle ear (ME) and sound pressure at the tympanic membrane (TM). ME input admittance was measured in the chinchilla ear canal as part of a larger study of sound power transmission through the ME into the inner ear. The middle ear was open, and the inner ear was intact or modified with small sensors inserted into the vestibule near the cochlear base. A simple model of the chinchilla ear canal, based on ear canal sound pressure measurements at two points along the canal and an assumption of plane-wave propagation, enables reliable estimates of Y(TM,) the ME input admittance at the TM, from the admittance measured relatively far from the TM. Y(TM) appears valid at frequencies as high as 17 kHz, a much higher frequency than previously reported. The real part of Y(TM) decreases with frequency above 2 kHz. Effects of the inner-ear sensors (necessary for inner ear power computation) were small and generally limited to frequencies below 3 kHz. Computed power reflectance was ~0.1 below 3.5 kHz, lower than with an intact ME below 2.5 kHz, and nearly 1 above 16 kHz.

  8. Sensitivity of Nodal Admittances in an Offshore Wind Power Plant to Parametric Variations in the Collection Grid

    Vytautas, Kersiulis; Holdyk, Andrzej; Holbøll, Joachim


    The paper presents sensitivity studies on nodal admittances in the offshore wind farm to different parameters of the collection grid cable system, including length of cable sections and actual layout configuration. The main aspect of this investigation is to see how parametric variations influence...

  9. Spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell considering the absorption spectra of ideal cubic dots

    Biswas, Sayantan; Chatterjee, Avigyan; Biswas, Ashim Kumar; Sinha, Amitabha


    Recently, attempts have been made by some researchers to improve the efficiency of quantum dot solar cells by incorporating different types of quantum dots. In this paper, the photocurrent density has been obtained considering the absorption spectra of ideal cubic dots. The effects of quantum dot size dispersion on the spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell have been studied. The dependence of the spectral response of this region on the size of quantum dots of such solar cell has also been investigated. The investigation shows that for smaller quantum dot size dispersion, the spectral response of the intrinsic region of the cell increases significantly. It is further observed that by enlarging the quantum dot size it is possible to enhance the spectral response of such solar cells as it causes better match between absorption spectra of the quantum dots and the solar spectrum. These facts indicate the significant role of quantum dot size and size dispersion on the performance of such devices. Also, the power conversion efficiency of such solar cell has been studied under 1 sun, AM 1.5 condition.

  10. Source spectra of the gravity waves obtained from momentum flux and kinetic energy over Indian region: Comparison between observations and model results

    Pramitha, M.; Venkat Ratnam, M.; Krishna Murthy, B. V.; Vijaya Bhaskar Rao, S.


    Using 8 years (May 2006 to March 2014) of high resolution and high accuracy GPS radiosonde observations available from a tropical station Gadanki (13.5°N, 79.2°E), India, we have investigated the climatology of gravity wave energy and zonal momentum fluxes in the lower stratosphere. We also obtained best fit spectrum model for the gravity waves (GWs) for this tropical station. In general, strong annual variation in the energy and momentum flux with maximum during Indian summer monsoon is observed in the lower stratospheric region (18-25 km). By considering different source spectra, we have applied Gravitywave Regional or Global RAy Tracer (GROGRAT) model run on monthly basis using the source spectrum values at different altitudes on the ERA-Interim background fields to obtain the kinetic energy and zonal momentum fluxes for each of the spectra considered. These simulated fluxes are compared with the observed fluxes to arrive at the best fit spectrum model. It is found that the spectrum which represents the convection transient mountain mechanism that is purely anti-symmetric and anisotropic in nature is the best fit model for Gadanki location. This information would be useful in parameterization of the GWs in numerical models over Indian region.

  11. Admittance spectroscopy characterize graphite paste for back contact of CdTe thin film solar cells


    CdTe thin film solar cells with a doped-graphite paste back contact layer were studied using admittance spectroscopy technology.The positions and the capture cross sections of energy level in the forbidden band were calculated,which are the important parameters to affect solar cell performance.The results showed that there were three defects in the CdTe thin films solar cells with the doped-graphite paste back contact layer,whose positions in the forbidden band were close to 0.34,0.46 and 0.51 eV,respectively above the valence band,and capture cross sections were 2.23×10-16,2.41×10-14,4.38×10-13 cm2,respectively.

  12. [The 100-year anniversary of Eugene Jamot's (1879-1937) admittance to the Pharo School].

    Milleliri, J M; Louis, F J


    For the 100-year anniversary of Dr. Eugene Jamot's (1879-1937) admittance to the Pharo School (then known as the Training School of the Colonial Army Health Corps), the authors describe the life of a French military physician working in Africa. Eugene Jamot devoted 22 years of his life to fighting sleeping sickness. Using a standardized approach that has become a textbook example, he was highly successful in controlling this dreaded tropical disease. Despite being criticized by some officials of the colonial administration and becoming the target of an obvious smear campaign because of his strong personality and growing fame, Jamot handed down a set of values that are recognized by most physicians working to improve the living conditions of the unfortunately still suffering African population.

  13. Quantitative Estimation of Carbonate Rock Fraction in Karst Regions Using Field Spectra in 2.0–2.5 μm

    Xiangjian Xie


    Full Text Available Considering the important roles of carbonate rock fraction in karst rocky desertification areas and their potential for indicating damage to vegetation, improved knowledge is desired to assess the application of spectroscopy and remote sensing to characterizing and quantifying the biophysical constituents of karst landscapes. In this study, we examined the spectra of major surface constituents in karst areas for direct evidence of absorption features attributable to carbonate rock fraction. Using spectral feature analysis with continuum removal, we observed that there are overlapping spectral absorption in 2.149–2.398 μm by soils and non-photosynthetic vegetation. These overlapping features complicated the carbonate absorption feature near 2.340 μm in synthetic mixed spectra. To remove the overprint signal, two hyperspectral carbonate rock indices (HCRIs were developed. Compared to the absorption features including depths, areas, and KRDSIs (karst rocky desertification synthesis indices, linear regression of HCRIs with carbonate rock fraction in linear synthetic mixtures resulted in higher correlations and lower errors. This study demonstrates that spectral variation of the surface constituents spectra in 2.270–2.398 μm region can indicate carbonate rock fraction and be used to quantify them. Still, additional research is needed to advance our understanding of the spectral influences from carbonate petrography relative to carbonate mineralogy, components and physical state of rock surface.

  14. Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 μm regions

    G. C. Toon


    Full Text Available We present the first study of the influence of line mixing among CO2 lines on the remote sensing retrieval of atmospheric carbon dioxide. This is done in the bands near 1.6 and 2.1 μm which have been retained by the Orbiting Carbon Observatory (OCO and Greenhouse Gases Observatory Satellite (GOSAT instruments. A purely theoretical analysis is first made, based on simulations of atmospheric spectra. It shows that line mixing cannot be neglected since disregarding this process induces significant errors in the calculated absorption coefficients, leading to systematic structures in the spectral fit residuals and airmass-dependent biases in the retrieved CO2 amounts. These theoretical predictions are then confirmed by using atmospheric solar-absorption spectra measured by a ground-based Fourier transform spectrometer. Indeed, it is first shown that including line mixing in the forward model used for the inversion leads to a very significant reduction of the residuals in the 2.1 μm region. Secondly, the inclusion of line mixing reduces the dependence of the retrieved CO2 on the airmass and greatly improves the consistency between values obtained independently from spectra in the 1.6 and 2.1 μm bands. These results open very promising prospects for various ground-based and space-borne experiments monitoring the carbon dioxide atmospheric amounts.

  15. Heuristic approach for peak regions estimation in gamma-ray spectra measured by a NaI detector

    ZHU Meng-Hua; LIU Liang-Gang; YOU Zhong; XU Ao-Ao


    In this paper, a heuristic approach based on Slavic's peak searching method has been employed to estimate the width of peak regions for background removing. Synthetic and experimental data are used to test this method. With the estimated peak regions using the proposed method in the whole spectrum, we find it is simple and effective enough to be used together with the Statistics-sensitive Nonlinear Iterative Peak-Clipping method.

  16. Sounding Rocket Observations of Active Region Soft X-Ray Spectra Between 0.5 and 2.5 nm Using a Modified SDO/EVE Instrument

    Wieman, Seth; Didkovsky, Leonid; Woods, Thomas; Jones, Andrew; Moore, Christopher


    Spectrally resolved measurements of individual solar active regions (ARs) in the soft X-ray (SXR) range are important for studying dynamic processes in the solar corona and their associated effects on the Earth's upper atmosphere. They are also a means of evaluating atomic data and elemental abundances used in physics-based solar spectral models. However, very few such measurements are available. We present spectral measurements of two individual ARs in the 0.5 to 2.5 nm range obtained on the NASA 36.290 sounding rocket flight of 21 October 2013 (at about 18:30 UT) using the Solar Aspect Monitor (SAM), a channel of the Extreme Ultaviolet Variability Experiment (EVE) payload designed for underflight calibrations of the orbital EVE on the Solar Dynamics Observatory (SDO). The EVE rocket instrument is a duplicate of the EVE on SDO, except the SAM channel on the rocket version was modified in 2012 to include a freestanding transmission grating to provide spectrally resolved images of the solar disk with the best signal to noise ratio for the brightest features, such as ARs. Calibrations of the EVE sounding rocket instrument at the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility (NIST/SURF) have provided a measurement of the SAM absolute spectral response function and a mapping of wavelength separation in the grating diffraction pattern. We discuss techniques (incorporating the NIST/SURF data) for determining SXR spectra from the dispersed AR images as well as the resulting spectra for NOAA ARs 11877 and 11875 observed on the 2013 rocket flight. In comparisons with physics-based spectral models using the CHIANTI v8 atomic database we find that both AR spectra are in good agreement with isothermal spectra (4 MK), as well as spectra based on an AR differential emission measure (DEM) included with the CHIANTI distribution, with the exception of the relative intensities of strong Fe xvii lines associated with 2p6-2p53{s} and 2p6-2p

  17. Measurement of multiplicity and momentum spectra in the current fragmentation region of the Breit frame at HERA

    Derrick, Malcolm; Magill, S; Mikunas, D; Musgrave, B; Repond, J; Stanek, R; Talaga, R L; Zhang, H; Ayad, R; Bari, G; Basile, M; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Bruni, P; Cara Romeo, G; Castellini, G; Chiarini, M; Cifarelli, Luisa; Cindolo, F; Contin, A; Gialas, I; Giusti, P; Iacobucci, G; Laurenti, G; Levi, G; Margotti, A; Massam, Thomas; Nania, R; Nemoz, C; Palmonari, F; Polini, A; Sartorelli, G; Timellini, R; Zamora-Garcia, Yu E; Zichichi, Antonino; Bargende, A; Crittenden, James Arthur; Desch, Klaus; Diekmann, B; Doeker, T; Eckert, M; Feld, L; Frey, A; Geerts, M; Geitz, G; Grothe, M; Haas, T; Hartmann, H; Haun, D; Heinloth, K; Hilger, E; Jakob, H P; Katz, U F; Mari, S M; Mass, A; Mengel, S; Mollen, J; Paul, E; Rembser, C; Schattevoy, R; Schramm, D; Stamm, J; Wedemeyer, R; Campbell-Robson, S; Cassidy, A; Dyce, N; Foster, B; George, S; Gilmore, R; Heath, G P; Heath, H F; Llewellyn, T J; Morgado, C J S; Norman, D J P; O'Mara, J A; Tapper, R J; Wilson, S S; Yoshida, R; Rau, R R; Arneodo, M; Iannotti, L; Schioppa, M; Susinno, G; Bernstein, A M; Caldwell, A; Parsons, J A; Ritz, S; Sciulli, F; Straub, P B; Wai, L; Yang, S; Zhu, Q; Borzemski, P; Chwastowski, J; Eskreys, Andrzej; Piotrzkowski, K; Zachara, M; Zawiejski, L; Adamczyk, L; Bednarek, B; Jelen, K; Kisielewska, D; Kowalski, T; Rulikowska-Zarebska, E; Suszycki, L; Zajac, J; Kotanski, Andrzej; Przybycien, M B; Bauerdick, L A T; Behrens, U; Beier, H; Bienlein, J K; Coldewey, C; Deppe, O; Desler, K; Drews, G; Flasinski, M; Gilkinson, D J; Glasman, C; Göttlicher, P; Grosse-Knetter, J; Gutjahr, B; Hain, W; Hasell, D; Hessling, H; Hultschig, H; Iga, Y; Joos, P; Kasemann, M; Klanner, Robert; Koch, W; Köpke, L; Kötz, U; Kowalski, H; Labs, J; Ladage, A; Löhr, B; Loewe, M; Lüke, D; Manczak, O; Ng, J S T; Nickel, S; Notz, D; Ohrenberg, K; Roco, M T; Rohde, M; Roldán, J; Schneekloth, U; Schulz, W; Selonke, F; Stiliaris, E; Surrow, B; Voss, T; Westphal, D; Wolf, G; Youngman, C; Zhou, J F; Grabosch, H J; Kharchilava, A I; Leich, A; Mattingly, M C K; Meyer, A; Schlenstedt, S; Barbagli, G; Pelfer, P G; Anzivino, Giuseppina; Maccarrone, G D; De Pasquale, S; Votano, L; Bamberger, Andreas; Eisenhardt, S; Freidhof, A; Söldner-Rembold, S; Schröder, J; Trefzger, T M; Brook, N H; Bussey, Peter J; Doyle, A T; Fleck, I; Jamieson, V A; Saxon, D H; Utley, M L; Wilson, A S; Dannemann, A; Holm, U; Horstmann, D; Neumann, T; Sinkus, R; Wick, K; Badura, E; Burow, B D; Hagge, L; Lohrmann, E; Mainusch, J; Milewski, J; Nakahata, M; Pavel, N; Poelz, G; Schott, W; Zetsche, F; Bacon, Trevor C; Butterworth, Ian; Gallo, E; Harris, V L; Hung, B Y H; Long, K R; Miller, D B; Morawitz, P P O; Prinias, A; Sedgbeer, J K; Whitfield, A F; Mallik, U; McCliment, E; Wang, M Z; Wang, S M; Wu, J T; Zhang, Y; Cloth, P; Filges, D; An Shiz Hong; Hong, S M; Nam, S W; Park, S K; Suh, M H; Yon, S H; Imlay, R; Kartik, S; Kim, H J; McNeil, R R; Metcalf, W; Nadendla, V K; Barreiro, F; Cases, G; Graciani, R; Hernández, J M; Hervás, L; Labarga, L; Del Peso, J; Puga, J; Terrón, J; De Trocóniz, J F; Smith, G R; Corriveau, F; Hanna, D S; Hartmann, J; Hung, L W; Lim, J N; Matthews, C G; Patel, P M; Sinclair, L E; Stairs, D G; Saint-Laurent, M G; Ullmann, R T; Zacek, G; Bashkirov, V; Dolgoshein, B A; Stifutkin, A; Bashindzhagian, G L; Ermolov, P F; Gladilin, L K; Golubkov, Yu A; Kobrin, V D; Kuzmin, V A; Proskuryakov, A S; Savin, A A; Shcheglova, L M; Solomin, A N; Zotov, N P; Botje, M; Chlebana, F S; Dake, A P; Engelen, J; De Kamps, M; Kooijman, P M; Kruse, A; Tiecke, H G; Verkerke, W; Vreeswijk, M; Wiggers, L; De Wolf, E; Van Woudenberg, R; Acosta, D; Bylsma, B G; Durkin, L S; Honscheid, K; Li Chuan; Ling, T Y; McLean, K W; Murray, W N; Park, I H; Romanowsky, T A; Seidlein, R; Bailey, D S; Blair, G A; Byrne, A; Cashmore, Roger J; Cooper-Sarkar, A M; Daniels, D C; Devenish, R C E; Harnew, N; Lancaster, M; Luffman, P; Lindemann, L; McFall, J D; Nath, C; Quadt, A; Uijterwaal, H; Walczak, R; Wilson, F F; Yip, T; Abbiendi, G; Bertolin, A; Brugnera, R; Carlin, R; Dal Corso, F; De Giorgi, M; Dosselli, U; Limentani, S; Morandin, M; Posocco, M; Stanco, L; Stroili, R; Voci, C; Bulmahn, J; Butterworth, J M; Feild, R G; Oh, B Y; Whitmore, J; D'Agostini, Giulio; Marini, G; Nigro, A; Tassi, E; Hart, J C; McCubbin, N A; Prytz, K; Shah, T P; Short, T L; Barberis, E; Cartiglia, N; Dubbs, T; Heusch, C A; Van Hook, M; Hubbard, B; Lockman, W; Rahn, J T; Sadrozinski, H F W; Seiden, A; Biltzinger, J; Seifert, R J; Walenta, Albert H; Zech, G; Abramowicz, H; Briskin, G M; Dagan, S; Levy, A; Hasegawa, T; Hazumi, M; Ishii, T; Kuze, M; Mine, S; Nagasawa, Y; Nakao, M; Susuki, I; Tokushuku, K; Yamada, S; Yamazaki, Y; Chiba, M; Hamatsu, R; Hirose, T; Homma, K; Kitamura, S; Nakamitsu, Y; Yamauchi, K; Cirio, R; Costa, M; Ferrero, M I; Lamberti, L; Maselli, S; Peroni, C; Sacchi, R; Solano, A; Staiano, A; Dardo, M; Bailey, D C; Bandyopadhyay, D; Bénard, F; Brkic, M; Crombie, M B; Gingrich, D M; Hartner, G F; Joo, K K; Levman, G M; Martin, J F; Orr, R S; Sampson, C R; Teuscher, R; Catterall, C D; Jones, T W; Kaziewicz, P B; Lane, J B; Saunders, R L; Shulman, J; Blankenship, K; Kochocki, J A; Lu, B; Mo, L W; Bogusz, W; Charchula, K; Ciborowski, J; Gajewski, J; Grzelak, G; Kasprzak, M; Krzyzanowski, M; Muchorowski, K; Nowak, R J; Pawlak, J M; Tymieniecka, T; Wróblewski, A K; Zakrzewski, J A; Zarnecki, A F; Adamus, M; Eisenberg, Y; Karshon, U; Revel, D; Zer-Zion, D; Shapira, A; Ali, I; Badgett, W F; Behrens, B H; Dasu, S; Fordham, C; Foudas, C; Goussiou, A; Loveless, R J; Reeder, D D; Silverstein, S; Smith, W H; Vaiciulis, A W; Wodarczyk, M; Tsurugai, T; Bhadra, S; Cardy, M L; Fagerstroem, C P; Frisken, W R; Furutani, K M; Khakzad, M; Schmidke, W B; Levy, Aharon


    Charged particle production has been measured in Deep Inelastic Scattering (DIS) events using the ZEUS detector over a large range of Q^2 from 10 to 1280 {\\rm\\ GeV}^2. The evolution with Q of the charged multiplicity and scaled momentum has been investigated in the current fragmentation region of the Breit frame. The data are used to study QCD \\linebreak coherence effects in DIS and are compared with corresponding \\ee~data in order to test the universality of quark fragmentation.

  18. Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single-particle ATOFMS spectra.

    Giorio, Chiara; Tapparo, Andrea; Dall'Osto, Manuel; Beddows, David C S; Esser-Gietl, Johanna K; Healy, Robert M; Harrison, Roy M


    Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.

  19. Frequency dispersion in the admittance of the polycrystalline Cu/sub 2/S/CdS solar cell

    Hmurcik, L.V.; Serway, R.A.


    We measured the admittance versus frequency (fless than or equal to100 kHz) for the Cu/sub 2/S/CdS solar cell. In the dark, the dispersion fits a model of a simple Debye capacitor, with deviation due to grain-boundary scattering at low frequencies. Under illumination, the dispersion becomes a function of surface roughness. Modeled in fractal geometry, the admittance varies as ( m/. A second term of this type occurs at high frequencies and at illuminations greater than 0.1% AM1. In this case, the depletion layer extends deep into the CdS due to insufficient charge states at the interface.

  20. Novel Approaches to Visualization and Data Mining Reveals Diagnostic Information in the Low Amplitude Region of Serum Mass Spectra from Ovarian Cancer Patients

    Donald J. Johann


    Full Text Available The ability to identify patterns of diagnostic signatures in proteomic data generated by high throughput mass spectrometry (MS based serum analysis has recently generated much excitement and interest from the scientific community. These data sets can be very large, with high-resolution MS instrumentation producing 1–2 million data points per sample. Approaches to analyze mass spectral data using unsupervised and supervised data mining operations would greatly benefit from tools that effectively allow for data reduction without losing important diagnostic information. In the past, investigators have proposed approaches where data reduction is performed by a priori “peak picking” and alignment/warping/smoothing components using rule-based signal-to-noise measurements. Unfortunately, while this type of system has been employed for gene microarray analysis, it is unclear whether it will be effective in the analysis of mass spectral data, which unlike microarray data, is comprised of continuous measurement operations. Moreover, it is unclear where true signal begins and noise ends. Therefore, we have developed an approach to MS data analysis using new types of data visualization and mining operations in which data reduction is accomplished by culling via the intensity of the peaks themselves instead of by location. Applying this new analysis method on a large study set of high resolution mass spectra from healthy and ovarian cancer patients, shows that all of the diagnostic information is contained within the very lowest amplitude regions of the mass spectra. This region can then be selected and studied to identify the exact location and amplitude of the diagnostic biomarkers.

  1. Theoretical NH{_3} Spectra in 5800-7000 CM-1 Region and CO{_2} IR Intensity: Updates

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.; Sung, Keeyoon; Brown, Linda R.; Tashkun, Sergey A.


    Recently we have successfully applied the "Best Theory + High-resolution Experimental Data" strategy to NH{_3} and CO{_2}. The essential strategy is to refine a high quality, purely ab initio potential energy surface (PES) with reliable high resolution experimental data, so the IR line lists computed on the refined PES and dipole moment surface (DMS) can go beyond simple data reproduction. The goal is to make reliable predictions for higher J/K/energy rovibrational transitions with similar accuracies, i.e. 0.01-0.03 cm-1. The reliability and accuracy of data included in the refinement largely determines the quality of predictions and the ultimate merit of our work. With recent 14NH{_3} experiments in 5800 - 7000 cm-1, the effective coverage (with 0.01-0.03 cm-1 accuracy) of our NH{_3} PES has extended to this complex spectral region. Excellent agreement between current experiment analysis and our primitive HSL-3 PES refinement will be presented, and source of discrepancies will be discussed. The synergy between the experiments and theory is of great value. For CO{_2}, we have updated the theoretical IR intensity of the 12C16O{_2} line list with a more reliable DMS, then carried out very detailed comparisons with both pure experimental data and HITRAN/CDSD models. Results suggest that our line lists should be useful for the astronomical or earth-based detection of CO{_2} isotopologues. X. Huang, D.W. Schwenke, and T.J. Lee, J. Chem. Phys. 129, 214304 (2008); J. Chem. Phys. 134, 044320/044321 (2011). X. Huang, D.W. Schwenke, S.A. Tashkun, and T.J. Lee J. Chem. Phys. 136, submitted (2012).

  2. Active Region Soft X-Ray Spectra as Observed Using Sounding Rocket Measurements from the Solar Aspect Monitor (SAM), - a Modified SDO/EVE Instrument

    Wieman, S. R.; Didkovsky, L. V.; Woods, T. N.; Jones, A. R.; Caspi, A.; Warren, H. P.


    Observations of solar active regions (ARs) in the soft x-ray spectral range (0.5 to 3.0 nm) were made on sounding rocket flight NASA 36.290 using a modified Solar Aspect Monitor (SAM), a pinhole camera on the EUV Variability Experiment (EVE) sounding rocket instrument. The suite of EVE rocket instruments is designed for under-flight calibrations of the orbital EVE on SDO. While the sounding rocket EVE instrument is for the most part a duplicate of the EVE on SDO, the SAM channel on the rocket version was modified in 2012 to include a free-standing transmission grating so that it could provide spectrally resolved images of the solar disk with the best signal to noise ratio for the brightest features on it, such as ARs. Calibrations of the EVE sounding rocket instrument at the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility (NIST SURF) have provided a measurement of the SAM absolute spectral response function and a mapping of wavelength separation in the grating diffraction pattern. For solar observations, this spectral separation is on a similar scale to the spatial size of the AR on the CCD, so dispersed AR images associated with emission lines of similar wavelength tend to overlap. Furthermore, SAM shares a CCD detector with MEGS-A, a separate EVE spectrometer channel, and artifacts of the MEGS-A signal (a set of bright spectral lines) appear in the SAM images. For these reasons some processing and analysis of the solar images obtained by SAM must be performed in order to determine spectra of the observed ARs. We present a method for determining AR spectra from the SAM rocket images and report initial soft X-ray spectra for two of the major active regions (AR11877 and AR11875) observed on flight 36.290 on 21 October 2013 at about 18:30 UT. We also compare our results with concurrent measurements from other solar soft x-ray instrumentation.

  3. Central venous oxygen saturation and thoracic admittance during dialysis: new approaches to hemodynamic monitoring

    Cordtz, J.; Olde, B.; Solem, K.


    in ScO(2) and TA correlated much closer than did changes in ScO(2) and DeltaBV (r=0.43 and 0.18, respectively). Our results suggest that an intradialytic decrease in cardiac output, as reflected by a fall in ScO(2), is a common feature to HD patients prone to IDH. In patients using a central vascular......Intradialytic hypotension (IDH) is one of the most important short-term complications to hemodialysis (HD). Inadequate cardiac filling due to a reduction in the central blood volume is believed to be a major etiological factor. The aim of this study was to evaluate whether these pathophysiologic...... events are reflected in the central venous oxygen saturation (ScO(2)) and thoracic admittance (TA) during dialysis. Twenty ambulatory HD patients, 11 hypotension prone (HP) and 9 hypotension resistant, with central vascular access, were monitored during 3 HD sessions each. ScO(2), TA, finger blood...

  4. Inconsistent Definitions of the Pressure-Coupled Response and the Admittance of Solid Propellants

    Cardiff, Eric H.


    When an acoustic wave is present in a solid propellant combustion environment, the mass flux from the combustion zone oscillates at the same frequency as the acoustics. The acoustic wave is either amplified or attenuated by the response of the combustion to the acoustic disturbance. When the acoustic wave is amplified, this process is called combustion instability. The amplification is quantitatively measured by a response function. The ability to predict combustion stability for a solid propellant formulation is essential to the formulator to prevent or minimize the effects of instabilities, such as an oscillatory thrust. Unfortunately, the prediction of response values for a particular propellant remains a technical challenge. Most predictions of the response of propellants are based on test data, but there are a number of questions about the reliability of the standard test method, the T-burner. Alternate methods have been developed to measure the response of a propellant, including the ultrasound burner, the magnetic flowmeter and the rotating valve burner, but there are still inconsistencies between the results obtained by these different methods. Aside from the experimental differences, the values of the pressure-coupled responses obtained by different researchers are often compared erroneously, for the simple reason that inconsistencies in the definitions of the responses and admittances are not considered. The use of different definitions has led to substantial confusion since the first theoretical treatments of the problem by Hart and McClure in 1959. The definitions and relations derived here seek to alleviate this problem.

  5. Slow and fast narrow spectra aurora E region echoes during the March 17, 2015 storm at mid latitudes. Multi-static, multi-frequency radar observations

    Chau, Jorge; St-Maurice, Jean-Pierre


    Coherent E region echoes were observed at midlatitudes during the March 17, 2015 storm. The observations came from multi-static, multi-frequency, wide-field of view radars operating at 32.55 and 36.2 MHz in northern Germany. Each of the three receiver stations used, two in monostatic and one in bistatic modes, allow interferometry. These radars systems are devoted primarily to the measurement of mesospheric winds from specular meteor echoes. However during this storm, the strongest of the current solar cycle, strong Radar Aurora echoes were observed during the day for more than four hours. Here we present the main features observed, with a specific emphasis on echoes presenting narrow spectra with slower (around 180 m/s) and faster (as fast as 1600 m/s) Doppler velocities, than nominal typical ion-acoustic velocity expected to be between 400 and 800 m/s. We find that in both types of echoes the range vs. time slopes are between 800 and 1400 m/s. They agree rather well with the Doppler velocity for the narrow fast types but do not agree at all in the narrow slow spectral case. In both instances, the echoes are organized in localized horizontal structures with a range extent typically between 50 and 80 km. The fast-narrow structures tend to occur at higher altitudes than the well-known Farley-Buneman echoes, while the slow-narrow structures occur at lower altitudes (lower than 95 km). Both echo types come from regions with relatively small flow angles. Moreover the altitude of all echoes went down after 16:15 UT with the small-narrow echoes acquiring even smaller Doppler velocities. In large part thanks to the echo localization made feasible by interferometry, these new features are shedding some new important perspective on our understanding of auroral E-region radar echoes, particularly when it comes to spectra classified in the past as "Type III" and "Type IV" echoes.

  6. Inequality spectra

    Eliazar, Iddo


    Inequality indices are widely applied in economics and in the social sciences as quantitative measures of the socioeconomic inequality of human societies. The application of inequality indices extends to size-distributions at large, where these indices can be used as general gauges of statistical heterogeneity. Moreover, as inequality indices are plentiful, arrays of such indices facilitate high-detail quantification of statistical heterogeneity. In this paper we elevate from arrays of inequality indices to inequality spectra: continuums of inequality indices that are parameterized by a single control parameter. We present a general methodology of constructing Lorenz-based inequality spectra, apply the general methodology to establish four sets of inequality spectra, investigate the properties of these sets, and show how these sets generalize known inequality gauges such as: the Gini index, the extended Gini index, the Rényi index, and hill curves.

  7. High Resolution Infrared Spectra of Plasma Jet-Cooled - and Triacetylene in the C-H Stretch Region by CW Cavity Ring-Down Spectroscopy

    Zhao, D.; Guss, J.; Walsh, A.; Doney, K.; Linnartz, H.


    Polyacetylenes form an important series of unsaturated hydrocarbons that are of astrophysical interest. Small polyacetylenes have been detected from infrared observations in dense atmosphere of Titan and in a protoplanetary nebula CRL 618. We present here high-resolution mid-infrared spectra of diacetylene (HC_{4}H) and triacetylene (HC_{6}H) that are recorded in a supersonically expanded pulsed planar plasma using an ultra-sensitive detection technique. This method uses an all fiber-laser-based optical parametric oscillator (OPO), in combination with continuous wave cavity ring-down spectroscopy (cw-CRDS) as a direct absorption detection tool. A hardware-based multi-trigger concept is developed to apply cw-CRDS to pulsed plasmas. Vibrationally hot but rotationally cold HC_{4}H and HC_{6}H are produced by discharging a C_{2}H_{2}/He/Ar gas mixture which is supersonically expanded into a vacuum chamber through a slit discharge nozzle. Experimental spectra are recorded at a resolution of ˜100 MHz in the 3305-3340 cm^{-1} region, which is characteristic of the C-H stretch vibrations of HC_{4}H and HC_{6}H. Jet-cooling in our experiment reduces the rotational temperature of both HC_{4}H and HC_{6}H to <20 K. In total, ˜2000 lines are measured. More than fourteen (vibrationally hot) bands for HC_{4}H and four bands for HC_{6}H are assigned based on Loomis-Wood diagrams, and nearly half of these bands are analyzed for the first time. For both molecules improved and new molecular constants of a series of vibrational levels are presented. The accurate molecular data reported here, particularly those for low-lying (bending) vibrational levels may be used to interpret the ro-vibrational transitions in the FIR and submillimeter/THz region. D. Zhao, J. Guss, A. Walsh, H. Linnartz Chem. Phys. Lett., {}, in press, 2013.

  8. Action spectra again?

    Coohill, T P


    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  9. 敌百亩和阿米津的太赫兹透射光谱研究%Transmission spectra research into Dibam and Simazine in terahertz region

    马冶浩; 王强; 袁昌明; 魏玉林


    This paper is engaged in a transmission spectra research into Dibam and Simazine in terahertz region. For our research purpose, we have measured two kinds of pesticides, i.e. Dibam and Simazine, by means of terahertz time-domain spectroscopy (THz -TDS) , to obtain the absorption spectra and refractive spectra in hoping to improve the fingerprint data base of pesticides. The above said measurement was conducted at the room temperature .(294 K), with the measuring space filled with nitrogen to reduce the concentration of vapor. While the measuring condition is likely to lead to the increase of the experiment noise, the humidity has also to be controlled within 4% . In addition to the time domain signals of dibam and simazine given by THz - TDS, there also exist problems of amplitude reduction and time delay when compared with the reference signal. We have also gained the frequency domain signals, and worked out the absorp- tion coefficient and refractive index from 0.3 THz to 1.5 THz by using the model, which was put forward based on Fresnel equation via the fast Fourier transform (FFT) . Besides, we also found that dibam has three absorption peaks while simazine has two, which is characteristic of the structure of the pesticide molecules. The results of our experiments prove that the average refractive indexes of Dibam and Simazine are 1.59 and 1.55. THz wave, which has low energy, can supply rich molecular data, due to strong the intermolecular and great intra-molecular vibration, showing that THz - TDS can be used for i-dentifying other materials. As a kind of bactericide for disinfection, dibam helps to prevent botanic disease and insect pests for its pathogenic microorganism, whereas amazine, a kind of herbicide, enjoys low mammalian toxicity and can therefore be used for removing weeds in the corn fields and garden running. Moreover, since THz -TDS is a promising nondestructive means for low frequency molecular vibration spectra, it can be used for the chemical

  10. Spectra in the vacuum ultraviolet region of CO in gaseous and solid phases and dispersed in solid argon at 10 K

    Lu, H-C [National Synchrotron Radiation Research Center, 101 Hsinn-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Chen, H-Ki [National Synchrotron Radiation Research Center, 101 Hsinn-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Cheng, B-M [National Synchrotron Radiation Research Center, 101 Hsinn-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Kuo, Y-P [Department of Applied Chemistry, Chia Nan University of Pharmacy and Science, Tainan, Taiwan (China); Ogilvie, J F [Escuela de Quimica, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Pedro de Montes de Oca, San Jose 2060 (Costa Rica)


    With radiation in the region 104-170 nm from a synchrotron and dispersed with a grating monochromator at spectral resolution 0.02-0.03 nm, we measured absorption spectra of {sup 12}C{sup 16}O in the gaseous phase at 303 K and in the solid phase at 10 K, and dispersed in solid argon at molar ratios Ar:CO = 10, 50 and 250 and at 10 K. We assign observed spectral features to transitions to electronic states A {sup 1}{pi}, B {sup 1}{sigma}{sup +}, C {sup 1}{sigma}{sup +} and E {sup 1}{pi} from the ground state X {sup 1}{sigma}{sup +}. Vibrational progressions are discernible for all these systems of CO in the gaseous phase, but for only the system A-X for CO in the pure solid phase of CO or a dispersion in solid argon; for all condensed phases, multiple series of features are deducible in this vibrational structure.

  11. Line parameter study of ozone at 5 and 10 μm using atmospheric FTIR spectra from the ground: A spectroscopic database and wavelength region comparison

    Janssen, Christof; Boursier, Corinne; Jeseck, Pascal; Té, Yao


    Atmospheric ozone concentration measurements mostly depend on spectroscopic methods that cover different spectral regions. Despite long years of measurement efforts, the uncertainty goal of 1% in absolute line intensities has not yet been reached. Multispectral inter-comparisons using both laboratory and atmospheric studies reveal that important discrepancies exist when ozone columns are retrieved from different spectral regions. Here, we use ground based FTIR to study the sensitivity of ozone columns on different spectroscopic parameters as a function of individual bands for identifying necessary improvements of the spectroscopic databases. In particular, we examine the degree of consistency that can be reached in ozone retrievals using spectral windows in the 5 and 10 μm bands of ozone. Based on the atmospheric spectra, a detailed database inter-comparison between HITRAN (version 2012), GEISA (version 2011) and S&MPO (as retrieved from the website at the end of 2015) is made. Data from the 10 μm window are consistent to better than 1%, but there are larger differences when the windows at 5 μm are included. The 5 μm results agree with the results from 10 μm within ±2% for all databases. Recent S&MPO data are even more consistent with the desired level of 1%, but spectroscopic data from HITRAN give about 4% higher ozone columns than those from GEISA. If four sub-windows in the 5 μm band are checked for consistency, retrievals using GEISA or S&MPO parameters show less dispersion than those using HITRAN, where one window in the P-branch of the ν1 + ν3 band gives about 2% lower results than the other three. The atmospheric observations are corroborated by a direct comparison of the spectroscopic databases, using a simple statistical analysis based on intensity weighted spectroscopic parameters. The bias introduced by the weighted average approach is investigated and it is negligible if relative differences between databases do not correlate with line

  12. Abdominal admittance helps to predict the amount of fluid accumulation in patients with acute heart failure syndromes.

    Taniguchi, Tatsunori; Hamano, Go; Koide, Masao; Hirooka, Keiji; Koretsune, Yukihiro; Kusuoka, Hideo; Ohtani, Tomohito; Sakata, Yasushi; Yasumura, Yoshio


    Predicting fluid volume that needs to be removed in acute heart failure syndromes (AHFS) patients remains challenging. Thoracic admittance (TA), the reciprocal of thoracic impedance measured by bioelectrical impedance, reflects the amount of fluid in the thorax. Abdominal organs play an important role in AHFS as systemic fluid reservoirs. We investigated the relationship between abdominal admittance (AA) at the time of admission for AHFS and net fluid loss (NFL) during hospitalization. Sixty-two consecutive patients hospitalized for AHFS [age 71±10 years, left ventricular ejection fraction (LVEF) 39±17%] were studied. The admittance values, i.e. the reciprocals of the impedance values, were derived using a BioZ(®) (CardioDynamics, San Diego, CA, USA). The change in weight from admission to discharge was used as a surrogate of amount of NFL. At the time of admission, a significant correlation was detected between TA and AA (r=0.46, p=0.0001). TA at admission was significantly correlated with the LV structural variables (end-diastolic dimension and end-systolic dimension), and serum sodium level. AA at admission was significantly correlated with New York Heart Association (NYHA) class and plasma BNP, and also correlated with LVEF and variables related to systemic congestion [minimal inferior vena cava (IVC) diameter and tricuspid regurgitation grade]. Neither TA nor AA values were significantly correlated with weight at admission. During hospitalization, TA and AA declined from 44±8kΩ(-1) to 36±6kΩ(-1) (pfluid volume to be removed in patients with AHFS. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  13. Admittance spectroscopy of CdTe/CdS solar cells subjected to varied nitric-phosphoric etching conditions.


    In this work we investigate the electric and structural properties of CdTe/CdS solar cells subjected to a nitric-phosphoric (NP) acid etching procedure, employed for the formation of a Te-rich layer before back contacting. The etching time is used as the only variable parameter in the study, while admittance spectroscopy is employed for the characterization of the cells' electric properties as well as for the analysis of the defect energy levels. Particular attention was also given to the cha...

  14. Admittance spectroscopy of Mg-doped GaN grown by molecular beam epitaxy using RF nitrogen sources

    Kim, D J; Kim, K H; Bojarczuk, N A; Karasinski, J; Guha, S; Lee, H G


    Thermal activation energies of Mg in GaN grown using RF nitrogen source with varying Mg flux were examined using an admittance spectroscopy technique. There was no noticeable difference or trend in the activation energy with varying Mg flux. The thermal activation energy for GaN:Mg was approx 115 meV under the investigated Mg flux range. Negligible persistent photo-conductivity and yellow luminescence peak in PL observed in the samples suggest possible reduction of the thermal activation energies compared to the values in the literature.

  15. Energy Levels of Valence Subbands in Si/Si1-xGex Quantum Well byAdmittance Spectroscopy

    LIN Feng; GONG Da-Wei; KE Lian; ZHANG Sheng-Kun; SHENG Chi


    Using the admittance spectroscopy technique, energy levels of subbands in SiGe/Si quantum well are studied.The value of activation energy increases with increasing well width, in accordance with the quantum confinement effect. Two conductance peaks due to hole emission from heavy hole ground state and light hole ground state were observed. It was found that the value of activation energy increased with annealing time at the temperature of 800°C, while the activation energy decreases with the annealing time at 900°C

  16. Étude par spectroscopie d'admittance et MEB de la dégradation électrique des couches minces de CuAlS{2} non dopé déposées sous vide

    Helali, N.; Bouricha, B.; Rezig, B.


    We have accelerated the ageing of CuAlS2 by the application of a static electrical field for different degradation times. We have investigated the admittance spectroscopy and the scanning electron microscopy to follow and understand the (mass-charge) coupled transport processes produced in the volume and on the surface of these films. The electrical constraint induces, after an incubation phase, an activated decrease of the resistance, followed by a susbstantial increase correlated to the formation of an open circuit. This degradation occurs more rapidly for the films having initially a lower resistance, due to the thermal dissipation which increases considerably the temperature to about 140 °C. Admittance spectra reveal, at low frequencies, a capacitive loop related to the formation of a charge space induced by copper diffusion. Such migration develop induces the formation of copper arborescences, spreading from the cathode towards the anode. The effect of these structures on the properties of the degraded films is discussed in relation to electromigration and associated processes (whiskers, fracture, healing, bridge-building, ...). Also, we have noticed their similarity with fractal phenomena such as electrodeposition and dielectric breakdown. Nous avons accéléré le vieillissement des couches minces de CuAlS2 par l'application d'un champ électrique statique pendant des durées variables. Nous avons fait appel à la spectroscopie d'admittance et la microscopie électronique à balayage, pour suivre et comprendre les processus de transport couplé (masse- charge) qui se produisent en volume et en surface de ces couches. L'effet de la contrainte électrique s'est traduit, après une phase d'incubation, par une décroissance activée de la résistance, suivie d'une phase d'emballement reliée à la formation d'un circuit ouvert. Cette fracturation se manifeste plus rapidement pour les couches ayant initialement une faible résistance, suite à l'effet de la

  17. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm-1

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Jeys, T. H.


    Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint region 400-1400 cm-1. A relatively compact (Cl2 at 554, 547, and 539 cm-1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm-1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10-32 cm2/sr (3.68 ± 0.26x10-36 m2/sr), 1.37 ± 0.10x10-30 cm2/sr (1.37 ± 0.10x10-34 m2/sr), 3.25 ± 0.23x10-31 cm2/sr (3.25 ± 0.23x10-35 m2/sr), 1.63 ± 0.14x10-30 cm2/sr (1.63 ± 0.14x10-34 m2/sr), and 3.08 ± 0.22x10-30 cm2/sr (and 3.08 ± 0.22x10-34 m2/sr) were determined for the differential Raman cross section of the 967 cm-1 mode of NH3, sum of the 554, 547, and 539 cm-1 modes of Cl2, 870 cm-1 mode of H2S, 570 cm-1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10-31 cm2/sr (3.56 ± 0.14x10-35 m2/sr) for the 1285 cm-1 mode of CO2 as the reference.

  18. Force Control and Nonlinear Master-Slave Force Profile to Manage an Admittance Type Multi-Fingered Haptic User Interface

    Anthony L. Crawford


    Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in remote and/or hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space to name a few. In order to achieve this end the research presented in this paper has developed an admittance type exoskeleton like multi-fingered haptic hand user interface that secures the user’s palm and provides 3-dimensional force feedback to the user’s fingertips. Atypical to conventional haptic hand user interfaces that limit themselves to integrating the human hand’s characteristics just into the system’s mechanical design this system also perpetuates that inspiration into the designed user interface’s controller. This is achieved by manifesting the property differences of manipulation and grasping activities as they pertain to the human hand into a nonlinear master-slave force relationship. The results presented in this paper show that the admittance-type system has sufficient bandwidth that it appears nearly transparent to the user when the user is in free motion and when the system is subjected to a manipulation task, increased performance is achieved using the nonlinear force relationship compared to the traditional linear scaling techniques implemented in the vast majority of systems.

  19. Analysis of SVC’s Impact on Out-of-step Oscillation Based on Direct Method Considering Admittance Effect

    He, Jing-bo; Ding, Jian; Feng, Li; Ren, Jian-wen; Tang, Wei; Yang, Cheng; Wang, Jing-jin; Song, Yun-ting


    The widely employment of power electronic equipment in modern power system, may affect grid structure and system operation because of their diverse dynamic characteristics. In this paper, the impact of the static var compensators (SVC) on out-of-step oscillation is investigated based on the equal area criterion by considering SVC’s admittance effect. Firstly, the variation pattern of bus voltage which is connected to SVC is concluded. Then the derivation of equation considering the admittance effect is given, which explains the ability of SVC to suppress out-of-step oscillation. SVC’s impact on migration of out-of-step oscillation centre (OSOC) is discussed based on the expression of OSOC’s electrical location. Moreover, the influence of SVC’s response speed and capacity on its effect are presented by qualitative analysis. Finally, simulations on a two-end equivalent test system are carried out to verify the correctness of the theoretical analysis. It is found that the capacity and a response speed of SVC have significant effect on the out-of-step oscillation, while SVC have no d istinct influence on location of OSOC.

  20. The Unfolding of the Spectra of Low Energy Galactic Cosmic Ray H and He Nuclei as the Voyager 1 Spacecraft Exits the Region of Heliospheric Modulation

    Webber, W R; McDonald, F B


    This paper describes the unfolding of the solar modulated galactic cosmic ray H and He nuclei spectra beyond ~105 AU in the heliosheath. Between 2008.0 and 2012.3 when Voyager 1 went from about 105 to 120.5 AU the spectral intensities of these two components between about 30 and 500 MeV/nuc unfolded (increased) in a manner consistent with an average modulation potential decrease ~5 MV per AU as described by a Parker like cosmic ray transport in the heliosphere where the overall modulation is described by a modulation potential in MV. Between 120.5 and 121.7 AU, however, as a result of two sudden intensity increases starting on May 8th and August 25th, 2012, this modulation potential decreased by ~80 MV and spectra resembling possible local interstellar spectra for H and He were revealed. Considering these spectra to be the local interstellar spectra would imply that almost 1/3 of the total modulation potential of about 270 MV required to explain the spectra of these components observed at the Earth must occur...

  1. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm−1

    R. L. Aggarwal


    Full Text Available Raman spectra of ammonia (NH3, chlorine (Cl2, hydrogen sulfide (H2S, phosgene (COCl2, and sulfur dioxide (SO2 toxic gases have been measured in the fingerprint region 400-1400 cm−1. A relatively compact (<2′x2′x2′, sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these measurements. Two Raman modes are observed at 934 and 967 cm−1 in NH3. Three Raman modes are observed in Cl2 at 554, 547, and 539 cm−1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm−1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10−32 cm2/sr (3.68 ± 0.26x10−36 m2/sr, 1.37 ± 0.10x10−30 cm2/sr (1.37 ± 0.10x10−34 m2/sr, 3.25 ± 0.23x10−31 cm2/sr (3.25 ± 0.23x10−35 m2/sr, 1.63 ± 0.14x10−30 cm2/sr (1.63 ± 0.14x10−34 m2/sr, and 3.08 ± 0.22x10−30 cm2/sr (and 3.08 ± 0.22x10−34 m2/sr were determined for the differential Raman cross section of the 967 cm−1 mode of NH3, sum of the 554, 547, and 539 cm−1 modes of Cl2, 870 cm−1 mode of H2S, 570 cm−1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10−31 cm2/sr (3.56 ± 0.14x10−35 m2/sr for the 1285 cm−1 mode of CO2 as the reference.

  2. Fibre optic sensors for load-displacement measurements and comparisons to piezo sensor based electromechanical admittance signatures

    Maheshwari, Muneesh; Annamdas, Venu Gopal Madhav; Pang, John H. L.; Tjin, Swee Chuan; Asundi, Anand


    Structural health monitoring techniques using smart materials are on rise to meet the ever ending demand due to increased construction and manufacturing activities worldwide. The civil-structural components such as slabs, beams and columns and aero-components such as wings are constantly subjected to some or the other forms of external loading. This article thus focuses on condition monitoring due to loading/unloading cycle for a simply supported aluminum beam using multiple smart materials. On the specimen, fibre optic polarimetric sensor (FOPS) and fibre Bragg grating (FBG) sensors were glued. Piezoelectric wafer active sensor (PWAS) was also bonded at the centre of the specimen. FOPS and FBG provided the global and local strain measurements respectively whereas, PWAS predicted boundary condition variations by electromechanical admittance signatures. Thus these multiple smart materials together successfully assessed the condition of structure for loading and unloading tests.

  3. A comparison of trans-admittance and characteristic impedance as metrics for detection of winding displacements in power transformers

    Singh, A.; Marti, J.R.; Srivastava, K.D. [The Universityof British Columbia, 2356 Main Mall, Vancouver (Canada); Castellanos, F. [The University of the West Indies, Tobago (Trinidad and Tobago)


    Transfer function signatures are commonly used in condition monitoring analysis to give early indications of winding movement in power transformers. This paper presents a comparison of the use of trans-admittance (frequency response analysis, FRA), presently the industry standard, and characteristic impedance (transmission line diagnostics, TLD), a new method, as signatures for the detection of winding displacements in power transformers. To facilitate the comparison, a computer based winding model based on a multi-phase transmission line system was developed and different winding deformations were analyzed. The results show that TLD has a higher degree of sensitivity and can be used to augment the ability to classify different types of distortions currently diagnosed by FRA. (author)

  4. Spectra of W19 +-W32 + observed in the EUV region between 15 and 55 Å with an electron-beam ion trap

    Sakaue, H. A.; Kato, D.; Yamamoto, N.; Nakamura, N.; Murakami, I.


    We present extreme ultraviolet spectra of highly charged tungsten ions (W19 +-W32 + ) in the wavelength range of 15 -55 Å obtained with a compact electron-beam ion trap (CoBIT) and a grazing-incidence spectrometer at the National Institute for Fusion Science. The electron energy dependence of the spectra was investigated for electron energies from 490 to 1320 eV . Identification of the observed lines was aided by collisional-radiative (CR) modeling of CoBIT plasma. Good quantitative agreement was obtained between the CR-modeling results and the experimental observations. The ion charge dependence of the 6 g -4 f ,5 g -4 f ,5 f -4 d ,5 p -4 d , and 4 f -4 d transition wavelengths were measured.

  5. Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near-IR using a Monte-Carlo approach: Application to the OMEGA observations of high latitude regions of Mars

    Vincendon, Mathieu; Poulet, François; Bibring, Jean-Pierre; Gondet, Brigitte; 10.1029/2006JE002845


    We present a model of radiative transfer through atmospheric particles based on Monte Carlo methods. This model can be used to analyze and remove the contribution of aerosols in remote sensing observations. We have developed a method to quantify the contribution of atmospheric dust in near-IR spectra of the Martian surface obtained by the OMEGA imaging spectrometer on board Mars Express. Using observations in the nadir pointing mode with significant differences in solar incidence angles, we can infer the optical depth of atmospheric dust, and we can retrieve the surface reflectance spectra free of aerosol contribution. Martian airborne dust properties are discussed and constrained from previous studies and OMEGA data. We have tested our method on a region at 90{\\deg}E and 77{\\deg}N extensively covered by OMEGA, where significant variations of the albedo of ice patches in the visible have been reported. The consistency between reflectance spectra of ice-covered and ice-free regions recovered at different incid...

  6. VNIR reflectance spectra of gypsum mixtures for comparison with White Sands National Monument, New Mexico (WSNM) dune samples as an analog study of the Olympia Undae region of Mars

    King, S. J.; Bishop, J. L.; Fenton, L. K.; Lafuente, B.; Garcia, G. C.; Horgan, B. H.


    Dunes at WSNM are being used as an analog study area for gypsum-rich dunes near the northern polar region of Mars. Samples were collected from 4 dunes at WSNM for this study. In order to determine abundances of the gypsum, quartz and dolomite present in the dune sand, size separates (250 μm) were prepared for gypsum, quartz and dolomite, mixtures were prepared using the 90-150 μm size fraction, and all samples were characterized in the lab. Analyses of the VNIR spectral data are presented here (Figs. 1-2) and analyses of the XRD data are presented in a companion abstract [1]. The majority of the dune sand is dominated by gypsum, while the coarse grains at some ripples are largely dolomite. Mid-IR spectra will be evaluated as well. Gypsum/Dolomite Mixtures (Fig. 1) There is a clear progression of albedo and band strength in these mixture spectra as one mineral is increased and the other decreased. The mixture spectra are dominated by the gypsum bands for mixtures that are gypsum rich (≥50wt.% gypsum) including a triplet at 1.446-1.535 μm, plus bands at 1.749, 1.945, 2.217 and 2.267 μm. When mixtures become predominantly dolomite (10/90 & 20/80 mixtures), the gypsum bands are significantly weaker, while the dolomite band at 2.322 becomes much more visible. Gypsum/Quartz Mixtures (Fig. 2) The gypsum/quartz mixture spectra are dominated to an even greater extent by gypsum, resulting in readily observable gypsum features for spectra of samples with only 10 wt.% gypsum. [1] Lafuente et al. (2013) AGU, submitted.

  7. Reactor Neutrino Spectra

    Hayes, A. C.; Vogel, Petr


    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these spectra and their associated uncertainties is crucial for neutrino oscillation studies. The spectra used to date have been determined either by converting measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that make up the spectra, using modern databases as input. The uncertainties in the subdominant corrections to β-decay plague both methods, and we ...

  8. Measurement of multiplicity and momentum spectra in the current and target regions of the Breit frame in Deep Inelastic Scattering at HERA

    Abbiendi, G; Abramowicz, H; Acosta, D; Adamczyk, L; Adamus, M; Ahn, S H; Amelung, C; An Shiz Hong; Anselmo, F; Antonioli, P; Arneodo, M; Bacon, Trevor C; Badgett, W F; Bailey, D C; Bailey, D S; Bamberger, A; Barbagli, G; Bari, G; Barreiro, F; Barret, O; Bashindzhagian, G L; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Beier, H; Bellagamba, L; Bertolin, A; Bhadra, S; Bienlein, J K; Blaikley, H E; Bohnet, I; Bokel, C; Bornheim, A; Borzemski, P; Boscherini, D; Botje, M; Breitweg, J; Brock, I; Bromley, J T; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Burgard, C; Burow, B D; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carlin, R; Cartiglia, N; Cashmore, R J; Castellini, G; Catterall, C D; Chapin, D; Chekanov, S; Chwastowski, J; Ciborowski, J; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Coboken, K; Coldewey, C; Cole, J E; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Costa, M; Cottingham, W N; Crittenden, J; Cross, R; D'Agostini, G; Dagan, S; Dal Corso, F; Dardo, M; De Pasquale, S; Deffner, R; Deppe, O; Derrick, M; Deshpande, Abhay A; Desler, K; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Dosselli, U; Doyle, A T; Drews, G; Dulinski, Z; Durkin, L S; Dusini, S; Eckert, M; Edmonds, J K; Eisenberg, Y; Eisenhardt, S; Engelen, J; Epperson, D E; Ermolov, P F; Eskreys, Andrzej; Fagerstroem, C P; Fernández, J P; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fox-Murphy, A; Fricke, U; Frisken, W R; Fusayasu, T; Gadaj, T; Galea, R; Gallo, E; García, G; Garfagnini, A; Gendner, N; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Glasman, C; Göbel, F; Golubkov, Yu A; Göttlicher, P; Grabosch, H J; Graciani, R; Grosse-Knetter, J; Grzelak, G; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanna, D S; Harnew, N; Hart, J C; Hartmann, H; Hartmann, J; Hartner, G F; Hasell, D; Hayes, M E; Heaphy, E A; Heath, G P; Heath, H F; Hebbel, K; Heinloth, K; Heinz, L; Hernández, J M; Heusch, C A; Hilger, E; Hirose, T; Hochman, D; Holm, U; Homma, K; Hong, S J; Howell, G; Hughes, V W; Iacobucci, G; Iannotti, L; Iga, Y; Inuzuka, M; Ishii, T; Jakob, H P; Jelen, K; Jeoung, H Y; Jing, Z; Johnson, K F; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Kasemann, M; Katz, U F; Kcira, D; Kerger, R; Khakzad, M; Khein, L A; Kim, C L; Kim, J Y; Kisielewska, D; Kitamura, S; Klanner, Robert; Klimek, K; Koch, W; Koffeman, E; Kooijman, P; Koop, T; Korotkova, N A; Korzhavina, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowalski, H; Kowalski, T; Krakauer, D; Kreisel, A; Kuze, M; Kuzmin, V A; Labarga, L; Lamberti, L; Lane, J B; Laurenti, G; Lee, J H; Lee, S B; Lee, S W; Levi, G; Levman, G M; Levy, A; Lim, H; Lim, I T; Limentani, S; Lindemann, L; Ling, T Y; Liu, W; Löhr, B; Lohrmann, E; Long, K R; Lopez-Duran Viani, A; Lukina, O Yu; Ma, K J; Maccarrone, G; MacDonald, N; Magill, S; Mallik, U; Margotti, A; Marini, G; Markun, P; Martin, J F; Martínez, M; Maselli, S; Massam, Thomas; Mastroberardino, A; Matsushita, T; Mattingly, M C K; Mattingly, S E K; McCance, G J; McCubbin, N A; McFall, J D; Mellado, B; Menary, S; Meyer, A; Meyer-Larsen, A; Milewski, J; Milite, M; Miller, D B; Monaco, V; Mönig, K; Monteiro, T; Morandin, M; Moritz, M; Murray, W N; Musgrave, B; Nagano, K; Nam, S W; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Noyes, V A; Nylander, P; Ochs, A; Oh, B Y; Okrasinski, J R; Olkiewicz, K; Orr, R S; Pac, M Y; Padhi, S; Palmonari, F; Park, I H; Park, S K; Parsons, J A; Paul, E; Pavel, N; Pawlak, J M; Pawlak, R; Pelfer, Pier Giovanni; Pellegrino, A; Pelucchi, F; Peroni, C; Pesci, A; Petrucci, M C; Pfeiffer, M; Piccioni, D; Piotrzkowski, K; Poelz, G; Polenz, S; Polini, A; Posocco, M; Prinias, A; Proskuryakov, A S; Przybycien, M B; Puga, J; Quadt, A; Raach, H; Raso, M; Rautenberg, J; Redondo, I; Reeder, D D; Repond, J; Ritz, S; Riveline, M; Rohde, M; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Sadrozinski, H F W; Salehi, H; Sampson, S; Sartorelli, G; Saull, P R B; Savin, A A; Saxon, D H; Schechter, A; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Schwarzer, O; Sciulli, F; Scott, J; Sedgbeer, J K; Seiden, A; Selonke, F; Shah, T P; Shcheglova, L M; Sideris, D; Sievers, M; Simmons, D; Sinclair, L E; Skillicorn, I O; Smalska, B; Smith, W H; Solano, A; Solomin, A N; Son, D; Saint-Laurent, M G; Staiano, A; Stairs, D G; Stanco, L; Stanek, R; Stifutkin, A; Stonjek, S; Straub, P B; Strickland, E; Stroili, R; Susinno, G; Suszycki, L; Sutton, M R; Suzuki, I; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Toothacker, W S; Tsurugai, T; Tuning, N; Tymieniecka, T; Umemori, K; Vaiciulis, A W; Velthuis, J J; Verkerke, W; Voci, C; Vossebeld, Joost Herman; Votano, L; Walczak, R; Walker, R; Wang, S M; Waters, D S; Waugh, R; Weber, A; Westphal, D; Whitmore, J J; Wichmann, R; Wick, K; Wieber, H; Wiggers, L; Wildschek, T; Williams, D C; Wills, H H; Wing, M; Wodarczyk, M; Wolf, G; Wölfle, S; Wollmer, U; Wróblewski, A K; Yamada, S; Yamashita, T; Yamauchi, K; Yamazaki, Y; Yoshida, R; Youngman, C; Zajac, J; Zakrzewski, J A; Zamora Garcia, Y; Zawiejski, L; Zetsche, F; Zeuner, W; Zhu, Q; Zichichi, Antonino; Zotkin, S A; De Wolf, E; Del Peso, J; Van Sighem, A


    Charged particle production in neutral current deep inelastic scattering (DIS) has been studied using the ZEUS detector.The evolution of the mean multiplicities, scaled momenta and transverse momenta in Q^2 and x for $10 6\\times 10^{-4}$ has been investigated in the current and target fragmentation regions of the Breit frame. Distributions in the target region, using HERA data for the first time, are compared to distributions in the current region. Predictions based on MLLA and LPHD are inconsistent with the data.

  9. Determination of interface states and their time constant for Au/SnO2/n-Si (MOS) capacitors using admittance measurements

    H.M.Baran; A.Tataro(g)lu


    The frequency dependence of admittance measurements (capacitance-voltage (C-V) and conductance-voltage (G/ω-V)) of Au/SnO2/n-Si (MOS) capacitors was investigated by taking into account the effects of the interface states (Nss) and series resistance (Rs) at room temperature.Admittance measurements were carried out in frequency and bias voltage ranges of 1 kHz-1 MHz and (-5 V)-(+9 V),respectively.The values of Nss and Rs were determined by using a conductance method and estimating from the admittance measurements of the MOS capacitors.At low frequencies,the interface states can follow the AC signal and yield excess capacitance and conductance.In addition,the parallel conductance (Gp/ω)versus log(f) curves at various voltages include a peak due to the presence of interface states.It is observed that the Nss and their time constant (τ) range from 1.23 × 1012 to 1.47 × 1012 eV-1 cm-2 and from 7.29 × 10-5 s to 1.81 × 10-5 s,respectively.

  10. LOPES II--Design and Evaluation of an Admittance Controlled Gait Training Robot With Shadow-Leg Approach.

    Meuleman, Jos; van Asseldonk, Edwin; van Oort, Gijs; Rietman, Hans; van der Kooij, Herman


    Robotic gait training is gaining ground in rehabilitation. Room for improvement lies in reducing donning and doffing time, making training more task specific and facilitating active balance control, and by allowing movement in more degrees of freedom. Our goal was to design and evaluate a robot that incorporates these improvements. LOPES II uses an end-effector approach with parallel actuation and a minimum amount of clamps. LOPES II has eight powered degrees of freedom (hip flexion/extension, hip abduction/adduction, knee flexion/extension, pelvis forward/aft and pelvis mediolateral). All other degrees of freedom can be left free and pelvis frontal- and transversal rotation can be constrained. Furthermore arm swing is unhindered. The end-effector approach eliminates the need for exact alignment, which results in a donning time of 10-14 min for first-time training and 5-8 min for recurring training. LOPES II is admittance controlled, which allows for the control over the complete spectrum from low to high impedance. When the powered degrees of freedom are set to minimal impedance, walking in the device resembles free walking, which is an important requisite to allow task-specific training. We demonstrated that LOPES II can provide sufficient support to let severely affected patients walk and that we can provide selective support to impaired aspects of gait of mildly affected patients.

  11. Within-field and regional-scale accuracies of topsoil organic carbon content prediction from an airborne visible near-infrared hyperspectral image combined with synchronous field spectra for temperate croplands

    Vaudour, Emmanuelle; Gilliot, Jean-Marc; Bel, Liliane; Lefevre, Josias; Chehdi, Kacem


    This study was carried out in the framework of the TOSCA-PLEIADES-CO of the French Space Agency and benefited data from the earlier PROSTOCK-Gessol3 project supported by the French Environment and Energy Management Agency (ADEME). It aimed at identifying the potential of airborne hyperspectral visible near-infrared AISA-Eagle data for predicting the topsoil organic carbon (SOC) content of bare cultivated soils over a large peri-urban area (221 km2) with intensive annual crop cultivation and both contrasted soils and SOC contents, located in the western region of Paris, France. Soils comprise hortic or glossic luvisols, calcaric, rendzic cambisols and colluvic cambisols. Airborne AISA-Eagle images (400-1000 nm, 126 bands) with 1 m-resolution were acquired on 17 April 2013 over 13 tracks. Tracks were atmospherically corrected then mosaicked at a 2 m-resolution using a set of 24 synchronous field spectra of bare soils, black and white targets and impervious surfaces. The land use identification system layer (RPG) of 2012 was used to mask non-agricultural areas, then calculation and thresholding of NDVI from an atmospherically corrected SPOT4 image acquired the same day enabled to map agricultural fields with bare soil. A total of 101 sites, which were sampled either at the regional scale or within one field, were identified as bare by means of this map. Predictions were made from the mosaic AISA spectra which were related to SOC contents by means of partial least squares regression (PLSR). Regression robustness was evaluated through a series of 1000 bootstrap data sets of calibration-validation samples, considering those 75 sites outside cloud shadows only, and different sampling strategies for selecting calibration samples. Validation root-mean-square errors (RMSE) were comprised between 3.73 and 4.49 g. Kg-1 and were ~4 g. Kg-1 in median. The most performing models in terms of coefficient of determination (R²) and Residual Prediction Deviation (RPD) values were the

  12. Impact of occultations of stellar active regions on transmission spectra: Can occultation of a plage mimic the signature of a blue sky?

    Oshagh, M; Ehrenreich, D; Haghighipour, N; Figueira, P; Santerne, A; Montalto, M


    Transmission spectroscopy during planetary transits, which is based on the measurements of the variations of planet-to-star radius ratio as a function of wavelength, is a powerful technique to study the atmospheric properties of transiting planets. One of the main limitation of this technique is the effects of stellar activity, which up until now, have been taken into account only by assessing the effect of non-occulted stellar spots on the estimates of planet-to-star radius ratio. In this paper, we study, for the first time, the impact of the occultation of a stellar spot and plage on the transmission spectra of transiting exoplanets. We simulated this effect by generating a large number of transit light curves for different transiting planets, stellar spectral types, and for different wavelengths. Results of our simulations indicate that the anomalies inside the transit light curve can lead to a significant underestimation or overestimation of the planet-to-star radius ratio as a function of wavelength. At ...

  13. Two-channel opto-acoustic diode laser spectrometer and fine structure of methane absorption spectra in 6070-6180 cm-1 region.

    Kapitanov, V A; Ponomarev, Yu N; Tyryshkin, I S; Rostov, A P


    We describe the hardware and software of the high-sensitive two-channel opto-acoustic spectrometer with a near infrared diode laser. A semiconductor TEC-100 laser with outer resonator generates a continuous single-frequency radiation in the range of 6040-6300 cm-1 with spectral resolution better that 10 MHz. The newly designed model of photo-acoustic cells in the form of a ring type resonator was used in the spectrometer, and the system allows the measurement of a weak absorption coefficient equal to 1.4x10(-7) cm-1 Hz-1/2 with a laser radiation power of 0.003 W. The methane absorption spectra within a range of 6080-6180 cm-1 were measured with a spectral resolution of 10 MHz and the signal to noise ratio more than 10(3). Six hundred absorption lines were recorded, which is twice as many as in HITRAN-2004. The accurate measurements of the half-width and shift of methane unresolved triplet R3 of 2nu3 band permit us to determine values of the broadening and shift coefficients for CH4-air, CH4-N2, and CH4-SF6 mixtures.

  14. Electronic spectra of ArXe molecules in the region of Xe* (5d, 7s, 7p, 6p'), 80 300-89 500 cm{sup -1}, using resonantly enhanced multiphoton ionization

    Khodorkovskii, M A; Murashov, S V [Saint Petersburg State Polytechnical University, 195251, Saint Petersburg (Russian Federation); Artamonova, T O; Beliaeva, A A; Rakcheeva, L P [Russian Scientific Center ' Applied Chemistry' , 197198, Saint Petersburg (Russian Federation); Pastor, A A; Serdobintsev, P Yu; Timofeev, N A; Shevkunov, I A; Dement' ev, I A [Saint Petersburg State University, 198904, Petrodvorets (Russian Federation); Nordgren, J, E-mail: mkhodorkovskii@rscac.spb.r [Department of Physics, Uppsala Universitet, Fysiska Institutionen, Box 530, SE-751 21, Uppsala (Sweden)


    The electronic spectra of ArXe molecules in the 80 300-89 500 cm{sup -1} region were recorded by (2 + n) and (3 + n) REMPI methods. The vibrational progressions attributed to transitions of molecules from the ground state to the bounded excited state and wide unstructured bands related to transitions to the continuous upper state were obtained. The molecular constants of ArXe* were calculated for all the observed progressions in the 80 300-87 000 cm{sup -1} region as an approximation of an anharmonic oscillator and the Morse potential. For different excited states the energy of harmonic oscillator and the dissociation energy are changed from 10 to 100 cm{sup -1} and from 70 to 750 cm{sup -1}, respectively.

  15. Numerical calculations for effects of structure of skeletal muscle on frequency-dependence of its electrical admittance and impedance

    Sekine, Katsuhisa; Yamada, Ayumi; Kageyama, Hitomi; Igarashi, Takahiro; Yamamoto, Nana; Asami, Koji


    Numerical calculations were carried out by the finite difference method using three-dimensional models to examine effects of the structure of skeletal muscle on the frequency-dependence of its electrical admittance Y and impedance Z in transversal and longitudinal directions. In the models, the muscle cell was represented by a rectangular solid surrounded by a smooth surface membrane, and the cells were assumed to be distributed periodically. The width of the cross section of the cell, thickness of the intercellular medium, and the relative permittivities and the conductivities of the cell interior, the intercellular medium and the surface membrane were changed. Based on the results of the calculations, reported changes in Y and Z of the muscles from 1 kHz to 1 MHz were analyzed. The analyses revealed that a decreased cell radius was reasonable to explain the Y and Z of the muscles of immature rats, rats subjected to sciatic nerve crush at chronic stage and the amyotrophic lateral sclerosis (ALS) mice. Changes in Y and Z due to the sciatic nerve crush at acute stage were attributable to the decreased cell radius, the increased space between the cells, the increased permittivity of the surface membrane and the increased conductivity of the cell interior. The changes in Z due to contraction were explained by the changes in the cell radius, and the conductivities of the cell interior and the intercellular medium. The changes in Z of meat due to aging were compared with the effects of the increase in the conductivity of the surface membrane.

  16. Neutron and photon spectra in LINACs.

    Vega-Carrillo, H R; Martínez-Ovalle, S A; Lallena, A M; Mercado, G A; Benites-Rengifo, J L


    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10(-6) and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage.

  17. Critical interpretation of CH– and OH– stretching regions for infrared spectra of methanol clusters (CH{sub 3}OH){sub n} (n = 2–5) using self-consistent-charge density functional tight-binding molecular dynamics simulations

    Nishimura, Yoshifumi [Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China); Lee, Yuan-Pern [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617, Taiwan (China); Irle, Stephan [Department of Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Witek, Henryk A., E-mail: [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China)


    Vibrational infrared (IR) spectra of gas-phase O–H⋅⋅⋅O methanol clusters up to pentamer are simulated using self-consistent-charge density functional tight-binding method using two distinct methodologies: standard normal mode analysis and Fourier transform of the dipole time-correlation function. The twofold simulations aim at the direct critical assignment of the C–H stretching region of the recently recorded experimental spectra [H.-L. Han, C. Camacho, H. A. Witek, and Y.-P. Lee, J. Chem. Phys. 134, 144309 (2011)]. Both approaches confirm the previous assignment (ibid.) of the C–H stretching bands based on the B3LYP/ANO1 harmonic frequencies, showing that ν{sub 3}, ν{sub 9}, and ν{sub 2} C–H stretching modes of the proton-accepting (PA) and proton-donating (PD) methanol monomers experience only small splittings upon the cluster formation. This finding is in sharp discord with the assignment based on anharmonic B3LYP/VPT2/ANO1 vibrational frequencies (ibid.), suggesting that some procedural faults, likely related to the breakdown of the perturbational vibrational treatment, led the anharmonic calculations astray. The IR spectra based on the Fourier transform of the dipole time-correlation function include new, previously unaccounted for physical factors such as non-zero temperature of the system and large amplitude motions of the clusters. The elevation of temperature results in a considerable non-homogeneous broadening of the observed IR signals, while the presence of large-amplitude motions (methyl group rotations and PA-PD flipping), somewhat surprisingly, does not introduce any new features in the spectrum.

  18. A study of ice response spectra

    LIU Chunguang; JIA Lingling


    Some problems concerning the ice forces and ice response spectra are studied from both theoretical and practical points of view. On the basis of structural analysis,the analysis method of ice response spectra is proposed, since it plays an important role in the prediction of maximum structural response in cold regions. And it is illustrated that it is easy to study the structural response to ice using the ice response spectra.

  19. Admittance measurements in the temperature range (8-77) K for characterization of MIS structures based on MBE n-Hg0.78Cd0.22Te with and without graded-gap layers

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.


    Admittance of MIS structures based on MBE n-Hg1-xCdxTe (x=0.22-0.23) with Al2O3 as insulator is experimentally investigated for the cases of the presence and absence of near-surface graded-gap layers with high content of CdTe. It is shown that the structures with graded-gap layers are characterized by a significant hysteresis of electrical characteristics, a deep and broad dip in the low-frequency capacitance-voltage characteristic, and high values of the differential resistance of the space charge region in the strong inversion. It is found that already at 77 K, the capacitance-voltage characteristics of structures with graded-gap layers have a high-frequency behavior relative to the recharge time of surface states in the frequency range of (1-2000) kHz. At frequencies exceeding 200 kHz and a temperature of (9-15) K, the capacitance-voltage characteristics of the structures without graded-gap layers have a high-frequency behavior relative to the recharge time of surface states located near the Fermi energy for an intrinsic semiconductor. Peculiarities of determining the density of surface states and the electron concentration in MIS structures with and without graded-gap layers are studied.

  20. Accelerated Fitting of Stellar Spectra

    Ting, Yuan-Sen; Rix, Hans-Walter


    Stellar spectra are often modeled and fit by interpolating within a rectilinear grid of synthetic spectra to derive the stars' labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of parameters separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach -- CHAT (Convex Hull Adaptive Tessellation) -- which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock datasets demonstrate that CHAT can reduce the number of required synthetic model calculations by...

  1. Complex Spectra in Fusion Plasmas

    Hellermann, M.G. von; Jaspers, R. [FOM-Institute for Plasma Physics Rijnhuizen, Nieuwegein (Netherlands); Bertschinger, G.; Biel, W.; Marchuk, O. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik; Giroud, C.; Zastrow, K.D. [UKAEA Culham Laboratory Euratom Association, Abingdon (United Kingdom); Jupen, C. [Univ. of Lund (Sweden). Physics Dept.; O' Mullane, M.; Summers, H.P.; Whiteford, A. [Univ. of Strathclyde, Glasgow (United Kingdom). Applied Physics Dept.


    The need for quantitative evaluation of complex line emission spectra as observed in hot fusion plasmas initiated a challenging development of sophisticated interpretation tools based on integrating advanced atomic modelling with detailed treatment of the plasma environment. The successful merging of the two worlds has led to routine diagnostic procedures which have contributed enormously to the understanding of underlying plasma processes and also to a wide acceptance of spectroscopy as a reliable diagnostic method. In this paper three characteristic types of spectra of current and continuing interest are presented. The first is that of medium/heavy species with many ionisation stages revealed in survey VUV and XUV spectra. Such species occur as control gases, as wall materials, as ablated heavy species and possible as layered wall dopants for monitoring erosion. The spectra are complex with line-like and quasi-continuum regions and are amenable to advanced ?pattern recognition' methods. The second type is of few electron, highly ionised systems observed as line-of-sight integrated passive emission spectra in the soft X-ray region. They are analysed successfully in terms of plasma parameters through matching of observation with predicted synthetic spectra. Examples used here include highly resolved helium-like emission spectra of argon, iron and titanium observed on the tokamaks TEXTOR and Tore Supra. The third type, and the emphasis of this work, comprises spectra linked to active beam spectroscopy, that is, charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES). In this case, a complex spectrum is again composed of a (usually) dominating active spectrum and an underlying passive emission spectrum. Its analysis requires modelling of both active and passive features. Examples used here are from the CXRS diagnostic at JET and TEXTOR. They display characteristic features of the main light impurity ions (C{sup +6}, He{sup +2}, N

  2. Correlation of stability to varied CdCl2 treatment and related defects in CdS/CdTe PV devices as measured by thermal admittance spectroscopy

    Enzenroth, R. Albert; Barth, K. L.; Sampath, W. S.


    A correlation between the CdCl2 treatment and the change in conversion efficiency with light and heat stress indoors (stability) has been shown previously by our group for CdS/CdTe:Cu PV devices. In the present work CdTe devices were fabricated with various CdCl2 treatments and with and without a Cu containing back contact. The electrical characteristics of the defects acting as traps in these devices were studied using thermal admittance spectroscopy (TAS). The activation energy Et-EV, the apparent capture cross section and the densities of state functions (using Walter's method) of the traps in the devices were estimated.

  3. Single-conformation infrared spectra of model peptides in the amide I and amide II regions: experiment-based determination of local mode frequencies and inter-mode coupling.

    Buchanan, Evan G; James, William H; Choi, Soo Hyuk; Guo, Li; Gellman, Samuel H; Müller, Christian W; Zwier, Timothy S


    Single-conformation infrared spectra in the amide I and amide II regions have been recorded for a total of 34 conformations of three α-peptides, three β-peptides, four α/β-peptides, and one γ-peptide using resonant ion-dip infrared spectroscopy of the jet-cooled, isolated molecules. Assignments based on the amide NH stretch region were in hand, with the amide I/II data providing additional evidence in favor of the assignments. A set of 21 conformations that represent the full range of H-bonded structures were chosen to characterize the conformational dependence of the vibrational frequencies and infrared intensities of the local amide I and amide II modes and their amide I/I and amide II/II coupling constants. Scaled, harmonic calculations at the DFT M05-2X/6-31+G(d) level of theory accurately reproduce the experimental frequencies and infrared intensities in both the amide I and amide II regions. In the amide I region, Hessian reconstruction was used to extract local mode frequencies and amide I/I coupling constants for each conformation. These local amide I frequencies are in excellent agreement with those predicted by DFT calculations on the corresponding (13)C = (18)O isotopologues. In the amide II region, potential energy distribution analysis was combined with the Hessian reconstruction scheme to extract local amide II frequencies and amide II/II coupling constants. The agreement between these local amide II frequencies and those obtained from DFT calculations on the N-D isotopologues is slightly worse than for the corresponding comparison in the amide I region. The local mode frequencies in both regions are dictated by a combination of the direct H-bonding environment and indirect, "backside" H-bonds to the same amide group. More importantly, the sign and magnitude of the inter-amide coupling constants in both the amide I and amide II regions is shown to be characteristic of the size of the H-bonded ring linking the two amide groups. These amide I/I and

  4. Reactor Neutrino Spectra

    Hayes, A C


    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  5. FTIR spectra of CH2F2 in the 1000-1300 cm-1 region: Rovibrational analysis and modeling of the Coriolis and anharmonic resonances in the ν3, ν5, ν7, ν9 and 2ν4 polyad

    Stoppa, Paolo; Tasinato, Nicola; Baldacci, Agostino; Pietropolli Charmet, Andrea; Giorgianni, Santi; Tamassia, Filippo; Cané, Elisabetta; Villa, Mattia


    The FTIR spectra of CH2F2 have been investigated in a region of atmospheric interest (1000-1300 cm-1) where four fundamentals ν3, ν5, ν7 and ν9 occur. These vibrations perturb each other by different Coriolis interactions and the forbidden ν5 borrows intensity from the neighboring levels. Furthermore, the v4=2 state has been found to interact with the v3=1 and v9=1 states by anharmonic and c-type Coriolis resonances, respectively. The spectral analysis resulted in the assignment of about 7500 rovibrational transitions which have been simultaneously fitted, together with microwave data available in literature (Hirota E. J Mol Spectrosc 1978; 69: 409-420) [15] using the Watson's A-reduction Hamiltonian in the Ir representation and the relevant perturbation operators. The model employed includes eight types of resonances within the pentad ν3/ν5/ν7/ν9/2ν4. A set of spectroscopic constants for the four fundamentals as well as parameters for the v4=2 state and eighteen coupling terms have been determined. The simulations performed in different spectral regions well reproduce the experimental data.

  6. Study on Improving Admittance Threshold of Mining Right Owner%对提高采矿权人准入门槛的探讨

    廖福源; 石玉山


    随着我国经济的高速发展,为适应国家可持续发展战略、打造和谐社会,国土资源管理部门在矿产资源开发和监督管理过程中对采矿权人提出了新的要求.结合目前浙江省及国内矿产资源开发现状,分析提高采矿权人准入门槛的意义,探讨如何提高采矿权人准入门槛,以促进矿产资源合理开发.%With rapid development of Chinese economic, to meet the national sustainable development strategies and build a harmonious society, land and resources management departments made a lot of new requirements to mining right owner in the process of mineral resources development supervision and management. In this paper, according to current status of Zhejiang province and domestic mineral resources development, the significance of improving the admittance threshold was analyzed. And how to improve the admittance threshold of mining right owner was discussed to promote the rational exploitation of mineral resources.

  7. Temperature spectra of conductance of Ge/Si p-i-n structures with Ge quantum dots

    Izhnin, Ihor I.; Fitsych, Olena I.; Pishchagin, Anton A.; Kokhanenko, Andrei P.; Voitsekhovskii, Alexander V.; Dzyadukh, Stanislav M.; Nikiforov, Alexander I.


    This work presents results of investigation of Ge/Si p-i-n structures with Ge quantum dots in the i-region by the method of admittance spectroscopy. The structures contain multiple layers with Ge quantum dots separated by thin 5 nm layers of Si in the intrinsic region. Two peaks are observed on the temperature dependences of conductance of the investigated heterostructures. It is revealed that the second peak is broadened and corresponds to a system of closely lying energy levels.

  8. Investigating the effect of landfill leachates on the characteristics of dissolved organic matter in groundwater using excitation-emission matrix fluorescence spectra coupled with fluorescence regional integration and self-organizing map.

    He, Xiao-Song; Fan, Qin-Dong


    For the purpose of investigating the effect of landfill leachate on the characteristics of organic matter in groundwater, groundwater samples were collected near and in a landfill site, and dissolved organic matter (DOM) was extracted from the groundwater samples and characterized by excitation-emission matrix (EEM) fluorescence spectra combined with fluorescence regional integration (FRI) and self-organizing map (SOM). The results showed that the groundwater DOM comprised humic-, fulvic-, and protein-like substances. The concentration of humic-like matter showed no obvious variation for all groundwater except the sample collected in the landfill site. Fulvic-like substance content decreased when the groundwater was polluted by landfill leachates. There were two kinds of protein-like matter in the groundwater. One kind was bound to humic-like substances, and its content did not change along with groundwater pollution. However, the other kind was present as "free" molecules or else bound in proteins, and its concentration increased significantly when the groundwater was polluted by landfill leachates. The FRI and SOM methods both can characterize the composition and evolution of DOM in the groundwater. However, the SOM analysis can identify whether protein-like moieties was bound to humic-like matter.

  9. On the impedance of galvanic cells XXVIII. The frequency-dependence of the electrode admittance for systems with first-order homogeneous chemical reactions and reactant adsorption occurring simultaneously

    Sluyters-Rehbach, M.; Sluyters, J.H.


    Equations are derived for the interfacial admittance of an electrode at which the electrode reaction O+neR occurs assuming that the charge transfer is infinitely fast and that either O or R is involved in a first-order homogeneous reaction delivering the substance Y, or that both O and R are involve

  10. Analysis of the interfacial admittance in the case of a two-step two-electron electrode reaction with a diffusing intermediate, with application to the reduction of pyrazine

    Rueda, M.; Sluyters-Rehbach, M.; Sluyters, J.H.


    A critical evaluation is presented of the analysis of impedance or admittance data in the case of an electrode reaction proceeding by two consecutive one-electron transfers with a stable, solution-soluble intermediate. It is shown that the expression for this case, as derived by Armstrong and

  11. Stratospheric HNO3 quantification from line-by-line nonlinear least-squares analysis of high-resolution balloon-borne solar absorption spectra in the 870/cm region

    Goldman, A.; Gillis, J. R.; Murcray, F. J.; Murcray, D. G.; Rinsland, C. P.


    Line parameters for the nu(5) and 2nu(9) bands and associated hot bands of HNO3 have been calculated and compared with laboratory spectra, and the results are presented. Spectral intervals near 870/cm for which best agreement was obtained are used to quantitatively analyze HNO3 absorption features in 0.02/cm resolution stratospheric solar absorption spectra.

  12. Characterization of CdS/CdTe thin-film solar cells by admittance spectroscopy and deep-level transient spectroscopy

    Isett, L. C.


    Mitchell (1982) and Tyan (1980) have described several thin-film CdTe solar-cell configurations. Power conversion efficiencies greater than 8 percent were demonstrated. It is pointed out that for a clearer understanding of the solar cell, a determination of the electronic character of semiconductor imperfection states is required in addition to measurement of solar-cell parameters (efficiency, short-circuit current, open-circuit voltage). The present investigation is concerned with the analysis of CdS/CdTe thin-film solar cells prepared by close-spaced sublimation (CSS), taking into account the employment of deep-level transient spectroscopy (DLTS) and admittance spectroscopy. The analysis provides information on both the structure of the CdS/CdTe solar cell and the deep-level impurities in CdTe. Deep-level impurities in the p-CdTe layer are discussed.

  13. Wind turbine transformer admittance characterization based on online time-domain measurements and preliminary results from measurements done in two transformers using a SFRA

    Arana Aristi, Iván; Holbøll, Joachim; Nielsen, Arne Hejde


    This paper presents the analysis of online time-domain measurements on the primary and secondary side of a wind turbine transformer in an Offshore Wind Farm (OWF), during one switching operation realized in the collection grid. The frequency characteristics up to 10 kHz of the current and voltage...... signals of each phase were compared and the transformers admittance characteristic was estimated based on these measurements. Based on the results from the previous analysis, it was decided to acquire a Sweep Frequency Response Analyzer (SFRA) to realize detailed transformer measurements. First...... the results from the measurements in a small dry-type transformer under laboratory conditions are presented, and finally the results from a large transformer measured in a in an industrial setting are shown....

  14. 浅谈韩国对医疗器械市场准入的要求%Requirements of Korea for admittance to medical device market

    秦韶燕; 崔涛; 殷海松


    The concept and classification of Korean medical device were introduced. The phases for Korea to import medical device include selecting Korean certification holder, hospital admittance, device marketing and supervision after marketing. China and other countries can find references to export medical devices into Korea.%介绍了韩国医疗器械的定义和分类,结合实际工作经验和国内医疗器械审评要求,分析了选择韩国证书持证人、医院准入、产品上市及上市后的监管等韩国进口医疗器械的几个阶段,为国内和其他国家医疗器械进入韩国市场提供参考.

  15. Research and Development of Digital RF Admittance Level Meter%数字式射频导纳物位仪的研究与开发

    刘虎; 周蕾


    分析了电容式物位测量仪挂料产生的原因及其对测量的影响,提出采用斩波积分方法消除或减小挂料影响,提高信噪比,设计了基于MSP430F149的数字式射频导纳物位仪,并给出了硬件原理框图。%Through analyzing the reasons which causing probe attachment and the effects on the measure re-sult , a chopper integral method was proposed to eliminate or reduce the probe attachment influence so that sig -nal noise ratio can be improved;and a MSP430F149-based digital RF admittance level meter was developed , including hardware block diagram .

  16. Raman Spectra of Glasses


    17), Raman spectra, plus a , . theoretical treatment of the data, f complex fluorozirconate 14 I anions in ZBLAN glasses and melts (16), and...based ZBLAN glasses ) 17. ICORS (International Conference on Raman Spectroscopy) Proceedings, London, England. Conferencf 5-9 Sep 88. (Molten silica...RESEARCH FINAL REPORT DTIC CONTRACT N00014-81-K-0501 &JELECTE 1 MAY 81 -- 30 NOV 86 EJJAN041989 V "RAMAN SPECTRA OF GLASSES " 0 During the five years of the

  17. Phobos surface spectra mineralogical modeling

    Pajola, M.; Lazzarin, M.; Dalle Ore, C. M.; Cruikshank, D. P.; Roush, T. L.; Pendleton, Y.; Bertini, I.; Magrin, S.; Carli, C.; La Forgia, F.; Barbieri, C.


    A mineralogical model composed of a mixture of Tagish Lake meteorite (TL) and Pyroxene Glass (PM80) was presented in [1] to explain the surface reflectance of Phobos from 0.25 to 4.0 μm. The positive results we obtained, when comparing the OSIRIS data [2] extended in wavelength to include the [3,4] spectra, forced us to perform a wider comparison between our TL-PM80 model and the CRISM and OMEGA Phobos spectra presented in [5]. Such spectra cover three different regions of interest (ROIs) situated in the Phobos sub-Mars hemisphere: the interior of the Stickney crater, its eastern rim, and its proximity terrain southeast of the Reldresal crater. We decided to vary the percentage mixture of the components of our model (80% TL, 20% PM80), between pure TL and pure PM80, by means of the radiative transfer code based on the [6] formulation of the slab approximation. Once this spectral range was derived, see Fig. 1, we attempted to compare it with the [5] spectra between 0.4 and 2.6 μm, i.e. below the thermal emitted radiation, to see if any spectral match was possible. We observed that CRISM scaled spectra above 1.10 μm fall within pure Tagish Lake composition and the [1] model. The CRISM data below 1.10 μm present more discrepancies with our models, in particular for the Stickney's rim spectrum. Nevertheless the TL and PM80 components seem to be good mineralogical candidates on Phobos. We performed the same analysis with the OMEGA data and, again, we found out that the Stickney's rim spectrum lies out of our model range, while the two remaining spectra still lie between pure TL and 80% TL - 20% PM80, but indicating that a different, more complicated mixture is expected in order to explain properly both the spectral trend and the possible absorption bands located above 2.0 μm. Within this analysis, we point out that a big fraction of TL material (modeled pure or present with a minimum percentage of 80% mixed together with 20% PM80) seems to explain Phobos spectral

  18. Solar quiescent Active Region temperature distribution inferred from the Miniature Solar X-ray Solar Spectrometer (MinXSS) CubeSat soft X-ray spectra, Hinode X-ray Telescope (XRT) soft X-ray filter images and EUV measurements.

    Moore, C. S.; Woods, T. N.; Caspi, A.; Mason, J. P.


    Soft X-rays serve as an important diagnostic tool for hot (T > 106 K) solar coronal plasma elemental composition, elemental ionization states, density of emitting plasma and dynamical events triggered by magnetic field structures. Spectrally resolved, solar disc averaged, soft X-ray spectra from the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat combined with spatially resolved soft X-ray filter images from the Hinode X-ray Telescope (XRT) and complimentary EUV data can yield unique inferences of the quiescent (non-flaring) active regions' emitting plasma temperature distribution and chemical composition. This talk will discuss how the MinXSS spectra and Hinode XRT images from the sparsely measured 0.7 - 10 keV ( 0.124 - 1.77 nm) region, can augment estimations of active region temperature distribution and elemental abundance variations that are currently being assessed primarily from typical EUV and hard X-ray observations.

  19. Photon and photoneutron spectra produced in radiotherapy Linacs

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte Km. 1, Via Paipa Tunja, Boyaca (Colombia); Benites R, J. L. [Universidad Autonoma de Nayarit, Postgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico); Lallena, A. M., E-mail: [Universida de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, E-18071 Granada (Spain)


    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10{sup -6} and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  20. Spectra and strains

    Golyshev, V


    This is a blend of two informal reports on the activities of the seminar on Galois representations and mirror symmetry given at the Conference on classification problems and mirror duality at the Steklov Institute, in March 2006, and at the Seminar on Algebra, Geometry and Physics at MPI, in November 2007. We assess where we are on the issue of the spectra of Fano varieties, and state problems. We introduce higher dimensional irreducible analogues of dessins, the low ramified sheaves, and hypothesize that Fano spectra relate to their geometric conductors. We give a recipe to a physicist.

  1. A Study on Raman Spectra of Bis (Saliaylaldehyde 1,2-Cyclohexanediiminato) in Fingerpoint Region%N,N‘-双水杨醛缩环己二胺指纹区拉曼光谱研究

    杨国玉; 陈钢; 金显春; 赵仲麟; 苏同福


    The Raman spectra of bis (saliaylaldehyde 1,2-cyclohexanediiminato) were measured by excited wavelength 633 nm in fingerprint rang: below 1 000 cm-1 and its theoretical curves were simulated by B3LYP/3-21G*basis set according to density functional theory. The results of comparison between theoretical and observed values show that there is in agreement in fingerprint region, and there is a characteristic vibrational peak at 800 cm-1,which could be assigned scissor vibration of C-N=C with stretching vibrations of C =C in benzene ring. In addition,there are some differences in intensities between observed and theoretical curves due to differences of aggregations. the observed values were detected at solid powder which was composed of many molecules while calculated values were simulated according to a single molecular in gas phase conditions and the effects of the inter-or/and intra-molecule were not considered.%采用633 nm激光器,检测了合成的N,N'-双水杨醛缩环己二胺产物在指纹区的拉曼光谱,并根据密度泛函理论对其拉曼光谱进行理论模拟.该分子拉曼光谱检测值和理论值比较表明:在位移800 cm-1,该物质有一特征峰,初步将其归属为C-N-C两碳原子围绕N原子的剪式振动和苯环碳骨架伸缩振动的协同振动,这是该物质多个原子的集体振动模.拉曼图谱检测值和理论值相比表明,在指纹区,两者总的来说是一致的,但也有一定的差异,其主要原因是检测样品是多个分子的聚集体,分子基团的振动受到分子间相互作用的影响,而理论值计算的只是根据该物质气态的一个分子.

  2. Atomic Spectra Database (ASD)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  3. Crystal field spectra of lunar pyroxenes.

    Burns, R. G.; Abu-Eid, R. M.; Huggins, F. E.


    Absorption spectra in the visible and near infrared regions have been obtained for pyroxene single crystals in rocks from the Apollo 11, 12, 14, and 15 missions. The polarized spectra are compared with those obtained from terrestrial calcic clinopyroxenes, subcalcic augites, pigeonites, and orthopyroxenes. The lunar pyroxenes contain several broad, intense absorption bands in the near infrared, the positions of which are related to bulk composition, Fe(2+) site occupancy and structure type of the pyroxene. The visible spectra contain several sharp, weak peaks mainly due to spin-forbidden transitions in Fe(2+). Additional weak bands in this region in Apollo 11 pyroxenes are attributed to Ti(3+) ions. Spectral features from Fe(3+), Mn(2+), Cr(3+), and Cr(2+) were not observed.

  4. Direct recovery of fluctuation spectra from tomographic shear spectra

    Mezzetti, Marino; Bonometto, Silvio A.; Casarini, Luciano; Murante, Giuseppe


    Forthcoming experiments will enable us to determine high precision tomographic shear spectra. Matter density fluctuation spectra, at various z, should then be recovered from them, in order to constrain the model and determine the DE state equation. Available analytical expressions, however, do the opposite, enabling us to derive shear spectra from fluctuation spectra. Here we find the inverse expression, yielding density fluctuation spectra from observational tomographic shear spectra. The procedure involves SVD techniques for matrix inversion. We show in detail how the approach works and provide a few examples.

  5. Separate measurement of the density and viscosity of a liquid using a quartz crystal microbalance based on admittance analysis (QCM-A)

    Itoh, Atsushi; Ichihashi, Motoko


    We previously used a quartz crystal microbalance (QCM) to identify a frequency f2 that allows measurement of the mass load without being affected by the viscous load of a liquid in the liquid phase. Here, we determined that frequency in order to separately measure the density and viscosity of a Newtonian liquid. Martin et al separately measured the density and viscosity of a liquid by immersing two quartz resonators, i.e. a smooth-surface resonator and a textured-surface resonator, in the liquid. We used a QCM based on admittance analysis (QCM-A) in the current study to separately measure the viscosity and density of a liquid using only a textured-surface resonator. In the current experiments, we measured the density and viscosity of 500 µl of 10%, 30%, and 50% aqueous glycerol solutions and compared the measured values to reference values. The density obtained had an error of ±1.5% of reference values and the viscosity had an error of about ±5% of reference values. Similar results were obtained with 500 µl of 10%, 30%, and 50% ethanol solutions. Measurement was possible with a quartz resonator, so measurements were made with even smaller samples. The density and viscosity of a liquid were successfully determined with an extremely small amount of liquid, i.e. 10 µl, with almost the same precision as when using 500 µl of the liquid.

  6. Title: Near-UV behaviour of observed TNO reflectance spectra

    Seccull, Tom; Fraser, Wesley Cristopher; Izawa, Matthew; Brown, Michael E.


    Observed spectra provide the best diagnostics of the surface compositions of Trans-Neptunian Objects (TNOs). We have observed the spectra of 7 TNOs, from across almost the full range of dynamical classes, using the VLT's X-Shooter spectrograph. Compared to the 5 targets in our sample which exhibit linear spectra in the UV-optical range, two of of our targets show highly unusual spectral behaviour, whereby their reflectance decreases sharply at wavelengths below ~440nm. Those same objects exhibit typically unremarkable spectra in the optical and near-IR spectral regions. In these regions where available, our observed spectra of the targets are in agreement with spectra or photometry available in the literature. Using a different solar analogue to produce our reflectance spectra does not remove the UV decrease exhibited by the two targets. Further, it appears that neither reducing the spectra with different pipelines, nor using drastically different parameters in those pipelines changes this general behaviour. Based on laboratory spectra of complex hydrocarbons it is plausible that the near-UV behaviour is the result of a surface coating of organic substances on the TNOs which exhibit it. The spectra of organics are also consistent in having a general red slope similar to that observed in the spectra of many TNOs. While laboratory spectra of some silicate substances also show a decrease in reflectance in the near-UV spectral region that is in principle consistent with our observations, those silicates do not exhibit a red slope consistent with our optical spectra. Hence, the hypothesis that silicates are present seems less likely than the hypothesis that this UV decrease is due to the presence of organics on the surfaces of these objects.

  7. Vibrational spectra of corticosteroid hormones in the terahertz range

    Cherkasova, O. P.; Nazarov, M. M.; Sapozhnikov, D. A.; Man'kova, A. A.; Fedulova, E. V.; Volodin, V. A.; Minaeva, V. A.; Minaev, B. F.; Baryshnikov, G. V.


    The terahertz time-domain and Raman spectra of corticosteroid hormones in the region of low-frequency infrared vibrations have been measured. On the ground of quantum chemical calculations of the frequencies and normal modes the assignments of vibrational bands in the THz-spectra are performed.

  8. Control spectra for Quito

    Aguiar, Roberto; Rivas-Medina, Alicia; Caiza, Pablo; Quizanga, Diego


    The Metropolitan District of Quito is located on or very close to segments of reverse blind faults, Puengasí, Ilumbisí-La Bota, Carcelen-El Inca, Bellavista-Catequilla and Tangahuilla, making it one of the most seismically dangerous cities in the world. The city is divided into five areas: south, south-central, central, north-central and north. For each of the urban areas, elastic response spectra are presented in this paper, which are determined by utilizing some of the new models of the Pacific Earthquake Engineering Research Center (PEER) NGA-West2 program. These spectra are calculated considering the maximum magnitude that could be generated by the rupture of each fault segment, and taking into account the soil type that exists at different points of the city according to the Norma Ecuatoriana de la Construcción (2015). Subsequently, the recurrence period of earthquakes of high magnitude in each fault segment is determined from the physical parameters of the fault segments (size of the fault plane and slip rate) and the pattern of recurrence of type Gutenberg-Richter earthquakes with double truncation magnitude (Mmin and Mmax) is used.

  9. Meteors and meteorites spectra

    Koukal, J.; Srba, J.; Gorková, S.; Lenža, L.; Ferus, M.; Civiš, S.; Knížek, A.; Kubelík, P.; Kaiserová, T.; Váňa, P.


    The main goal of our meteor spectroscopy project is to better understand the physical and chemical properties of meteoroids. Astrometric and spectral observations of real meteors are obtained via spectroscopic CCD video systems. Processed meteor data are inserted to the EDMOND database (European viDeo MeteOr Network Database) together with spectral information. The fully analyzed atmospheric trajectory, orbit and also spectra of a Leonid meteor/meteoroid captured in November 2015 are presented as an example. At the same time, our target is the systematization of spectroscopic emission lines for the comparative analysis of meteor spectra. Meteoroid plasma was simulated in a laboratory by laser ablation of meteorites samples using an (ArF) excimer laser and the LIDB (Laser Induced Dielectric Breakdown) in a low pressure atmosphere and various gases. The induced plasma emissions were simultaneously observed with the Echelle Spectrograph and the same CCD video spectral camera as used for real meteor registration. Measurements and analysis results for few selected meteorite samples are presented and discussed.

  10. Functional Regression for Quasar Spectra

    Ciollaro, Mattia; Freeman, Peter; Genovese, Christopher; Lei, Jing; O'Connell, Ross; Wasserman, Larry


    The Lyman-alpha forest is a portion of the observed light spectrum of distant galactic nuclei which allows us to probe remote regions of the Universe that are otherwise inaccessible. The observed Lyman-alpha forest of a quasar light spectrum can be modeled as a noisy realization of a smooth curve that is affected by a `damping effect' which occurs whenever the light emitted by the quasar travels through regions of the Universe with higher matter concentration. To decode the information conveyed by the Lyman-alpha forest about the matter distribution, we must be able to separate the smooth `continuum' from the noise and the contribution of the damping effect in the quasar light spectra. To predict the continuum in the Lyman-alpha forest, we use a nonparametric functional regression model in which both the response and the predictor variable (the smooth part of the damping-free portion of the spectrum) are function-valued random variables. We demonstrate that the proposed method accurately predicts the unobserv...

  11. Observation of lower defect density in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cells by admittance spectroscopy

    Jiang, Minlin; Lan, Fei; Tao, Quan; Li, Guangyong, E-mail:, E-mail: [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Zhao, Bingxin [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Wu, Jiamin; Gao, Di, E-mail:, E-mail: [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States)


    The introduction of Cl into CH{sub 3}NH{sub 3}PbI{sub 3} precursors is reported to enhance the performance of CH{sub 3}NH{sub 3}PbI{sub 3} solar cell, which is attributed to the significantly increased diffusion lengths of carriers in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell. It has been assumed but never experimentally approved that the defect density in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell should be reduced according to the higher carrier lifetime observed from photoluminescence (PL) measurement. We have fabricated CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell by adding a small amount of Cl source into CH{sub 3}NH{sub 3}PbI{sub 3} precursor. The performance of CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell is significantly improved from 15.39% to 18.60%. Results from scanning electron microscopy and X-ray diffraction indicate that the morphologies and crystal structures of CH{sub 3}NH{sub 3}PbI{sub 3} and CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} thin films remain unchanged. Open circuit voltage decay and admittance spectroscopy characterization jointly approve that Cl plays an extremely important role in suppressing the formation of defects in perovskite solar cells.

  12. Sequencing BPS Spectra

    Gukov, Sergei; Saberi, Ingmar; Stosic, Marko; Sulkowski, Piotr


    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar\\'e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (refined) modular $S$-matrix. This leads to the identifi...

  13. Short local descriptors from 2D connected pattern spectra

    Bosilj, Petra; Kijak, Ewa; Wilkinson, Michael H. F.; Lefèvre, Sebastien


    We propose a local region descriptor based on connected pattern spectra, and combined with normalized central moments. The descriptors are calculated for MSER regions of the image, and their performance compared against SIFT. The MSER regions were chosen because they can be efficiently selected by c

  14. 江苏省印染行业环境准入条件研究%Research on Environmental Admittance Requirements for Printing and Dyeing Industry of Jiangsu Province

    陈华; 田珺; 姚珺; 田涛


    实施环境准入制度,是落实科学发展观、建设生态文明的具体要求,也是环境保护、促进经济转型发展的重要手段和措施。印染行业环境准入条件的设定,可促进印染行业产业结构调整,优化印染项目布局,促进污染物减排,有效防止低水平、重污染项目的建设,为加快转变发展方式,实现经济、社会与环境保护协调发展发挥积极作用。文章对江苏省印染行业环境准入条件进行了研究。%The implementation of environmental admittance requirements is the specific requirements of carrying out the scientific development concept and ecological civilization construction. It is also the important means and measures for environmental protection to promote economic transformation and development. The setting of environmental admittance requirements for printing and dyeing industry can accelerate the industrial structure adjustment, optimize the layout of printing and dyeing projects, promote the pollutant reduction, and effectively prevent the construction of low level and heavy pollution projects. Meanwhile it plays an active role in accelerating the transformation of development and realizing the coordinated development of economic, social and environmental protection. This paper researches on environmental admittance requirements for printing and dyeing industry of Jiangsu province.

  15. Sequencing BPS spectra

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr


    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d {N}=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  16. Non-Gaussian Spectra

    Ferreira, P G; Ferreira, Pedro G.; Magueijo, Joao


    Gaussian cosmic microwave background skies are fully specified by the power spectrum. The conventional method of characterizing non-Gaussian skies is to evaluate higher order moments, the n-point functions and their Fourier transforms. We argue that this method is inefficient, due to the redundancy of information existing in the complete set of moments. In this paper we propose a set of new statistics or non-Gaussian spectra to be extracted out of the angular distribution of the Fourier transform of the temperature anisotropies in the small field limit. These statistics complement the power spectrum and act as localization, shape, and connectedness statistics. They quantify generic non-Gaussian structure, and may be used in more general image processing tasks. We concentrate on a subset of these statistics and argue that while they carry no information in Gaussian theories they may be the best arena for making predictions in some non-Gaussian theories. As examples of applications we consider superposed Gaussi...

  17. Sequencing BPS spectra

    Gukov, Sergei [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Max-Planck-Institut für Mathematik,Vivatsgasse 7, D-53111 Bonn (Germany); Nawata, Satoshi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Centre for Quantum Geometry of Moduli Spaces, University of Aarhus,Nordre Ringgade 1, DK-8000 (Denmark); Saberi, Ingmar [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Stošić, Marko [CAMGSD, Departamento de Matemática, Instituto Superior Técnico,Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Mathematical Institute SANU,Knez Mihajlova 36, 11000 Belgrade (Serbia); Sułkowski, Piotr [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland)


    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  18. Reflectance spectra of subarctic lichens

    Petzold, Donald E.; Goward, Samuel N.


    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  19. Newmark design spectra considering earthquake magnitudes and site categories

    Li, Bo; Xie, Wei-Chau; Pandey, M. D.


    Newmark design spectra have been implemented in many building codes, especially in building codes for critical structures. Previous studies show that Newmark design spectra exhibit lower amplitudes at high frequencies and larger amplitudes at low frequencies in comparison with spectra developed by statistical methods. To resolve this problem, this study considers three suites of ground motions recorded at three types of sites. Using these ground motions, influences of the shear-wave velocity, earthquake magnitudes, source-to-site distances on the ratios of ground motion parameters are studied, and spectrum amplification factors are statistically calculated. Spectral bounds for combinations of three site categories and two cases of earthquake magnitudes are estimated. Site design spectrum coefficients for the three site categories considering earthquake magnitudes are established. The problems of Newmark design spectra could be resolved by using the site design spectrum coefficients to modify the spectral values of Newmark design spectra in the acceleration sensitive, velocity sensitive, and displacement sensitive regions.

  20. Electron spectra of radical cations of heteroanalogs

    Petrushenko, K.B.; Turchaninov, V.K.; Vokin, A.I.; Ermikov, A.F.; Frolov, Yu.L.


    Radical cation spectra of indazole and benzothiophene in the visible region were obtained by laser photolysis during the reaction of photoexcited quinones with these compounds in acetonitrile. The charge transfer bands of the complexes of the test compounds with p-chloranil and 7,7,8,8-tetracyanoquinodimethane in dioxane were recorded on a Specord M-40. Photoelectron spectra were obtained on a ES-3201 electron spectrometer. The He(I) resonance band (21.21 eV) was used for excitation. Measurements were carried out in the 60-120/sup 0/C range. The energy scale was calibrated form the first ionization potentials of Ar (15.76 eV) and chlorobenzene (9.06 eV). The error in the determination of the ionization potentials for the first four photoelectron bands was 0.05 eV.

  1. Curved Radio Spectra of Weak Cluster Shocks

    Kang, Hyesung


    We explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud of fossil relativistic electrons in the cluster periphery. Such a scenario could explain uniformity of the surface brightness and spectral curvature in the integrated spectra of thin arc-like radio relics. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. The surface brightness profile of radio-emitting postshock region and the volume-integrated radio spectrum are calculated as well. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed $u_s \\sim 3,000 \\kms$ and sonic Mach number $M_s \\sim 3$. These shocks produce curved radio spectra that steepen gradually over $(0.1-10) \

  2. Control of photodetachment spectra through laser dressing

    Morrison, Nathan; Greene, Chris


    Photodetachment and photoionization spectra often display rich resonance structures. The properties of these spectra can be modified through dressing with intense laser fields, providing control over photon absorption and the emitted electron. We present a Floquet R-matrix method for calculating photodetachment cross sections in the presence of a dressing laser. The full wave functions in the Floquet formalism for bound and escaping electrons are found by solving the Schrödinger equation near the atomic core and applying analytic boundary conditions outside of the interaction region. These calculations are used to investigate the modification of existing resonances, such as modifying the shape, or q parameter, of Feshbach resonances. We also investigate the creation of new resonances in cases where high-lying bound states become autoionizing through the absorption of dressing laser photons. This work was supported by the DOE.

  3. RADLite: Raytracer for infrared line spectra

    Pontoppidan, Klaus; Dullemond, Kees


    RADLite is a raytracer that is optimized for producing infrared line spectra and images from axisymmetric density structures, originally developed to function on top of the dust radiative transfer code RADMC. RADLite can consistently deal with a wide range of velocity gradients, such as those typical for the inner regions of protoplanetary disks. The code is intended as a back-end for chemical and excitation codes, and can rapidly produce spectra of thousands of lines for grids of models for comparison with observations. It includes functionality for simulating telescopic images for optical/IR/midIR/farIR telescopes. It takes advantage of multi-threaded CPUs and includes an escape-probability non-LTE module.

  4. Infrared Spectra of Anionic Cobalt-Carbon Dioxide Clusters

    Knurr, Benjamin; Weber, J. Mathias


    We present infrared photodissociation spectra of Co(CO_2)_n^- ions (n = 3 - 11) in the wavenumber region 1000 - 2400 cm-1, interpreted with the aid of density functional theory calculations. The spectra show signatures of several structural motifs for the interaction of a Co atom and CO_2 ligands. The spectra are dominated by a core ion showing bidentate interaction of two CO_2 ligands forming C-Co and O-Co bonds. The prevalence of triplet vs singlet states and the charge distribution in the Co(CO_2)_2^- core ion will also be discussed.

  5. Pileup correction of microdosimetric spectra

    Langen, K M; Lennox, A J; Kroc, T K; De Luca, P M


    Microdosimetric spectra were measured at the Fermilab neutron therapy facility using low pressure proportional counters operated in pulse mode. The neutron beam has a very low duty cycle (<0.1%) and consequently a high instantaneous dose rate which causes distortions of the microdosimetric spectra due to pulse pileup. The determination of undistorted spectra at this facility necessitated (i) the modified operation of the proton accelerator to reduce the instantaneous dose rate and (ii) the establishment of a computational procedure to correct the measured spectra for remaining pileup distortions. In support of the latter effort, two different pileup simulation algorithms using analytical and Monte-Carlo-based approaches were developed. While the analytical algorithm allows a detailed analysis of pileup processes it only treats two-pulse and three-pulse pileup and its validity is hence restricted. A Monte-Carlo-based pileup algorithm was developed that inherently treats all degrees of pileup. This algorithm...

  6. Correlation Functions and Power Spectra

    Larsen, Jan


    The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions...... and spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed definitions and properties of correlation functions and spectra for analog as well as discrete-time signals....... It is possible to define correlation functions and associated spectra for aperiodic, periodic and random signals although the interpretation is different. Moreover, we will discuss correlation functions when mixing these basic signal types. In addition, the note include several examples for the purpose...

  7. Absorption Spectra of Astaxanthin Aggregates

    Olsina, Jan; Minofar, Babak; Polivka, Tomas; Mancal, Tomas


    Carotenoids in hydrated polar solvents form aggregates characterized by dramatic changes in their absorption spectra with respect to monomers. Here we analyze absorption spectra of aggregates of the carotenoid astaxanthin in hydrated dimethylsulfoxide. Depending on water content, two types of aggregates were produced: H-aggregates with absorption maximum around 390 nm, and J-aggregates with red-shifted absorption band peaking at wavelengths >550 nm. The large shifts with respect to absorption maximum of monomeric astaxanthin (470-495 nm depending on solvent) are caused by excitonic interaction between aggregated molecules. We applied molecular dynamics simulations to elucidate structure of astaxanthin dimer in water, and the resulting structure was used as a basis for calculations of absorption spectra. Absorption spectra of astaxanthin aggregates in hydrated dimethylsulfoxide were calculated using molecular exciton model with the resonance interaction energy between astaxanthin monomers constrained by semi-e...

  8. Infrared spectra of mineral species

    Chukanov, Nikita V


    This book details more than 3,000 IR spectra of more than 2,000 mineral species collected during last 30 years. It features full descriptions and analytical data of each sample for which IR spectrum was obtained.

  9. Electronic spectra of ArXe molecules in the region of Xe* (6s', 6p, 5d), 77 000-80 200 cm{sup -1}, using resonantly enhanced multiphoton ionization

    Khodorkovskii, M A; Murashov, S V [Saint-Petersburg State Polytechnical University, 195251, Saint-Petersburg (Russian Federation); Artamonova, T O; Beliaeva, A A; Rakcheeva, L P [Russian scientific center Applied Chemistry, 197198, Saint-Petersburg (Russian Federation); Pastor, A A; Serdobintsev, P Yu; Timofeev, N A; Shevkunov, I A; Dement' ev, I A [Saint-Petersburg State University, 198904, Petrodvorets (Russian Federation); Nordgren, J, E-mail: mkhodorkovskii@rscac.spb.r [Department of Physics, Fysiska Institutionen, Uppsala Universitet, Box 530, SE-751 21, Uppsala (Sweden)


    The excited electronic states of ArXe molecules in the region 77 000-80 200 cm{sup -1} were studied using the (2+1) and (3+1) resonance-enhanced multiphoton ionization methods. The use of different methods of multi-photon excitation and Ar{sup +} ion registration allowed us to obtain some new data. Molecular constants were obtained for previously unknown excited states of molecules with the following dissociation limits: ArXe* {yields} Ar{sup 1}S{sub 0}+Xe*6rcy[5/2]{sub 3} with {Omega} = 2, 3 symmetry; Ar{sup 1}S{sub 0}+Xe*6p[3/2]{sub 2} with {Omega} = 1, 2 symmetry; Xe{sup 0}S{sub 1} {yields} Xe*6s'[1/2]{sup 0}{sub 1} with {Omega} = 0{sup +} symmetry.

  10. Analysis of the high resolution Mg XI X-ray spectra. Pt. 3. Non-thermal interpretation of some spectra

    Siarkowski, M.; Sylwester, J. (Polska Akademia Nauk, Wroclaw. Centrum Badan Kosmicznych); Bromboszcs, G. (Wroclaw Univ. (Poland). Obserwatorium Astronomiczne); Korneev, V.V.; Mandelshtam, S.L.; Oparin, S.N.; Urnov, A.M.; Zhitnik, I.A. (AN SSSR, Moscow. Fizicheskij Inst.)


    In part III of the paper containing the analysis of the INTERCOSMOS 16 ADP spectra, it is shown that by assuming the existence of a small admixture (1%) of non-thermal electrons in the active-region plasma it is possible to improve the agreement between measured and calculated fluxes for some spectra. The analysis follows the suggestion contained in the paper by Karev et al. (1980).

  11. Computing High Accuracy Power Spectra with Pico

    Fendt, William A


    This paper presents the second release of Pico (Parameters for the Impatient COsmologist). Pico is a general purpose machine learning code which we have applied to computing the CMB power spectra and the WMAP likelihood. For this release, we have made improvements to the algorithm as well as the data sets used to train Pico, leading to a significant improvement in accuracy. For the 9 parameter nonflat case presented here Pico can on average compute the TT, TE and EE spectra to better than 1% of cosmic standard deviation for nearly all $\\ell$ values over a large region of parameter space. Performing a cosmological parameter analysis of current CMB and large scale structure data, we show that these power spectra give very accurate 1 and 2 dimensional parameter posteriors. We have extended Pico to allow computation of the tensor power spectrum and the matter transfer function. Pico runs about 1500 times faster than CAMB at the default accuracy and about 250,000 times faster at high accuracy. Training Pico can be...

  12. Optical spectra analysis for breast cancer diagnostics

    Belkov, S. A.; Kochemasov, G. G.; Lyubynskaya, T. E.; Maslov, N. V.; Nuzhny, A. S.; da Silva, L. B.; Rubenchik, A.


    Minimally invasive probe and optical biopsy system based on optical spectra recording and analysis seem to be a promising tool for early diagnostics of breast cancer. Light scattering and absorption spectra are generated continuously as far as the needle-like probe with one emitting and several collecting optical fibers penetrates through the tissues toward to the suspicious area. That allows analyzing not only the state of local site, but also the structure of tissues along the needle trace. The suggested method has the advantages of automated on-line diagnosing and minimal tissue destruction and in parallel with the conventional diagnostic procedures provides the ground for decision-making. 165 medical trials were completed in Nizhny Novgorod Regional Oncology Centre, Russia. Independent diagnoses were the results of fine biopsy and histology. Application of wavelet expansion and clasterization techniques for spectra analysis revealed several main spectral types for malignant and benign tumors. Automatic classification algorithm demonstrated specificity ˜90% and sensitivity ˜91%. Large amount of information, fuzziness in criteria and data noisiness make neural networks to be an attractive analytic tool. The model based on three-layer perceptron was tested over the sample of 29 `cancer' and 29 `non-cancer' cases and demonstrated total separation.

  13. 我国农村土地流转准入的法律制度建构∗%The Legal System Construction of Rural Land Circulation and Admittance in China



    近年来,我国农村土地流转加速推进,但土地流转准入制度缺失导致受让方良莠不齐,引发农地使用“离粮化”“脱农化”等问题,影响耕地保护和粮食安全。日本和韩国的农地流转准入制度适应了其国内农业现代化的要求,促进了土地合理、高效利用及农业经营规模化。以此为借鉴,我国《农村土地承包法》应当明确农村土地流转准入的主体范围,以农业经营能力要求为核心,构建系统的农村土地流转准入制度,促进农村土地流转规范化。%The rate of rural land circulation growth is accelerating in recent years. But, the absence of land circulation and admit⁃tance system brings about incompetent transferees, which lead to the emergence of non⁃grain and non⁃agriculture, and have a bad influ⁃ence on rural land protection and food security. Japan and South Korea have carried out the rural land circulation and admittance system that meet the requirement of agricultural modernization, which promote the appropriate and efficient land use, and encourage the large⁃scale agricultural management. Learning from them, we should perfect "Law of the People′s Republic of China on the Contracting of Rural Land", define the subject scope of the land circulation and admittance, build the land circulation and admittance system with the agricultural management ability as a core, and promote the standardization of rural land circulation.

  14. 虚拟装配中基于导纳控制的力觉渲染技术%Haptic Rendering Technology Based on Admittance Control in Virtual Assembly

    史建成; 刘检华; 宁汝新; 侯伟伟


    In conventional haptic feedback technologies, impedance control is used as the main control mode, which can hardly meet the requirements in virtual assembly. Admittance control mode is more suitable for haptic rendering. The framework and algorithms of the haptic rendering based on admittance control mode are presented. First, dynamics model used for admittance control is given, and haptic rendering under the states of collision and constraint are discussed. Second, to solve the problem of small clearance assembly, a method of haptic rendering combining physical constraints with geometric constraint is presented. Third, the method of quadratic Lagrangian interpolation is adopted, aiming at solving the problem of asynchrony between haptic feedback loop and physical computing loop to maintain the stability of the haptic device. The algorithms are implemented and the haptic device is connected and utilized in the virtual assembly process planning system (VAPP). The results show that the algorithms can meet the need of haptic interaction in the virtual assembly system.%传统的力触觉渲染多采用阻抗控制,不能很好地满足虚拟装配的应用要求,相比之下导纳控制模式更适用这一领域.为此提出一种基于导纳控制的双线程力觉渲染构架,并给出相应的力觉渲染算法.首先建立用于导纳控制的动力学模型,并讨论了碰撞和约束这2个状态下的力觉渲染;为了使用力觉交互接口进行虚拟装配中的小间隙装配,提出物理约束与几何约束结合的力觉渲染方法;最后针对物理计算和力反馈循环2个线程刷新频率不匹配的问题,利用二次拉格朗日多项式进行数值插值,实现了力觉交互接口的平稳输出.通过力反馈设备与自主开发的虚拟装配原型系统VAPP的连接与应用,验证了所提出的算法满足虚拟装配系统中力觉交互的应用要求.

  15. Study of Using Regional Mineral Spectra Library and Section Noise Filtering to Improve Mineral Identification Accuracy%应用区域光谱库及分段滤波方法改进矿物识别精度的研究

    王亚军; 蔺启忠; 王钦军; 李帅


    Aiming at the low accuracy of mineral identification with hyperspectral data, the present article established regional spectra library on the basis of the study area geological background, and presented a pretreatment method that filters the original spectra by sectioa First, continuum based fast Fourier transform was used to filter the noise among 2 000~2 200, 2 250~2 300 and 2 35O~2 500 nm. Then apply the Rapid quantificational identification model with regional spectrum library was used to dispose the processed spectra. The highest effective rate of the result is 80%, and the highest accuracy rate is 67 %. Compared with the identification result of original spectra, the average accuracy rate was upgraded by 17. 7%, and the average effective rate was upgraded by 5.1%. Compared with the identification result of all-filtered spectra, the average accuracy rate was upgraded by 5. 8%, while the average effective rate was upgraded by 39. 8%. This method , which could guarantee that the identification result contains the most correct minerals and the fewest error ones, promoted mineral identification accuracy. The result with higher accuracy is significant to rapid mineral extraction work in field.%针对当前利用高光谱数据进行矿物识别精度较低的问题,根据研究区地质背景建立区域端元光谱库,提出了对原始光谱进行分段滤波的预处理方法.首先应用连续统快速傅里叶变换方法分别去除2 000~2 200 nm,2 250~2 300 nm,2 350~2 500 nm范围内的随机噪声,之后利用加入区域端元库的矿物快速定量提取模型提取预处理后光谱中的矿物类型.本方法识别矿物的最高有效率为80%,正确率最高可达67%.与未滤波的光谱识别结果对比,平均正确率提高了17.7%,平均有效率提高了5.1%;与全波段滤波的光谱识别结果对比,平均正确率提高了5.8%,平均有效率提高了39.8%,可保证在尽量多识别出正确矿物的基础上有

  16. Qualitative interpretation of galaxy spectra

    Almeida, J Sanchez; Terlevich, E; Fernandes, R Cid; Morales-Luis, A B


    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis, and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is of general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7 (SDSS-DR7), thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to HII galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. A number of byprodu...

  17. Study on electrical properties of Al/Cu(In,Ga)Se{sub 2} Schottky junction and ZnO/CdS/Cu(In,Ga)Se{sub 2} heterojunction using admittance spectroscopy

    Sakurai, T.; Ishida, N.; Paul, G.K.; Akimoto, K. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Ishizuka, S.; Matsubara, K.; Sakurai, K.; Yamada, A.; Niki, S. [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)


    The electrical properties of Al/Cu(In,Ga)Se{sub 2}(Al/CIGSe) Schottky junction and ZnO/CdS/CIGSe heterojunction were studied by admittance spectroscopy. Three distinct peaks (peaks {alpha}, {zeta}, and {epsilon}) were detected from all the CIGSe samples. The activation energies for the traps corresponding to peaks {alpha} and {zeta} were estimated to be approximately 10 meV and 300 meV, respectively. The peak {alpha} may be due to the shallow acceptor, and peaks {zeta} and {epsilon} may be due to defects in the CIGSe layer. The characteristics of the peak {zeta} have close correlation with the surface potential of the CIGSe layer. Therefore, the peak {zeta} may be caused by traps such as grain boundary defects near the surface of the CIGSe layer. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Study on electrical properties of Al/Cu(In,Ga)Se2 Schottky junction and ZnO/CdS/Cu(In,Ga)Se2 heterojunction using admittance spectroscopy

    Sakurai, T.; Ishida, N.; Ishizuka, S.; Matsubara, K.; Sakurai, K.; Yamada, A.; Paul, G. K.; Akimoto, K.; Niki, S.


    The electrical properties of Al/Cu(In,Ga)Se2 (Al/CIGSe) Schottky junction and ZnO/CdS/CIGSe heterojunction were studied by admittance spectroscopy. Three distinct peaks (peaks , , and ) were detected from all the CIGSe samples. The activation energies for the traps corresponding to peaks and were estimated to be approximately 10 meV and 300 meV, respectively. The peak may be due to the shallow acceptor, and peaks and may be due to defects in the CIGSe layer. The characteristics of the peak have close correlation with the surface potential of the CIGSe layer. Therefore, the peak may be caused by traps such as grain boundary defects near the surface of the CIGSe layer.

  19. Comparison and Interpretation of Admittance Spectroscopy and Deep Level Transient Spectroscopy from Co-Evaporated and Solution-Deposited Cu2ZnSn(Sx, Se1-x)4 Solar Cells

    Caruso, A. E.; Lund, E. A.; Kosyak, V.; Pruzan, D. S.; Miskin, C.; Agrawal, R.; Beall, Carolyn; Repins, Ingrid; Scarpulla, M. A.


    Cu2ZnSn(S, Se)4 (CZTSe) is an earth-abundant semiconductor with potential for economical thin-film photovoltaic devices. Short minority carrier lifetimes contribute to low open circuit voltage and efficiency. Deep level defects that may contribute to lower minority carrier lifetimes in kesterites have been theoretically predicted, however very little experimental characterization of these deep defects exists. In this work we use admittance spectroscopy (AS) and deep level transient spectroscopy (DLTS) to characterize devices built using CZTSSe absorber layers deposited via both coevaporation and solution processing. AS reveals a band of widely-distributed activation energies for traps or energy barriers for transport, especially in the solution deposited case. DLTS reveals signatures of deep majority and minority traps within both types of samples.


    Sanchez Almeida, J.; Morales-Luis, A. B. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Terlevich, R.; Terlevich, E. [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla (Mexico); Cid Fernandes, R., E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Departamento de Fisica-CFM, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianopolis, SC (Brazil)


    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  1. UV spectra of benzene isotopomers and dimers in helium nanodroplets

    Schmied, Roman; ćarçabal, Pierre; Dokter, Adriaan M.; Lonij, Vincent P. A.; Lehmann, Kevin K.; Scoles, Giacinto


    We report spectra of various benzene isotopomers and their dimers in helium nanodroplets in the region of the first Herzberg-Teller allowed vibronic transition 601 1B2u←1A1g (the A00 transition) at ˜260 nm. Excitation spectra have been recorded using both beam depletion detection and laser-induced fluorescence. Unlike for many larger aromatic molecules, the monomer spectra consist of a single "zero-phonon" line, blueshifted by ˜30 cm-1 from the gas phase position. Rotational band simulations show that the moments of inertia of C6H6 in the nanodroplets are at least six-times larger than in the gas phase. The dimer spectra present the same vibronic fine structure (though modestly compressed) as previously observed in the gas phase. The fluorescence lifetime and quantum yield of the dimer are found to be equal to those of the monomer, implying substantial inhibition of excimer formation in the dimer in helium.

  2. Lattice vibration frequencies in Raman spectra of manganese and rhenium decacarbonyls

    Volkov, V.E.; Danilov, I.Yu.; Zhidkov, L.L.; Kovalev, Yu.G.; Ioganson, A.A. (AN SSSR, Krasnoyarsk. Inst. Khimii i Khimicheskoj Tekhnologii)


    Raman spectra (RS) in the 170-10 cm/sup -1/ region of Mn/sub 2/(CO)/sub 10/, Re/sub 2/(CO)/sub 10/ polycrystal samples and their mixed crystals with different component percentage were obtained in the 296-123 K range. Investigations at low temperatures enabled to obtain most complete spectra in the given region. The spectra were separated to intramolecular and lattice ones on the basis of both comparing the spectra of pure components with those of mixed crystals, and studying the temperature behaviour of frequencies in the spectra. It was established that frequencies, placed below 60 cm/sup -1/ as well as in the region of 130-150 cm/sup -1/ in the spectra of manganese- and rhenium decacarbonyls are determined by the lattice vibrations of molecules in crystals.

  3. Classical Trajectories and Quantum Spectra

    Mielnik, Bogdan; Reyes, Marco A.


    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  4. Missing levels in correlated spectra

    Bohigas, O


    Complete spectroscopy (measurements of a complete sequence of consecutive levels) is often considered as a prerequisite to extract fluctuation properties of spectra. It is shown how this goal can be achieved even if only a fraction of levels are observed. The case of levels behaving as eigenvalues of random matrices, of current interest in nuclear physics, is worked out in detail.

  5. Squeezed States and Helmholtz Spectra

    Francisco Delgado, C; Reyes, M A; Mielnik, Bogdan; Reyes, Marco A


    The 'classical interpretation' of the wave function psi(x) reveals an interesting operational aspect of the Helmholtz spectra. It is shown that the traditional Sturm-Liouville problem contains the simplest key to predict the squeezing effect for charged particle states.

  6. Universal Behavior in Dirac Spectra

    Verbaarschot, J J M


    In these lectures we review recent results on universal fluctuations of QCD Dirac spectra and applications of Random Matrix Theory (RMT) to QCD. We review general properties of Dirac spectra and discuss the relation between chiral symmetry breaking and correlations of Dirac eigenvalues. In particular, we will focus on the microscopic spectral density density, i.e. the spectral density near zero virtuality on the scale of a typical level spacing. The relation with Leutwyler-Smilga sum-rules will be discussed. The success of applications of RMT to spectra of 'complex' systems leads us to the introduction of a chiral Random Matrix Theory (chRMT) with the global symmetries of the QCD partition function. Our central conjecture is that it decribes correlations of QCD Dirac spectra. We will review recent universality proofs supporting this conjecture. Lattice QCD results for the microscopic spectral density and for correlations in the bulk of the spectrum are shown to be in perfect agreement with chRMT. We close wit...

  7. Gallery of Planetary Nebula Spectra

    Kwitter, K B; Kwitter, Karen B.; Henry, Richard B.C.


    We present the Gallery of Planetary Nebula Spectra now available at The website offers high-quality, moderate resolution (~7-10 A FWHM) spectra of 128 Galactic planetary nebulae from 3600-9600 A, obtained by Kwitter, Henry, and colleagues with the Goldcam spectrograph at the KPNO 2.1-m or with the RC spectrograph at the CTIO 1.5-m. The master PN table contains atlas data and an image link. A selected object's spectrum is displayed in a zoomable window; line identification templates are provided. In addition to the spectra themselves, the website also contains a brief discussion of PNe as astronomical objects and as contributors to our understanding of stellar evolution. We envision that this website, which concentrates a large amount of data in one place, will be of interest to a variety of users: researchers might need to check the spectrum of a particular object of interest; the non-specialist astronomer might simply be interested in perusing such a collection of spectra; and...

  8. Vibrational spectra of ordered perovskites

    Corsmit, A.F.; Hoefdraad, H.E.; Blasse, G.


    The vibrational spectra of the molecular M6+O6 (M = Mo, Te, W) group in ordered perovskites of the type Ba2M2+M6+O6 are reported. These groups have symmetry Oh, whereas their site symmetry is also Oh. An assignment of the internal vibrations is presented.

  9. Spectra of sodium aluminate solutions


    The UV spectra of sodium aluminate solutions were obtained in the sodium oxide concentration range from 59 to 409 g/L and the caustic ratio range from 1.5 to 4.0 to reveal the structure characteristics of them. It is found that a new peak appears at about 370 nm besides peaks at about 220 and 266 nm in all solutions. The new peak is strongly favored by high hydroxide concentration and high caustic ratio. And it only appears when the solutions are prepared by dissolving sodium hydroxide and aluminum hydroxide.In addition, the IR and Raman spectra of sodium aluminate solutions with high alkali concentration and high caustic ratio were measured, and the UV spectra of aqueous solutions of Al(H2O)63+ and AlF63- were measured as well. According to the crystal field theory in coordination chemistry as well as the above spectra characteristics, this new peak at about 370 nm is determined as the evidence of a new species of aluminate ion with a coordination number of 6.

  10. THz spectra of five borates crystals


    Terahertz spectral responses have been studied for five borate crystals Na5[B2P3O13](NBP),Zn3BPO (ZBP),SrB4O7(SBO),Na3La9O3(BO3)8(NLBO)and PbB4O7(PBO).It is found that the samples had good transmission in 0.25-1.5 THz region.Both SBO and NLBO have an absorption coefficient less than 10cm-1.Among them,SBO has not only the smallest absorption coefficient but also a very flat dispersion in the frequency region under investigation.Distinct resonance absorption peaks are observed for ZBP at v1=1.4 THz,v2=2.0 THz and SBO at v=2.4 THz.In the spectrum of PBO,two 8bnormal dispersions appear in the frequency regions 1.44-1.74 and 2.2-2.5 THz.The absorption coetficients and refraction indices of the five crystals are extracted from the THz time-domain(THz-TDB)spectra in 0.25-2.5 THz region.The properties and origins of the spectral responses are addressed.

  11. Power spectra of mesospheric velocities in polar regions

    Czechowsky, P.; Ruster, R.


    The mobile SOUSY radar was operated on Andoya in Northern Norway during the MAP/WINE campaign from November 1983 to February 1984 and for about two weeks in June 1984 to study the seasonal dependence of mesospheric structures and dynamics at polar latitudes. During the winter period, measurements were carried out on 57 days, primarily in coordination with the schedule of the rocket experiments. Echoes were detected in the troposphere and stratosphere up to 30 km and at mesospheric heights from about 50 to 90 km with a distinct maximum around noon. In summer, the radar system was operated continuously from 19th to the 28th of June 1984. Echoes occurred almost for 24 hours in the height range from 70 to 95 km showing no recognizable diurnal variation. Similar observations in polar latitudes were carried out for several years with the Poker Flat Radar in Alaska.

  12. Regionalism, Regionalization and Regional Development

    Liviu C. Andrei


    Full Text Available Sustained development is a concept associating other concepts, in its turn, in the EU practice, e.g. regionalism, regionalizing and afferent policies, here including structural policies. This below text, dedicated to integration concepts, will limit on the other hand to regionalizing, otherwise an aspect typical to Europe and to the EU. On the other hand, two aspects come up to strengthen this field of ideas, i.e. the region (al-regionalism-(regional development triplet has either its own history or precise individual outline of terms.

  13. Eigenvectors of optimal color spectra.

    Flinkman, Mika; Laamanen, Hannu; Tuomela, Jukka; Vahimaa, Pasi; Hauta-Kasari, Markku


    Principal component analysis (PCA) and weighted PCA were applied to spectra of optimal colors belonging to the outer surface of the object-color solid or to so-called MacAdam limits. The correlation matrix formed from this data is a circulant matrix whose biggest eigenvalue is simple and the corresponding eigenvector is constant. All other eigenvalues are double, and the eigenvectors can be expressed with trigonometric functions. Found trigonometric functions can be used as a general basis to reconstruct all possible smooth reflectance spectra. When the spectral data are weighted with an appropriate weight function, the essential part of the color information is compressed to the first three components and the shapes of the first three eigenvectors correspond to one achromatic response function and to two chromatic response functions, the latter corresponding approximately to Munsell opponent-hue directions 9YR-9B and 2BG-2R.

  14. Phonon spectra in quantum wires

    Ilić Dušan


    Full Text Available Green's function method, adjusted to bound crystalline structures, was applied to obtain the phonon dispersion law in quantum wires. The condition of the existence of small mechanical atom movements defining phonon spectra can be found by solving the secular equation. This problem was presented graphically for different boundary parameters. The presence of boundaries, as well as the change of boundary parameters, leads to the appearance of new properties of the layered structure. The most important feature is that, beside the allowed energy zones (which are continuous as in the bulk structure, zones of forbidden states appear. Different values of the boundary parameters lead to the appearance of lower and upper energy gaps, or dispersion branches spreading out of the bulk energy zone. The spectra of phonons in corresponding unbound structures were correlated to those in bound structures.

  15. Reflectance Spectra of Space Debris in GEO

    Schildknecht, T.; Vannanti, A.; Krag, H.; Erd, C.

    The space debris environment in the Geostationary Earth Orbit (GEO) region is mostly investigated by means of optical surveys. Such surveys revealed a considerable amount of debris in the size range of 10 centimeter to one meter. Some of these debris exhibit particularly high area-to-mass ratios as derived from the evolution of their orbits. In order to understand the nature and eventually the origin of these objects, observations allowing to derive physical characteristics like size, shape and material are required. Information on the shape and the attitude motion of a debris piece may be obtained by photometric light curves. The most promising technique to investigate the surface material properties is reflectance spectroscopy. This paper discusses preliminary results obtained from spectrometric observations of space debris in GEO. The observations were acquired at the 1-meter ESA Space Debris Telescope (ESASDT) on Tenerife with a low-resolution spectrograph in the wavelength range of 450-960 nm. The target objects were space debris of different types with brightness as small as magnitude 15. Some simple-shaped, intact "calibration objects" with known surface materials like the MSG-2 satellites were also observed. The spectra show shape variations expected to be caused by the different physical properties of the objects. The determination of the possible materials is still in a preliminary phase. Limitations of the acquisition process of the spectra and the subsequent analysis are discussed. Future steps planned for a better characterization of the debris from the observed data are briefly outlined.

  16. Similarity spectra analysis of high-performance jet aircraft noise.

    Neilsen, Tracianne B; Gee, Kent L; Wall, Alan T; James, Michael M


    Noise measured in the vicinity of an F-22A Raptor has been compared to similarity spectra found previously to represent mixing noise from large-scale and fine-scale turbulent structures in laboratory-scale jet plumes. Comparisons have been made for three engine conditions using ground-based sideline microphones, which covered a large angular aperture. Even though the nozzle geometry is complex and the jet is nonideally expanded, the similarity spectra do agree with large portions of the measured spectra. Toward the sideline, the fine-scale similarity spectrum is used, while the large-scale similarity spectrum provides a good fit to the area of maximum radiation. Combinations of the two similarity spectra are shown to match the data in between those regions. Surprisingly, a combination of the two is also shown to match the data at the farthest aft angle. However, at high frequencies the degree of congruity between the similarity and the measured spectra changes with engine condition and angle. At the higher engine conditions, there is a systematically shallower measured high-frequency slope, with the largest discrepancy occurring in the regions of maximum radiation.

  17. Surface Response to Regional Uplift of Madagascar Reveals Short Wavelength Dynamic Topography

    Stephenson, S.; White, N.


    The physiography of Madagascar is characterized by high elevation but low relief topography with 42% of the landscape at an elevation grgeater than 500 m. Eocene marine limestones crop out at an elevation of 400 m, extensive low relief erosion surfaces capped by laterites occur at elevations of up to 2 km, and longitudinal river profiles are disequilibrated. Together, these observations suggest that Madagascar underwent regional uplift in Neogene times. Inverse modeling of drainage networks suggests that regional uplift is diachronous and has occurred on wavelengths of 1000 km. The existence of deeply incised river channels together with low-temperature thermochronologic measurements (i.e. AFT, AHe) implies that erosion occurred in response to regional Neogene uplift. Admittance analysis of long wavelength free-air gravity and topography shows that admittance, Z = 45 ± 5 mGal/km. The history of Neogene volcanism and a lack of significant tectonic shortening both suggest that uplift is dynamically supported. Here we present a suite of U-Th dates of emergent coral reef deposits from northern Madagascar, whose margins are sometimes considered `stable'. Elevation of these coeval coral reefs decreases from 7.2 m at the northern tip of Madagascar to sea level 100 km to the south. The existence of a spatial gradient suggests that differential vertical motions occurred during Late Quaternary times. These results raise significant questions about the reliability both of emergent coral reefs as global sea-level markers and the length-scale of variations in dynamic topography.

  18. Vanadium Oxide in the Spectra of Mira Variables

    Castelaz, M. W.; Luttermoser, D. G.; Piontek, R. A.


    Over the last three years, we have made spectroscopic measurements of twenty Mira variable stars, as a function of phase, probing their stellar atmospheres and underlying pulsation mechanisms. Measurement of variations in TiO and VO with phase can be used to help determine whether these molecular species are produced in an extended region above the layers where Balmer line emission occurs or below this shocked region. Piontek & Luttermoser (1999 IAPPPC, submitted), produce synthetic spectra for three Mira variables, R Leo, V CVn, and R CVn as a function of phase. Comparison of their synthetic spectra to our observed spectra yield the fundamental astrophysical parameters of effective temperatures and surface gravities. Spectra are synthesized with LTE stellar stmospheres code ATLAS, using the 6.6--million Indiana University atomic and molecular line dataset. Piontek & Luttermoser point out that the IU dataset does not include vanadium oxide (VO). Thus, there is a noticeable difference between the synthetic spectra and observed near-IR spectra corresponding to the B-X bands of VO (Mahanti 1935, Proc. Phys. Soc., 47, 43; Keenan & Schroeder 1952,L. W., ApJ, 115, 82). In order to incorporate the VO bands in the synthetic spectra, we need to establish tables of wavenumbers, lowest energy levels, and oscillator strengths. Producing the tables is non-trivial. Laboratory measurements of wavenumbers are used in the Just-Overlapping Line Approximation (JOLA; Tsuji 1966, PASJ, 18, 127) to calculate oscillator strengths. The JOLA technique and preliminary results will be presented. MWC greatly appreciates support from the National Science Foundation grant AST-9500756. RAP acknowledges the Southeastern Association for Research in Astronomy 1998 Summer REU program supported by the National Science Foundation and thanks DGL for being his mentor.

  19. Spectra of Particulate Backscattering in Natural Waters

    Gordon, Howard, R.; Lewis, Marlon R.; McLean, Scott D.; Twardowski, Michael S.; Freeman, Scott A.; Voss, Kenneth J.; Boynton, Chris G.


    Hyperspectral profiles of downwelling irradiance and upwelling radiance in natural waters (oligotrophic and mesotrophic) are combined with inverse radiative transfer to obtain high resolution spectra of the absorption coefficient (a) and the backscattering coefficient (bb) of the water and its constituents. The absorption coefficient at the mesotrophic station clearly shows spectral absorption features attributable to several phytoplankton pigments (Chlorophyll a, b, c, and Carotenoids). The backscattering shows only weak spectral features and can be well represented by a power-law variation with wavelength (lambda): b(sub b) approx. Lambda(sup -n), where n is a constant between 0.4 and 1.0. However, the weak spectral features in b(sub b), suggest that it is depressed in spectral regions of strong particle absorption. The applicability of the present inverse radiative transfer algorithm, which omits the influence of Raman scattering, is limited to lambda < 490 nm in oligotrophic waters and lambda < 575 nm in mesotrophic waters.

  20. UV spectra, bombs, and the solar atmosphere

    Judge, Philip G


    A recent analysis of UV data from the Interface Region Imaging Spectrograph {\\em IRIS} reports plasma "bombs" with temperatures near \\hot{} within the solar photosphere. This is a curious result, firstly because most bomb plasma pressures $p$ (the largest reported case exceeds $10^3$ dyn~cm$^{-2}$) fall well below photospheric pressures ($> 7\\times10^3$), and secondly, UV radiation cannot easily escape from the photosphere. In the present paper the {\\em IRIS} data is independently analyzed. I find that the bombs arise from plasma originally at pressures between $\\lta80$ and 800 dyne~cm$^{-2}$ before explosion, i.e. between $\\lta850$ and 550 km above $\\tau_{500}=1$. This places the phenomenon's origin in the low-mid chromosphere or above. I suggest that bomb spectra are more compatible with Alfv\\'enic turbulence than with bi-directional reconnection jets.

  1. Admittance and subthreshold characteristics of atomic-layer-deposition Al2O3 on In0.53Ga0.47As in surface and buried channel flatband metal-oxide-semiconductor field effect transistors

    Paterson, G. W.; Bentley, S. J.; Holland, M. C.; Thayne, I. G.; Ahn, J.; Long, R. D.; McIntyre, P. C.; Long, A. R.


    The admittances and subthreshold characteristics of capacitors and MOSFETs on buried and surface In0.53Ga0.47As channel flatband wafers, with a dielectric of Al2O3 deposited on In0.53Ga0.47As, are reported. The admittance characteristics of both wafers indicate the presence of defect states within the oxide, in common with a number of other oxides on In0.53Ga0.47As. The two wafers studied have not been hydrogen annealed, but do show some similar features to FGA treated oxides on n+ substrates. We discuss how the possible presence of residual hydroxyl ions in as-grown Al2O3 may explain these similarities and also account for many of the changes in the properties of FGA treated n+ samples. The issues around the comparison of subthreshold swing (SS) results and the impact of transistor design parameters on the energy portion of the defect state distribution affecting efficient device switching are discussed. The interface state model is applied to low source-drain voltage SS data to extract an effective interface state density (Dit) that includes interface and oxide traps. The logarithmic gate voltage sweep rate dependence of the SS Dit is used to extract an oxide trap density (Dot) and a simple method is used to estimate the Fermi level position within the band gap, Et. The Al2O3 Dit(Et) and Dot(Et) distributions are found to be similar to each other and to the results of our analysis of Gd0.25Ga0.15O0.6/Ga2O3 and HfO2/Al2O3 on In0.53Ga0.47As, adding weight to the suggestion of there being a common defect state distribution and perhaps a common cause of defects states for a number of oxides on In0.53Ga0.47As.

  2. Analysing degeneracies in networks spectra

    Marrec, Loïc


    Many real-world networks exhibit a high degeneracy at few eigenvalues. We show that a simple transformation of the network's adjacency matrix provides an understanding of? the origins of occurrence of high multiplicities in the networks spectra. We find that the eigenvectors associated with the degenerate eigenvalues shed light on the structures contributing to the degeneracy. Since these degeneracies are rarely observed in model graphs, we present results for various cancer networks. This approach gives an opportunity to search for structures contributing to degeneracy which might have an important role in a network.

  3. Rotational spectra and molecular structure

    Wollrab, James E


    Physical Chemistry, A Series of Monographs: Rotational Spectra and Molecular Structure covers the energy levels and rotational transitions. This book is divided into nine chapters that evaluate the rigid asymmetric top molecules and the nuclear spin statistics for asymmetric tops. Some of the topics covered in the book are the asymmetric rotor functions; rotational transition intensities; classes of molecules; nuclear spin statistics for linear molecules and symmetric tops; and classical appearance of centrifugal and coriolis forces. Other chapters deal with the energy levels and effects of ce

  4. Gamma-ray burst spectra

    Teegarden, B. J.


    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events.

  5. Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)

    Bauschlicher, Charles W., Jr.; Bakes, E. L. O.


    We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.

  6. Fine Spectra of Symmetric Toeplitz Operators

    Muhammed Altun


    Full Text Available The fine spectra of 2-banded and 3-banded infinite Toeplitz matrices were examined by several authors. The fine spectra of n-banded triangular Toeplitz matrices and tridiagonal symmetric matrices were computed in the following papers: Altun, “On the fine spectra of triangular toeplitz operators” (2011 and Altun, “Fine spectra of tridiagonal symmetric matrices” (2011. Here, we generalize those results to the (2+1-banded symmetric Toeplitz matrix operators for arbitrary positive integer .

  7. Duality properties between spectra and tilings


    Spectra and tilings play an important role in analysis and geometry respectively.The relations between spectra and tilings have bafied the mathematicians for a long time.Many conjectures,such as the Fuglede conjecture,are placed on the establishment of relations between spectra and tilings,although there are no desired results.In the present paper we derive some characteristic properties of spectra and tilings which highlight certain duality properties between them.

  8. On source parameters from particle correlations and spectra

    Ster, A; Lörstad, B


    Analytic and numeric approximations are studied in detail for a hydrodynamic parameterization of single-particle spectra and two-particle correlation functions in high energy hadron-proton and heavy ion reactions. Two very different sets of model parameters are shown to result in similarly shaped correlation functions and single particle spectra in a rather large region of the momentum space. However, the absolute normalization of the single-particle spectra is found to be highly sensitive to the choice of the model parameters. For data fitting the analytic formulas are re-phrased in terms of parameters of direct physical meaning, like mean transverse flow. The difference between the analytic and numeric approximations are determined as an analytic function of source parameters.

  9. HITRAN spectroscopy evaluation using solar occultation FTIR spectra

    Toon, Geoffrey C.; Blavier, Jean-Francois; Sung, Keeyoon; Rothman, Laurence S.; E. Gordon, Iouli


    High resolution FTIR solar occultation spectra, acquired by the JPL MkIV Fourier transform spectrometer from balloon, covering 650-5650 cm-1 at 0.01 cm-1 resolution, are systematically analyzed using the last four versions of the HITRAN linelist (2000, 2004, 2008, 2012). The rms spectral fitting residuals are used to assess the quality and adequacy of the linelists as a function of wavenumber and altitude. Although there have been substantial overall improvements with each successive version of HITRAN, there are nevertheless a few spectral regions where the latest HITRAN version (2012) has regressed, or produces residuals that far exceed the noise level. A few of these instances are investigated further and their causes identified. We emphasize that fitting atmospheric spectra, in addition to laboratory spectra, should be part of the quality assurance for any new linelist before public release.

  10. Vibrational spectra and DFT calculations of sonderianin diterpene

    Oliveira, I. M. M.; Santos, H. S.; Sena, D. M.; Cruz, B. G.; Teixeira, A. M. R.; Freire, P. T. C.; Braz-Filho, R.; Sousa, J. W.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Bernardino, A. C. S. S.; Gusmão, G. O. M.; Bento, R. R. F.


    In the present study, the natural product sonderianin diterpene (C21H26O4), a diterpenoid isolated from Croton blanchetianus, with potential application in the drug industry, was characterized by nuclear magnetic resonance, infrared and Raman spectroscopy. Vibrational spectra were supported by Density Functional Theory calculations. Infrared and Raman spectra of sonderianin were recorded at ambient temperature in the regions from 400 cm-1 to 3600 cm-1 and from 40 cm-1 to 3500 cm-1, respectively. DFT calculations with the hybrid functional B3LYP and the basis set 6-31 G(d,p) were performed with the purpose of obtaining information on the structural and vibrational properties of this organic compound. A comparison with experimental spectra allowed us to assign all of the normal modes of the crystal. The assignment of the normal modes was carried out by means of potential energy distribution.

  11. Fast computation of morphological area pattern spectra

    Meijster, Arnold; Wilkinson, Michael H.F.


    An area based counterpart of the binary structural opening spectra is developed It is shown that these area opening and closing spectra can be computed using an adaptation of Tarjan's union-find algorithm These spectra provide rotation, translation, and scale invariant pattern vectors for texture

  12. Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra

    Rueda, Ana; Hegermiller, Christie A.; Antolinez, Jose A. A.; Camus, Paula; Vitousek, Sean; Ruggiero, Peter; Barnard, Patrick L.; Erikson, Li H.; Tomás, Antonio; Mendez, Fernando J.


    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this complex problem tractable using computationally expensive numerical models. So far, the skill of statistical-downscaling model-based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  13. Recurrence spectra of He atoms in strong external fields

    LIN Shenglu; LI Hongyun; WANG Dehua; ZHAO Wenli; GAO Feng


    By employing a model potential including the electron exchange energy, we extend the semiclassical closed orbit theory to study the multielectron atoms. Using special region-splitting consistent and iterative method, we figure out the closed orbits in the corresponding classical system and calculate the recurrence spectra of triplet helium atoms in parallel electric and magnetic fields at scaled energy ε = -0.03, n≈40, m = 0.The core-scattering effects have been taken into account, which lead to more peaks in the spectra. It has also been confirmed by means of the direct comparison between the spectral portrait in such a plot and those of hydrogen case. In order to compare the theoretic results with experiment, we investigate the closed orbits and recurrence spectra of helium atoms for the similar exchange potential but applied only by single electric field at scaled energy s= -2.7 case. The spectra are in good agreement with the experimental observation. We conclude that our model is correct and it is necessary to consider the exchange effect for determining the photoabsorption spectra of multielectron atoms in strong external fields.

  14. Heat Stroke: A Medical Emergency Appearing in New Regions

    Sofie Søndergaard Mørch


    Full Text Available Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat waves will occur in previously cooler regions. Therefore it is important to raise awareness of heat stroke since outcome depends on early recognition and rapid cooling.

  15. Scikit-spectra: Explorative Spectroscopy in Python

    Adam Hughes


    Full Text Available Scikit-spectra is an intuitive framework for explorative spectroscopy in Python. Scikit-spectra leverages the Pandas library for powerful data processing to provide datastructures and an API designed for spectroscopy. Utilizing the new IPython Notebook widget system, scikit-spectra is headed towards a GUI when you want it, API when you need it approach to spectral analysis. As an application, analysis is presented of the surface-plasmon resonance shift in a solution of gold nanoparticles induced by proteins binding to the gold’s surface. Please refer to the scikit-spectra website for full documentation and support:

  16. Analysis of multi-layer ERBS spectra

    Marmitt, G.G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Rosa, L.F.S. [Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Nandi, S.K. [Electronic Materials Engineering Department, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh); Vos, M., E-mail: [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia)


    Highlights: • Electron Rutherford backscattering (ERBS) spectra are presented. • The spectra are fitted based on physical meaningful quantities. • Very consistent results are obtained for spectra taken under different conditions. • This establishes that ERBS can be used to measure film thicknesses. - Abstract: A systematic way of analysis of multi-layer electron Rutherford backscattering spectra is described. The approach uses fitting in terms of physical meaningful parameters. Simultaneous analysis then becomes possible for spectra taken at different incoming energies and measurement geometries. Examples are given to demonstrate the level of detail that can be resolved by this technique.

  17. Correcting attenuated total reflection-fourier transform infrared spectra for water vapor and carbon dioxide

    Bruun, Susanne Wrang; Kohler, Achim; Adt, Isabelle


    Fourier transform infrared (FT-IR) spectroscopy is a valuable technique for characterization of biological samples, providing a detailed fingerprint of the major chemical constituents. However, water vapor and CO(2) in the beam path often cause interferences in the spectra, which can hamper...... an absorption band from either water vapor or CO(2). From two calibration data sets, gas model spectra were estimated in each of the four spectral regions, and these model spectra were applied for correction of gas absorptions in two independent test sets (spectra of aqueous solutions and a yeast biofilm (C...

  18. Action spectra of zebrafish cone photoreceptors.

    Duco Endeman

    Full Text Available Zebrafish is becoming an increasingly popular model in the field of visual neuroscience. Although the absorption spectra of its cone photopigments have been described, the cone action spectra were still unknown. In this study we report the action spectra of the four types of zebrafish cone photoreceptors, determined by measuring voltage responses upon light stimulation using whole cell patch clamp recordings. A generic template of photopigment absorption spectra was fit to the resulting action spectra in order to establish the maximum absorption wavelength, the A2-based photopigment contribution and the size of the β-wave of each cone-type. Although in general there is close correspondence between zebrafish cone action- and absorbance spectra, our data suggest that in the case of MWS- and LWS-cones there is appreciable contribution of A2-based photopigments and that the β-wave for these cones is smaller than expected based on the absorption spectra.

  19. [Raman spectra of monkey cerebral cortex tissue].

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong


    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  20. Curved Radio Spectra of Weak Cluster Shocks

    Kang, Hyesung; Ryu, Dongsu


    In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}˜ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}˜ 3. These shocks produce curved radio spectra that steepen gradually over (0.1-10){ν }{br} with a break frequency {ν }{br}˜ 1 GHz if the duration of electron acceleration is ˜60-80 Myr. However, the abrupt increase in the spectral index above ˜1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.

  1. Graviton spectra in string cosmology

    Galluccio, Massimo [Osservatorio Astronomico di Roma (Roma-IT); Litterio, Marco [Istituto Astronomico dell' Universita (Roma-IT); Occhionero, Franco [Osservatorio Astronomico di Roma (Roma-IT)


    We propose to uncover the signature of a stringy era in the primordial Universe by searching for a prominent peak in the relic graviton spectrum. This feature, which in our specific model terminates an ω³ increase and initiates an ω⁻⁷ decrease, is induced during the so far overlooked bounce of the scale factor between the collapsing deflationary era (or pre-Big Bang) and the expanding inflationary era (or post-Big Bang). We evaluate both analytically and numerically the frequency and the intensity of the peak and we show that they may likely fall in the realm of the new generation of interferometric detectors. The existence of a peak is at variance with ordinarily monotonic (either increasing or decreasing) graviton spectra of canonical cosmologies; its detection would therefore offer strong support to string cosmology.

  2. Graviton Spectra in String Cosmology

    Galluccio, M; Occhionero, F; Galluccio, Massimo; Litterio, Marco; Occhionero, Franco


    We propose to uncover the signature of a stringy era in the primordial Universe by searching for a prominent peak in the relic graviton spectrum. This feature, which in our specific model terminates an $\\omega^3$ increase and initiates an $\\omega^{-7}$ decrease, is induced during the so far overlooked bounce of the scale factor between the collapsing deflationary era (or pre-Big Bang) and the expanding inflationary era (or post-Big Bang). We evaluate both analytically and numerically the frequency and the intensity of the peak and we show that they may likely fall in the realm of the new generation of interferometric detectors. The existence of a peak is at variance with ordinarily monotonic (either increasing or decreasing) graviton spectra of canonical cosmologies; its detection would therefore offer strong support to string cosmology.

  3. [Vibrational spectra of Corallium elatius].

    Fan, Lu-wei; Zhang, Yan; Hu, Yang


    Corallium elatius, which has unique color distribution characteristic, is the most important species of Taiwan precious corals. EPMA, XRD, FTIR and Laser Raman detective methods were used to study the chemical, mineral composition and spectra characteristics of Corallium elatius. The result of EPMA, XRD and FTIR shows the high-Mg calcite mineral componentand the stable minor chemical constituents of the samples. Meanwhile, the cell parameter indicates the lattice distortion and the preferred orientation of calcite grain caused by organic matter. The red part of the samples shows a different Raman spectrum from that of the white part, located at 1517/1128 cm(-1) and 1296/1016 cm(-1). Raman scattering measurement reveals the relationship between the organic matter and color.

  4. The anharmonic quartic force field infrared spectra of three polycyclic aromatic hydrocarbons: Naphthalene, anthracene, and tetracene

    Mackie, Cameron J., E-mail:; Candian, Alessandra; Tielens, Alexander G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Huang, Xinchuan [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, California 94043 (United States); Maltseva, Elena; Buma, Wybren Jan [University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Petrignani, Annemieke [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Radboud University, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen (Netherlands); Oomens, Jos [Radboud University, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen (Netherlands); Lee, Timothy J. [NASA Ames Research Center, Moffett Field, California 94035-1000 (United States)


    Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C–H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.

  5. A Survey and Analysis of Spitzer Infrared Spectrograph Spectra of T Tauri Stars in Taurus

    Furlan, E; Calvet, N; D'Alessio, P; Franco-Hernandez, R; Forrest, W J; Watson, D M; Uchida, K I; Sargent, B; Green, J D; Keller, L D; Herter, T L


    We present mid-infrared spectra of T Tauri stars in the Taurus star-forming region obtained with the Spitzer Infrared Spectrograph (IRS). For the first time, the 5-36 micron spectra of a large sample of T Tauri stars belonging to the same star-forming region is studied, revealing details of the mid-infrared excess due to dust in circumstellar disks. We analyze common features and differences in the mid-IR spectra based on disk structure, dust grain properties, and the presence of companions. Our analysis encompasses spectral energy distributions from the optical to the far-infrared, a morphological sequence based on the IRS spectra, and spectral indices in IRS wave bands representative of continuum emission. By comparing the observed spectra to a grid of accretion disk models, we infer some basic disk properties for our sample of T Tauri stars, and find additional evidence for dust settling.

  6. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra

    Ganesan, Aravindhan; Wang, Feng


    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations domina...


    Z.M. Zhang; Z.J. Ding; H.M. Li; K. Salma; X. Sun; R. Shimizu; T. Koshikawa; K. Goto


    The effective energy loss functions for Al have been derived from differential inverse inelastic mean free path based on the extended Landau approach. It has been revealed that the effective energy loss function is very close in value to the theoretical surface energy loss function in the lower energy loss region but gradually approaches the theoretical bulk energy loss function in the higher energy loss region. Moreover, the intensity corresponding to surface excitation in effective energy loss functions decreases with the increase of primary electron energy. These facts show that the present effective energy loss function describes not only surface excitation but also bulk excitation. At last, REELS spectra simulated by Monte Carlo method based on use of the effective energy loss functions has reproduced the experimental REELS spectra with considerable success.

  8. The Spitzer Atlas of Stellar Spectra

    Ardila, David R; Makowiecki, Wojciech; Stauffer, John; Song, Inseok; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D W; Wachter, Stefanie


    We present the Spitzer Atlas of Stellar Spectra (SASS), which includes 159 stellar spectra (5 to 32 mic; R~100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, like blue stragglers and certain pulsating variables. All the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, dominated by Hydrogen lines around A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstell...

  9. Interpretation of Nitroindolinospirobenzothiopyran Vibrational Spectra

    Gladkov, L. L.; Khamchukov, Yu. D.; Lyubimov, A. V.


    The structures of four possible stereoisomers of the closed form of photochromic nitroindolinospirobenzothiopyran (NISTP) {1',3'-dihydro-1',3',3'-trimethyl-6-nitrospiro[2H-1-benzothiopyran-2,2'-(2H)-indoline]} were determined by the DFT method. The geometry of the most stable isomer was defined. Nitro-substitution changes mainly the lengths of bonds formed by S and N with spiro-atom Cs. According to the calculations, the CsS bond changes most and lengthens by 0.019 Å. It is shown that the S atom has large displacement amplitudes in normal modes assigned to Raman lines at 230, 285, 360, and 575 cm-1 and weak IR bands at 467 and 577 cm-1. Oscillations involving the nitro group are very active in Raman and IR spectra. Their frequencies are slightly lower than similar frequencies of nitrobenzene and nitroindolinospirobenzopyran, indicating a higher degree of vibrational coupling of the NO2 group with the NISTP molecular skeleton.

  10. On non-forking spectra

    Chernikov, Artem; Shelah, Saharon


    Non-forking is one of the most important notions in modern model theory capturing the idea of a generic extension of a type (which is a far-reaching generalization of the concept of a generic point of a variety). To a countable first-order theory we associate its non-forking spectrum - a function of two cardinals kappa and lambda giving the supremum of the possible number of types over a model of size lambda that do not fork over a sub-model of size kappa. This is a natural generalization of the stability function of a theory. We make progress towards classifying the non-forking spectra. On the one hand, we show that the possible values a non-forking spectrum may take are quite limited. On the other hand, we develop a general technique for constructing theories with a prescribed non-forking spectrum, thus giving a number of examples. In particular, we answer negatively a question of Adler whether NIP is equivalent to bounded non-forking. In addition, we answer a question of Keisler regarding the number of cut...

  11. Electronic Spectra of Chevreul's Salts

    Silva Luciana A. da


    Full Text Available The isomorphic series of double sulfites with empirical formula Cu2SO3.MSO3.2H 2O (where M is Cu, Fe, Mn, or Cd have been prepared from the Cu(II replacement by transition metal ions such as Mn(II, Fe(II and Cd(II ions in Chevreul's salt, Cu2SO3.CuSO3.2H 2O. As a consequence, the isomorphic species present distinct colors. Molecular modeling calculations were carried out for the dimeric [CuI2(SO3 2(SO32]6- center. The electronic spectra of the Chevreul's salt consist of a charge-transfer band around 425 nm associated with the [CuI2(SO3 2(SO32]6- chromophore and two ligand field transitions at 785 and 1000 nm involving the Jahn-Teller splitting of the Cu(II levels. An additional intervalence-transfer band, responsible for its characteristic red color, can be found at 500 nm. The replacement of the Cu(II ions for Fe(II, Mn(II and Cd(II does not eliminate the absorption band at 425 nm, supporting its assignment as a charge-transfer transition centered on the Cu(I sites; while the original band at 500 nm disappears, in agreement with its intervalence transfer nature.

  12. Structure of high-resolution NMR spectra

    Corio, PL


    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  13. Circumstellar Molecular Spectra towards Evolved Stars

    Bakker, E J


    In this paper we discuss the relevance of, and possible scientific gains which can be acquired from studying circumstellar molecular spectra toward evolved stars. Where can we expect circumstellar molecular spectra, why would we want to study these spectra, which molecules might be present, and what can we learn from these studies? We present an overview of reported detections, and discuss some of the results.

  14. Calculation of reactor antineutrino spectra in TEXONO

    Chen Dong Liang; Mao Ze Pu; Wong, T H


    In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out

  15. Spectra of Velocity components over Complex Terrain

    Panofsky, H. A.; Larko, D.; Lipschut, R.


    Spectra have been measured over a variety of types of complex terrain: on tops of hills and escarpments, over land downstream of a water surface, and over rolling terrain. Differences between spectra over many types of complex terrain, and over uniform terrain, can be explained by these hypotheses...... is horizontal, and decrease when the flow is uphill, for the longitudinal velocity component only. Since vertical-velocity spectra contain relatively less low wavenumber energy than horizontal-velocity spectra, energetic vertical-velocity fluctuations tend to be in equilibrium with local terrain....

  16. Optical absorption spectra of Ag-11 isomers

    Martinez, Jose Ignacio; Fernandez, E. M.


    The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground-stale confi......The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground...

  17. Extracting Quantitative Data from Lunar Soil Spectra

    Noble, S. K.; Pieters, C. M.; Hiroi, T.


    Using the modified Gaussian model (MGM) developed by Sunshine et al. [1] we compared the spectral properties of the Lunar Soil Characterization Consortium (LSCC) suite of lunar soils [2,3] with their petrologic and chemical compositions to obtain quantitative data. Our initial work on Apollo 17 soils [4] suggested that useful compositional data could be elicited from high quality soil spectra. We are now able to expand upon those results with the full suite of LSCC soils that allows us to explore a much wider range of compositions and maturity states. The model is shown to be sensitive to pyroxene abundance and can evaluate the relative portion of high-Ca and low-Ca pyroxenes in the soils. In addition, the dataset has provided unexpected insights into the nature and causes of absorption bands in lunar soils. For example, it was found that two distinct absorption bands are required in the 1.2 m region of the spectrum. Neither of these bands can be attributed to plagioclase or agglutinates, but both appear to be largely due to pyroxene.

  18. System of pattern analysis of PIXE spectra

    Murozono, K.; Iwasaki, S.; Inoue, J.; Ishii, K.; Kitamura, M. [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Sera, K.; Futatsugawa, S.


    We have developed an analysis system based on the pattern analysis method. By testing the system, several difficulties of the present method have been identified. We found the following solutions for them: pre-selection of candidate elements in a sample and the use of a proper absorber. The pre-selection of the candidate elements will not be a serious drawback in the industrial PIXE, because it will be easy to pre-process the spectra for a few samples in the beginning of the mass processing of samples of the same kind. On the other hand, reduction of the efficiency due to the use of funny filter is significant only in the lower energy region, where we usually do not suffer from insufficient yields of lighter elements in common samples. The selection of the most suitable filter requires PIXE user to be deeply experienced. In particular, it is not easy to choose the best filter to suppress the yield of peak of an abundant element as the absorption edge filter. It will be important task to find a set of suitable combination of representative samples and corresponding filters. Furthermore, the peak profile model should be improved from the simple Gaussian approximation to more realistic ones with exponential tail, flat component below the peak and escape peaks, etc. It is also necessary to develop a theoretical approach for the background shape of the bremsstrahlung. (J.P.N.)

  19. Resonance spectra of caged black holes

    Hod, Shahar


    Recent numerical studies of the coupled Einstein-Klein-Gordon system in a cavity have provided compelling evidence that {\\it confined} scalar fields generically collapse to form black holes. Motivated by this intriguing discovery, we here use analytical tools in order to study the characteristic resonance spectra of the confined fields. These discrete resonant frequencies are expected to dominate the late-time dynamics of the coupled black-hole-field-cage system. We consider caged Reissner-Nordstr\\"om black holes whose confining mirrors are placed in the near-horizon region $x_{\\text{m}}\\equiv (r_{\\text{m}}-r_+)/r_+\\ll\\tau\\equiv (r_+-r_-)/r_+$ (here $r_{\\text{m}}$ is the radius of the confining mirror and $r_{\\pm}$ are the radii of the black-hole horizons). We obtain a simple analytical expression for the fundamental quasinormal resonances of the coupled black-hole-field-cage system: $\\omega_n=-i2\\pi T_{\\text{BH}}\\cdot n[1+O(x^n_{\\text{m}}/\\tau^n)]$, where $T_{\\text{BH}}$ is the temperature of the caged black...

  20. Resonance spectra of caged black holes

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)


    Recent numerical studies of the coupled Einstein-Klein-Gordon system in a cavity have provided compelling evidence that confined scalar fields generically collapse to form black holes. Motivated by this intriguing discovery, we here use analytical tools in order to study the characteristic resonance spectra of the confined fields. These discrete resonant frequencies are expected to dominate the late-time dynamics of the coupled black-hole-field-cage system. We consider caged Reissner-Nordstroem black holes whose confining mirrors are placed in the near-horizon region x{sub m} ≡ (r{sub m} - r{sub +})/r{sub +} << τ ≡ (r{sub +} - r{sub -})/r{sub +} (here r{sub m} is the radius of the confining mirror and r{sub ±} are the radii of the black-hole horizons). We obtain a simple analytical expression for the fundamental quasinormal resonances of the coupled blackhole- field-cage system: ω{sub n} = -2πT{sub BH}.n [1 + O(x{sub m}{sup n}/τ{sup n})], where T{sub BH} is the temperature of the caged black hole and n = 1, 2, 3,.. is the resonance parameter. (orig.)

  1. Haptic Deformation Model Based on Admittance Control in Virtual Surgery Simulation%手术仿真中基于导纳控制的力触觉形变模型

    张小瑞; 孙伟; 朱利丰; 宋爱国; Norman I.Badler; 牛建伟


    为了在虚拟手术仿真中获得快速、准确的力触觉形变效果,提出一种基于导纳控制的力触觉形变模型。基于该模型,采用PHANTOM OMNI力触觉交互设备,以3DS MAX 2013, Microsoft Visual C++2012, OpenGL函数库为基础搭建了实时柔性体力触觉再现系统,实现了虚拟双手对心脏双点的拉拽交互操作。感知实验和交互效率的结果表明,所提出的模型简单有效,形变效果逼真、视觉反馈流畅、力触觉反馈平稳,操作者对虚拟环境的感知和交互准确可靠,能够满足虚拟手术仿真系统的要求。%A haptic deformation model based on admittance control is proposed for rapid and accurate haptic deformation in virtual sugery simulation. Using the proposed model and two PHANTOM OMNI haptic in-teraction devices, a prototype system for real-time haptic soft tissue rendering is built upon 3DS MAX 2013, Microsoft Visual C++ 2012 and OpenGL, which supports interactive bimanual pulling operations on a vir-tual heart. It is shown from the perceptional experiments that the proposed model is simple and effective due to smooth visual feedback, stable haptic feedback and realistic deformation effects, and that the perception and interaction between the operator and virtual environment are accurate and reliable. The performance and accuracy of the deformation model are well balanced to satisfy basic requirements of virtual surgery.

  2. Interpreting the Ionization Sequence in AGN Emission-Line Spectra

    Richardson, Chris T; Baldwin, Jack A; Hewett, Paul C; Ferland, Gary J


    We investigate the physical cause of the great range in the ionization level seen in the spectra of narrow lined active galactic nuclei (AGN). Mean field independent component analysis identifies examples of individual SDSS galaxies whose spectra are not dominated by emission due to star formation (SF), which we designate as AGN. We assembled high S/N ratio composite spectra of a sequence of these AGN defined by the ionization level of their narrow-line regions (NLR), extending down to very low-ionization cases. We used a local optimally emitting cloud (LOC) model to fit emission-line ratios in this AGN sequence. These included the weak lines that can be measured only in the co-added spectra, providing consistency checks on strong line diagnostics. After integrating over a wide range of radii and densities our models indicate that the radial extent of the NLR is the major parameter in determining the position of high to moderate ionization AGN along our sequence, providing a physical interpretation for their ...

  3. Measured-predicted molecular spectra at band-line resolution

    Freeman, G. N.; Akagi, T.; Barton, P. B. C.


    Early ERIM measurements of hot-through-cold gas (CO2, H2O, N2) emission-absorption spectra are replicated by modern line-band computations that incorporate independent fundamental line strength-frequency information. Close agreement is achieved for all cases by empirical adjustment of the line broadening function. Line spectra for CO2 and H2O computed at 0.001 cm-1 resolution were integrated to 3.2 and 14 cm-1 using a triangular slit function consistent with ERIM measurements for the 4.3 and 2.7 μm spectral regions. Band spectra computed at 0.1 cm-1 resolution give close agreement with spectra generated at higher resolution. The findings demonstrate a merged line-band model for nonuniform path radiance and transmittance based on the line-sum spectral cross section for each piecewise-uniform path segment. The band-and-line transmittance become equivalent at high spectral resolution.

  4. The spectra and temperature of cloud lightning discharge channel


    Spectra of seven cloud lightning discharges are reported for the first time after captured with a Slit-less Spectrograph on Chinese Tibet Plateau. The structural characters are analyzed and compared with the spectra of cloud-to-ground lightning, and the results indicate that the spectra of cloud lightning show two different kinds of structure characteristics. One has the similar structure as those of cloud-to-ground lightning discharge, and the other is absolutely different. Meanwhile, more lines of OII with high excited energy are recorded in the spectra of cloud lightning discharge in comparison with that of cloud-to-ground lighting happening in the same region. Temperatures at different positions are calculated and temperature characteristics of these two sorts are analyzed, based to the wavelength, relative intensities and other transition parameters. We suggest that the physical process in the cloud discharge channels changes with much more rapid velocity and wider range compared to cloud-to-ground lightning. The differences between the two types of cloud discharge also reflect some discrepancies between the discharge characteristics.

  5. Spatial structure of directional wave spectra in hurricanes

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro


    The spatial structure of the wave field during hurricane conditions is studied using the National Data Buoy Center directional wave buoy data set from the Caribbean Sea and the Gulf of Mexico. The buoy information, comprising the directional wave spectra during the passage of several hurricanes, was referenced to the center of the hurricane using the path of the hurricane, the propagation velocity, and the radius of the maximum winds. The directional wave spectra were partitioned into their main components to quantify the energy corresponding to the observed wave systems and to distinguish between wind-sea and swell. The findings are consistent with those found using remote sensing data (e.g., Scanning Radar Altimeter data). Based on the previous work, the highest waves are found in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal, in the vicinity of the region of maximum winds. More complex spectral shapes are observed in distant regions at the front of and in the rear quadrants of the hurricane, where there is a tendency of the spectra to become bi- and tri-modal. The dominant waves generally propagate at significant angles to the wind direction, except in the regions next to the maximum winds of the right quadrants. Evidence of waves generated by concentric eyewalls associated with secondary maximum winds was also found. The frequency spectra display some of the characteristics of the JONSWAP spectrum adjusted by Young (J Geophys Res 111:8020, 2006); however, at the spectral peak, the similarity with the Pierson-Moskowitz spectrum is clear. These results establish the basis for the use in assessing the ability of numerical models to simulate the wave field in hurricanes.

  6. Measurements and parameterization of neutron energy spectra from targets bombarded with 120 GeV protons

    Kajimoto, T., E-mail: [Hiroshima University, Kagamiyama, Higashi-hiroshima 739-8527 (Japan); Shigyo, N. [Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Sanami, T. [High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Iwamoto, Y. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Hagiwara, M. [High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Lee, H.S. [Pohang Accelerator Laboratory, POSTECH, Pohang, Kyungbuk 790-784 (Korea, Republic of); Soha, A.; Ramberg, E.; Coleman, R.; Jensen, D.; Leveling, A.; Mokhov, N.V.; Boehnlein, D.; Vaziri, K. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Sakamoto, Y. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ishibashi, K. [Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Nakashima, H. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)


    Highlights: •Neutron energy spectra from targets bombarded with 120 GeV protons were measured. •The neutron energy was determined with the time-of-flight technique. •The measured spectra were compared with those calculated by PHITS and FLUKA. •Large differences were found between measured and calculated spectra. •The study shows the need to improve models for neutron production in the high energy region. -- Abstract: The energy spectra of neutrons were measured by a time-of-flight method for 120 GeV protons on thick graphite, aluminum, copper, and tungsten targets with an NE213 scintillator at the Fermilab Test Beam Facility. Neutron energy spectra were obtained between 25 and 3000 MeV at emission angles of 30°, 45°, 120°, and 150°. The spectra were parameterized as neutron emissions from three moving sources and then compared with theoretical spectra calculated by PHITS and FLUKA codes. The yields of the theoretical spectra were substantially underestimated compared with the yields of measured spectra. The integrated neutron yields from 25 to 3000 MeV calculated with PHITS code were 16–36% of the experimental yields and those calculated with FLUKA code were 26–57% of the experimental yields for all targets and emission angles.

  7. Thermoluminescence spectra measured with a Michelson interferometer

    Haschberger, P. (Technische Univ. Muenchen (Germany). Lehrstuhl fuer Elektrische Messtechnik)


    A Michelson interferometer was redesigned to prove its capabilities in the measurement of short-lived, low-intensity thermoluminescence spectra. Interferograms are collected during heating up the thermoluminescent probe in a heater plate. A personal computer controls the data acquisition and processes the Fourier transform. As the results show, even a comparatively simple and limited setup leads to relevant and reproducible spectra. (author).

  8. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    Lundtang Petersen, Erik; Lilly, D. K.


    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  9. Moessbauer Spectra of Clays and Ceramics

    Wagner, F. E.; Wagner, U. [Technische Universitaet Muenchen (Germany)


    The physical, chemical and mineralogical aspects of the use of Moessbauer spectroscopy in studies of clay-based ceramics are described. Moessbauer spectra of pottery clays fired under oxidising, reducing and changing conditions are explained, and the possibilities of using Moessbauer spectra to derive information on the firing temperatures and the kiln atmosphere during firing in antiquity are discussed and illustrated by examples.

  10. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    Lundtang Petersen, Erik; Lilly, D. K.


    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  11. Tunneling spectra of graphene on copper unraveled

    Zhang, Xin; Stradi, Daniele; Liu, Lei


    mechanisms, etc. The interpretation of the spectra can be complicated, however. Specifically for graphene grown on copper, there have been conflicting reports of tunneling spectra. A clear understanding of the mechanisms behind the variability is desired. In this work, we have revealed that the root cause...

  12. POLLUX : a database of synthetic stellar spectra

    Palacios, A; Josselin, E; Martins, F; Plez, B; Belmas, M; Lebre, A


    Synthetic spectra are needed to determine fundamental stellar and wind parameters of all types of stars. They are also used for the construction of theoretical spectral libraries helpful for stellar population synthesis. Therefore, a database of theoretical spectra is required to allow rapid and quantitative comparisons to spectroscopic data. We provide such a database offering an unprecedented coverage of the entire Hertzsprung-Russell diagram. We present the POLLUX database of synthetic stellar spectra. For objects with Teff 25 000 K). Their spectra are computed with CMF_FLUX. Both high resolution (R>150 000) optical spectra in the range 3 000 to 12 000 A and spectral energy distributions extending from the UV to near--IR ranges are presented. These spectra cover the HR diagram at solar metallicity. We propose a wide variety of synthetic spectra for various types of stars in a format that is compliant with the Virtual Observatory standards. A user--friendly web interface allows an easy selection of spectra...

  13. Source brightness fluctuation correction of solar absorption Fourier Transform mid infrared spectra

    T. Ridder


    Full Text Available Solar absorption Fourier Transform infrared spectrometry is considered a precise and accurate method for the observation of trace gases in the atmosphere. The precision and accuracy of such measurements are dependent on the stability of the light source. Fluctuations in the source brightness reduce the precision and accuracy of the trace gas concentrations, but cannot always be avoided. Thus, a strong effort is made within the community to reduce the impact of source brightness fluctuations by applying a correction on the spectra following the measurements. So far, it could be shown that the precision and accuracy of CO2 total column concentrations could be improved by applying a source brightness fluctuation correction to spectra in the near infrared spectral region.

    The analysis of trace gas concentrations obtained from spectra in the mid infrared spectral region is fundamental. However, spectra below 2000 cm−1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents a source brightness fluctuation correction.

    Here, we show a method of source brightness fluctuation correction, which can be applied on spectra in the whole infrared spectral region including spectra measured with a MCT detector. We present a solution to remove the unknown offset in MCT interferograms allowing MCT spectra for an application of source brightness fluctuation correction. This gives an improvement in the quality of MCT spectra and we demonstrate an improvement in the retrieval of O3 profiles and total column concentrations.

    For a comparison with previous studies, we apply our source brightness fluctuation correction method on spectra in the near infrared spectral region and show an improvement in the retrieval of CO2 total column concentrations.

  14. Molecular absorption in transition region spectral lines

    Schmit, Donald; Ayres, Thomas; Peter, Hardi; Curdt, Werner; Jaeggli, Sarah


    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary . The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales...

  15. General Notes on Processes and Their Spectra

    Gustav Cepciansky


    Full Text Available The frequency spectrum performs one of the main characteristics of a process. The aim of the paper is to show the coherence between the process and its own spectrum and how the behaviour and properties of a process itself can be deduced from its spectrum. Processes are categorized and general principles of their spectra calculation and recognition are given. The main stress is put on power spectra of electric and optic signals, as they also perform a kind of processes. These spectra can be directly measured, observed and examined by means of spectral analyzers and they are very important characteristics which can not be omitted at transmission techniques in telecommunication technologies. Further, the paper also deals with non electric processes, mainly with processes and spectra at mass servicing and how these spectra can be utilised in praxis.

  16. Mid-IR Spectra of Refractory Minerals Relevant to Comets

    Jauhari, Shekeab


    On 4 July 2005 the Spitzer Space Telescope obtained mid-IR ( 5-40 µm) spectra of the ejecta from the hypervelocity impact of the Deep Impact projectile with comet 9P/Tempel 1. Spectral modeling demonstrates that there are abundant minerals present in the ejecta including Ca/Fe/Mg-rich silicates, carbonates, phyllosilicates, water ice, amorphous carbon, and sulfides [1]. However, precise mineralogical identifications are hampered by the lack of comprehensive 5 - 40 µm spectral measurements of the emissivity for a broad compositional range of these materials. Here, we present our initial results for 2 - 50 µm transmission spectra and absorption constants for materials relevant to comets, including pyrrhotite, pyrite, and several phyllosilicate (clay) minerals. Measuring the transmission of materials over the full spectral range sensitive by Spitzer requires grinding the minerals into submicron powders and then mixing them with KBr (for the 1-25 um region) and polyethylene (16-50 um region) to form pellets. Transmission measurements of sub-micron sulfides are particularly difficult to obtain because the minerals oxidize rapidly upon grinding and subsequent handling unless special care is taken. A detailed description of our sample preparation and measurement technique will be provided to assist other researchers in their attempts to acquire similar spectra. References: [1] Lisse, C.M. et al., Science 313, 635 - 640 (2006)

  17. Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals

    Costa, C.H.O. [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M.S., E-mail: [Escola de Ciencias e Tecnologia, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Barbosa, P.H.R.; Barbosa Filho, F.F. [Departamento de Fisica, Universidade Federal do Piaui, 64049-550 Teresina-Pi (Brazil)


    In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter {sigma}(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number F{sub n} and as well as how they scale as a function of the number of generations of the sequences, respectively. - Highlights: Black-Right-Pointing-Pointer Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. Black-Right-Pointing-Pointer Heisenberg model in exchange regime is applied. Black-Right-Pointing-Pointer We use a theoretical model based on a transfer-matrix method together random-phase approximation. Black-Right-Pointing-Pointer Fractal spectra are characterized. Black-Right-Pointing-Pointer We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number.

  18. Calculated and experimental low-loss electron energy loss spectra of dislocations in diamond and GaN

    Jones, R; Gutiérrez-Sosa, A; Bangert, U; Heggie, M I; Blumenau, A T; Frauenheim, T; Briddon, P R


    First-principles calculations of electron energy loss (EEL) spectra for bulk GaN and diamond are compared with experimental spectra acquired with a scanning tunnelling electron microscope offering ultra-high-energy resolution in low-loss energy spectroscopy. The theoretical bulk low-loss EEL spectra, in the E sub g to 10 eV range, are in good agreement with experimental data. Spatially resolved spectra from dislocated regions in both materials are distinct from bulk spectra. The main effects are, however, confined to energy losses lying above the band edge. The calculated spectra for low-energy dislocations in diamond are consistent with the experimental observations, but difficulties remain in understanding the spectra of threading dislocations in GaN.

  19. Radiative and precipitation controls on root zone soil moisture spectra

    Nakai, Taro; Katul, Gabriel G.; Kotani, Ayumi; Igarashi, Yasunori; Ohta, Takeshi; Suzuki, Masakazu; Kumagai, Tomo'omi


    Temporal variability in root zone soil moisture content (w) exhibits a Lorentzian spectrum with memory dictated by a damping term when forced with white-noise precipitation. In the context of regional dimming, radiation and precipitation variability are needed to reproduce w trends prompting interest in how the w memory is altered by radiative forcing. A hierarchy of models that sequentially introduce the spectrum of precipitation, net radiation, and the effect of w on evaporative and drainage losses was used to analyze the spectrum of w at subtropical and temperate forested sites. Reproducing the w spectra at long time scales necessitated simultaneous precipitation and net radiation measurements depending on site conditions. The w memory inferred from observed w spectra was 25-38 days, larger than that determined from maximum wet evapotranspiration and field capacity. The w memory can be reasonably inferred from the Lorentzian spectrum when precipitation and evapotranspiration are in phase.

  20. Effects of Fluid Instabilities on Accretion Disk Spectra

    Davis, S W; Turner, N J; Socrates, A


    Numerical calculations and linear theory of radiation magnetohydrodynamic flows indicate that the photon bubble and magnetorotational instability (MRI) may produce large density inhomogeneities in radiation pressure supported media. We study the effects of the photon bubble instability on accretion disk spectra using 2-D Monte Carlo (MC) and 1-D Feautrier radiative transfer calculations on a snapshot of a 2-D numerical simulation domain. We find an enhancement in the thermalization of the MC spectra over that of the Feautrier calculation. In the inner-most regions of these disks, the turbulent magnetic pressure may greatly exceed that of the gas. It is then possible for bulk turbulent Alfvenic motions driven by the MRI to exceed the thermal velocity making turbulent Comptonization the dominant radiative process. We estimate the spectral distortion due to turbulent Comptonization utilizing a 1-D MC calculation.

  1. Raman Spectra Of Double-Walled Carbon Nanotubes

    Vuković, T.; Dmitrović, S.; Dobardžić, E.


    Using nonresonant bond-polarization theory, Raman spectra of periodic double-walled carbon nanotubes (DWCNTs) are calculated. Due to the lower symmetry of DWCNT, the number of Raman active modes is much larger compared to those of its layers. Complete frequency range of the tubes spectra has been analyzed for large number of tubes. We found that only modes whose frequencies are below 800 cm-1 have noticeable up shifts compared to those of isolated layers. Special attention is given to radial breathing modes (RBMs) and G-band region since these modes are used for the identification of singe-walled carbon nanotubes. In case of breathing like modes (BLMs), frequency of the out of phase mode is found to be chirality dependent, while the in phase one remains only diameter dependent as in the case of individual layers.

  2. Spectra of conformal sigma models

    Tlapak, Vaclav


    In this thesis the spectra of conformal sigma models defined on (generalized) symmetric spaces are analysed. The spaces where sigma models are conformal without the addition of a Wess-Zumino term are supermanifolds, in other words spaces that include fermionic directions. After a brief review of the general construction of vertex operators and the background field expansion, we compute the diagonal terms of the one-loop anomalous dimensions of sigma models on semi-symmetric spaces. We find that the results are formally identical to the symmetric case. However, unlike for sigma models on symmetric spaces, off diagonal terms that lead to operator mixing are also present. These are not computed here. We then present a detailed analysis of the one-loop spectrum of the supersphere S{sup 3} {sup vertical} {sup stroke} {sup 2} sigma model as one of the simplest examples. The analysis illustrates the power and simplicity of the construction. We use this data to revisit a duality with the OSP(4 vertical stroke 2) Gross-Neveu model that was proposed by Candu and Saleur. With the help of a recent all-loop result for the anomalous dimension of (1)/(2)BPS operators of Gross-Neveu models, we are able to recover the entire zero-mode spectrum of the supersphere model. We also argue that the sigma model constraints and its equations of motion are implemented correctly in the Gross-Neveu model, including the one-loop data. The duality is further supported by a new all-loop result for the anomalous dimension of the ground states of the sigma model. However, higher-gradient operators cannot be completely recovered. It is possible that this discrepancy is related to a known instability of the sigma model. The instability of sigma models is due to symmetry preserving high-gradient operators that become relevant at arbitrarily small values of the coupling. This feature has been observed long ago in one-loop calculations of the O(N)-vector model and soon been realized to be a generic

  3. Recent pollen spectra and zonal vegetation in the western USSR

    Peterson, G. M.

    The relationship of modern pollen spectra to present-day vegetation is critical to the reconstruction of vegetation and climate from fossil pollen spectra. This study uses isopoll maps to illustrate the pollen-vegetation relationships in the Soviet Union west of 100°E and presents descriptive statistics for 544 modern samples of arboreal pollen and for 370 samples of herb pollen obtained from the Soviet palynological literature. Data are assembled from this large geographic region and presented in a standardized form on a scale which can be used to relate quantitative pollen data to zonal vegetation and climatic variables and to make comparisons with other regions. In order to show the relationship between pollen types and major ecotones in forested and non-forested areas, the pollen data are presented as percentages of a sum including both arboreal and non-arboreal pollen. Major pollen types which attain values of 10% or more in at least one vegetation zone include Betula (birch), Cyperaceae (sedges), Picea (spruce), Pinus (total pine), Pinus sibirica, Ericaceae (heath family), Gramineae (grasses), Artemisia (sage), and Chenopodiaceae (i.e., saltbush, Russian thistle, pigweed family). Samples from the tundra and forest-tundra have high values of Ericaceae (heath family), birch, alder, and sedge pollen. In the boreal forest, pine, spruce, and birch pollen predominate. In the mixed and deciduous forests, Tilia (linden), Quercus (oak), Ulmus (elm), and Corylus (hazel) pollen attain maximum values. In the forest-steppe and steppe zones, arboreal pollen decreases in importance and is replaced by non-arboreal pollen types. Pollen of Artemisia and Chenopodiaceae predominates in the semi-desert zones. In spite of variation in the pollen spectra arising from the use of different sediment types (soil, peat, and river sediments), and human disturbance of vegetation, the pollen spectra are clearly related to zonal vegetation. Pollen spectra from the western USSR show

  4. Vibrational spectra of 3,5-dimethylpyrazole and deuterated derivatives.

    Orza, J M; García, M V; Alkorta, I; Elguero, J


    The infrared (IR) and Raman spectra of 3,5-dimethylpyrazole have been recorded in the vapor, liquid (melt and solution) and solid states. Two deuterated derivatives, C5H7N-ND and C5D7N-NH, were also studied in solid state and in solutions. Instrumental resolution was relatively low, 2.0 cm(-1) in the IR and approximately 2.7 cm(-1) in the Raman spectra. The solids are made of cyclic hydrogen-bonded trimers. These trimers, present also in chloroform and acetone solutions, give rise to characteristic high absorption IR spectra in the 3200-2500 cm(-1) region, related to Fermi resonance involving nu(NH) vibrations. Bands from trimers are not present in water solutions but these solutions show spectral features similar in several ways to those of the trimer, attributable to solvent-bonded complexes. Evidence of H-bonding interactions with the other solvents is also visible in the high-frequency region. The two very intense bands in the Raman spectra of the solids appearing at 115 and 82 cm(-1) in the parent compound are also connected with a trimer formation. To interpret the experimental data, ab initio computations of the harmonic vibrational frequencies and IR and Raman intensities were carried out using the Gaussian 94 program package after full optimization at the RHF/6-31G* level for the three monomeric compounds as well as for three models of the trimer, with C3h, C3 and C1 symmetry. The combined use of experiments and computations allow a firm assignment of most of the observed bands for all the systems. In general, the agreement between theory and experiment is very good, with the exception of the IR and Raman intensities of some transitions. Particularly noticeable is the failure of the theoretical calculation in accounting for the high intensity of the Raman bands of the solid about 115 and 82 cm(-1).

  5. Decomposition of spectra using maximum autocorrelation factors

    Larsen, Rasmus


    into classification or regression type analyses. A featured method for low dimensional representation of multivariate datasets is Hotellings principal components transform. We will extend the use of principal components analysis incorporating new information into the algorithm. This new information consists......This paper addresses the problem of generating a low dimensional representation of the variation present in a set of spectra, e.g. reflection spectra recorded from a series of objects. The resulting low dimensional description may subseque ntly be input through variable selection schemes...... Fourier decomposition these new variables are located in frequency as well as well wavelength. The proposed algorithm is tested on 100 samples of NIR spectra of wheat....

  6. Rotational structure in molecular infrared spectra

    di Lauro, Carlo


    Recent advances in infrared molecular spectroscopy have resulted in sophisticated theoretical and laboratory methods that are difficult to grasp without a solid understanding of the basic principles and underlying theory of vibration-rotation absorption spectroscopy. Rotational Structure in Molecular Infrared Spectra fills the gap between these recent, complex topics and the most elementary methods in the field of rotational structure in the infrared spectra of gaseous molecules. There is an increasing need for people with the skills and knowledge to interpret vibration-rotation spectra in ma

  7. Vibrational spectra of (BaF2)n (n=1-6) clusters

    Pandey, Ratnesh K.; Waters, Kevin; Nigam, Sandeep; Pandey, Ravindra; Pandey, Avinash C.


    The vibrational properties of alkaline-earth metal fluoride clusters (BaF2)n (n=1-6) are investigated in the framework of density functional theory. The calculated Raman and Infrared (IR) spectra reveals shift in Raman and IR peak position towards lower frequency region with the increase in the cluster size. Further the calculated spectra have been compared with the experimental vibrational spectra of bulk BaF2 crystal. Even though the smaller size cluster lacks translational symmetry, the structural and vibrational characteristic of (BaF2)5-6 are nearer to bulk counterpart.

  8. Re-hardening of hadron transverse mass spectra in relativistic heavy-ion collisions

    P K Sahu; N Otuka; M Isse; Y Nara; A Ohnishi


    We analyze the spectra of pions and protons in heavy-ion collisions at relativistic energies from 2 A GeV to 65+65 A GeV by using a jet-implemented hadron-string cascade model. In this energy region, hadron transverse mass spectra first show softening until SPS energies, and re-hardening may emerge at RHIC energies. Since hadronic matter is expected to show only softening at higher energy densities, this re-hardening of spectra can be interpreted as a good signature of the quark-gluon plasma formation.

  9. CO2 laser photoacoustic spectra and vibrational modes of heroin, morphine and narcotine

    R L Prasad; S N Thakur; G C Bhar


    Heroin, morphine and narcotine are very large molecules having 50, 40 and 53 atoms respectively. Moderately high resolution photoacoustic (PA) spectra have been recorded in 9.6 m and 10.6 m regions of CO2 laser. It is very difficult to assign the modes of vibrations for PA bands by comparison with conventional low resolution IR spectra. The ab initio quantum chemical calculations were used for determining the molecular geometries and normal mode frequencies of vibrations of these molecules for assignments of PA spectra.

  10. Far-infrared emission spectra of selected gas-phase PAHs: Spectroscopic fingerprints

    Zhang, K.; Guo, B.; Colarusso, P.; Bernath, P.F. [Univ. of Waterloo, Ontario (Canada)


    The emission spectra of the gaseous polycyclic aromatic hydrocarbons (PAHs) naphthalene, chrysene, and pyrene were recorded in the far-infrared (far-IR) region. The vibrational bands that lie in the far IR are unique for each PAH molecule and allow discrimination among the three PAH molecules. The far-IR PAH spectra, therefore, may prove useful in the assignment of unidentified spectral features from astronomical objects. 23 refs., 1 fig., 1 tab.

  11. Multivariate analysis of endometrial tissue fluorescence spectra

    Vaitkuviene, Aurelija; Auksorius, E.; Fuchs, D.; Gavriushin, V.


    Background and Objective: The detailed multivariate analysis of endometrial tissue fluorescence spectra was done. Spectra underlying features and classification algorithm were analyzed. An effort has been made to determine the importance of neopterin component in endometrial premalignization. Study Design/Materials and Methods: Biomedical tissue fluorescence was measured by excitation with the Nd YAG laser third harmonic. Multivariate analysis techniques were used to analyze fluorescence spectra. Biomedical optics group at Vilnius University analyzed the neopterin substance supplied by the Institute of Medical Chemistry and Biochemistry of Innsbruck University. Results: Seven statistically significant spectral compounds were found. The classification algorithm classifying samples to histopathological categories was developed and resulted in sensitivity of 80% and specificity 93% for malignant vs. hyperplastic and normal. Conclusions: Fluorescence spectra could be classified with high accuracy. Spectral variation underlying features can be extracted. Neopterin component might play an important role in endometrial hyperplasia development.

  12. Spectra: Time series power spectrum calculator

    Gallardo, Tabaré


    Spectra calculates the power spectrum of a time series equally spaced or not based on the Spectral Correlation Coefficient (Ferraz-Mello 1981, Astron. Journal 86 (4), 619). It is very efficient for detection of low frequencies.

  13. The electronic spectra of protonated PANH molecules

    Noble, J A; Jouvet, C


    Aims. This study was designed to examine the viability of protonated nitrogen-substituted polycyclic aromatic hydrocarbons (H+PANHs) as candidates for the carriers of the diffuse interstellar bands (DIBs). Methods. We obtained the electronic spectra of two protonated PANH cations, protonated acridine and phenanthridine, using parent ion photo-fragment spectroscopy and generated theoretical electronic spectra using ab initio calculations. Results. We show that the spectra of the two species studied here do not correspond to known DIBs. However, based on the general properties derived from the spectra of these small protonated nitrogen-substituted PAHs, we propose that larger H+PANH cations represent good candidates for DIB carriers due to the expected positions of their electronic transitions in the UV-visible and their narrow spectral bands.

  14. Power spectra of currents off Bombay

    Varkey, M.J.

    Current measurements were carried out using a recording current meter across the continental shelf off Bombay, Maharashtra, India at 4 stations from an anchored ship. Power spectra were computed for selected lengths of records. Spectral energy...

  15. Energetic electron spectra in Saturn's plasma sheet

    Carbary, J. F.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Krupp, N.


    The differential spectra of energetic electrons (27-400 keV) in Saturn's plasma sheet can be characterized by power law or kappa distributions. Using all available fluxes from 2005 to 2010, fits to these distributions reveal a striking and consistent pattern of radial dependence in Saturn's plasma sheet (∣z∣ constant throughout the Cassini mission. Inward of about 10 RS, the presence of the electron radiation belts and losses of lower-energy electrons to the gas and grain environment give rise to the very hard spectra in the inner magnetosphere, while the hard spectra in the outer magnetosphere may derive from auroral acceleration at high latitudes. The gradual softening of the spectra from 20 to 10 RS is explained by inward radial diffusion.

  16. Dynamic Radio Spectra from two Fireballs

    Obenberger, K S; Lin, C S; Dowell, J; Schinzel, F K; Stovall, K


    We present dynamic spectra from the LWA1 telescope of two large meteors (fireballs) observed to emit between 37 and 54 MHz. These spectra show the first ever recorded broadband measurements of this newly discovered VHF emission. The spectra show that the emission is smooth and steep, getting very bright at lower frequencies. We suggest that this signal is possibly emission of Langmuir waves and that these waves could be excited by a weak electron beam within the trail. The spectra of one fireball displays broadband temporal frequency sweeps. We suggest that these sweeps are evidence of individual expanding clumps of emitting plasma. While some of these proposed clumps may have formed at the very beginning of the fireball event, others must have formed seconds after the initial event.

  17. X-ray absorption spectra of plasmas

    PENG; Yonglun彭永伦; HAN; Xiaoying韩小英; LI; Jiaming李家明; DING; Yaonan丁耀南; YANG; Jiamin杨家敏; ZHENG; Zhijian郑志坚


    In this paper we present a theoretical method to calculate the absorption spectra of hot dense plasmas. Based on our fully relativistic treatment incorporated with the quantum defect theory to handle the huge number of transition arrays from many configurations with high principal quantum number, we can calculate the absorption spectra for any element or multi-element plasmas with little computational efforts. We calculate the absorption spectra of C10H1605 plasmas, which are in good agreement with the experimental spectra. We can then provide diagnostic analysis for plasmas in relevant inertial confinement fusion (lCF) experiments; namely not only to determine plasmas' temperatures and densities, but also to provide the population densities of various ionic stages. Our theoretical method verified by "benchmark experiments" will be a basic tool to provide "precise" opacity data for the ICF research.``

  18. Molecular Dynamics and Picosecond Vibrational Spectra.


    and Identify by block number) molecular dynamics picosecond infra-red spectra crmputer simulation vibrational spectra array processor linear rcsponse...that for molecular dynamics theoretical computation is now long enough, to significantly overlap. This overlap of theory and experiment can, at discover these microscopic atomic trajectories, i.e. the molecular dynamics of solution processes, we must be able to both theoretically compute

  19. Origin of zero degeneracy in networks spectra

    Yadav, Alok


    Spectra of real world networks exhibit properties which are different from the random networks. One such property is the existence of a very high degeneracy at zero eigenvalues. In this work, we provide all the possible reasons behind occurrence of the zero degeneracy in the networks spectra. Comparison of zero degeneracy in protein-protein interaction networks of six different species and in their corresponding model networks sheds light in understanding the evolution of complex biological systems.

  20. Core-level spectra from graphene

    Sernelius, Bo


    We calculate core-level spectra for pristine and doped free-standing graphene sheets. Instructions for how to perform the calculations are given in detail. Although pristine graphene is not metallic the core-level spectrum presents low-energy tailing which is characteristic of metallic systems. The peak shapes vary with doping level in a characteristic way. The spectra are compared to experiments and show good agreement. We compare to two different pristine samples and to one doped sample. Th...

  1. Computer simulation of backscattering spectra from paint

    Mayer, M.; Silva, T. F.


    To study the role of lateral non-homogeneity on backscattering analysis of paintings, a simplified model of paint consisting of randomly distributed spherical pigment particles embedded in oil/binder has been developed. Backscattering spectra for lead white pigment particles in linseed oil have been calculated for 3 MeV H+ at a scattering angle of 165° for pigment volume concentrations ranging from 30 vol.% to 70 vol.% using the program STRUCTNRA. For identical pigment volume concentrations the heights and shapes of the backscattering spectra depend on the diameter of the pigment particles: This is a structural ambiguity for identical mean atomic concentrations but different lateral arrangement of materials. Only for very small pigment particles the resulting spectra are close to spectra calculated supposing atomic mixing and assuming identical concentrations of all elements. Generally, a good fit can be achieved when evaluating spectra from structured materials assuming atomic mixing of all elements and laterally homogeneous depth distributions. However, the derived depth profiles are inaccurate by a factor of up to 3. The depth range affected by this structural ambiguity ranges from the surface to a depth of roughly 0.5-1 pigment particle diameters. Accurate quantitative evaluation of backscattering spectra from paintings therefore requires taking the correct microstructure of the paint layer into account.

  2. Identifying Broadband Rotational Spectra with Neural Networks

    Zaleski, Daniel P.; Prozument, Kirill


    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  3. Spitzer IRAC Images and Sample Spectra of Cassiopeia A's Explosion

    Ennis, J A; Reach, W T; Smith, J D; Rho, J; Delaney, T A; Gomez, H L; Kozasa, T


    We present Spitzer IRAC images, along with representative 5.27 to 38.5 micron IRS spectra of the Cassiopeia A supernova remnant. We find that various IRAC channels are each most sensitive to a different spectral and physical component. Channel 1 (3.6 micron) matches radio synchrotron images. Where Channel 1 is strong with respect to the other channels, the longer-wavelength spectra show a broad continuum gently peaking around 26 micron, with weak or no lines. We suggest that this is due to un-enriched progenitor circumstellar dust behind the outer shock, processed by shock photons and electrons. Where Channel 4 (8 micron) is bright relative to the other IRAC channels, the long-wavelength spectra show a strong, 2-3 micron-wide peak at 21 micron, likely due to silicates and proto-silicates, as well as strong ionic lines of [Ar II], [Ar III], [S IV] and [Ne II]. In these locations, the dust and ionic emission originate from the explosion's O-burning layers. The regions where Channels 2 (4.5 micron) and 3 (5.6 mi...

  4. O ingresso na universidade após os 45 anos: um evento não-normativo El ingreso a la universidad después de los 45 años: un evento no-normativo Admittance to the university after age 45: a non-normative event

    Denise Maria dos Santos Paulinelli Raposo


    Full Text Available Examinam-se neste estudo as razões que levam à decisão de ingressar na universidade na idade adulta, um evento não dependente de gradação por idade, denominado pela perspectiva do curso de vida de evento não-normativo (non-normative event. Os 40 participantes (27 F e 13 M, alunos de uma universidade particular do Centro-Oeste, com idades entre 45 e 60 anos, responderam a seis questões de uma entrevista estruturada, cujas respostas foram preenchidas pela primeira autora. Os resultados indicaram que os respondentes vivenciaram na vida adulta um período de estabilidade e que, embora conscientes das expectativas do seu ambiente quanto ao tempo e à seqüência das transições do ciclo de vida, avaliaram seus recursos pessoais, selecionaram seus objetivos e otimizaram suas capacidades de reserva antes de ingressar no ensino superior. Os resultados são discutidos à luz da perspectiva do curso de vida.Se examinan en este estudio las razones que llevan a la decisión de ingresar a la universidad en la edad adulta, un acontecimiento no dependiente de gradación por edad, denominado por la perspectiva del curso de vida de evento no-normativo (non-normative event. Los 40 participantes (27 M y 13 H, alumnos de una universidad particular de la región centro-oeste brasileño, con edades entre 45 y 60 años, contestaron a seis preguntas de una encuesta estructurada cuyas respuestas fueron rellenadas por la primera autora. Los resultados indicaron que los respondientes vivenciaron en la vida adulta un periodo de estabilidad y que, aunque conscientes de las expectativas de su ambiente cuanto al tiempo y a la secuencia de las transiciones del ciclo de vida, evaluaron sus recursos personales, seleccionaron sus objetivos y optimizaron sus capacidades de reserva antes de ingresar en la enseñanza superior. Los resultados son discutidos a la luz de la perspectiva del curso de vida.The reasons for admittance to the university after age 45, a non

  5. Thermal Emission and Albedo Spectra of Super Earths with Flat Transmission Spectra

    Morley, Caroline V; Marley, Mark S; Zahnle, Kevin; Line, Michael; Kempton, Eliza; Lewis, Nikole; Cahoy, Kerri


    Planets larger than Earth and smaller than Neptune are some of the most numerous in the galaxy, but observational efforts to understand this population have proved challenging because optically thick clouds or hazes at high altitudes obscure molecular features (Kreidberg et al. 2014b). We present models of super Earths that include thick clouds and hazes and predict their transmission, thermal emission, and reflected light spectra. Very thick, lofted clouds of salts or sulfides in high metallicity (1000x solar) atmospheres create featureless transmission spectra in the near-infrared. Photochemical hazes with a range of particle sizes also create featureless transmission spectra at lower metallicities. Cloudy thermal emission spectra have muted features more like blackbodies, and hazy thermal emission spectra have emission features caused by an inversion layer at altitudes where the haze forms. Close analysis of reflected light from warm (~400-800 K) planets can distinguish cloudy spectra, which have moderate ...

  6. Parameterizing Stellar Spectra Using Deep Neural Networks

    Li, Xiang-Ru; Pan, Ru-Yang; Duan, Fu-Qing


    Large-scale sky surveys are observing massive amounts of stellar spectra. The large number of stellar spectra makes it necessary to automatically parameterize spectral data, which in turn helps in statistically exploring properties related to the atmospheric parameters. This work focuses on designing an automatic scheme to estimate effective temperature ({T}{eff}), surface gravity ({log}g) and metallicity [Fe/H] from stellar spectra. A scheme based on three deep neural networks (DNNs) is proposed. This scheme consists of the following three procedures: first, the configuration of a DNN is initialized using a series of autoencoder neural networks; second, the DNN is fine-tuned using a gradient descent scheme; third, three atmospheric parameters {T}{eff}, {log}g and [Fe/H] are estimated using the computed DNNs. The constructed DNN is a neural network with six layers (one input layer, one output layer and four hidden layers), for which the number of nodes in the six layers are 3821, 1000, 500, 100, 30 and 1, respectively. This proposed scheme was tested on both real spectra and theoretical spectra from Kurucz’s new opacity distribution function models. Test errors are measured with mean absolute errors (MAEs). The errors on real spectra from the Sloan Digital Sky Survey (SDSS) are 0.1477, 0.0048 and 0.1129 dex for {log}g, {log}{T}{eff} and [Fe/H] (64.85 K for {T}{eff}), respectively. Regarding theoretical spectra from Kurucz’s new opacity distribution function models, the MAE of the test errors are 0.0182, 0.0011 and 0.0112 dex for {log}g, {log}{T}{eff} and [Fe/H] (14.90 K for {T}{eff}), respectively.

  7. Spectra from nuclear-excited plasmas

    De Young, R. J.; Weaver, W. R.


    The paper discusses the spectra taken from He-3(n,p)H-3 nuclear-induced plasmas under high thermal neutron flux, lasing conditions. Also, initial spectra are presented for U-235F6 generated plasmas. From an evaluation of these spectra, important atomic and molecular processes that occur in the plasma can be inferred. The spectra presented are the first to be generated by He-3 and U-235F6 nuclear reactions under high neutron flux, lasing conditions. The U-235(n,ff)FF reaction, which liberates 165 MeV of fission-fragment kinetic energy, creates plasmas that are of great interest, since at sufficiently high densities of U-235F6 the gas becomes self-critical; thus, there is no need for an external driving reactor (source of neutrons). The spectra from mixtures of He-3 and Ar, Xe, Kr, Ne, Cl2, F2 and N2 indicate little difference between high-pressure nuclear-induced plasmas and high-pressure electrically pulsed afterglow plasmas for noble-gas systems

  8. Background noise spectra of global seismic stations

    Wada, M.M.; Claassen, J.P.


    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  9. Disk-averaged synthetic spectra of Mars

    Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather


    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.

  10. Disk-averaged synthetic spectra of Mars

    Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather


    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.

  11. Comprehensive Analyses of the Spectra of Iron-group Elements

    Nave, Gillian; Sansonetti, Craig J; Pickering, Juliet C; Liggins, Florence


    For many decades, the Atomic Spectroscopy Group at NIST has measured atomic data of vital use to astronomy and other fields using high resolution spectrometers that are found in few other places in the world. These now include the 2-m Fourier transform (FT) spectrometer covering the region 285 nm to 5500 nm, the FT700 vacuum ultraviolet (VUV) FT spectrometer covering the region 143 nm to 900 nm, and a 10.7-m normal incidence spectrograph (NIVS) covering 30 nm to 500 nm. Recent work focused on the measurement and analysis of wavelengths and energy levels of iron-group elements to provide extensive data for the analysis of astrophysical spectra. Our comprehensive linelist for Fe II from 90 nm to 5500 nm contains over 13 600 lines with order of magnitude improvements in the wavelengths compared to previous work [Nave & Johansson, ApJSS 204, 1(2013)]. The spectra were observed in high-current continuous and pulsed hollow cathode (HCL) discharges using FT spectrometers and our NIVS spectrograph. A similar analysis of Cr II contains over 5300 lines and extends the knowledge of this spectrum to the previously unobserved region between 731 nm at 5500 nm [Sansonetti, Nave, Reader & Kerber, ApJSS 202, 15 (2012); Sansonetti & Nave, ApJSS (in prep.)]. Our analysis of the Co III spectrum contains 750 lines observed in Penning discharge lamps and an additional 900 lines compiled from previous work, including Ritz wavelengths, optimized energy levels, and calculated log(gf) values [Smillie, Pickering, Nave & Smith, ApJSS (in prep.)]. NIST and ICL are currently collaborating to complete the measurement and analysis of wavelengths, energy levels, and hyperfine structure parameters for all singly-ionized iron-group elements of astrophysical interest, covering the wavelength range 80 nm to 5500 nm. This project uses archival data from FT spectrometers at NIST, ICL and Kitt Peak National Observatory, with additional spectra of HCL and Penning discharge sources taken using our FT and

  12. Synthetic spectra: a tool for correlation spectroscopy.

    Sinclair, M B; Butler, M A; Ricco, A J; Senturia, S D


    We show that computer-generated diffractive optical elements can be used to synthesize the infrared spectra of important compounds, and we describe a modified phase-retrieval algorithm useful for the design of elements of this type. In particular, we present the results of calculations of diffractive elements that are capable of synthesizing portions of the infrared spectra of gaseous hydrogen fluoride (HF) and trichloroethylene (TCE). Further, we propose a new type of correlation spectrometer that uses these diffractive elements rather than reference cells for the production of reference spectra. Storage of a large number of diffractive elements, each producing a synthetic spectrum corresponding to a different target compound, in compact-disk-like format will allow a spectrometer of this type to rapidly determine the composition of unknown samples. Other advantages of the proposed correlation spectrometer are also discussed.

  13. Fast inversion of solar Ca II spectra

    Beck, C; Rezaei, R; Louis, R E


    We present a fast (<< 1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log tau ~ -3 and increases to values of 2.5 and 4 at log tau = -6 in the quiet Sun and the umbra, respectively.

  14. [Vibrational spectra of Hetian nephrite from Xinjiang].

    Zhang, Yong-wang; Liu, Yan; Liu, Tao-tao; Muhetaer, Zari; Liu, Yuan-qing


    In previous studies, EMPA, PIXE and others were employed to study the chemical compositions of nephrite separately without a systematical measurement. In the present study, XRF, XRD, IR and LR were used together to examine chemical and spectra characteristics of white, green and black nephrite from Hetian, Xinjiang. XRD results indicate that all nephrite samples consist of tremolite. Then IR spectra of nephrite samples suggest that the M-OH stretching vibration bands show that the M1 and M3 sites are not only occupied by Mg2+ and Fe2+, but also by Fe3+, which is consistent with the chemical compositions of these samples. This information might be useful to understanding the variety of nephrite. Their Raman spectra are almost the same, while some differences exist because of different content of FeO/Fe2O3.

  15. Vibrational spectra of molecular fluids in nanopores

    Arakcheev, V. G.; Morozov, V. B.


    Coherent anti-Stokes Raman spectroscopy (CARS) is applied for quantitative analysis of carbon dioxide phase composition in pores of nanoporous glass samples at nearcritical temperatures. Measurements of the 1388 1/cm Q-branch were made in a wide pressure range corresponding to coexistence of gas (gas-like), adsorbed and condensed phases within pores. At temperatures several degrees below the critical value, CARS spectra behavior is easy to interpret in terms of thermodynamic model of surface adsorption and capillary condensation. It allows estimating mass fractions of different phase components. Moreover, spectra measured at near critical temperatures 30.5 and 33°C have pronounced inhomogeneous shapes and indicate the presence of condensed phase in the volume of pores. The effect obviously reflects the fluid behaviour near the critical point in nanopores. Pores with smaller radii are filled with condensed phase at lower pressures. The analysis of the CARS spectra is informative for quantitative evaluation of phase composition in nanopores.

  16. Janus Spectra in Two-Dimensional Flows

    Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki


    In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.

  17. High precision radial velocities with GIANO spectra

    Carleo, I; Gratton, R; Benatti, S; Bonavita, M; Oliva, E; Origlia, L; Desidera, S; Claudi, R; Sissa, E


    Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANO's capability to cover the entire NIR wavelength range (0.95-2.45 micron) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the v...

  18. Collective spectra along the fission barrier

    Pigni M. T.


    Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.

  19. Soil emissivity and reflectance spectra measurements.

    Sobrino, José A; Mattar, Cristian; Pardo, Pablo; Jiménez-Muñoz, Juan C; Hook, Simon J; Baldridge, Alice; Ibañez, Rafael


    We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 microm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.

  20. Scaled momentum spectra in deep inelastic scattering at HERA

    Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences; University College London (United Kingdom); Max Planck Inst., Munich (Germany); Abt, I. [Max-Planck-Inst. fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)


    Charged particle production has been studied in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 0.44 fb{sup -1}. Distributions of scaled momenta in the Breit frame are presented for particles in the current fragmentation region. The evolution of these spectra with the photon virtuality, Q{sup 2}, is described in the kinematic region 10

  1. Computation of cosmic radiation spectra and application to aircrew dosimetry

    Yoo, Song Jae


    Using the Monte Carlo radiation transport code FLUKA- 99, secondary cosmic radiation energy spectra and intensities of neutrons, protons, photons, electrons, and muons were calculated for different geographical latitude and longitude at the commercial jet's altitudes ranging from 27000 ft to 41000 ft. The Badhwar's proton model was used to construct the primary cosmic radiation spectrum and effect of the vertical cutoff rigidity was considered after spectra similar to those given in literature were resulted. By applying the effective dose conversion factors, a calculation tool for aircrew doses was developed. According to the resulting dose rate distribution, effective dose rate over North pole region is around three times of that over equator region due to the geomagnetical shielding effect. Illustrative assessments of aircrew doses were made for four distinctive routes of Korean airliners : Seoul - New York (USA), London (UK), Sydney (Australia) and Mumbai(India). The effective doses to aircrew incurred from a round trip were 0.047, 0.055, 0.018, and 0.018{mu}Sv, respectively. If aircrew work 500 hour s a year at the cruise altitude of a international airline, the individual dose would reach 2 mSv which is about the same size as the average annual dose of workers at a nuclear power plant.

  2. BETA SPECTRA. I. Negatrons spectra; ESPECTROS BETA. I. Espectros simples de negatrones

    Grau Malonda, A.; Garcia-Torano, E.


    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  3. Nonlinear FMR spectra in yttrium iron garnet

    Yu.M. Bunkov, P.M. Vetoshko, I.G. Motygullin, T.R. Safin, M.S. Tagirov, N.A. Tukmakova


    Full Text Available Results of demagnetizing effect studies in yttrium iron garnet Y3Fe5O12 thin films are reported. Experiments were performed on X-Band of electron paramagnetic resonance spectrometer at room temperature. The ferromagnetic resonance (FMR spectra were obtained for one-layer single crystal YIG films for different values of the applied microwave power. Nonlinear FMR spectra transformation by the microwave power increasing in various directions of magnetic field sweep was observed. It is explained by the influence of the demagnetization action of nonequilibrium magnons.

  4. Hadron rapidity spectra within a hybrid model

    Khvorostukhin, A S


    A 2-stage hybrid model is proposed that joins the fast initial state of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system at the second stage, treated within ideal hydrodynamics. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider under construction in Dubna. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra. However, reproducing proton rapidity spectra, our hybrid model cannot describe the rapidity distributions of pions. The model should be improved by taking into consideration viscosity effects at the hydrodynamical stage of system evolution.

  5. Vibrational spectra study on quinolones antibiotics

    Wang, Yu; Yu, Ke; Wang, Sihuan


    In order to be able to fully understand and easily identify the quilonoles, we collected IR and Raman spectra of six quinolones, and attempted to assign the attribution of the observed frequencies and their association with specific modes of vibration. According to the structure, the compounds were divided into the groups, and the similarities and differences were further studied by comparing. The result of the study shows that the frequency and intensity are comparable to the corresponding structure. The spectra not only have the commonness but also the individualities.

  6. Parallel Genetic Algorithm for Alpha Spectra Fitting

    García-Orellana, Carlos J.; Rubio-Montero, Pilar; González-Velasco, Horacio


    We present a performance study of alpha-particle spectra fitting using parallel Genetic Algorithm (GA). The method uses a two-step approach. In the first step we run parallel GA to find an initial solution for the second step, in which we use Levenberg-Marquardt (LM) method for a precise final fit. GA is a high resources-demanding method, so we use a Beowulf cluster for parallel simulation. The relationship between simulation time (and parallel efficiency) and processors number is studied using several alpha spectra, with the aim of obtaining a method to estimate the optimal processors number that must be used in a simulation.

  7. Spectra of Linear Polyene Molecule-canthaxanthin

    OUYANG Shun-li; LI Zuo-wei; CHEN Yuan-zheng; MEN Zhi-wei; WU Nan-nan; SUN Cheng-lin


    Raman spectra and ultraviolet-visible(UV-Vis) absorption spectra of linear polyene molecule-canthaxanthin in n-hexane are measured and analyzed.In addition,the optimized structure of canthaxanthin was calculated via density functional theory(DFT) functional B3LYP.With decreasing the concentration,Raman scattering cross section (RSCS) of fundamental frequency is extremely high,and the UV-Vis absorption bands become narrower.The results of coherent weakly damped electron-Lattice vibration model were analyzed.

  8. FIT3D: Fitting optical spectra

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.


    FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

  9. Preprocessing of ionospheric echo Doppler spectra

    FANG Liang; ZHAO Zhengyu; WANG Feng; SU Fanfan


    The real-time information of the distant ionosphere can be acquired by using the Wuhan ionospheric oblique backscattering sounding system(WIOBSS),which adopts a discontinuous wave mechanism.After the characteristics of the ionospheric echo Doppler spectra were analyzed,the signal preprocessing was developed in this paper,which aimed at improving the Doppler spectra.The results indicate that the preprocessing not only makes the system acquire a higher ability of target detection but also suppresses the radio frequency interference by 6-7 dB.

  10. Spectra of neutral carbon for plasma diagnostics

    Wang, J.G.; Kato, M.; Kato, T.


    Recently, carbon pellet experiments have been performed on W-7AS and a few CI lines have been observed in the situation of the pellet cloud from the cold dense plasma to hot ambient plasma. In so large varied conditions, the collisional radiative (CR) model is needed to study the spectra. In this article, a CR model including 79 states with n {<=} 6 and l {<=} 4 is developed, and then the line spectra and line intensity ratios are evaluated in the ionizing and recombining plasma, respective. (author)

  11. Rotational Spectra of Phenylalanine, Tirosine and Tryptophan

    Mata, S.; Perez, C.; Sanz, M. E.; Blanco, S.; López, J. C.; Alonso, J. L.


    The rotational spectra of the aromatic natural amino acids phenylalanine, tyrosine and tryptophan have been investigated by Laser Ablation Molecular Beam Fourier transform Microwave Spectroscopy LA-MB-FTMW. The spectra of two rotamers of phenylalanine have been detected in the supersonic expansion. Both forms are stabilized by a chain of intramolecular hydrogen bonds O-H\\cdotsN-H\\cdots{π}, being the carboxylic group incis configuration. One conformer of tyrosine, which only differs from phenylalanine in a -OH group inpara position, has been also characterized. Preliminary results on the rotational spectrum of tryptophan are presented.

  12. Algorithms for classification of astronomical object spectra

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.


    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  13. NMR-based metabolic profiling of rice wines by F(2)-selective total correlation spectra.

    Koda, Masanori; Furihata, Kazuo; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru


    In this study, we performed NMR-based metabolic profiling of major rice wines (Japanese sake, Chinese Shaoxing wine, and Korean makgeolli). In the (1)H NMR spectra, the rice wines showed broad resonances in the region of about 7.9-9.0 ppm. These resonances showed many and complex correlations with approximately 0.5-4.5 ppm in the F(2)-selective TOCSY (total correlation spectroscopy) spectra, and these correlations were attributed mainly to peptides. These spectral patterns were characteristic of individual rice wines, and the combination of F(2)-selective TOCSY spectra and principal component analysis enabled us to classify the rice wine species. Furthermore, it also provided information about raw materials, namely, what type of koji (rice koji or wheat koji) was used. These spectra may be useful as a new "fingerprint" for quality control or food authentication.

  14. How Similar are the Properties of Quasars with Nearly Identical Ultraviolet Spectra?

    Rochais, Thomas; Chick, William; Maithil, Jaya; Sutter, Jessica; Brotherton, Michael; Shang, Zhouhui


    The spectrum of a quasar contains important information about its properties. Thus, it can be expected that two quasars with similar spectra will have similar properties, but just how similar has not before been quantified. Here we compare the ultraviolet spectra of a sample of 5553 quasars from Data Release 7 of the Sloan Digital Sky Survey, focusing on the $1350$ \\AA \\ $\\leq \\lambda \\leq 2900$ \\AA \\ rest-frame region which contains prominent emission lines from \\SiIV, O IV], \\CIV, \\CIII, and \\MgII\\ species. We use principal component analysis to determine the dominant components of spectral variation, as well as to quantitatively measure spectral similarity. As suggested by both the Baldwin effect and modified Baldwin effect, quasars with similar spectra have similar properties: bolometric luminosity, Eddington fraction, and black hole mass. The latter two quantities are calculated from the luminosity in conjunction with spectral features, and the variation between quasars with virtually identical spectra (...

  15. Augmentation of ENDF/B fission product gamma-ray spectra by calculated spectra

    Katakura, J. (Japan Atomic Energy Research Inst., Tokai-mura, Naka-gun, Ibaraki-ken (Japan)); England, T.R. (Los Alamos National Lab., NM (United States))


    Gamma-ray spectral data of the ENDF/B-V fission product decay data file have been augmented by calculated spectra. The calculations were performed with a model using beta strength functions and cascade gamma-ray transitions. The calculated spectra were applied to individual fission product nuclides. Comparisons with several hundred measured aggregate gamma spectra after fission were performed to confirm the applicability of the calculated spectra. The augmentation was extended to a preliminary ENDF/B-VI file, and to beta spectra. Appendix C provides information on the total decay energies for individual products and some comparisons of measured and aggregate values based on the preliminary ENDF/B-VI files. 15 refs., 411 figs.

  16. A confiabilidade dos dados nos formulários de Autorização de Internação Hospitalar (AIH, Rio de Janeiro, Brasil Reliability of data from Authorization Forms for Hospital Admittance, Rio de Janeiro, Brazil

    Claudia Maria T. Veras


    Full Text Available Apresenta-se neste artigo um estudo sobre a qualidade das informações contidas no banco constituído por dados dos formulários de Autorização Hospitalar (AIH. O formulário AIH é um documento do Sistema Único de Saúde (SUS preenchido pelos hospitais para reembolso da assistência prestada aos pacientes financiados com recursos públicos. O banco gerado por dados dos formulários AIH representa a maior fonte de informação do país sobre a produção hospitalar. Neste trabalho analisou-se uma amostra de formulários AIH preenchidos pelos hospitais privados contratados da cidade do Rio de Janeiro em 1986. O desenho do estudo baseou-se na confiabilidade entre entrevistadores e na análise de concordância utilizou-se o teste Kappa. A concordância entre os dados anotados nos formulários AIH pelos funcionários administrativos dos hospitais e as informações contidas nos prontuários médicos foi medida para variáveis demográficas, administrativas e clínicas. De forma geral, as duas primeiras classes de variáveis apresentaram melhor confiabilidade do que a terceira. A confiabilidade do diagnóstico principal foi pior do que a confiabilidade do procedimento realizado, apesar desta última ser a unidade de pagamento do mecanismo de reembolso adotado pelo SUS. Entretanto, nos casos de discordância, observou-se uma maior chance do hospital anotar um procedimento com valor de reembolso maior do que aquele identificado a partir dos dados anotados no prontuário médico. Medidas para o aprimoramento da qualidade dos dados foram sugeridas.This article presents data from a study on quality of information from the data bank on the form used in the Brazilian health care system to authorize hospital admittance (AIH. The form pertains to the Unified Health System (SUS and is used by hospitals to be reimbursed for the health care provided to patients, with public funds. The AIH data bank is the largest source of information in Brazil on production

  17. Design of equal-split power divider with arbitrary port impedances based on admittance matrix%基于导纳矩阵的任意端口阻抗等分功分器设计

    缪晨; 郑学政; 吴文


    To decrease the circuit size of non-fifty Ω port impedances power dividers, equal-split power dividers with arbitrary port impedances are studied. It is theoretically verified that if two output ports of an equal-split power divider are connected by a resistor,the impedance matching of arbitrary ports and output port isolation cannot be realized simultaneously. A new circuit topology of equal-split power divider with arbitrary port impedances is proposed. Different microstrip lines are added in series with the isolation resistor at both ends;short/open stubs are loaded at each port. Impedance matching and output port isolation can be achieved simultaneously by adopting this configuration. The closed design formulae of this equal-split power divider with arbitrary port impedances are derived using an admittance matrix. As an example, an equal-split power divider is designed with 30 Ω, 53 Ω,47 Ω port impedances and operating at 1 GHz. The circuit size designed by the method proposed here decreases by about 66% compared with that of the traditional design method. Experimental results demonstrate the simplicity and effectiveness of the proposed circuit topology of equal-split power divider with arbitrary port impedances.%为减小非50Ω功分器电路尺寸,研究了任意端口阻抗等分功分器。理论证明了若等分功分器的输出端口之间只使用电阻连接,不能同时实现任意端口阻抗匹配和输出端口隔离。提出了一种新的任意端口阻抗等分功分器结构。在隔离电阻两端串联不同的微带线,在各端口加载短路/开路短截线。利用此结构同时实现了各端口匹配与输出端口之间的互相隔离。基于导纳矩阵推导了该功分器的设计公式,并据此设计研制了中心频率为1 GHz,端口阻抗分别为30Ω、53Ω、47Ω的等分功分器。该文方法设计的功分器电路尺寸比传统设计方法减小了约66%。测试结果验证了该等分功分器结构简单有效。

  18. Identifying leaf traits that signal stress in TIR spectra

    Buitrago Acevedo, Maria F.; Groen, Thomas A.; Hecker, Christoph A.; Skidmore, Andrew K.


    Plants under constant water and temperature stress experience a chain of reactions that in the long term alter their leaf traits (morphology, anatomy and chemistry). The use of these traits as proxies for assessing plant stress was so far mainly based on conventional laboratory methods, which are expensive and time-consuming. Remote sensing methods based on spectral changes can detect changes in pigments and productivity using the visible and near infrared. However, the use of infrared spectra, where changes in the spectra are associated with physical changes of the leaf, is still incipient. In this study plants of Rhododendron cf. catawbiense, were exposed to low temperatures and low soil water content during a six months experiment. The spectral response in the infrared region 1.4-16 μm, microstructural variables, leaf water content, leaf area and leaf molecules such as lignin and cellulose concentrations were measured in individual leaves after the period of stress. This study revealed that under cold conditions plants have most changes in leaf water content, lignin and cellulose concentrations and leaf area, while under drought conditions the most striking change is water loss. These leaf trait modifications are also correlated with changes in thermal infrared spectra, showing their potential as proxies for detecting plant stress in this species. A multinomial model allows the estimation of the stress treatments imposed on these plants from their infrared spectra. This model reveals a group of 15 bands in the SWIR and MWIR between 2.23 and 7.77 μm, which show relatively large changes, and had an overall accuracy of 87%. Finally, individual partial least squares regression models show that lignin, cellulose, leaf water content and leaf area are the leaf traits reacting significantly to long-term stress and that are also generating measurable changes in the infrared spectra. Although these models are based on laboratory data, the congruence of the identified

  19. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni


    illustrations of their unprecedented power in addressing some of the outstanding problems of solid-state chemistry, high-pressure chemistry, or geochemistry. They are the structure and spectra of ice Ih, in particular, the origin of two peaks in the hydrogen-bond-stretching region of its inelastic neutron scattering spectra, a solid-solid phase transition from CO2-I to elusive, metastable CO2-III, pressure tuning of Fermi resonance in solid CO2, and the structure and spectra of solid formic acid, all at the level of second-order Møller-Plesset perturbation theory or higher.

  20. Temporal Evolution of Solar Energetic Particle Spectra

    Doran, Donald J.; Dalla, Silvia


    During solar flares and coronal mass ejections, Solar Energetic Particles (SEPs) may be released into the interplanetary medium and near-Earth locations. The energy spectra of SEP events at 1 AU are typically averaged over the entire event or studied in a few snapshots. In this article we analyze the time evolution of the energy spectra of four large selected SEP events using a large number of snapshots. We use a multi-spacecraft and multi-instrument approach for the observations, obtained over a wide SEP energy range. We find large differences in the spectra at the beginning of the events as measured by different instruments. We show that over time, a wave-like structure is observed traveling through the spectra from the highest energies to the lowest energies, creating an "arch" shape that then straightens into a power law later in the event, after times on the order of 10 hours. We discuss the processes that determine SEP intensities and their role in shaping the spectral time evolution.

  1. Isobaric-spin relationships between nuclear spectra

    French, J.B.


    The simple fact that a one-body energy describes the interaction of a nucleon with a closed neutron subshell is used to establish sets of equations connecting the spectra of nuclei which are related by isobaric-spin when described by means of the nuclear shell model. Certain formal questions about i

  2. Hot NH3 Spectra for Astrophysical Applications

    Hargreaves, R J; Bernath, P F


    We present line lists for ammonia (NH$_{3}$) at high temperatures obtained by recording Fourier transform infrared emission spectra. Calibrated line lists are presented for twelve temperatures (300 -- 1300$^{\\circ}$C in 100$^{\\circ}$C intervals and 1370$^{\\circ}$C) and each line list covers the 740 -- 2100 cm$^{-1}$ range, which includes the majority of the $\

  3. Measurement of an Electric Arc Spectra

    Šimek, D.


    Article is focused on electric arc spectroscopy diagnostics related to electric low voltage apparatuses. The first attempts of spectroscopy measurements are dealt with. An example of radiation spectra of the electric arc burning between copper electrodes is presented. The problems connected with the measurements are discussed.

  4. Cross Ripples and Wave Directional Spectra

    Cheel, R. A.; Hay, A. E.


    Cross ripples are a 3-dimensional bed state composed of two sets of ripples with different orientations: one set of smaller wavelength (4-10 cm) ripples residing within the troughs of a larger wavelength (30-50 cm) set. Cross ripples occur at intermediate wave energies. In contrast, at slightly higher energies the bed undergoes a transition to a highly 2-dimensional linear transition rippled state. In this study, the characteristics of the wave directional spectra during the occurrences of these 2- and 3-dimensional bed states are compared. The rotary fanbeam sonar record from SandyDuck97 shows that cross ripples and linear transition ripples occurred in approximately 11% and 42% of the sonar images respectively. Wave directional spectra are calculated with the Iterative Maximum Likelihood Method from collocated measurements of pressure and horizontal velocity. Using the sonar record and wave directional spectra the correlation between bimodal wave directional spectra and the occurrence of the two distinct ripple types is examined and compared. Since ripple crest alignment is typically orthogonal to the direction of wave propagation, one possible creation mechanism for cross ripples is a bidirectional wave field. We find that bimodality of the wave spectrum, neither in direction nor in frequency, is unique to the occurrence of cross ripples.




    Raman spectra of human dental calculus have been observed for the first time by use of micro-Raman spectroscopy. The spectral features of calculus were influenced easily by heating caused by laser irradiation. Therefore, the measurements were carried out at relatively low power (5 mW, 1-mu m spot

  6. Analysis of COSIMA spectra: Bayesian approach

    H. J. Lehto


    secondary ion mass spectrometer (TOF-SIMS spectra. The method is applied to the COmetary Secondary Ion Mass Analyzer (COSIMA TOF-SIMS mass spectra where the analysis can be broken into subgroups of lines close to integer mass values. The effects of the instrumental dead time are discussed in a new way. The method finds the joint probability density functions of measured line parameters (number of lines, and their widths, peak amplitudes, integrated amplitudes and positions. In the case of two or more lines, these distributions can take complex forms. The derived line parameters can be used to further calibrate the mass scaling of TOF-SIMS and to feed the results into other analysis methods such as multivariate analyses of spectra. We intend to use the method, first as a comprehensive tool to perform quantitative analysis of spectra, and second as a fast tool for studying interesting targets for obtaining additional TOF-SIMS measurements of the sample, a property unique to COSIMA. Finally, we point out that the Bayesian method can be thought of as a means to solve inverse problems but with forward calculations, only with no iterative corrections or other manipulation of the observed data.

  7. Variations on supersymmetry breaking and neutrino spectra

    Borzumati, F.; Hamaguchi, K.; Nomura, Y.; Yanagida, T.


    The problem of generating light neutrinos within supersymmetric models is discussed. It is shown that the hierarchy of scales induced by supersymmetry breaking can give rise to suppression factors of the correct order of magnitude to produce experimentally allowed neutrino spectra.

  8. Principal component analysis of phenolic acid spectra

    Phenolic acids are common plant metabolites that exhibit bioactive properties and have applications in functional food and animal feed formulations. The ultraviolet (UV) and infrared (IR) spectra of four closely related phenolic acid structures were evaluated by principal component analysis (PCA) to...

  9. Oxidation of carbynes: signatures in infrared spectra

    Cinquanta, Eugenio; Manini, Nicola; Ravagnan, Luca; Caramella, Lucia; Onida, Giovanni; Milani, Paolo; Rudolf, Petra


    We report and solidly interpret the infrared spectrum of both pristine and oxidized carbynes embedded in a pure-carbon matrix. The spectra probe separately the effects of oxidation on sp- and on sp 2-hybridized carbon, and provide information on the stability of the different structures in an

  10. Automatic abundance analysis of high resolution spectra

    Bonifacio, P; Bonifacio, Piercarlo; Caffau, Elisabetta


    We describe an automatic procedure for determining abundances from high resolution spectra. Such procedures are becoming increasingly important as large amounts of data are delivered from 8m telescopes and their high-multiplexing fiber facilities, such as FLAMES on ESO-VLT. The present procedure is specifically targeted for the analysis of spectra of giants in the Sgr dSph; however, the procedure may be, in principle, tailored to analyse stars of any type. Emphasis is placed on the algorithms and on the stability of the method; the external accuracy rests, ultimately, on the reliability of the theoretical models (model-atmospheres, synthetic spectra) used to interpret the data. Comparison of the results of the procedure with the results of a traditional analysis for 12 Sgr giants shows that abundances accurate at the level of 0.2 dex, comparable with that of traditional analysis of the same spectra, may be derived in a fast and efficient way. Such automatic procedures are not meant to replace the traditional ...

  11. Discriminating Dysarthria Type from Envelope Modulation Spectra

    Liss, Julie M.; LeGendre, Sue; Lotto, Andrew J.


    Purpose: Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the…

  12. Solar Energetic Particle Spectra Measured with PAMELA

    Ryan, James; Bruno, Alessandro; Boezio, Mirko; Bravar, Ulisse; Christian, Eric; Georgia, De Nolfo; Martucci, Matteo; Merge, Matteo; Munini, Riccardo; Sparvoli, Roberta; Stochaj, Steven; Pamela Collaboration


    We have measured the event integrated spectra from several SEP events from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high geographic latitudes. This means that the spectra have been assembled from regularly spaced measurements with gaps during the course of the event. Furthermore, the field of view of PAMELA is small and during the high latitude passes it scans a wide range of asymptotic directions as the spacecraft moves. Correcting for data gaps and solid angle effects, we have compiled event-integrated intensity spectra that typically exhibit power law shapes in energy with an exponential roll over. The events analyzed include two, maybe three, GLEs. In those cases the roll over energy lies above the neutron monitor threshold (1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events. National Science Foundation, NASA, Italian Space Agency, Russian Space Agency.

  13. Students' Mental Models of Atomic Spectra

    Körhasan, Nilüfer Didis; Wang, Lu


    Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…




    Raman spectra of human dental calculus have been observed for the first time by use of micro-Raman spectroscopy. The spectral features of calculus were influenced easily by heating caused by laser irradiation. Therefore, the measurements were carried out at relatively low power (5 mW, 1-mu m spot si

  15. Fitting PAC spectra with a hybrid algorithm

    Alves, M. A., E-mail: [Instituto de Aeronautica e Espaco (Brazil); Carbonari, A. W., E-mail: [Instituto de Pesquisas Energeticas e Nucleares (Brazil)


    A hybrid algorithm (HA) that blends features of genetic algorithms (GA) and simulated annealing (SA) was implemented for simultaneous fits of perturbed angular correlation (PAC) spectra. The main characteristic of the HA is the incorporation of a selection criterion based on SA into the basic structure of GA. The results obtained with the HA compare favorably with fits performed with conventional methods.

  16. Mid-infrared spectra of comet nuclei

    Kelley, Michael S P; Gehrz, Robert D; Reach, William T; Harker, David E


    Jovian Trojan D-type asteroids have mid-infrared emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 {\\mu}m thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis suggests the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74 to 0.83, are systematically lower than the Jupiter-family comet population mean of 1.03+/-0.11, derived from 16- and 22-{\\mu}m photometry. When the spectra are normalized by the NEATM model, a weak 10-{\\mu}m silicate plateau is evident, w...

  17. Vibrational Spectra of a Mechanosensitive Channel

    Liang, Chungwen; Louhivuori, Martti; Marrink, Siewert J.; Jansen, Thomas L.C.; Knoester, Jasper


    We report the simulated vibrational spectra of a mechanosensitive membrane channel in different gating states. Our results show that while linear absorption is insensitive to structural differences, linear dichroism and sum-frequency generation spectroscopies are sensitive to the orientation of the

  18. Exploring the Morphology of RAVE Stellar Spectra

    Matijevic, G.; Zwitter, T.; Bienayme, O.; Bland-Hawthorn, J.; Boeche, C.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Munari, U.; Navarro, J.; Parker, Q. A.; Reid, W.; Seabroke, G.; Siebert, A.; Siviero, A.; Steinmetz, M.; Watson, F. G.; Williams, M.; Wyse, R. F. G.

    The RAdial Velocity Experiment (RAVE) is a medium-resolution (R similar to 7500) spectroscopic survey of the Milky Way that has already obtained over half a million stellar spectra. They present a randomly selected magnitude-limited sample, so it is important to use a reliable and automated

  19. Polarization Spectra of Extrasolar Giant Planets

    Stam, D.M.


    We present simulated spectra of the flux and degree of polarization of starlight that is reflected by extrasolar giant planets (EGPs). In particular the polarization depends strongly on the structure of the planetary atmosphere, and appears to be a valuable tool for the characterization of EGPs.

  20. Disk-averaged synthetic spectra of Mars

    Tinetti, G; Fong, W; Meadows, V S; Snively, H; Velusamy, T; Crisp, David; Fong, William; Meadows, Victoria S.; Snively, Heather; Tinetti, Giovanna; Velusamy, Thangasamy


    The principal goal of the NASA Terrestrial Planet Finder (TPF) and ESA Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earth-sized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of the planet Mars to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPF-C) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model which uses observational data as input to generate a database of spatially-resolved synthetic spectra for a range of illumination conditions (phase angles) and viewing geometries. Results presented here include disk averaged synthetic spectra, light-cur...

  1. An Initio Theoretical Study for the Electronic Spectra of β-Thioxoketones

    Rita S. Elias


    Full Text Available Problem statement:  -thioxoketones exist as equilibrium mixtures of the tautomeric enol and enethiol forms which interconvert very rapidly by intramolecular chelate proton transfer. Accordingly their electronic spectra in the u.v.-visible region exhibit absorption bands arising from transitions within the electronic systems involved in these tautomers. Approach: The structures of several β-thioxoketones were geometrically optimized using B3LYP/cc-pVTZ, B3LYP/6-311++G (2d,p, PM2/6-311++G(2d,p and B3LYPl6-311G(d,p and their electronic spectra were theoretically calculated. TD-DFT, EOM-CCSD, CIS and semi empirical ZINDO methods were used to calculate the electronic spectra. Results: The spectrum of the enolic form of thiomalonaldehyde is characterized by three absorption bands at 460, 305 and 223 nm due to H→L, H-1→L and both H→L+1 and H→L+2 transitions. The first band is attributed to n→π* transition within the C = S group while the others are due to transitions with the O-C = C-C = S conjugated system. Both TD-DFT and ZINDO methods were able to predict the electronic spectra of the molecules studied that are in very good agreement with the observed spectra. The observed spectra were agreed to large degree with calculated spectra of the enolic tautomer of the studied compounds. Conclusion: The observed spectra were agreed to large degree with calculated spectra of the enolic tautomer of the studied compounds.

  2. Mid-infrared spectra of comet nuclei

    Kelley, Michael S. P.; Woodward, Charles E.; Gehrz, Robert D.; Reach, William T.; Harker, David E.


    Comet nuclei and D-type asteroids have several similarities at optical and near-IR wavelengths, including near-featureless red reflectance spectra, and low albedos. Mineral identifications based on these characteristics are fraught with degeneracies, although some general trends can be identified. In contrast, spectral emissivity features in the mid-infrared provide important compositional information that might not otherwise be achievable. Jovian Trojan D-type asteroids have emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 μm thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis reveals no evidence for a coma or tail at the time of observation, suggesting the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74-0.83, are systematically lower than the Jupiter-family comet population mean of 1.03 ± 0.11, derived from 16- and 22-μm photometry. We suggest this may be either an artifact of the spectral reduction, or the consequence of an emissivity low near 16 μm. When the spectra are normalized by the NEATM model, a weak 10-μm silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. A silicate plateau is also evident in previously published Spitzer spectra of the nucleus of comet 9P/Tempel 1. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well

  3. An Interactive Gallery of Planetary Nebula Spectra

    Kwitter, K. B.; Henry, R. B. C.


    We have created a website containing high-quality moderate-resolution spectra of 88 planetary nebulae (PNe) from 3600 to 9600 Å, obtained at KPNO and CTIO. Spectra are displayed in a zoomable window, and there are templates available that show wavelength and ion identifications. In addition to the spectra themselves, the website also contains a brief discussion of PNe as astronomical objects and as contributors to our understanding of stellar evolution, and a table with atlas information for each object along with a link to an image. This table can be re-ordered by object name, galactic or equatorial coordinates, distance from the sun, the galactic center, or the galactic plane. We envision that this website, which concentrates a large amount of data in one place, will be of interest to a variety of users. PN researchers might need to check the spectrum of a particular object of interest; the non-specialist astronomer might simply be interested in perusing such a collection of spectra; and finally, teachers of introductory astronomy can use this database to illustrate basic principles of atomic physics and radiation. To encourage such use, we have written two simple exercises at a basic level to introduce beginning astronomy students to the wealth of information that PN spectra contain. We are grateful to Adam Wang of the Williams College OIT and to his summer student teams who worked on various apects of the implementation of this website. This work has been supported by NSF grant AST-9819123 and by Williams College and the University of Oklahoma.

  4. Raman spectra of carotenoids in natural products

    Withnall, Robert; Chowdhry, Babur Z.; Silver, Jack; Edwards, Howell G. M.; de Oliveira, Luiz F. C.


    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle ( Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a ν1 band at ca. 1520 cm -1, in keeping with its assignment to carotenoids with ca. nine conjugated carboncarbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a ν1 band at 1537 cm -1 which can be assigned to crocetin, having seven conjugated carboncarbon double bonds. A correlation between ν1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm -1) of the ν1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit ν1 bands at 1504 and 1496 cm -1, respectively. On the basis of the correlation between ν1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm -1 and a doublet with components at 701 and 705 cm -1, which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form.

  5. Discrimination of phytoplankton classes using characteristic spectra of 3D fluorescence spectra.

    Zhang, Qian-Qian; Lei, Shu-He; Wang, Xiu-Lin; Wang, Lei; Zhu, Chen-Jian


    The discrimination of phytoplankton classes using the characteristic fluorescence spectra extracted from three-dimensional fluorescence spectra was investigated. Single species cultures of 11 phytoplankton species, representing 5 major phytoplankton divisions, were used. The 3D fluorescence spectra of the cultures grown at different temperatures (20 and 15 degrees C) and illumination intensities (140, 80 and 30 microM m(-2) s(-1)) were measured and their feature extraction methods were explored. Ordering Rayleigh and Raman scattering data as zero, the obtained excitation-emission matrices were processed by both singular value decomposition (SVD) and trilinear decomposition methods. The resulting first principal component can be regarded as the characteristic spectrum of the original 3D fluorescence spectrum. The analysis shows that such characteristic spectra have a discriminatory capability. At different temperatures, the characteristic spectra of Isochrysis galbana, Platymonas helgolanidica and Skeletonema costatuma have high degrees of similarity to their own species samples, while the spectra similarities of Alexandrium tamarense, Prorocentrum dentatum, Pseudo-nitzschia pungens, Chaetoceros curvisetus, Ch. Debilis, Ch. Didymus and Synechococcus sp. are not as significant as the other three species. C. curvisetus, Ch. Debilis and Ch. Didymus, belonging to genus Chaetoceros, have identical spectra and cannot be discriminated at all. Regarding all six diatom species as one class, the average discriminant error rate is below 9%. It is worth mentioning that the diatom class can be distinguished from A. tamarense and P. dentatum, which belong to Dinophyta.

  6. Discrimination of phytoplankton classes using characteristic spectra of 3D fluorescence spectra

    Zhang, Qian-Qian; Lei, Shu-He; Wang, Xiu-Lin; Wang, Lei; Zhu, Chen-Jian


    The discrimination of phytoplankton classes using the characteristic fluorescence spectra extracted from three-dimensional fluorescence spectra was investigated. Single species cultures of 11 phytoplankton species, representing 5 major phytoplankton divisions, were used. The 3D fluorescence spectra of the cultures grown at different temperatures (20 and 15 °C) and illumination intensities (140, 80 and 30 μM m -2 s -1) were measured and their feature extraction methods were explored. Ordering Rayleigh and Raman scattering data as zero, the obtained excitation-emission matrices were processed by both singular value decomposition (SVD) and trilinear decomposition methods. The resulting first principal component can be regarded as the characteristic spectrum of the original 3D fluorescence spectrum. The analysis shows that such characteristic spectra have a discriminatory capability. At different temperatures, the characteristic spectra of Isochrysis galbana, Platymonas helgolanidica and Skeletonema costatuma have high degrees of similarity to their own species samples, while the spectra similarities of Alexandrium tamarense, Prorocentrum dentatum, Pseudo-nitzschia pungens, Chaetoceros curvisetus, Ch. Debilis, Ch. Didymus and Synechococcus sp. are not as significant as the other three species. C. curvisetus, Ch. Debilis and Ch. Didymus, belonging to genus Chaetoceros, have identical spectra and cannot be discriminated at all. Regarding all six diatom species as one class, the average discriminant error rate is below 9%. It is worth mentioning that the diatom class can be distinguished from A. tamarense and P. dentatum, which belong to Dinophyta.

  7. Spitzer IRS Spectra and Envelope Models of Class I Protostars in Taurus

    Furlan, E; Calvet, N; Hartmann, L; D'Alessio, P; Forrest, W J; Watson, D M; Uchida, K I; Sargent, B; Green, J D; Herter, T L


    We present Spitzer Infrared Spectrograph spectra of 28 Class I protostars in the Taurus star-forming region. The 5 to 36 micron spectra reveal excess emission from the inner regions of the envelope and accretion disk surrounding these predecessors of low-mass stars, as well as absorption features due to silicates and ices. Together with shorter- and longer-wavelength data from the literature, we construct spectral energy distributions and fit envelope models to 22 protostars of our sample, most of which are well-constrained due to the availability of the IRS spectra. We infer that the envelopes of the Class I objects in our sample cover a wide range in parameter space, particularly in density and centrifugal radius, implying different initial conditions for the collapse of protostellar cores.

  8. The Vibrational Spectra of Bactericide molecules: Terahertz Spectroscopy and Density Functional Theory Calculations

    Wang Xiaowei; Wang Qiang, E-mail: [Department of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018 (China)


    In the room temperature and nitrogen conditions, we presented well-resolved absorption spectra and indexes of refraction of bactericide molecules in the far infrared radiation (FIR) spectral region recorded by terahertz time-domain spectroscopy (THz-TDS). As illustrative examples we discussed the absorption spectra of captan and folpet in THz region. The absorption coefficient and index of refraction of them were obtained. Meanwhile, density functional theory (DFT) with software package Gaussian 03 using B3LYP theory was employed for optimization and vibration analysis. With the help of Gaussian View 3.09, the distinct absorption peaks of those molecules were assigned with reliable accuracy. They were caused by intermolecular hydrogen-bonding, molecular torsion or vibration modes, absorption of water molecules, etc. As the absorption spectra are highly sensitive to the overall structure and configuration of the molecules, the THz-TDS procedure can provide a direct fingerprint of the molecular structure or conformational state of a compound.

  9. Moessbauer spectra of tin in float glass

    Johnson, J.A. [Liverpool John Moores Univ. (United Kingdom). Sch. of the Built Environ.; Johnson, C.E. [Liverpool Univ. (United Kingdom). Dept. of Physics; Williams, K.F.E. [Liverpool Univ. (United Kingdom). Dept. of Physics; Holland, D. [Warwick Univ., Coventry (United Kingdom). Dept. of Physics; Karim, M.M. [Warwick Univ., Coventry (United Kingdom). Dept. of Physics


    Tin is not a major constituent of window glass, but is found at high concentrations in the lower surface of float glass which has been in contact with the molten tin bath. It does not extend far into the surface, but causes the physical and chemical behaviour to differ from that of the upper surface. It is important, therefore, to understand the structural role of tin in silicate glasses and thus its effect on various properties. Moessbauer spectra were taken of three series of glassy materials, namely binary glasses (SnO and SiO{sub 2}) in varying proportions, re-melted float glass containing tin, and float glass from a production plant. The binary glasses contained between 20 and 70% tin which was found to be mainly Sn{sup 2+}, with very small amounts of Sn{sup 4+} in some of them. The spectra showed a small decrease in isomer shift with increase in tine content, which is ascribed to the change in molar volume. The re-melted samples were float glass which was mixed with stannous oxalate in appropriate conditions to try and maintain tin in the 2+ state, and contained up to 15% tin by weight. The spectra show both Sn{sup 4+} and Sn{sup 2+} with rather more in the 4+ oxidation state. The change in the spectra as a function of temperature revealed a large difference in the f-factor (and hence the chemical binding) of the two states. A series of spectra was taken between 17.5 and 900 K for the sample containing 15% tin. From the absorption as a function of temperature the f-factor was determined for both oxidation states, and hence enabled the relative amounts of Sn{sup 4+} and Sn{sup 2+} present in each sample to be estimated. Measurements of the shift as a function of temperature were also made. The float samples were surface material produced by grinding away all but 0.1 mm of the lower surface of industrially produced float glass. The Moessbauer spectra showed them to be predominantly Sn{sup 2+}, as expected from the reducing atmosphere in the float plant.

  10. Oxygen K-edge absorption spectra of small molecules in the gas phase

    Yang, B.X.; Kirz, J.; Sham, T.K.


    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  11. EMPCA and Cluster Analysis of Quasar Spectra: Construction and Application to Simulated Spectra

    Marrs, Adam; Leighly, Karen; Wagner, Cassidy; Macinnis, Francis


    Quasars have complex spectra with emission lines influenced by many factors. Therefore, to fully describe the spectrum requires specification of a large number of parameters, such as line equivalent width, blueshift, and ratios. Principal Component Analysis (PCA) aims to construct eigenvectors-or principal components-from the data with the goal of finding a few key parameters that can be used to predict the rest of the spectrum fairly well. Analysis of simulated quasar spectra was used to verify and justify our modified application of PCA.We used a variant of PCA called Weighted Expectation Maximization PCA (EMPCA; Bailey 2012) along with k-means cluster analysis to analyze simulated quasar spectra. Our approach combines both analytical methods to address two known problems with classical PCA. EMPCA uses weights to account for uncertainty and missing points in the spectra. K-means groups similar spectra together to address the nonlinearity of quasar spectra, specifically variance in blueshifts and widths of the emission lines.In producing and analyzing simulations, we first tested the effects of varying equivalent widths and blueshifts on the derived principal components, and explored the differences between standard PCA and EMPCA. We also tested the effects of varying signal-to-noise ratio. Next we used the results of fits to composite quasar spectra (see accompanying poster by Wagner et al.) to construct a set of realistic simulated spectra, and subjected those spectra to the EMPCA /k-means analysis. We concluded that our approach was validated when we found that the mean spectra from our k-means clusters derived from PCA projection coefficients reproduced the trends observed in the composite spectra.Furthermore, our method needed only two eigenvectors to identify both sets of correlations used to construct the simulations, as well as indicating the linear and nonlinear segments. Comparing this to regular PCA, which can require a dozen or more components, or to

  12. Comparative study of Cu(In,Ga)Se{sub 2}/(PVD)In{sub 2}S{sub 3} and Cu(In,Ga)Se{sub 2}/(CBD)CdS heterojunction based solar cells by admittance spectroscopy, current-voltage and spectral response measurements

    Darga, A. [Laboratoire de Genie Electrique de Paris, CNRS UMR8507, SUPELEC, UPMC Univ Paris 06, Univ Paris-Sud, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France)], E-mail:; Mencaraglia, D.; Djebbour, Z.; Dubois, A. Migan; Chouffot, R.; Serhan, J. [Laboratoire de Genie Electrique de Paris, CNRS UMR8507, SUPELEC, UPMC Univ Paris 06, Univ Paris-Sud, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France); Couzinie-Devy, F.; Barreau, N.; Kessler, J. [Institut des Materiaux Jean Rouxel (IMN)-UMR 6502, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes cedex 3 (France)


    Co-evaporated Cu(In,Ga)Se{sub 2} (CIGSe) based solar cells with Physical Vapour Deposited (PVD) Indium Sulphide (In{sub 2}S{sub 3}) as buffer layer have been studied by admittance spectroscopy and current-voltage characteristics measurements. The results have been compared to those obtained with a reference CBD-CdS/CIGSe device. In darkness, the PVD-In{sub 2}S{sub 3} buffer layer devices exhibit higher densities of trapping defects and low values of shunt resistance. However, under illumination we have observed an important improvement of the In{sub 2}S{sub 3}/CIGSe electronic transport properties. This behavior seems to be linked to the presence of a metastable defect with activation energy of 0.3 eV.

  13. Raman spectra of shocked minerals. I. Olivine

    Heymann, D.; Celucci, T.A.


    The Raman spectra of olivine contained in a chip of the Twin Sisters Peak (Washington) dunite shocked to 22.2 GPa is shown to be identical to that of unshocked olivine in the same rock. The Raman spectra of powder of the rock shocked to 20.1 GPa and of chips shocked to 59.5 GPa and 60.7 GPa display strong and broad low-frequency features with crests at 475/cm, 556/cm, and 572/cm, and broad high-frequency features near 1100/cm. It is suggested that these features are due to the formation of olivine glass with a considerable degree of three-dimensional Si-O-Si linkage having scattered domains of greatly variable grain size, internal structure, and chemical composition. 54 references.

  14. Raman spectra of shocked minerals. I - Olivine

    Heymann, D.; Celucci, T. A.


    The Raman spectra of olivine contained in a chip of the Twin Sisters Peak (Washington) dunite shocked to 22.2 GPa is shown to be identical to that of unshocked olivine in the same rock. The Raman spectra of powder of the rock shocked to 20.1 GPa and of chips shocked to 59.5 GPa and 60.7 GPa display strong and broad low-frequency features with crests at 475/cm, 556/cm, and 572/cm, and broad high-frequency features near 1100/cm. It is suggested that these features are due to the formation of olivine glass with a considerable degree of three-dimensional Si-O-Si linkage having scattered domains of greatly variable grain size, internal structure, and chemical composition.

  15. Slit Spectra of Second Byurakan Survey Galaxies

    Osterbrock, D. E.; Martel, A.


    Slit spectra have been obtained at Lick Observatory of 18 Seyfert galaxy candidates from the Second Byurakan Spectral Sky Survey (SBS). The great majority of them turned out to be Seyfert galaxies. The classifications and redshifts of all the galaxies are reported. Measurements of the intensity ratios of the emission lines used in classifying the galaxies are tabulated and plotted on diagnostic diagrams. The spectra of seven of the galaxies are described in detail. In general, our classification and redshift measurements are in very good accord with those of Lipovetsky, Stepanian, and their collaborators at the Special Astrophysical Observatory, showing that their results can be used in conjunction with the Lick results with little if any systematic difference between the two data sets. The importance of the SBS as a source of new Seyferts bridging the gap between low-redshift Seyfert galaxies and higher-luminosity QSOs is also emphasized.

  16. Infrared spectra of FHF - in alkali halides

    Chunnilall, C. J.; Sherman, W. F.


    The bifluoride ion, FHF -, has been substitutionally isolated within single crystal samples of several different alkali halides. Infrared spectra of these crystals have been studied for sample temperatures down to 8K when half-bandwidths of less than 1 cm -1 have been observed. (Note that at room temperature ν 3 is observed to have a half-bandwidth of about 40 cm -1). The frequency shifts and half-bandwidth changes caused by cooling are considered together with the frequency shifts caused by pressures up to 10 k bar. The low temperature spectra clearly indicate that FHF - is a linear symmetrical ion when substitutionally isolated within alkali halides of either the NaCl or CsCl structure.

  17. Benchmarking statistical averaging of spectra with HULLAC

    Klapisch, Marcel; Busquet, Michel


    Knowledge of radiative properties of hot plasmas is important for ICF, astrophysics, etc When mid-Z or high-Z elements are present, the spectra are so complex that one commonly uses statistically averaged description of atomic systems [1]. In a recent experiment on Fe[2], performed under controlled conditions, high resolution transmission spectra were obtained. The new version of HULLAC [3] allows the use of the same model with different levels of details/averaging. We will take advantage of this feature to check the effect of averaging with comparison with experiment. [1] A Bar-Shalom, J Oreg, and M Klapisch, J. Quant. Spectros. Rad. Transf. 65, 43 (2000). [2] J. E. Bailey, G. A. Rochau, C. A. Iglesias et al., Phys. Rev. Lett. 99, 265002-4 (2007). [3]. M. Klapisch, M. Busquet, and A. Bar-Shalom, AIP Conference Proceedings 926, 206-15 (2007).

  18. Energy spectra in relativistic electron precipitation events.

    Rosenberg, T. J.; Lanzerotti, L. J.; Bailey, D. K.; Pierson, J. D.


    Two events in August 1967, categorized as relativistic electron precipitation (REP) events by their effect on VHF transmissions propagated via the forward-scatter mode, have been examined with regard to the energy spectra of trapped and precipitated electrons. These two substorm-associated events August 11 and August 25 differ with respect to the relativistic, trapped electron population at synchronous altitude; in the August 25 event there was a nonadiabatic enhancement of relativistic (greater than 400 keV) electrons, while in the August 11 event no relativistic electrons were produced. In both events electron spectra deduced from bremsstrahlung measurements (made on a field line close to that of the satellite) had approximately the same e-folding energies as the trapped electron enhancements. However, the spectrum of electrons in the August 25 event was significantly harder than the spectrum in the event of August 11.

  19. Measurement and interpretation of plutonium spectra

    Blaise, J.; Fred, M.S.; Carnall, W.T.; Crosswhite, H.M.; Crosswhite, H.


    The atomic spectroscopic data available for plutonium are among the rickest of any in the periodic system. They include high-resolution grating and Fourier-transform spectra as well as extensive Zeeman and isotope-shift studies. We summarize the present status of the term analysis and cite the configurations that have been identified. A least-squares adjustment of a parametric Hamiltonian for configurations of both Pu I and Pu II has shown that almost all of the expected low levels are now known. The use of a model Hamiltonian applicable to both lanthanide and actinide atomic species has been applied to the low configurations of Pu I and Pu II making use of trends predicted by ab initio calculations. This same model has been used to describe the energy levels of Pu/sup 3 +/ in LaCl/sub 3/, and an extension has permitted preliminary calculations of the spectra of other valence states.

  20. Cathodoluminescence spectra of gallium nitride nanorods.

    Tsai, Chia-Chang; Li, Guan-Hua; Lin, Yuan-Ting; Chang, Ching-Wen; Wadekar, Paritosh; Chen, Quark Yung-Sung; Rigutti, Lorenzo; Tchernycheva, Maria; Julien, François Henri; Tu, Li-Wei


    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio.

  1. Broadband Eclipse Spectra of Exoplanets are Featureless

    Hansen, C J; Cowan, N B


    Spectral retrieval methods leverage features in emission spectra to constrain the atmospheric composition and structure of transiting exoplanets. Most of the observed emission spectra consist of broadband photometric observations at a small number of wavelengths. We compare the Bayesian Information Criterion (BIC) of blackbody fits and spectral retrieval fits for all planets with eclipse measurements in multiple thermal wavebands, typically hot Jupiters with 2-4 observations. If the published error bars are taken at face value, then eight planets are significantly better fit by a spectral model than by a blackbody. In this under-constrained regime, however, photometric uncertainties directly impact one's ability to constrain atmospheric properties. By considering the handful of planets for which eclipse measurements have been repeated and/or reanalyzed, we obtain an empirical estimate of systematic uncertainties for broadband eclipse depths obtained with the Spitzer Space Telescope: sigma_sys = 5E-4. When thi...

  2. On the Algebraic Classification of Module Spectra

    Patchkoria, Irakli


    Using methods developed by Franke, we obtain algebraic classification results for modules over certain symmetric ring spectra ($S$-algebras). In particular, for any symmetric ring spectrum $R$ whose graded homotopy ring $\\pi_*R$ has graded global homological dimension 2 and is concentrated in degrees divisible by some natural number $N \\geq 4$, we prove that the homotopy category of $R$-modules is equivalent to the derived category of the homotopy ring $\\pi_*R$. This improves the Bousfield-Wolbert algebraic classification of isomorphism classes of objects of the homotopy category of $R$-modules. The main examples of ring spectra to which our result applies are the $p$-local real connective $K$-theory spectrum $ko_{(p)}$, the Johnson-Wilson spectrum E(2), and the truncated Brown-Peterson spectrum $BP$, for an odd prime $p$.

  3. Absorption spectra of AA-stacked graphite

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F [Department of Physics, National Cheng Kung University, Taiwan (China); Shyu, F L, E-mail:, E-mail: [Department of Physics, ROC Military Academy, 830 Kaohsiung, Taiwan (China)


    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  4. Inflationary spectra in generalized gravity Unified forms

    Noh, H


    The classical evolution and the quantum generation processes of the scalar- and tensor-type cosmological perturbations in the context of a broad class of generalized gravity theories are presented in unified forms. The exact forms of final spectra of the two types of structures generated during a generalized slow-roll inflation are derived. Results in generalized gravity are characterized by two additional parameters which are the coupling between gravity and field, and the nonminimal coupling in the kinetic part of the field. Our general results include widely studied gravity theories and inflation models as special cases, and show how the well known consistency relation and spectra in ordinary Einstein gravity inflation models are affected by the generalized nature of the gravity theories.

  5. Atomic and Molecular Aspects of Astronomical Spectra

    Sochi, Taha


    In the first section we present the atomic part where a C2+ atomic target was prepared and used to generate theoretical data to investigate recombination lines arising from electron-ion collisions in thin plasma. R-matrix method was used to describe the C2+ plus electron system. Theoretical data concerning bound and autoionizing states were generated in the intermediate-coupling approximation. The data were used to generate dielectronic recombination data for C+ which include transition lines, oscillator strengths, radiative transition probabilities, emissivities and dielectronic recombination coefficients. The data were cast in a line list containing 6187 optically-allowed transitions which include many C II lines observed in astronomical spectra. This line list was used to analyze the spectra from a number of astronomical objects, mainly planetary nebulae, and identify their electron temperature. The electron temperature investigation was also extended to include free electron energy analysis to investigate...

  6. Measuring the response of canopy emissivity spectra to leaf area index variation using thermal hyperspectral data

    Neinavaz, Elnaz; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Groen, Thomas A.


    One of the plant biophysical factors affecting the canopy spectral reflectance of plants in the optical domain to receive research attention in recent decades is leaf area index (LAI). Although it is expected that the value of LAI affects the emission of radiation, it not known how. To our knowledge, the effect of LAI on plant canopy emissivity spectra has not yet been investigated in the thermal infrared region (TIR 8-14 μm). The overall aim of this study was to demonstrate the effect of LAI on canopy emissivity spectra of different species at the nadir position. The 279 spectral wavebands in the TIR domain were measured under controlled laboratory condition using a MIDAC spectrometer for four plant species. The corresponding LAI of each measurement was destructively calculated. We found a positive correlation between canopy emissivity spectra at various LAI values, indicating that emissivity increases concomitantly with LAI value. The canopy emissivity spectra of the four species were found to be statistically different at various wavebands even when the LAI values of the species were similar. It seems that other biophysical or biochemical factors also contribute to canopy emissivity spectra: this merits further investigation. We not only quantify the role of LAI on canopy emissivity spectra for the first time, but also demonstrate the potential of using hyperspectral thermal data to estimate LAI of plant species.

  7. Digital simulation of 3D turbulence wind field of Sutong Bridge based on measured wind spectra

    Hao WANG; Zhou-hong ZONG; Ai-qun LI; Teng TONG; Jie NIU; Wen-ping DENG


    Time domain analysis is an essential implement to study the buffeting behavior of long-span bridges for it can consider the non-linear effect which is significant in long-span bridges.The prerequisite of time domain analysis is the accurate description of 3D turbulence winds.In this paper,some hypotheses for simplifying the 3D turbulence simulation of long-span cable-stayed bridges are conducted,considering the structural characteristics.The turbulence wind which is a 3D multivariate stochastic vector process is converted into four independent ID univariate stochastic processes.Based on recorded wind data from structural health monitoring system (SHMS) of the Sutong Bridge,China,the measured spectra expressions are then presented using the nonlinear least-squares fitting method.Turbulence winds at the Sutong Bridge site are simulated based on the spectral representation method and the Fast Fourier transform (FFT) technique,and the relevant results derived from target spectra including measured spectra and recommended spectra are compared.The reliability and accuracy of the presented turbulence simulation method are validated through comparisons between simulated and target spectra (measured and recommended spectra).The obtained turbulence simulations can not only serve further analysis of the buffeting behavior of the Sutong Bridge,but references for structural anti-wind design in adjacent regions.

  8. Fingerprint vibrational spectra of protonated methyl esters of amino acids in the gas phase.

    Simon, Aude; Macaleese, Luke; Maître, Philippe; Lemaire, Joël; McMahon, Terrance B


    Infrared spectra of the protonated monomers of glycine, alanine, valine, and leucine methyl esters are presented. These protonated species are generated in the gas phase via matrix assisted laser desorption ionization (MALDI) within the cell of a Fourier transform ion cyclotron resonance spectrometer (FTICR) where they are subsequently mass selected as the only species trapped in the FTICR cell. Alternatively, they have also been generated by electrospray ionization and transferred to a Paul ion-trap mass spectrometer where they are similarly isolated. In both cases IR spectra are then derived from the frequency dependence of the infrared multiple photon dissociation (IRMPD) in the mid-infrared region (1000-2200 cm(-1)), using the free electron laser facility Centre de Laser Infrarouge d'Orsay (CLIO). IR bands are assigned by comparison with the calculated vibrational spectra of the lowest energy isomers using density functional theory (DFT) calculations. There is in general good agreement between experimental IRMPD spectra and calculated IR absorption spectra for the lowest energy conformer which provides evidence for conformational preferences. The two different approaches to ion generation and trapping yield IRMPD spectra that are in excellent agreement.

  9. Dynamical analysis of highly excited molecular spectra

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)


    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  10. Automation of the Analysis of Moessbauer Spectra

    Souza, Paulo A. de Jr.; Garg, R.; Garg, V. K. [Universidade Federal do Espirito Santo, Departamento de Fisica (Brazil)


    In the present report we propose the automation of least square fitting of Moessbauer spectra, the identification of the substance, its crystal structure and the access to the references with the help of a genetic algorith, Fuzzy logic, and the artificial neural network associated with a databank of Moessbauer parameters and references. This system could be useful for specialists and non-specialists, in industry as well as in research laboratories.

  11. Directional Wave Spectra Using Normal Spreading Function


    energy spectral density function U. g. Army Engineer Waternays Experiment Station. Coastal Engineering Research Center P. 0. lox 631, Vicksburg...Z39-18 D(f,e) = spreading function E (f,(3) = directional spectral density function f = frequency in cycles per second 8 = direction in radians...of this assumption depends on the narrow bandedness of the energy spectral density function . For fairly narrow spectra (e.g., a swell train), the

  12. Understanding the baryon and meson spectra

    Pennington, Michael R. [JLAB


    A brief overview is given of what we know of the baryon and meson spectra, with a focus on what are the key internal degrees of freedom and how these relate to strong coupling QCD. The challenges, experimental, theoretical and phenomenological, for the future are outlined, with particular reference to a program at Jefferson Lab to extract hadronic states in which glue unambiguously contributes to their quantum numbers.

  13. Dose spectra from energetic particles and neutrons

    Schwadron, Nathan; Bancroft, Chris; Bloser, Peter; Legere, Jason; Ryan, James; Smith, Sonya; Spence, Harlan; Mazur, Joe; Zeitlin, Cary


    spectra from energetic particles and neutrons (DoSEN) are an early-stage space technology research project that combines two advanced complementary radiation detection concepts with fundamental advantages over traditional dosimetry. DoSEN measures not only the energy but also the charge distribution (including neutrons) of energetic particles that affect human (and robotic) health in a way not presently possible with current dosimeters. For heavy ions and protons, DoSEN provides a direct measurement of the lineal energy transfer (LET) spectra behind shielding material. For LET measurements, DoSEN contains stacks of thin-thick Si detectors similar in design to those used for the Cosmic Ray Telescope for the Effects of Radiation. With LET spectra, we can now directly break down the observed spectrum of radiation into its constituent heavy-ion components and through biologically based quality factors that provide not only doses and dose rates but also dose equivalents, associated rates, and even organ doses. DoSEN also measures neutrons from 10 to 100 MeV, which requires enough sensitive mass to fully absorb recoil particles that the neutrons produce. DoSEN develops the new concept of combining these independent measurements and using the coincidence of LET measurements and neutron detection to significantly reduce backgrounds in each measurement. The background suppression through the use of coincidence allows for significant reductions in size, mass, and power needed to provide measurements of dose, neutron dose, dose equivalents, LET spectra, and organ doses. Thus, we introduce the DoSEN concept: a promising low-mass instrument that detects the full spectrum of energetic particles, heavy ions, and neutrons to determine biological impact of radiation in space.

  14. The Zeeman effect in stellar spectra

    Romanyuk, I. I.

    A short biography of Pieter Zeeman is presented. The main formulae for the normal, anomalous, quadratic Zeeman effects and Paschen-Back effect are given. Instrumentation for Zeeman effect measurements in stellar spectra is described, the most important scientific achievements in magnetic stars investigations with the world's largest telescopes for 50 years are demonstrated. The devices for magnetic measurements made at SAO and the main results of stellar magnetic observations obtained with the 6 m telescope are described in detail.

  15. The far-ultraviolet spectra of "cool" PG1159 stars

    Werner, K; Kruk, J W


    We present a comprehensive study of Far Ultraviolet Spectroscopic Explorer (FUSE) spectra (912-1190 A) of two members of the PG1159 spectral class, which consists of hydrogen-deficient (pre-) white dwarfs with effective temperatures in the range Teff = 75,000-200,000 K. As two representatives of the cooler objects, we have selected PG1707+427 (Teff = 85,000 K) and PG1424+535 (Teff = 110,000 K), complementing a previous study of the hotter prototype PG1159-035 (Teff = 140,000 K). The helium-dominated atmospheres are strongly enriched in carbon and oxygen, therefore, their spectra are dominated by lines from C III-IV and O III-VI, many of which were never observed before in hot stars. In addition, lines of many other metals (N, F, Ne, Si, P, S, Ar, Fe) are detectable, demonstrating that observations in this spectral region are most rewarding when compared to the near-ultraviolet and optical wavelength bands. We perform abundance analyses of these species and derive upper limits for several undetected light and ...

  16. Advanced fitting algorithms for analysing positron annihilation lifetime spectra

    Pascual-Izarra, Carlos [CSIRO Molecular and Health Technologies, Private Bag 10, Clayton, VIC 3169 (Australia)], E-mail:; Dong, Aurelia W. [CSIRO Molecular and Health Technologies, Private Bag 10, Clayton, VIC 3169 (Australia); Drug Delivery, Deposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 (Australia)], E-mail:; Pas, Steven J. [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton, VIC 3800 (Australia); CSIRO Materials Science and Engineering, Private Bag 33, Clayton, VIC 3169 (Australia)], E-mail:; Hill, Anita J. [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton, VIC 3800 (Australia); CSIRO Materials Science and Engineering, Private Bag 33, Clayton, VIC 3169 (Australia)], E-mail:; Boyd, Ben J. [Drug Delivery, Deposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052 (Australia)], E-mail:; Drummond, Calum J. [CSIRO Molecular and Health Technologies, Private Bag 10, Clayton, VIC 3169 (Australia); CSIRO Materials Science and Engineering, Private Bag 33, Clayton, VIC 3169(Australia)], E-mail:


    The most common way to analyse PALS spectra involves fitting a parameter-dependent model to the experimental data. Traditionally, this fit involves local non-linear optimisation routines that depend on a reasonable initial guess for the searched parameters. This, together with the fact that very different sets of parameters may yield indistinguishably good fits for a given experimental spectrum, gives rise to ambiguities in the data analysis in most but the simplest cases. In order to alleviate these difficulties, a computer program named PAScual was developed that incorporates 2 advanced algorithms to provide a robust fitting tool: on the one hand, it incorporates a global non-linear optimisation routine based on the Simulated Annealing algorithm and, on the other hand, it yields information on the reliability of the results by means of a Markov Chain Monte-Carlo Bayesian Inference method. In this work the methods used in PAScual are described and tested against both simulated and experimental spectra, comparing the results with those from the well-established program LTv9. The examples focus on the type of complex data that results from the study of self-assembled amphiphile materials containing co-existing aqueous and hydrocarbon regions.

  17. Complex polarization propagator calculations of magnetic circular dichroism spectra

    Solheim, Harald; Ruud, Kenneth; Coriani, Sonia; Norman, Patrick


    It is demonstrated that the employment of the nonlinear complex polarization propagator enables the calculation of the complete magnetic circular dichroism spectra of closed-shell molecules, including at the same time both the so-called Faraday A and B terms. In this approach, the differential absorption of right and left circularly polarized light in the presence of a static magnetic field is determined from the real part of the magnetic field-perturbed electric dipole polarizability. The introduction of the finite lifetimes of the electronically excited states into the theory results in response functions that are well behaved in the entire spectral region, i.e., the divergencies that are found in conventional response theory approaches at the transition energies of the system are not present. The applicability of the approach is demonstrated by calculations of the ultraviolet magnetic circular dichroism spectra of para-benzoquinone, tetrachloro-para-benzoquinone, and cyclopropane. The present results are obtained with the complex polarization propagator approach in conjunction with Kohn-Sham density functional theory and the standard adiabatic density functionals B3LYP, CAM-B3LYP, and BHLYP.

  18. The far-ultraviolet spectra of "cool" PG 1159 stars

    Werner, K.; Rauch, T.; Kruk, J. W.


    We present a comprehensive study of Far Ultraviolet Spectroscopic Explorer (FUSE) spectra (912-1190 Å) of two members of the PG 1159 spectral class, which consists of hydrogen-deficient (pre-) white dwarfs with effective temperatures in the range Teff = 75 000-200 000 K. As two representatives of the cooler objects, we have selected PG 1707+427 (Teff = 85 000 K) and PG 1424+535 (Teff = 110 000 K), complementing a previous study of the hotter prototype PG 1159-035 (Teff = 140 000 K). The helium-dominated atmospheres are strongly enriched in carbon and oxygen, therefore, their spectra are dominated by lines from C iii-iv and O iii-vi, many of which were never observed before in hot stars. In addition, lines of many other metals (N, F, Ne, Si, P, S, Ar, Fe) are detectable, demonstrating that observations in this spectral region are most rewarding when compared to the near-ultraviolet and optical wavelength bands. We perform abundance analyses of these species and derive upper limits for several undetected light and heavy metals including iron-group and trans-iron elements. The results are compared to predictions of stellar evolution models for neutron-capture nucleosynthesis and good agreement is found. Appendix A is available in electronic form at

  19. Shaping the GeV-spectra of bright blazars

    Hunger, Lars


    The non-thermal spectra of jetted active galactic nuclei show a variety of shapes in their low- and high energy components. In some of the brightest Fermi-LAT blazars, prominent spectral breaks at a few GeV have been regularly detected, which is inconsistent with conventional cooling effects. We study the effects of continuous time-dependent injection of electrons into the jet with differing rates, durations, locations, and power-law spectral indices, and evaluate its impact on the ambient emitting particle spectrum at a given snapshot time in the framework of a leptonic blazar emission model. The emitting electron spectrum is calculated by Compton cooling the continuously injected electrons, where target photons are assumed to be provided by the accretion disk and broad line region. We calculate the non-thermal photon spectra produced by inverse Compton scattering of these external target radiation fields using the full Compton cross-section in the head-on approximation. By means of a comprehensive parameter...

  20. Measurement of neutron spectra in the experimental reactor LR-0

    Prenosil, Vaclav; Mravec, Filip; Veskrna, Martin [Faculty of Informatics, Masaryk University, Botanicka 68a, 612 00 Brno, (Czech Republic); Kostal, Michal [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez, (Czech Republic); Matej, Zdenek [VF, a.s., Svitavska 588, 679 21 Cerna Hora, (Czech Republic); Cvachovec, Frantisek [Faculty of Military Technology, University of Defense, Brno, (Czech Republic)


    The measurement of fast neutron fluxes is important in many areas of nuclear technology. It affects the stability of the reactor structural components, performance of fuel, and also the fuel manner. The experiments performed at the LR-0 reactor were in the past focused on the measurement of neutron field far from the core, in reactor pressure vessel simulator or in biological shielding simulator. In the present the measurement in closer regions to core became more important, especially measurements in structural components like reactor baffle. This importance increases with both reactor power increase and also long term operation. Other important task is an increasing need for the measurement close to the fuel. The spectra near the fuel are aimed due to the planned measurements with the FLIBE salt, in FHR / MSR research, where one of the task is the measurement of the neutron spectra in it. In both types of experiments there is strong demand for high working count rate. The high count rate is caused mainly by high gamma background and by high fluxes. The fluxes in core or in its vicinity are relatively high to ensure safe reactor operation. This request is met in the digital spectroscopic apparatus. All experiments were realized in the LR-0 reactor. It is an extremely flexible light water zero-power research reactor, operated by the Research Center Rez (Czech Republic). (authors)


    Thompson, Gregory B. [Department of Physics, Adrian College, Adrian, MI 49221 (United States); Morrison, Nancy D., E-mail:, E-mail: [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft, Toledo, OH 43606 (United States)


    We present the results of a time series analysis of 130 echelle spectra of {epsilon} Ori (B0 Ia), acquired over seven observing seasons between 1998 and 2006 at Ritter Observatory. The equivalent widths of H{alpha} (net) and He I {lambda}5876 were measured and radial velocities were obtained from the central absorption of He I {lambda}5876. Temporal variance spectra (TVS) revealed significant wind variability in both H{alpha} and He I {lambda}5876. The He I TVS have a double-peaked profile consistent with radial velocity oscillations. A periodicity search was carried out on the equivalent width and radial velocity data, as well as on wavelength-binned spectra. This analysis has revealed several periods in the variability with timescales of two to seven days. Many of these periods exhibit sinusoidal modulation in the associated phase diagrams. Several of these periods were present in both H{alpha} and He I, indicating a possible connection between the wind and the photosphere. Due to the harmonic nature of these periods, stellar pulsations may be the origin of some of the observed variability. Periods on the order of the rotational period were also detected in the He I line in the 1998-1999 season and in both lines during the 2004-2005 season. These periods may indicate rotational modulation due to structure in the wind.

  2. Janus spectra in two-dimensional flows

    Liu, Chien-Chia; Chakraborty, Pinaki


    In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...

  3. The Transit Spectra of Earth and Jupiter

    Irwin, Patrick G J; Bowles, Neil E; Fletcher, Leigh N; Aigrain, Suzanne; Lee, Jae-Min


    In recent years, a number of observations have been made of the transits of 'Hot Jupiters', such as HD 189733b, which have been modelled to derive atmospheric structure and composition. As measurement techniques improve, the transit spectra of 'Super-Earths' such as GJ 1214b are becoming better constrained, allowing model atmospheres to be fitted for this class of planet also. While it is not yet possible to constrain the atmospheric states of small planets such as the Earth or cold planets like Jupiter, this may become practical in the coming decades and if so, it is of interest to determine what we might infer from such measurements. Here we have constructed atmospheric models of the Solar System planets from 0.4 - 15.5 microns that are consistent with ground-based and satellite observations and from these calculate the primary transit and secondary eclipse spectra (with respect to the Sun and typical M-dwarfs) that would be observed by a 'remote observer', many light years away. From these spectra we test ...

  4. Analysis of COSIMA spectra: Bayesian approach

    H. J. Lehto


    Full Text Available We describe the use of Bayesian analysis methods applied to TOF-SIMS spectra. The method finds the probability density functions of measured line parameters (number of lines, and their widths, peak amplitudes, integrated amplitudes, positions in mass intervals over the whole spectrum. We discuss the results we can expect from this analysis. We discuss the effects the instrument dead time causes in the COSIMA TOF SIMS. We address this issue in a new way. The derived line parameters can be used to further calibrate the mass scaling of TOF-SIMS and to feed the results into other analysis methods such as multivariate analyses of spectra. We intend to use the method in two ways, first as a comprehensive tool to perform quantitative analysis of spectra, and second as a fast tool for studying interesting targets for obtaining additional TOF-SIMS measurements of the sample, a property unique for COSIMA. Finally, we point out that the Bayesian method can be thought as a means to solve inverse problems but with forward calculations only.

  5. Soil emissivity and reflectance spectra measurements

    Sobrino, Jose A.; Mattar, Cristian; Pardo, Pablo; Jimenez-Munoz, Juan C.; Hook, Simon J.; Baldridge, Alice; Ibanez, Rafael


    We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 {mu}m with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.

  6. Facts and Artifacts in Interstellar Diamond Spectra

    Mutschke, H.; Dorschner, J.; Henning, T.; Jager, C.; Ott, U.


    Absorption spectra of presolar diamonds extracted from the Murchison meteorite have been measured in the extended wavelength range 0.2--500 mu m in order to make available optical properties of this supposed component of interstellar carbon dust. In contrast to terrestrial natural and synthetic diamonds, spectra of the meteoritic diamonds show prominent bands in the middle-IR. In this Letter, experimental evidence is presented that the OH band at 3200 cm-1 and the CH bands in the 2800--3000 cm-1 range are not intrinsic features of the diamonds and that the band at 1100 cm-1 contains an artificial component due to the extraction procedure. In addition, in our spectra a conspicuous band at 120 cm-1 was found. If the intrinsic character of this band, which, up to now, is unidentified, is confirmed, it would offer a chance to observe interstellar diamonds, e.g., by the ISO satellite. We encourage laboratory astrophysicists and observers to study this promising possibility.

  7. Tunneling spectra of graphene on copper unraveled.

    Zhang, Xin; Stradi, Daniele; Liu, Lei; Luo, Hong; Brandbyge, Mads; Gu, Gong


    Scanning tunneling spectroscopy is often employed to study two-dimensional (2D) materials on conductive growth substrates, in order to gain information on the electronic structures of the 2D material-substrate systems, which can lead to insight into 2D material-substrate interactions, growth mechanisms, etc. The interpretation of the spectra can be complicated, however. Specifically for graphene grown on copper, there have been conflicting reports of tunneling spectra. A clear understanding of the mechanisms behind the variability is desired. In this work, we have revealed that the root cause of the variability in tunneling spectra is the variation in graphene-substrate coupling under various experimental conditions, providing a salutary perspective on the important role of 2D material-substrate interactions. The conclusions are drawn from measured data and theoretical calculations for monolayer, AB-stacked bilayer, and twisted bilayer graphene coexisting on the same substrates in areas with and without intercalated oxygen, demonstrating a high degree of consistency. The Van Hove singularities of the twisted graphene unambiguously indicate the Dirac energy between them, lending strong evidence to our assignment of the spectral features. In addition, we have discovered an O-Cu superstructure that has never been observed before.

  8. Stellar parametrization from Gaia RVS spectra

    Recio-Blanco, A; Prieto, C Allende; Fustes, D; Manteiga, M; Arcay, B; Bijaoui, A; Dafonte, C; Ordenovic, C; Blanco, D Ordoñez


    Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as G_RVS~16. A specific stellar parametrization will be performed for most of these RVS spectra. Some individual chemical abundances will also be estimated for the brightest targets. We describe the different parametrization codes that have been specifically developed or adapted for RVS spectra within the GSP-spec working group of the analysis consortium. The tested codes are based on optimization (FERRE and GAUGUIN), projection (MATISSE) or pattern recognition methods (Artificial Neural Networks). We present and discuss their expected performances in the recovered stellar atmospheric parameters (Teff, log(g), [M/H]) for B- to K- type stars. The performances for the determinations of [alpha/Fe] ratios are also presented for cool stars. For all the considered stellar types, stars brighter than G_RVS~12.5 will be very efficiently parametrized by t...

  9. Infrared Transmission Spectra for Extrasolar Giant Planets

    Tinetti, G; Vidal-Madjar, A; Ehrenreich, D; Etangs, A L; Yung, Y


    Among the hot Jupiters that transit their parent stars known to date, the two best candidates to be observed with transmission spectroscopy in the mid-infrared (MIR) are HD189733b and HD209458b, due to their combined characteristics of planetary density, orbital parameters and parent star distance and brightness. Here we simulate transmission spectra of these two planets during their primary eclipse in the MIR, and we present sensitivity studies of the spectra to the changes of atmospheric thermal properties, molecular abundances and C/O ratios. Our model predicts that the dominant species absorbing in the MIR on hot Jupiters are water vapor and carbon monoxide, and their relative abundances are determined by the C/O ratio. Since the temperature profile plays a secondary role in the transmission spectra of hot Jupiters compared to molecular abundances, future primary eclipse observations in the MIR of those objects might give an insight on EGP atmospheric chemistry. We find here that the absorption features c...

  10. Correlation of electronic structures of three cyclic dipeptides with their photoemission spectra

    Arachchilage, Anoja P. Wickrama; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Prince, Kevin C.


    We have investigated the electronic structure of three cyclic dipeptides: cyclo(Glycyl-Glycyl) (cGG), cyclo(Leucyl-Prolyl) (cLP), and cyclo(Phenylalanyl-Prolyl) (cPP). These compounds are biologically active and cLP and cPP are derived from cGG (also known as diketopiperazine), by the addition of the respective functional groups of the amino acids, namely, phenyl, alkyl or a fused pyrrolidine ring (proline). Experimental valence and core level spectra have been interpreted in the light of theoretical calculations to identify the basic chemical properties associated with the central ring, and with the additional functional groups in cLP and cPP. The theoretically simulated spectra of all three cyclic dipeptides in both valence and core spaces agreed reasonably well with the experimental spectra. The three molecules displayed similarities in their core spectra, suggesting that the diketopiperazine structure plays an important role in determining the inner shell spectrum. The experimental C 1s spectra of cLP and cPP are analogous but differ from cGG due to the side chains attached to the diketopiperazine structure. Single spectral peaks in the N 1s (and O 1s) spectra of the dipeptides indicate that the chemical environment of the nitrogen atoms (and oxygen atoms) are very similar, although they show a small splitting in the simulated spectra of cPL and cPP, due to the reduction of their point group symmetry. Valence band spectra of the three dipeptides in the frontier orbital region of 9-11 eV exhibit similarities; however theoretical analysis shows that significant changes occur due to the involvement of the side chain in the frontier orbitals of cPP, while lesser changes are found for cLP.

  11. Computational Study of Absorption Spectra of the Photoconvertible Fluorescent Protein EosFP in Different Protonation States.

    Imhof, Petra


    Absorption spectra of the green-to-red convertible fluorescent protein EosFP have been computed in a hybrid quantum mechanical/molecular mechanical (QM/MM) framework. The experimentally observed absorption maximum at ∼390 nm is well reproduced by the protein with a neutral chromophore, and the anionic form is computed to absorb close to the experimentally determined maximum at ∼500 nm. Absorption of a zwitterionic form is calculated to lie in the same spectral region; however, this species cannot be unambiguously assigned to the experimental spectra. Variation of the protonation states of residues surrounding the chromophore do not have significant impact on the positions of the absorption maxima. In particular, protonation of Glu212 leaves the calculated spectra largely unaffected. This is consistent with the spectra of the E212Q mutant, which differ from the wild-type spectra only in the intensities but not in the positions of the absorption bands.

  12. 学龄前患儿鼻及鼻咽部疾病声导抗异常的临床分析%Clinical analysis of abnormal acoustic admittance in preschool children with nasal and nasopharyngeal disorders

    高帆; 蒋子栋; 谷庆隆


    Objective To investigate the risk factors of related disorders,which could lead to potential otitis media by observing the abnormal configuration of drum and abnormal acoustic immittance without symptoms in preschool children. Methods Eighty-one cases (162 ears) received flexible pharyngorhinoscopy,skin prick test,CT examination of sinus,and were diagnosed as allergic rhinitis,chronic sinusitis,adenoid hypertrophy.They had no complaints of ear related symptoms,but were observed to have abnormality in ear drum by physical examined.Acoustic immittance measurement were performed,so as to estimate whether they were accompany with potential otitis media.The changes of examination and tests were analyzed before and after the treatment.Results There were 15 cases(29 ears) with abnormal acoustic admittance among 81 cases( 162 ears) who had no ear related symptoms but had different degree abnormality in ear drum.The morbidity rate of these 15 patients was 13.6% (6/44 ears) in allergic rhinitis patients,18.2% (12/66 ears) in chronic sinusitis patients,and 21.2% (11/52 ears) in adenoid hypertrophy patients,respectively.The differences among the three diseases had statistical significance ( x2 =63.02,P < 0.05 ).Among 29 ears,28 ears whose type of tympanic pressure curve were transfered from type C to type A two weeks after treatment.One ear whose type of tympanic pressure curve transferred from type B to type C four weeks after treatment.All cases had been followed up with no recurrent cases.Conclusions Some preschool children with nasal and nasopharyngeal disorders had abnormal configuration of drum and abnormal acoustic immittance,and had potential risk for otitis media.Among the disorders,adenoid hypertrophy impact more on middle ear function.The early intervention of related diseases could prevent the developing trend of otitis media.%目的 通过观察分析学龄前鼻及鼻咽部疾病患儿无症状性的鼓膜形态及声导抗异常,初步探讨相关疾病

  13. Saliency detection for videos using 3D FFT local spectra

    Long, Zhiling; AlRegib, Ghassan


    Bottom-up spatio-temporal saliency detection identifies perceptually important regions of interest in video sequences. The center-surround model proves to be useful for visual saliency detection. In this work, we explore using 3D FFT local spectra as features for saliency detection within the center-surround framework. We develop a spectral location based decomposition scheme to divide a 3D FFT cube into two components, one related to temporal changes and the other related to spatial changes. Temporal saliency and spatial saliency are detected separately using features derived from each spectral component through a simple center-surround comparison method. The two detection results are then combined to yield a saliency map. We apply the same detection algorithm to different color channels (YIQ) and incorporate the results into the final saliency determination. The proposed technique is tested with the public CRCNS database. Both visual and numerical evaluations verify the promising performance of our technique.

  14. Inferring physical properties of galaxies from their emission line spectra

    Ucci, Graziano; Gallerani, Simona; Pallottini, Andrea


    We present a new approach based on Supervised Machine Learning (SML) algorithms to infer key physical properties of galaxies (density, metallicity, column density and ionization parameter) from their emission line spectra. We introduce a numerical code (called GAME, GAlaxy Machine learning for Emission lines) implementing this method and test it extensively. GAME delivers excellent predictive performances, especially for estimates of metallicity and column densities. We compare GAME with the most widely used diagnostics (e.g. R$_{23}$, [NII]$\\lambda$6584 / H$\\alpha$ indicators) showing that it provides much better accuracy and wider applicability range. GAME is particularly suitable for use in combination with Integral Field Unit (IFU) spectroscopy, both for rest-frame optical/UV nebular lines and far-infrared/sub-mm lines arising from Photo-Dissociation Regions. Finally, GAME can also be applied to the analysis of synthetic galaxy maps built from numerical simulations.

  15. Measuring x-ray spectra of flash radiographic sources

    Gehring, Amanda E.; Espy, Michelle A.; Haines, Todd J.; Mendez, Jacob; Moir, David C.; Sedillo, Robert; Shurter, Roger P.; Volegov, Petr; Webb, Timothy J.


    A Compton spectrometer has been re-commissioned for measurements of flash radiographic sources. The determination of the energy spectrum of these sources is difficult due to the high count rates and short nature of the pulses (~50 ns). The spectrometer is a 300 kg neodymium-iron magnet which measures spectra in the <1 MeV to 20 MeV energy range. Incoming x-rays are collimated into a narrow beam incident on a converter foil. The ejected Compton electrons are collimated so that the forward-directed electrons enter the magnetic field region of the spectrometer. The position of the electrons at the magnet's focal plane is a function of their momentum, allowing the x-ray spectrum to be reconstructed. Recent measurements of flash sources are presented.

  16. Effects of compositional variation on absorption spectra of lunar pyroxenes

    Hazen, R. M.; Bell, P. M.; Mao, H. K.


    Polarized absorption spectra of lunar pyroxenes with a range of iron, calcium, magnesium, titanium and chromium contents were measured on polished, oriented single crystals; spectral data on pure synthetic FeSiO3 were also recorded. The bands at 1 and 2 microns were found to vary significantly in position with composition within the pyroxene quadrilateral; wavelengths increased with increasing calcium and iron. In the visible region, a weak band at 640 nm correlates in intensity with Cr2O3, but not with titanium as had been previously suggested. The 505-nm ferrous iron peak is a sharp doublet in most low-calcium pyroxenes but a singlet in augites. A peak at 475 nm and an intense absorption edge below 700 nm correlated with titanium content.

  17. Turbulence spectra and transport barriers in gyrokinetic simulations

    Sarazin, Y.; Grandgirard, V.; Angelino, P.; Casati, A.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, Ph.; Gürcan, O.; Hennequin, P.; Sabot, R.


    The energy spectra of the Ion Temperature Gradient driven fluctuations are investigated with the global full-f gyrokinetic code GYSELA. For monotonous q profile, the poloidal spectrum can equally be fitted with two power laws or with a unique exponential. When prescribing an additional sheared radial electric field in view of triggering a transport barrier, the system is found to promptly polarize and screen this field, likely in a transient evolution towards a canonical equilibrium. For a reversed q profile, the negative shear region exhibits larger fluctuations, possibly due to the slab branch of ITG, characterized by a flatter spectrum. No clear transport barrier signature is observed in the vicinity of s = 0 when the radial extent of the gap without resonant modes is smaller than the turbulence correlation length.

  18. Physical meaning of conductivity spectra for ZnO ceramics

    Cheng Peng-Fei; Li Sheng-Tao; Li Jian-Ying; Ding Can; Yang Yan


    With the help of broadband dielectric spectroscopy in a wide temperature and frequency range,the conductivity spectra of ZnO polycrystalline ceramics are measured and the direct-current-like (DC-like) conductivity and relaxation polarization conductivity are observed successively along the frequency axis.According to the classical Debye theory and Cole-Cole equation,the physical meanings of the two conductivities are discussed.It is found that the DC-like conductivity corresponds to electron transportation over the Schottky barrier at the grainboundary.The relaxation polarization conductivity corresponds to electronic trap relaxation of intrinsic point defects (zinc interstitial and oxygen vacancy).When in the high frequency region,the relaxation conductivity obeys the universal law with the index n equal to the index α in the Cole-Cole equation as an indictor of disorder degree.

  19. Abundance sensitive points of line profiles in the stellar spectra

    Sheminova, V A


    Many abundance studies are based on spectrum synthesis and $\\chi$-squared differences between the synthesized and an observed spectrum. Much of the spectra so compared depend only weakly on the elemental abundances. Logarithmic plots of line depths rather than relative flux make this more apparent. We present simulations that illustrate a simple method for finding regions of the spectrum most sensitive to abundance, and also some caveats for using such information. As expected, we find that weak features are the most sensitive. Equivalent widths of weak lines are ideal features, because of their sensitivity to abundances, and insensitivity to factors that broaden the line profiles. The wings of strong lines can also be useful, but it is essential that the broadening mechanisms be accurately known. The very weakest features, though sensitive to abundance, should be avoided or used with great caution because of uncertainty of continuum placement as well as numerical uncertainties associated with the subtraction...

  20. Efficient estimation of burst-mode LDA power spectra

    Velte, Clara Marika; George, William K


    requirements for good statistical convergence due to the random sampling of the data. In the present work, the theory for estimating burst-mode LDA spectra using residence time weighting is discussed and a practical estimator is derived and applied. A brief discussion on the self-noise in spectra...... (axisymmetric turbulent jet). The burst-mode LDA spectra are compared to corresponding spectra from hot-wire data obtained in the same experiments, and to LDA spectra produced by the sample-and-hold methodology. The spectra computed from the residence-time weighted burst-mode algorithm proposed herein compare...

  1. EMPCA and Cluster Analysis of Quasar Spectra: Application to SDSS Spectra

    Leighly, Karen; Marrs, Adam; Wagner, Cassidy; Macinnis, Francis


    Accurate modeling of the quasar continuum is necessary to measure and analyze absorption lines. But quasar continua, in particular the emission lines, vary from object to object. Patterns in the variations allow a spectral principal component analysis (SPCA) approach using large samples of quasar spectra, e.g., from the SDSS. Then, a small number of the derived principal component spectra can be used to reconstruct an arbitrary quasar's continuum.A problem with this approach is that the number of principal components required to model an arbitrary quasar, usually 8 to 20 in the literature, is large. One reason why so many components are required is that SPCA implicitly assumes that spectra bins are independent. Quasar emission lines are spread over a range of spectral bins, and more importantly, can sometimes be blueshifted. So while the intrinsic variability may only be a function of a few physical parameters, the nonlinearity inherent in the variations from object to object requires a large number of prinicipal components to accurately model a quasar continuum.We present a modified approach. We perform a SPCA analysis, using an expectation-maximization algorithm by Bailey et al. 2012, which takes into account uncertainties and missing data. We project the sample spectra on the resulting eignevectors to obtain the projection coefficients. Reasoning that intriniscally similar spectra will have similar projection coefficients, we perform a cluster analysis on the projection coefficients. The results are used to divide the sample into groups of similar spectra. A second PCA analysis is then performed on each group. We find that many fewer eigenspectra are required to accurately model the spectra in each group. We apply this approach to several samples of quasars from the SDSS.

  2. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    Recktenwald, Geoff; Deinert, Mark


    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  3. HEAO 1 A-2 low-energy detector X-ray spectra of the Cygnus Loop

    Leahy, D. A.; Fink, R.; Nousek, J.


    The Cygnus Loop supernova remnant was observed by the A-2 low-energy detector (LED) proportional counters on the HEAO 1 satellite. Recent improvements to the non-X-ray background rejection and detector response simulation have allowed production of the most accurate spectra of the Cygnus Loop to date. Three separate regions of the Cygnus Loop were observed. Single-temperature, Raymond-Smith models are inadequate to describe the spectra, but two component model fits are good. Temperature, column density, and emission measure variations across the Cygnus Loop are found. These results are interpreted and compared with previous work.

  4. Infrared spectra and structures of anionic complexes of cobalt with carbon dioxide ligands.

    Knurr, Benjamin J; Weber, J Mathias


    We present infrared photodissociation spectra of [Co(CO2)n](-) ions (n = 3-11) in the wavenumber region 1000-2400 cm(-1), interpreted with the aid of density functional theory calculations. The spectra are dominated by the signatures of a core ion showing bidentate interaction of two CO2 ligands with the Co atom, each forming C-Co and O-Co bonds. This structural motif is very robust and is only weakly affected by solvation with additional CO2 solvent molecules. The Co atom is in oxidation state +1, and both CO2 ligands carry a negative charge.

  5. Phase thickness approach for determination of thin film refractive index dispersion from transmittance spectra

    Nenkov, M. R.; Pencheva, T. G.


    A novel approach for determination of refractive index dispersion n(λ ) and thickness d of thin films of negligible absorption and weak dispersion is proposed. The calculation procedure is based on determination of the phase thickness of the film in the spectral region of measured transmittance data. All points of measured spectra are included in the calculations. Barium titanate and titanium oxide thin films are investigated and their n(λ ) and d are calculated. The approach is validated using Swanepoel's method and it is found to be applicable for relatively thinner films when measured transmittance spectra have one minimum and one maximum only.

  6. Density functional theory study of vibrational spectra, and assignment of fundamental modes of dacarbazine

    S Gunasekaran; S Kumaresan; R Arunbalaji; G Anand; S Srinivasan


    The FTIR and FT Raman spectra of dacarbazine were recorded in the regions 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, wavenumber, polarizability and several thermodynamic properties of dacarbazine were studied using ab initio Hartree-Fock, MP2 and DFT methods. A complete vibrational assignment aided by the theoretical harmonic wavenumber analysis was proposed. The calculated harmonic vibrational frequencies were compared with experimental FTIR and FT Raman spectra. Based on the comparison between calculated and experimental results and the comparison with related molecules, assignments of fundamental vibrational modes were made. The X-ray geometry and experimental frequencies were compared with the results of theoretical calculations.

  7. Mathematical feature of photon spectra produced in ultra—relativistic heavy—ion collision



    In 1994 the first single-photon spectra from the 200GeV/A S+Au collisions at CERN SPS were reported by WA80 group.Based on these data,it can be proved that as long as there is an instantaneous thermal distribution T(r,t) in an expanding fireball at each instant,the basic mathematical feature of various kinds of photon spectra is that photon yield is approximately an exponential function of the transverse momentum PT in some region,which is basically irrelevant to the uncertainties enclosed in the theoretical estimations.

  8. Atomic and Molecular Aspects of Astronomical Spectra

    Sochi, Taha


    In the first section we present the atomic part where a C2+ atomic target was prepared and used to generate theoretical data to investigate recombination lines arising from electron-ion collisions in thin plasma. R-matrix method was used to describe the C2+ plus electron system. Theoretical data concerning bound and autoionizing states were generated in the intermediate-coupling approximation. The data were used to generate dielectronic recombination data for C+ which include transition lines, oscillator strengths, radiative transition probabilities, emissivities and dielectronic recombination coefficients. The data were cast in a line list containing 6187 optically-allowed transitions which include many C II lines observed in astronomical spectra. This line list was used to analyze the spectra from a number of astronomical objects, mainly planetary nebulae, and identify their electron temperature. The electron temperature investigation was also extended to include free electron energy analysis to investigate the long-standing problem of discrepancy between the results of recombination and forbidden lines analysis and its possible connection to the electron distribution. In the second section we present the results of our molecular investigation; the generation of a comprehensive, calculated line list of frequencies and transition probabilities for H2D+. The line list contains over 22 million rotational-vibrational transitions occurring between more than 33 thousand energy levels and covers frequencies up to 18500 cm-1. About 15% of these levels are fully assigned with approximate rotational and vibrational quantum numbers. A temperature-dependent partition function and cooling function are presented. Temperature-dependent synthetic spectra for the temperatures T=100, 500, 1000 and 2000 K in the frequency range 0-10000 cm-1 were also generated and presented graphically.

  9. Quantitative mid-infrared spectra of allene and propyne from room to high temperatures

    Es-sebbar, Et-touhami


    Allene (a-C3H4; CH2CCH2) and propyne (p-C3H4; CH3C2H) have attracted much interest because of their relevance to the photochemistry in astrophysical environments as well as in combustion processes. Both allene and propyne have strong absorption in the infrared region. In the present work, infrared spectra of a-C3H4 and p-C3H4 are measured in the gas phase at temperatures ranging from 296 to 510 K. The spectra are measured over the 580-3400 cm-1 spectral region at resolutions of 0.08 and 0.25 cm-1 using Fourier Transform Infrared spectroscopy. Absolute integrated intensities of the main infrared bands are determined at room temperature and compared with values derived from literature for both molecules. Integrated band intensities are also determined as a function of temperature in various spectral regions.

  10. Optical Spectra and Color of Silver Colloids

    N.L. Dmitruk


    Full Text Available In present work, the color features of the aqueous silver suspensions were investigated. Color systems CIE XYZ and CIELAB are considered. In the case of low concentrations of nanoparticles chromaticity coordinates were determined from the transmission spectra of the colloids. For high concentrations of nanoparticles, when the multiple scattering effects play a key role and the medium turns to be turbid, the color of nanoparticles was found using the Kubelka-Munk relation. Experimental data is compared with that calculated from the Mie theory. Color features of a planar array of non-interacting silver nanoparticles are discussed for the first time.

  11. The spectra and dynamics of diatomic molecules

    Lefebvre-Brion, Helene


    This book is written for graduate students just beginning research, for theorists curious about what experimentalists actually can and do measure, and for experimentalists bewildered by theory. It is a guide for potential users of spectroscopic data, and uses language and concepts that bridge the frequency-and time-domain spectroscopic communities. Key topics, concepts, and techniques include: the assignment of simple spectra, basic experimental techniques, definition of Born-Oppenheimer and angular momentum basis sets and the associated spectroscopic energy level patterns (Hund's ca

  12. Techniques for classifying acoustic resonant spectra

    Roberts, R.S.; Lewis, P.S.; Chen, J.T.; Vela, O.A.


    A second-generation nondestructive evaluation (NDE) system that discriminates between different types of chemical munitions is under development. The NDE system extracts features from the acoustic spectra of known munitions, builds templates from these features, and performs classification by comparing features extracted from an unknown munition to a template library. Improvements over first-generation feature extraction template construction and classification algorithms are reported. Results are presented on the performance of the system and a large data set collected from surrogate-filled munitions.

  13. Spaces of orderings and abstract real spectra

    Marshall, Murray A


    This book is of interest to students as well as experts in the area of real algebraic geometry, quadratic forms, orderings, valuations, lattice ordered groups and rings, and in model theory. The original motivation comes from orderings on fields and commutative rings. This is explained as is the important application to minimal generation of semi-algebraic sets. Many results in the new theory of abstract real spectra (also called spaces of signs) appear here for the first time. The reader needs elementary knowledge of commutative rings, ordered fields and real closed fields and valuations.

  14. Statistical properties of quantum spectra in nuclei


    Some aspects of quantum chaos in a finite system have been studied based on the analysis of statistical behavior of quantum spectra in nuclei.The experiment data show the transition from order to chaos with increasing excitation energy in spherical nuclei.The dependence of the order to chaos transition on nuclear deformation and nuclear rotating is described.The influence of pairing effect on the order to chaos transition is also discussed.Some important experiment phenomena in nuclear physics have been understood from the point of view of the interplay between order and chaos.

  15. Symmetry in bonding and spectra an introduction

    Douglas, Bodie E


    Many courses dealing with the material in this text are called ""Applications of Group Theory."" Emphasizing the central role and primary importance of symmetry in the applications, Symmetry in Bonding and Spectra enables students to handle applications, particularly applications to chemical bonding and spectroscopy. It contains the essential background in vectors and matrices for the applications, along with concise reviews of simple molecular orbital theory, ligand field theory, and treatments of molecular shapes, as well as some quantum mechanics. Solved examples in the text illustra

  16. Boundary layer heights derived from velocity spectra

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)


    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  17. Algebraic Hamiltonian for Vibrational Spectra of Stibine

    HOU Xi-Wen


    @@ An algebraic Hamiltonian, which in a limit can be reduced to an extended local mode model by Law and Duncan,is proposed to describe both stretching and bending vibrational energy levels of polyatomic molecules, where Fermi resonances between the stretches and the bends are considered. The Hamiltonian is used to study the vibrational spectra of stibine (SbH3). A comparison with the extended local mode model is made. Results of fitting the experimental data show that the algebraic Hamiltonian reproduces the observed values better than the extended local mode model.

  18. Systematics of Identified Hadron Spectra at PHENIX

    Csanad, M


    Mid-rapidity transverse momentum distributions for $\\pi^\\pm$, $K^\\pm$, p and $\\pbar$ are measured by the PHENIX experiment at RHIC in Au+Au, d+Au and p+p collisions at \\ssnn=200GeV up to ~2--4GeV. Also particle ratios of $\\pi^{-}/\\pi^{+}$, $K^{-}/K^{+}$, $\\pbar/p$, $p/\\pi$ and $\\pbar/\\pi$ are measured, as well as the nuclear modification factor, all as a function of \\pt and in every of the above collision systems. Finally, the measured p+p and Au+Au spectra are compared to the Buda-Lund hydro model.

  19. The Hilbert transform: Applications to atomic spectra

    Whittaker, K A; Hughes, I G; Adams, C S


    In many areas of physics, the Kramers-Kronig (KK) relations are used to extract information about the real part of the optical response of a medium from its imaginary counterpart. In this paper we discuss an alternative but mathematically equivalent approach based on the Hilbert transform. We apply the Hilbert transform to transmission spectra to find the group and refractive indices of a Cs vapor, and thereby demonstrate how the Hilbert transform allows indirect measurement of the refractive index, group index and group delay whilst avoiding the use of complicated experimental set ups.


    Fu Y Chiragwandi Z; G(o..)thberg P; Willander M


    We have studied the optical spectra of low-dimensional semiconductor systems by calculating all possible optical transitions between electronic states. Optical absorption and emission have been obtained under different carrier population conditions and in different photon wavelengths. The line-shapes of the peaks in the optical spectrum are determined by the density of electronic states of the system, and the symmetries and intensities of these peaks can be improved by reducing the dimensionality of the system. Optical gain requires in general a population inversion, whereas for a quantum-dot system, there exists a threshold value of the population inversion.

  1. QCD-inspired spectra from Blue's functions

    Nowak, M A; Zahed, I; Nowak, Maciej A; Papp, Gabor; Zahed, Ismail


    We use the law of addition in random matrix theory to analyze the spectral distributions of a variety of chiral random matrix models as inspired from QCD whether through symmetries or models. In terms of the Blue's functions recently discussed by Zee, we show that most of the spectral distributions in the macroscopic limit and the quenched approximation, follow algebraically from the discontinuity of a pertinent solution to a cubic (Cardano) or a quartic (Ferrari) equation. We use the end-point equation of the energy spectra in chiral random matrix models to argue for novel phase structures, in which the Dirac density of states plays the role of an order parameter.

  2. QCD-inspired spectra from Blue's functions

    Nowak, Maciej A.; Papp, Gábor; Zahed, Ismail


    We use the law of addition in random matrix theory to analyze the spectral distributions of a variety of chiral random matrix models as inspired from QCD whether through symmetries or models. In terms of the Blue's functions recently discussed by Zee, we show that most of the spectral distributions in the macroscopic limit and the quenched approximation, follow algebraically from the discontinuity of a pertinent solution to a cubic (Cardano) or a quartic (Ferrari) equation. We use the end-point equation of the energy spectra in chiral random matrix models to argue for novel phase structures, in which the Dirac density of states plays the role of an order parameter.

  3. Evaluation of secondary and prompt fission neutron spectra

    Porodzinskij, Yu.V.; Sukhovitskij, E.Sh. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)


    A simple model allowing to split neutron emission spectra into reaction partials is suggested. Predicted spectra of (n,n`{gamma}), (n,n`f), etc appear to be much harder than usually evaluated. (author)

  4. Method for analysis of low energy backscattering spectra

    Hnatowicz, V.; Kvitek, J. (Ceskoslovenska Akademie Ved, Rez. Ustav Jaderne Fyziky); Pelikan, L. (Ceske Vysoke Uceni Technicke, Prague (Czechoslavika). Dept. of Microelectronics); Rybka, V.; Krejci, P. (Tesla, Prague (Czechoslovakia))


    An analytical formula is proposed describing the shape of the energy spectra of particles backscattered from samples implanted with heavy impurities. The method is suitable for quantitative evaluation of backscattering spectra measured with low energy ions.

  5. [Effect of spectra on growth of chlorella and isochrysis].

    Mao, An-Jun; Wang, Jing; Lin, Xue-Zheng; Meng, Ji-Wu


    Focusing on the speed and efficiency, the effects of different spectra on the growth of chlorella vulgaris and isochrysis galbana Parke 8701 were investigated by using monochromatic LED (light-emitting diode) and fluorescent lamp as light sources. It was concluded that continuous spectra accelerate the top-growth-rate, blue light has the best efficiency, and the combination of them can obtain a good balance of speed and efficiency. For the purpose of measuring spectra as a parameter of irradiation quantitatively, spectra-absorbability-coefficient defined as the quanta-absorbability- efficiency of spectra for algae was calculated by means of absorption spectra of algae and emission spectra of light sources. Compared with the experimental results the coefficients of different light sources have a positive correlation to their efficiency for growth, so the coefficient can be used to elementarily quantify the relation between the spectra and the efficiency for growth.

  6. Study on Mössbauer spectra of hemoglobin in thalassemia

    Xuanhui, Guo; Nanming, Zhao; Xiufang, Zhang; Naifei, Gao; Youwen, Huang; Rongxin, Wang


    The57Fe Mössbauer spectra of erythrocytes in normal subjects and nine patients of different thalassemias were studied. Together with clinical analysis, the correlation between the components in the spectra and different types of anemias was discussed.

  7. Evaluation of secondary and prompt fission neutron spectra

    Porodzinskij, Yu.V.; Sukhovitskij, E.Sh. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)


    A simple model allowing to split neutron emission spectra into reaction partials is suggested. Predicted spectra of (n,n`{gamma}), (n,n`f), etc appear to be much harder than usually evaluated. (author)

  8. Classification of specialty seed meals from NIR reflectance spectra

    Near infrared reflectance spectroscopy was used to identify alternative seed meals proposed for food and feed formulations. Spectra were collected from cold pressed Camelina (Camelina sativa), Coriander (Coriandrum sativum), and Pennycress (Thlaspi arvense) meals. Additional spectra were collected ...

  9. Mapping SOC in a river catchment by integrating laboratory spectra wavelength with remote sensing spectra

    Peng, Yi; Xiong, Xiong; Knadel, Maria;

    There is potential to use soil ·-proximal and remote sensing derived spectra concomitantly to develop soil organic carbon (SOC) models. Yet mixing spectral data from different sources and technologies to improve soil models is still in its infancy. The objective of this study was to incorporate...... soil spectral features indicative of SOC from laboratory visible near-infrared reflectance (vis-NlR) spectra and incorporate them with remote sensing (RS) images to improve predictions of top SOC in the Skjem river catchment, Denmark. The secondary objective was to improve prediction results...... by separately calibrating samples from upland and wetland. We hypbthesize that final prediction accuracy is significantly improved by incorporatin1 laboratory vis-NlR images upscaled from point-based spectra to catchment scale and RS data for topsoil SOC spatial modeling....

  10. The optimization of gamma spectra processing in prompt gamma neutron activation analysis (PGNAA)

    Pinault, Jean-Louis [IAEA Expert, 96 rue du Port David, 45370 Dry (France)], E-mail:; Solis, Jose [Instituto Peruano de Energia Nuclear, Av. Canada No. 1470, San Borja, Lima 41 (Peru)


    The uncertainty of the elemental analysis is one of the major factors governing the utility of on-line Prompt Gamma Neutron Activation Analysis (PGNAA) in the blending and sorting of bulk materials. In this paper, a general method applicable to Gamma spectra processing is presented and applied to PGNAA in mineral industry. Based on the Fourier transform of spectra and their de-correlation in the Fourier space (the improvement of the conditioning of the correlation matrix), processing of overlapping of characteristic peaks minimizes the propagation of random errors, which optimizes the accuracy and decreases the detection limits of elemental analyses. In comparison with classical methods based on the linear combinations of relevant regions of spectra the improvement may be considerable, especially when several elements are interfering. The method is applied to four case stories covering both borehole logging and on-line analysis on conveyor belt of raw materials.

  11. BLAST05: Power Spectra of Bright Galactic Cirrus at Submillimeter Wavelengths

    Roy, Arabindo; Bock, James J; Chapin, Edward L; Devlin, Mark J; Dicker, Simon R; Griffin, Matthew; Gundersen, Joshua O; Halpern, Mark; Hargrave, Peter C; Hughes, David H; Klein, Jeff; Marsden, Gaelen; Martin, Peter G; Mauskopf, Philip; Miville-Deschenes, Marc-Antoine; Netterfield, Calvin B; Olmi, Luca; Pascale, Enzo; Patanchon, Guillaume; Rex, Marie; Scott, Douglas; Semisch, Christopher; Truch, Matthew D P; Tucker, Carole; Tucker, Gregory S; Viero, Marco P; Wiebe, Donald V


    We report multi-wavelength power spectra of diffuse Galactic dust emission from BLAST observations at 250, 350, and 500 microns in Galactic Plane fields in Cygnus X and Aquila. These submillimeter power spectra statistically quantify the self-similar structure observable over a broad range of scales and can be used to assess the cirrus noise which limits the detection of faint point sources. The advent of submillimeter surveys with the Herschel Space Observatory makes the wavelength dependence a matter of interest. We show that the observed relative amplitudes of the power spectra can be related through a spectral energy distribution (SED). Fitting a simple modified black body to this SED, we find the dust temperature in Cygnus X to be 19.9 +/- 1.3 K and in the Aquila region 16.9 +/- 0.7 K. Our empirical estimates provide important new insight into the substantial cirrus noise that will be encountered in forthcoming observations.

  12. A study on the sharp knee and fine structures of cosmic ray spectra


    The paper investigates the overall and detailed features of cosmic ray(CR) spectra in the knee region using the scenario of nuclei-photon interactions around the acceleration sources.Young supernova remnants can be the physical realities of such kind of CR acceleration sites.The results show that the model can well explain the following problems simultaneously with one set of source parameters:the knee of CR spectra and the sharpness of the knee,the detailed irregular structures of CR spectra,the so-called"component B"of Galactic CRs,and the electron/positron excesses reported by recent observations.The coherent explanation serves as evidence that at least a portion of CRs might be accelerated at the sources similar to young supernova remnants,and one set of source parameters indicates that this portion mainly comes from standard sources or from a single source.

  13. Infrared absorption spectra of transition metals-doped soda lime silica glasses

    Khalil, E. M. A.; ElBatal, F. H.; Hamdy, Y. M.; Zidan, H. M.; Aziz, M. S.; Abdelghany, A. M.


    Infrared (IR) absorption spectra of some prepared undoped and transition metals-doped soda-lime-silicate glasses have been studied in the region of 400-4000 cm -1. IR spectra were analyzed to determine and differentiate the various vibrational modes by applying a deconvolution method to the IR spectra. Although the first sight reveals close similarity between the different transition metal- (TM) doped samples; careful inspection indicates some minor differences depending on the type of TM ions. These observed data are correlated with similar energy of the 3d orbitals of TM atoms in the neutral state and when the atoms are ionized, the 3d orbitals becomes more stable than the 4 s orbitals.

  14. Digital Spectra and Analysis of Altitudinal Belts in Tianshan Mountains,China

    ZHANG Baiping; MO Shenguo; WU Hongzhi; XIAO Fei


    Based on the framework of the geo-info spectra of montane altitudinal belts, this paper firstly reviews six classification systems for the spectra of mountain altitudinal belts in China and considers that detailed regional study of altitudinal belts is the key for reaching standardization and systemization of mountain altitudinal belts. Only can this furtheridentify and resolve problems with the study of altitudinal belts. The factors forming the spectra of altitudinal belts are analyzed in the Tianshan Mountains of China, and a digital altitudinal belt system is constructed for the northern flank, Southern flank, the heartland, and Ilivalley in the west. The characteristics of each belt are revealed with a summarization of the pattern of areal differentiation of altitudinal belts.

  15. Correlations between physical properties, formulations, and ATR FTIR spectra of polyurethane foams

    Caughran, Joel A.; Bhat, Sanmitra A.; de Haseth, James A.


    Polyurethane foams of varying surfactant, tin catalyst, and amine catalyst levels were prepared to find formulations that made `good' foams. A good foam is characterized by rise and density. Attenuated Total Reflectance spectra of the foams were collected after the foams were allowed to cure for 24 hours. Because the infrared spectrum shows morphology as well as structure, the ATR spectrum can be used to measure physical properties that are dependent on structure and morphology. The ATR FT-IR spectra were baseline corrected and then normalized by the area in the C-H stretch region to correct for differences in contact area with the ATR crystal. Samples were then taken from the cured foam parallel to the direction of rise to measure tensile strength and air permeability. Correlations were then made between the ATR spectra and the physical properties. Partial least squares (PLS) and principle component regression (PCR) were used to do the correlations.

  16. Femtosecond Transient Absorption Spectra and Relaxation Dynamics of SWNT in SDS Micellar Solutions

    Nadtochenko, V. A.; Lobach, A. S.; Gostev, F. E.; Tcherbinin, D. O.; Sobennikov, A.; Sarkisov, O. M.


    Transient absorption spectra and relaxation dynamics of excited SWNT were studied by femtosecond absorption spectroscopy as a function of: the energy of excitation quanta (ℏω = 2 eV, 2.5 eV, 4 eV); the density of the excitation energy; polarizations of the pump and probe pulses. The transient absorption spectra were monitored by white supercontinuum light pulse in the spectral region of ˜ 1.2 ÷ 3.6 eV. The induced transient absorption spectra of SWNT are considered as filling of the size-quantized energy bands with nonequilibrium carriers; renormalization of the one-dimensional energy bands at high density of the induced plasma; quantum confined Stark effect and screening of excitons. The anisotropic relaxation rate is observed.

  17. Excitonic spectra and energy band structure of ZnAl2Se4 crystals

    Syrbu, N. N.; Zalamai, V. V.; Tiron, A. V.; Tiginyanu, I. M.


    Absorption, reflection and wavelength modulated reflection spectra were investigated in ZnAl2Se4 crystals. The energy positions of ground and excited states for three excitonic series (A, B and C) were determined. The main parameters of excitons and more precise values of energy intervals V1(Γ7)-C1(Γ6), V2(Γ6)-C1(Γ6), and V3(Γ7)-C1(Γ6) were estimated. Values of splitting due to crystal field and spin-orbital interaction were calculated. Effective masses of electrons (mC1∗) and holes (mV1∗, mV2∗, mV3∗) were estimated. Reflection spectra contours in excitonic region were calculated using dispersion equations. Optical functions for E > Eg from measured reflection spectra were assigned on the base of Kramers-Kronig relations.

  18. Absolute Determination of Optical Constants by a Direct Physical Modeling of Reflection Electron Energy Loss Spectra

    Xu, H; Toth, J; Tokesi, K; Ding, Z J


    We present an absolute extraction method of optical constants of metal from the measured reflection electron energy loss (REELS) spectra by using the recently developed reverse Monte Carlo (RMC) technique. The method is based on a direct physical modeling of electron elastic and electron inelastic scattering near the surface region where the surface excitation becomes important to fully describe the spectrum loss feature intensity in relative to the elastic peak intensity. An optimization procedure of oscillator parameters appeared in the energy loss function (ELF) for describing electron inelastic scattering due to the bulk- and surface-excitations was performed with the simulated annealing method by a successive comparison between the measured and Monte Carlo simulated REELS spectra. The ELF and corresponding optical constants of Fe were obtained from the REELS spectra measured at incident energies of 1000, 2000 and 3000 eV. The validity of the present optical data has been verified with the f- and ps-sum r...

  19. Measurement of turbulence spectra using scanning pulsed wind lidars

    Sathe, A.; Mann, J.


    Turbulent velocity spectra, as measured by a scanning pulsed wind lidar (WindCube), are analyzed. The relationship between ordinary velocity spectra and lidar derived spectra is mathematically very complex, and deployment of the three-dimensional spectral velocity tensor is necessary. The resulting

  20. Spectra of {gamma} rays feeding superdeformed bands

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others


    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  1. Non-gaussian CMBR angular power spectra

    Magueijo, J


    In this paper we show how the prediction of CMBR angular power spectra C_l in non-Gaussian theories is affected by a cosmic covariance problem, that is (C_l,C_{l'}) correlations impart features on any observed C_l spectrum which are absent from the average C^l spectrum. Therefore the average spectrum is rendered a bad observational prediction, and two new prediction strategies, better adjusted to these theories, are proposed. In one we search for hidden random indices conditional to which the theory is released from the correlations. Contact with experiment can then be made in the form of the conditional power spectra plus the random index distribution. In another approach we apply to the problem a principal component analysis. We discuss the effect of correlations on the predictivity of non-Gaussian theories. We finish by showing how correlations may be crucial in delineating the borderline between predictions made by non-Gaussian and Gaussian theories. In fact, in some particular theories, correlations may ...

  2. Theoretical Spectra of Terrestrial Exoplanet Surfaces

    Hu, Renyu; Seager, Sara


    We investigate spectra of airless rocky exoplanets with a theoretical framework that self-consistently treats reflection and thermal emission. We find that a silicate surface on an exoplanet is spectroscopically detectable via prominent Si-O features in the thermal emission bands of 7 - 13 \\mu m and 15 - 25 \\mu m. The variation of brightness temperature due to the silicate features can be up to 20 K for an airless Earth analog, and the silicate features are wide enough to be distinguished from atmospheric features with relatively high-resolution spectra. The surface characterization thus provides a method to unambiguously identify a rocky exoplanet. Furthermore, identification of specific rocky surface types is possible with the planet's reflectance spectrum in near-infrared broad bands. A key parameter to observe is the difference between K band and J band geometric albedos (A_g (K)-A_g (J)): A_g (K)-A_g (J) > 0.2 indicates that more than half of the planet's surface has abundant mafic minerals, such as oliv...

  3. Estimating Eulerian Energy Spectra from Drifters

    J. H. LaCasce


    Full Text Available The relations between the kinetic energy spectrum and the second-order longitudinal structure function for 2D non-divergent flow are derived, and several examples are considered. The transform from spectrum to structure function is illustrated using idealized power-law spectra of turbulent inertial ranges. The results illustrate how the structure function integrates contributions across wavenumber, which can obscure the dependencies when the inertial ranges are of finite extent. The transform is also applied to the kinetic energy spectrum of Nastrom and Gage (1985, derived from aircraft data in the upper troposphere; the resulting structure function agrees well with that of Lindborg (1999, calculated with the same data. The transform from structure function to spectrum is then tested with data from 2D turbulence simulations. When applied to the (Eulerian structure function obtained from the transform of the spectrum, the result closely resembles the original spectrum, except at the largest wavenumbers. The deviation at large wavenumbers occurs because the transform involves a filter function which magnifies contributions from large separations. The results are noticeably worse when applied to the structure function obtained from pairs of particles in the flow, as this is usually noisy at large separations. Fitting the structure function to a polynomial improves the resulting spectrum, but not sufficiently to distinguish the correct inertial range dependencies. Furthermore, the transform of steep (non-local spectra is largely unsuccessful. Thus, it appears that with Lagrangian data, it is probably preferable to focus on structure functions, despite their shortcomings.

  4. Video-based ocean wave spectra

    Harbitz, Alf


    A particular video spot detector provides an irradiance time series from an arbitrarily chosen pixel in the video frame. The detector is applied to video records of the ocean surface, and the correspondence between the 1D irradiance frequency spectrum and the corresponding ocean surface elevation spectrum is studied. A major experimental results is that the frequency peak in the irradiance spectrum for a typical wind-driven sea is significantly enhanced compared to the surface slope spectrum. Video experiments from the oil rig Gullfaks A in the North Sea show an excellent agreement between the enhanced peak frequency in the irradiance spectrum and the peak frequency in the surface elevation spectrum measured by a microwave remote ocean surveillance wave radar. The enhancement of the peak in the irradiance spectrum is explained by a strong nonlinear geometrical projection effect. This is due to the rather small look angle with the horizontal, which is chosen so as to neglect irradiance contributions from beneath the sea surface. Based on a simple stochastic model that takes the geometric effect into account, irradiance spectra are simulated and are in good agreement with the experimental spectra.

  5. Atomic Spectra Bibliography Databases at NIST

    Kramida, Alexander


    NIST's Atomic Spectroscopy Data Center maintains three online Bibliographic Databases (BD) containing references to papers with atomic data for controlled fusion research, modeling and diagnostics of astrophysical and terrestrial plasmas, and fundamental properties of electronic spectra of atoms and ions. The NIST Atomic Energy Levels and Spectra BD [] now includes about 11500 references, mostly for years 1967--2007. The NIST Atomic Transition Probability BD, v. 8.1 [] with its 7500 references mainly covers years 1964--2007. The NIST Spectral Line Broadening BD, v. 2.0 [] has 3670 references, mostly for 1978--2006. All three databases are maintained in a unified database management system that allows us to quickly update the contents. Updates become available to users on the next day. An automated Data Entry module makes it easy to enter and categorize the data. The system allows us to keep the contents of all BDs up to date. A number of enhancements made since last year greatly increased public usability of the databases. This work is supported in part by the Office of Fusion Energy Sciences of the U.S. Department of Energy and by the National Aeronautics and Space Administration.

  6. Stellar parametrization from Gaia RVS spectra

    Recio-Blanco, A.; de Laverny, P.; Allende Prieto, C.; Fustes, D.; Manteiga, M.; Arcay, B.; Bijaoui, A.; Dafonte, C.; Ordenovic, C.; Ordoñez Blanco, D.


    Context. Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as GRVS~ 16. A specific stellar parametrization will be performed on most of these RVS spectra, i.e. those with enough high signal-to-noise ratio (S/N), which should correspond to single stars that have a magnitude in the RVS band brighter than ~14.5. Some individual chemical abundances will also be estimated for the brightest targets. Aims: We describe the different parametrization codes that have been specifically developed or adapted for RVS spectra within the GSP-Spec working group of the analysis consortium. The tested codes are based on optimisation (FERRE and GAUGUIN), projection (MATISSE), or pattern-recognition methods (Artificial Neural Networks). We present and discuss each of their expected performances in the recovered stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity) for B- to K-type stars. The performances for determining of [α/Fe] ratios are also presented for cool stars. Methods: Each code has been homogeneously tested with a large grid of RVS simulated synthetic spectra of BAFGK-spectral types (dwarfs and giants), with metallicities varying from 10-2.5 to 10+ 0.5 the solar metallicity, and taking variations of ±0.4 dex in the composition of the α-elements into consideration. The tests were performed for S/N ranging from ten to 350. Results: For all the stellar types we considered, stars brighter than GRVS~ 12.5 are very efficiently parametrized by the GSP-Spec pipeline, including reliable estimations of [α/Fe]. Typical internal errors for FGK metal-rich and metal-intermediate stars are around 40 K in Teff, 0.10 dex in log(g), 0.04 dex in [M/H], and 0.03 dex in [α/Fe] at GRVS = 10.3. They degrade to 155 K in Teff, 0.15 dex in log(g), 0.10 dex in [M/H], and 0.1 dex in [α/Fe] at GRVS~ 12. Similar accuracies in Teff and [M/H] are

  7. Application of class-modelling techniques to infrared spectra for analysis of pork adulteration in beef jerkys.

    Kuswandi, Bambang; Putri, Fitra Karima; Gani, Agus Abdul; Ahmad, Musa


    The use of chemometrics to analyse infrared spectra to predict pork adulteration in the beef jerky (dendeng) was explored. In the first step, the analysis of pork in the beef jerky formulation was conducted by blending the beef jerky with pork at 5-80 % levels. Then, they were powdered and classified into training set and test set. The second step, the spectra of the two sets was recorded by Fourier Transform Infrared (FTIR) spectroscopy using atenuated total reflection (ATR) cell on the basis of spectral data at frequency region 4000-700 cm(-1). The spectra was categorised into four data sets, i.e. (a) spectra in the whole region as data set 1; (b) spectra in the fingerprint region (1500-600 cm(-1)) as data set 2; (c) spectra in the whole region with treatment as data set 3; and (d) spectra in the fingerprint region with treatment as data set 4. The third step, the chemometric analysis were employed using three class-modelling techniques (i.e. LDA, SIMCA, and SVM) toward the data sets. Finally, the best result of the models towards the data sets on the adulteration analysis of the samples were selected and the best model was compared with the ELISA method. From the chemometric results, the LDA model on the data set 1 was found to be the best model, since it could classify and predict 100 % accuracy of the sample tested. The LDA model was applied toward the real samples of the beef jerky marketed in Jember, and the results showed that the LDA model developed was in good agreement with the ELISA method.

  8. On the numerical modelling of VLF chorus dynamical spectra

    D. Nunn


    Full Text Available This paper presents a study of the use of a one-dimensional Vlasov Hybrid Simulation (VHS computer code to simulate the dynamical spectra (i.e. frequency versus time spectrograms of ELF/VLF chorus signals (from ~a fraction to ~10 kHz. Recently excellent measurements of chorus have been made in the source region close to the geomagnetic equator aboard the four spacecraft Cluster mission. Using Cluster data for wave amplitude, which is up to 300 pT, local gyrofrequency, cold plasma density, and L-shell, observed chorus signals are reproduced with remarkable fidelity and, in particular, sweep rates in the range 1–10 kHz result as observed. Further, we find that the sweep rate is a falling function of increasing cold plasma density, again in accord with observations. Finally, we have satisfactorily simulated the rather rare falling frequency elements of chorus which are sometimes observed aboard Cluster in the generation region. For both rising and falling chorus we have presented detailed structural analyses of the generation regions. The main contributor to the frequency sweep rate is primarily the establishment of wave number/frequency gradients across the generation region by the out of phase component of the resonant particle current. The secondary contributor is the shortening of the wavelength of resonant particle current relative to that of the wave field. In view of the close agreement between observation and simulation, we conclude that nonlinear electron cyclotron resonance is indeed the mechanism underlying the generation of chorus signals just outside the plasmasphere.


    Medcraft, Chris; McNaughton, Don; Thompson, Chris D. [School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800 (Australia); Appadoo, Dominique [Australian Synchrotron, Blackburn Road, Clayton, Victoria 3168 (Australia); Bauerecker, Sigurd [Institut fuer Physikalische und Theoretische Chemie, Technische Universitaet Braunschweig, Hans-Sommer-Strasse 10, D-38106 Braunschweig (Germany); Robertson, Evan G., E-mail: [Department of Chemistry and La Trobe Institute of Molecular Sciences, La Trobe University, Bundoora, Victoria 3086 (Australia)


    Spectra of water-ice aerosol particles have been measured in the far-IR region using synchrotron radiation. The particles in the nanoscale size regime of 1-100 nm were formed by rapid collisional cooling at temperatures ranging from 4 to 190 K. The spectra show the characteristic bands centered near 44 {mu}m (230 cm{sup -1}) and 62 {mu}m (160 cm{sup -1}) associated with the intermolecular lattice modes of crystalline ice at all temperatures, in contrast to previous studies of thin films formed by vapor deposition where amorphous ice is generated below 140 K. The bands shift to higher wavenumber values as the temperature is reduced, consistent with the trend seen in earlier studies, but in our experiments the actual peak positions in the aerosol particle spectra are consistently higher by ca. 4 cm{sup -1}. This finding has implications for the potential use of these spectral features as a temperature probe. The particle sizes are small enough for their spectra to be free of scattering effects, and therefore provide a means to assess imaginary refractive index values obtained through Kramers-Kronig analyses of thin film spectra.

  10. Comparative analysis of characteristic electron energy loss spectra and inelastic scattering cross-section spectra of Fe

    Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.


    The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.

  11. An experiment on multibubble sonoluminescence spectra in sodium chloride solution

    CHEN Zhan; XU JunFeng; HUANG Wei; CHEN WeiZhong; MIAO GuoQing


    We investigated experimentally the spectra of MBSL in sodium chloride water solution with krypton as dissolved gas. We observed and compared the spectra of hydroxyl ion at 310 nm and that of sodium atom at 589 nm. It has been found that under the same experimental condition, the intensity of sodium atom spectra is obviously higher than that of the hydroxyl ion spectra, and is more sensitive to the experimental condition. The krypton content, the concentration of sodium chloride solution, and the driving sound pressure obviously affect the spectra intensity in certain range.

  12. Iron line profiles in Suzaku spectra of bare Seyfert galaxies

    Patrick, A R; Porquet, D; Markowitz, A G; Lobban, A P; Terashima, Y


    We methodically model the broad-band Suzaku spectra of a small sample of six 'bare' Seyfert galaxies: Ark 120, Fairall 9, MCG-02-14-009, Mrk 335, NGC 7469 and SWIFT J2127.4+5654. The analysis of bare Seyferts allows a consistent and physical modelling of AGN due to a weak amount of any intrinsic warm absorption, removing the degeneracy between the spectral curvature due to warm absorption and the red-wing of the Fe K region. Through effective modelling of the broad-band spectrum and investigating the presence of narrow neutral or ionized emission lines and reflection from distant material, we obtain an accurate and detailed description of the Fe K line region using models such as laor, kerrdisk and kerrconv. Results suggest that ionized emission lines at 6.7 keV and 6.97 keV (particularly Fe XXVI) are relatively common and the inclusion of these lines can greatly affect the parameters obtained with relativistic models i.e. spin, emissivity, inner radius of emission and inclination. Moderately broad components...

  13. Optical Spectra and Color Nature of Lithium Amphiboles

    S.I. Konovalenko


    Full Text Available Optical absorption spectra of two lithium amphiboles of the pedrisite group from rare-metal peg-matites of the Sangilen rare-metal province in the southeastern part of Tyva have been studied. One of them – a limit magnesian fluoro-sodium pedrisite of yellow-green color – was taken from the rocks hosting pegmatites, and another one – fluoro-sodium ferro-pedrisite of violet-blue color – was taken from pegmatites as such. It has been demonstrated that the color of the yellow-green mineral is associated with absorption bands of Cr3+ ions in the octahedral coordination. Absorption bands of Cr3+ ions in the spectrum of fluoro-sodium pedrisite are formed by a transmission window in the yellow-green region of the spectrum. Therefore, the color of this sample is yellow-green. The color of violet-blue pedrisite is de-fined by intensive absorption bands of charge transfer Fe2+ → Fe3+ 550, 680 nm. Very strong absorption bands of 550 and 680 nm are formed by a transmission window in the violet-blue region of the spectrum. Thus, the color of ferro-pedrisite is violet-blue.


    Infrared spectra were calculated for the low energy geometry optimized structures of glucose and all of its epimers, at B3LYP/6-311++G** level of theory. Calculations were performed both in vacuo and using the COSMO solvation method. Frequencies, zero point energies, enthalpies, entropies, and rel...

  15. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane

    Chandran, Satheesh; Varma, Ravi


    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm- 1 with a resolution of 0.08 cm- 1 using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm- 1 and 8100-8230 cm- 1. No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database.

  16. Energy dependence of radioluminescence spectra from strontium titanate

    Wang, Y., E-mail: [School of Science, China University of Geosciences, Beijing 100083 (China); Zhao, Y.; Zhang, Z.; Zhao, C.; Wu, X. [School of Science, China University of Geosciences, Beijing 100083 (China); Finch, A.A. [Department of Earth & Environmental Sciences, University of St. Andrews, Fife KY16 9AL (United Kingdom); Townsend, P.D. [Physics Building, University of Sussex, Brighton BN1 9QH (United Kingdom)


    X-ray excited luminescence spectra of strontium titanate are reported over the temperature range from 20 to 300 K. The range includes several crystalline phases, each with different emission spectra. The signals are thermally quenched above ~220 K. There are spectral shifts and intensity changes around the temperatures associated with phase changes and overall there are nominally three spectral emission bands. A remarkable observation is that at fixed lower temperatures the spectra undergo major changes with the energy of the X-rays. A possible cause of the effect is discussed in terms of inner shell excitation from the K shell of the strontium. Comparisons with thermoluminescence spectra from the strontium titanate are reported. - Highlights: • Radioluminescence spectra of SrTiO{sub 3} are reported from 20 to 300 K. • X-ray luminescence spectra depend on crystal phase. • Direct evidence for inner shell excitation of Sr controlling emission spectra.


    Line, Michael R. [NASA Ames Research Center, Moffet Field, CA 94035 (United States); Parmentier, Vivien, E-mail: [Department of Astronomy and Astrophysics, University of California–Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States)


    We model the impact of nonuniform cloud cover on transit transmission spectra. Patchy clouds exist in nearly every solar system atmosphere, brown dwarfs, and transiting exoplanets. Our major findings suggest that fractional cloud coverage can exactly mimic high mean molecular weight atmospheres and vice versa over certain wavelength regions, in particular, over the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) bandpass (1.1–1.7 μm). We also find that patchy cloud coverage exhibits a signature that is different from uniform global clouds. Furthermore, we explain analytically why the “patchy cloud-high mean molecular weight” degeneracy exists. We also explore the degeneracy of nonuniform cloud coverage in atmospheric retrievals on both synthetic and real planets. We find from retrievals on a synthetic solar composition hot Jupiter with patchy clouds and a cloud-free high mean molecular weight warm Neptune that both cloud-free high mean molecular weight atmospheres and partially cloudy atmospheres can explain the data equally well. Another key finding is that the HST WFC3 transit transmission spectra of two well-observed objects, the hot Jupiter HD 189733b and the warm Neptune HAT-P-11b, can be explained well by solar composition atmospheres with patchy clouds without the need to invoke high mean molecular weight or global clouds. The degeneracy between high molecular weight and solar composition partially cloudy atmospheres can be broken by observing the molecular Rayleigh scattering differences between the two. Furthermore, the signature of partially cloudy limbs also appears as a ∼100 ppm residual in the ingress and egress of the transit light curves, provided that the transit timing is known to seconds.

  18. Spectra for the product of Gaussian noises

    Kish, L B; Gingl, Z; Granqvist, C G


    Products of Gaussian noises often emerge as the result of non-linear detection techniques or as a parasitic effect, and their proper handling is important in many practical applications, including in fluctuation-enhanced sensing, indoor air or environmental quality monitoring, etc. We use Rice's random phase oscillator formalism to calculate the power density spectra variance for the product of two Gaussian band-limited white noises with zero-mean and the same bandwidth W. The ensuing noise spectrum is found to decrease linearly from zero frequency to 2W, and it is zero for frequencies greater than 2W. Analogous calculations performed for the square of a single Gaussian noise confirm earlier results. The spectrum at non-zero frequencies, and the variance of the square of a noise, is amplified by a factor two as a consequence of correlation effects between frequency products. Our analytic results is corroborated by computer simulations.

  19. Interpreting peptide mass spectra by VEMS

    Mathiesen, Rune; Lundsgaard, M.; Welinder, Karen G.;


    of peptide MS/MS spectra imported in text file format. Peaks are annotated, the monoisotopic peaks retained, and the b-and y-ion series identified in an interactive manner. The called peptide sequence is searched against a local protein database for sequence identity and peptide mass. The report compares...... the calculated and the experimental mass spectrum of the called peptide. The program package includes four accessory programs. VEMStrans creates protein databases in FASTA format from EST or cDNA sequence files. VEMSdata creates a virtual peptide database from FASTA files. VEMSdist displays the distribution...... of masses up to 5000 Da. VEMSmaldi searches singly charged peptide masses against the local database....

  20. Spectra as windows into exoplanet atmospheres.

    Burrows, Adam S


    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets.