Multiphase Flow Dynamics 1 Fundamentals
Kolev, Nikolay Ivanov
2012-01-01
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its fourth extended edition the successful monograph package “Multiphase Flow Dynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the...
Multiphase flow dynamics 1 fundamentals
Kolev, Nikolay Ivanov
2004-01-01
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.
Multiphase flow dynamics 1 fundamentals
Kolev, Nikolay Ivanov
2007-01-01
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.
Multiphase flow dynamics 1 fundamentals
Kolev, Nikolay Ivanov
2015-01-01
In its fifth extended edition the successful monograph package “Multiphase Flow Dynamics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fifth edition includes various updates, extensions, improvements and corrections, as well as a completely new chapter containing the basic physics describing the multi-phase flow in tu...
Martins, Rodrigo S.; Maitelli, Andr L.; Doria Neto, Adriao D.; Salazar, Andres O. [Rio Grande do Norte Univ., Natal, RN (Brazil)
2005-07-01
This paper presents signals processing techniques and artificial neural networks to identify leaks in multiphase flow pipeline. The greatest difficulty on traditional methods of leak detection (volume balance, pressure point analysis, etc) is that they are insufficient to design an adequate profile for the real conditions of oil pipeline transport. These difficult conditions goes since unevenly soil, that cause columns or vacuum throughout pipelines, until the presence of multi phases like water, gas and oil; plus other components as sand, which use to produce discontinuous flow off and diverse variations. To attenuate these difficulties, the transform wavelet was used to map the signal pressure in different resolution plan allowing the extraction of descriptors that identify leaks patterns and with then to provide training for the neural network multilayer perceptron (MLP) to learning of how to classify this pattern and report whenever this characterize leaks. During the tests were used transient and regime signals and pipelines with punctures with size variations from 1/2'' to 1'' of diameter to simulate leaks and, this way, it was possible to detect leaks with a time window of two minutes. The result show that the proposed descriptors considered, based in statistical methods applied in domain transform, are sufficient to identify leaks patterns and make it possible to train the neural classifier to indicate the occurrence of pipeline leaks. (author)
Numerical Solver for Multiphase Flows
Sousa, Victor C B; Scalo, Carlo
2015-01-01
The technological development of micro-scale electronic devices is bounded by the challenge of dissipating their heat output. Latent heat absorbed by a fluid during phase transition offers exceptional cooling capabilities while allowing for the design of compact heat exchangers. The understanding of heat transport dynamics in the context of multiphase flow physics is hampered by the limited access to detailed flow features offered by experimental measurements. Computational Fluid Dynamics (CF...
Multiphase Flow Dynamics 2 Mechanical Interactions
Kolev, Nikolay Ivanov
2012-01-01
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it i...
Multiphase Flow Dynamics 3 Thermal Interactions
Kolev, Nikolay Ivanov
2012-01-01
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is reve...
Frontiers and progress in multiphase flow
2014-01-01
This volume presents state-of-the-art of reviews in the field of multiphase flow. In focusses on nonlinear aspects of multiphase flow networks as well as visualization experiments. The first chapter presents nonlinear aspects or deterministic chaos issues in the systems of multi-phase reactors. The second chapter reviews two-phase flow dynamics in combination with complex network theory. The third chapter discusses evaporation mechanism in the wick of copper heat pipes. The last chapter investigates numerically the flow dynamics and heat and mass transfer in the laminar and turbulent boundary layer on the flat vertical plate.
Reactive multiphase flow simulation workshop summary
VanderHeyden, W.B.
1995-09-01
A workshop on computer simulation of reactive multiphase flow was held on May 18 and 19, 1995 in the Computational Testbed for Industry at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Approximately 35 to 40 people attended the workshop. This included 21 participants from 12 companies representing the petroleum, chemical, environmental and consumer products industries, two representatives from the DOE Office of Industrial Technologies and several from Los Alamos. The dialog at the meeting suggested that reactive multiphase flow simulation represents an excellent candidate for government/industry/academia collaborative research. A white paper on a potential consortium for reactive multiphase flow with input from workshop participants will be issued separately.
Design of Multiphase Flow Experiments
Urkedal, Hege
1998-12-31
This thesis proposes an experimental design procedure for multiphase experiments. The two-phase functions can be determined using data from a single experiment, while the three-phase relative permeabilities must be determined using data from multiple experiments. Various three-phase experimental designs have been investigated and the accuracy with which the flow functions may be determined using the corresponding data have been computed. Analytical sensitivity coefficients were developed from two-phase to three-phase flow. Sensitivity coefficients are the derivative of the model output with respect to the model parameters. They are obtained by a direct method that takes advantage of the fact that the model equations are solved using the Newton-Raphson method, and some of the results from this solution can be used directly when solving the sensitivity equation. Numerical derivatives are avoided, which improves accuracy. The thesis uses an inverse methodology for determination of two- and three-phase relative permeability and capillary pressure functions. The main work has been the development of analytical sensitivity coefficients for two-and three-phase flow. This technical contribution has improved the accuracy both in parameter estimation and accuracy assessment of the estimates and reduced the computer time requirements. The proposed experimental design is also dependent on accurate sensitivity coefficients to give the right guidelines for how two- and three-phase experiments should be conducted. Following the proposed experimental design, three-phase relative permeability and capillary pressure functions have been estimated when multiple sets of experimental data have been reconciled by simulations. 74 refs., 69 figs., 18 tabs.
Simulation of multiphase flow in hydrocyclone
Rudolf P.
2013-04-01
Full Text Available Multiphase gas-liquid-solid swirling flow within hydrocyclone is simulated. Geometry and boundary conditions are based on Hsieh's 75 mm hydrocyclone. Extensive simulations point that standard mixture model with careful selection of interphase drag law is suitable for correct prediction of particle classification in case of dilute suspensions. However this approach fails for higher mass loading. It is also confirmed that Reynolds stress model is the best choice for multiphase modeling of the swirling flow on relatively coarse grids.
Simulation of multiphase flow in hydrocyclone
Rudolf, P.
2013-04-01
Multiphase gas-liquid-solid swirling flow within hydrocyclone is simulated. Geometry and boundary conditions are based on Hsieh's 75 mm hydrocyclone. Extensive simulations point that standard mixture model with careful selection of interphase drag law is suitable for correct prediction of particle classification in case of dilute suspensions. However this approach fails for higher mass loading. It is also confirmed that Reynolds stress model is the best choice for multiphase modeling of the swirling flow on relatively coarse grids.
Simulation of multiphase flow in hydrocyclone
Rudolf P.
2013-01-01
Multiphase gas-liquid-solid swirling flow within hydrocyclone is simulated. Geometry and boundary conditions are based on Hsieh's 75 mm hydrocyclone. Extensive simulations point that standard mixture model with careful selection of interphase drag law is suitable for correct prediction of particle classification in case of dilute suspensions. However this approach fails for higher mass loading. It is also confirmed that Reynolds stress model is the best choice for multiphase modeling of the s...
Multiphase reacting flows modelling and simulation
Marchisio, Daniele L
2007-01-01
The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...
Multiphase flow in porous media using CFD
Hemmingsen, Casper Schytte; Walther, Jens Honore
We present results from a new Navier-Stokes model for multiphase flow in porous media implemented in Ansys Fluent 16.2 [1]. The model includes the Darcy-Forchheimer source terms in the momentum equations and proper account for relative permeability and capillary pressure in the porous media...... to model both the non-porous and porous media using the same formulation....
Online recognition of the multiphase flow regime
BAI BoFeng; ZHANG ShaoJun; ZHAO Liang; ZHANG XiMin; GUO LieJin
2008-01-01
The key reasons that the present method cannot be used to solve the industrial multi-phase flow pattern recognition are clarified firstly. The prerequisite to realize the online recognition is proposed and recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of single sensor performance.
Modeling variability in porescale multiphase flow experiments
Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.
2017-07-01
Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.
Modeling variability in porescale multiphase flow experiments
Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.
2017-07-01
Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e., fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rates. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.
Non-Equilibrium Thermodynamics in Multiphase Flows
Mauri, Roberto
2013-01-01
Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...
Multiphase Flow in Porous Media
Kamyabi, Farad
2014-01-01
In the hydrocarbon reservoirs that are normally saturated with two or more fluids, in order for better description of the flowing fluids behaviors and rockfluid interaction, the concept of relative permeability and capillary pressure should be exploited. Brilliant by Petrell AS is an object-oriented (C++) multi-physics Computational Fluid Dynamics (CFD) package developed for simulation of flow. In the continuous process of improving the system, the aim of this work is to model the multi...
NMR studies of multiphase flows II
Altobelli, S.A.; Caprihan, A.; Fukushima, E. [Lovelace Institutes, Albuquerque, NM (United States)] [and others
1995-12-31
NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.
Online recognition of the multiphase flow regime
2008-01-01
The key reasons that the present method cannot be used to solve the industrial multi- phase flow pattern recognition are clarified firstly. The prerequisite to realize the online recognition is proposed and recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of single sensor performance.
Soft-sensing, non-intrusive multiphase flow meter
Wrobel, K.; Schiferli, W.
2009-01-01
For single phase flow meters more and better non-intrusive or even clamp-on meters become available. This allows for a wider use of meters and for easier flow control. As the demand for multiphase meters is increasing, the current aim is to develop a non-intrusive multiphase flow meter. The non-intr
On the mixture model for multiphase flow
Manninen, M.; Taivassalo, V. [VTT Energy, Espoo (Finland). Nuclear Energy; Kallio, S. [Aabo Akademi, Turku (Finland)
1996-12-31
Numerical flow simulation utilising a full multiphase model is impractical for a suspension possessing wide distributions in the particle size or density. Various approximations are usually made to simplify the computational task. In the simplest approach, the suspension is represented by a homogeneous single-phase system and the influence of the particles is taken into account in the values of the physical properties. This study concentrates on the derivation and closing of the model equations. The validity of the mixture model is also carefully analysed. Starting from the continuity and momentum equations written for each phase in a multiphase system, the field equations for the mixture are derived. The mixture equations largely resemble those for a single-phase flow but are represented in terms of the mixture density and velocity. The volume fraction for each dispersed phase is solved from a phase continuity equation. Various approaches applied in closing the mixture model equations are reviewed. An algebraic equation is derived for the velocity of a dispersed phase relative to the continuous phase. Simplifications made in calculating the relative velocity restrict the applicability of the mixture model to cases in which the particles reach the terminal velocity in a short time period compared to the characteristic time scale of the flow of the mixture. (75 refs.)
Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics
Kolev, Nikolay Ivanov
2012-01-01
The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...
Multiphase flow dynamics 5 nuclear thermal hydraulics
Kolev, Nikolay Ivanov
2015-01-01
This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...
Quantitative tomographic measurements of opaque multiphase flows
GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O' HERN,TIMOTHY J.; CECCIO,STEVEN L.
2000-03-01
An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.
Multiphase groundwater flow near cooling plutons
Hayba, D.O.; Ingebritsen, S.E.
1997-01-01
We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.
Multiphase flows in confinement with complex geometries
Aymard, Benjamin; Pradas, Marc; Vaes, Urbain; Kalliadasis, Serafim
2016-11-01
Understanding the dynamics of immiscible fluids in confinement is crucial in numerous applications such as oil recovery, fuel cells and the rapidly growing field of microfluidics. Complexities such as microstructures, chemical-topographical heterogeneities or porous membranes, can often induce non-trivial effects such as critical phenomena and phase transitions . The dynamics of confined multiphase flows may be efficiently described using diffuse-interface theory, leading to the Cahn-Hilliard-Navier-Stokes(CHNS) equations with Cahn wetting boundary conditions. Here we outline an efficient numerical method to solve the CHNS equations using advanced geometry-capturing mesh techniques both in two and three dimensional scenarios. The methodology is applied to two different systems: a droplet on a spatially chemical-topographical heterogeneous substrateand a microfluidic separator.
Dan Joseph's contributions to disperse multiphase flow
Prosperetti, Andrea
2012-11-01
During his distinguished career, Dan Joseph worked on a vast array of problems. One of these, which occupied him off and on over the last two decades of his life, was that of flows with suspended finite-size particles at finite Reynolds numbers. He realized early on that progress in this field had to rely on the insight gained from numerical simulation, an area in which he was a pioneer. On the basis of the early numerical results he recognized the now famous ``drafting, kissing and tumbling'' mechanism of particle-particle interaction, the possibility of fluidization by lift and many others. With a number of colleagues and a series of gifted students he produced a significant body of work summarized in his on-line book Interrogations of Direct Numerical Simulation of Solid-Liquid Flows available from http://www.efluids.com/efluids/books/joseph.htm. This presentation will describe Joseph's contribution to the understanding of disperse multiphase flow and conclude with some examples from the author's recent work in this area. Supported by NSF.
Workshop on Scientific Issues in Multiphase Flow
Hanratty, Thomas J. [Univ. of Illinois, Urbana, IL (United States)
2003-01-02
This report outlines scientific issues whose resolution will help advance and define the field of multiphase flow. It presents the findings of four study groups and of a workshop sponsored by the Program on Engineering Physics of the Department of Energy. The reason why multiphase flows are much more difficult to analyze than single phase flows is that the phases assume a large number of complicated configurations. Therefore, it should not be surprising that the understanding of why the phases configure in a certain way is the principal scientific issue. Research is needed which identifies the microphysics controlling the organization of the phases, which develops physical models for the resultant multi-scale interactions and which tests their validity in integrative experiments/theories that look at the behavior of a system. New experimental techniques and recently developed direct numerical simulations will play important roles in this endeavor. In gas-liquid flows a top priority is to develop an understanding of why the liquid phase in quasi fully-developed pipe flow changes from one configuration to another. Mixing flows offer a more complicated situation in which several patterns can exist at the same time. They introduce new physical challenges. A second priority is to provide a quantitative description of the phase distribution for selected fully-developed flows and for simple mixing flows (that could include heat transfer and phase change). Microphysical problems of interest are identified – including the coupling of molecular and macroscopic behavior that can be observed in many situations and the formation/destruction of interfaces in the coalescence/breakup of drops and bubbles. Solid-fluid flows offer a simpler system in that interfaces are not changing. However, a variety of patterns exist, that depend on the properties of the particles, their concentration and the Reynolds number characterizing the relative velocity. A top priority is the
Numerical simulation of multiphase cavitating flows around an underwater projectile
无
2011-01-01
The present simulation investigates the multiphase cavitating flow around an underwater projectile.Based on the Homogeneous Equilibrium Flow assumption,a mixture model is applied to simulate the multiphase cavitating flow including ventilated cavitation caused by air injection as well as natural cavitation that forms in a region where the pressure of liquid falls below its vapor pressure. The transport equation cavitating model is applied.The calculations are executed based on a suite of CFD code.The hyd...
2nd International Conference on Multiphase Flow - ICMF '95
Fukano, T; Bataille, Jean
1995-01-01
There is increasing world-wide interest in obtaining an understanding of various multiphase flow phenomena and problems in terms of a common language of multiphase flow. This volume contains state-of-the-art papers which have been contributed from all over the world by experts working on all aspects of multiphase flows. The volume also highlights international technology-sharing in the fields of energy, environment and public health, in order to create a brighter and sustainable future for man and for all life in the next century. It is intended that this volume will serve as a major source of
Multiphase Flow and Fluidization Continuum and Kinetic Theory Descriptions
Gidaspow, Dimitri
1994-01-01
Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and i
Pedone, Richard; Korman, Valentin; Wiley, John T.
2006-05-01
Accurate and reliable multiphase flow measurements are needed for liquid propulsion systems. Existing volumetric flow meters are adequate for flow measurements with well-characterized, clean liquids and gases. However, these technologies are inadequate for multiphase environments, such as cryogenic fluids. Although, properly calibrated turbine flow meters can provide highly accurate and repeatable data, problems are still prevalent with multiphase flows. Limitations are thus placed on the applicability of intrusive turbine flow meters.
Development of predictive simulation capability for reactive multiphase flow
VanderHeyden, W.B.; Kendrick, B.K.
1998-12-31
This is the final report of a Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to develop a self-sustained research program for advanced computer simulation of industrial reactive multiphase flows. The prototype research problem was a three-phase alumina precipitator used in the Bayer process, a key step in aluminum refining. Accomplishments included the development of an improved reaction mechanism of the alumina precipitation growth process, the development of an efficient methods for handling particle size distribution in multiphase flow simulation codes, the incorporation of precipitation growth and agglomeration kinetics in LANL's CFDLIB multiphase flow code library and the evaluation of multiphase turbulence closure models for bubbly flow simulations.
Massively Parallel Direct Simulation of Multiphase Flow
COOK,BENJAMIN K.; PREECE,DALE S.; WILLIAMS,J.R.
2000-08-10
The authors understanding of multiphase physics and the associated predictive capability for multi-phase systems are severely limited by current continuum modeling methods and experimental approaches. This research will deliver an unprecedented modeling capability to directly simulate three-dimensional multi-phase systems at the particle-scale. The model solves the fully coupled equations of motion governing the fluid phase and the individual particles comprising the solid phase using a newly discovered, highly efficient coupled numerical method based on the discrete-element method and the Lattice-Boltzmann method. A massively parallel implementation will enable the solution of large, physically realistic systems.
Multiphase flow metering: 4 years on
Falcone, G.; Hewitt, G.F.; Alimonti, C.; Harrison, B.
2005-07-01
Since the authors' last review in 2001 [1], the use of Multiphase Flow Metering (MFM) within the oil and gas industry continues to grow apace, being more popular in some parts of the world than others. Since the early 1990's, when the first commercial meters started to appear, there have been more than 1,600 field applications of MFM for field allocation, production optimisation and mobile well testing. As the authors predicted, wet gas metering technology has improved to such an extent that its use has rapidly increased worldwide. A ''who's who'' of the MFM sector is provided, which highlights the mergers in the sector and gives an insight into the meters and measurement principles available today. Cost estimates, potential benefits and reliability in the field of the current MFM technologies are revisited and brought up to date. Several measurements technologies have resurfaced, such as passive acoustic energy patterns, infrared wavelengths, Nuclear Magnetic Resonance (NMR) and Electrical Capacitance Tomography (ECT), and they are becoming commercial. The concept of ''virtual metering'', integrated with ''classical MFM'', is now widely accepted. However, sometimes the principles of the MFM measurements themselves are forgotten, submerged in the sales and marketing hype. (author) (tk)
FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)
Wu, Yulin
2015-01-01
The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and
Development of Next Generation Multiphase Pipe Flow Prediction Tools
Cem Sarica; Holden Zhang
2006-05-31
The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The
Viscous and gravitational fingering in multiphase compositional and compressible flow
Moortgat, Joachim
2016-03-01
Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.
Viscous and Gravitational Fingering in Multiphase Compositional and Compressible Flow
Moortgat, Joachim
2016-01-01
Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for 1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and 2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, w...
Multisensor Acquirement System of Electrokinetic in Multiphase Flow
Yahui Bu
2013-09-01
Full Text Available Streaming potential is one kind of electrokinetic effect coupled with fluid flow in porous media, and it has the ability to evaluate properties of rock and fluid in reservoirs. Geophysicists are much concerned about its application in geophysical survey, especially to monitor multiphase flow which is widespread in petroleum industry. To study the electrokinetic effect during multiphase flow, it is necessary to collect electrical and hydraulic parameters in real time. So we designed an acquisition system of multisensors (pressure, flow rate, electrical potential and resistivity, which could conduct measurement process automatically, introduced noise reduction algorithm to the primary analog signals. Data and control command were transmitted in network based on TCP/IP protocol and USB converter. Result from an water-oil displacement experiment showed that this system can effectively and rightly monitor the state of electrokinetic process during multiphase flow
Direct numerical simulations of gas-liquid multiphase flows
Tryggvason, Grétar; Zaleski, Stéphane
2011-01-01
Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and
Multiphase flow of immiscible fluids on unstructured moving meshes
Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam
2012-01-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...
Electrification of particulates in industrial and natural multiphase flows
Gu, Zhaolin
2017-01-01
This book introduces comprehensive fundamentals, numerical simulations and experimental methods of electrification of particulates entrained multiphase flows. The electrifications of two particulate forms, liquid droplets and solid particles, are firstly described together. Liquid droplets can be charged under preset or associated electric fields, while solid particles can be charged through contact. Different charging ways in gas (liquid)-liquid or gas-solid multiphase flows are summarized, including ones that are beneficial to industrial processes, such as electrostatic precipitation, electrostatic spraying, and electrostatic separation, etc., ones harmful for shipping and powder industry, and ones occurring in natural phenomenon, such as wind-blown sand and thunderstorm. This book offers theoretical references to the control and utilization of the charging or charged particulates in multiphase flows as well.
Dynamic effects in multiphase flow: A pore-scale network approach
Gielen, T.; Hassanizadeh, S.M.; Leijnse, A.; Nordhaug, H.F.
2005-01-01
Current theories of multiphase flow rely on capillary pressure and saturation relationships that are commonly measured under static conditions. To incorporate transient behaviour, new multiphase flow theories have been proposed. These include an extended capillary pressure-saturation relationship
Dynamic effects in multiphase flow: A pore-scale network approach
Gielen, T.; Hassanizadeh, S.M.; Leijnse, A.; Nordhaug, H.F.
2005-01-01
Current theories of multiphase flow rely on capillary pressure and saturation relationships that are commonly measured under static conditions. To incorporate transient behaviour, new multiphase flow theories have been proposed. These include an extended capillary pressure-saturation relationship th
Multiphase flow in a confined geometry with Dissipative Particle Dynamics
Visser, D.C.
2015-01-01
The research presented in this thesis is focused on the modelling of multiphase flow in a confined geometry with Dissipative Particle Dynamics (DPD). DPD is a particle-based mesoscopic simulation technique that obeys the Navier-Stokes equations and is particularly useful to model complex fluids and
Qualification of CFD-models for multiphase flows
Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)
2016-05-15
While Computational Fluid Dynamics (CFD) is already an accepted industrial tool for single phase flows it is not yet mature for two-phase flows. For this reason the qualification of CFD for reactor safety relevant applications which involve multiphase flows is a present topic of research. At the CFD division of Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hereby beside an application-oriented model development and validation also more generic investigations are done. Thus, the baseline model strategy aims on the consolidation of the CFD-modelling for multiphase to enable reliable predictions for well-defined flow pattern in future. In addition the recently developed GENTOP-concept broadens the range of applicability of CFD. Different flow morphologies including transitions between them can be considered in frame of this concept.
Belfroid, S.P.C.; Nennie, E.D.; Lewis, M.
2016-01-01
Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum wit
Belfroid, S.P.C.; Nennie, E.D.; Lewis, M.
2016-01-01
Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum wit
Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes
Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam;
2013-01-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...... complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization....
Shock driven multiphase flow with particle evaporation
Dahal, Jeevan; McFarland, Jacob
2016-11-01
The computational study of the shock driven instability of a multiphase system with particle evaporation is presented. The particle evaporation modifies the evolution of the interface due to the addition of the vapor phase to the gas. The effects can be quantitatively measured by studying various gas parameters like density, temperature, vorticity and particle properties like diameter and temperature. In addition, the size distribution of particles also modifies the development of instability as the larger size particles damp the evolution of interface in comparison to the smaller size particles. The simulation results are presented to study these effects using FLASH developed at the FLASH Center at the University of Chicago. The capabilities of FLASH for particle modeling were extended using the Particle in Cell (PIC) technique for coupling of mass, momentum, and energy between the particle and carrier gas. A seeded cylinder of gas with particles having either a single radius or a distribution of radii was studied. The enstrophy production and destruction mechanisms were explored to understand the reason for change in vorticity with particle size.
Development of Next Generation Multiphase Pipe Flow Prediction Tools
Tulsa Fluid Flow
2008-08-31
The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and
Numerical modeling of a compressible multiphase flow through a nozzle
Niedzielska, Urszula; Rabinovitch, Jason; Blanquart, Guillaume
2012-11-01
New thermodynamic cycles developed for more efficient low temperature resource utilization can increase the net power production from geothermal resources and sensible waste heat recovery by 20-40%, compared to the traditional organic Rankine cycle. These improved systems consist of a pump, a liquid heat exchanger, a two-phase turbine, and a condenser. The two-phase turbine is used to extract energy from a high speed multiphase fluid and consists of a nozzle and an axial impulse rotor. In order to model and optimize the fluid flow through this part of the system an analysis of two-phase flow through a specially designed convergent-divergent nozzle has to be conducted. To characterize the flow behavior, a quasi-one-dimensional steady-state model of the multiphase fluid flow through a nozzle has been constructed. A numerical code capturing dense compressible multiphase flow under subsonic and supersonic conditions and the coupling between both liquid and gas phases has been developed. The output of the code delivers data vital for the performance optimization of the two-phase nozzle.
Vertical flow of a multiphase mixture in a channel
Mehrdad Massoudi
2001-01-01
Full Text Available The flow of a multiphase mixture consisting of a viscous fluid and solid particles between two vertical plates is studied. The theory of interacting continua or mixture theory is used. Constitutive relations for the stress tensor of the granular materials and the interaction force are presented and discussed. The flow of interest is an ideal one where we assume the flow to be steady and fully developed; the mixture is flowing between two long vertical plates. The non-linear boundary value problem is solved numerically, and the results are presented for the dimensionless velocity profiles and the volume fraction as functions of various dimensionless numbers.
Mixing and reactions in multiphase flow through porous media
Jimenez-Martinez, J.; Le Borgne, T.; Meheust, Y.; Porter, M. L.; De Anna, P.; Hyman, J.; Tabuteau, H.; Turuban, R.; Carey, J. W.; Viswanathan, H. S.
2016-12-01
The understanding and quantification of flow and transport processes in multiphase systems remains a grand scientific and engineering challenge in natural and industrial systems (e.g., soils and vadose zone, CO2 sequestration, unconventional oil and gas extraction, enhanced oil recovery). Beyond the kinetic of the chemical reactions, mixing processes in porous media play a key role in controlling both fluid-fluid and fluid-solid reactions. However, conventional continuum-scale models and theories oversimplify and/or ignore many important pore-scale processes. Multiphase flows, with the creation of highly heterogeneous fluid velocity fields (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), makes conservative and reactive transport more complex. We present recent multi-scale experimental developments and theoretical approaches to quantify transport, mixing, and reaction and their coupling with multiphase flows. We discuss our main findings: i) the sustained concentration gradients and enhanced reactivity in a two-phase system for a continuous injection, and the comparison with a pulse line injection; ii) the enhanced mixing by a third mobile-immiscible phase; and iii) the role that capillary forces play in the localization of the fluid-solid reactions. These experimental results are for highly-idealized geometries, however, the proposed models are related to basic porous media and unsaturated flow properties, and could be tested on more complex systems.
A Virtual Reality Technique for Multi-phase Flows
Loth, Eric; Sherman, William; Auman, Aric; Navarro, Christopher
2004-04-01
A virtual reality (VR) technique has been developed to allow user immersion (stereo-graphic rendering, user tracking and object interactivity) in generic unsteady three-dimensional multi-phase flow data sets. This article describes the structure and logic used to design and construct a VR technique that employs a multi-phase flow-field computed a priori as an input (i.e. simulations are conducted beforehand with a researcher's multi-phase CFD code). The input field for this flow visualization is divided into two parts: the Eulerian three-dimensional grid nodes and velocities for the continuous fluid properties (specified using conventional TECLOT data format) and the Lagrangian time-history trajectory files for the dispersed fluid. While tracking the dispersed phase trajectories as animated spheres of adjustable size and number, the continuous-phase flow can be simultaneously rendered with velocity vectors, iso-contour surfaces and planar flood-contour maps of different variables. The geometric and notional view of the combined visualization of both phases is interactively controlled throughout a user session. The resulting technique is demonstrated with a 3-D unsteady data set of Lagrangian particles dispersing in a Eulerian description of a turbulent boundary layer, stemming from a direct numerical simulation of the Navier-Stokes equations.
Numerical study on multiphase flows induced by wall adhesion
Myong, Hyon Kook [Kookmin Univ., Seoul (Korea, Republic of)
2012-07-15
The present paper presents a numerical study on multiphase flows induced by wall adhesion. The continuum surface force (CSF) model with the wall adhesion boundary condition model is used for calculating the surface tension force; this model is implemented in an in house solution code (PowerCFD). The present method (code) employs an unstructured cell centered method based on a conservative pressure based finite volume method with a volume capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. The effects of wall adhesion are then numerically simulated by using the present method for a shallow pool of water located at the bottom of a cylindrical tank with no external forces such as gravity. Two different cases are computed, one it which the water wets the wall and one in which the water does not wet the wall. It is found that the present method efficiently simulates the surface tension dominant multiphase flows induced by wall adhesion.
Multiphase flow in fractured porous media
Firoozabadi, A.
1995-02-01
The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.
Numerical modeling of multiphase flow in rough and propped fractures
Dabrowski, Marcin; Dzikowski, Michał; Jasinski, Lukasz; Olkiewicz, Piotr
2017-04-01
crystalline rocks. The detailed pattern of flow paths and effective fracture conductivity are largely dependent on the level of confining stresses and fracture wall roughness, which both determine the shape and distribution of fracture apertures and contact areas. The distribution of proppant grains, which are used to maintain apertures of hydraulic fractures, is a key factor governing fracture flow in industrial applications. The flow of multiphase fluids in narrow apertures of rock fractures may substantially differ from the flow of a single-phase fluid. For example, multiphase flow effects play an important role during all stages of unconventional reservoir life cycle. Multiphase flow conditions are also expected to prevail in high temperature geothermal fields and during the transport of non aqueous phase liquid contaminants in groundwaters. We use direct numerical simulations to study single- and multiphase flow in rough and propped fractures. We compute the fluid flow using either the finite element or the lattice Boltzmann method. Body-fitting, unstructured computational meshes are used to improve the numerical accuracy. The fluid-fluid and fluid-solid interfaces are directly resolved and an implicit approach to surface tension is used to alleviate restrictions due to capillary CFL condition. In FEM simulations, the Beltrami-Laplace operator is integrated by parts to avoid interface curvature computation during evaluation of the surface tension term. We derive and validate an upscaled approach to Stokes flow in propped and rough fractures. Our upscaled 2.5D fracture flow model features a Brinkman term and is capable of treating no-slip boundary conditions on the rims of proppant grains and fracture wall contact areas. The Stokes-Brinkman fracture flow model provides an improvement over the Reynolds model, both in terms of the effective fracture permeability and the local flow pattern. We present numerical and analytical models for the propped fracture
CONTINOUS MULTI-PHASE FLOW REACTOR FOR SMALL AND LARGE FLOW CAPACITIES THAN L/MIN
Al-Rawashdeh, Ma'moun; Schouten, Jaap; Nijhuis, T. Alexander; Yue, Jun
2014-01-01
Multiphase flow processing in flow reactors holds great promises for diverse applications in fine chemicals and materials synthesis primarily due to its precise control over the flow, mixing and reaction inside or between each phase. Even though, flow reactors have shown superior performance, so far
CONTINOUS MULTI-PHASE FLOW REACTOR FOR SMALL AND LARGE FLOW CAPACITIES THAN L/MIN
Al-Rawashdeh, Ma'moun; Schouten, Jaap; Nijhuis, T. Alexander; Yue, Jun
2014-01-01
Multiphase flow processing in flow reactors holds great promises for diverse applications in fine chemicals and materials synthesis primarily due to its precise control over the flow, mixing and reaction inside or between each phase. Even though, flow reactors have shown superior performance, so far
Statistic fluid dynamic of multiphase flow
Lim, Hyunkyung; Glimm, James; Zhou, Yijie; Jiao, Xiangmin
2012-11-01
We study a turbulent two-phase fluid mixing problem from a statistical point of view. The test problem is high speed turbulent two-phase Taylor-Couette flow. We find extensive mixing in a transient state between an initial unstable and a final stable configuration. With chemical processing as a motivation, we estimate statistically surface area, droplet size distribution and transient droplet duration. This work is supported in part by the Nuclear Energy University Program of the Department of Energy, Battelle Energy Alliance LLC 00088495.
Stability Analysis of Reactive Multiphase Slug Flows in Microchannels
Alejandro A. Munera Parra
2014-05-01
Full Text Available Conducting multiphase reactions in micro-reactors is a promising strategy for intensifying chemical and biochemical processes. A major unresolved challenge is to exploit the considerable benefits offered by micro-scale operation for industrial scale throughputs by numbering-up whilst retaining the underlying advantageous flow characteristics of the single channel system in multiple parallel channels. Fabrication and installation tolerances in the individual micro-channels result in different pressure losses and, thus, a fluid maldistribution. In this work, an additional source of maldistribution, namely the flow multiplicities, which can arise in a multiphase reactive or extractive flow in otherwise identical micro-channels, was investigated. A detailed experimental and theoretical analysis of the flow stability with and without reaction for both gas-liquid and liquid-liquid slug flow has been developed. The model has been validated using the extraction of acetic acid from n-heptane with the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate. The results clearly demonstrate that the coupling between flow structure, the extent of reaction/extraction and pressure drop can result in multiple operating states, thus, necessitating an active measurement and control concept to ensure uniform behavior and optimal performance.
Multiphase flow of immiscible fluids on unstructured moving meshes
Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam;
2012-01-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization...... that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted...
Multiphase flows in complex geometries: a UQ perspective
Icardi, Matteo
2015-01-07
Nowadays computer simulations are widely used in many multiphase flow applications involving interphases, dispersed particles, and complex geometries. Most of these problems are solved with mixed models composed of fundamental physical laws, rigorous mathematical upscaling, and empirical correlations/closures. This means that classical inference techniques or forward parametric studies, for example, becomes computationally prohibitive and must take into account the physical meaning and constraints of the equations. However mathematical techniques commonly used in Uncertainty Quantification can come to the aid for the (i) modeling, (ii) simulation, and (iii) validation steps. Two relevant applications for environmental, petroleum, and chemical engineering will be presented to highlight these aspects and the importance of bridging the gaps between engineering applications, computational physics and mathematical methods. The first example is related to the mathematical modeling of sub-grid/sub-scale information with Probability Density Function (PDF) models in problems involving flow, mixing, and reaction in random environment. After a short overview of the research field, some connections and similarities with Polynomial Chaos techniques, will be investigated. In the second example, averaged correlations laws and effective parameters for multiphase flow and their statistical fluctuations, will be considered and efficient computational techniques, borrowed from high-dimensional stochastic PDE problems, will be applied. In presence of interfacial flow, where small spatial scales and fast time scales are neglected, the assessment of robustness and predictive capabilities are studied. These illustrative examples are inspired by common problems arising, for example, from the modeling and simulation of turbulent and porous media flows.
Noninvasive tomographic and velocimetric monitoring of multiphase flows
Chaouki, J. [Ecole Polytechnique de Montreal, Quebec (Canada). Dept. of Chemical Engineering; Larachi, F. [Laval Univ., Quebec (Canada); Dudukovic, M.P. [Washington Univ., St. Louis, MO (United States). Chemical Reaction Engineering Lab.
1997-11-01
A condensed review of recent advances accomplished in the development and the applications of noninvasive tomographic and velocimetric measurement techniques to multiphase flows and systems is presented. In recent years utilization of such noninvasive techniques has become widespread in many engineering disciplines that deal with systems involving two immiscible phases or more. Tomography provides concentration, holdup, or 2D or 3D density distribution of at least one component of the multiphase system, whereas velocimetry provides the dynamic features of the phase of interest such as the flow pattern, the velocity field, the 2D or 3D instantaneous movements, etc. The following review is divided into two parts. The first part summarizes progress and developments in flow imaging techniques using {gamma}-ray and X-ray transmission tomography; X-ray radiography; neutron transmission tomography and radiography; positron emission tomography; X-ray diffraction tomography; nuclear magnetic resonance imaging; electrical capacitance tomography; optical tomography; microwave tomography; and ultrasonic tomography. The second part of the review summarizes progress and developments in the following velocimetry techniques: positron emission particle tracking; radioactive particle tracking; cinematography; laser-Doppler anemometry; particle image velocimetry; and fluorescence particle image velocimetry. The basic principles of tomography and velocimetry techniques are outlined, along with advantages and limitations inherent to each technique. The hydrodynamic and structural information yielded by these techniques is illustrated through a literature survey on their successful applications to the study of multiphase systems in such fields as particulate solids processes, fluidization engineering, porous media, pipe flows, transport within packed beds and sparged reactors, etc.
Interface effects on multiphase flows in porous media
Zhang, Duan Z [Los Alamos National Laboratory
2008-01-01
Most models for multiphase flows in a porous medium are based on the straightforward extension of Darcy's law, in which each fluid phase is driven by its own pressure gradient. The pressure difference between the phases is thought to be an effect of surface tension and is called capillary pressure. Independent of Darcy's law, for liquid imbibition processes in a porous material, diffusion models are sometime used. In this paper, an ensemble phase averaging technique for continuous multi phase flows is applied to derive averaged equations and to examine the validity of the commonly used models. The closure for the averaged equations is quite complicated for general multiphase flows in a porous material. For flows with a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure relations can be simplified significantly by an approximation with a second order error in the length ratio. The approximation reveals the information of the length scale separation obscured during the ensemble averaging process, and leads to an equation system similar to Darcy's law, but with additional terms. Based on interactions on phase interfaces, relations among closure quantities are studied.
Intrusive Method for Uncertainty Quantification in a Multiphase Flow Solver
Turnquist, Brian; Owkes, Mark
2016-11-01
Uncertainty quantification (UQ) is a necessary, interesting, and often neglected aspect of fluid flow simulations. To determine the significance of uncertain initial and boundary conditions, a multiphase flow solver is being created which extends a single phase, intrusive, polynomial chaos scheme into multiphase flows. Reliably estimating the impact of input uncertainty on design criteria can help identify and minimize unwanted variability in critical areas, and has the potential to help advance knowledge in atomizing jets, jet engines, pharmaceuticals, and food processing. Use of an intrusive polynomial chaos method has been shown to significantly reduce computational cost over non-intrusive collocation methods such as Monte-Carlo. This method requires transforming the model equations into a weak form through substitution of stochastic (random) variables. Ultimately, the model deploys a stochastic Navier Stokes equation, a stochastic conservative level set approach including reinitialization, as well as stochastic normals and curvature. By implementing these approaches together in one framework, basic problems may be investigated which shed light on model expansion, uncertainty theory, and fluid flow in general. NSF Grant Number 1511325.
Computational Fluid Dynamics Simulation of Multiphase Flow in Structured Packings
Saeed Shojaee
2012-01-01
Full Text Available A volume of fluid multiphase flow model was used to investigate the effective area and the created liquid film in the structured packings. The computational results revealed that the gas and liquid flow rates play significant roles in the effective interfacial area of the packing. In particular, the effective area increases as the flow rates of both phases increase. Numerical results were compared with the Brunazzi and SRP models, and a good agreement between them was found. Attention was given to the process of liquid film formation in both two-dimensional (2D and three-dimensional (3D models. The current study revealed that computational fluid dynamics (CFD can be used as an effective tool to provide information on the details of gas and liquid flows in complex packing geometries.
Application of microwave reflectometry to disordered petroleum multiphase flow study
Jannier, B.; Dubrunfaut, O.; Ossart, F.
2013-02-01
Microwave reflectometry is applied to multiphase flow metering in the context of oil extraction. Our sensor consists of two open-ended coaxial probes operating at complementary frequencies (at 600 MHz and around 36 GHz) and was designed to resist harsh field conditions. This paper presents and comments on results obtained in realistic dynamic conditions, on a triphasic flow loop (water-oil-gas). The main conclusions are the following: Bruggeman-Hanai's mixing rule applies to natural emulsions and can be used to determine the composition of the water-oil liquid phase; results obtained for annular flows are very sensitive to small perturbations such as bubbles or waves at the liquid-gas interface; in the case of triphasic slug flows, the composition of the liquid phase can be estimated by proper filtering of the data.
WD-XRA technique in multiphase flow measuring
Gogolev, A.S.; Cherepennikov, Yu.M.; Vukolov, A.V. [Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050 (Russian Federation); Rezaev, R.O. [Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050 (Russian Federation); Nuclear University MEPhI, Kashirskoye Shosse 31, Moscow 115409 (Russian Federation); Stuchebrov, S.G. [Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050 (Russian Federation); Hampai, D. [INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Dabagov, S.B. [INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Nuclear University MEPhI, Kashirskoye Shosse 31, Moscow 115409 (Russian Federation); RAS P.N. Lebedev Physical Institute, Lenin Avenue 53, Moscow 119991 (Russian Federation); Liedl, A.; Polese, C. [INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy)
2015-07-15
A new technique to perform the analysis of multiphase fluid flow based on wave dispersive X-ray absorptiometry is suggested. The numerical simulation and comparison of this technique with currently used approaches are provided and a way to increase the luminosity intensity is found that includes the usage the X-ray focusing optics by a bent crystal and a polycapillary semilens. Based on numerical simulation of radiation spectrum the influence of the bent crystal on the luminosity is evaluated and experimentally shown the advantages of using the multicapillary optics.
WD-XRA technique in multiphase flow measuring
Gogolev, A. S.; Cherepennikov, Yu. M.; Vukolov, A. V.; Rezaev, R. O.; Stuchebrov, S. G.; Hampai, D.; Dabagov, S. B.; Liedl, A.; Polese, C.
2015-07-01
A new technique to perform the analysis of multiphase fluid flow based on wave dispersive X-ray absorptiometry is suggested. The numerical simulation and comparison of this technique with currently used approaches are provided and a way to increase the luminosity intensity is found that includes the usage the X-ray focusing optics by a bent crystal and a polycapillary semilens. Based on numerical simulation of radiation spectrum the influence of the bent crystal on the luminosity is evaluated and experimentally shown the advantages of using the multicapillary optics.
Direct Numerical Simulation of Multiphase Flows with Unstable Interfaces
Schillaci, Eugenio; Lehmkuhl, Oriol; Antepara, Oscar; Oliva, Assensi
2016-09-01
This paper presents a numerical model that intends to simulate efficiently the surface instability that arise in multiphase flows, typically liquid-gas, both for laminar or turbulent regimes. The model is developed on the in-house computing platform TermoFluids, and operates the finite-volume, direct numerical simulation (DNS) of multiphase flows by means of a conservative level-set method for the interface-capturing. The mesh size is optimized by means of an adaptive mesh refinement (AMR) strategy, that allows the dynamic re-concentration of the mesh in the vicinity of the interfaces between fluids, in order to correctly represent the diverse structures (as ligaments and droplets) that may rise from unstable phenomena. In addition, special attention is given to the discretization of the various terms of the momentum equations, to ensure stability of the flow and correct representation of turbulent vortices. As shown, the method is capable of truthfully simulate the interface phenomena as the Kelvin-Helmholtz instability and the Plateau-Rayleigh instability, both in the case of 2-D and 3-D configurations. Therefore it is suitable for the simulation of complex phenomena such as simulation of air-blast atomization, with several important application in the field of automotive and aerospace engines. A prove is given by our preliminary study of the 3-D coaxial liquid-gas jet.
Equations and simulations for multiphase compressible gas-dust flows
Oran, Elaine; Houim, Ryan
2014-11-01
Dust-gas multiphase flows are important in physical scenarios such as dust explosions in coal mines, asteroid impact disturbing lunar regolith, and soft aircraft landings dispersing desert or beach sand. In these cases, the gas flow regime can range from highly subsonic and nearly incompressible to supersonic and shock-laden flow, the grain packing can range from fully packed to completely dispersed, and both the gas and the dust can range from chemically inert to highly exothermic. To cover the necessary parameter range in a single model, we solve coupled sets of Navier-Stokes equations describing the background gas and the dust. As an example, a reactive-dust explosion that results in a type of shock-flame complex is described and discussed. Sponsored by the University of Maryland through Minta Martin Endowment Funds in the Department of Aerospace Engineering, and through the Glenn L. Martin Institute Chaired Professorship at the A. James Clark School of Engineering.
Direct numerical simulation of incompressible multiphase flow with phase change
Lee, Moon Soo; Riaz, Amir; Aute, Vikrant
2017-09-01
Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.
Impact Detection for Characterization of Complex Multiphase Flows
Chan, Wai Hong Ronald; Urzay, Javier; Mani, Ali; Moin, Parviz
2016-11-01
Multiphase flows often involve a wide range of impact events, such as liquid droplets impinging on a liquid pool or gas bubbles coalescing in a liquid medium. These events contribute to a myriad of large-scale phenomena, including breaking waves on ocean surfaces. As impacts between surfaces necessarily occur at isolated points, numerical simulations of impact events will require the resolution of molecular scales near the impact points for accurate modeling. This can be prohibitively expensive unless subgrid impact and breakup models are formulated to capture the effects of the interactions. The first step in a large-eddy simulation (LES) based computational methodology for complex multiphase flows like air-sea interactions requires effective detection of these impact events. The starting point of this work is a collision detection algorithm for structured grids on a coupled level set / volume of fluid (CLSVOF) solver adapted from an earlier algorithm for cloth animations that triangulates the interface with the marching cubes method. We explore the extension of collision detection to a geometric VOF solver and to unstructured grids. Supported by ONR/A*STAR. Agency of Science, Technology and Research, Singapore; Office of Naval Research, USA.
Advanced tomographic flow diagnostics for opaque multiphase fluids
Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.
1997-05-01
This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.
4. Workshop - Measurement techniques of stationary and transient multiphase flow
Prasser, H.M. (ed.)
2001-05-01
In November 2000, the 4th Workshop on Measurement Techniques for Stationary and Transient Multiphase Flows took place in Rossendorf. Three previous workshops of this series were national meetings; this time participants from different countries took part. The programme comprised 14 oral presentations, 9 of which are included in these proceedings in full length. A special highlight of the meeting was the main lecture ''Ultrasonic doppler method for bubbly flow measurement'' of Professor Masanori Aritomi, Dr. Hiroshige Kikura and Dr. Yumiko Suzuki. The workshop again dealt with high-resolution phase distribution and phase velocity measurement techniques based on electrical conductivity, ultrasound, laser light and high-speed cinematography. A number of presentations were dedicated to the application of wire-mesh sensors developed by FZR for different applications used by the Technical Universities of Delft and Munich and the Tokyo Institute of Technology. (orig.)
Linear Power-Flow Models in Multiphase Distribution Networks: Preprint
Bernstein, Andrey; Dall' Anese, Emiliano
2017-05-26
This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.
Multiphase flow in lab on chip devices: A real tool for the future
Shui, Lingling; Pennathur, S.; Pennathur, Sumita; Eijkel, Jan C.T.; van den Berg, Albert
2008-01-01
Many applications for lab on a chip (LOC) devices require the use of two or more fluids that are either not chemically related (e.g. oil and water) or in different phases (e.g. liquid and gas). Utilizing multiphase flow in LOC devices allows for both the fundamental study of multiphase flow and the
Multiphase flow dynamics 2 thermal and mechanical interactions
Kolev, Nikolay I
2007-01-01
The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. This book contains theory, methods and practical experience for describing complex transient multi-phase processes. It provides a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics.
Online recognition of the multiphase flow regime and study of slug flow in pipeline
Liejin, Guo; Bofeng, Bai; Liang, Zhao; Xin, Wang; Hanyang, Gu
2009-02-01
Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state[1]. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of
Multi-phase multi-component reactive flow in Geodynamics
Oliveira, Beñat; Afonso, Juan Carlos; Zlotnik, Sergio
2016-04-01
Multi-phase multi-component reactive flow (MPMCRF) controls a number of important complex geodynamic/geochemical problems, such as melt generation and percolation, metasomatism, rheological weakening, magmatic differentiation, ore emplacement, and fractionation of chemical elements, to name a few. These interacting processes occur over very different spatial and temporal scales and under very different physico-chemical conditions. Therefore, there is a strong motivation in geodynamics for investigating the equations governing MPMCRF, their mathematical structure and properties, and the numerical techniques necessary to obtain reliable and accurate results. In this contribution we present results from a novel numerical framework to solve multiscale MPMCRF problems in geodynamic contexts. Our approach is based on the effective tracking of the most basic building blocks: internal energy and chemical composition. This is achieved through the combination of rigorous solutions to the conservation equations (mass, energy and momentum) for each dynamic phase (instead of the more common "mixture-type" approach) and the transport equation for the chemical species, within the context of classical irreversible thermodynamics. Interfacial processes such as phase changes, chemical diffusion+reaction, and surface tension effects are explicitly incorporated in the context of ensemble averaging. Phase assemblages, mineral and melt compositions, and all other physical parameters of multi-phase systems are obtained through dynamic free-energy minimization procedures.
Tsai, C.; Yeh, G.
2011-12-01
In this investigation, newly proposed constitutive retentions are implemented to a fractional-flow based compressible multiphase-phase flow model. With the new model, a compressible three-phase (water, non-aqueous phase liquid (NAPL) and air) flow problem is simulated. In fractional-flow approaches, the three mass balance equations written in terms of three phase pressures are transformed to those in terms of the total pressure, saturation of water, and saturation of total liquid. These three governing equations are discretized with the Galerkin finite element method (FEM). The resulted matrix equation is solved with Bi-CGSTAB. Several numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results show the presented fractional-flow based multiphase flow model is feasible and yields physically realistic solutions for compressible three-phase flow problems in porous media.
Convection in multiphase flows using Lattice Boltzmann methods
Biferale, L; Sbragaglia, M; Toschi, F
2011-01-01
We present high resolution numerical simulations of convection in multiphase flows (boiling) using a novel algorithm based on a Lattice Boltzmann method. We first validate the thermodynamical and kinematical properties of the algorithm. Then, we perform a series of 3d numerical simulations at changing the mean properties in the phase diagram and compare convection with and without phase coexistence at $Ra \\sim 10^7$. We show that in presence of nucleating bubbles non-Oberbeck Boussinesq effects develops, mean temperature profile becomes asymmetric, heat-transfer and heat-transfer fluctuations are enhanced. We also show that small-scale properties of velocity and temperature fields are strongly affected by the presence of buoyant bubble leading to high non-Gaussian profiles in the bulk.
3d Forced multiphase flow on the pore scale
Scholl, Hagen; Singh, Kamaljit; Scheel, Mario; Dimichiel, Marco; Herminghaus, Stephan; Seemann, Ralf
2013-11-01
Using ultra fast x-ray tomography the forced imbibition of an aqueous phase into an initially oil filled matrix is studied. The water is volume controlled flushed into cylindrical columns filled with oil saturated spherical bead packs. The oil displacement is imaged in real time having a spacial resolution of 11 microns and a temporal resolution of about 1 second. To clearly distinguish the aqueous from the oily phase a contrast agent was added to the aqueous phase. The influence of wettability, oil viscosity, gravity and flow velocity was explored and analyzed in terms of temporal development of oil saturation and front shape. It turned out that capillary forces are the key to understand the forced multiphase behavior in the explored parameter range. Funding was provided by the BP-ExploRe project.
Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration
McQuillen, John; Sankovic, John; Lekan, Jack
2006-01-01
The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.
Flow and Diffusion Equations for Fluid Flow in Porous Rocks for the Multiphase Flow Phenomena
Mohammad Miyan
2015-07-01
Full Text Available The multiphase flow in porous media is a subject of great complexities with a long rich history in the field of fluid mechanics. This is a subject with important technical applications, most notably in oil recovery from petroleum reservoirs and so on. The single-phase fluid flow through a porous medium is well characterized by Darcy’s law. In the petroleum industry and in other technical applications, transport is modeled by postulating a multiphase generalization of the Darcy’s law. In this connection, distinct pressures are defined for each constituent phase with the difference known as capillary pressure, determined by the interfacial tension, micro pore geometry and surface chemistry of the solid medium. For flow rates, relative permeability is defined that relates the volume flow rate of each fluid to its pressure gradient. In the present paper, there is a derivation and analysis about the diffusion equation for the fluid flow in porous rocks and some important results have been founded. The permeability is a function of rock type that varies with stress, temperature etc., and does not depend on the fluid. The effect of the fluid on the flow rate is accounted for by the term of viscosity. The numerical value of permeability for a given rock depends on the size of the pores in the rock as well as on the degree of interconnectivity of the void space. The pressure pulses obey the diffusion equation not the wave equation. Then they travel at a speed which continually decreases with time rather than travelling at a constant speed. The results shown in this paper are much useful in earth sciences and petroleum industry.
On the predictive capabilities of multiphase Darcy flow models
Icardi, Matteo
2016-01-09
Darcy s law is a widely used model and the limit of its validity is fairly well known. When the flow is sufficiently slow and the porosity relatively homogeneous and low, Darcy s law is the homogenized equation arising from the Stokes and Navier- Stokes equations and depends on a single effective parameter (the absolute permeability). However when the model is extended to multiphase flows, the assumptions are much more restrictive and less realistic. Therefore it is often used in conjunction with empirical models (such as relative permeability and capillary pressure curves), derived usually from phenomenological speculations and experimental data fitting. In this work, we present the results of a Bayesian calibration of a two-phase flow model, using high-fidelity DNS numerical simulation (at the pore-scale) in a realistic porous medium. These reference results have been obtained from a Navier-Stokes solver coupled with an explicit interphase-tracking scheme. The Bayesian inversion is performed on a simplified 1D model in Matlab by using adaptive spectral method. Several data sets are generated and considered to assess the validity of this 1D model.
Multiphase flow in microfluidic systems - Control and applications of droplets and interfaces
Shui, Lingling; Eijkel, Jan C.T.; Berg, van den Albert
2007-01-01
Micro- and nanotechnology can provide us with many tools for the production, study and detection of colloidal and interfacial systems. In multiphase flow in micro- and nanochannels several immiscible fluids will be separated from each other by flexible fluidic interfaces. The multiphase coexistence
Compositional multiphase flow and transport in heterogeneous porous media
Huber, R.U.
2000-07-01
This work first treats the conceptual models for the description of multiphase flow processes in porous media. The thermodynamic laws are explained and the description and quantification of multi-fluid equilibria are discussed in order to account for fluid composition. The fully and weakly coupled approaches for the mathematical description of such flow processes with respect to systems consisting of two and three fluid phases as well as with respect to compositional single and multiphase systems are assessed. For the discretization of the two-phase flow equations node- and cell-centered finite volume methods and mixed and mixed-hybrid finite element approaches are applied. Based upon these methods five solution algorithms are developed. Four of these algorithms are based on the simultaneous solution of the discretized equations in combination with the Newton-Raphson technique. Methods 1 and 2 treat two- three-phase flow processes, Method 3 applies to the solution of partially miscible three-component systems while Method 4 is created for three-phase three-component systems. The latter method uses a variable substitution dependent on the local presence of the fluid phases. Method 5 is based on the IMPES/IMPESC concept. The time-implicit pressure equation is discretized with the mixed-hybrid finite element method. The saturation and concentration equations, respectively, are solved with a cell-centered finite volume scheme. The developed algorithms are applied to the two- and three-phase Buckley-Leverett problems. A partitioning interwell tracer test is simulated. The propagation behavior of nonaqueous phase liquids (NAPLs) in the saturated and unsaturated ground zone under the influence of heterogeneities are examined. In addition, a larger-scale experiment is simulated, which involves an injection of trichloroethylene into the subsurface and the subsequent distribution. Here, the development of a dissolved contaminant plume as well as the behavior of organic
Multiphase flow analysis using population balance modeling bubbles, drops and particles
Yeoh, Guan Heng; Tu, Jiyuan
2013-01-01
Written by leading multiphase flow and CFD experts, this book enables engineers and researchers to understand the use of PBM and CFD frameworks. Population balance approaches can now be used in conjunction with CFD, effectively driving more efficient and effective multiphase flow processes. Engineers familiar with standard CFD software, including ANSYS-CFX and ANSYS-Fluent, will be able to use the tools and approaches presented in this book in the effective research, modeling and control of multiphase flow problems. Builds a complete understanding of the theory behind the
Rheological flow laws for multiphase magmas: An empirical approach
Pistone, Mattia; Cordonnier, Benoît; Ulmer, Peter; Caricchi, Luca
2016-07-01
The physical properties of magmas play a fundamental role in controlling the eruptive dynamics of volcanoes. Magmas are multiphase mixtures of crystals and gas bubbles suspended in a silicate melt and, to date, no flow laws describe their rheological behaviour. In this study we present a set of equations quantifying the flow of high-viscosity (> 105 Pa·s) silica-rich multiphase magmas, containing both crystals (24-65 vol.%) and gas bubbles (9-12 vol.%). Flow laws were obtained using deformation experiments performed at high temperature (673-1023 K) and pressure (200-250 MPa) over a range of strain-rates (5 · 10- 6 s- 1 to 4 · 10- 3 s- 1), conditions that are relevant for volcanic conduit processes of silica-rich systems ranging from crystal-rich lava domes to crystal-poor obsidian flows. We propose flow laws in which stress exponent, activation energy, and pre-exponential factor depend on a parameter that includes the volume fraction of weak phases (i.e. melt and gas bubbles) present in the magma. The bubble volume fraction has opposing effects depending on the relative crystal volume fraction: at low crystallinity bubble deformation generates gas connectivity and permeability pathways, whereas at high crystallinity bubbles do not connect and act as "lubricant" objects during strain localisation within shear bands. We show that such difference in the evolution of texture is mainly controlled by the strain-rate (i.e. the local stress within shear bands) at which the experiments are performed, and affect the empirical parameters used for the flow laws. At low crystallinity ( 44 vol.%) the viscosity decreases with increasing strain-rate. Because these behaviours are also associated with modifications of sample textures during the experiment and, thus, are not purely the result of different deformation rates, we refer to "apparent shear-thickening" and "apparent shear-thinning" for the behaviours observed at low and high crystallinity, respectively. At low
Hybrid Explicit Residual Distribution Scheme for Compressible Multiphase Flows
Bacigaluppi, Paola; Abgrall, Rémi; Kaman, Tulin
2017-03-01
The aim of this work is the development of a fully explicit scheme in the framework of time dependent hyperbolic problems with strong interacting discontinuities to retain high order accuracy in the context of compressible multiphase flows. A new methodology is presented to compute compressible two-fluid problems applied to the five equation reduced model given in Kapila et al. (Physics of Fluids 2001). With respect to other contributions in that area, we investigate a method that provides mesh convergence to the exact solutions, where the studied non-conservative system is associated to consistent jump relations. The adopted scheme consists of a coupled predictor-corrector scheme, which follows the concept of residual distributions in Ricchiuto and Abgrall (J. Comp. Physics 2010), with a classical Glimm’s scheme (J. Sci. Stat. Comp. 1982) applied to the area where a shock is occurring. This numerical methodology can be easily extended to unstructured meshes. Test cases on a perfect gas for a two phase compressible flow on a Riemann problem have verified that the approximation converges to its exact solution. The results have been compared with the pure Glimm’s scheme and the expected exact solution, finding a good overlap.
Laser velocimeter measurements of multiphase flow of solids
Kadambi, J.R.; Chen, R.C.; Bhunia, S.
1989-01-01
A unique refractive index matched facility for studying solid-liquid multiphase flow has been developed. The refractive index matching of the solid and the liquid allows the use of non-intrusive Laser Doppler Velocimetry (LDV) to measure the solid and the liquid velocities. These measurements will be useful in developing a better understanding of solid-liquid flows, especially solid-liquid and solid-solid interactions. Silica gel and 50% sodium iodide solution in water (refractive index {approx}1.443) are used as the refractive index matched solid and liquid respectively. A two color back scatter mode LDV is used for making velocity measurements. Tests were conducted in solid-liquid slurries with volumetric solid concentration levels of 5% and 15% in the Reynolds number (Re) range of 400 to 9200. Silica gel particles of mean diameter 40 microns were used. Measurements included mapping of the solid and liquid velocities and obtaining the pressure drop data. Signal processing technique utilizing histogram of velocity measurements made at a point and signal amplitude discrimination was successfully used for differentiating between solid and liquid velocities. 34 refs., 61 figs., 5 tabs.
CFD Simulation of Liquid-solid Multiphase Flow in Mud Mixer
T.Y. Kim
2016-08-01
Full Text Available In the present study, a computational fluid dynamics (CFD simulation was performed to analyze the mixing phenomena associated with multi-phase flow in a mud mixing system. For the validation of CFD simulation, firstly a liquid-solid multiphase flow inside horizontal pipe was simulated and compared with the experiments and other numerical simulations. And then, the multiphase flow simulation was carried out for the mud mixer in the drilling handling system in order to understand mixing phenomena and predict the mixing efficiency. For the modeling and simulation, a commercial software, STAR-CCM+, based on a finite-volume method (FVM was adopted. The simulation results for liquid-solid flow inside the pipe shows a good agreement with the experimental data. With the same multiphase model, the simulation for mud mixer is performed under the generalized boundary condition and then pressure drop through the mud mixer will be discussed.
Investigation of hydrate formation and transportability in multiphase flow systems
Grasso, Giovanny A.
The oil and gas industry is moving towards offshore developments in more challenging environments, where evaluating hydrate plugging risks to avoid operational/safety hazards becomes more difficult (Sloan, 2005). Even though mechanistic models for hydrate plug formation have been developed, components for a full comprehensive model are still missing. Prior to this work, research efforts were focused on flowing hydrate particles with relatively little research on hydrate accumulation, leaving hydrate deposition in multiphase flow an unexplored subject. The focus of this thesis was to better understand hydrate deposition as a form of accumu- lation in pipelines. To incorporate the multiphase flow effect, hydrate formation experiments were carried out at varying water cut (WC) from 15 to 100 vol.%, liquid loading (LL) from 50 to 85 vol.%, mixture velocity (vmix) from 0.75 to 3 m/s, for three fluids systems (100 % WC, water in Conroe crude oil emulsions and King Ranch condensate + water) on the ExxonMobil flowloop (4 in. nominal size and 314 ft. long) at Friendswood, TX. For the 100 % WC flowloop tests, hydrate particle distribution transitions beyond a critical hydrate volume concentration, observed values were between 8.2 to 29.4 vol.%, causing a sudden increase in pressure drop (DP). A revised correlation of the transition as a function of Reynolds number and liquid loading was developed. For Conroe emulsions, DP starts increasing at higher hydrate concentrations than King Ranch condensate, many times at 10 vol.%. Experiments with King Ranch show higher relative DP (10 to 25) than Conroe (2 to 10) performed at the same vmix and LL. Cohesive force measurements between cyclopentane hydrate particles were reduced from a value of 3.32 mN/m to 1.26 mN/m when 6 wt.% Conroe was used and to 0.41 mN/m when 5 wt.% Caratinga crude oil was used; similar values were obtained when extracted asphaltenes were used. King Ranch condensate (11 wt.%) did not significantly change the
Particle-in-cell method in multiphase flow simulations
Zhang, Duan; Zou, Qisu; Vanderheyden, Brian
2004-11-01
In many disperse multiphase flows there is of great interest to know the deformations and the possibility of break up of the grains of the disperse phase. Some examples are the pneumatic transport of agriculture grains and the fragment-gas-structure interaction in an explosion. In these examples one needs to consider the stress states in both the disperse phase and the continuous phase. The use of Eulerian method encounters significant difficulties associated with numerical diffusion. The use of Lagrangian method encounters mesh-tangling problem. Expensive re-meshing procedures need to be done frequently. The particle-in-cell method possesses advantages of both methods while avoids their difficulties. A grain of the disperse phase is represented by particles. A particle in the method is not only a Lagrangian marker; it carries mass, momentum, energy and other quantities associated with the grain. Although the particle-in-cell method was invented in the sixties, its recent developments significantly enhanced its capabilities. In this presentation, we outline basic principles and numerical schemes of the particle-in-cell method and then provide examples of its applications. This work is supported by the U.S. Department of Energy. (LA-UR-04-4177)
Multi-phase flow effect on SRM nozzle flow field and thermal protection materials
SHAFQAT Wahab; XIE Kan; LIU Yu
2009-01-01
Multi-phase flow effect generated from the combustion of aluminum based com-posite propellant was performed on the thermal protection material of solid rocket motor (SRM) nozzle. Injection of alumina (Al2O3) particles from 5% to 10% was tried on SRM nozzle flow field to see the influence of multiphase flow on heat transfer computations. A coupled, time resolved CFD (computational fluid dynamics) approach was adopted to solve the conjugate problem of multi-phase fluid flow and heat transfer in the solid rocket motor nozzle. The governing equations are discretized by using the finite volume method. Spalart-Allmaras (S-A) turbulence model was employed. The computation was executed on the dif-ferent models selected for the analysis to validate the temperature variation in the throat in-serts and baking material of SRM nozzle. Comparison for temperatures variations were also carried out at different expansion ratios of nozzle. This paper also characterized the advanced SRM nozzle composites material for their high thermo stability and their high thermo me-chanical capabilities to make it more reliable simpler and lighter.
Monitoring sand particle concentration in multiphase flow using acoustic emission technology
El-Alej, Mohamed Essid
2014-01-01
Multiphase flow is the simultaneous flow of two or several phases through a system such as a pipe. This common phenomenon can be found in the petroleum and chemical engineering industrial fields. Transport of sand particles in multiphase production has attracted considerable attention given sand production is a common problem especially to the oil and gas industry. The sand production causes loss of pipe wall thickness which can lead to expensive failures and loss of product...
Well testing for radially heterogeneous reservoirs under single and multiphase flow conditions
Thompson, L.G.; Reynolds, A.C. [Univ. of Tulsa, OK (United States)
1997-03-01
In this work, the authors examine the behavior of pressure-transient data for single and multiphase flow in radially heterogeneous reservoirs. To illustrate multiphase flow behavior in these systems, they focus on heterogeneous gas-condensate reservoirs; however, they also consider other multiphase flow problems. It is well known that in some instances, e.g., water injection/falloff in homogeneous reservoirs, pressure-transient data from buildup (or falloff) tests cannot be obtained by superposition of drawdown (injection) pressure responses. In fact, drawdown and buildup reflect properties in different regions of the reservoir. This behavior is common to most occurrences of multiphase reservoir flow and is exaggerated in the presence of radial heterogeneity. This theoretical work describes the information contained in transient pressure derivative data and explains the fundamental difference in behavior between multiphase drawdown and buildup pressure-transient data in radially heterogeneous reservoirs. The authors show that multiphase buildup data may be treated like single-phase buildup data, but drawdown data is most indicative of properties in that region of the reservoir where mobility is changing most rapidly with time.
Well testing for heterogeneous reservoirs under single and multiphase flow conditions
Thompson, L.G.; Reynolds, A.C. [Univ. of Tulsa, OK (United States)
1995-12-31
In this work, we examine the behavior of pressure transient data for single and multiphase flow in heterogeneous reservoirs. In order to illustrate multiphase flow behavior in these systems, we focus on heterogeneous gas condensate reservoirs, however, we also consider other multiphase flow problems. It is well known that in some instances, e. g., water injection/falloff in homogeneous reservoirs, pressure transient data from buildup (or falloff) tests cannot be obtained by superposition of drawdown (injection) pressure responses. In fact, drawdown and buildup reflect properties in different regions of the reservoir. This behavior is common to most occurrences of multiphase reservoir flow, and is exaggerated in the presence of radial heterogeneity. This theoretical work describes the information contained in transient pressure derivative data, and explains the fundamental difference in behavior between multiphase drawdown and buildup pressure transient data in radially heterogeneous reservoirs. We show that whereas multiphase buildup data may be treated like single-phase buildup data, drawdown data is most indicative of properties in that region of the reservoir where mobility is changing most rapidly with time.
Predictive simulation of granular flows applied to compressible multiphase flow modeling
Goetsch, Ryan J.; Regele, Jonathan D.
2014-11-01
Multiphase flows have been an active area of research for decades due to their complex nature and occurrence in many engineering applications. However, little information exists about the dense compressible flow regime. Recent experimental work [Wagner et al., Exp. Fluids 52, 1507 (2012)] using a multiphase shock tube has studied gas-solid flows with high solid volume fractions (α = 0 . 2) by measuring shock wave-particle cloud interactions. It is still unclear what occurs at the particle scale inside and behind the particle cloud during this interaction. The objective of this work is to perform direct numerical simulations to understand this phenomena. With this goal in mind, a discrete element method (DEM) solver was developed to predict the properties of a particle cloud formed by gravity driven granular flow through a slit opening. For validation purposes, the results are compared with experimental channel flow data. It is found that the mean velocity profile and mass flow rates correlate well with the experiment, however the fluctuation velocities are significantly under-predicted for both smooth and rough wall cases.
S. Sugiharto1
2013-04-01
Full Text Available Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT having an inner diameter of 24 in (60,96 m. The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct
Modelling of transit-time ultrasonic flow meters under multi-phase flow conditions
Simurda, Matej; Duggen, Lars; Lassen, Benny
2016-01-01
A pseudospectral model for transit time ultrasonic flowmeters under multiphase flow conditions is presented. The method solves first order stress-velocity equations of elastodynamics, with acoustic media being modelled by setting shear modulus to zero. Additional terms to account for the effect...... of the background flow are included. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the Fast Fourier transform. The method is compared against analytical solutions and experimental measurements. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating...
Multiphase Flow Dynamics 4 Turbulence, Gas Adsorption and Release, Diesel Fuel Properties
Kolev, Nikolay Ivanov
2012-01-01
The present Volume 4 of the successful monograh package “Multiphase Flow Dynamics”is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift fo...
Experiments on the transition from stratified to slug flow in multiphase pipe flow
Kristiansen, Olav
2004-12-01
Severe slugging is reported from some field operations, where an increase in the production rate leads to a transition from steady stratified flow to slug flow in the pipeline. The slugs can be longer than anticipated for hydrodynamic slugging and the flow transients can then be a limitation for the production capacity. The objective was to perform a study on the flow pattern transition from stratified to slug flow. A particular point of interest was the possible occurrence of metastable flow and large initial slugs at elevated pressures. New data have been acquired in an experimental investigation of the transition from stratified to slug flow in horizontal and near-horizontal pipes at atmospheric and pressurised conditions. The experiments were performed with two-phase gas liquid and three-phase gas-liquid-liquid flows. Two flow facilities were used the NTNU Multiphase Flow Laboratory (short flow loop) and the SINTEF Multi-phase Flow Laboratory (long flow loop). Hold-up and pressure drop were measured, and flow patterns were determined visually and by evaluation of hold-up time traces. The following parameters were varied: 1) Inlet flow condition by variation of inlet pipe inclination. 2) System pressure (gas density). 3) Test section inclination (horizontal and near-horizontal). 4) Water cut. 5) Gas and liquid flow rates. 6) Pipe length. Slug flow or stratified flow was introduced upstream to promote either early or delayed transition to slug flow in the test section. A time series analysis was performed on the hold-up time traces, and average and distribution slug characteristics are reported, e.g. slug frequency, bubble propagation velocity, slug fraction, slug length, and growth rate. The results have been compared with steady state model predictions. The work consists of the following parts. 1) An initial study was performed at atmospheric air-water conditions in a short pipe. 2) Experiments at atmospheric and elevated pressures were performed in the medium
Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement
Arubi, Tesi I. M.; Yeung, Hoi
2012-03-01
The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.
PREFACE: The 6th International Symposium on Measurement Techniques for Multiphase Flows
Okamoto, Koji; Murai, Yuichi
2009-02-01
Research on multi-phase flows is very important for industrial applications, including power stations, vehicles, engines, food processing, and so on. Also, from the environmental viewpoint, multi-phase flows need to be investigated to overcome global warming. Multi-phase flows originally have non-linear features because they are multi-phased. The interaction between the phases plays a very interesting role in the flows. The non-linear interaction causes the multi-phase flows to be very difficult to understand phenomena. The International Symposium on Measurement Techniques for Multi-phase Flows (ISMTMF) is a unique symposium. The target of the symposium is to exchange the state-of-the-art knowledge on the measurement techniques for non-linear multi-phase flows. Measurement technique is the key technology to understanding non-linear phenomena. The ISMTMF began in 1995 in Nanjing, China. The symposium has continuously been held every two or three years. The ISMTMF-2008 was held in Okinawa, Japan as the 6th symposium of ISMTMF on 15-17 December 2008. Okinawa has a long history as the Ryukyus Kingdom. China and Japan have had cultural and economic exchanges through Okinawa for more than 1000 years. Please enjoy Okinawa and experience its history to enhance our international communication. The present symposium was attended by 124 participants, the program included 107 contributions with 5 plenary lectures, 2 keynote lectures, and 100 oral regular paper presentations. The topics include, besides the ordinary measurement techniques for multiphase flows, acoustic and electric sensors, bubbles and microbubbles, computed tomography, gas-liquid interface, laser-imaging and PIV, oil/coal/drop and spray, solid and powder, spectral and multi-physics. This volume includes the presented papers at ISMTMF-2008. In addition to this volume, ten selected papers will be published in a special issue of Measurement Science and Technology. We would like to express special thanks to all
Numerical Simulation of the Multiphase Flow in the Rheinsahl-Heraeus (RH) System
Geng, Dian-Qiao; Lei, Hong; He, Ji-Cheng
2010-02-01
Knowledge of gas-liquid multiphase flow behavior in the Rheinsahl-Heraeus (RH) system is of great significance to clarify the circulation flow rate, decarburization, and inclusion removal with a reliable description. Thus, based on the separate model of injecting gas behavior, a novel mathematical model of multiphase flow has been developed to give the distribution of gas holdup in the RH system. The numerical results show that the predicted circulation flow rates, the predicted flow velocities, and the predicted mixing times agree with the measured results in a water model and that the predicted tracer concentration curve agrees with the results obtained in an actual RH system. With a lower lifting gas flow rate, the rising gas bubbles are concentrated near the wall; with a higher lifting gas flow rate, gas bubbles can reach the center of the up-snorkel. A critical lifting gas flow rate is used to obtain the maximum circulation flow rate.
Multi-phase flow modeling of soil contamination and soil remediation.
Dijke, van M.I.J.
1997-01-01
In this thesis multi-phase flow models are used to study the flow behavior of liquid contaminants in aquifers and of gases that are injected below the groundwater table for remediation purposes. Considered problems are redistribution of a lens of light nonaqueous phase liquid(LNAPL)on a hor
Kochevsky, A N
2005-01-01
The paper describes capabilities of numerical simulation of liquid flows with solid and/or gas admixtures in centrifugal pumps using modern commercial CFD software packages, with the purpose to predict performance curves of the pumps treating such media. In particular, the approaches and multiphase flow models available in the package CFX-5 are described; their advantages and disadvantages are analyzed.
RECENT ADVANCES IN STUDIES ON MULTIPHASE AND REACTING FLOWS IN CHINA
周力行
2002-01-01
The recent developments and advances of studies on multiphase and reacting flows, including gas-solid, gas-liquid, liquid-solid and reacting flows, in China are reviewed. Special emphasis is laid on the fundamental studies and numerical models. Some important experimental results are also reported. But measurement techniques are not covered.
Modeling hyperelasticity in non-equilibrium multiphase flows
Hank, Sarah; Favrie, Nicolas; Massoni, Jacques
2017-02-01
The aim of this article is the construction of a multiphase hyperelastic model. The Eulerian formulation of the hyperelasticity represents a system of 14 conservative partial differential equations submitted to stationary differential constraints. This model is constructed with an elegant approach where the specific energy is given in separable form. The system admits 14 eigenvalues with 7 characteristic eigenfields. The associated Riemann problem is not easy to solve because of the presence of 7 waves. The shear waves are very diffusive when dealing with the full system. In this paper, we use a splitting approach to solve the whole system using 3 sub-systems. This method reduces the diffusion of the shear waves while allowing to use a classical approximate Riemann solver. The multiphase model is obtained by adapting the discrete equations method. This approach involves an additional equation governing the evolution of a phase function relative to the presence of a phase in a cell. The system is integrated over a multiphase volume control. Finally, each phase admits its own equations system composed of three sub-systems. One and three dimensional test cases are presented.
Edited by Guenther, Chris; Garg, Rahul
2013-08-19
The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.
R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta
2008-10-01
In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena – boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.
An experimental investigation of the multiphase flows in a photobioreactor for algae cultivation
Yang, Zifeng; Hu, Hui; Del Ninno, Matteo; Wen, Zhiyou
2011-11-01
Algal biomass is a promising feedstock for biofuels production, with photobioreactors being one of the major cultivation systems for algal cells. Light absorption, fluid dynamics, and algal metabolism are three key factors in determining the overall performance of a photobioreactor. The behavior of the multiphase flow (i.e., liquid phase - water, gas phase - CO2 and O2, and solid phase - algal cells) and turbulent mixing inside the reactor are the core connecting the three factors together. One of the major challenges in the optimal design of photobioreactors for algae cultivation is the lack of in-depth understanding of the characteristics of the multiphase flows and turbulent mixing. In this study, we present a comprehensive experimental study to investigate the effects of turbulent mixing in photobioreactors on the performance of a photobioreactor for algae cultivation. A high-resolution particle image velocity (PIV) system is used to achieve time-resolved, in-situ flow field measurements to quantify the turbulent mixing of the multiphase flows inside the bioreactor, while algal cultures are also grown in the same reactor with the same experimental settings. The mixing characteristics of the multiphase flow are correlated with the algal growth performance in the bioreactors to elucidate the underlying physics to explore/optimize design paradigms for the optimization of photobioreactor designs for algae cultivation.
Meng, Yiqing; Lucas, Gary
2012-01-01
Flow measurements are playing increasingly important roles in many different application areas, such as manufacturing processes and the oil & gas industry. Multiphase flow measurement in particular is becoming increasingly important to the oil industry. This project concerns the design and implementation of a two-phase flow measurement system which integrates an impedance cross correlation (ICC) flow meter - which can be utilized for measuring the local dispersed phase volume fraction distrib...
Plug, W.J.; Slob, E.C.; Bruining, J.; Moreno Tirado, L.M.
2007-01-01
We present a tool that simultaneously measures the complex permittivity and the capillary pressure characteristics for multiphase flow. The sample holder is a parallel plate capacitor. A precision component analyzer is used to measure the impedance amplitude and phase angle as a function of frequenc
Non-isothermal effects on multi-phase flow in porous medium
Singh, Ashok; Wang, W; Park, C. H.
2010-01-01
In this paper a ppT -formulation for non-isothermal multi-phase flow is given including diffusion and latent heat effects. Temperature and pressure dependencies of governing parameters are considered, in particular surface tension variation on phase interfaces along with temperature changes. A weak...
Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell
Berning, Torsten; Kær, Søren Knudsen
2011-01-01
Transport processes inside polymer electrolyte membrane fuel cells (PEMFC’s) are highly complex and involve convective and diffusive multiphase, multispecies flow through porous media along with heat and mass transfer and electrochemical reactions in conjunction with water transport through an el...
Forces on bends and T-joints due to multiphase flow
Belfroid, S.P.C.; Cargnelutti, M.F.; Schiferli, W.; Osch, M.M.E. van
2010-01-01
To be able to assess the mechanical integrity of piping structures for loading to multiphase flow conditions, air-water experiments were carried out in a horizontal 1" pipe system. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating co
Forces on bends and T-joints due to multiphase flow
Belfroid, S.P.C.; Cargnelutti, M.F.; Schiferli, W.; Osch, M.M.E. van
2010-01-01
To be able to assess the mechanical integrity of piping structures for loading to multiphase flow conditions, air-water experiments were carried out in a horizontal 1" pipe system. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating
Gas-to-liquids process using multi-phase flow, non-thermal plasma microreactor
Agiral, Anil; Nozaki, Tomohiro; Nakase, Masahiko; Yuzawa, Shuhei; Okazaki, Ken; Gardeniers, J.G.E. (Han)
2011-01-01
A multi-phase flow non-thermal plasma microreactor based on dielectric barrier discharge has been developed for partial oxidation of methane to liquid oxygenates at atmospheric pressure. A pulsed water injection method has been used to remove condensable liquid components from the active discharge r
Moortgat, J.; Amooie, M. A.; Soltanian, M. R.
2016-12-01
Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows
Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors
R. A. Berry
2010-11-01
Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single
CFD-DP Modeling of Multiphase Flow in Dense Medium Cyclone
Okan Topcu
2012-03-01
Full Text Available A numerical study of the gas-liquid-solid multi-phase flow in a hydrocyclone is summarized in this paper. The turbulent flow of the gas and the liquid is modelled using the realizable k-epsilon turbulence model, the interface between the liquid and the air core is modelled using the Eulerian multi-phase model and the simulation of the particle flow described by the dense discrete phase model in which the data of the multi-phase flow are used. Separation efficiency, particle trajectories, split ratios, flow field and pressure drop are the examined flow features. The results show that the flow fields in the hydrocyclones are possible to simulate by realizable k-epsilon model which is a fast solver for turbulent flows. The cut size is achieved between 3 and 15 µm. The air-core development is observed to be a transport effect due to the velocity of surrounding fluid rather than a pressure effect. The approach offers a useful method to observe the ﬂow of a hydrocyclone in relation to design of the system and operational conditions.
Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method
Yang, P.; Xiang, J.; Fang, F.; Pavlidis, D.; Latham, J.-P.; Pain, C. C.
2016-09-01
An immersed-body method is developed here to model fluid-structure interaction for multiphase viscous flows. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model. A coupling term containing the fluid stresses is introduced within a thin shell mesh surrounding the solid surface. The thin shell mesh acts as a numerical delta function in order to help apply the solid-fluid boundary conditions. When used with an advanced interface capturing method, the immersed-body method has the capability to solve problems with fluid-solid interfaces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid coupling terms are treated implicitly to enable larger time steps to be used. This two-way coupling method has been validated by three numerical test cases: a free falling cylinder in a fluid at rest, elastic membrane and a collapsing column of water moving an initially stationary solid square. A fourth simulation example is of a water-air interface with a floating solid square being moved around by complex hydrodynamic flows including wave breaking. The results show that the immersed-body method is an effective approach for two-way solid-fluid coupling in multiphase viscous flows.
Cueto-Felgueroso, L.; Fu, X.; Juanes, R.
2016-12-01
The description of multicomponent flows with complex phase behavior remains an open challenge in pore-scale modeling. Darcy-scale general purpose simulators assume local thermodynamic equilibrium, and perform equation-of-state-based calculations to make phase equilibrium predictions; that is, to determine the phase volume fractions and their compositions from overall component mole fractions. What remains unclear is whether the thermodynamic equilibrium assumption is valid given the flow conditions, complex structure of the pore space and characteristic time scales for flow. Diffuse-interface theories of multiphase flow have recently emerged as promising tools to understand and simulate complex processes involving the simultaneous flow of two or more immiscible fluid phases. The common goal in these approaches is to formulate thermodynamically consistent stress tensors and mesoscale balance laws, including the impact of surface tension on the momentum balance, as well as properly tracking interfacial dynamics and mass transfer. We propose a phase-field model of multiphase, multicomponent flow, which we use to address the following research questions: What is the impact of the wetting conditions at the pore scale on upscaled descriptions of multiphase flow? What is the impact of the displacement dynamics, pore space structure and wetting conditions on the phase behavior of multicomponent mixtures? We finally investigate upscaling procedures to incorporate non-equilibrium phase behavior at the continuum scale.
Experimental and computational analysis of pressure response in a multiphase flow loop
Morshed, Munzarin; Amin, Al; Rahman, Mohammad Azizur; Imtiaz, Syed
2016-07-01
The characteristics of multiphase fluid flow in pipes are useful to understand fluid mechanics encountered in the oil and gas industries. In the present day oil and gas exploration is successively inducing subsea operation in the deep sea and arctic condition. During the transport of petroleum products, understanding the fluid dynamics inside the pipe network is important for flow assurance. In this case the information regarding static and dynamic pressure response, pressure loss, optimum flow rate, pipe diameter etc. are the important parameter for flow assurance. The principal aim of this research is to represents computational analysis and experimental analysis of multi-phase (L/G) in a pipe network. This computational study considers a two-phase fluid flow through a horizontal flow loop with at different Reynolds number in order to determine the pressure distribution, frictional pressure loss profiles by volume of fluid (VOF) method. However, numerical simulations are validated with the experimental data. The experiment is conducted in 76.20 mm ID transparent circular pipe using water and air in the flow loop. Static pressure transducers are used to measure local pressure response in multiphase pipeline.
O`Hern, T.J.; Torczynski, J.R.; Shagam, R.N.; Blanchat, T.K.; Chu, T.Y.; Tassin-Leger, A.L.; Henderson, J.A.
1997-01-01
This report summarizes the work performed under the Sandia Laboratory Directed Research and Development (LDRD) project ``Optical Diagnostics for Turbulent and Multiphase Flows.`` Advanced optical diagnostics have been investigated and developed for flow field measurements, including capabilities for measurement in turbulent, multiphase, and heated flows. Particle Image Velocimetry (PIV) includes several techniques for measurement of instantaneous flow field velocities and associated turbulence quantities. Nonlinear photorefractive optical materials have been investigated for the possibility of measuring turbulence quantities (turbulent spectrum) more directly. The two-dimensional PIV techniques developed under this LDRD were shown to work well, and were compared with more traditional laser Doppler velocimetry (LDV). Three-dimensional PIV techniques were developed and tested, but due to several experimental difficulties were not as successful. The photorefractive techniques were tested, and both potential capabilities and possible problem areas were elucidated.
2013-01-01
Incompressible MHD solver for Arbitrary Geome- tries) is developed to model the flow of liquid metal with free surfaces in the presence of strong multi...24] C. B. Reed S. Molokov. Review of free-surface mhd experiments and modeling . Technical Report ANL/TD/TM99-08, Argonne National Laboratory, 1999...and the corresponding paralleled implementation for the study of magnetohydrodynamics ( MHD ) of large density ratio, three-dimensional multiphase flows
Meng, Yiqing; Lucas, Gary P.
2017-05-01
This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water
Nonequilibrium Physics and Phase-Field Modeling of Multiphase Flow in Porous Media
Juanes, Ruben [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2016-09-01
The overarching goal of this project was to develop a new continuum theory of multiphase flow in porous media. The theory follows a phase-field modeling approach, and therefore has a sound thermodynamical basis. It is a phenomenological theory in the sense that its formulation is driven by macroscopic phenomena, such as viscous instabilities during multifluid displacement. The research agenda was organized around a set of hypothesis on hitherto unexplained behavior of multiphase flow. All these hypothesis are nontrivial, and testable. Indeed, a central aspect of the project was testing each hypothesis by means of carefully-designed laboratory experiments, therefore probing the validity of the proposed theory. The proposed research places an emphasis on the fundamentals of flow physics, but is motivated by important energy-driven applications in earth sciences, as well as microfluidic technology.
Lattice Boltzmann methods for multiphase flow and phase-change heat transfer
Li, Qing; Kang, Q J; He, Y L; Chen, Q; Liu, Q
2016-01-01
Over the past few decades, tremendous progress has been made in the development of particle-based discrete simulation methods versus the conventional continuum-based methods. In particular, the lattice Boltzmann (LB) method has evolved from a theoretical novelty to a ubiquitous, versatile and powerful computational methodology for both fundamental research and engineering applications. It is a kinetic-based mesoscopic approach that bridges the microscales and macroscales, which offers distinctive advantages in simulation fidelity and computational efficiency. Applications of the LB method have been found in a wide range of disciplines including physics, chemistry, materials, biomedicine and various branches of engineering. The present work provides a comprehensive review of the LB method for thermofluids and energy applications, focusing on multiphase flows, thermal flows and thermal multiphase flows with phase change. The review first covers the theoretical framework of the LB method, revealing the existing ...
Modeling and simulation challenges in Eulerian-Lagrangian computations of multiphase flows
Diggs, Angela; Balachandar, S.
2017-01-01
The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Grid-Based (GB) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Particle-Based (PB) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, GB methods are used in multiphase flow, but sub-grid resolution can be obtained through use of PB methods. By evaluating the total error and its components we compare the performance of GB and PB methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities.
Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.
2016-12-01
It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated
Optical density measurements in a multiphase cryogenic fluid flow system
Korman, Valentin; Wiley, John; Gregory, Don A.
2006-05-01
An accurate determination of fluid flow in a cryogenic propulsion environment is difficult under the best of circumstances. The extreme thermal environment increases the mechanical constraints, and variable density conditions create havoc with traditional flow measurement schemes. Presented here are secondary results of cryogenic testing of an all-optical sensor capable of a mass flow measurement by directly interrogating the fluid's density state and a determination of the fluid's velocity. The sensor's measurement basis does not rely on any inherent assumptions as to the state of the fluid flow (density or otherwise). The fluid sensing interaction model will be discussed. Current test and evaluation data and future development work will be presented.
Advanced Multi-Phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis
Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise
1993-01-01
It is known that the simulations of solid rocket motor internal flow field with AL-based propellants require complex multi-phase turbulent flow model. The objective of this study is to develop an advanced particulate multi-phase flow model which includes the effects of particle dynamics, chemical reaction and hot gas flow turbulence. The inclusion of particle agglomeration, particle/gas reaction and mass transfer, particle collision, coalescence and breakup mechanisms in modeling the particle dynamics will allow the proposed model to realistically simulate the flowfield inside a solid rocket motor. The Finite Difference Navier-Stokes numerical code FDNS is used to simulate the steady-state multi-phase particulate flow field for a 3-zone 2-D axisymmetric ASRM model and a 6-zone 3-D ASRM model at launch conditions. The 2-D model includes aft-end cavity and submerged nozzle. The 3-D model represents the whole ASRM geometry, including additional grain port area in the gas cavity and two inhibitors. FDNS is a pressure based finite difference Navier-Stokes flow solver with time-accurate adaptive second-order upwind schemes, standard and extended k-epsilon models with compressibility corrections, multi zone body-fitted formulations, and turbulence particle interaction model. Eulerian/Lagrangian multi-phase solution method is applied for multi-zone mesh. To simulate the chemical reaction, penalty function corrected efficient finite-rate chemistry integration method is used in FDNS. For the AL particle combustion rate, the Hermsen correlation is employed. To simulate the turbulent dispersion of particles, the Gaussian probability distribution with standard deviation equal to (2k/3)(exp 1/2) is used for the random turbulent velocity components. The computational results reveal that the flow field near the juncture of aft-end cavity and the submerged nozzle is very complex. The effects of the turbulent particles affect the flow field significantly and provide better
Multiphase flow modeling of landslide induced impulse wave by VOF method
Paik, J.; Shin, C.
2015-12-01
Numerical simulations of impulse waves induced by landslides are carried out using a multiphase modeling approach. The three-dimensional filtered Navier-Stokes equations are used for reproduces the propagation and interaction of Newtonian water wave and non-Newtonian debris flow along the bottom. A multiphase volume of fluid (VOF) method is employed for tracking of fluid interfaces. The governing equations are solved by a second-order-accurate in space and time, finite volume methods and the no-slip conditions are applied for all solid wall. The turbulent shear stress is calculated the Smagorinsky model and the non-Newtonian behavior of debris flow is computed by the Hershel-Bulkley fluid model. The multiphase flow model is applied to reproduce the laboratory measurements of Fritz (Pure Appl. Geophys., 166, 153, 2009) who experimentally investigated the propagation of impulse wave induced by the 1958 Lituya Bay Landslide. The numerical results shows that the proper treatment of the non-Newtonian behavior of debris flow is essential to reproduce its head speed and shape which control the deformation and propagation of the resulting impulse wave.
Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media
McBride, J.F. (ed.) (Pacific Northwest Lab., Richland, WA (USA)); Graham, D.N. (ed.); Schiegg, H.O. (SIMULTEC Ltd., Meilen/Zurich (Switzerland))
1990-10-01
In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs.
V. V. Myamlin
2011-04-01
Full Text Available The algorithm of computer simulation of the flexible flow for repair of cars as a multiphase polychannel manyobject queuing system is presented. The basic operators of the model are given and their work is described.
Monitoring of multiphase flows for superconducting accelerators and others applications
Filippov, Yu. P.; Kakorin, I. D.; Kovrizhnykh, A. M.; Miklayev, V. M.
2017-07-01
This paper is a review on implementation of measuring systems for two-phase helium, hydrogen, liquefied natural gas (LNG), and oil-formation/salty water flows. Two types of such systems are presented. The first type is based on two-phase flow-meters combining void fraction radio-frequency (RF) sensors and narrowing devices. They can be applied for superconducting accelerators cooled with two-phase helium, refueling hydrogen system for space ships and some applications in oil production industry. The second one is based on combination of a gamma-densitometer and a narrowing device. These systems can be used to monitor large two-phase LNG and oil-formation water flows. An electronics system based on a modular industrial computer is described as well. The metrological characteristics for different flow-meters are presented and the obtained results are discussed. It is also shown that the experience gained allows separationless flow-meter for three-phase oil-gas-formation water flows to be produced.
Safi, Seyed Mohammad Amin
2016-01-01
Multiphase flow simulations benefit a variety of applications in science and engineering as for example in the dynamics of bubble swarms in heat exchangers and chemical reactors or in the prediction of the effects of droplet or bubble impacts in the design of turbomachinery systems. Despite all the progress in the modern computational fluid dynamics (CFD), such simulations still present formidable challenges both from numerical and computational cost point of view. Emerging as ...
Accounting for Surface Concentrations Using a VOF Front Tracking Method in Multiphase Flow
Martin, David Warren
2015-01-01
In this dissertation, we present a numerical method for trackingsurfactants on an interface in multiphase flow, along withapplications of the method to two physical problems. We alsopresent an extension of our method to track charged droplets. Ourmethod combines a traditional volume of fluid (VOF) method withmarker tracking. After describing this method in detail, wepresent a series of tests we used to validate our method. Theapplications we consider are the coalescence of surfactant-ladendro...
Experimental Study of Stable Surfaces for Anti-Slug Control in Multi-phase Flow
Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu
2014-01-01
The severe slugging flow is always challenging in oil & gas production, especially for the current offshore based production. The slugging flow can cause a lot of potential problems, such as those relevant to production safety, fatigue as well as capability. As one typical phenomenon in multi......-phase flow dynamics, the slug can be avoided or eliminated by proper facility design and control of operational conditions. Based on a testing facility which can emulate a pipeline-riser or a gas-lifted production well in a scaled-down manner, this paper experimentally studies the correlations of key...
Balakin, B. V.; Adamsen, T. C. H.; Chang, Y.-F.; Kosinski, P.; Hoffmann, A. C.
2017-01-01
Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations.
Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications
Lee, Taehun [City Univ. (CUNY), NY (United States)
2015-10-20
The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.
Complexity Reduction of Multiphase Flows in Heterogeneous Porous Media
Ghommem, Mehdi
2015-04-22
In this paper, we apply mode decomposition and interpolatory projection methods to speed up simulations of two-phase flows in heterogeneous porous media. We propose intrusive and nonintrusive model-reduction approaches that enable a significant reduction in the size of the subsurface flow problem while capturing the behavior of the fully resolved solutions. In one approach, we use the dynamic mode decomposition. This approach does not require any modification of the reservoir simulation code but rather post-processes a set of global snapshots to identify the dynamically relevant structures associated with the flow behavior. In the second approach, we project the governing equations of the velocity and the pressure fields on the subspace spanned by their proper-orthogonal-decomposition modes. Furthermore, we use the discrete empirical interpolation method to approximate the mobility-related term in the global-system assembly and then reduce the online computational cost and make it independent of the fine grid. To show the effectiveness and usefulness of the aforementioned approaches, we consider the SPE-10 benchmark permeability field, and present a numerical example in two-phase flow. One can efficiently use the proposed model-reduction methods in the context of uncertainty quantification and production optimization.
Multiphase flow through porous media: an adaptive control volume finite element formulation
Mostaghimi, P.; Tollit, B.; Gorman, G.; Neethling, S.; Pain, C.
2012-12-01
Accurate modeling of multiphase flow in porous media is of great importance in a wide range of applications in science and engineering. We have developed a numerical scheme which employs an implicit pressure explicit saturation (IMPES) algorithm for the temporal discretization of the governing equations. The saturation equation is spatially discretized using a node centered control volume method on an unstructured finite element mesh. The face values are determined through an upwind scheme. The pressure equation is spatially discretized using a continuous control volume finite element method (CV-FEM) to achieve consistency with the discrete saturation equation. The numerical simulation is implemented in Fluidity, an open source and general purpose fluid simulator capable of solving a number of different governing equations for fluid flow and accompanying field equations on arbitrary unstructured meshes. The model is verified against the Buckley-Leverett problem where a quasi-analytical solution is available. We discuss the accuracy and the order of convergence of the scheme. We demonstrate the scheme for modeling multiphase flow in a synthetic heterogeneous porous medium along with the use of anisotropic mesh adaptivity to control local solution errors and increase computational efficiency. The adaptive method is also used to simulate two-phase flow in heap leaching, an industrial mining process, where the flow of the leaching solution is gravitationally dominated. Finally we describe the extension of the developed numerical scheme for simulation of flow in multiscale fractured porous media and its capability to model the multiscale characterization of flow in full scale.
Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow
Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Mâløy, Knut Jørgen; Flekkøy, Eirik Grude
2016-07-01
We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition—and complete evacuation of the granular suspension—when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime.
An adaptive solution domain algorithm for solving multiphase flow equations
Katyal, A. K.; Parker, J. C.
1992-01-01
An adaptive solution domain (ASD) finite-element model for simulating hydrocarbon spills has been developed that is computationally more efficient than conventional numerical methods. Coupled flow of water and oil with an air phase at constant pressure is considered. In the ASD formulation, the solution domain for water- and oil-flow equations is restricted by eliminating elements from the global matrix assembly which are not experiencing significant changes in fluid saturations or pressures. When any nodes of an element exhibit changes in fluid pressures more than a stipulated tolerance τ, or changes in fluid saturations greater than tolerance τ 2 during the current time step, it is labeled active and included in the computations for the next iteration. This formulation achieves computational efficiency by solving the flow equations for only the part of the domain where changes in fluid pressure or the saturations take place above stipulated tolerances. Examples involving infiltration and redistribution of oil in 1- and 2-D spatial domains are described to illustrate the application of the ASD method and the savings in the processor time achieved by this formulation. Savings in the computational effort up to 84% during infiltration and 63% during redistribution were achieved for the 2-D example problem.
Stochastic Rotation Dynamics simulations of wetting multi-phase flows
Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin
2016-06-01
Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.
A Radiative Transfer Modeling Methodology in Gas-Liquid Multiphase Flow Simulations
Gautham Krishnamoorthy
2014-01-01
Full Text Available A methodology for performing radiative transfer calculations in computational fluid dynamic simulations of gas-liquid multiphase flows is presented. By considering an externally irradiated bubble column photoreactor as our model system, the bubble scattering coefficients were determined through add-on functions by employing as inputs the bubble volume fractions, number densities, and the fractional contribution of each bubble size to the bubble volume from four different multiphase modeling options. The scattering coefficient profiles resulting from the models were significantly different from one another and aligned closely with their predicted gas-phase volume fraction distributions. The impacts of the multiphase modeling option, initial bubble diameter, and gas flow rates on the radiation distribution patterns within the reactor were also examined. An increase in air inlet velocities resulted in an increase in the fraction of larger sized bubbles and their contribution to the scattering coefficient. However, the initial bubble sizes were found to have the strongest impact on the radiation field.
Lei, Huan; Baker, Nathan A.; Wu, Lei; Schenter, Gregory K.; Mundy, Christopher J.; Tartakovsky, Alexandre M.
2016-08-01
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface.
Lei, Huan; Baker, Nathan A.; Wu, Lei; Schenter, Gregory K.; Mundy, Christopher J.; Tartakovsky, Alexandre M.
2016-08-05
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.
Research on Underwater Vehicle Based on Multiphase Flow Control
Zhang Xiaoshi
2015-01-01
Full Text Available The commercial software ANSYS CFX is used for modeling the hydrodynamic characteristics of submarine-launched vehicle. In the numerical simulations, the SST (Shear Stress Transport turbulence model is employed to describe the turbulence phenomenon occurring in the continuous fluid. The Rayleigh-Plesset equations are applied to analyze the cavitation phenomenon. Three-dimensional numerical simulation was carried out to study the cavity shape, the surface pressure distribution and the drag force with different flow control. The result shows that the gas and the number of ventilation holes control to show any significant impact on the cavity shape and the surface pressure are effective measures to decrease resistance.
Dynamic Visualization Approach of the Multiphase Flow Using Electrical Capacitance Tomography
王泽璞; 陈琪; 王雪瑶; 李志宏; 韩振兴
2012-01-01
Identifying the flow patterns is vital for understanding the complicated physical mechanisms in multiphase flows.For this purpose,electrical capacitance tomography（ECT） technique is considered as a promising visualization method for the flow pattern identification,in which image reconstruction algorithms play an important role.In this paper,a generalized dynamic reconstruction model,which integrates ECT measurement information and physical evolution information of the objects of interest,was presented.A generalized objective functional that simultaneously considers the spatial constraints,temporal constraints and dynamic evolution information of the objects of interest was proposed.Numerical simulations and experiments were implemented to evaluate the feasibility and efficiency of the proposed algorithm.For the cases considered in this paper,the proposed algorithm can well reconstruct the flow patterns,and the quality of the reconstructed images is improved,which indicates that the proposed algorithm is competent to reconstruct the flow patterns in the visualization of multiphase flows.
Zhen-Hua Chai; Tian-Shou Zhao
2012-01-01
In this paper,a pseudopotential-based multiplerelaxation-time lattice Boltzmann model is proposed for multicomponent/multiphase flow systems.Unlike previous models in the literature,the present model not only enables the study of multicomponent flows with different molecular weights,different viscosities and different Schmidt numbers,but also ensures that the distribution function of each component evolves on the same square lattice without invoking additional interpolations.Furthermore,the Chapman-Enskog analysis shows that the present model results in the correct hydrodynamic equations,and satisfies the indifferentiability principle.The numerical validation exercises further demonstrate that the favorable performance of the present model.
Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell
Berning, Torsten; Kær, Søren Knudsen
2011-01-01
Transport processes inside polymer electrolyte membrane fuel cells (PEMFC’s) are highly complex and involve convective and diffusive multiphase, multispecies flow through porous media along with heat and mass transfer and electrochemical reactions in conjunction with water transport through...... an electrolyte membrane. We will present a computational model of a PEMFC with focus on capillary transport of water through the porous layers and phase change and discuss the impact of the liquid phase boundary condition between the porous gas diffusion layer and the flow channels, where water droplets can...
Coherent structures and extreme events in rotating multiphase turbulent flows
Biferale, Luca; Mazzitelli, Irene M; van Hinsberg, Michel A T; Lanotte, Alessandra S; Musacchio, Stefano; Perlekar, Prasad; Toschi, Federico
2016-01-01
By using direct numerical simulations (DNS) at unprecedented resolution we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify -for the first time- the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force and centripetal forces along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light ...
Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows
L. Biferale
2016-11-01
Full Text Available By using direct numerical simulations (DNS at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.
Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows
Biferale, L.; Bonaccorso, F.; Mazzitelli, I. M.; van Hinsberg, M. A. T.; Lanotte, A. S.; Musacchio, S.; Perlekar, P.; Toschi, F.
2016-10-01
By using direct numerical simulations (DNS) at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.
Viscosity and surface tension effects during multiphase flow in propped fractures
Dzikowski, Michał; Dąbrowski, Marcin
2017-04-01
Geological sequestration of CO2 was proposed as an important mechanism to reduce its emission into atmosphere. CO2 exhibits a higher affinity to organic matter than methane molecules and, potentially, it could be pumped and stored in shale reservoirs while enhancing late stage shale gas production. A successful analysis of CO2 sequestration in low matrix permeability rocks such as shales requires a thorough understanding of multiphase flow in stimulated rock fractures, which provide most significant pathways for fluids in such systems. Multiphase fracture flows are also of great relevance to brine, oil and gas migration in petroleum systems, water and stream circulation in geothermal reservoirs, and chemical transport of non-aqueous phase liquids in shallow hydrogeological systems, particularly in partially saturated zones. There are various physical models that describe phenomena taking place during multiphase flow through porous media. One of key aspects that need to be considered are pore-scale effects related to capillarity. Unfortunately, detailed models that describe motion and evolution of phase or component boundary require direct numerical simulations and spatial resolutions that are hard to reach when considering industrial relevant systems. Main aim of the presented work was the development of reduced 2.5D models based on Brinkman approximation of thin domain flow that would be able to capture local scale phenomena without expensive 3D simulations. Presented approach was designed specifically to tackle incompressible and immiscible systems and is based on Continuous Surface Force approach presented by Brackbill et al., implemented using Lattice Boltzmann Method. Presented approach where firstly validated against standard test cases with known classical solution and known experimental data. In the second part, we present and discuss two component, immiscible permeability data for rough and propped fracture obtained with our code for a rage of proppants
Shao, H.; Huang, Y.; Kolditz, O.
2015-12-01
Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in
Solutions for a hyperbolic model of multi-phase flow
Amadori Debora
2013-07-01
Full Text Available We discuss a model for the flow of an inviscid fluid admitting liquid and vapor phases, as well as a mixture of them. The flow is modeled in one spatial dimension; the state variables are the specific volume, the velocity and the mass density fraction λ of vapor in the fluid. The equation governing the time evolution of λ contains a source term, which enables metastable states and drives the fluid towards stable pure phases. We first discuss, for the homogeneous system, the BV stability of Riemann solutions generated by large initial data and check the validity of several sufficient conditions that are known in the literature. Then, we review some recent results about the existence of solutions, which are globally defined in time, for λ close either to 0 or to 1 (corresponding to almost pure phases. These solutions possibly contain large shocks. Finally, in the relaxation limit, solutions are proved to satisfy a reduced system and the related entropy condition. On discute un modèle pour l’écoulement d’un fluide non visqueux admettant phases liquides et de vapeur, ainsi qu’un mélange d’entre eux. L’écoulement est modélisé dans une dimension spatiale ; les variables d’état sont le volume spécifique, la vitesse et la fraction de densité de masse λ de la vapeur dans le liquide. L’équation régissant l’évolution temporelle de λ contient un terme de source, ce qui permet des états métastables et conduit le fluide vers de phases stables pures. Nous discutons d’abord, pour le système homogène, la stabilité BV des solutions de Riemann générés par des grandes données initiales et vérifions la validité de plusieurs conditions suffisantes qui sont connues dans la littérature. Ensuite, nous passons en revue quelques résultats récents sur l’existence de solutions, qui sont definies pour tous les temps, pour λ soit près de 0 ou de 1 (correspondant à des phases presque pures. Ces solutions sont susceptibles
Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction
Kent E. Wardle
2013-01-01
Full Text Available The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations and sharp interface capturing using Volume of Fluid (VOF on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.
Dynamic fluid connectivity during steady-state multiphase flow in a sandstone
Reynolds, Catriona A.; Menke, Hannah; Andrew, Matthew; Blunt, Martin J.; Krevor, Samuel
2017-08-01
The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term “dynamic connectivity,” using fast pore-scale X-ray imaging. We image the flow of N2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.
Dartevelle, SéBastien
2004-08-01
Geophysical granular materials display a wide variety of behaviors and features. Typically, granular flows (1) are multiphase flows, (2) are very dissipative over many different scales, (3) display a wide range of grain concentrations, and (4), as a final result of these previous features, display complex nonlinear, nonuniform, and unsteady rheologies. Therefore the objectives of this manuscript are twofold: (1) setting up a hydrodynamic model which acknowledges the multiphase nature of granular flows and (2) defining a comprehensive rheological model which accounts for all the different forms of viscous dissipations within granular flows at any concentration. Hence three important regimes within granular flows must be acknowledged: kinetic (pure free flights of grain), kinetic-collisional, and frictional. The momentum and energy transfer will be different according to the granular regimes, i.e., strain rate dependent in the kinetic and kinetic-collisional cases and strain rate independent in the frictional case. A "universal" granular rheological model requires a comprehensive unified stress tensor able to adequately describe viscous stress within the flow for any of these regimes, and without imposing a priori what regime will dominate over the others. The kinetic-collisional viscous regime is defined from a modified Boltzmann's kinetic theory of dense gas. The frictional viscous regime is defined from the plastic potential and the critical state theories which account for compressibility of granular matter (e.g., dilatancy, consolidation, and critical state). In the companion paper [, 2004] we will introduce a multiphase computer code, (G)MFIX, which accounts for all the granular regimes and rheology and present typical simulations of diluted (e.g., plinian clouds) and concentrated geophysical granular flows (i.e., pyroclastic flows and surges).
Zhang, S.; Liu, H. H.; van Dijke, M. I.; Geiger, S.; Agar, S. M.
2016-12-01
The relationship between flow properties and chemical reactions is key to modeling subsurface reactive transport. This study develops closed-form equations to describe the effects of mineral precipitation and dissolution on multiphase flow properties (capillary pressure and relative permeabilities) of porous media. The model accounts for the fact that precipitation/dissolution only takes place in the water-filled part of pore space. The capillary tube concept was used to connect pore-scale changes to macroscopic hydraulic properties. Precipitation/dissolution induces changes in the pore radii of water-filled pores and consequently in the pore-size distribution. The updated pore-size distribution is converted back to a new capillary pressure-water saturation relation from which the new relative permeabilities are calculated. Pore network modeling is conducted on a Berea sandstone to validate the new continuum-scale relations. The pore network modeling results are satisfactorily predicted by the new closed-form equations. Currently the effects of chemical reactions on flow properties are represented as a relation between permeability and porosity in reactive transport modeling. Porosity is updated after chemical calculations from the change of mineral volumes, then permeability change is calculated from the porosity change using an empirical permeability-porosity relation, most commonly the Carman-Kozeny relation, or the Verma-Pruess relation. To the best of our knowledge, there are no closed-form relations available yet for the effects of chemical reactions on multi-phase flow properties, and thus currently these effects cannot be accounted for in reactive transport modeling. This work presents new constitutive relations to represent how chemical reactions affect multi-phase flow properties on the continuum scale based on the conceptual model of parallel capillary tubes. The parameters in our new relations are either pre-existing input in a multi-phase flow
Synthetic Observations of Carbon Lines of Turbulent Flows in Diffuse Multiphase Interstellar Medium
Yamada, M; Omukai, K; Inutsuka, S
2006-01-01
We examine observational characteristics of multi-phase turbulent flows in the diffuse interstellar medium (ISM) using a synthetic radiation field of atomic and molecular lines. We consider the multi-phase ISM which is formed by thermal instability under the irradiation of UV photons with moderate visual extinction $A_V\\sim 1$. Radiation field maps of C$^{+}$, C$^0$, and CO line emissions were generated by calculating the non-local thermodynamic equilibrium (nonLTE) level populations from the results of high resolution hydrodynamic simulations of diffuse ISM models. By analyzing synthetic radiation field of carbon lines of [\\ion{C}{2}] 158 $\\mu$m, [\\ion{C}{1}] $^3P_2-^3P_1$ (809 GHz), $^3P_1-^3P_0$ (492 GHz), and CO rotational transitions, we found a high ratio between the lines of high- and low-excitation energies in the diffuse multi-phase interstellar medium. This shows that simultaneous observations of the lines of warm- and cold-gas tracers will be useful in examining the thermal structure, and hence the...
Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.
2007-04-01
The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.
Pendota, Premchand
Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.
An open-source toolbox for multiphase flow in porous media
Horgue, P.; Soulaine, C.; Franc, J.; Guibert, R.; Debenest, G.
2015-02-01
Multiphase flow in porous media provides a wide range of applications: from the environmental understanding (aquifer, site-pollution) to industrial process improvements (oil production, waste management). Modeling of such flows involves specific volume-averaged equations and therefore specific computational fluid dynamics (CFD) tools. In this work, we develop a toolbox for modeling multiphase flow in porous media with OpenFOAM®, an open-source platform for CFD. The underlying idea of this approach is to provide an easily adaptable tool that can be used in further studies to test new mathematical models or numerical methods. The package provides the most common effective properties models of the literature (relative permeability, capillary pressure) and specific boundary conditions related to porous media flows. To validate this package, solvers based on the IMplicit Pressure Explicit Saturation (IMPES) method are developed in the toolbox. The numerical validation is performed by comparison with analytical solutions on academic cases. Then, a satisfactory parallel efficiency of the solver is shown on a more complex configuration.
Examples of the Potential of DNS for the Understanding of Reactive Multiphase Flows
J. Reveillon
2011-03-01
Full Text Available The objective of this article is to point out the ability of the multiphase flow DNS (Direct Numerical Simulation to help to understand basic physics and to interpret some experimental observations. To illustrate the DNS' potential to give access to key phenomena involved in reactive multiphase flows, several recent results obtained by the authors are summed up with a bridge to experimental results. It includes droplet dispersion, laminar spray flame instability, spray combustion regimes or acoustic modulation effect on a two-phase flow Bunsen burner. As a perspective, two-phase flow DNS auto-ignition is considered thanks to a skeletal mechanism for the n-heptane chemistry involving 29 species and 52 reactions. Results highlight evaporating droplet effects on the auto-ignition process that is generally dramatically modified by spray distribution resulting from the turbulent fluid motion. This paper shows that DNS is a powerful tool to understand the intricate coupling between the evaporating spray, the turbulent fluid motion and the detailed chemistry, inseparable in the experimental context.
Wang Zhiyuan; Sun Baojiang
2009-01-01
It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time.
Yortsos, Yanis C.
2001-08-07
This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.
Multiphase flow of gas-liquid and gas coal slurry mixtures in vertical tubes
Javdani, K; Schwalbe, S; Fishcher, J
1977-01-01
This research was done as a support study for the SYNTHOIL process and other coal liquefaction processes being developed to produce clean liquid fuels from coal. The objective of this work is to obtain experimental data on flow characteristics for upward flow of gas-liquid-solid mixtures in vertical tubes simulating conditions in the SYNTHOIL process. Study of the transport phenomena of multiphase mixtures is of importance to many chemical engineering operations in general and to some other coal conversion processes in particular. A brief review of the application of this work to existing processes is presented. The first part of the program was devoted to the study of the flow characteristics of two-phase gas--liquid systems, and the second was devoted to the flow characteristics of gas--slurry mixtures.
Yortsos, Y.C.
2001-05-29
This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.
Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter
Korman, Valentin
2007-01-01
Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.
TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows
Pruess, K. [Lawrence Berkeley Lab., CA (United States)
1991-06-01
Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.
Review of multiphase flow and pollutant transport models for the Hanford site
Kincaid, C.T.; Mitchell. P.J.
1986-11-01
This report provides a review of the physical processes, geochemical reactions, and microbiological kinetics that interact to determine the migration and fate of these pollutants. This review of processes and reactions provides a background from which codes for the analysis of contaminant migration and fate can be evaluated. Single codes representing classes of pollutant migration problems are cited to show how commonly employed and publicly available codes are not always applicable to the complex problems of multiphase fluid flow and pollutant migration. This review provides guidance on selecting and using codes; it also provides recommendations for development work needed to address deficiencies identified in existing models, codes, and data bases.
Xu, Jun
2016-01-01
Based on an extended multiphase transport model, which includes mean-field potentials in both the partonic and hadronic phases, uses the mix-event coalescence, and respects charge conservation during the hadronic evolution, we have studied the collision energy dependence of the elliptic flow splitting between particles and their antiparticles. This extended transport model reproduces reasonably well the experimental data at lower collision energies but only describes qualitatively the elliptic flow splitting at higher beam energies. The present study thus indicates the existence of other mechanisms for the elliptic flow splitting besides the mean-field potentials and the need of further improvements of the multiphase transport model.
Teflon-coated silicon microreactors: impact on segmented liquid-liquid multiphase flows.
Kuhn, Simon; Hartman, Ryan L; Sultana, Mahmooda; Nagy, Kevin D; Marre, Samuel; Jensen, Klavs F
2011-05-17
We describe fluoropolymer modification of silicon microreactors for control of wetting properties in chemical synthesis applications and characterize the impact of the coating on liquid-liquid multiphase flows of solvents and water. Annular flow of nitrogen gas and a Teflon AF (DuPont) dispersion enable controlled evaporation of fluoropolymer solvent, which in turn brings about three-dimensional polymer deposition on microchannel walls. Consequently, the wetting behavior is switched from hydrophilic to hydrophobic. Analysis of microreactors reveals that the polymer layer thickness increases down the length of the reactor from ∼1 to ∼13 μm with an average thickness of ∼7 μm. Similarly, we show that microreactor surfaces can be modified with poly(tetrafluoroethylene) (PTFE). These PTFE-coated microreactors are further characterized by measuring residence time distributions in segmented liquid-liquid multiphase flows, which display reduced axial dispersion for the coated microreactors. Applying particle image velocimetry, changes in segment shape and velocity fluctuations are observed resulting in reduced axial dispersion. Furthermore, the segment size distribution is narrowed for the hydrophobic microreactors, enabling further control of residence distributions for synthesis and screening applications.
Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos
2011-07-01
This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)
Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles
Owis, F.M.; Nayfeh, A.H. [Blacksburg State University, Dept. of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute, VA (United States)
2004-04-01
The hydrodynamic cavitation over axisymmetric projectiles is computed using the unsteady incompressible Navier-Stokes equations for multi-fluid elements. The governing equations are discretized on a structured grid using an upwind difference scheme with flux limits. A preconditioning dual-time stepping method is used for the unsteady computations. The Eigen-system is derived for the Jacobian matrices. This Eigen-system is suitable for high-density ratio multi-fluid flows and it provides high numerical stability and fast convergence. This method can be used to compute single- as well as multi-phase flows. Cavitating flows over projectiles with different geometries are computed and the results are in good agreement with available experimental data and other published computations. (authors)
Experimental Study of Stable Surfaces for Anti-Slug Control in Multi-phase Flow
Pedersen, Simon; Løhndorf, Petar Durdevic; Stampe, Kasper;
2016-01-01
Severe slugging flow is always challenging in oil & gas production, especially for the current offshore based production. The slugging flow can cause a lot of problems, such as those relevant to production safety, fatigue as well as capability. As one typical phenomenon in multi-phase flow dynamics......, the slug can be avoided or eliminated by proper facility design or control of operational conditions. Based on a testing facility which can emulate a pipeline-riser or a gas-lifted production well in a scaled-down manner, this paper experimentally studies the correlations of key operational parameters...... that the capability, performance and efficiency of anti-slug control can be dramatically improved if these stable surfaces can be experimentally determined beforehand. The paper concludes that obtaining the stable surface on the new developed map can significantly improve the production rate in a control scheme. Even...
Non-Isothermal, Multi-phase, Multi-component Flows through Deformable Methane Hydrate Reservoirs
Gupta, Shubhangi; Wohlmuth, Barbara
2015-01-01
We present a hydro-geomechanical model for subsurface methane hydrate systems. Our model considers kinetic hydrate phase change and non-isothermal, multi-phase, multi-component flow in elastically deforming soils. The model accounts for the effects of hydrate phase change and pore pressure changes on the mechanical properties of the soil, and also for the effect of soil deformation on the fluid-solid interaction properties relevant to reaction and transport processes (e.g., permeability, capillary pressure, reaction surface area). We discuss a 'cause-effect' based decoupling strategy for the model and present our numerical discretization and solution scheme. We then identify the important model components and couplings which are most vital for a hydro-geomechanical hydrate simulator, namely, 1) dissociation kinetics, 2) hydrate phase change coupled with non-isothermal two phase two component flow, 3) two phase flow coupled with linear elasticity (poroelasticity coupling), and finally 4) hydrate phase change c...
Tsai, C. H.; Yeh, G. T.
2015-12-01
In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.
DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY
Moses Bogere
2011-08-31
The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.
Application of partially-coupled hydro-mechanical schemes to multiphase flow problems
Tillner, Elena; Kempka, Thomas
2016-04-01
Utilization of subsurface reservoirs by fluid storage or production generally triggers pore pressure changes and volumetric strains in reservoirs and cap rocks. The assessment of hydro-mechanical effects can be undertaken using different process coupling strategies. The fully-coupled geomechanics and flow simulation, constituting a monolithic system of equations, is rarely applied for simulations involving multiphase fluid flow due to the high computational efforts required. Pseudo-coupled simulations are driven by static tabular data on porosity and permeability changes as function of pore pressure or mean stress, resulting in a rather limited flexibility when encountering complex subsurface utilization schedules and realistic geological settings. Partially-coupled hydro-mechanical simulations can be distinguished into one-way and iterative two-way coupled schemes, whereby the latter one is based on calculations of flow and geomechanics, taking into account the iterative exchange of coupling parameters between the two respective numerical simulators until convergence is achieved. In contrast, the one-way coupling scheme is determined by the provision of pore pressure changes calculated by the flow simulator to the geomechanical simulator neglecting any feedback. In the present study, partially-coupled two-way schemes are discussed in view of fully-coupled single-phase flow and geomechanics, and their applicability to multiphase flow simulations. For that purpose, we introduce a comparison study between the different coupling schemes, using selected benchmarks to identify the main requirements for the partially-coupled approach to converge with the numerical solution of the fully-coupled one.
Design of Parallel Electrical Resistance Tomography System for Measuring Multiphase Flow
董峰; 许聪; 张志强; 任尚杰
2012-01-01
ERT（electrical resistance tomography） is effective method for visualization of multiphase flows,offering some advantages of rapid response and low cost,so as to explore the transient hydrodynamics.Aiming at this target,a fully programmable and reconfigurable FPGA（field programmable gate array）-based Compact PCI（peripheral component interconnect） bus linked sixteen-channel ERT system has been presented.The data acquisition system is carefully designed with function modules of signal generator module;Compact PCI transmission module and data processing module（including data sampling,filtering and demodulating）.The processing module incorporates a powerful FPGA with Compact PCI bus for communication,and the measurement process management is conducted in FPGA.Image reconstruction algorithms with different speed and accuracy are also coded for this system.The system has been demonstrated in real time（1400 frames per second for 50 kHz excitation） with signal-noise-ratio above 62 dB and repeatability error below 0.7%.Static experiments have been conducted and the images manifested good resolution relative to the actual object distribution.The parallel ERT system has provided alternative experimental platform for the multiphase flow measurements by the dynamic experiments in terms of concentration and velocity.
Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.
Zhao, Chun-Xia
2013-11-01
Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced.
Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes
McGrath, T.; St. Clair, J.; Balachandar, S.
2017-06-01
Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.
Hall, Andrew R.W.; Corlett, Anne E.
1997-07-01
NEL is actively investigating new techniques for the measurement of multiphase flows. This paper describes two such investigations, an X-ray system to visualise three-phase flows and a manometric/volumetric system to quantify the dissolved gas content of oil/gas flows. The X-ray system was used in both horizontal and vertical flows, covering slug, annular and bubble flow regimes. Also covered were stratified (horizontal only) and churn (vertical only) flows. The system was able to provide visualisation of features not visible in flows with low water cut (due to poor light transmission through oil) and therefore increased the understanding of three-phase flow behaviour. Quantifying the amount of dissolved gas within a hydrocarbon oil is of importance to the oil industry due to the problems associated with the artificial decrease in density of a gas filled oil and the effects of gas breakout. The present study found that the gas uptake by the oil was highly dependent on the following factors; volumetric gas fraction, line pressure and liquid flowrate. The underlying water cut of the oil also appeared to have an effect. (author)
Lin ZUO; Lixia SUN; Changfu YOU
2009-01-01
Natural gas hydrates are promising potential alternative energy resources. Some studies on the multiphase flow and thermodynamics have been conducted to investigate the feasibility of gas production from hydrate dissociation. The methods for natural gas production are analyzed and several models describing the dissociation process are listed and compared. Two prevailing models, one for depressurization and the other for thermal stimulation, are discussed in detail. A comprehensive numerical method considering the multiphase flow and thermodynamics of gas production from various hydrate-bearing reservoirs is required to better understand the dissociation process of natural gas hydrate, which would be of great benefit to its future exploration and exploitation.
Hornung, R.D. [Duke Univ., Durham, NC (United States)
1996-12-31
An adaptive local mesh refinement (AMR) algorithm originally developed for unsteady gas dynamics is extended to multi-phase flow in porous media. Within the AMR framework, we combine specialized numerical methods to treat the different aspects of the partial differential equations. Multi-level iteration and domain decomposition techniques are incorporated to accommodate elliptic/parabolic behavior. High-resolution shock capturing schemes are used in the time integration of the hyperbolic mass conservation equations. When combined with AMR, these numerical schemes provide high resolution locally in a more efficient manner than if they were applied on a uniformly fine computational mesh. We will discuss the interplay of physical, mathematical, and numerical concerns in the application of adaptive mesh refinement to flow in porous media problems of practical interest.
Li, Q; Li, X J
2012-01-01
Owing to its conceptual simplicity and computational efficiency, the pseudopotential multiphase lattice Boltzmann (LB) model has attracted significant attention since its emergence. In this work, we aim to extend the pseudopotential LB model to the simulations of multiphase flows at large density ratio and relatively high Reynolds number. First, based on our recent work [Li et al., Phys. Rev. E. 86, 016709 (2012)], an improved forcing scheme is proposed for the multiple-relaxation-time (MRT) pseudopotential LB model in order to achieve thermodynamic consistency and large density ratio in the model. Next, through investigating the effects of the parameter a in the Carnahan-Starling equation of state, we find that, as compared with a = 1, a = 0.25 is capable of greatly reducing the magnitude of the spurious currents at large density ratio. Furthermore, it is found that a lower liquid viscosity can be gained in the pseudopotential LB model by increasing the kinematic viscosity ratio between the vapor and liquid ...
Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes
Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.
2014-05-01
Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting
Ostrowski, Z.; Melka, B.; Adamczyk, W.; Rojczyk, M.; Golda, A.; Nowak, A. J.
2016-09-01
In the research a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analyzed. A real geometry of aorta and its thoracic branches of 8-year old patient diagnosed with a congenital heart defect - coarctation of aorta was used. The inlet boundary condition were implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase: plasma, set as the primary fluid phase, was dominant with volume fraction of 0.585 and morphological elements of blood were treated in Euler-Euler approach as dispersed phases (with 90% Red Blood Cells and White Blood Cells as remaining solid volume fraction).
Theoretical analysis of multiphase flow during oil-well drilling by a conservative model
Nicolas-Lopez, Ruben
2005-11-01
In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.
Multiphase flow dynamics and control; Dynamique et controle des ecoulements polyphasiques
Duret, E.
2005-02-01
Production in the petroleum industry requires a better knowledge of multiphase flow, as the design of pipelines may cause the flow to become strongly unstable. For instance, for low flow rates and when a sea line ends at a riser, the riser base may accumulate liquid and stop the flow of gas. Then, the upstream gas is compressed until its pressure is large enough to push the liquid slug downstream. Under such conditions, a cyclic process occurs which is called severe slugging, generating large and fast fluctuations in pressure and flow rates. This thesis is devoted to two methods to stabilize this undesirable phenomenon. Using the pipeline's ability to separate phases to pick-up the gas upstream the riser base, they are mainly based on the perturbation theory (fast proportional effect, slow integral effect). The first one uses a secondary riser to transport the gas to the surface facilities. A stability study worked out with the phase diagrams technique shows that it is a good method to control this phenomenon. However, it imposes a high pressure in all the system. Thus, the second controller re-injects the gas at a determined height in the riser to decrease the hydrostatic pressure. A first stability study in open loop give a criterion on the minimal reinjection height. Then, the controller is developed by using the two-time scale control techniques. Finally, let us denote that these two controllers have been validated with a small size experimental set up. (author)
Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.
2011-12-01
One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.
Particle methods for simulation of subsurface multiphase fluid flow and biogeological processes
Meakin, Paul; Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Tartakovsky, Daniel M.; Redden, George; Long, Philip E.; Brooks, Scott C.; Xu, Zhijie
2007-08-01
A number of particle models that are suitable for simulating multiphase fluid flow and biogeological processes have been developed during the last few decades. Here we discuss three of them: a microscopic model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively easy to add additional physical, chemical and biological processes into particle codes. However, the computational efficiency of particle methods is low relative to continuum methods. Multiscale particle methods and hybrid (particle–particle and particle–continuum) methods are needed to improve computational efficiency and make effective use of emerging computational capabilities. These new methods are under development.
Meso-scale modeling: beyond local equilibrium assumption for multiphase flow
Wang, Wei
2015-01-01
This is a summary of the article with the same title, accepted for publication in Advances in Chemical Engineering, 47: 193-277 (2015). Gas-solid fluidization is a typical nonlinear nonequilibrium system with multiscale structure. In particular, the mesoscale structure in terms of bubbles or clusters, which can be characterized by nonequilibrium features in terms of bimodal velocity distribution, energy non equipartition, and correlated density fluctuations, is the critical factor. Traditional two-fluid model (TFM) and relevant closures depend on local equilibrium and homogeneous distribution assumptions, and fail to predict the dynamic, nonequilibrium phenomena in circulating fluidized beds even with fine-grid resolution. In contrast, the mesoscale modeling, as exemplified by the energy-minimization multiscale (EMMS) model, is consistent with the nonequilibrium features in multiphase flows. Thus, the structure-dependent multi-fluid model conservation equations with the EMMS-based mesoscale modeling greatly i...
Lattice Boltzmann Simulations for High Density Ratio Flows of Multiphase Fluids
Wei, Yikun; Qian, Yuehong
2010-11-01
In the present communication, we will show that the compression effect of the Redlich-Kwong equation of state(EOS) is lower than that of the van der Waals (vdW) EOS. The Redlich-Kwong equation of state has a better agreement with experimental data for the coexistence curve than the van derWaals (vdW) EOS. We implement the Redlich-Kwong EOS in the lattice Boltzmann simulations via a pseudo-potential. As a result, multi-phase flows with large density ratios may be simulated, thus many real applications in engineering problems can be applied. Acknowledgement: This research is supported in part by Ministry of Education in China via project IRT0844 and NSFC project 10625210 and Shanghai Sci and Tech. Com. Project 08ZZ43
Investigating the NCQ scaling of elliptic flow at LHC with a multiphase transport model
Zheng, Liang; Qin, Hong; Shou, Qi-Ye; Yin, Zhong-Bao
2016-01-01
The number of constituent quark (NCQ) scaling behavior of elliptic flow has been systematically studied at the LHC energy within the framework of a multiphase transport model (AMPT) in this work. We find that the parameters used to generate the initial states and the collision centrality are important for the existence of NCQ scaling even when hadronic rescattering contribution is off in Pb-Pb collisions of $\\sqrt{s_{NN}}=2.76$ TeV. By turning on the hadron rescattering process, the hadronic evolution impacts are also found to be significant. Extending the analysis to Pb-Pb collsions of $\\sqrt{s_{NN}}=5.02$ TeV, one would observe similar qualitative features.
A fast algorithm for simulating multiphase flows through periodic geometries of arbitrary shape
Marple, Gary; Gillman, Adrianna; Veerapaneni, Shravan
2015-01-01
This paper presents a new boundary integral equation (BIE) method for simulating particulate and multiphase flows through periodic channels of arbitrary smooth shape in two dimensions. The authors consider a particular system---multiple vesicles suspended in a periodic channel of arbitrary shape---to describe the numerical method and test its performance. Rather than relying on the periodic Green's function as classical BIE methods do, the method combines the free-space Green's function with a small auxiliary basis, and imposes periodicity as an extra linear condition. As a result, we can exploit existing free-space solver libraries, quadratures, and fast algorithms, and handle a large number of vesicles in a geometrically complex channel. Spectral accuracy in space is achieved using the periodic trapezoid rule and product quadratures, while a first-order semi-implicit scheme evolves particles by treating the vesicle-channel interactions explicitly. New constraint-correction formulas are introduced that prese...
The impact of interfacial tension on multiphase flow in the CO2-brine-sandstone system
Reynolds, C. A.; Blunt, M. J.; Krevor, S. C.
2013-12-01
Two dominant controls on continuum scale multiphase flow properties are interfacial tension (IFT) and wetting. In hydrocarbon-brine systems, relative permeability is known to increase with decreasing IFT, while residual trapping is controlled by the wetting properties of a permeable rock and the hysteresis between drainage and imbibtion (Amaefule & Handy, 1982; Bardon & Longeron, 1980; Juanes et al., 2006). Fluid properties of the CO2-brine system, such as viscosity, density and interfacial tension, are well characterised and have known dependencies on temperature, pressure and brine salinity. Interest in this particular fluid system is motivated by CO2 storage and enhanced oil recovery. Despite increased interest in CO2 storage, the response of the CO2-brine relative permeability to varying IFT has yet to be comprehensively evaluated. Additionally the wide range of thermophysical properties (density, viscosity etc.) that exist across a relatively small range of pressures and temperatures makes it an ideal system with which to investigate the physics of multiphase flow in general. This is the first systematic study to investigate the impact of IFT on drainage and imbibition relative permeability for the CO2-brine-sandstone system. The experimental design has been adapted from a traditional steady state core flood in two ways. First, while conditions may be easily selected to obtain a range of interfacial tensions, isolating the independent impact of interfacial tension on relative permeability is less simple. Thus experimental conditions are selected so as to vary interfacial tension, while minimising the variation in viscosity ratio between CO2 and brine. Second, in order to attribute the impacts of changing conditions, it is necessary to have precise results such that small shifts in observations can be identified. Multiphase flow theory is used to both design the conditions of the test and interpret the observations, leading to a much higher precision in
Particle methods for simulation of subsurface multiphase fluid flow and biogeological processes
Paul Meakin; Alexandre Tartakovsky; Tim Scheibe; Daniel Tartakovsky; Georgr Redden; Philip E. Long; Scott C. Brooks; Zhijie Xu
2007-06-01
A number of particle models that are suitable for simulating multiphase fluid flow and biogeological processes have been developed during the last few decades. Here we discuss three of them: a microscopic model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively easy to add additional physical, chemical and biological processes into particle codes. However, the computational efficiency of particle methods is low relative to continuum methods. Multiscale particle methods and hybrid (particle–particle and particle–continuum) methods are needed to improve computational efficiency and make effective use of emerging computational capabilities. These new methods are under development.
Cyclonic multiphase flow measurement system GLCC®1 for oil well capacity evaluation
J.M. Godoy–Alcántar
2008-10-01
Full Text Available This paper shows the development of a portable multiphase flow measurement system based in cyclonic separation technology GLCC@1. This system is aimed for oil well measurement and was developed in three phases; the first devoted to the geometric design of a cyclonic separator by means of design software GLCC V7.8 and the selection of measurement instrumentation and flux control valves. In the second phase, the automatic control system was designed for the implementation of four control strategies each one related with a possible scenario of the well behavior. The third constitutes the integration of the measurement and control devices through a user interface aimed for visualization, information processing and system's operation and control. Experimental results in oil well measurements show the efficiency and workability of the integrated system.
Stranne, C.; O'Regan, M.; Jakobsson, M.
2016-08-01
Continental margins host large quantities of methane stored partly as hydrates in sediments. Release of methane through hydrate dissociation is implicated as a possible feedback mechanism to climate change. Large-scale estimates of future warming-induced methane release are commonly based on a hydrate stability approach that omits dynamic processes. Here we use the multiphase flow model TOUGH + hydrate (T + H) to quantitatively investigate how dynamic processes affect dissociation rates and methane release. The simulations involve shallow, 20-100 m thick hydrate deposits, forced by a bottom water temperature increase of 0.03°C yr-1 over 100 years. We show that on a centennial time scale, the hydrate stability approach can overestimate gas escape quantities by orders of magnitude. Our results indicate a time lag of > 40 years between the onset of warming and gas escape, meaning that recent climate warming may soon be manifested as widespread gas seepages along the world's continental margins.
A Solver for Massively Parallel Direct Numerical Simulation of Three-Dimensional Multiphase Flows
Shin, S; Juric, D
2014-01-01
We present a new solver for massively parallel simulations of fully three-dimensional multiphase flows. The solver runs on a variety of computer architectures from laptops to supercomputers and on 65536 threads or more (limited only by the availability to us of more threads). The code is wholly written by the authors in Fortran 2003 and uses a domain decomposition strategy for parallelization with MPI. The fluid interface solver is based on a parallel implementation of the LCRM hybrid Front Tracking/Level Set method designed to handle highly deforming interfaces with complex topology changes. We discuss the implementation of this interface method and its particular suitability to distributed processing where all operations are carried out locally on distributed subdomains. We have developed parallel GMRES and Multigrid iterative solvers suited to the linear systems arising from the implicit solution of the fluid velocities and pressure in the presence of strong density and viscosity discontinuities across flu...
Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows
Li, Q; Gao, Y J
2011-01-01
The existing lattice Boltzmann models for incompressible multiphase flows are mostly constructed with two distribution functions, one is the order parameter distribution function, which is used to track the interface between different phases, and the other is the pressure distribution function for solving the velocity field. In this brief report, it is shown that in these models the recovered momentum equation is inconsistent with the target one: an additional interfacial force is included in the recovered momentum equation. The effects of the additional force are investigated by numerical simulations of droplet splashing on a thin liquid film and falling droplet under gravity. In the former test, it is found that the formation and evolution of secondary droplets are greatly affected, while in the latter the additional force is found to increase the falling velocity and limit the stretch of the droplet.
Recurrence CFD - a novel approach to simulate multiphase flows with strongly separated time scales
Lichtenegger, Thomas
2016-01-01
Classical Computational Fluid Dynamics (CFD) of long-time processes with strongly separated time scales is computationally extremely demanding if not impossible. Consequently, the state-of-the-art description of such systems is not capable of real-time simulations or online process monitoring. In order to bridge this gap, we propose a new method suitable to decouple slow from fast degrees of freedom in many cases. Based on the recurrence statistics of unsteady flow fields, we deduce a recurrence process which enables the generic representation of pseudo-periodic motion at high spatial and temporal resolution. Based on these fields, passive scalars can be traced by recurrence CFD. While a first, Eulerian Model A solves a passive transport equation in a classical implicit finite-volume environment, a second, Lagrangian Model B propagates fluid particles obeying a stochastic differential equation explicitly. Finally, this new concept is tested by two multiphase processes - a lab scale oscillating bubble column a...
Parameters in Multiphase Flowing of Natural Gas NGH Slurry via Vertical Pipe
Dai Maolin
2016-01-01
Full Text Available In recent years, the pipeline flowing of natural gas hydrate (hereinafter NGH slurry has been a promising technique of multiphase flowing via pipe and that of crushed hydrate mixture slurry is also a key technique in solid fluidization mining method of nondiagenetic NGH reservoir below the seabed. In this paper, by using similarity rules, a small-scale simulation model was established to shorten the calculation time. The correctness of the simulation model has been verified through comparison with experiment. Thereby, the distribution of velocity and volume fraction of each phase in the vertical pipe was obtained, and the prototype of vertical pipe was analyzed. By study on the pipe resistance, the pressure drop of slurry, when flowing in vertical pipe, could be calculated as ΔP=ρgh+0.23Cρv1.8. In the end, by adjusting volume fraction of particles in the mixture slurry, the relationship between the solid particles’ volume fraction and piezometric pressure drop was obtained. When the optimal flow velocity of the slurry is 2 m/s and the ratio of NGH volume fraction to that of sand is 4 : 1, the optimal particle volume fraction ranges from 20% to 40%.
LI Tie-yan; YE Liang; HONG Fang-wen; LIU Deng-cheng; FAN Hui-min; LIU Zhong-min
2013-01-01
The numerical simulation of the axial flow impeller blood pump NIVADIII is carried out by using a CFD multiphase flow model.The hydrodynamic performance of the pump and the flow field in the pump are analyzed,and the shear stress distribution is obtained.A hemolytic prediction model based on the shear stress is built based on the calculation results,and it can be used for quantitative predictions of the hemolytic behavior of a blood pump.Hemolysis tests in vitro were performed 6 times with fresh bovine blood.At each time,the flow of the pump NIVADIII is 5 L/min and the outflow tract pressure is 100 mmHg.According to the tests,the plasma free hemoglobin (FHB) content and the hematocrit (HCT) are measured after 0 s,0.5 s,1 s,1.5 s,...4 s.At the end of each experiment Normal Index of Hemolysis (NIH) of NIVADIII is calculated.The average of NIH is 0.0055 g/100L,almost identical with that obtained from the hemolytic prediction model.This method can be applied in the selection stage of a blood pump.
Mohammad Ali Ahmadi
2016-09-01
Full Text Available The importance of the flow patterns through petroleum production wells proved for upstream experts to provide robust production schemes based on the knowledge about flow behavior. To provide accurate flow pattern distribution through production wells, accurate prediction/representation of bottom hole pressure (BHP for determining pressure drop from bottom to surface play important and vital role. Nevertheless enormous efforts have been made to develop mechanistic approach, most of the mechanistic and conventional models or correlations unable to estimate or represent the BHP with high accuracy and low uncertainty. To defeat the mentioned hurdle and monitor BHP in vertical multiphase flow through petroleum production wells, inventive intelligent based solution like as least square support vector machine (LSSVM method was utilized. The evolved first-break approach is examined by applying precise real field data illustrated in open previous surveys. Thanks to the statistical criteria gained from the outcomes obtained from LSSVM approach, the proposed least support vector machine (LSSVM model has high integrity and performance. Moreover, very low relative deviation between the model estimations and the relevant actual BHP data is figured out to be less than 6%. The output gained from LSSVM model are closed the BHP while other mechanistic models fails to predict BHP through petroleum production wells. Provided solutions of this study explicated that implies of LSSVM in monitoring bottom-hole pressure can indicate more accurate monitoring of the referred target which can lead to robust design with high level of reliability for oil and gas production operation facilities.
Amooie, Mohammad Amin; Soltanian, Mohammad Reza; Moortgat, Joachim
2016-11-01
Fluid mixing and its interplay with viscous fingering as well as flow channeling through heterogeneous media have been traditionally studied for fully (im)miscible conditions in which a (two-) single-phase system is represented by two components, e.g. a solvent and a solute, with (zero) infinite mutual solubility. However, many subsurface problems, e.g. gas injection/migration in hydrocarbon reservoirs, involve multiple species transfer. Multicomponent fluid properties behave non-linearly, through an equation of state, as a function of temperature, pressure, and compositions. Depending on the minimum miscibility pressure, a two-phase region with finite, non-zero mutual solubility may develop, e.g. in a partially-miscible system. Here we study mixing of fluids with partial mutual solubility, induced by viscous flow fingering, channeling, and species transport within and between phases. We uncover non-linear mixing dynamics of a finite-size slug of a less viscous fluid attenuated by a carrier fluid during rectilinear displacement. We perform accurate numerical simulations that are thermodynamically-consistent to capture fingering patterns and complex phase behavior of mixtures. The results provide a broad perspective into how multiphase flow can alter fluid mixing in porous media.
Bellan, J.; Lathouwers, D.
2000-01-01
A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.
A ghost fluid method for sharp interface simulations of compressible multiphase flows
Majidi, Sahand; Afshari, Asghar [University of Tehran, Teheran (Iran, Islamic Republic of)
2016-04-15
A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.
Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.
2008-10-15
During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.
Multiphase integral reacting flow computer code (ICOMFLO): User`s guide
Chang, S.L.; Lottes, S.A.; Petrick, M.
1997-11-01
A copyrighted computational fluid dynamics computer code, ICOMFLO, has been developed for the simulation of multiphase reacting flows. The code solves conservation equations for gaseous species and droplets (or solid particles) of various sizes. General conservation laws, expressed by elliptic type partial differential equations, are used in conjunction with rate equations governing the mass, momentum, enthalpy, species, turbulent kinetic energy, and turbulent dissipation. Associated phenomenological submodels of the code include integral combustion, two parameter turbulence, particle evaporation, and interfacial submodels. A newly developed integral combustion submodel replacing an Arrhenius type differential reaction submodel has been implemented to improve numerical convergence and enhance numerical stability. A two parameter turbulence submodel is modified for both gas and solid phases. An evaporation submodel treats not only droplet evaporation but size dispersion. Interfacial submodels use correlations to model interfacial momentum and energy transfer. The ICOMFLO code solves the governing equations in three steps. First, a staggered grid system is constructed in the flow domain. The staggered grid system defines gas velocity components on the surfaces of a control volume, while the other flow properties are defined at the volume center. A blocked cell technique is used to handle complex geometry. Then, the partial differential equations are integrated over each control volume and transformed into discrete difference equations. Finally, the difference equations are solved iteratively by using a modified SIMPLER algorithm. The results of the solution include gas flow properties (pressure, temperature, density, species concentration, velocity, and turbulence parameters) and particle flow properties (number density, temperature, velocity, and void fraction). The code has been used in many engineering applications, such as coal-fired combustors, air
Multiphase Flow and Wear in the Cutting Head of Ultra-high Pressure Abrasive Water Jet
YANG Minguan; WANG Yuli; KANG Can; YU Feng
2009-01-01
Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 Mpa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of particles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.
Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.
2009-01-15
A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.
Modeling of multiphase flow with solidification and chemical reaction in materials processing
Wei, Jiuan
Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.
Modeling multiphase materials processes
Iguchi, Manabu
2010-01-01
""Modeling Multiphase Materials Processes: Gas-Liquid Systems"" describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of
Kootiani, Reza Cheraghi; Chehrehgosha, Soroush; Mirali, Sasan; Samsuri, Ariffin Bin
2014-10-01
The analytical model for predicting the pressure at any point in a flow string is essential in determining optimum production string dimension and in the design of gas-lift installations. This information is also invaluable in predicting bottom-hole pressure in flowing wells. A variety of model on bottom-hole pressure in flowing wells have been reported in the literatures. Most of the early models on pressure drop in the flowing wells were based on single phase flowing wells, even the recent investigators treated the multiphase (liquid and gas phase) as a homogenous single phase flow without accounting for dissolved gas in oil. This paper present a modification of previous models for single phase flowing gas wells and the model was adapted to predict the pressure drop in multiphase flowing wells. In this paper, we can solve numerically to obtain the pressure upstream of the nozzle in two phase flow. The key operational and fluid/ pipe parameters which influence the degree of pressure drop in flowing wells are identified through the modification.
Multiphase flow of carbon dioxide and brine in dual porosity carbonates
Pentland, Christopher; Oedai, Sjaam; Ott, Holger
2014-05-01
The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment
Chang, Chih-Hao; Liou, Meng-Sing
2007-07-01
In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations . Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM +-up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion. However, conservative form is lost in these balance equations when considering each individual phase; in fact, the interactions that exist simultaneously in both phases manifest themselves as nonconservative terms.
Domingos, Ricardo Golghetto; Cheng, Liang-Yee [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica
2012-07-01
Since the grain scale modeling of multi-phase flow in porous media is of great interest for the oil industry, the aim of the present research is to show an implementation of Moving Particle Semi-Implicit (MPS) method for the grain scale simulation of multi-phase flow in porous media. Geometry data obtained by a high-resolution CT scan of a sandstone sample has been used as input for the simulations. The results of the simulations performed considering different resolutions are given, the head loss and permeability obtained numerically, as well as the influence of the wettability of the fluids inside the sample of the reservoir's sandstone. (author)
Horgue, Pierre; Guibert, Romain; Debenest, Gérald
2015-01-01
In this note, the existing porousMultiphaseFoam toolbox, developed initially for any two-phase flow in porous media is extended to the specific case of the Richards' equation which neglect the pressure gradient of the non-wetting phase. This model is typically used for saturated and unsaturated groundwater flows. A Picard's algorithm is implemented to linearize and solve the Richards' equation developed in the pressure head based form. This new solver of the porousMultiphaseFoam toolbox is named groundwaterFoam. The validation of thesolver is achieved by a comparison between numerical simulations and results obtained from the literature. Finally, a parallel efficiency test is performed on a large unstructured mesh and exhibits a super-linear behavior as observed for the other solvers of the toolbox.
Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi
2017-02-01
A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod-Patterson-Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiency of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.
Radiotracer method for residence time distribution study in multiphase flow system
Sugiharto, S. [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia); Center for the Application of Isotopes and Radiation Technology - National Nuclear Energy Agency, Jl Lebak Bulus No. 49, Jakarta 12440 (Indonesia)], E-mail: sugi@batan.go.id; Su' ud, Z. [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia)], E-mail: szaki@fi.itb.ac.id; Kurniadi, R. [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia); Wibisono, W.; Abidin, Z. [Center for the Application of Isotopes and Radiation Technology - National Nuclear Energy Agency, Jl Lebak Bulus No. 49, Jakarta 12440 (Indonesia)
2009-07-15
[{sup 131}I] isotope in different chemical compounds have been injected into 24 in hydrocarbon transmission pipeline containing approximately 95% water, 3% crude oil, 2% gas and negligible solid material, respectively. The system is operated at the temperature around 70 deg. C enabling fluids flow is easier in the pipeline. The segment of measurement was chosen far from the junction point of the pipeline, therefore, it was reasonably to assume that the fluids in such multiphase system were separated distinctively. Expandable tubing of injector was used to ensure that the isotopes were injected at the proper place in the sense that [{sup 131}I]Na isotope was injected into water layer and iodo-benzene, {sup [131]}IC{sub 6}H{sub 5,} was injected into crude oil regime. The radiotracer selection was based on the compatibility of radiotracer with each of fluids under investigation. [{sup 131}I]Na was used for measuring flow of water while iodo-benzene, {sup [131]}IC{sub 6}H{sub 5,} was used for measuring flow of crude oil. Two scintillation detectors were used and they are put at the distances 80 and 100 m, respectively, from injection point. The residence time distribution data were utilized for calculation water and crude oil flows. Several injections were conducted in the experiments. Although the crude oil density is lighter than the density of water, the result of measurement shows that the water flow is faster than the crude oil flow. As the system is water-dominated, water may act as carrier and the movement of crude oil is slowed due to friction between crude oil with water and crude oil with gas at top layer. Above of all, this result was able to give answer on the question why crude oil always arrives behind water as it is checked at gathering station. In addition, the flow patterns of the water in the pipeline calculated by Reynolds number and predicted by simple tank-in-series model is turbulence in character.
Chen, Gujun; He, Shengping; Li, Yugang; Guo, Yintao; Wang, Qian
2016-08-01
In the present work, a mathematical model was developed to understand the multiphase flow behavior in a Rheinsahl-Heraeus (RH) reactor by using the Euler-Euler approach, and the effects of initial bubble diameter, nonequilibrium expansion of bubble caused by sudden thermal effect and sharp pressure drop, and various interphase forces were considered and clarified. The simulation results of mixing time, liquid circulation rate, and local liquid velocity in RH agree well with the measured results. The result indicates that the initial bubble diameter has a weak impact on the multiphase flow but that the bubble expansion has a tremendous impact on it for an actual RH. Meanwhile, the drag force and turbulent dispersion force strongly influence the multiphase flow, whereas the lift force and virtual mass force only have negligible influence on it. Furthermore, the turbulent dispersion force should be responsible for reasonable prediction of multiphase flow behavior in the RH reactor.
Jacobs, C. T.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Wilson, C. R. G.
2013-02-01
Small-scale experiments of volcanic ash particle settling in water have demonstrated that ash particles can either settle slowly and individually, or rapidly and collectively as a gravitationally unstable ash-laden plume. This has important implications for the emplacement of tephra deposits on the seabed. Numerical modelling has the potential to extend the results of laboratory experiments to larger scales and explore the conditions under which plumes may form and persist, but many existing models are computationally restricted by the fixed mesh approaches that they employ. In contrast, this paper presents a new multiphase flow model that uses an adaptive unstructured mesh approach. As a simulation progresses, the mesh is optimized to focus numerical resolution in areas important to the dynamics and decrease it where it is not needed, thereby potentially reducing computational requirements. Model verification is performed using the method of manufactured solutions, which shows the correct solution convergence rates. Model validation and application considers 2-D simulations of plume formation in a water tank which replicate published laboratory experiments. The numerically predicted settling velocities for both individual particles and plumes, as well as instability behaviour, agree well with experimental data and observations. Plume settling is clearly hindered by the presence of a salinity gradient, and its influence must therefore be taken into account when considering particles in bodies of saline water. Furthermore, individual particles settle in the laminar flow regime while plume settling is shown (by plume Reynolds numbers greater than unity) to be in the turbulent flow regime, which has a significant impact on entrainment and settling rates. Mesh adaptivity maintains solution accuracy while providing a substantial reduction in computational requirements when compared to the same simulation performed using a fixed mesh, highlighting the benefits of an
Cheng, C.; Perfect, E.; Cropper, C.
2011-12-01
Numerical models are an important tool in petroleum engineering, geoscience, and environmental applications, e.g. feasibility evaluation and prediction for enhanced oil recovery, enhanced geothermal systems, geological carbon storage, and remediation of contaminated sites. Knowledge of capillary pressure-saturation functions is essential in such applications for simulating multiphase fluid flow and chemical transport in variably-saturated rocks and soils in the subsurface. Parameters from average capillary pressure-saturation functions are sometimes employed due to their relative ease of measurement in the laboratory. However, the use of average capillary pressure-saturation function parameters instead of point capillary pressure-saturation function parameters for numerical simulations of flow and transport can result in significant errors, especially in the case of coarse-grained sediments and fractured rocks. Such erroneous predications can impose great risks and challenges to decision-making. In this paper we present a comparison of simulation results based on average and point estimates of van Genuchten model parameters (Sr, α, and n) for Berea sandstone, packed glass beads, and Hanford sediments. The capillary pressure-saturation functions were measured using steady-state centrifugation. Average and point parameters were estimated for each sample using the averaging and integral methods, respectively. Results indicated that the Sr and α parameters estimated using averaging and integral methods were close to a 1-to-1 correspondence, with R-squared values of 0.958 and 0.994, respectively. The n parameter, however, showed a major curvilinear deviation from the 1-to-1 line for the two estimation methods. This trend indicates that the averaging method systematically underestimates the n parameter relative to the point-based estimates of the integral method leading to an over predication of the breadth of the pore size distribution. Forward numerical simulations
Modest, Michael
2013-11-15
The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particles scatter radiation, making the radiative transfer equation (RTE) much more di fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.
DH Bacon; MD White; BP McGrail
2000-03-07
The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na{sub 2}O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks.
Third-order analysis of pseudopotential lattice Boltzmann model for multiphase flow
Huang, Rongzong
2016-01-01
In this work, a third-order Chapman-Enskog analysis of the multiple-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model for multiphase flow is performed for the first time. The leading terms on the interaction force, consisting of an anisotropic and an isotropic term, are successfully identified in the third-order macroscopic equation recovered by the lattice Boltzmann equation (LBE), and then new mathematical insights into the pseudopotential LB model are provided. For the third-order anisotropic term, numerical tests show that it can cause the stationary droplet to become out-of-round, which suggests the isotropic property of the LBE needs to be seriously considered in the pseudopotential LB model. By adopting the classical equilibrium moment or setting the so-called "magic" parameter to 1/12, the anisotropic term can be eliminated, which is found from the present third-order analysis and also validated numerically. As for the third-order isotropic term, when and only when it is considered, a...
Direct numerical simulation of a compressible multiphase flow through the fast Eulerian approach
Cerminara, Matteo; Ongaro, Tomaso Esposti; Salvetti, Maria Vittoria
2014-01-01
Our work is motivated by the analysis of ash plume dynamics, arising in the study of volcanic eruptions. Such phenomena are characterized by large Reynolds number (exceeding $10^7$) and a large number of polydispersed particles~[1]. Thus, the choice of the methodology to be used is straightforward: we need LES of a multiphase gas-particles flow. Since the simulation of the behavior of a large number of dispersed particles is very difficult with Lagrangian methods, we model the particles as a continuum, Eulerian fluid (dust), by using reduced models involving two fluids, as proposed in Ref.~[2,3,4]. Moreover, we need a robust numerical scheme to simultaneously treat compressibility, buoyancy effects and turbulent dispersal dynamics. We analyze the turbulence properties of such models in a homogeneous and isotropic setting, with the aim of formulating a LES model. In particular, we examine the development of freely decaying homogeneous and isotropic turbulence in subsonic regime (the r.m.s. Mach number either 0...
Effect of surface chemistry on the behaviour of solid particles in multiphase flow
Gulbrandsen, Egil; Pedersen, Anette
2006-03-15
The surface chemical properties of solids particles strongly influence their behaviour in multiphase flow, e.g. their tendency to be transported by the oil or water phase, their tendency to stick to the oil-water interfaces, or their tendency to aggregate. The behaviour of the solid particles may influence various processes such as emulsion breakdown, oil-water separation, or sedimentation of solids in a pipeline, and thereby issues as erosion, and corrosion under deposits. These issues were addressed in the present laboratory study. The reported results focus on behaviour of sand in a simple oil-water system in presence of a model corrosion inhibitor compound, cetyltrimethylammonium bromide. A refined oil was used in the tests. The system was studied by various methods like zeta-potential measurements, assessment of wetting properties and tendency of aggregation and sedimentation in oil-water system. It was found that surface-active corrosion inhibitor could strongly influence the wetting of the sand. By addition of the corrosion inhibitor, the sand changed from water wet to oil wet. This change induced a tendency to aggregation of the sand grains. The aggregation led to sticky deposits of sand. This may have an impact on under deposit corrosion phenomena. (Author)
KIVA-hpFE. Predictive turbulent reactive and multiphase flow in engines - An Overview
Carrington, David Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-23
Research and development of KIVA-hpFE for turbulent reactive and multiphase flow particularly as related to engine modeling program has relevance to National energy security and climate change. Climate change is a source problem, and energy national security is consumption of petroleum products problem. Accurately predicting engine processes leads to, lower greenhouse gas (GHG) emission, where engines in the transportation sector currently account for 26% of the U.S. GHG emissions. Less dependence on petroleum products leads to greater energy security. By Environmental Protection Agency standards, some vehicles are now reaching 42 to the 50 mpg mark. These are conventional gasoline engines. Continued investment and research into new technical innovations, the potential exists to save more than 4 million barrels of oil per day or approximately $200 to $400 million per day. This would be a significant decrease in emission and use of petroleum and a very large economic stimulus too! It is estimated with further advancements in combustion, the current emissions can be reduced up to 40%. Enabling better understanding of fuel injection and fuel-air mixing, thermodynamic combustion losses, and combustion/emission formation processes enhances our ability to help solve both problems. To provide adequate capability for accurately simulating these processes, minimize time and labor for development of engine technology, are the goals of our KIVA development program.
A Multiphase Flow in the Antroduodenal Portion of the Gastrointestinal Tract: A Mathematical Model
P. V. Trusov
2016-01-01
Full Text Available A group of authors has developed a multilevel mathematical model that focuses on functional disorders in a human body associated with various chemical, physical, social, and other factors. At this point, the researchers have come up with structure, basic definitions and concepts of a mathematical model at the “macrolevel” that allow describing processes in a human body as a whole. Currently we are working at the “mesolevel” of organs and systems. Due to complexity of the tasks, this paper deals with only one meso-fragment of a digestive system model. It describes some aspects related to modeling multiphase flow in the antroduodenal portion of the gastrointestinal tract. Biochemical reactions, dissolution of food particles, and motor, secretory, and absorbing functions of the tract are taken into consideration. The paper outlines some results concerning influence of secretory function disorders on food dissolution rate and tract contents acidity. The effect which food density has on inflow of food masses from a stomach to a bowel is analyzed. We assume that the future development of the model will include digestive enzymes and related reactions of lipolysis, proteolysis, and carbohydrates breakdown.
De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael
2016-04-01
Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations
Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan
2007-08-01
Numerical modeling has become a critical tool to the Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most “state of the art” groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers and has exhibited impressive strong scalability on up to 4000 processors on the ORNL Cray XT3. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies where overly-simplistic historical modeling erroneously predicted decade removal times for uranium by ambient groundwater flow. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.
Robust second-order scheme for multi-phase flow computations
Shahbazi, Khosro
2017-06-01
A robust high-order scheme for the multi-phase flow computations featuring jumps and discontinuities due to shock waves and phase interfaces is presented. The scheme is based on high-order weighted-essentially non-oscillatory (WENO) finite volume schemes and high-order limiters to ensure the maximum principle or positivity of the various field variables including the density, pressure, and order parameters identifying each phase. The two-phase flow model considered besides the Euler equations of gas dynamics consists of advection of two parameters of the stiffened-gas equation of states, characterizing each phase. The design of the high-order limiter is guided by the findings of Zhang and Shu (2011) [36], and is based on limiting the quadrature values of the density, pressure and order parameters reconstructed using a high-order WENO scheme. The proof of positivity-preserving and accuracy is given, and the convergence and the robustness of the scheme are illustrated using the smooth isentropic vortex problem with very small density and pressure. The effectiveness and robustness of the scheme in computing the challenging problem of shock wave interaction with a cluster of tightly packed air or helium bubbles placed in a body of liquid water is also demonstrated. The superior performance of the high-order schemes over the first-order Lax-Friedrichs scheme for computations of shock-bubble interaction is also shown. The scheme is implemented in two-dimensional space on parallel computers using message passing interface (MPI). The proposed scheme with limiter features approximately 50% higher number of inter-processor message communications compared to the corresponding scheme without limiter, but with only 10% higher total CPU time. The scheme is provably second-order accurate in regions requiring positivity enforcement and higher order in the rest of domain.
Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale
Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)
1997-08-01
Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.
Dynamic relaxation processes in compressible multiphase flows. Application to evaporation phenomena
Le Métayer O.
2013-07-01
Full Text Available Phase changes and heat exchanges are examples of physical processes appearing in many industrial applications involving multiphase compressible flows. Their knowledge is of fundamental importance to reproduce correctly the resulting effects in simulation tools. A fine description of the flow topology is thus required to obtain the interfacial area between phases. This one is responsible for the dynamics and the kinetics of heat and mass transfer when evaporation or condensation occurs. Unfortunately this exchange area cannot be obtained easily and accurately especially when complex mixtures (drops, bubbles, pockets of very different sizes appear inside the transient medium. The natural way to solve this specific trouble consists in using a thin grid to capture interfaces at all spatial scales. But this possibility needs huge computing resources and can be hardly used when considering physical systems of large dimensions. A realistic method is to consider instantaneous exchanges between phases by the way of additional source terms in a full non-equilibrium multiphase flow model [2,15,17]. In this one each phase obeys its own equation of state and has its own set of equations and variables (pressure, temperature, velocity, energy, entropy,.... When enabling the relaxation source terms the multiphase mixture instantaneously tends towards a mechanical or thermodynamic equilibrium state at each point of the flow. This strategy allows to mark the boundaries of the real flow behavior and to magnify the dominant physical effects (heat exchanges, evaporation, drag,... inside the medium. A description of the various relaxation processes is given in the paper. Les changements de phase et les transferts de chaleur sont des exemples de phénomènes physiques présents dans de nombreuses applications industrielles faisant intervenir des écoulements compressibles multiphasiques. La connaissance des mécanismes associés est primordiale afin de reproduire
McPherson, Brian J. O. L.; Han, Weon Shik; Cole, Barret S.
2008-05-01
The purpose of the study presented in this manuscript is to describe and make available two equation-of-state (EOS) algorithms assembled for multiphase flow and transport of carbon dioxide (CO2). The algorithms presented here calculate solubility, compressibility factor, density, viscosity, fugacity, and enthalpy of CO2 in gaseous and supercritical phases, and mixtures or solutions of CO2 in water, as functions of pressure and temperature. Several features distinguish the two algorithms, but the primary distinction concerns treatment of supercritical/gas-phase CO2: one EOS we assembled is based on Redlich and Kwong's original algorithm developed in 1949, and the other is based on an algorithm developed by Span and Wagner in 1996. Both were modified for application to sedimentary basin studies of multiphase CO2 flow processes, including carbon sequestration applications. We present a brief comparison of these two EOS algorithms. Source codes for both algorithms are provided, including "stand-alone" Matlab © scripts for the interactive calculation of fluid properties at specified P-T conditions and FORTRAN subroutines for inclusion in existing FORTRAN multiphase fluid simulation packages. These routines are intended for fundamental analyses of CO2 sequestration and the like; more advanced studies, such as brine processes and reactive transport, require more advanced EOS algorithms.
Espinosa-Paredes, Gilberto, E-mail: gepe@xanum.uam.m [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Apartado Postal 55-535, Mexico D.F. 09340 (Mexico)
2010-05-15
The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.
LI Zhi-biao; LI Dong-hui; WU Ying-xiang
2005-01-01
This paper discusses the principle and mathematical method to measure the phase fractions of multiphase flows by using a dual-energy gamma-ray system. The dual-energy gamma-ray device is composed of radioactive isotopes of 241Am and 137Cs with emission energies of 59.5 keV and 662 keV respectively. A rational method to calibrate the absorption coefficient was introduced in detail. The statistical error has been analyzed on the basis of the accurate absorption coefficient which enables determination phrase fractions almost independent of the flow regime. Improvement has been achieved on the measurement accuracy of phase fractions.
Micro-Ct Imaging of Multi-Phase Flow in Carbonates and Sandstones
Andrew, M. G.; Bijeljic, B.; Blunt, M. J.
2013-12-01
One of the most important mechanisms that limits the escape of CO2 when injected into the subsurface for the purposes of carbon storage is capillary trapping, where CO2 is stranded as pore-scale droplets (ganglia). Prospective storage sites are aquifers or reservoirs that tend to be at conditions where CO2 will reside as a super-critical phase. In order to fully describe physical mechanisms characterising multi-phase flow during and post CO2 injection, experiments need to be conducted at these elevated aquifer/reservoir conditions - this poses a considerable experimental challenge. A novel experimental apparatus has been developed which uses μCT scanning for the non-invasive imaging of the distribution of CO2 in the pore space of rock with resolutions of 7μm at temperatures and pressures representative of the conditions present in prospective saline aquifer CO2 storage sites. The fluids are kept in chemical equilibrium with one-another and with the rock into which they are injected. This is done to prevent the dissolution of the CO2 in the brine to form carbonic acid, which can then react with the rock, particularly carbonates. By eliminating reaction we study the fundamental mechanisms of capillary trapping for an unchanging pore structure. In this study we present a suite of results from three carbonate and two sandstone rock types, showing that, for both cases the CO2 acts as the non-wetting phase and significant quantities of CO2 is trapped. The carbonate examined represent a wide variety of pore topologies with one rock with a very well connected, high porosity pore space (Mt Gambier), one with a lower porosity, poorly connected pore space (Estaillades) and one with a cemented bead pack type pore space (Ketton). Both sandstones (Doddington and Bentheimer) were high permeability granular quartzites. CO2 was injected into each rock, followed by brine injection. After brine injection the entire length of the rock core was scanned, processed and segmented into
Hybrid dynamic radioactive particle tracking (RPT) calibration technique for multiphase flow systems
Khane, Vaibhav; Al-Dahhan, Muthanna H.
2017-04-01
The radioactive particle tracking (RPT) technique has been utilized to measure three-dimensional hydrodynamic parameters for multiphase flow systems. An analytical solution to the inverse problem of the RPT technique, i.e. finding the instantaneous tracer positions based upon instantaneous counts received in the detectors, is not possible. Therefore, a calibration to obtain a counts-distance map is needed. There are major shortcomings in the conventional RPT calibration method due to which it has limited applicability in practical applications. In this work, the design and development of a novel dynamic RPT calibration technique are carried out to overcome the shortcomings of the conventional RPT calibration method. The dynamic RPT calibration technique has been implemented around a test reactor with 1foot in diameter and 1 foot in height using Cobalt-60 as an isotopes tracer particle. Two sets of experiments have been carried out to test the capability of novel dynamic RPT calibration. In the first set of experiments, a manual calibration apparatus has been used to hold a tracer particle at known static locations. In the second set of experiments, the tracer particle was moved vertically downwards along a straight line path in a controlled manner. The obtained reconstruction results about the tracer particle position were compared with the actual known position and the reconstruction errors were estimated. The obtained results revealed that the dynamic RPT calibration technique is capable of identifying tracer particle positions with a reconstruction error between 1 to 5.9 mm for the conditions studied which could be improved depending on various factors outlined here.
A numerical method for shock driven multiphase flow with evaporating particles
Dahal, Jeevan; McFarland, Jacob A.
2017-09-01
A numerical method for predicting the interaction of active, phase changing particles in a shock driven flow is presented in this paper. The Particle-in-Cell (PIC) technique was used to couple particles in a Lagrangian coordinate system with a fluid in an Eulerian coordinate system. The Piecewise Parabolic Method (PPM) hydrodynamics solver was used for solving the conservation equations and was modified with mass, momentum, and energy source terms from the particle phase. The method was implemented in the open source hydrodynamics software FLASH, developed at the University of Chicago. A simple validation of the methods is accomplished by comparing velocity and temperature histories from a single particle simulation with the analytical solution. Furthermore, simple single particle parcel simulations were run at two different sizes to study the effect of particle size on vorticity deposition in a shock-driven multiphase instability. Large particles were found to have lower enstrophy production at early times and higher enstrophy dissipation at late times due to the advection of the particle vorticity source term through the carrier gas. A 2D shock-driven instability of a circular perturbation is studied in simulations and compared to previous experimental data as further validation of the numerical methods. The effect of the particle size distribution and particle evaporation is examined further for this case. The results show that larger particles reduce the vorticity deposition, while particle evaporation increases it. It is also shown that for a distribution of particles sizes the vorticity deposition is decreased compared to single particle size case at the mean diameter.
Third-order analysis of pseudopotential lattice Boltzmann model for multiphase flow
Huang, Rongzong; Wu, Huiying
2016-12-01
In this work, a third-order Chapman-Enskog analysis of the multiple-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model for multiphase flow is performed for the first time. The leading terms on the interaction force, consisting of an anisotropic and an isotropic term, are successfully identified in the third-order macroscopic equation recovered by the lattice Boltzmann equation (LBE), and then new mathematical insights into the pseudopotential LB model are provided. For the third-order anisotropic term, numerical tests show that it can cause the stationary droplet to become out-of-round, which suggests the isotropic property of the LBE needs to be seriously considered in the pseudopotential LB model. By adopting the classical equilibrium moment or setting the so-called "magic" parameter to 1/12, the anisotropic term can be eliminated, which is found from the present third-order analysis and also validated numerically. As for the third-order isotropic term, when and only when it is considered, accurate continuum form pressure tensor can be definitely obtained, by which the predicted coexistence densities always agree well with the numerical results. Compared with this continuum form pressure tensor, the classical discrete form pressure tensor is accurate only when the isotropic term is a specific one. At last, in the framework of the present third-order analysis, a consistent scheme for third-order additional term is proposed, which can be used to independently adjust the coexistence densities and surface tension. Numerical tests are subsequently carried out to validate the present scheme.
Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems
Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.
2007-12-01
Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a
SHAFQAT Wahab; XIE Kan; LIU Yu
2009-01-01
Multi-phase flow field simulation has been performed on solid rocket motor and effect of multi-phases on the performance prediction of the solid rocket motor(SRM)is in- vestigation.During the combustion of aluminized propellant,the aluminum particles in the propellant melt and form liquid aluminum at the burning propellant surface.So the flow within the rocket motor is multi phase or two phase because it contains droplets and smoke particles of Al2O3.Flow simulations have been performed on a large scale motor,to observe the effect of the flowfield on the chamber and nozzle as well.Uniform particles diameters and Rosin-Rammler diameter distribution method that is based on the assumption that an expo- nential relationship exists between the droplet diameter,d and mass fraction of droplets with diameter greater than d have been used for the simulation of different distribution of Al2O3 droplets present in SRM.Particles sizes in the range of 1-1 00μm are used,as being the most common droplets.In this approach the complete range of particle sizes is divided into a set of discrete size ranges,each to be defined by single stream that is part of the group.Roe scheme-flux differencing splitting based on approximate Riemann problem has been used to simulate the effects of the multi-phase flowfeild.This is second order upwind scheme in which flux differencing splitting method is employed.To cater for the turbulence effect, Spalart-Allmaras model has been used.The results obtained show the great sensitivity of this diameters distribution and particles concentrations to the SRM flow dynamics,primarily at the motor chamber and nozzle exit.The results are shown with various sizes of the parti- cles concentrations and geometrical configurations including models for SRM and nozzle.The analysis also provides effect of multi-phase on performance prediction of solid rocket motor.
Afanasyev, A.
2011-12-01
Multiphase flows in porous media with a transition between sub- and supercritical thermodynamic conditions occur in many natural and technological processes (e.g. in deep regions of geothermal reservoirs where temperature reaches critical point of water or in gas-condensate fields where subject to critical conditions retrograde condensation occurs and even in underground carbon dioxide sequestration processes at high formation pressure). Simulation of these processes is complicated due to degeneration of conservation laws under critical conditions and requires non-classical mathematical models and methods. A new mathematical model is proposed for efficient simulation of binary mixture flows in a wide range of pressures and temperatures that includes critical conditions. The distinctive feature of the model lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. Such approach allows determination not only single-phase states and two-phase states of liquid-gas type as in classical models but also two-phase states of liquid-liquid type and three-phase states. The proposed mixture model was implemented in MUFITS (Multiphase Filtration Transport Simulator) code for hydrodynamic simulations. As opposed to classical approaches pressure, enthalpy and composition variables together with fully implicit method and cascade procedure are used. The code is capable of unstructured grids, heterogeneous porous media, relative permeability and capillary pressure dependence on temperature and pressure, multiphase diffusion, optional number of sink and sources, etc. There is an additional module for mixture properties specification. The starting point for the simulation is a cubic equation of state that is
A Computational Model for Multi-phase Flow in a Heterogeneous Layered System (poster)
Musivand Arzanfudi, M.
2013-01-01
CO2 sequestration in underground formations is currently utilized as a means to mitigate CO2 from indefinitely emitted to the atmosphere. The main concern in such a system is the possible occurrence of leakage to upper layers or to the earth surface. Computational modeling of leakage of a multiphase
Khattri, Sanjay Kumar
2006-07-01
The thesis is concerned with numerically simulating multicomponent, multiphase, reactive transport in heterogeneous porous medium. Such processes are ubiquitous, for example, deposition of green house gases, flow of hydrocarbons and groundwater remediation. Understanding such processes is important from social and economic point of view. For the success of geological sequestration, an accurate estimation of migration patterns of green-house gases is essential. Due to an ever increasing computer power, computational mathematics has become an important tool for predicting dynamics of porous media fluids. Numerical and mathematical modelling of processes in a domain requires grid generation in the domain, discretization of the continuum equations on the generated grid, solution of the formed linear or nonlinear system of discrete equations and finally visualization of the results. The thesis is composed of three chapters and eight papers. Chapter 2 presents two techniques for generating structured quadrilateral and hexahedral meshes. These techniques are called algebraic and elliptic methods. Algebraic techniques are by far the most simple and computationally efficient method for grid generation. Transfinite interpolation operators are a kind of algebraic grid generation technique. In this chapter, many transfinite interpolation operators for grid generation are derived from 1D projection operators. In this chapter, some important properties of hexahedral elements are also mentioned. These properties are useful in discretization of partial differential equations on hexahedral mesh, improving quality of the hexahedral mesh, mesh generation and visualization. Chapter 3 is about CO{sub 2} flow in porous media. In this chapter, we present the mathematical models and their discretization for capturing major physical processes associated with CO{sub 2} deposition in geological formations. Some important simulations of practical applications in 2D and 3D are presented
Khattri, Sanjay Kumar
2006-07-01
The thesis is concerned with numerically simulating multicomponent, multiphase, reactive transport in heterogeneous porous medium. Such processes are ubiquitous, for example, deposition of green house gases, flow of hydrocarbons and groundwater remediation. Understanding such processes is important from social and economic point of view. For the success of geological sequestration, an accurate estimation of migration patterns of green-house gases is essential. Due to an ever increasing computer power, computational mathematics has become an important tool for predicting dynamics of porous media fluids. Numerical and mathematical modelling of processes in a domain requires grid generation in the domain, discretization of the continuum equations on the generated grid, solution of the formed linear or nonlinear system of discrete equations and finally visualization of the results. The thesis is composed of three chapters and eight papers. Chapter 2 presents two techniques for generating structured quadrilateral and hexahedral meshes. These techniques are called algebraic and elliptic methods. Algebraic techniques are by far the most simple and computationally efficient method for grid generation. Transfinite interpolation operators are a kind of algebraic grid generation technique. In this chapter, many transfinite interpolation operators for grid generation are derived from 1D projection operators. In this chapter, some important properties of hexahedral elements are also mentioned. These properties are useful in discretization of partial differential equations on hexahedral mesh, improving quality of the hexahedral mesh, mesh generation and visualization. Chapter 3 is about CO{sub 2} flow in porous media. In this chapter, we present the mathematical models and their discretization for capturing major physical processes associated with CO{sub 2} deposition in geological formations. Some important simulations of practical applications in 2D and 3D are presented
Aursand, Eskil; Lervåg, Karl Yngve; Lund, Halvor
2016-01-01
A one-dimensional multi-phase flow model for thermomagnetically pumped ferrofluid with heat transfer is proposed. The thermodynamic model is a combination of a simplified particle model and thermodynamic equations of state for the base fluid. The magnetization model is based on statistical mechanics, taking into account non-uniform particle size distributions. An implementation of the proposed model is validated against experiments from the literature, and found to give good predictions for the thermomagnetic pumping performance. However, the results reveal a very large sensitivity to uncertainties in heat transfer coefficient predictions.
HEJRANFAR Kazem; FATTAH-HESARY Kasra
2011-01-01
A numerical treatment for the prediction of cavitating flows is presented and assessed.The algorithm uses the preconditioned multiphase Euler equations with appropriate mass transfer terms.A central difference finite volume scheme with suitable dissipation terms to account for density jumps across the cavity interface is shown to yield an effective method for solving the multiphase Euler equations.The Euler equations are utilized herein for the cavitation modeling, because some certain characteristics of cavitating flows can be obtained using the solution of this system of equations with relative low computational effort.In addition, the Euler equations are appropriate for the assessment of the numerical method used, because of the sensitivity of the solution to the numerical instabilities.For this reason, a sensitivity study is conducted to evaluate the effects of various parameters, such as numerical dissipation coefficients and grid size, on the accuracy and performance of the solution.The computations are performed for steady cavitating flows around the NACA 0012 and NACA 66 (MOD) hydrofoils and also an axisymmetric hemispherical fore-body under different conditions and the results are compared with the available numerical and experimental data.The solution procedure presented is shown to be accurate and efficient for predicting steady sheet- and super-cavitation for 2D/axisymmetric geometries.
Park, J.; Li, X.
The gas diffusion layer of a polymer electrolyte membrane (PEM) fuel cell is a porous medium generally made of carbon cloth or paper. The gas diffusion layer has been modeled conventionally as a homogeneous porous medium with a constant permeability in the literature of PEM fuel cell. However, in fact, the permeability of such fibrous porous medium is strongly affected by the fiber orientation having non-isotropic permeability. In this work, the lattice Boltzmann (LB) method is applied to the multi-phase flow phenomenon in the inhomogeneous gas diffusion layer of a PEM fuel cell. The inhomogeneous porous structure of the carbon cloth and carbon paper has been modeled as void space and porous area using Stokes/Brinkman formulation and void space and impermeable fiber distributions obtained from various microscopic images. The permeability of the porous medium is calculated and compared to the experimental measurements in literature showing a good agreement. Simulation results for various fiber distributions indicate that the permeability of the medium is strongly influenced by the effect of fiber orientation. Present lattice Boltzmann flow models are applied to the multi-phase flow simulations by incorporating multi-component LB model with inter-particle interaction forces. The model successfully simulates the complicated unsteady behaviors of liquid droplet motion in the porous medium providing a useful tool to investigate the mechanism of liquid water accumulation/removal in a gas diffusion layer of a PEM fuel cell.
Krevor, S. C.; Reynolds, C. A.; Al-Menhali, A.; Niu, B.
2015-12-01
Capillary strength and multiphase flow are key for modeling CO2 injection for CO2 storage. Past observations of multiphase flow in this system have raised important questions about the impact of reservoir conditions on flow through effects on wettability, interfacial tension and fluid-fluid mass transfer. In this work we report the results of an investigation aimed at resolving many of these outstanding questions for flow in sandstone rocks. The drainage capillary pressure, drainage and imbibition relative permeability, and residual trapping [1] characteristic curves have been characterized in Bentheimer and Berea sandstone rocks across a pressure range 5 - 20 MPa, temperatures 25 - 90 C and brine salinities 0-5M NaCl. Over 30 reservoir condition core flood tests were performed using techniques including the steady state relative permeability test, the semi-dynamic capillary pressure test, and a new test for the construction of the residual trapping initial-residual curve. Test conditions were designed to isolate effects of interfacial tension, viscosity ratio, density ratio, and salinity. The results of the tests show that, in the absence of rock heterogeneity, reservoir conditions have little impact on flow properties, consistent with continuum scale multiphase flow theory for water wet systems. The invariance of the properties is observed, including transitions of the CO2 from a gas to a liquid to a supercritical fluid, and in comparison with N2-brine systems. Variations in capillary pressure curves are well explained by corresponding changes in IFT although some variation may reflect small changes in wetting properties. The low viscosity of CO2at certain conditions results in sensitivity to rock heterogeneity. We show that (1) heterogeneity is the likely source of uncertainty around past relative permeability observations and (2) that appropriate scaling of the flow potential by a quantification of capillary heterogeneity allows for the selection of core flood
Martinez, M.J.; Hopkins, P.L.; Shadid, J.N.
1997-07-01
This document reports on the accomplishments of a laboratory-directed research and development (LDRD) project whose objective was to initiate a research program for developing a fundamental understanding of multiphase multicomponent subsurface transport in heterogeneous porous media and to develop parallel processing computational tools for numerical simulation of such problems. The main achievement of this project was the successful development of a general-purpose, unstructured grid, multiphase thermal simulator for subsurface transport in heterogeneous porous media implemented for use on massively parallel (MP) computers via message-passing and domain decomposition techniques. The numerical platform provides an excellent base for new and continuing project development in areas of current interest to SNL and the DOE complex including, subsurface nuclear waste disposal and cleanup, groundwater availability and contamination studies, fuel-spill transport for accident analysis, and DNAPL transport and remediation.
Paul Meakin; Alexandre Tartakovsky
2009-07-01
In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity
Meakin, Paul; Tartakovsky, Alexandre M.
2009-01-01
In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity
Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.
2010-08-01
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.
Barreiros, Claudio; Taranto, Cleber; Costa, Alcemir [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pinguet, Bruno; Heluey, Vitor; Bessa, Fabiano; Loicq, Olivier [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)
2008-07-01
The Multiphase Venturi Dual Energy Gamma Ray Combination, Vx* technology, arrived in Brazil in 2000. PETROBRAS, Brazilian Oil Company, has been putting big efforts in its production business and also has demonstrated a large interest in having a multiphase meter approved by ANP for back allocation purposes. The oil industry was looking for ways to improve the back allocation process using an approved on line multiphase flow measurement device, thus replacing punctual test done today by a permanent monitoring device. Considering this scenario, a partnership project between PETROBRAS and Schlumberger was created in Brazil. The main objective of this project, which was held in NUEX flow loop, was to demonstrate to INMETRO (Brazilian Metrology Institute) that the Multiphase Venturi Dual Energy Gamma Ray Combination meter is able to be used for back allocation purpose. PETROBRAS and Schlumberger elaborated a complete methodology in the NUEX flow loop to demonstrate the results and benefits of the Multiphase Venturi Dual Energy Gamma Ray Combination meter. The test was witnessed by INMETRO and had a very good performance at the end. The results were within what was expected by Schlumberger, PETROBRAS and INMETRO. These results has been very useful to PETROBRAS in order to start using the Venturi Dual Energy Gamma Ray technology for well allocation purposes. (author)
Katyal, A. K.; Kaluarachchi, J. J.; Parker, J. C.
1991-05-01
The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The required inputs for flow and transport analysis are described. Detailed instructions for creating data files needed to run the program and examples of input and output files are given in appendices.
Martin, R. M.; Nicolas, A. N.
2003-04-01
A modeling approach of gas solid flow, taking into account different physical phenomena such as gas turbulence and inter-particle interactions is presented. Moment transport equations are derived for the second order fluctuating velocity tensor which allow to involve practical closures based on single phase turbulence modeling on one hand and kinetic theory of granular media on the other hand. The model is applied to fluid catalytic cracking processes and explosive volcanism. In the industry as well as in the geophysical community, multiphase flows are modeled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents oscillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillations of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. Pentadiagonal linear systems are solved in each geometrical direction (the so
El-Alej, M., E-mail: m.elalej@cranfield.ac.uk; Mba, D., E-mail: m.elalej@cranfield.ac.uk; Yeung, H., E-mail: m.elalej@cranfield.ac.uk [School of Engineering, Cranfield University, Cranfield, Bedfordshire, MK43 OAL (United Kingdom)
2014-04-11
The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup −1} to 2.0 ms{sup −1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup −1} to 1.0 ms{sup −1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)
Dong, S
2016-01-01
We present an effective method for simulating wall-bounded multiphase flows consisting of $N$ ($N\\geqslant 2$) immiscible incompressible fluids with different densities, viscosities and pairwise surface tensions. The N-phase physical formulation is based on a modified thermodynamically consistent phase field model that is more general than in a previous work, and it is developed by considering the reduction consistency if some of the fluid components were absent from the system. We propose an N-phase contact-angle boundary condition that is reduction consistent between $N$ phases and $M$ phases ($2\\leqslant M\\leqslant N-1$). We also present a numerical algorithm for solving the N-phase governing equations together with the contact-angle boundary conditions developed herein. Extensive numerical experiments are presented for several flow problems involving multiple fluid components and solid-wall boundaries to investigate the wettability effects with multiple types of contact angles. In particular, we compare s...
Pseudo-2D model of a cross-flow membrane humidifier for a PEM fuel cell under multiphase conditions
Dalet, C.; Diny, M. [Peugeot Citroen Automobile, Carrieres sous Poissy (France). Fuel Cell Program; Maranzana, G.; Lottin, O.; Dillet, J. [Nancy Univ., Vanoeuvre les Nancy (France). Centre national de la recherche scientifique
2009-07-01
Membrane dehydration can reduce the performance of proton exchange membrane fuel cells (PEMFCs). However, excessive water at the inlet of the fuel cells can flood cathodes. An understanding of the coupled mass and heat transfer processes involved in membrane humidifiers is needed in order to successfully manage water in PEMFCs. This paper discussed a pseudo-2D model of a cross-flow membrane humidifier for PEMFCs. The model was used to test correlations of the water transport coefficient through a Nafion 115 membrane. The study showed that results obtained using the model differed from experimental results. The effects of inlet operating conditions, flow rates, and temperature on the performance of a planar membrane humidifier under both single- and multi-phase conditions were also investigated.
Annamalai, Subramanian; Balachandar, S.; Mehta, Yash
2015-11-01
The various inviscid and viscous forces experienced by an isolated spherical particle situated in a compressible fluid have been widely studied in literature and are well established. Further, these force expressions are used even in the context of particulate (multiphase) flows with appropriate empirical correction factors that depend on local particle volume fraction. Such approach can capture the mean effect of the neighboring particles, but fails to capture the effect of the precise arrangement of the neighborhood of particles. To capture this inherent dependence of force on local particle arrangement a more accurate evaluation of the drag forces proves necessary. Towards this end, we consider an acoustic wave of a given frequency to impinge on a sphere. Scattering due to this particle (reference) is computed and termed ``scattering coefficients.'' The effect of the reference particle on another particle in its vicinity, is analytically computed via the above mentioned ``scattering coefficients'' and as a function of distance between particles. In this study, we consider only the first-order scattering effect. Moreover, this theory is extended to compressible spheres and used to compute the pressure in the interior of the sphere and to shock interaction over an array of spheres. We would like to thank the center for compressible multiphase turbulence (CCMT) and acknowledge support from the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program.
Henry de Frahan, Marc T.; Varadan, Sreenivas; Johnsen, Eric
2015-01-01
Although the Discontinuous Galerkin (DG) method has seen widespread use for compressible flow problems in a single fluid with constant material properties, it has yet to be implemented in a consistent fashion for compressible multiphase flows with shocks and interfaces. Specifically, it is challenging to design a scheme that meets the following requirements: conservation, high-order accuracy in smooth regions and non-oscillatory behavior at discontinuities (in particular, material interfaces). Following the interface-capturing approach of Abgrall [1], we model flows of multiple fluid components or phases using a single equation of state with variable material properties; discontinuities in these properties correspond to interfaces. To represent compressible phenomena in solids, liquids, and gases, we present our analysis for equations of state belonging to the Mie-Grüneisen family. Within the DG framework, we propose a conservative, high-order accurate, and non-oscillatory limiting procedure, verified with simple multifluid and multiphase problems. We show analytically that two key elements are required to prevent spurious pressure oscillations at interfaces and maintain conservation: (i) the transport equation(s) describing the material properties must be solved in a non-conservative weak form, and (ii) the suitable variables must be limited (density, momentum, pressure, and appropriate properties entering the equation of state), coupled with a consistent reconstruction of the energy. Further, we introduce a physics-based discontinuity sensor to apply limiting in a solution-adaptive fashion. We verify this approach with one- and two-dimensional problems with shocks and interfaces, including high pressure and density ratios, for fluids obeying different equations of state to illustrate the robustness and versatility of the method. The algorithm is implemented on parallel graphics processing units (GPU) to achieve high speedup.
Xiaokai Huo
2014-01-01
Full Text Available Accurate estimation of water content in an oil-water mixture is a key technology in oil exploration and production. Based on the principles of the microwave transmission line (MTL, the logging probe is an important water content measuring apparatus. However, the effects of mixed fluid flow on the measurement of electromagnetic field parameters are rarely considered. This study presents the coupling model for low-speed multiphase flow and high-frequency electromagnetic field in a complex pipeline structure. We derived the S-parameter equations for the stratified oil/water flow model. The corresponding relationship between the S-parameters and water holdup is established. Evident coupling effects of the fluid flow and the electromagnetic field are confirmed by comparing the calculated S-parameters for both stratified and homogeneous flow patterns. In addition, a multiple-solution problem is analyzed for the inversion of dielectric constant from the S-parameters. The most sensitive phase angle range is determined to improve the detection of variation in the dielectric constant. Suggestions are proposed based on the influence of the oil/water layer on measurement sensitivity to optimize the geometric parameters of a device structure. The method proposed elucidates how accuracy and sensitivity can be improved in water holdup measurements under high water content conditions.
Qin, C.Z.; Hassanizadeh, S.M.
2014-01-01
In this work, we propose a new approach to modeling multiphase flow and solute transport through a stack of thin porous layers. Currently, numerical simulation of thin layers involves discretization across the layer thickness. In our new approach, thin porous layers are treated as a bunch of two-dim
Zhang-xin Chen; Xi-jun Yu
2006-01-01
In this paper we consider mixed finite element methods for second order elliptic problems. In the case of the lowest order Brezzi-Douglás-Marini elements (if d = 2) or Brezzi--Douglás-Fortin element(if d =3) on rectangular parallelepipeds, we show that the mixed method system, by incorporating certain quadrature rules, can be written as asimple, cell-centered finite difference method. This leads to the solution of a sparse, positive semidefinite linear system for the scalar unknown. For a diagonal tensor coefficient,the sparsity pattern for the scalar unknown is a five point stencil if d = 2, and seven ifd = 3. For a general tensor coefficient, it is a nine point stencil, and nineteen, respectively.Applications of the mixed method implementation as finite differences to nonisothermal multiphase, multicomponent flow in porous media are presented.
A thermodynamical formulation for chemically active multi-phase turbulent flows
Ahmadi, G.; Cao, J.
1995-03-01
A generalized thermodynamics for chemically active multiphase solid-fluid mixtures in turbulent state of motion is formulated. The global equations of balance for each phase are ensemble averaged and the local conservation laws for the mean motions are derived. The averaged and the local conservation laws for the mean motions are derived. The averaged form of the Clausius-Duhem inequality is used and the thermodynamics of the chemically active mixtures in turbulent motion is studied. Particular attention is given to the species concentration and chemical reaction effects, in addition to transport and interaction of the phasic fluctuation energies. Based on the averaged entropy inequality, constitutive equations for the stresses, energy, heat and mass fluxes of various species are developed. The explicit governing equations of motion are derived and discussed.
Moortgat, Joachim; Firoozabadi, Abbas
2016-06-01
Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.
Multiphase forces on bend structures
Nennie, E.D.; Belfroid, S.P.C.
2016-01-01
Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum wit
Multiphase forces on bend structures
Nennie, E.D.; Belfroid, S.P.C.
2016-01-01
Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum wit
Application of Wavelets Transform to Analysis of Multiphase Flow%小波分析技术在多相流系统中的应用
冀海峰; 黄志尧; 吴贤国; 王保良; 李海青
2001-01-01
A method of analysis of multiphase flow using wavelets transform for identifying the flow regimes was proposed．After the wavelet decomposition of the multiphase flow signal，the eigenvalue of different scales were calculated and were used to analyze the multiphase flow system．Methods for obtaining eigenvalue of gas-liquid two phase flow or gas-solid fluidized bed were developed．The results showed that the method was effective for identification of the regime of gas-liquid two phase flow and the transformation of gas-solid fluidized bed from fixed bed to fluidized bed．%提出了一种将小波分析技术应用于多相流系统进行流型判别的方法。对采集的多相流信号进行小波分解，在不同尺度上提取特征值，并提出了两种特征值参数的提取方法，分别应用于气液两相流和气固流化床系统中，进行流型的辨识。试验结果表明利用所提出的特征值可以有效地对气液两相流流型以及气固流化床从固定床向鼓泡床的转变进行判别。
S. Dartevelle
2005-09-05
The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either a spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a
An Improved Car-Following Model for Multiphase Vehicular Traffic Flow and Numerical Tests
Li, Zhi-Peng; Gong, Xiao-Bo; Liu, Yun-Cai
2006-08-01
This paper attempts to introduce an improved difference model that modifies a car-following model, which takes the next-nearest-neighbor interaction into account. The improvement of this model over the previous one lies in that it performs more realistically in the dynamical motion for small delay time. The traffic behavior of the improved model is investigated with analytic and numerical methods with the finding that the new consideration could further stabilize traffic flow. And some simulation tests verify that the proposed model can demonstrate some complex physical features observed recently in real traffic such as the existence of three phases: free flow, coexisting flow, and jam flow; spontaneous formation of density waves; sudden flow drop in flow-density plane; traffic hysteresis in transition between the free and the coexisting flow. Furthermore, the improved model also predicts that the stable state to relative density in the coexisting flow is insusceptible to noise.
An Improved Car-Following Model for Multiphase Vehicular Traffic Flow and Numerical Tests
LI Zhi-Peng; GONG Xiao-Bo; LIU Yun-Cai
2006-01-01
This paper attempts to introduce an improved difference model that modifies a car-following model, which takes the next-nearest-neighbor interaction into account. The improvement of this modelover the previous one lies in that it performs more realistically in the dynamical motion for small delay time. The traffic behavior of the improved model is investigated with analytic and numerical methods with the finding that the new consideration could further stabilize traffic flow. And some simulation tests verify that the proposed model can demonstrate some complex physical features observed recently in real traffic such as the existence of three phases: free flow, coexisting flow, and jam flow;spontaneous formation of density waves; sudden flow drop in flow-density plane; traffic hysteresis in transition between the free and the coexisting flow. Furthermore, the improved model also predicts that the stable state to relative density in the coexisting flow is insusceptible to noise.
Yorstos, Yannis C.
2003-03-19
The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.
Coquel Frédéric
2013-07-01
Full Text Available We give in this paper a short review of some recent achievements within the framework of multiphase flow modeling. We focus first on a class of compressible two-phase flow models, detailing closure laws and their main properties. Next we briefly summarize some attempts to model two-phase flows in a porous region, and also a class of compressible three-phase flow models. Some of the main difficulties arising in the numerical simulation of solutions of these complex and highly non-linear systems of PDEs are then discussed, and we eventually show some numerical results when tackling two-phase flows with mass transfer. Nous présentons dans cet article quelques résultats récents concernant la modélisation et la simulation numérique des écoulements multiphasiques. Nous nous concentrons tout d’abord sur une classe de modèles diphasiques compressibles, en détaillant les lois de fermeture et les principales propriétés du sytème. Nous résumons ensuite brièvement les propositions de modélisation d’écoulements diphasiques en milieu poreux et d’écoulements triphasiques. Quelques difficultés apparaissant dans la simulation numérique de ces modèles sont présentées, et des résultats récents comportant un transfert de masse entre phases sont finalement décrits.
FT-IR spectroscopic imaging of reactions in multiphase flow in microfluidic channels.
Chan, K L Andrew; Kazarian, Sergei G
2012-05-01
Rapid, in situ, and label-free chemical analysis in microfluidic devices is highly desirable. FT-IR spectroscopic imaging has previously been shown to be a powerful tool to visualize the distribution of different chemicals in flows in a microfluidic device at near video rate imaging speed without tracers or dyes. This paper demonstrates the possibility of using this imaging technology to capture the chemical information of all reactants and products at different points in time and space in a two-phase system. Differences in the rates of chemical reactions in laminar flow and segmented flow systems are also compared. Neutralization of benzoic acid in decanol with disodium phosphate in water has been used as the model reaction. Quantitative information, such as concentration profiles of reactant and products, can be extracted from the imaging data. The same feed flow rate was used in both the laminar flow and segmented flow systems. The laminar flow pattern was achieved using a plain wide T-junction, whereas the segmented flow was achieved by introducing a narrowed section and a nozzle at the T-junction. The results show that the reaction rate is limited by diffusion and is much slower with the laminar flow pattern, whereas the reaction is completed more quickly in the segmented flow due to better mixing.
Wildenschild, D.; Porter, M. L.
2009-04-01
Significant strides have been made in recent years in imaging fluid flow in porous media using x-ray computerized microtomography (CMT) with 1-20 micron resolution; however, difficulties remain in combining representative sample sizes with optimal image resolution and data quality; and in precise quantification of the variables of interest. Tomographic imaging was for many years focused on volume rendering and the more qualitative analyses necessary for rapid assessment of the state of a patient's health. In recent years, many highly quantitative CMT-based studies of fluid flow processes in porous media have been reported; however, many of these analyses are made difficult by the complexities in processing the resulting grey-scale data into reliable applicable information such as pore network structures, phase saturations, interfacial areas, and curvatures. Yet, relatively few rigorous tests of these analysis tools have been reported so far. The work presented here was designed to evaluate the effect of image resolution and quality, as well as the validity of segmentation and surface generation algorithms as they were applied to CMT images of (1) a high-precision glass bead pack and (2) gas-fluid configurations in a number of glass capillary tubes. Interfacial areas calculated with various algorithms were compared to actual interfacial geometries and we found very good agreement between actual and measured surface and interfacial areas. (The test images used are available for download at the website listed below). http://cbee.oregonstate.edu/research/multiphase_data/index.html
Effect of wellbore storage on the analysis of multiphase-flow-pressure data
Hatzignatiou, D.G. (Univ. of Alaska, Fairbanks, AK (United States)); Peres, A.M.M. (Petrobras S.A., Rio de Janeiro (Brazil)); Reynolds, A.C. (Univ. of Tulsa, OK (United States))
1994-09-01
This paper investigates the effect of wellbore storage on the analysis of pressure drawdown data obtained at a well producing a solution-gas-drive reservoir. Wellbore storage effects are incorporated by specifying a sandface oil flow rate that increases exponentially from zero to the specified constant value of the oil flow rate at the surface. Use of new computational equations derived here shows that effective oil permeability as a pointwise function of pressure can be computed directly from the measured values of the flowing wellbore pressure, provided the sandface oil flow rate is measured and incorporated into the analysis. If the sandface flow rate is unknown, effective permeability can be computed only after wellbore storage effects become negligible. In all cases, a semilog plot of wellbore pressure squared vs. time is shown to be a viable method for estimating effective oil permeability at initial conditions, effective oil permeability at the final flowing wellbore pressure value, and mechanical skin factor.
Multiphase flow solution in horizontal wells using a drift-flux model
Soprano, Arthur Besen; Silva, Antonio Fabio Carvalho da; Maliska, Clovis R. [Universidade Federal de Santa Catarina (EMC/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica], E-mails: arthur@sinmec.ufsc.br, afabio@sinmec.ufsc.br, maliska@sinmec.ufsc.br
2011-04-15
This study presents a procedure to solve two-phase (gas and liquid) flows throughout an oil well with lateral mass inflow from the reservoir. The flow is considered isothermal and one-dimensional. Equations are discretized using a finite volume method with a C ++ (OOP) code implementation. This algorithm is intended to be used with a reservoir simulator to solve the coupled flow between the reservoir and well. (author)
Yortsos, Yanis C.
2002-10-08
In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.
Esposti Ongaro, Tomaso; Cerminara, Matteo
2016-10-01
In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 × 106 kg/s) and strong (mass eruption rate: 1.5 × 109 kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at
Modeling Plasma Flow in Solid Propellant Charges Using the NGEN Multiphase CFD Code
2006-04-01
using these equations derived by a formal averaging technique applied to the microscopic flow. These equations require a number of constitutive laws...disk (dimensions shown are from Chang and Howard [32]). acrylic, that allows cinematography of plasma flows and ignition events along the propellant
Sizing of safety valves for multi-phase flow - ISO 4126 and state of knowledge
CERN. Geneva
2016-01-01
In Industry sizing of safety valves for two-phase flow is still a challenge. Hazard analysis to identify the worst case scenaio, mechanical and thermodynamic non-equilibrium conditions to estimate the mass flow rate and multiple critical flow conditions are among others topics that may lead to differences in sizing a safety valve of up to 1 order of magnitude. There are more than 20 models available to size a safety valve. All of them are based on ideal nozzle flow and corrected by an experimentally determined discharge coefficient. API 520 recommend a homogeneous equilibrium flow model to conservatively estimate the mass flow rate to be discharged. Whereas ISO 4126-10 includes a method for condidering boiling delay and slip effects, which lead to much lesser valve sizes. The discharge coefficient for two-phase flow is part of a model and will not be measured. Valve manufacturer certify only the capacitance and valve functioning under ideal laboratory conditions without inlet and outlet piping. Unfortunat...
Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions
Lian, Yongsheng; Motil, Brian; Rame, Enrique
2016-01-01
In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.
Thermofluidynamics of the multiphase flow inside cylindroconical fermenters with different scales
Meironke Heiko
2014-01-01
Full Text Available In this work the experimental investigations of the flow and the temperature field during the fermentation of beer in cylindroconical tanks are presented. The flow stability is affected of the height/diameter ratio. Increasing the ratio leads to an unsteady, three-dimensional flow with several smaller vortices. In the course of our research the experiments have been performed with real fermentation fluid (wort under various height/diameter ratio. In the study, two tanks have been used in the laboratory and on an industrial scale, which were equipped with special design features. The velocity fields during a real fermentation process are measured by means of Ultrasound Doppler Velocimetry. It permits measurements in opaque fluids. Furthermore temperature measurements are conducted to analyse the interrelationship between the heat transfer and flow structure.
Multiphase imaging of gas flow in a nanoporous material usingremote detection NMR
Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex
2005-10-03
Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering, or as reactors. We report a model study on silica aerogel using a recently introduced time-of-flight (TOF) magnetic resonance imaging technique to characterize the flow field and elucidate the effects of heterogeneities in the pore structure on gas flow and dispersion with Xe-129 as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides new insights into the dynamics of flow in porous media where multiple phases or chemical species may be present.
Negara, Ardiansyah
2015-03-04
Numerical investigations of two-phase flows in anisotropic porous media have been conducted. In the flow model, the permeability has been considered as a full tensor and is implemented in the numerical scheme using the multipoint flux approximation within the framework of finite difference method. In addition, the experimenting pressure field approach is used to obtain the solution of the pressure field, which makes the matrix of coefficient of the global system easily constructed. A number of numerical experiments on the flow of two-phase system in two-dimensional porous medium domain are presented. In this work, the gravity is included in the model to capture the possible buoyancy-driven effects due to density differences between the two phases. Different anisotropy scenarios have been considered. From the numerical results, interesting patterns of the flow, pressure, and saturation fields emerge, which are significantly influenced by the anisotropy of the absolute permeability field. It is found that the two-phase system moves along the principal direction of anisotropy. Furthermore, the effects of anisotropy orientation on the flow rates and the cross flow index are also discussed in the paper.
Tanguy Janin
2010-01-01
Full Text Available In the course of a postulated severe accident in an NPP, Direct Containment Heating (DCH may occur after an eventual failure of the vessel. DCH is related to dynamical, thermal, and chemical phenomena involved by the eventual fine fragmentation and dispersal of the corium melt out of the vessel pit. It may threaten the integrity of the containment by pressurization of its atmosphere. Several simplified modellings have been proposed in the past but they require a very strong fitting which renders any extrapolation regarding geometry, material, and scales rather doubtful. With the development of multidimensional multiphase flow computer codes, it is now possible to investigate the phenomenon numerically with more details. We present an analysis of the potential of the MC3D code to support the analysis of this phenomenon, restricting our discussion to the dynamical processes. The analysis is applied to the case of French 1300 MWe PWR reactors for which we derive a correlation for the corium dispersal rate for application in a Probabilistic Safety Analysis (PSA level 2 study.
He, Ping; Ghoniem, Ahmed F.
2017-03-01
Mixing of partially miscible fluids plays an important role in many physical and chemical processes. The modeling complexities lie in the tight coupling of the multiphase flow, heat transfer and multicomponent mass transfer, as well as diffusions across the phase interface. We present a sharp interface method for modeling such process. The non-ideal equation of state is used to compute the fluid properties such as density, fugacity and enthalpy, and to predict phase equilibrium composition. The phase interface location is tracked using the phase propagation velocity. A third-order one-sided finite difference scheme using a variable grid size according to the interface location is utilized to discretize the partial derivatives immediately next to the interface, while a second-order central scheme is used for the bulk of fluids. An optimization method, the Nelder-Mead method, is applied to search for (1) the phase compositions on both sides of the interface, and (2) the phase propagation velocity based on the coupling of the multicomponent phase equilibrium and the species' balance across the interface. The temperature at the interface is determined by the energy balance. Numerical results are used to demonstrate the convergence of our method and show its capability to simulate the mixing of multicomponent partially miscible fluids.
Xiaojun Zhang
2013-01-01
particle contaminant, moisture and gas simultaneously. As the major unit of HIGEE, the RPB uses centrifugal force to intensify mass transfer. Because of the special structure of RPB, the hydraulic characteristics of the RPB are very important. In this study, the multiphase flow model in porous media of the RPB is presented, and the dynamical oil-water separation in the RPB is simulated using a commercial computational fluid dynamics code. The operating conditions and configuration on the hydraulic performance of the RPB are investigated. The results have indicated that the separation efficiency of HIGEE rotating oil purifier is predominantly affected by operating conditions and the configurations. The best inlet pressure is 0.002 MPa. When the liquid inlet is placed in the outside of the lower surface of RPB; oil outlet is placed in the upper surface, where it is near the rotation axis; and water outlet is placed in the middle of the RPB, where it is far away from the oil outlet, the separating efficiency is the best.
Yuan, H. Z.; Chen, Z.; Shu, C.; Wang, Y.; Niu, X. D.; Shu, S.
2017-09-01
In this paper, a free energy-based surface tension force (FESF) model is presented for accurately resolving the surface tension force in numerical simulation of multiphase flows by the level set method. By using the analytical form of order parameter along the normal direction to the interface in the phase-field method and the free energy principle, FESF model offers an explicit and analytical formulation for the surface tension force. The only variable in this formulation is the normal distance to the interface, which can be substituted by the distance function solved by the level set method. On one hand, as compared to conventional continuum surface force (CSF) model in the level set method, FESF model introduces no regularized delta function, due to which it suffers less from numerical diffusions and performs better in mass conservation. On the other hand, as compared to the phase field surface tension force (PFSF) model, the evaluation of surface tension force in FESF model is based on an analytical approach rather than numerical approximations of spatial derivatives. Therefore, better numerical stability and higher accuracy can be expected. Various numerical examples are tested to validate the robustness of the proposed FESF model. It turns out that FESF model performs better than CSF model and PFSF model in terms of accuracy, stability, convergence speed and mass conservation. It is also shown in numerical tests that FESF model can effectively simulate problems with high density/viscosity ratio, high Reynolds number and severe topological interfacial changes.
Experimental Characterization of Interchannel Mixing of Multiphase Flow Through a Narrow Gap
Mäkiharju, Simo A.; Gose, James W.; Buchanan, John R., Jr.; Mychkovsky, Alexander G.; Lowe, Kirk T.; Ceccio, Steven L.
2016-11-01
Two-phase mass transfer through a gap connecting two adjacent channels was investigated as a function of gap geometry and flow conditions. An experiment with a simplified geometry was conducted to aid in the physical understanding and to provide data for validation of numerical computations. The flow loop consisted of two (127 mm)2 channels connected by a 1,219 mm (L) x 229 mm (W) gap, the height of which could be adjusted from 0 to 50 mm. The inlet Reynolds number in each channel could be independently varied from 4x104 - 1x105. During previous experiments, the single phase mixing was extensively investigated. The inlet void fraction was varied from 1 to 20%. Gas was injected as nominally monodisperse bubbles with diameter O(5 mm). The mass transfer through the gap was determined from measurements of the flow rates of water and air, and tracer concentration taken at channel inlets/outlets. The void fraction, bubble diameter distribution and gas flux was determined at the inlets based on flow rate measurements prior to gas injection, optical probes and Wire Mesh Sensor (WMS) data. At the outlets the gas fluxes were based on WMS measurements and the liquid phase mixing was determined based on measurement of the tracer concentration and liquid flow rate after separation of gas. Imaging of fluorescent tracer dye was utilized for select conditions to examine the dynamics of the mixing.
Towards multi-phase flow simulations in the PDE framework Peano
Bungartz, Hans-Joachim
2011-07-27
In this work, we present recent enhancements and new functionalities of our flow solver in the partial differential equation framework Peano. We start with an introduction including an overview of the Peano development and a short description of the basic concepts of Peano and the flow solver in Peano concerning the underlying structured but adaptive Cartesian grids, the data structure and data access optimisation, and spatial and time discretisation of the flow solver. The new features cover geometry interfaces and additional application functionalities. The two geometry interfaces, a triangulation-based description supported by the tool preCICE and a built-in geometry using geometry primitives such as cubes, spheres, or tetrahedra allow for the efficient treatment of complex and changing geometries, an essential ingredient for most application scenarios. The new application functionality concerns a coupled heat-flow problem and two-phase flows. We present numerical examples, performance and validation results for these new functionalities. © 2011 Springer-Verlag.
Xu, Tianfu; Pruess, Karsten
2000-08-08
Reactive fluid flow and geochemical transport in unsaturated fractured rocks has received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) involvement of the gas phase in addition to liquid and solid phases in fluid flow, mass transport and chemical reactions, (2) treatment of physically and chemically heterogeneous and fractured rocks, (3) the effect of heat on fluid flow and reaction properties and processes, and (4) the kinetics of fluid-rock interaction. The physical and chemical process model is embodied in a system of partial differential equations for flow and transport, coupled to algebraic equations and ordinary differential equations for chemical interactions. For numerical solution, the continuum equations are discretized in space and time. Space discretization is based on a flexible integral finite difference approach that can use irregular gridding to model geologic structure; time is discretized fully implicitly as a first-order finite difference. Heterogeneous and fractured media are treated with a general multiple interacting continua method that includes double-porosity, dual-permeability, and multi-region models as special cases. A sequential iteration approach is used to treat the coupling between fluid flow and mass transport on the one hand, chemical reactions on the other. Applications of the methods developed here to variably saturated geochemical systems are presented in a companion paper (part 2, this issue).
Numerical Simulation of Multi-phase Flow in Porous Media on Parallel Computers
Liu, Hui; Chen, Zhangxin; Luo, Jia; Deng, Hui; He, Yanfeng
2016-01-01
This paper is concerned with developing parallel computational methods for two-phase flow on distributed parallel computers; techniques for linear solvers and nonlinear methods are studied, and the standard and inexact Newton methods are investigated. A multi-stage preconditioner for two-phase flow is proposed and advanced matrix processing strategies are implemented. Numerical experiments show that these computational methods are scalable and efficient, and are capable of simulating large-scale problems with tens of millions of grid blocks using thousands of CPU cores on parallel computers. The nonlinear techniques, preconditioner and matrix processing strategies can also be applied to three-phase black oil, compositional and thermal models.
Molecular dynamics simulation of complex multiphase flow on a computer cluster with GPUs
CHEN Fei-Guo; GE Wei; LI Jing-Hai
2009-01-01
Compute Unified Device Architecture (CUDA) was used to design and implement molecular dynamics (MD) simulations on graphics processing units (GPU). With an NVIDIA Tesla C870, a 20-60 fold speedup over that of one core of the Intel Xeon 5430 CPU was achieved, reaching up to 150 Gflopa. MD simulation of cavity flow and particle-bubble interaction in liquid was implemented on multiple GPUs using a message passing interface (MPI). Up to 200 GPUs were tested on a special network topology, which achieves good scalability. The capability of GPU clusters for large-scale molecular dynamics simulation of meso-scale flow behavior was, therefore, uncovered.
Molecular dynamics simulation of complex multiphase flow on a computer cluster with GPUs
无
2009-01-01
Compute Unified Device Architecture (CUDA) was used to design and implement molecular dynamics (MD) simulations on graphics processing units (GPU). With an NVIDIA Tesla C870, a 20-60 fold speedup over that of one core of the Intel Xeon 5430 CPU was achieved, reaching up to 150 Gflops. MD simulation of cavity flow and particle-bubble interaction in liquid was implemented on multiple GPUs using a message passing interface (MPI). Up to 200 GPUs were tested on a special network topology, which achieves good scalability. The capability of GPU clusters for large-scale molecular dynamics simulation of meso-scale flow behavior was, therefore, uncovered.
Cerminara, Matteo; Esposti Ongaro, Tomaso; Carlo Berselli, Luigi
2014-05-01
We have developed a compressible multiphase flow model to simulate the three-dimensional dynamics of turbulent volcanic ash plumes. The model describes the eruptive mixture as a polydisperse fluid, composed of different types of gases and particles, treated as interpenetrating Eulerian phases. Solid phases represent the discrete ash classes into which the total granulometric spectrum is discretized, and can differ by size and density. The model is designed to quickly and accurately resolve important physical phenomena in the dynamics of volcanic ash plumes. In particular, it can simulate turbulent mixing (driving atmospheric entrainment and controlling the heat transfer), thermal expansion (controlling the plume buoyancy), the interaction between solid particles and volcanic gas (including kinetic non-equilibrium effects) and the effects of compressibility (over-pressured eruptions and infrasonic measurements). The model is based on the turbulent dispersed multiphase flow theory for dilute flows (volume concentration <0.001, implying that averaged inter-particle distance is larger than 10 diameters) where particle collisions are neglected. Moreover, in order to speed up the code without losing accuracy, we make the hypothesis of fine particles (Stokes number <0.2 , i.e., volcanic ash particles finer then a millimeter), so that we are able to consider non-equilibrium effects only at the first order. We adopt LES formalism (which is preferable in transient regimes) for compressible flows to model the non-linear coupling between turbulent scales and the effect of sub-grid turbulence on the large-scale dynamics. A three-dimensional numerical code has been developed basing on the OpenFOAM computational framework, a CFD open source parallel software package. Numerical benchmarks demonstrate that the model is able to capture important non-equilibrium phenomena in gas-particle mixtures, such as particle clustering and ejection from large-eddy turbulent structures, as well
Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.
2002-12-01
Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNa
An Experimental and Computational Study of Multiphase Flow Behaviour in Circulating Fluidized Beds
Mathiesen, Vidar
1997-12-31
Gas/solid flows have been studied extensively, mainly because they are important in nuclear, chemical and petroleum industries. This thesis describes an experiment done at two different circulating fluidized bed systems. Laser Doppler anemometry (LDA) and phase Doppler anemometry (PDA) were used to measure mean and fluctuating velocity, diameter and solids concentration. A typical core-annulus flow was obtained in both cases. The measurements show a relative mean velocity as well as a relative fluctuating velocity between different particle sizes. An axial segregation by size and its variation with the superficial gas velocity are demonstrated. Significant radial segregation is found in both risers. A three-dimensional Computational Fluid Dynamics model was developed based on Eulerian description of the phases where the kinetic theory of granular flow is the basis of the turbulence modelling in the solid phases. There are one gas phase and any number of solid phases. Simulations of flow behaviour in two- and three-dimensions agree well with experiments and the model is able to handle axial segregation by size for different superficial gas velocities and particle size distributions. 107 refs., 79 figs., 6 tabs.
Flow Dynamic Analysis of Core Shooting Process through Experiment and Multiphase Modeling
Changjiang Ni
2016-01-01
Full Text Available Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores as well as the manufacture of complicated castings in metal casting industry. In this paper, the flow behavior of sand particles in the core box was investigated synchronously with transparent core box, high-speed camera, and pressure measuring system. The flow pattern of sand particles in the shooting head of the core shooting machine was reproduced with various colored core sand layers. Taking both kinetic and frictional stress into account, a kinetic-frictional constitutive correlation was established to describe the internal momentum transfer in the solid phase. Two-fluid model (TFM simulations with turbulence model were then performed and good agreement was achieved between the experimental and simulation results on the flow behavior of sand particles in both the shooting head and the core box. Based on the experimental and simulation results, the flow behavior of sand particles in the core box, the formation of “dead zone” in the shooting head, and the effect of drag force were analyzed in terms of sand volume fraction (αs, sand velocity (Vs, and pressure variation (P.
Complexity reduction of multi-phase flows in heterogeneous porous media
Ghommem, Mehdi
2013-01-01
In this paper, we apply mode decomposition and interpolatory projection methods to speed up simulations of two-phase flows in highly heterogeneous porous media. We propose intrusive and non-intrusive model reduction approaches that enable a significant reduction in the dimension of the flow problem size while capturing the behavior of the fully-resolved solutions. In one approach, we employ the dynamic mode decomposition (DMD) and the discrete empirical interpolation method (DEIM). This approach does not require any modification of the reservoir simulation code but rather postprocesses a set of global snapshots to identify the dynamically-relevant structures associated with the flow behavior. In a second approach, we project the governing equations of the velocity and the pressure fields on the subspace spanned by their proper orthogonal decomposition (POD) modes. Furthermore, we use DEIM to approximate the mobility related term in the global system assembly and then reduce the online computational cost and make it independent of the fine grid. To show the effectiveness and usefulness of the aforementioned approaches, we consider the SPE 10 benchmark permeability field and present a variety of numerical examples of two-phase flow and transport. The proposed model reduction methods can be efficiently used when performing uncertainty quantification or optimization studies and history matching.
Katoh, Yasuo [Yamaguchi Univ. (Japan); Matsubayasi, Masahito
1998-01-01
Concerning the transient phenomenon of solid-gas two-phase flow, an attempt was made to visualize and measure a flow phenomenon in which three-dimensional bubbles occurred, grew and collapsed in the vicinity of a gas injection nozzle while solid particles were circulating. Such a phenomenon could not or hardly be visualized and measured by conventional methods. Such two-phase flow was visualized using neutron radiography, its characteristics measured and the usefulness of the visualization by neutron radiography confirmed. For this purpose, three-dimensional fluidized bed vessels, rectangular or cylindrical-shaped, made of steel or aluminum sheet, were prepared. Polyethylene or glass beads were used as solid particles and activated carbon particles as the tracer. In the experiment, nitrogen gas was blown into the vessel from one nozzle and distributors provided at the bottom of the vessel and exhausted from the top via the exhaust valve, by which the pressure in the vessel was controlled. The imaging was done in the following way: A test chamber was provided beside the vessel to receive neutron beams from the JRR-3M system, the intensity of transmitted neutrons was converted to visible light by scintillator and the images were videotaped. The initial objectives of visualizing and measuring bubbles occurring, growing and collapsing and solid particles circulating in the solid-gas two-phase flow have been achieved by means of neutron radiography. (N.H.)
Yannis C. Yortsos
2003-02-01
This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.
Dub, F.; Juanes, R.
2007-12-01
Multiscale phenomena are ubiquitous to flow and transport in porous media. They manifest themselves through at least the following three facets: (1) effective parameters in the governing equations are scale dependent; (2) some features of the flow (especially sharp fronts and boundary layers) cannot be resolved on practical computational grids; and (3) dominant physical processes may be different at different scales. Numerical methods should therefore reflect the multiscale character of the solution. In this paper, we concentrate on the development of simulation techniques that account for the heterogeneity present in realistic reservoirs, and have the ability to capture (on coarse grids) the detailed pattern of unstable flows due to viscous fingering and channeling. We express the governing equations of multiphase flow as a pressure equation and a saturation equation. Both are nonlinear but are only weakly coupled. The pressure equation is elliptic, while the saturation equation is quasi-hyperbolic. Traditionally, the large degree of heterogeneity in the coefficients of the pressure equation has been tackled by upscaling the fine-scale properties to coarse-scale effective coefficients. Here, we avoid upscaling and propose a variational multiscale (VMS) method that splits the original problem is (rigorously) into a coarse-scale problem and a subgrid-scale problem. The framework is very flexible with respect to how each of these problems is approximated. The proposed VMS method employs a low-order mixed finite element method at the coarse scale, and a finite volume method at the subgrid scale. The method is therefore locally conservative at both the coarse and fine scales. We pay special attention to the definition of the local boundary conditions for the subgrid problems. In particular, we develop a well model, which accounts for subgrid heterogeneity and radial flow regime in a consistent fashion, without compromising the local mass conservation property. The
Bagchi, Prosenjit
2016-11-01
In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.
Tartakovsky, Alexandre M.; Panchenko, Alexander
2016-01-01
We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics Model (PF-SPH) and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the accuracy of the model under static and dynamic conditions. Finally, to demonstrate the capabilities and robustness of the model we use it to simulate flow of three fluids in a porous material.
Tartakovsky, Alexandre M.; Panchenko, Alexander
2016-01-01
We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem
Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem.
Abas, Aizat; Mokhtar, N Hafizah; Ishak, M H H; Abdullah, M Z; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem
Aizat Abas
2016-01-01
Full Text Available This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI. Three different types of Lattice Boltzmann (LB models are computed, namely, single relaxation time (SRT, multiple relaxation time (MRT, and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV- based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.
Sergey I Shcherbakov [SSC RF IPPE named after A.I. Leypunsky, Bondarenko sq. 1, Obninsk, 249033, Kaluga region (Russian Federation)
2005-07-01
Full text of publication follows: The paper presents the key features of the TURBO-FLOW 2D computer code designed for on-line numerical solving of multiphase flow problems (at present, three phases) in the units of NPP equipment. The code implements a direct non-stationary calculation of velocity distribution and phase concentrations. The fields of application of the TURBO-FLOW code are the following: multi-version calculations for optimizing a construction design or regime; dynamic processes with a sampling up to 10{sup 5} of time steps (impacts, explosions, vibrations, and so on); express calculations. The code is characterized by the simplicity of giving the calculation object and very little time required for producing results (dozens of time steps per second). The system requirements are as follows: Win98/ME, Pentium3-600 (256 k L2 Cache), 32 Mb. The peculiarities of mathematical statement consist in dividing velocity variations into components (by reasons of their occurrence), calculating them independently, and using the medium-volume velocity of mixture and velocities of phase slip. To evaluate the medium-volume velocity, the current function and velocity potential calculated by the circulation and mass conservation equations are used. Preliminarily, the current functions and potentials are calculated for time-varying volumetric sources and boundary conditions. A concept of permissible velocity variations is used. The friction models for empty domain and porous solid are involved. The slip velocity is given by a continuous function of phase concentration and local pressure gradient. The equations of phase transfer are solved with individual velocities of phases and phase transfers (the rate and localization of phase breakdown into each other to be specified). In addition, the equations for the functions of phase particle age are solved. The two-dimensional computational model being given by the user on a rectangular nonuniform mesh is used. The procedure of
Miller, J.D.
1994-10-18
Air sparged hydrocyclone (ASH) flotation is a new particle separation technology that has been developed at the University of Utah. This technology combines froth flotation principles with the flow characteristics of a hydrocyclone such that the ASH system can perform flotation separations in less than a second. This feature provides the ASH with a high specific capacity, 100 to 600 times greater than the specific capacity of conventional flotation machines. In an effort to develop a more detailed understanding of ASH flotation, multiphase flow characteristics of the air sparged hydrocyclone were studied and the relationship of these characteristics with flotation performance was investigated. This investigation was divided into four phases. In the first phase, the time-averaged multiphase flow characteristics of the ASH during its steady state operation were studied using x-ray computed tomography (x-ray CT). In this regard, a model system, mono-sized quartz flotation with dodecyl amine as collector, using a 2 in. diameter ASH unit (ASH-2C), was selected for study. Various flow regimes, namely, the air core, the froth phase, and the swirl layer, were identified and their spatial extent established for different experimental conditions by x-ray CT analysis. In the second phase, a detailed parametric study of flotation response of the ASH for the same system was carried out in order to establish the effect of various operating variables on flotation response. The findings of this phase of investigation were then correlated with the multiphase flow characteristics as revealed by x-ray CT in the first phase. Thus, the impact of various operating variables on the flow regimes, and hence, on flotation response was established.
Multi-Phase Flow and Heat Transfer of a Micro-Pump Thermally Driven by a Multi-Output Pulse Laser
HUAI Xiu-Lan; TANG Zhi-Wei; WANG Guo-Xiang; WANG Wei-Wei
2005-01-01
@@ We present an experimental study of multi-phase flow and heat transfer in a micro-tube induced by a multi-output pulse laser. Extensive flow and heat transfer measurements and visualization experiments have been carried out to characterize the micro-pump behaviour under various conditions. The experiments reveal extremely unsteady and complex flow patterns in the micro tube with the flow closely related with generation and collapse of bubbles.It is found that the flow rates are controlled by the heating and condensation conditions within the tube. The laser pulse duration, pulse interval and output-power as well as the tube diameter all show a strong influence on the flow rate of the micro-pump. This study provides a basis for the design of thermally-driven micro-pump induced by a pulsed laser beam.
Unravelling the multiphase run-out conditions of a slide-flow mass movement
van Asch, Th. W. J.; Xu, Q.; Dong, X. J.
2015-02-01
In this paper an attempt is made to unravel the run-out characteristics of a mass movement in the Sichuan Province, SW China by means of 1D numerical modelling and calibration on the topography of run-out profiles. The Dagou mass movement started as a rockslide with an initial volume of 480,000 m3, which transformed into a debris flow, increasing in volume due to entrainment of loose material in the upper part of the travelling track. The rapid mass movement had a run-out distance of 1380 m and a run-out time of about 50 s. Numerical calculations were conducted with the depth average shallow water equation to explain the variation in thickness of the debris flow deposits along the run-out track. For the calibration of the first run-out phase, three rheological models were applied, namely the Bingham, Voellmy and Quadratic rheology. Calibration was done on 1) the run-out distance, 2) the run-out time and 3) the goodness of fit with the thickness of the deposits along the track. In addition the erosion constant in the entrainment equation was calibrated on the observed versus calculated run-out volumes. Sensitivity analyses of the resistance parameters for the different rheologies showed that the viscosity, the basal friction, the turbulence term and the resistance factor are the most sensitive ones. It appeared that the variation in thickness along the run-out track can be explained by entrainment of material in the upper part of the track and a change in parametric values during the run-out process. The three rheologies produced a reasonable fit with the observed geometry of the run-out profile, run-out time and run-out volume. It was argued that the Voellmy rheology seems to give the most appropriate explanation for the difference in resistance along the run-out path. The main problem in the simulation was to stop the debris flow on a slope with a gradient around 22°. A reactivation of the mass movement by frictional sliding of the material half way the run
Nicolleau, FCGA; Redondo, J-M
2012-01-01
This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig's activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, partic
Effects of Capillary Pressure on Multiphase Flow during CO2 Injection in Saline Aquifer
Pau J.S.
2014-07-01
Full Text Available This paper focused on supercritical CO2 injection into saline aquifer, in particular its capillarity’s effects on the plume migration, reservoir pressure alteration and CO2 flux density. The numerical method used to solve the incompressible two-phase flow equations is based on the mimetic method, which conserves the mass and fluxes simultaneously. The investigation showed that exclusion of capillarity can greatly underestimate the CO2 plume migration and resulted in distinctive reservoir pressure distribution. It is found that capillarity showed no significant effect on the flux intensity of CO2.
Paul Meakin; Zhijie Xu
2008-06-01
Particle methods are much less computationally efficient than grid based numerical solution of the Navier Stokes equation, and they have been used much less extensively, particularly for engineering applications. However, they have important advantages for some applications. These advantages include rigorous mast conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing. Code development effort is relatively low, and it is relatively simple to simulate flows with moving boundaries. In addition, it is often quite easy to include coupling of fluid flow with other physical phenomena such a phase separation. Here we describe the application of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. While these methods were developed to simulate fluids and other materials on three quite different scales – the molecular, meso and continuum scales, they are very closely related from a computational point of view. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role. Important examples include polymer solutions, gels, small particle suspensions and membranes. In these applications inter particle and intra molecular hydrodynamic interactions are automatically included
Modeling of finite-size droplets and particles in multiphase flows
Prashant Khare
2015-08-01
Full Text Available The conventional point-particle approach for treating the dispersed phase in a continuous flowfield is extended by taking into account the effect of finite particle size, using a Gaussian interpolation from Lagrangian points to the Eulerian field. The inter-phase exchange terms in the conservation equations are distributed over the volume encompassing the particle size, as opposed to the Dirac delta function generally used in the point-particle approach. The proposed approach is benchmarked against three different flow configurations in a numerical framework based on large eddy simulation (LES turbulence closure. First, the flow over a circular cylinder is simulated for a Reynolds number of 3900 at 1 atm pressure. Results show good agreement with experimental data for the mean streamwise velocity and the vortex shedding frequency in the wake region. The calculated flowfield exhibits correct physics, which the conventional point-particle approach fails to capture. The second case deals with diesel jet injection in quiescent environment over a pressure range of 1.1–5.0 MPa. The calculated jet penetration depth closely matches measurements. It decreases with increasing chamber pressure, due to enhanced drag force in a denser fluid environment. Finally, water and acetone jet injection normal to air crossflow is studied at 1 atm. The calculated jet penetration and Sauter mean diameter of liquid droplets compare very well with measurements.
CVFEM for Multiphase Flow with Disperse and Interface Tracking, and Algorithms Performances
M. Milanez
2015-12-01
Full Text Available A Control-Volume Finite-Element Method (CVFEM is newly formulated within Eulerian and spatial averaging frameworks for effective simulation of disperse transport, deposit distribution and interface tracking. Their algorithms are implemented alongside an existing continuous phase algorithm. Flow terms are newly implemented for a control volume (CV fixed in a space, and the CVs' equations are assembled based on a finite element method (FEM. Upon impacting stationary and moving boundaries, the disperse phase changes its phase and the solver triggers identification of CVs with excess deposit and their neighboring CVs for its accommodation in front of an interface. The solver then updates boundary conditions on the moving interface as well as domain conditions on the accumulating deposit. Corroboration of the algorithms' performances is conducted on illustrative simulations with novel and existing Eulerian and Lagrangian solutions, such as (- other, i. e. external methods with analytical and physical experimental formulations, and (- characteristics internal to CVFEM.
S. Sathiyamoorthy
2007-09-01
Full Text Available Electrical Capacitance Tomography (ECT was used to develop image of various multi phase flow of gas-liquid-solid in a closed pipe. The principal difficulties to obtained real time image from ECT sensor are permittivity distribution across the plate and capacitance is nonlinear; the electric field is distorted by the material present and is also sensitive to measurement errors and noise. This work present a detailed description is given on method employed for image reconstruction from the capacitance measurements. The discretization and iterative algorithm is developed for improving the predictions with minimum error. The author analyzed eight electrodes square sensor ECT system with two-phase water-gas and solid-gas.
Paper capillary force driven hollow channel as a platform for multiphase flows bioassays
Zheng Tengfei
2016-05-01
Full Text Available This paper develops a simple, inexpensive, and portable diagnostic assays that may be useful in remote settings, and in particular, in less industrialized countries where simple assays are becoming increasingly important for detecting disease and monitoring health. In this assays, the paper capillary force is first used to transport complex fluids such as whole blood or colloidal suspensions that contain particulates in a new type channel - paper capillary driven hollow channel, which offset the disadvantages of current paper microfluidic technologies. To demonstrate the various applications of the paper capillary force driven hollow channel, several devices are design and made to complete the purpose of exhibiting laminar flow in a T-junction microchannel, sheath a core stream in a three-inlet channel and transportation whole blood.
Dual FIB-SEM 3D Imaging and Lattice Boltzmann Modeling of Porosimetry and Multiphase Flow in Chalk
Rinehart, A. J.; Yoon, H.; Dewers, T. A.; Heath, J. E.; Petrusak, R.
2010-12-01
Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage. This work was supported by the US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Towards an integrated petrophysical tool for multiphase flow properties of core samples
Lenormand, R. [Institut Francais du Petrole, Rueil Malmaison (France)
1997-08-01
This paper describes the first use of an Integrated Petrophysical Tool (IPT) on reservoir rock samples. The IPT simultaneously measures the following petrophysical properties: (1) Complete capillary pressure cycle: primary drainage, spontaneous and forced imbibitions, secondary drainage (the cycle leads to the wettability of the core by using the USBM index); End-points and parts of the relative permeability curves; Formation factor and resistivity index. The IPT is based on the steady-state injection of one fluid through the sample placed in a Hassler cell. The experiment leading to the whole Pc cycle on two reservoir sandstones consists of about 30 steps at various oil or water flow rates. It takes about four weeks and is operated at room conditions. Relative permeabilities are in line with standard steady-state measurements. Capillary pressures are in accordance with standard centrifuge measurements. There is no comparison for the resistivity index, but the results are in agreement with literature data. However, the accurate determination of saturation remains the main difficulty and some improvements are proposed. In conclusion, the Integrated Petrophysical Tool is as accurate as standard methods and has the advantage of providing the various parameters on the same sample and during a single experiment. The FIT is easy to use and can be automated. In addition, it can be operated in reservoir conditions.
An Experimenting Field Approach for the Numerical Solution of Multiphase Flow in Porous Media.
Salama, Amgad; Sun, Shuyu; Bao, Kai
2016-03-01
In this work, we apply the experimenting pressure field technique to the problem of the flow of two or more immiscible phases in porous media. In this technique, a set of predefined pressure fields are introduced to the governing partial differential equations. This implies that the velocity vector field and the divergence at each cell of the solution mesh can be determined. However, since none of these fields is the true pressure field entailed by the boundary conditions and/or the source terms, the divergence at each cell will not be the correct one. Rather the residue which is the difference between the true divergence and the calculated one is obtained. These fields are designed such that these residuals are used to construct the matrix of coefficients of the pressure equation and the right-hand side. The experimenting pressure fields are generated in the solver routine and are fed to the different routines, which may be called physics routines, which return to the solver the elements of the matrix of coefficients. Therefore, this methodology separates the solver routines from the physics routines and therefore results in simpler, easy to construct, maintain, and update algorithms.
Computer assisted gamma and X-ray tomography: Applications to multiphase flow systems
Kumar, S.B.; Dudukovic, M.
1998-01-01
In process vessels, involving two or three phases it is often important not only to know the volume fraction (holdup) of each phase but also the spatial distribution of such holdups. This information is needed in control, trouble shooting and assessment of flow patterns and can be observed noninvasively by the application of Computed Tomography (CT). This report presents a complete overview of X-ray and gamma ray transmission tomography principles, equipment design to specific tasks and application in process industry. The fundamental principles of tomography, the algorithms for image reconstruction, the measurement method and the possible sources of error are discussed in detail. A case study highlights the methodology involved in designing a scanning system for the study of a given process unit, e.g., reactor, separations column etc. Results obtained in the authors` laboratory for the gas holdup distribution in bubble columns are also presented. Recommendations are made for the Advanced Fuels Development Unit (AFDU) in LaPorte, TX.
A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows
Owkes, Mark, E-mail: mfc86@cornell.edu; Desjardins, Olivier
2013-09-15
The accurate conservative level set (ACLS) method of Desjardins et al. [O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys. 227 (18) (2008) 8395–8416] is extended by using a discontinuous Galerkin (DG) discretization. DG allows for the scheme to have an arbitrarily high order of accuracy with the smallest possible computational stencil resulting in an accurate method with good parallel scaling. This work includes a DG implementation of the level set transport equation, which moves the level set with the flow field velocity, and a DG implementation of the reinitialization equation, which is used to maintain the shape of the level set profile to promote good mass conservation. A near second order converging interface curvature is obtained by following a height function methodology (common amongst volume of fluid schemes) in the context of the conservative level set. Various numerical experiments are conducted to test the properties of the method and show excellent results, even on coarse meshes. The tests include Zalesak’s disk, two-dimensional deformation of a circle, time evolution of a standing wave, and a study of the Kelvin–Helmholtz instability. Finally, this novel methodology is employed to simulate the break-up of a turbulent liquid jet.
Miller, Aubrey L. [WSU Research Corporation, Morgantown, WV (USA)
2005-07-01
This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.
Pradeep, Chaminda; Yan, Ru; Vestøl, Sondre; Melaaen, Morten C.; Mylvaganam, Saba
2014-07-01
The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1, 2,…N and i ≠ j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries
Ezzedine, S. M.
2015-12-01
Leakage to the atmosphere of a significant fraction of injected CO2 would constitute a failure of a geological CO2 storage project from a greenhouse gas mitigation perspective. We present a numerical model that simulates flow and transport of CO2 into heterogeneous subsurface systems. The model, StoTran, is a flexible numerical environment that uses state-of-the-art finite element and finite volume methods and unstructured adaptive mesh refinement scheme implemented using MPI and OpenMP protocols. Multiphase flow equations and the geomechanical equations are implicitly solved and either fully or sequentially coupled. StoTran can address inverse and forward problems under deterministic or stochastic conditions. For the current study, StoTran has been used to simulate several scenarios spanning from a homogeneous single layered reservoir to heterogeneous multi-layered systems, which including cap-rock with embedded fractures, have been simulated under different operations of CO2 injection and CO2 leakages conditions. Results show the impact of the injection and leakage rates on the time evolution of the spread of the CO2 plume, its interception of the fractured cap-rock and the risk associated with the contamination of the overlaying aquifer. Spatial and temporal moments have been calculated for different, deterministic of stochastic, subsurface physical and chemical properties. Spatial moments enable assessing the extent of the region of investigation under conditions of uncertainty. Furthermore, several leakage scenarios show the intermittence behavior and development of the CO2 plume in the subsurface; its first interception with the fractures located further far from the injection well then, at a second stage, its interception with the fracture within the immediate vicinity of the injection well. We will present a remedy to CO2 leakages from the reservoir in order to enhance a long term containment of the injected CO2. This work performed under the auspices of
Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal
2010-09-01
The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The
Uncertainty quantification tools for multiphase gas-solid flow simulations using MFIX
Fox, Rodney O. [Iowa State Univ., Ames, IA (United States); Passalacqua, Alberto [Iowa State Univ., Ames, IA (United States)
2016-02-01
Computational fluid dynamics (CFD) has been widely studied and used in the scientific community and in the industry. Various models were proposed to solve problems in different areas. However, all models deviate from reality. Uncertainty quantification (UQ) process evaluates the overall uncertainties associated with the prediction of quantities of interest. In particular it studies the propagation of input uncertainties to the outputs of the models so that confidence intervals can be provided for the simulation results. In the present work, a non-intrusive quadrature-based uncertainty quantification (QBUQ) approach is proposed. The probability distribution function (PDF) of the system response can be then reconstructed using extended quadrature method of moments (EQMOM) and extended conditional quadrature method of moments (ECQMOM). The report first explains the theory of QBUQ approach, including methods to generate samples for problems with single or multiple uncertain input parameters, low order statistics, and required number of samples. Then methods for univariate PDF reconstruction (EQMOM) and multivariate PDF reconstruction (ECQMOM) are explained. The implementation of QBUQ approach into the open-source CFD code MFIX is discussed next. At last, QBUQ approach is demonstrated in several applications. The method is first applied to two examples: a developing flow in a channel with uncertain viscosity, and an oblique shock problem with uncertain upstream Mach number. The error in the prediction of the moment response is studied as a function of the number of samples, and the accuracy of the moments required to reconstruct the PDF of the system response is discussed. The QBUQ approach is then demonstrated by considering a bubbling fluidized bed as example application. The mean particle size is assumed to be the uncertain input parameter. The system is simulated with a standard two-fluid model with kinetic theory closures for the particulate phase implemented into
Herring, Anna L.; Middleton, Jill; Walsh, Rick; Kingston, Andrew; Sheppard, Adrian
2017-09-01
We investigate capillary pressure-saturation (PC-S) relationships for drainage-imbibition experiments conducted with air (nonwetting phase) and brine (wetting phase) in Bentheimer sandstone cores. Three different flow rate conditions, ranging over three orders of magnitude, are investigated. X-ray micro-computed tomographic imaging is used to characterize the distribution and amount of fluids and their interfacial characteristics. Capillary pressure is measured via (1) bulk-phase pressure transducer measurements, and (2) image-based curvature measurements, calculated using a novel 3D curvature algorithm. We distinguish between connected (percolating) and disconnected air clusters: curvatures measured on the connected phase interfaces are used to validate the curvature algorithm and provide an indication of the equilibrium condition of the data; curvature and volume distributions of disconnected clusters provide insight to the snap-off processes occurring during drainage and imbibition under different flow rate conditions.
Paolini, C.; Park, A. J.; Mellors, R. J.; Castillo, J.
2009-12-01
A typical CO2 sequestration scenario involves the use of multiple simulators for addressing multiphase fluid and heat flow, water-rock interaction and mass-transfer, rock mechanics, and other chemical and physical processes. The benefit of such workflow is that each model can be constrained rigorously; however, the drawback is final modeling results may achieve only a limited extent of the theoretically possible capabilities of each model. Furthermore, such an approach in modeling carbon sequestration cannot capture the nonlinearity of the various chemical and physical processes. Hence, the models can only provide guidelines for carbon sequestration processes with large margins of error. As an alternative, a simulator is being constructed by a multi-disciplinary team with the aim of implementing a large array of fundamental phenomenologies, including, but not limited to: water-rock interaction using elemental mass-balance and explicit mass-transfer and reaction coupling methods; multi-phase and heat flow, including super-critical CO2 and oil; fracture mechanics with anisotropic permeabilities; rheological rock mechanics based on incremental stress theory; and a composite petrophysics model capable of describing changing rock composition and properties. The modules representing the processes will be solved using a layered iteration method, with the goal of capturing the nonlinear feedback among all of the processes. The simulator will be constructed using proven optimization and modular, object-oriented, and service-oriented programming methods. Finally, a novel AJAX (asynchronous JavaScript and XML) user interface is being tested to host the simulator that will allow usage through an Internet browser. Currently, the water-rock interaction, composite petrophysics, and multi-phase fluid and heat flow modules are available for integration. Results of the water-rock interaction and petrophysics coupling has been used to model interaction between a CO2-charged water and
Omar, W. S. A. W.; Sulaiman, A. Z.; Ajit, A.; Chisti, Y.; Chor, A. L. T.
2017-06-01
A full factorial design (FFD) approach was conducted to assess the effect of four factors, namely flow rate, duty cycle, amplitude, and treatment time of ultrasonic regimens towards Escherichia coli harbouring lipase. The 22 experiments were performed as the following values with six replicates of centre point: flow rate (0.1, 0.2, and 0.3 L/min), duty cycle (0, 20, and 40 ), amplitude (2, 6, and 10), and treatment time (10, 35, and 60 min). The FFD was employed as preliminary screening in shake flask cultivation to choose the significant factors (Pculture. Also, the designated flow rate and amplitude accordingly showed no effect towards the amount of dry cells weight (DCW). DCW1 was found significantly degraded after the exposure of high duty cycle and treatment time as other factors remained constant. Whereas for the lipase activity, no significant difference was observed in any main factors or interactions. Paired samples t-test confirms the result at a p-value of 0.625. This experimental study suggests the direct and continuous approach of sonication caused an adverse effect on the cells culture density.
Ongaro, T. E.; Clarke, A.; Neri, A.; Voight, B.; Widiwijayanti, C.
2005-12-01
For the first time the dynamics of directed blasts from explosive lava-dome decompression have been investigated by means of transient, multiphase flow simulations in 2D and 3D. Multiphase flow models developed for the analysis of pyroclastic dispersal from explosive eruptions have been so far limited to 2D axisymmetric or Cartesian formulations which cannot properly account for important 3D features of the volcanic system such as complex morphology and fluid turbulence. Here we use a new parallel multiphase flow code, named PDAC (Pyroclastic Dispersal Analysis Code) (Esposti Ongaro et al., 2005), able to simulate the transient and 3D thermofluid-dynamics of pyroclastic dispersal produced by collapsing columns and volcanic blasts. The code solves the equations of the multiparticle flow model of Neri et al. (2003) on 3D domains extending up to several kilometres in 3D and includes a new description of the boundary conditions over topography which is automatically acquired from a DEM. The initial conditions are represented by a compact volume of gas and pyroclasts, with clasts of different sizes and densities, at high temperature and pressure. Different dome porosities and pressurization models were tested in 2D to assess the sensitivity of the results to the distribution of initial gas pressure, and to the total mass and energy stored in the dome, prior to 3D modeling. The simulations have used topographies appropriate for the 1997 Boxing Day directed blast on Montserrat, which eradicated the village of St. Patricks. Some simulations tested the runout of pyroclastic density currents over the ocean surface, corresponding to observations of over-water surges to several km distances at both locations. The PDAC code was used to perform 3D simulations of the explosive event on the actual volcano topography. The results highlight the strong topographic control on the propagation of the dense pyroclastic flows, the triggering of thermal instabilities, and the elutriation
Sakamoto, Yasuhide; Nishiwaki, Junko; Hara, Junko; Kawabe, Yoshishige; Sugai, Yuichi; Komai, Takeshi
In late years, soil contamination due to mineral oil in vacant lots of oil factory and oil field has become obvious. Measure for soil contamina tion and risk assessment are neces sary for sustainable development of industrial activity. Especially, in addition to contaminated sites, various exposure paths for human body such as well water, soil and farm crop are supposed. So it is very important to comprehend the transport phenomena of contaminated material under the environments of soil and ground water. In this study, mineral oil as c ontaminated material consisting of mu lti-component such as aliphatic and aromatic series was modeled. Then numerical mode l for transport phenomena in surface soil and aquifer was constructed. On the basis of modeling for mineral oil, our numerical model consists of three-phase (oil, water and gas) forty three-component. This numerical model becomes base program for risk assessment system on soil contamination due to mineral oil. Using this numerical model, we carried out some numerical simulation for a laboratory-scale experiment on oil-water multi-phase flow. Relative permeability that dominate flow behavior in multi-phase condition was formulated and the validity of the numerical model developed in this study was considered.
Lycett-Brown, Daniel; Luo, Kai H
2016-11-01
A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015)PLEEE81539-375510.1103/PhysRevE.91.023305]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable.
Lycett-Brown, Daniel; Luo, Kai H.
2016-11-01
A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015), 10.1103/PhysRevE.91.023305]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable.
Prasser, H.M. [ed.
1998-11-01
The 2nd Workshop on measuring systems for steady-state and transient multiphase flows was held at Rossendorf on September 24/25, 1988. 14 Papers were presented, whose subjects ranged from optical and radiometric methods to impedance sensors, hot film probes and model-assisted methods of measurement. In the field of computer simulation of multiphase flow, a trend towards 3D models was identified which makes higher demands on the spatial and time resolution and on the information volume to be acquired and processed. [German] Vom 24.-25. September 1998 fand in Rossendorf der 2. Workshop ueber Messtechnik fuer stationaere und transiente Mehrphasenstroemungen statt. Es standen 14 Vortraege auf dem Programm, das Spektrum reichte von optischen ueber radiometrische Methoden bis hin zu verschiedenen Impedanzsensoren, Heissfilmsonden und modellgestuetzten Messverfahren. Auf dem Gebiet der Computersimulation von Mehrphasenstroemungen zeichnet sich zunehmend der Uebergang zu dreidimensionalen Modellen ab. Hieraus ergeben sich neue Anforderungen an die Messtechnik, sowohl hinsichtlich der raeumlich-zeitlichen Aufloesung als auch was den Umfang der zu erfassenden Informationen betrifft. (orig./AKF)
Katyal, A.K.; Kaluarachchi, J.J.; Parker, J.C.
1991-05-01
The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The report describes the required inputs for flow analysis and transport analysis. Time dependent boundary conditions for flow and transport analysis can be handled by the program and are described in the report. Detailed instructions for creating data files needed to run the program and example input and output files are given in appendices.
Wildenschild, Dorthe; Porter, M.L.; Schaap, M.G.
Quantitative non-invasive imaging has evolved rapidly in the last decade, and is now being used to assess a variety of problems in vadose zone research, including unsaturated flow and transport of water and contaminants, macropore-dominated processes, soil-water-root interactions, more recent work...... on colloidal processes, and significant work on NAPL-water interactions . We are now able to use non-invasive imaging to probe processes that could not previously be quantified because of lack of opacity, resolution, or accurate techniques for quantitative measurement. This work presents an overview of recent...... advances in x-ray microtomography techniques that can generate high-resolution image-based data for (1) validation of pore-scale multi-phase flow models such as the lattice-Boltzmann technique and pore network models (with respect to fluid saturations, fluid distribution, and relationships among capillary...
Fourtakas, G.; Rogers, B. D.
2016-06-01
A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.
Adam, A.; Pavlidis, D.; Percival, J. R.; Salinas, P.; Xie, Z.; Fang, F.; Pain, C. C.; Muggeridge, A. H.; Jackson, M. D.
2016-09-01
A general, higher-order, conservative and bounded interpolation for the dynamic and adaptive meshing of control-volume fields dual to continuous and discontinuous finite element representations is presented. Existing techniques such as node-wise interpolation are not conservative and do not readily generalise to discontinuous fields, whilst conservative methods such as Grandy interpolation are often too diffusive. The new method uses control-volume Galerkin projection to interpolate between control-volume fields. Bounded solutions are ensured by using a post-interpolation diffusive correction. Example applications of the method to interface capturing during advection and also to the modelling of multiphase porous media flow are presented to demonstrate the generality and robustness of the approach.
Jie GU; Chiwai LI; Hong YANG; Yong ZHAN
2007-01-01
The mixing characteristics of dredged sediments of variable size discharged into cross-flow are studied by an Eulerian-Lagrangian method. A three-dimensional (3D) numerical model has been developed by using the modified k-ε parameterization for the turbulence in fluid phase/water and a Lagrangian method for the solid phase/sediments. In the model the wake turbulence induced by sediments has been included as additional source and sink terms in the k-ε model; and the trajectories of the sediments are tracked by the Lagrangian method in which the sediment drift velocities in cross-flow are computed by a multiphase particle-in-cell (MP-PIC) method and the diffusion process is approximated by a random walk model. The hydrodynamic behavior of dumped sediment cloud is governed by the total buoyancy on the cloud, the drag force on each particle and velocity of cross-flow. The cross-flow destroys more or less the double vortices occurred in stagnant ambience and dominates the longitudinal movement of sediment cloud. The computed results suggest satisfactory agreement by comparison with the experimental results of laboratory.
Trangenstein, J.A.
1994-03-15
This is the second year in the proposed three-year effort to develop high-resolution numerical methods for multi-phase flow in hierarchical porous media. The issues being addressed in this research are: Computational efficiency: Field-scale simulation of enhanced oil recovery, whether for energy production or aquifer remediation, is typically highly under-resolved. This is because rock transport properties vary on many scales, and because current numerical methods have low resolution. Effective media properties: Since porous media are formed through complex geologic processes, they involve significant uncertainty and scale-dependence. Given this uncertainty, knowledge of ensemble averages of flow in porous media can be preferable to knowledge of flow in specific realizations of the reservoir. However, current models of effective properties do not represent the observed behavior very well. Relative permeability models present a good example of this problem. In practice, these models seldom provide realistic representations of hysteresis, interfacial tension effects or three-phase flow; there are no models that represent well all three effects simultaneously.
Energy Equation Derivation of the Multiphase Flow Pipeline%考虑焦汤效应等因素的两相管流热力学模型
尹铁男; 姚海元; 邓道明; 张金波; 宫敬
2011-01-01
在油气混输管道多相流模拟计算中,热力学模型是与水力模型相互耦合的重要组成部分,影响程序的收敛性和结果的准确性.通过对管段微元进行能量守恒分析推导了能量方程,该方程涵盖了焦汤效应、压力做功、剪切力做功、相变换热、管外换热等因素,是考虑全面的能量方程形式,可以比较准确地反映混输管道气液两相管流的实际情况.将模型嵌入到TPCOMP软件中,选取了现场实际管线英买-牙哈混输管道作为算例进行计算,并将沿线温度分布与OLGA软件进行了对比.算例结果表明,该模型较好地模拟了管线的温度分布,相比TPCOMP原有模块计算精度提高,并与OLGA极为吻合,证明了模型的正确性.%In the simulation of oil - gas pipeline multiphase flow, thermodynamic computation was an important process interacting with the hydraulic calculation, and it influences the convergence of the program and the accuracy of the results. The form of the energy equation was key to the thermodynamic computation. Through analysis of energy conservation, the energy equation was derived. This new energy equation has considered many factors, such as Joule-Thomson effect, pressure work, friction work, phase change heat transfer, and heat transfer with the pipe wall. So it was an overall form of energy equation, which could reflect the actual fact of multiphase pipeline accurately. This model was incorporated into the TPCOMP, and a simulation was carried out with a practical pipeline, Yingmai - Yaha multiphase pipeline, and the temperature result was compared with OLGA. The results show that this model has simulated the temperature distribution very well. It is better than the original TPCOMP thermodynamic model, and the result is similar with that of OLGA, so the accuracy of the model is evident.
Xu, Tianfu; Pruess, Karsten
1998-09-01
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, mineral deposition, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. Here they present a numerical simulation model, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered. The model can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions is considered, such as aqueous complexation, gas dissolution/exsolution, cation exchange, and surface complexation. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. The coupled model employs a sequential iteration approach with reasonable computing efficiency. The development of the governing equations and numerical approach is presented along with the discussion of the model implementation and capabilities. The model is verified for a wide range of subsurface physical and chemical processes. The model is well suited for flow and reactive transport in variably saturated porous and fractured media. In the second of this two-part paper, three applications covering a variety of problems are presented to illustrate the capabilities of the model.
Bijeljic, B.; Andrew, M. G.; Menke, H. P.; Blunt, M. J.
2013-12-01
Advances in X ray imaging techniques made it possible not only to accurately describe solid and fluid(s) distributions in the pore space but also to study dynamics of multi-phase flow and reactive transport in-situ. This has opened up a range of new opportunities to better understand fundamental physics at the pore scale by experiment, and test and validate theoretical models in order to develop predictive tools at the pore scale and use it for upscaling. Firstly, we illustrate this concept by describing a new methodology for predicting non-Fickian transport in millimeter-sized three-dimensional micro-CT images of a beadpack, a sandstone, and a carbonate, representing porous media with an increasing degree of pore-scale complexity. The key strategy is to retain the full information on flow and transport signature of a porous medium by using probability distribution functions (PDFs) of voxel velocities for flow, and both PDFs of particle displacements and PDFs of particle transit times between voxels for transport. For this purpose, direct-simulation flow and transport model is used to analyse the relationship between pore structure, velocity, and the dynamics of the evolving plume. The model predictions for PDFs of particle displacements obtained by the model are in excellent agreement with those measured on similar cores in nuclear magnetic resonance experiments. A key determinant for non-Fickian transport is the spread in velocity distribution in the pore space. Further, we present micro-CT imaging of capillary trapping of scCO2 at reservoir conditions in a range of carbonates and sandstones having different pore structure and demonstrate that substantial quantities of scCO2 can be trapped in the pore space. Higher residual scCO2 saturations are found in sandstones compared to carbonates. The trapped ganglia exhibit different distribution of size, related to the inherent structure of pore space. Pore structures with large, open pores that are well connected lead
Lynch J.
2006-11-01
Full Text Available Cet article présente les différentes techniques de débitmétrie polyphasique non intrusive décrites dans la littérature du domaine public. Ces techniques sont considérées du point de vue de leur application dans le cadre de la production pétrolière sous-marine (mélange eau/huile/gaz. A partir d'une analyse des différentes méthodes physiques qui peuvent être utilisées, des perspectives d'avenir sont proposées. Several operations in the oil reservoir exploitation industry call for flowmeters capable of delivering information on the quantity and rate of flow of the different phases (gas, oil, water, solids . . . present in a pipeline. Amongst these are the estimation of remaining reserves and of well performance, control of production units such as multiphase pumping systems and fiscal monitoring in the case of pipeline networking. Existing methods, based on phase separation, require separate test lines and thus tend to be cumbersome, give only intermittent values of flow parameters and need to be calibrated due to the intrusive nature of the measurements. These drawbacks are seen to be all the more critical in subsea production where the ideal flowmeter would be compact, require little maintenance and supply precise real time data for network and multiphase pump control. In recent years flow measurement in two or more phase systems has received increasing attention both in laboratory studies and for applications in a variety of industries (for example : nuclear power production and food processing as well as of course oil production. We review here the many methods considered for non-intrusive flow metering with two or more components from the point of view of an industrial (in particular subsea oil production application. The situation is rendered delicate, in particular for density measurement, by the uncontrolled nature of the flow which may occur in any of several regimes with differing spatial distributions of the components
Chang-jiang Ni
2017-03-01
Full Text Available The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow (KTGF, kinetic-frictional constitutive correlation and turbulence model, a two-fluid model (TFM was established to study the flow dynamics of the core shooting process. Two-fluid model (TFM simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction (αs and sand velocity (Vs.
Study of DSMC algorithm and model for hypersonic multiphase rarefied flow%高超声速稀薄流的气粒多相流动DSMC算法建模研究
李洁; 石于中; 徐振富; 王小虎
2012-01-01
Based on Direct Simulation Monte Carlo (DSMC) method, the model of coalescence and separation in binary collision of liquid drops and solid particles is presented with considering of DSMC algorithm. An approach of DSMC for a gas-particle two-way coupled model is developed for multiphase rarefied flow. Simulations are performed for the case of two-dimensional hypersonic multiphase rarefied jet flows. The results show that the method is provided as a new approach for the multiphase flow in the transitional regime of rarefied gas.%基于直接模拟Monte Carlo(DSMC)方法,构造适用于DSMC算法的固态和液态颗粒碰撞、聚合和分离模型,发展稀薄条件下双向耦合作用的气粒多相流的DSMC算法,在此基础上初步实现高超声速稀薄流环境中的气粒多相喷流流场数值模拟.算例结果表明该方法能为稀薄过渡区气粒多相流动提供一种新的应用研究手段.
Experimental Study and Simulation Principles of An Oil-Gas Multiphase Transportation System
2000-01-01
－ Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.
Joyce, E.L.
1997-03-01
The Virtual Center For Multiphase Dynamics (VCMD) integrates and develops the resources of industry, government, academia, and professional societies to enable reliable analysis in multiphase computational fluid dynamics. The primary means of the VCMD focus will be by the creation, support, and validation of a computerized simulation capability for multiphase flow and multiphase flow applications. This paper briefly describes the capabilities of the National Laboratories in this effort.
Moortgat, Joachim
2016-01-01
Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide ...
Zhang, Y.; Ye, S.; Wu, J.
2013-12-01
Immiscible two-phase flows in fractured media are encountered in many engineering processes such as recovery of oil and gas, exploitation of geothermal energy, and groundwater contamination by immiscible chemicals. A two-dimensional rough wall parallel plate fracture model was set up and light transmission method (LTM) was applied to study two-phase flow system in fractured media. The fracture model stood with up and bottom flow and no flow on other two sides. A charge-coupled device (CCD) camera was used to monitor the migration of DNAPL and gas bubbles in the fracture model. To simulate two-phase system in fracture media, air was injected into the water saturated cell (C1) through the middle of the bottom and NAPL was injected into another water saturated cell (C2) through the middle of the top of the cell. The results show LTM was an effective way in monitoring the migration of DNAPL and gas bubbles in the fracture models. Gas moved upwards quickly to the top of C1 in the way of air bubbles generated at the injection position and formed a continuous distribution. The migration of TCE was controlled by its own weight and fracture aperture. TCE migrated to large aperture firstly when moving downwards, and intruded into smaller one with accumulation of TCE. Light Intensity-Saturation Models (LISMs) were developed to estimate the gas or NAPL saturation in two-phase system. The volume amount of infiltration of gas bubbles or NAPL could be estimated from light intensities by LISMs. There were strong correlations between the added and calculated amounts of gas or TCE. It is feasible to use the light transmission method to characterize the movement and spatial distribution of gas or NAPL in fractured media.
SAHADEB KUILA; T RAJA SEKHAR; G C SHIT
2016-09-01
In this paper, we consider the Riemann problem for a five-equation, two-pressure (5E2P) model proposed by Ransom and Hicks for an isentropic compressible gas–liquid two-phase flows. The model is given by a strictly hyperbolic, non-conservative system of five partial differential equations (PDEs). We investigate the structure of the Riemann problem and construct an approximate solution for it. We solve the Riemann problemfor this model approximately assuming that all waves corresponding to the genuinely nonlinear characteristic fields are rarefaction and discuss their properties. To verify the solver, a series of test problems selected from the literature are presented.
Unsteady RANS and detached eddy simulation of the multiphase flow in a co-current spray drying☆
Jolius Gimbun; Noor Intan Shafinas Muhammad; Woon Phui Law
2015-01-01
A detached eddy simulation (DES) and a k-ε-based Reynolds-averaged Navier–Stokes (RANS) calculation on the co-current spray drying chamber is presented. The DES used here is based on the Spalart–Al maras (SA) turbu-lence model, whereas the standard k-ε(SKE) was considered here for comparison purposes. Predictions of the mean axial velocity, temperature and humidity profile have been evaluated and compared with experimental measurements. The effects of the turbulence model on the predictions of the mean axial velocity, temperature and the humidity profile are most noticeable in the (highly anisotropic) spraying region. The findings suggest that DES provide a more accurate prediction (with error less than 5%) of the flow field in a spray drying chamber compared with RANS-based k-εmodels. The DES simulation also confirmed the presence of anisotropic turbulent flow in the spray dryer from the analysis of the velocity component fluctuations and turbulent structure as il us-trated by the Q-criterion.
Prasser, H.M. [ed.
1999-12-01
The emphasis of the conference was on methods of measurement that show spatial distributions of phase fractions and velocity, particle sizes and bubbles of the disperse phase. Among the methods described were 3D X-ray tomography, grid sensor measurement of velocity profiles, and simultaneous measurement of bubble sizes and gas and liquid flow rates using an optical particle tracking method. Also presented were interesting developments in the field of local probes, e.g. an electrodiffusion probe. Another new development was the attempt to use optical tomography for investigations of two-phase flows. [German] Am 14. Oktober 1999 wurde in Rossendorf die dritte Veranstaltung in einer Serie von Workshops ueber Messtechnik fuer stationaere und transiente Mehrphasenstroemungen durchgefuehrt. Dieses Jahr koennen wir auf 11 interessante Vortraege zurueckblicken. Besonders hervorzuheben sind die beiden Hauptvortraege, die von Herrn Professor Hetsroni aus Haifa und Herrn Dr. Sengpiel aus Karlsruhe gehalten wurden. Ihnen und allen anderen Vortragenden moechten wir herzlich fuer ihren Beitrag zum Gelingen des Workshops danken. Erneut lag ein wichtiger Schwerpunkt auf Messverfahren, die raeumliche Verteilungen von Phasenanteilen und Geschwindigkeiten sowie die Groesse von Partikeln bzw. Blasen der dispersen Phase zugaenglich machen. So wurde ueber einen dreidimensional arbeitenden Roentgentomographen, ein Verfahren zur Messung von Geschwindigkeitsprofilen mit Gittersensoren und eine Methode zur simultanen Messung von Blasengroessen sowie Feldern von Gas- und Fluessigkeitsgeschwindigkeit mit einer optischen Partikelverfolgungstechnik vorgetragen. Daneben wurden interessante Entwicklungen auf dem Gebiet der lokalen Sonden vorgestellt, wie z.B. eine Elektrodiffusionssonde. Neue messtechnische Ansaetze waren ebenfalls vertreten; hervorzuheben ist der Versuch, die Methode der optischen Tomographie fuer die Untersuchung von Zweiphasenstroemungen nutzbar zu machen. (orig.)
Moortgat, J.
2015-12-01
Reservoir simulators are widely used to constrain uncertainty in the petrophysical properties of subsurface formations by matching the history of injection and production data. However, such measurements may be insufficient to uniquely characterize a reservoir's properties. Monitoring of natural (isotopic) and introduced tracers is a developing technology to further interrogate the subsurface for applications such as enhanced oil recovery from conventional and unconventional resources, and CO2 sequestration. Oak Ridge National Laboratory has been piloting this tracer technology during and following CO2 injection at the Cranfield, Mississippi, CO2 sequestration test site. Two campaigns of multiple perfluorocarbon tracers were injected together with CO2 and monitored at two wells at 68 m and 112 m from the injection site. The tracer data suggest that multiple CO2 flow paths developed towards the monitoring wells, indicative of either channeling through high permeability pathways or of fingering. The results demonstrate that tracers provide an important complement to transient pressure data. Numerical modeling is essential to further explain and interpret the observations. To aid the development of tracer technology, we enhanced a compositional multiphase reservoir simulator to account for tracer transport. Our research simulator uses higher-order finite element (FE) methods that can capture the small-scale onset of fingering on the coarse grids required for field-scale modeling, and allows for unstructured grids and anisotropic heterogeneous permeability fields. Mass transfer between fluid phases and phase behavior are modeled with rigorous equation-of-state based phase-split calculations. We present our tracer simulator and preliminary results related to the Cranfield experiments. Applications to noble gas tracers in unconventional resources are presented by Darrah et al.
Schmuck, Markus; Pradas, Marc; Pavliotis, Grigorios A.; Kalliadasis, Serafim
2014-11-01
Based on thermodynamic and variational principles we formulate novel equations for mixtures of incompressible fluids in strongly heterogeneous domains, such as composites and porous media, using elements from the regular solution theory. Starting with equations that fully resolve the pores of a porous medium, represented as a periodic covering of a single reference pore, we rigorously derive effective macroscopic phase field equations under the assumption of periodic and strongly convective flow. Our derivation is based on the multiple scale method with drift and our recently introduced splitting strategy for Ginzburg-Landau/Cahn-Hilliard-type equations. We discover systematically diffusion-dispersion relations (including Taylor-Aris-dispersion) as in classical convection-diffusion problems. Our results represent a systematic and efficient computational strategy to macroscopically track interfaces in heterogeneous media which together with the well-known versatility of phase field models forms a promising basis for the analysis of a wide spectrum of engineering and scientific applications such as oil recovery, for instance.
An Experimenting Field Approach for the Numerical Solution of Multiphase Flow in Porous Media
Salama, Amgad
2015-07-14
In this work, we apply the experimenting pressure field technique to the problem of the flow of two or more immiscible phases in porous media. In this technique, a set of predefined pressure fields are introduced to the governing partial differential equations. This implies that the velocity vector field and the divergence at each cell of the solution mesh can be determined. However, since none of these fields is the true pressure field entailed by the boundary conditions and/or the source terms, the divergence at each cell will not be the correct one. Rather the residue which is the difference between the true divergence and the calculated one is obtained. These fields are designed such that these residuals are used to construct the matrix of coefficients of the pressure equation and the right-hand side. The experimenting pressure fields are generated in the solver routine and are fed to the different routines, which may be called physics routines, which return to the solver the elements of the matrix of coefficients. Therefore, this methodology separates the solver routines from the physics routines and therefore results in simpler, easy to construct, maintain, and update algorithms.
Jordan, Amy
Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of
Multiphase flow in porous media
Adler, Pierre M.; Brenner, Howard
A development history and current status evaluation are presented for the theory of permeability and percolation. The microscale phenomena treated in this field have proven difficult to analyze due both to their tortuous geometry and the influence of capilarity. Capilary effects may be not only important but predominant, and are differentiated into those at the fluid-fluid interface, and those involving the existence of a contact line between the solid substrate and this interface. Percolation theory has been borrowed from physics and adapted to the two-phase engineering context.
Transport phenomena in multiphase flows
Mauri, Roberto
2015-01-01
This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy. It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory...
Seers, Thomas; Andrew, Matthew; Bijeljic, Branko; Blunt, Martin; Dobson, Kate; Hodgetts, David; Lee, Peter; Menke, Hannah; Singh, Kamaljit; Parsons, Aaron
2015-04-01
Applied shear stresses within high porosity granular rocks result in characteristic deformation responses (rigid grain reorganisation, dilation, isovolumetric strain, grain fracturing and/or crushing) emanating from elevated stress concentrations at grain contacts. The strain localisation features produced by these processes are generically termed as microfaults (also shear bands), which occur as narrow tabular regions of disaggregated, rotated and/or crushed grains. Because the textural priors that favour microfault formation make their host rocks (esp. porous sandstones) conducive to the storage of geo-fluids, such structures are often abundant features within hydrocarbon reservoirs, aquifers and potential sites of CO2 storage (i.e. sandstone saline aquifers). The porosity collapse which accompanies microfault formation typically results in localised permeability reduction, often encompassing several orders of magnitude. Given that permeability is the key physical parameter that governs fluid circulation in the upper crust, this petrophysical degradation implicates microfaults as being flow impeding structures which may act as major baffles and/or barriers to fluid flow within the subsurface. Such features therefore have the potential to negatively impact upon hydrocarbon production or CO2 injection, making their petrophysical characterisation of considerable interest. Despite their significance, little is known about the pore-scale processes involved in fluid trapping and transfer within microfaults, particularly in the presence of multiphase flow analogous to oil accumulation, production and CO2 injection. With respect to the geological storage of CO2 within sandstone saline aquifers it has been proposed that even fault rocks with relatively low phyllosilicate content or minimal quartz cementation may act as major baffles or barriers to migrating CO2 plume. Alternatively, as ubiquitous intra-reservoir heterogeneities, micro-faults also have the potential to
马志荣; 李长俊
2015-01-01
实验研究一直是一项重要的科学研究手段。蜡沉积实验装置主要通过研究原油的温度、环境温度、气液流量、流型等参数对蜡沉积的影响。通过实验模拟输油管道中某一管段的蜡沉积情况，来研究多相流中结蜡的机理和影响管壁结蜡的因素。它可以非常准确的计算出不同条件下管道中结蜡量和蜡沉积速率，还可以确定不同条件下多相流管道中含蜡原油的流型和流态。%Experimental study is an important mean of scientific research. Wax deposition experiment device mainly through researching the crude oil temperature, environment temperature, gas and liquid flow rate, flow pattern and other parameters to influence wax deposition. Through the simulation of wax deposition in pipeline by the experiment, the mechanism of paraffin deposit in the multiphase flow and the factors that affect tube wall wax are studied. It can accurately calculate the wax precipitation amount and wax deposition rate in the pipeline under different conditions, and also can determine the flow regime and flow pattern of waxy crude oil in the multiphase flow pipeline under different conditions.
A. M. Popov
2015-01-01
Full Text Available 191 consecutive unselected children with acute lymphoblastic leukemia aged from 1 to 16 years were enrolled in the study. Bone marrow samples were obtained at the time of initial diagnostics as well as at days 15 (n = 188, 36 (n = 191, and 85 (n = 187 of remission induction. Minimal residual disease (MRD was assessed by 6–10-color flow cytometry. Flow cytometry data at day 15 allowed distinguishing three patients groups with significantly different outcome (p ˂ 0.0001: 35.64 % patients with MRD < 0.1 % represented 5-year event-free survival (EFS of 100 %; 48.40 % cases with 0.1 % ≤ MRD< 10 % had EFS 84.6 ± 4.2 %; 15.96 % patients with very high MRD (≥ 10 % belonged to group with poor outcome (EFS 56.7 ± 9.0 %. At the end of remission induction (day 36 36 children (18.85 % with MRD higher than 0.1 % had significantly worse outcome compared to remaining ones (EFS 49.4 ± 9.0 and 93.5 ± 2.1 % respectively; p ˂ 0.0001. From a clinical standpoint it is relevant to evaluate both low-risk and high-risk criteria. Multivariate analysis showed that day 15 MRD data is better for low-risk patients definition while end-induction MRD is the strongest unfavorable prognostic factor.
Numerical simulation of complex multi-phase fluid of casting process and its applications
CHEN Li-liang; LIU Rui-xiang; C. Beckermann
2006-01-01
The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately,numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM) technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase.
Numerical simulation of complex multi-phase fluid of casting process and its applications
CHEN Li-liang
2006-05-01
Full Text Available The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately, numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase.
Multiphasic growth curve analysis.
Koops, W.J.
1986-01-01
Application of a multiphasic growth curve is demonstrated with 4 data sets, adopted from literature. The growth curve used is a summation of n logistic growth functions. Human height growth curves of this type are known as "double logistic" (n = 2) and "triple logistic" (n = 3) growth curves (Bock
Multiphasic analysis of growth.
Koops, W.J.
1989-01-01
The central theme of this thesis is the mathematical analysis of growth in animals, based on the theory of multiphasic growth. Growth in biological terms is related to increase in size and shape. This increase is determined by internal (genetical) and external (environmental) factors. Well known mat
Experimental Study for Pressure Drop of Multiphase Flow in Inflow Branch Pipes%有入流分支管路的多相流动压降规律实验研究
彭壮; 汪国琴; 徐磊; 何显荣; 张鑫
2016-01-01
For oil wells with high liquid production index, the prediction of pressure drop in horizontal pipeline is accurate or not, which will significantly affect the prediction results of oil well production. Combined with the actual production in multiphase pipe flow experi-ment platform based on, the design and construction of the horizontal pipeline flow experi-mental system of variable mass, for horizontal pipeline flow pattern of the experimental study on quality of gas liquid two phase flow,and fitting with the drag coefficient of the actual flow characteristics, a new method for the calculation. The results show that by fitting the no slip gas-liquid two-phase flow formula of resistance coefficient and flow Reynolds number, can be used for horizontal inflow pipeline multiphase pipe flow pressure drop prediction;the liq-uid is relatively large,lateral flow effects on the pressure drop is not visible;liquid is relative-ly small,side stream will increase the pressure drop.%对于采液指数较高的油井，水平管路压降预测准确与否，将会显著地影响油井产量的预测结果。结合生产实际，在多相管流实验平台的基础上，设计并建造了水平管路变质量流动实验系统，针对水平管路变质量流动规律进行了气液两相变质量流动实验研究，并拟合得到符合实际流动特征的阻力系数计算新方法。实验结果表明：通过拟合无滑脱气液两相流阻力系数与两相流动雷诺数得到的拟合公式，能够用于水平有入流管路多相管流的压降预测；气液比较大时，侧流对压降没有明显的影响；气液比较小时，侧流存在会增大压降。
Voigt, Andreas Jauernik; Mandrup-Poulsen, Christian; Nielsen, Kenny
2017-01-01
The recent move towards subsea oil and gas production brings about a requirement to locate process equipment in deepwater installations. Furthermore, there is a drive towards omitting well stream separation functionality, as this adds complexity and cost to the subsea installation. This in turn...... University of Denmark and Lloyd's Register Consulting are currently establishing a purpose built state of the art multiphase seal test facility. This paper provides details on the design of the novel test facility and the calibration of the Hall sensor system employed to measure AMB forces. Calibration...
Anjos, Roselaine M. dos; Maitelli, Carla Wilza S.P.; Maitelli, Andre L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Costa, Rutacio O. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)
2012-07-01
Electrical Submersible Pumping (ESP) is an artificial lifting method which can be used both onshore and offshore for the production of high flow rates of liquid. By using the computational simulator for systems ESP developed by the AUTOPOC/LAUT - UFRN, this work aimed to evaluate empirical correlations for calculation of multiphase flow in tubing typical of artificial lifting systems operating by ESP. The parameters used for evaluating the correlations are some of the dynamic variables of the system such as head that indicates the lifting capacity of the system, the flow rate of fluid in the pump and the discharge pressure at the pump. Five (5) correlations were evaluated, from which only one considered slipping between phases, but does not take into account flow patterns and, four others considering slipping between the phases as well the flow patterns. The simulation results obtained for all these correlations were compared to results from a commercial computational simulator, extensively used in the oil industry. For both simulators, input values and simulation time, were virtually the same. The results showed that the simulator used in this work showed satisfactory performance, since no significant differences from those obtained with the commercial simulator. (author)
Fundamentals of Turbulent and Multi-Phase Combustion
Kuo, Kenneth Kuan-yun
2012-01-01
Detailed coverage of advanced combustion topics from the author of Principles of Combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form-until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence
Multiphase Instabilities in Explosive Dispersal of Particles
Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S. ``Bala''
2015-11-01
Explosive dispersal of particles is a complex multiphase phenomenon that can be observed in volcanic eruptions or in engineering applications such as multiphase explosives. As the layer of particles moves outward at high speed, it undergoes complex interactions with the blast-wave structure following the reaction of the energetic material. Particularly in this work, we are interested in the multiphase flow instabilities related to Richmyer-Meshkov (RM) and Rayleigh-Taylor (RM) instabilities (in the gas phase and particulate phase), which take place as the particle layer disperses. These types of instabilities are known to depend on initial conditions for a relatively long time of their evolution. Using a Eulerian-Lagrangian approach, we study the growth of these instabilities and their dependence on initial conditions related to the particulate phase - namely, (i) particle size, (ii) initial distribution, and (iii) mass ratio (particles to explosive). Additional complexities associated with compaction of the layer of particles are avoided here by limiting the simulations to modest initial volume fraction of particles. A detailed analysis of the initial conditions and its effects on multiphase RM/RT-like instabilities in the context of an explosive dispersal of particles is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.
周彬; 刘勇峰
2013-01-01
There is gas-liquid two-phase flow in pipeline of gas condensate field, corrosion perforation often happens at the bend. Aiming at this phenomenon, using computational fluid dynamics method, according to the laws of fluid flow, a mathematical model of flow induced corrosion was established. Finite element method was used to solve equations. The results show that the flow induced corrosion is closely related to fluid movement;The change of flow rate, liquid distribution, turbulent kinetic energy, pressure and its distribution of multiphase flow through the bend causes change of shear stress, liquid containing rate, turbulent kinetic energy, pressure at internal wall of the bend, which can accelerate pipe’s corrosion. The results provide a guidance for theory study of bend’s flow induced corrosion and multiphase pipelines’ safety management.% 凝析气田管道中含有气液两相，在弯头处经常发生腐蚀穿孔现象。针对这一现象，利用计算流体力学方法，根据流体流动的规律，建立了弯管流动腐蚀的数学模型，运用有限元法来解方程。研究发现弯管的流动腐蚀与流体的运动息息相关，多相流经过弯管后流速、液相分布、湍动能、压力的大小和分布都发生了变化，引起管壁处某些部位剪切应力、含液率、湍动能、压力发生变化，加速了弯管的腐蚀。研究结果可以为弯管流动腐蚀的理论研究和多相混输管道安全管理提供指导。
Downhole multiphase metering in wells by means of soft-sensing
Leskens, M.; Kruif, B. de; Belfroid, S.P.C.; Smeulers, J.P.M.; Gryzlov, A.
2008-01-01
Multiphase flow meters are indispensable tools for achieving optimal operation and control of wells as these meters deliver real-time information about their performance. For example, multiphase flow meters located downhole can improve the production of multilateral and multizone wells by timely all
Modified Invasion Percolation Models for Multiphase Processes
Karpyn, Zuleima [Pennsylvania State Univ., State College, PA (United States)
2015-01-31
This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.
Multiphase fluid hammer: modeling, experiments and simulations
Lema Rodríguez, Marcos
2013-01-01
This thesis deals with the experimental and numerical analysis of the water hammer phenomenon generated by the discharge of a pressurized liquid into a pipeline kept under vacuum conditions. This flow configuration induces several multiphase phenomena such as cavitation and gas desorption that cannot be ignored in the water hammer behavior.The motivation of this research work comes from the liquid propulsion systems used in spacecrafts, which can undergo fluid hammer effects threatening the s...
Measurement strategies for downhole multiphase metering
Hammer, Erling A.; Johansen, Geir Anton; Tollefsen, Jarle; Aabro, Eirik [Bergen Univ.(Norway)
1997-07-01
There will be an increasing demand for multiphase subsea and downhole meters in the future. Both at the sea bottom and downhole the flow regimes in the production pipes or in the manifolds at the templates, may differ from the ideal homogeneous mixture. Further, in line mixers should be avoided to reduce pressure drops and maintenance costs. The next generation multiphase meters will therefore call for flow regime independent and non-intrusive sensor systems. Since all sensor principles used in multiphase flowmeters today are highly dependent on the distribution of the components in the mixture, and thus make the measurement range limited, multi-sensor principles may be the solution to obtain better accuracy for larger ranges of component fractions and applications. Both the capacitance-, conductance-, microwave- and gamma-principles can be used in multi-sensor arrangement to provide cross-sectional information about the component distribution. Hence, the meter can be used at all types of flow regimes and at any position without mixers or separators. (author)
Research progress of particle rotation characteristics in multi-phase flows%多相流中颗粒旋转运动特性的研究进展
王勤辉; 杨秋辉; 吴学成; 骆仲泱; 岑可法
2011-01-01
Investigation of dispersed particle rotation characteristics in multi-phase flow is important in understanding the mechanism of multi-phase flow. In previous studies, many people focused on Magnus force produced by particle rotation in solid-gas two-phase flow, and proposed Magnus lift coefficient at different Reynolds numbers through experimental and theoretical investigations. In recent years, many researchers have studied the effect of particle rotation on the flow field through theoretical numerical simulation and dealt with particle rotation by improving multi-phase flow numerical model, and the simulated results are in agreement with experimental results. But because of the limitation of the model, it is impossible to take into full account the influence of particle rotation on particle cluster and surrounding flow field. From the experimental aspect, many researchers use high-speed digital imaging system to measure particle rotation speed and particularly one author successfully measured particle rotation speed in real gas-solid two-phase flow. Nevertheless, more accurate and efficient method needs to be developed. The authors of this paper proposed that the application of the direct numerical simulation in particle rotation characteristics simulation should be the emphasis of research in the future. And the technology of the reconstruction of 3D motion and structure of the object from image sequence in computer vision science should also be paid much attention in particle rotation speed measurement.%多相流中分散相颗粒旋转运动特性研究对于进一步揭示多相流机理有重要意义,同时也有助于人们更全面地认识多相流动,因此,越来越受到学者们的关注.近年来,人们从理论模拟方面研究颗粒旋转对流场的影响,通过改进多相流数值模型来考虑颗粒旋转,获得了与实验吻合的结果,但由于模型本身的局限性,无法全面考虑颗粒旋转运动对颗粒群和周围流场的影
Perrier, V
2007-07-15
This work deals with the modelling and simulation of compressible flows. A seven equations model is obtained by homogenizing the Euler system. Fluctuation terms are modeled as relaxation terms. When the relaxation terms tend to infinity, which means that the phases are well mixed, a five equations model is obtained via an asymptotic expansion. This five equations model is strictly hyperbolic, but nonconservative. The discretization of this model is obtained by an asymptotic expansion of a scheme for the seven equations model. The numerical method is implemented, validated on analytic cases, and compared with experiments in the case of multiphase shocks. We are then interested in the modelling of phase transition with two equations of state. Optimization of the mixture entropy leads to the fact that three zones can be separated: one in which the pure liquid is the most stable, one in which the pure gas is the most stable, and one in which a mixture with equality of temperature, pressure and chemical potentials is the most stable. Conditions are given on the coupling of the two equations of state for ensuring that the mixture equation of state is convex, and that the system is strictly hyperbolic. In order to take into account phase transition, a vaporization wave is introduced in the solution of the Riemann problem, that is modeled as a deflagration wave. It is then proved that the usual closure, the Chapman-Jouguet closure, is wrong in general, and a correct closure in the case when both fluids have a perfect gas equation of state. Last, the solution of the Riemann problem is implemented in a multiphase code, and validated on analytic cases. In the same code, models of laser release and thermal conduction are implemented to simulate laser ablation. The results are comparable to the ones obtained with scale laws. The last chapter, fully independent, is concerned with correctors in stochastic homogenization in the case of heavy tails process. (author)
Error handling strategies in multiphase inverse modeling
Finsterle, S.; Zhang, Y.
2010-12-01
Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.
Al Hosani, E; Soleimani, M
2016-06-28
Multiphase flow imaging is a very challenging and critical topic in industrial process tomography. In this article, simulation and experimental results of reconstructing the permittivity profile of multiphase material from data collected in electrical capacitance tomography (ECT) are presented. A multiphase narrowband level set algorithm is developed to reconstruct the interfaces between three- or four-phase permittivity values. The level set algorithm is capable of imaging multiphase permittivity by using one set of ECT measurement data, so-called absolute value ECT reconstruction, and this is tested with high-contrast and low-contrast multiphase data. Simulation and experimental results showed the superiority of this algorithm over classical pixel-based image reconstruction methods. The multiphase level set algorithm and absolute ECT reconstruction are presented for the first time, to the best of our knowledge, in this paper and critically evaluated. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).
Multiphase forces on bend structures – overview of large scale 6”experiments
Belfroid, S.P.C.; Nennie, E.D.; Wijhe, A. van; Pereboom, H.P.; Lewis, M.
2016-01-01
Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum wit
Multiphase forces on bend structures – overview of large scale 6”experiments
Belfroid, S.P.C.; Nennie, E.D.; Wijhe, A. van; Pereboom, H.P.; Lewis, M.
2016-01-01
Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum wit
Multiphase Flow in Airlift Reactors with Redistributors%再分布板对环隙气升式反应器内多相流动的影响
赵陆海波; 唐志永
2014-01-01
To investigate the effect of redistributors on the multiphase flows in the scale-up of airlift reactors, the Euler-Euler two fluid model are adopted to simulate the influence of redistributors on gas holdups, liquid circulation velocity and the distribution of solid concentration. The Computational Fluid Dynamics (CFD) model shows excellent agreement with the measured data on total gas holdup. This research demonstrates that the height of redistributors increasing can make gas holdup in the bubble riser non-monotone trend and promote the solid concentration in the downcomer, however, has little effect on the total gas holdups and liquid circulation velocity. Therefore, the design of redistributors have been optimized by combining CFD simulation and experiment, which is benefit for strengthening the processes of multiphase flow, mass-transfer, reactions in the airlift reactors.%为了考察环流反应器放大过程中再分布板对其内部多相流动的影响，采用噢啦双流体模型模拟了再分布板不同高度的布置对环流反应器内气含率，循环液速，固体颗粒分布等参数的影响，并与部分冷模实验结果进行了比较，两者结果一致。结果表明，再分布板高度的增加会使气升反应区内气含率呈现先增后减的趋势，并导致导流管内的固含率上升。此外，不同高度的再分布对环流反应器内整体气含率及循环液速的影响不大。结合CFD模拟和实验结果，优化了环流反应器内再分布板的设计，从而为实现强化环隙气升式环流反应器内多相流动，传递，反应等过程提供了一定的指导意义。
Young, Edmond W. K.; Simmons, Craig A.
2009-01-01
We describe a simple, low-cost laboratory session to demonstrate the Fahraeus-Lindqvist effect, a microphase flow phenomenon that occurs in small blood vessels and alters the effective rheological properties of blood. The experiments are performed by flowing cells through microchannels fabricated by soft lithography and characterization of cell…
Young, Edmond W. K.; Simmons, Craig A.
2009-01-01
We describe a simple, low-cost laboratory session to demonstrate the Fahraeus-Lindqvist effect, a microphase flow phenomenon that occurs in small blood vessels and alters the effective rheological properties of blood. The experiments are performed by flowing cells through microchannels fabricated by soft lithography and characterization of cell…
Neu, A; Lange, K; Barrett, T
2015-01-01
Modern insulin regimens for the treatment of type 1 diabetes are highly individualized. The concept of an individually tailored medicine accounts for a broad variety of different insulin regimens applied. Despite clear recommendations for insulin management in children and adolescents with type 1...... diabetes there is little distinctiveness about concepts and the nomenclature is confusing. Even among experts similar terms are used for different strategies. The aim of our review--based on the experiences of the Hvidoere Study Group (HSG)--is to propose comprehensive definitions for current insulin...... variety of insulin regimens applied in each center, respectively. Furthermore, the understanding of insulin regimens has been persistently different between the centers since more than 20 yr. Not even the terms 'conventional' and 'intensified therapy' were used consistently among all members. Besides...
Jabbari, Masoud; Bulatova, Regina; Hattel, Jesper Henri
2014-01-01
The aim of the present study is to evaluate the different interface capturing methods as well as to find the best approach for flow modeling of the ceramic slurry in the tape casting process. The conventional volume of fluid (VOF) method with three different interpolation methods for interface ca...... it is used to investigate the flow of a La0.85Sr0.15MnO3 (LSM) ceramic slurry modeled with the Ostwald de Waele power law. Results of the modeling are compared with corresponding experimental data and good agreement is found. © 2013 Elsevier Inc. All rights reserved....
Khatami, F.; Weide, van der E.T.A.; Hoeijmakers, H.W.M.
2015-01-01
In this paper a numerical simulation of unsteady sheet cavitation is presented as it occurs on an NACA-0015 hydrofoil. The computational approach is based on the Euler equations for unsteady compressible flow, using an equilibrium cavitation model of Schnerr, Schmidt, and Saurel. It was found that f
Culligan, K.A.; Wildenschild, Dorthe; Christensen, Britt Stenhøj Baun;
2006-01-01
determinant of NAPL removal efficiency. To measure the interfacial area, we have used a synchrotron-based CMT technique to obtain high-resolution 3D images of flow in a Soltrol-water glass bead system. The interfacial area is found to increase as the wetting phase saturation decreases, reach a maximum...
Multiphase fluid structure interaction in bends and T-joints
Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.; Osch, M.M.E. van
2010-01-01
Air-water experiments were carried out in a horizontal 1" pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations
Multiphase fluid structure interaction in bends and T-joints
Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.; Osch, M.M.E. van
2010-01-01
Air-water experiments were carried out in a horizontal 1" pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations
CFD Modeling of a Multiphase Gravity Separator Vessel
Narayan, Gautham
2017-05-23
The poster highlights a CFD study that incorporates a combined Eulerian multi-fluid multiphase and a Population Balance Model (PBM) to study the flow inside a typical multiphase gravity separator vessel (GSV) found in oil and gas industry. The simulations were performed using Ansys Fluent CFD package running on KAUST supercomputer, Shaheen. Also, a highlight of a scalability study is presented. The effect of I/O bottlenecks and using Hierarchical Data Format (HDF5) for collective and independent parallel reading of case file is presented. This work is an outcome of a research collaboration on an Aramco project on Shaheen.
Leilei Zhang
2016-05-01
Full Text Available The flow transport of a 420 × 320 × 90 mm beam blank continuous casting mold that used open-stream pouring combined with submerged refractory funnels was studied. By considering the dynamic similarity, geometric similarity, and air entrapment quantity similarity, a full-size water model was established. Meanwhile, the 3D mathematical models that included three phases were applied. Through the combination of the water model and the mathematical model, the distribution and morphology of the phases in the mold were investigated. The results indicate that bubbles existed in the molten steel due to entrapment and the flow pattern was different from that of the full protection-poured mold. Furthermore, the effects of funnel immersion depth and funnel diameter on the bubbles’ impact depth, funnel’s inside wall shear stress, and overall area of the air/steel interface were discussed. The results provide useful information for the industrial continuous casting process.
Investigation on the gas pockets in a rotodynamic multiphase pump
Zhang, J. Y.; Li, Y. J.; Cai, S. J.; Zhu, H. W.; Zhang, Y. X.
2016-05-01
The appearance of gas pockets has an obvious impact on the performance of the rotodynamic multiphase pump. In order to study the formation of gas pockets in the pump and its effects on pump's performance, the unsteady numerical simulation and the visualization experiments were done to investigate gas pockets in a three-stage rotodynamic multiphase pump developed by authors. Meanwhile, the mixture of water and air was selected as the medium. According to the distributions of pressure, gas volume fraction and velocity vector in three compression cells in unsteady flow process, the process of the formation of gas pockets in the pump were analysed generally. The visualization experiments were used to verify the validity of the numerical simulation. The results will be benefit for the hydraulic design of the compression cell of rotodynamic multiphase pump.
A Cell-Centered Multiphase ALE Scheme With Structural Coupling
Dunn, Timothy Alan [Univ. of California, Davis, CA (United States)
2012-04-16
A novel computational scheme has been developed for simulating compressible multiphase flows interacting with solid structures. The multiphase fluid is computed using a Godunov-type finite-volume method. This has been extended to allow computations on moving meshes using a direct arbitrary-Eulerian- Lagrangian (ALE) scheme. The method has been implemented within a Lagrangian hydrocode, which allows modeling the interaction with Lagrangian structural regions. Although the above scheme is general enough for use on many applications, the ultimate goal of the research is the simulation of heterogeneous energetic material, such as explosives or propellants. The method is powerful enough for application to all stages of the problem, including the initial burning of the material, the propagation of blast waves, and interaction with surrounding structures. The method has been tested on a number of canonical multiphase tests as well as fluid-structure interaction problems.
Impact of sorption phenomena on multiphase conveying processes
Hatesuer, Florian; Groth, Tillmann; Reichwage, Mark; Mewes, Dieter; Luke, Andrea
2011-08-01
Twin-screw multiphase pumps are employed increasingly to convey multiphase mixtures of crude oil, accompanying fluids, associated gas and solid particles. They are positive displacement pumps and suitable for handling products containing liquid accompanied by large amounts of gas. Experimental investigations on the conveying characteristic, namely measuring the delivered volume flow as a function of the pressure difference, provide results for selected mixtures. By means of the on hand work, the influence of sorption phenomena occurring due to pressure variations alongside the conveying process on the conveying characteristics of twin-screw pumps delivering mixtures of oil and gases is measured. The employed gases are air and carbon dioxide, which differ strongly in solubility in oil. All experiments are conducted in a closed loop test facility, where oil and gas volume flows are mixed before the inlet and separated after the outlet of the multiphase pump. In order to simulate the influence of the suction side pressure drop in the reservoir on the conveying characteristic, packed beds are employed as oil-filed model. Sorption processes inside of the oil-field model and within the multiphase pump affect the conveying behaviour significantly. The two-phase flow in the inlet and outlet pipe is visualised by means of a capacitance tomography system. Results show that the oil fraction of the total delivered volume flow is decreased due to desorption at the pump inlet. The gas fraction at the pump outlet is further decreased due to absorption. Experimental results are compared to calculated solubilities of the on-hand gases in oil and to the theoretically derived gas volume flow fraction expected at the multiphase pump.
Lu, C.; Deng, S.; Podgorney, R. K.; Huang, H.
2011-12-01
Reliable reservoir performance predictions of enhanced geothermal reservoir systems require accurate and robust modeling for the coupled thermal-hydrological-mechanical processes. Conventionally, in order to reduce computational cost, these types of problems are solved using operator splitting method, usually by sequentially coupling a subsurface flow and heat transport simulator with a solid mechanics simulator via input files. However, such operator splitting approaches are applicable only to loosely coupled problems and usually converge slowly. As in most enhanced geothermal systems (EGS), fluid flow, heat transport, and rock deformation are typically strongly nonlinearly coupled, an alternative is to solve the system of nonlinear partial differential equations that govern the system simultaneously using a fully coupled solution procedure for fluid flow, heat transport, and solid mechanics. This procedure solves for all solution variables (fluid pressure, temperature and rock displacement fields) simultaneously, which leads to one large nonlinear algebraic system that needs to be solved by a strongly convergent nonlinear solver. Development over the past 10 years in the area of physics-based conditioning, strongly convergent nonlinear solvers (such as Jacobian Free Newton methods) and efficient linear solvers (such as GMRES, AMG), makes such an approach competitive. In this presentation, we will introduce a continuum-scaled parallel physics-based, fully coupled, modeling tool for predicting the dynamics of fracture initiation and propagation, fluid flow, rock deformation, and heat transport in a single integrated code named FALCON (Fracturing And Liquid-steam CONvection). FALCON is built upon a parallel computing framework developed at Idaho National Laboratory (INL) for solving coupled systems of nonlinear equations with finite element method with unstructured and adaptively refined/coarsened grids. Currently, FALCON contains poro- and thermal- elastic models
Dario Yesid Peña Ballesteros
2016-01-01
Full Text Available The synergistic effects of fluid flow, sand particles, and solution pH on erosion-corrosion of AISI 4330 steel alloy in saline-sand medium were studied through a rotating cylinder electrode (RCE system by weight-loss and electrochemical measurements. The worn surface was analyzed by X-ray diffraction (XRD and scanning electron microscopy (SEM. Results show that, under all the test conditions assessed, the passivity of the steel alloy could not be maintained; as a result, an activation mechanism dominates the corrosion process of steel alloy. Furthermore, the potentiodynamic curves show that, with the increasing of the electrode flow rate and particle size, the anodic current density increased, which is due to deterioration of the electrode by the impacting slurry. Although the increase of particle size affects the anodic current density, the effect of particle size does not cause a significant change in the polarization behavior of the steel electrode. The electrochemical impedance and potentiodynamic curves suggest that erosion-corrosion phenomenon of the ASISI 4330 steel is under mixed control of mass transport and charge transfer. The inductive loops formed in the impedance plots are representative of an increase in roughness of the electrode caused by the particles impacting at the surface. The change in the passivity of the steel alloy as the pH is altered plays an important role in the corrosion rate.
Guildenbecher, Daniel R; Cooper, Marcia A; Sojka, Paul E
2016-04-10
High-speed (20 kHz) digital in-line holography (DIH) is applied for 3D quantification of the size and velocity of fragments formed from the impact of a single water drop onto a thin film of water and burning aluminum particles from the combustion of a solid rocket propellant. To address the depth-of-focus problem in DIH, a regression-based multiframe tracking algorithm is employed, and out-of-plane experimental displacement accuracy is shown to be improved by an order-of-magnitude. Comparison of the results with previous DIH measurements using low-speed recording shows improved positional accuracy with the added advantage of detailed resolution of transient dynamics from single experimental realizations. The method is shown to be particularly advantageous for quantification of particle mass flow rates. For the investigated particle fields, the mass flows rates, which have been automatically measured from single experimental realizations, are found to be within 8% of the expected values.
张林进; 陈功国; 柏杨; 叶旭初
2013-01-01
运用计算流体力学(CFD)技术对不同安装偏角的侧入式搅拌反应器中单相及多相流场进行了数值模拟.模拟结果表明,典型安装偏角下,搅拌槽内流场是由内部围绕搅拌槽中心的高速环形上升流和外部沿搅拌槽壁面的低速下降流组成的大循环流.水平偏角既增加了整个搅拌槽流场的平均速度,有利于固体颗粒在整个搅拌槽内的悬浮性能,又增大了槽底高速流体区域的面积,因而改善了槽底固相沉积状况.竖直偏角增大了槽底高速流体区域的面积,并对槽底施加一定的冲刷作用,从而进一步降低了槽底固相沉积的可能性.无安装偏角时槽底固含率最多的地方主要积聚在搅拌器下方区域.搅拌器在水平偏角θ=10°,竖直偏角φ=5°时槽底大部分区域的固含率分布较均匀,仅在槽底搅拌器右侧的壁面区域存在小面积的固含率较高区域,在该安装偏角下整个搅拌槽的固液悬浮性能及防止底部固相沉积性能达到最佳.%Single phase and multiphase flow fields in side-entering agitation reactor with different installation angles of agitators were simulated numerically by CFD technology. The results showed that, with the typical installation angle of agitator, the flow field was a big circular flow combined with two parts, which were the internal upwelling flow with high speed and the external downwelling flow. The horizontal dip angle of agitator increased the average speed of the whole flow field, which favored the suspension situation of solid particles. It also enlarged the area of the high speed flow at the tank bottom, which improved the aggradation situation of solid phase. Meanwhile the vertical dip angle enlarged the area of the high speed flow at the tank bottom too, and flushed the tank bottom, therefore further reduced the possibility of aggradation. While there was no dip angle, the area of highest solid ratio mainly laid under the agitators. When
Erwee, M. W.; Reynolds, Q. G.; Zietsman, J. H.
2016-06-01
Furnace tap-holes vary in design depending on the type of furnace and process involved, but they share one common trait: The tap-hole must be opened and closed periodically. In general, tap-holes are plugged with refractory clay after tapping, thereby stopping the flow of molten material. Once a furnace is ready to be tapped, drilling and/or lancing with oxygen are typically used to remove tap-hole clay from the tap-hole. Lancing with oxygen is an energy-intensive, mostly manual process, which affects the performance and longevity of the tap-hole refractory material as well as the processes inside the furnace. Computational modeling offers an opportunity to gain insight into the possible effects of oxygen lancing on various aspects of furnace operation.
Lei, Hongwu; Li, Jun; Li, Xiaochun; Jiang, Zhenjiao
2016-09-01
Understanding the non-isothermal multiphase and multicomponent flow in a CO2-H2S-CH4-brine system is of critical importance in projects such as CO2 storage in deep saline aquifers, natural gas extraction using CO2 as the displacement fluid, and heat extraction from hot dry rocks using CO2 as the working fluid. Numerical simulation is a necessary tool to evaluate the chemical evolution in these systems. However, an accurate thermodynamic model for CO2-H2S-CH4-brine systems appropriate for high pressure, temperature, and salinity is still lacking. This study establishes the mutual solubility model for CO2-H2S-CH4-brine systems based on the fugacity-activity method for phase equilibrium. The model can predict mutual solubilities for pressure up to 1000 bar for CO2 and CH4, and 200 bar for H2S, for temperature up to 200 °C, and for salinity up to 6 mol/kg water. We incorporated the new model into TOUGH2/EOS7C, forming a new improved module we call EOS7Cm. Compared to the original EOS7C, EOS7Cm considers the effects of H2S and covers a larger range of temperature and salinity. EOS7Cm is employed in five examples, including CO2 injection with and without impurities (CH4 and/or H2S) into deep aquifers, CH4 extraction from aquifers by CO2 injection, and heat extraction from hot dry rock. The results are compared to those from TOUGH2/ECO2N, EOS7C and CMG, agreement among which serves to verify EOS7Cm.
Godoy-Alcantar, J. M; Cervantes-Martinez, G; Cruz-Maya, J. A; Hernandez-Buenfil, M. A; Ramirez-Antonio, I [Instituto Mexicano del Petroleo, Mexico, D.F, (Mexico)]. E-mail: mgodoy@imp.mx
2008-10-15
This paper shows the development of a portable multiphase flow measurement system based in cyclonic separation technology GLCC{copyright}1. This system is aimed for oil well measurement and was developed in three phases; the first devoted to the geometric design of a cyclonic separator by means of designs sofware GLCCV7.8 and the selection of measurement instrumentation and flux control valves. In the second phase, the automatic control system was designed for the implementation of four control strategies each one related with a possible scenario of the well behavior. The third constitutes the integration of the measurement and control devices through a user interface aimed for visualization, information processing and system's operation and control. Experimental results in oil well measurements show the efficiency and workability of the integrated system. [Spanish] En el presente trabajo se muestra el desarrollo de un sistema portatil para la medicion de flujo multifasico, basado en la tecnologia de separacion ciclonica GLCC{copyright}1 y su utilizacion el aforo de pozos petroleros. El desarrollo del sistema se compone de tres fases, la primera se orienta hacia el diseno geometrico de un separador tipo ciclonico por medio del simulador GLCCV 7.8, asi como el dimensionamiento y la seleccion de los instrumentos de medicion y valvulas de control de flujo. En la segunda fase, se lleva a cabo la etapa de diseno del control automatico del sistema, el cual se fundamenta en el desarrollo e implantacion de cuatro estrategias de control basadas en el comportamiento dinamico de las variables de produccion del pozo; la tercera fase, la constituye el desarrollo de una interfaz para la integracion y operacion conjunta de los componentes de medicion y control del sistema, asi como de visualizacion, procesamiento y almacenamiento de la informacion. Se muestran los resultados experimentales de una prueba de medicion realizada en campo, las mediciones obtenidas muestran la
刘宗恩; 韩兵奇; 高旺熙
2015-01-01
泡沫钻井在欠平衡钻井工艺中占有重要地位，能解决低压、低渗、易漏地层的钻井难题。研制了泡沫钻井与井筒多相流动试验装置，该装置由井筒模拟系统、起升装置、供液系统、供气系统、采集系统等组成。模拟井筒采用透明有机玻璃材料，实现了试验过程可视化。对装置流体进行实时压力、流量检测，进行泡沫钻井试验定性和定量分析。试验表明，该装置能清晰观察泡沫携带钻屑及钻铤处流体对井壁的冲蚀过程，实时检测钻井液的黏度、流速、密度、剪切力等参数，定量分析钻井液对钻进过程的影响特性。%It is important for foam drilling to drill in drilling technology,and it can solve problems such as drilling in low-pressure,low permeability,leaky layer,and it must be researched deeply. Therefore,an experimental unit about foam drilling and multiphase flowing in well was devel-oped.It is made up of simulation wellbore system,hoisting units,liquid system,gas system,data acquisition system,etc.The transparent Polymethyl methacrylate was used in simulation well-bore,and visualization was achieved.The pressure and flow discharge of the fluid in units was mo-nitored in line,and the qualitative and quantitative analysis was achieved.Tests showed that it was clearly to see the course of the foam drilling fluid carrying cuttings and the fluid eroding well-bore in drill collar,and the parameters of the drilling fluid had been monitored in line,such as vis-cosity,flow rate,density,shearing force,etc.and could analysis the performance of drilling fluid influencing on drilling quantitatively.
Herkelrath, W. N.; Delin, G. N.
2005-12-01
A large-scale aquifer test was carried out at a crude oil spill site near Bemidji, Minnesota. The spill occurred in 1979 when a pipeline ruptured, spreading oil over a large area and creating three subsurface "pools" of high oil saturation near the water table. USGS scientists, in cooperation with researchers from several universities, have investigated the fate and transport of separate phase oil and hydrocarbons dissolved in ground water at this site since 1983. The primary goal of the aquifer test was to estimate parameters used in modeling processes such as subsurface flow of oil and water as well as natural attenuation of dissolved hydrocarbons in the plume. A secondary goal was to evaluate the effects of the oil on the parameters. Our aquifer test was carried out in July 2005 beneath the "north" oil pool, which occupies a 20x100 meter footprint. Prior to the test, the water table was about 6 meters below land surface, and the oil thickness in wells at the center of the pool was about 0.4 meters. A pumping well was installed near the center of the oil pool and screened 4-10 meters below the floating oil. During the test, water was pumped out at about 240 liters/min for 48 hours. Water levels were monitored in 21 wells that were screened below the water table and did not contain oil. Data loggers and pressure transducers were used to monitor 17 of these wells, and 4 wells were measured by hand using a tape. In 20 other wells that were screened at the water table and contained oil, depths to the oil-air and oil-water interfaces were monitored by hand using an oil-interface meter. Preliminary results indicate that oil thickness in wells within about 5 meters of the pumped well increased rapidly during the test to more than a meter. Oil also entered the top of the pumped well screen and filled the well bore to a thickness of about 3 meters. Preliminary analysis of water table drawdown vs. time data implies that the horizontal hydraulic conductivity is about 60 m
Voltolini, M.; Ajo Franklin, J. B.
2013-12-01
Carbonates are common reservoir rocks for both CO2 EOR operations (e.g. Permian Basin, Weyburn) as well as conventional saline aquifer GCS studies (e.g. MRSP, Big Sky Kevin Dome Project). While the dissolution of carbonates in high pCO2 brines is relatively well-studied, only recently have we developed the imaging tools required to dynamically monitor dissolution-induced transformations in pore architecture an macroscopic samples. The details of such transformations are crucial in understanding the coupling between between reactive chemistry and reservoir flow, particularly in GCS where large scale variations in pH are induced during CO2 injection. A complicating factor is the range of dissolution architectures generated under varying flow rate and reaction conditions; these variations, typically understood in terms of advective Dahmkohler (Da) number, generate structures between localized wormholes and uniform dissolution. However, to date, minimal work has been done evaluating the relationship between Da, porosity, and capillary entry pressure during carbonate dissolution; this relationship is crucial when attempting to predict CO2 drainage processes in heterogeneous carbonate systems and could provide a mechanism for long term expansion of the plume footprint through lower permeability lamina. We present results from a 4D synchrotron XR microtomography experiment which monitored dissolution in a model carbonate, a small core from the well-studied Bedford limestone. Ten datasets, spanning a wide range of states in micro-architecture, were acquired over a multi-day acquisition campaign at beamline 8.3.2 (Advanced Light Source). Dissolution was induced by injection of water saturated with CO2; while the run was conducted at low pressure (~30 psi), significant dissolution occurred over the duration of the experiment. Imagery of the resulting pore-scale modifications was reconstructed, filtered, and segmented to yield a timelapse movie of the dissolution process
A new sampling metering technique of oil-gas-water multiphase flow%地面集输系统油气水多相取样计量技术研究
梁法春; 陈婧; 刘德绪; 龚金海
2012-01-01
The metering mode of oil well production determines the technology flow of surface gathering system and the distribution of gathering stations. The conventional oil-gas metering separator is of shortcomings of large volume and low metering accuracy, and therefore it is not suitable to oil well production metering in the high water-cut stage. A novel metering method is proposed. There are four sampling holes of 2. 5 mm diameter evenly distributing around measuring element- A swirling flow generating element is mounted before metering element for producing the annular flow of uniform thickness in metering element to improve the representative of the sample. Experiments were carried out with a multi-phase flow loop of 40 mm diameter. The experimental results show that in the experi-mental range of flow rate,the ratio of sampling flow rate to total flow rate is not influenced by the change of gas or liquid content in main pipeline,and the shunt coefficient of liquid phase is in the stable value of 0. 05. The mean metering error of liquid phase is 2, 8% and that of gas phase is 4. 2% . The metering element has the advantages of small size,low cost and high reliability. The application of the metering element can replace the metering station and simplify oil-gas gathering system in high water-cut development stage.%传统的油气计量分离器存在体积大、精度低等缺点,已很难适应当前高含水期生产需要.提出了通过管壁取样测量油气水三相流流量的新方法.管壁四周均匀布置4个直径为2.5 mm的圆形取样孔,并在上游采用旋流叶片将来流整改成液膜厚度均匀分布的环状流型,以增强取样的代表性.在管径为0.04 m的多相流实验环道上开展了实验研究,结果表明:在实验范围内,取样比基本不受主管气、液相流量波动的影响,能够在宽广的流动范围内维持恒定,液相分流系数稳定值为0.05,液相流量平均误差为2.8％,气相流量平均误差为4.2
Probabilistic events in shock driven multiphase hydrodynamic instabilities
Black, Wolfgang; Denissen, Nick; McFarland, Jacob
2016-11-01
Multiphase flows are an important and complex topic of research with a rich parameter space. Historically many simplifications and assumptions have been made to allow simulation techniques to be applied to these systems. Some common assumptions include no partilce-particle effects, evenly distributed particle fields, no phase change, or even constant particle radii. For some flows, these assumptions may be applicable but as the systems undergo complex accelerations and eventually become turbulent these multiphase parameters can create significant effects. Through the use of FLAG, a multiphysics hydrodynamics code developed at Los Alamos national laboratory, these assumptions can be relaxed or eliminated to increase fidelity and guide the development of experiments. This talk will build on our previous work utilizing simulations on the shock driven multiphase instability with a new investigation into a greater parameter space provided by additional multiphase effects; including a probabilistic particle field, various particle radii, and particle-particle effects on the evolution of commonly studied interfaces. Los Alamos National Laboratory LA-UR-16-25652.
付强; 袁寿其; 朱荣生; 陈景俊; 王秀礼
2012-01-01
the emerging vortex. Without vortex in the passageway, the solid phase moved along the surface of the impeller; and with vortex, it moved with the rotation of the vortex. The flow track was rarely influenced with the increasing of solid phase concentration increases. The research provides a reference for the further research and application of gas-liquid-solid multiphase flow.
苗建; 郑新; 王凯; 付峻
2016-01-01
When the natural gas multi-phase flow pipeline is shutdown,the risk of gas hy-drate is relative high and the blowout or/and methanol, which can be used to prevent the hydrate effectively, have different costs. For the shutdown operation of the subsea pipeline of natural gas field in South China Sea with practical constraints, the amounts of gas venting and methanol injecting of different pressures levels are studied, and the cost model is pro-posed to analyze the optimal costs and related factors. The results show that there are signifi-cant differences among the costs of different strategies, and any one of the two strategies of blowout and methanol is likely to be economically optimal when they are used separately, rather than together. The best strategy depends on the amount of the assembled water in the pipeline and the methanol and natural gas prices as well.%天然气多相混输管道停输后，水合物生成风险较高，采用泄压放空、加注甲醇或两者联合使用均能有效地防控水合物生成，但其经济性不同。针对南海某气田海底管道停输工况，在充分考虑平台操作实际约束的前提下，研究了联合运用泄压与注剂措施，并提出了经济成本计算模型，分析了不同防控策略的经济性及其影响因素。结果表明，不同策略之间的经济成本差异显著，单纯注剂法和单纯放空法均有可能成为经济性最佳的水合物防控策略，而“注剂-泄压”联合策略的经济性较差；具体的最佳防控策略与管道积水量、甲醇和天然气价格密切相关。
Pruess, Karsten
2003-08-08
Numerical simulation has become a widely practiced andaccepted technique for studying flow and transport processes in thevadose zone and other subsurface flow systems. This article discusses asuite of codes, developed primarily at Lawrence Berkeley NationalLaboratory (LBNL), with the capability to model multiphase flows withphase change. We summarize history and goals in the development of theTOUGH codes, and present the governing equations for multiphase,multicomponent flow. Special emphasis is given to space discretization bymeans of integral finite differences (IFD). Issues of code implementationand architecture are addressed, as well as code applications,maintenance, and future developments.
Reactive Chemical Transport Under Multiphase System
Fang, Y.; Yeh, G.
2001-12-01
A numerical model, HYDROBIOGEOCHEM, is developed for modeling reactive chemical transport under multiphase flow systems. The chemistry part of this model is derived from BIOGEOCHEM, which is a general computer code that simulates biogeochemial processes from a reaction-based mechanistic point of view. To reduce primary dependent variables (PDVs), Gauss-Jordan decomposition is applied to the governing matrix equations for transport, resulting in mobile components and mobile kinetic variables as PDVs. Options of sequential iteration approach (SIA), predictor corrector and operator splitting method are incorporated in the code to make it versatile. The model is a practical tool for assessing migration of subsurface contamination and proper designing of remediation technologies. Examples are presented to demonstrate the capability of the new model.
An original combined multiphase model of the steam-explosion premixing phase
Leskovar, Matjaž; Mavko, Borut
2015-01-01
In multiphase flow, different distributions can occur that cannot be adequately modeled with just free-surface models or with just multiphase models. Such a distribution of phases occurs for example, in isothermal steam-explosion premixing experiments, where dispersed spheres penetrate the water and the water-air surface remains sharp. A common practice when modeling isothermal premixing experiments is to treat all three phases involved - the water, the air and the spheres phase - equally, wi...
Heterogeneous scalable framework for multiphase flows.
Morris, Karla Vanessa
2013-09-01
Two categories of challenges confront the developer of computational spray models: those related to the computation and those related to the physics. Regarding the computation, the trend towards heterogeneous, multi- and many-core platforms will require considerable re-engineering of codes written for the current supercomputing platforms. Regarding the physics, accurate methods for transferring mass, momentum and energy from the dispersed phase onto the carrier fluid grid have so far eluded modelers. Significant challenges also lie at the intersection between these two categories. To be competitive, any physics model must be expressible in a parallel algorithm that performs well on evolving computer platforms. This work created an application based on a software architecture where the physics and software concerns are separated in a way that adds flexibility to both. The develop spray-tracking package includes an application programming interface (API) that abstracts away the platform-dependent parallelization concerns, enabling the scientific programmer to write serial code that the API resolves into parallel processes and threads of execution. The project also developed the infrastructure required to provide similar APIs to other application. The API allow object-oriented Fortran applications direct interaction with Trilinos to support memory management of distributed objects in central processing units (CPU) and graphic processing units (GPU) nodes for applications using C++.
Chemical reactor modeling multiphase reactive flows
Jakobsen, Hugo A
2014-01-01
Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics. The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...
Multiscale Modeling of Multiphase Fluid Flow
2016-08-01
of surface effects (surface energy, wettability and interfacial forces) and their modification via surface active reagents on boiling and two phase...enhancing the boiling heat transfer [35-38] and heat transfer with surfactant additives in pool boiling is the topic of active research in thermal management...Garcia-Ratés et al. [151] used MD simulations to study the diffusion coefficients, ionic conductivity, and rotational relaxation of CO2 in aqueous
Constitutive relations for multiphase flow modeling
Jacobs, H.; Vaeth, L.; Thurnay, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik
1998-01-01
The constitutive relations that are used in the three-field fluid dynamics code IVA-KA for determining the drag in three-phase mixtures and the heat transferred by radiation are described together with some comparisons of calculational results with experiments. In these experiments (QUEOS), large quantities of solid particles are injected into water. Potential deficiencies of the present drag model are discussed. (author)
Annihilation Radiation Gauge for Relative Density and Multiphase Fluid Monitoring
Vidal A.
2014-03-01
Full Text Available The knowledge of the multi-phase flow parameters are important for the petroleum industry, specifically during the transport in pipelines and network related to exploitation’s wells. Crude oil flow is studied by Monte Carlo simulation and experimentally to determine transient liquid phase in a laboratory system. Relative density and fluid phase time variation is monitored employing a fast nuclear data acquisition setup that includes two large volume BaF2 scintillator detectors coupled to an electronic chain and data display in a LabView® environment. Fluid parameters are determined by the difference in count rate of coincidence pulses. The operational characteristics of the equipment indicate that 2 % deviation in the CCR corresponds to a variation, on average, of 20 % in the fraction of liquid of the multiphase fluid.
Research on the Principles of Wellbore Multiphase Flow During Sour Gas Influx%酸性天然气侵入井筒多相流动规律研究
万立夫; 李根生; 迟焕鹏; 宋先知; 王海柱
2012-01-01
The mathematics model of wellbore multiphase flow after sour gas influx is established. The paper is comprehensively based on the application of pressure drop model and heat transfer model for two phases flow in wellbore, coupling the wellbore unsteady flow and formation seepage, and the mutual reaction ( chemical reaction and solubility) between sour gas and water-based drilling fluid into consideration. The pressure distribution in wellbore is calculated by numerical method with different components ( methane + carbon dioxide, methane + hydrogen sulfide) when drilling the same formation. The results indicates that the chemical reaction can be ignored. The solubility of carbon dioxide or hydrogen sulfide in the water-based drilling fluid is very remarkable. When the sour gas is near the wellhead, the solubility is decreased sharply. The density of sour gas has a sharp change near the wellhead. The higher he mole fraction of carbon dioxide and hydrogen sulfide of sour gas is, the shorter of distance near the wellhead is. The higher he mole fraction of carbon dioxide and hydrogen sulfide of sour gas is, the smaller change of pressure in the bottom hole pressure is. So that we shouldn' t judge the overflow lever according to the drop of bottom hole pressure.%在综合应用井筒两相流压降和传热模型的基础上,考虑地层渗流与井筒耦合,考虑了钻井液和侵入酸性流体的基本物性参数与井筒温度压力的耦合作用,酸性天然气与水基钻井液间的相互作用(化学反应和溶解),建立酸性天然气侵入井筒多相流计算模型.通过数值计算分析,钻遇相同地层条件下,不同组分(甲烷+二氧化碳,甲烷+硫化氢)两类酸性天然气藏的环空压力等变化规律.结果表明,酸性天然气与水基钻井液化学反应消耗酸性天然气质量流量很小,可忽略.而井筒内溶解度较大,酸性天然气在近井口处由于溶解度迅速降低,气体密度发生突变,且二氧化碳和
Multi-Phase Modeling of Rainbird Water Injection
Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe
2014-01-01
This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.
Modeling of Multiscale and Multiphase Phenomena in Materials Processing
Ludwig, Andreas; Kharicha, Abdellah; Wu, Menghuai
2013-03-01
In order to demonstrate how CFD can help scientists and engineers to better understand the fundamentals of engineering processes, a number of examples are shown and discussed. The paper covers (i) special aspects of continuous casting of steel including turbulence, motion and entrapment of non-metallic inclusions, and impact of soft reduction; (ii) multiple flow phenomena and multiscale aspects during casting of large ingots including flow-induced columnar-to-equiaxed transition and 3D formation of channel segregation; (iii) multiphase magneto-hydrodynamics during electro-slag remelting; and (iv) melt flow and solidification of thin but large centrifugal castings.
Martin, R.; Gonzalez Ortiz, A.
In the industry as well as in the geophysical community, multiphase flows are mod- elled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents os- cillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillatons of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. A pentadiagonal system in 2D or a septadiagonal in 3D must be solve but here we have chosen to solve 3 tridiagonal linear systems (the so called Alternate Direction Implicit algorithm), one in each spatial direction, to reduce the cost of computation. Then a multi-correction of interpolated velocities, pressures and volumic fractions of each phase are done in the cartesian frame or the deformed local curvilinear coordinate system till convergence and mass conservation. At the end the energy conservation equations are solved. In all this process the
杨丽萍; 王栋; 张硕; 陈志华; 姚冬梅; 吴伟
2012-01-01
A bench scale experiment was conducted in purpose to investigate decolorization of dyeing wastewater by ozonation in the condition of multi-phase flow, for which a solution of MB (Methylene Blue) prepared as simulated dyeing wastewater was treated through the advanced oxidation process including adsorption of activated carbon and ozonation. The influences of activated carbon, buffered pH and the hydroxyl radical scavenger on decoloriztion were studied and the results indicated that MB decolorization fit the pseudo-first-order kinetic equation; that catalytic action existed in the phase-interface could promote the decolorization; and that decolorizing rate increased with the rise of buffered pH value and the addition of sufficient hydroxyl radical scavenger (0.003 mol/L) into a strong alkaline buffer system (pH=12.7) presented the fact indicating the advantage of HCO3- over t-butanol in terms of capturing of hydroxyl radicals and furthermore, decolorization rate in this condition was still higher than that in acidic condition of pH 2.5 because of the limited capacity of the radical scavenger in controlling the path of hydroxyl radicals.%以亚甲基蓝(MB)模拟染料废水,研究了多相流中染料的臭氧氧化脱色动力学,考察了活性炭、缓冲条件下的pH值以及羟基自由基(·OH)捕获剂对染料脱色行为的影响.试验结果表明,染料MB的臭氧氧化脱色过程符合伪一级动力学.活性炭的相界面催化作用能够促进染料的脱色,当颗粒状活性炭(GAC)浓度由3g/L增大至15g/L时,脱色速率呈现增大的趋势,且粉末状活性炭(PAC)催化脱色能力更强.缓冲条件下的pH增大,脱色速率明显加快,而且添加活性炭(＞9 g/L)比自由基较活跃(pH=12.7)时的脱色速率常数k提高了一倍.强碱性(pH=12.7)缓冲条件下加入足够量(0.003 mol/L)羟基自由基捕获剂,结果表明HCO3-捕获自由基的能力强于叔丁醇,但由于捕获剂对自由基反应路径的控制作用
Proceedings of submicron multiphase materials
Baney, R.; Gilliom, L.; Hirano, S.I.; Schmidt, H.
1992-01-01
This book contains the papers presented at Symposium R of the spring 1992 Materials Research Society meeting held in San Francisco, California. The title of the symposium, Submicron Multiphase Materials, was selected by the organizers to encompass the realm of composite materials from those smaller than conventional fiber matrix composites to those with phase separation dimensions approaching molecular dimensions. The development of composite materials is as old as the development of materials. Humans quickly learned that, by combining materials, the best properties of each can be realized and that, in fact, synergistic effects often arise. For example, chopped straw was used by the Israelites to limit cracking in bricks. The famed Japanese samurai swords were multilayers of hard oxide and tough ductile materials. One also finds in nature examples of composite materials. These range form bone to wood, consisting of a hard phase which provides strength and stiffness and a softer phase for toughness. Advanced composites are generally thought of as those which are based on a high modulus, discontinuous, chopped or woven fiber phase and a continuous polymer phase. In multiphase composites, dimensions can range from meters in materials such as steel rod-reinforced concrete structures to angstroms. In macrophase separated composite materials, properties frequently follow the rule of mixtures with the properties approximating the arithmetic mean of the properties of each individual phase, if there is good coupling between the phases. As the phases become smaller, the surface to volume ratio grows in importance with respect to properties. Interfacial and interphase phenomena being to dominate. Surface free energies play an ever increasing role in controlling properties. In recent years, much research in materials science has been directed at multiphase systems where phase separations are submicron in at least some dimension.
Problems of multiphase fluid filtration
Konovalov, AN
1994-01-01
This book deals with a spectrum of problems related to the mathematical modeling of multiphase filtration. Emphasis is placed on an inseparable triad: model - algorithm - computer code. An analysis of new and traditional filtration problems from the point of view of both their numerical implementation and the reproduction of one or another technological characteristics of the processes under consideration is given. The basic principles which underlie the construction of efficient numerical methods taking into account the filtration problems are discussed: non-evolutionary nature, degeneration,
Germanium multiphase equation of state
Crockett, S. D.; De Lorenzi-Venneri, G.; Kress, J. D.; Rudin, S. P.
2014-05-01
A new SESAME multiphase germanium equation of state (EOS) has been developed utilizing the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element.
Chella R.
2006-12-01
Full Text Available The flow of several components and several phases through a porous medium is generally described by introducing macroscopic mass-balance equations under the form of generalized dispersion equations. This model raises several questions that are discussed in this paper on the basis of results obtained from the volume averaging method, coupled with pore-scale simulations of the multiphase flow. The study is limited to a binary, two-phase system, and we assume that the momentum equations can be solved independently from the diffusion/advection equations. The assumption of local-equilibrium is discussed and several length-scale and time-scale constraints are provided. A key issue concerns the impact on the dispersion tensors of the pore-scale equilibrium condition at the interface between the different phases. Our results show that this phenomenon may lead to significant variations of the dispersion coefficients with respect to passive dispersion, i. e. , dispersion without interfacial mass fluxes. Macroscopic equations are then obtained in the general case, and several local closure problems are provided that allow one to calculate the dispersion tensors and others properties, from the pore-scale geometry, velocities, and fluid characteristics. Examples of solutions of these closure problems are given in the case of two-dimensional representative unit cells. The two-phase flow equations are solved in two different ways : a boundary element technique, or a modified lattice Boltzmann approach. Solutions of the closure problems associated with the dispersion equations are then given using a finite volume element formulation of the partial differential equations. The results show the influence of velocity and saturation on the effective parameters. They emphasize the importance of geometry on the behavior of the dispersion tensor. Extension of these results to a larger-scale including the effect of heterogeneities is proposed in a limited case
Multiscale thermomechanical analysis of multiphase materials
Yadegari Varnamkhasti, S.
2015-01-01
The thermomechanical simulation of materials with evolving, multiphase microstructures poses various modeling and numerical challenges. For example, the separate phases in a multiphase microstructure can interact with each other during thermal and/or mechanical loading, the effect of which is
万继伟; 牛争鸣; 廖伟丽; 牛助农
2013-01-01
In order to deeply understand the super fine crushing technology of rear-mixed high-speed water jet flow,the mixing and jetting behavior of gas-liquid-solid three phases in acceleration tube with various diameter were investigated by using numerical simulation and crushing experiment methods.Mixing mechanism and acceleration performance of multiphase mixture jet flow were explored,and particles distributions in acceleration space were obtained.The result showed that aeration and entrainment effects of jet flow turbulent motion were the inherent mechanism of mixed attached phase.There existed many partition zones in the rear-mixed jet flow for particle acceleration.Whereby the nearer to the potential flow zone,the stronger the impact energy.Accordingly,optimizing configuration of the optional nozzle diameter with the acceleration tube diameter could force the particles near or enter the potential flow zone,whereby effectively improving grinding yield efficiency.The particles in space distribution within the acceleration tube were in the highest contents in high-efficiency acceleration zones of the outer and inner layers.As a result,the nearer to the potential flow zone,the fewer the particles.The particle contents in the air flow zone increased with increasing acceleration tube diameter.It was difficult for the particles to enter the ideal acceleration zone so that most of the particles were accelerated by relying on the highefficiency acceleration zone of the inner and outer layers.In the case of maintaining the flowing morphological state of free jet flow,the grinding yield efficiency decreased with increasing acceleration tube diameter.Accordingly small tube diameter was of better constraint and concentration functions for water jet flow energy and particle motion space.%为了深入了解后混式高速水射流超细粉碎技术,以4种加速管管径条件下的液、气、固三相混合射流为对象,利用数值计算和粉碎实验相结合的方法,研
封子艳; 强超; 杨志刚; 朱世东; 魏彦林; 崔铭伟
2016-01-01
目的：提高多相流动状态下温度对X70钢CO2腐蚀机理的认识。方法采用自制实验装置和挂片实验,模拟起伏管路段塞流动条件下X70钢的CO2腐蚀状态,通过电子显微镜和电化学在线监测等手段对试样表面形貌、腐蚀速率以及在线腐蚀情况进行观察和分析,侧重研究多相流动状态下温度对X70钢CO2腐蚀速率的影响。结果当温度达到90~98℃时,由于腐蚀产物膜的影响,CO2分压对腐蚀速度影响甚微,腐蚀速度降至较低水平。当温度在60~80℃之间时,腐蚀挂片表面的腐蚀状态不稳定,出现局部腐蚀或均匀腐蚀,当CO2分压较低时(如0.15 MPa),易形成均匀腐蚀；当CO2分压较高时(如0.6 MPa),易形成局部腐蚀。当温度在40~80℃之间时,随着CO2分压的增加,腐蚀速率达到最高值的温度越来越高,腐蚀速率达到最高值的温度范围一般保持在40~80℃之间。结论温度对X70钢CO2腐蚀的影响与CO2分压密切相关,相同温度下,随着CO2分压的增加,腐蚀速率增大,相应的腐蚀速率达到最高值的温度也越来越高；孤立地说某一温度值下,CO2腐蚀速率达到最高值这一说法不准确。%ABSTRACT:Objective To improve the understanding of CO2 corrosion mechanism at different temperature under multiphase flow condition. Methods The CO2 corrosion status of X70 steel under the condition of plug flow was simulated using the self-made ex-perimental device and the hanging plate experiment. The surface morphology, corrosion rate and online coupon corrosion situation were observed and analyzed by electron microscopy and electrochemical monitoring. The effect of temperature on the CO2 corrosion rate of X70 steel was focused on. Results The CO2 partial pressure had little effect on the corrosion rate, and the corrosion rate de-creased to a lower level when the temperature reached 90~98℃, due to the influence of corrosion product film;when the temper-ature was in the range
Fluctuation-induced dynamics of multiphase liquid jets with ultra-low interfacial tension
Sauret, Alban; Shum, Ho Cheung
2013-01-01
Control of fluid dynamics at the micrometer scale is essential to emulsion science and materials design, which is ubiquitous in everyday life and is frequently encountered in industrial applications. Most studies on multiphase flow focus on oil-water systems with substantial interfacial tension. Advances in microfluidics have enabled the study of multiphase flow with more complex dynamics. Here, we show that the evolution of the interface in a jet surrounded by a co-flowing continuous phase with an ultra-low interfacial tension presents new opportunities to the control of flow morphologies. The introduction of a harmonic perturbation to the dispersed phase leads to the formation of interfaces with unique shapes. The periodic structures can be tuned by controlling the fluid flow rates and the input perturbation; this demonstrates the importance of the inertial effects in flow control at ultra-low interfacial tension. Our work provides new insights into microfluidic flows at ultra-low interfacial tension and th...
Multiphase surfactant-assisted reaction-separation system in a microchannel reactor
Salah ALJBOUR; Tomohiko TAGAWA; Mohammad MATOUQ; Hiroshi YAMADA
2009-01-01
The Lewis acid-catalyzed addition of tri-methylsilyl cyanide to p-chlorobenzaldehyde in a micro-channel reactor was investigated. The microchannel was integrated to promote both reaction and separation of the biphase system. FeF3 and Cu(triflate)2 were used as water-stable Lewis acid catalysts. Sodium dodecyl sulfate was incorporated in the organic-aqueous system to enhance the reactivity and to manipulate the multiphase flow inside the microchannel. It was found that the dynamics and the kinetics of the multiphase reaction were affected by the new micellar system. Parallel multiphase flow inside the microchannel was obtained, allowing for continuous and acceptable phase separation. Enhanced selectivity was achieved by operating at lower conversion values.
A QCQP Approach for OPF in Multiphase Radial Networks with Wye and Delta Connections: Preprint
Zamzam, Ahmed, S.; Zhaoy, Changhong; Dall' Anesey, Emiliano; Sidiropoulos, Nicholas D.
2017-06-27
This paper examines the AC Optimal Power Flow (OPF) problem for multiphase distribution networks featuring renewable energy resources (RESs). We start by outlining a power flow model for radial multiphase systems that accommodates wye-connected and delta-connected RESs and non-controllable energy assets. We then formalize an AC OPF problem that accounts for both types of connections. Similar to various AC OPF renditions, the resultant problem is a non convex quadratically-constrained quadratic program. However, the so-called Feasible Point Pursuit-Successive Convex Approximation algorithm is leveraged to obtain a feasible and yet locally-optimal solution. The merits of the proposed solution approach are demonstrated using two unbalanced multiphase distribution feeders with both wye and delta connections.
Chen, Li; Tang, Qing; Robinson, Bruce A; He, Ya-Ling; Tao, Wen-Quan
2014-01-01
Multicomponent multiphase reactive transport processes with dissolution-precipitation are widely encountered in energy and environment systems. A pore-scale two-phase multi-mixture model based on the lattice Boltzmann method (LBM) is developed for such complex transport processes, where each phase is considered as a mixture of miscible components in it. The liquid-gas fluid flow with large density ratio is simulated using the multicomponent multiphase pseudo-potential LB model; the transport of certain solute in the corresponding solvent is solved using the mass transport LB model; and the dynamic evolutions of the liquid-solid interface due to dissolution-precipitation are captured by an interface tracking scheme. The model developed can predict coupled multiple physicochemical processes including multiphase flow, multicomponent mass transport, homogeneous reactions in the bulk fluid and heterogeneous dissolution-precipitation reactions at the fluid-solid interface, and dynamic evolution of the solid matrix ...
Multiphase lattice Boltzmann methods theory and application
Huang, Haibo; Lu, Xiyun
2015-01-01
Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the
On multiphase negative flash for ideal solutions
Yan, Wei; Stenby, Erling Halfdan
2012-01-01
coefficients. It is shown that this inner loop, named here as multiphase negative flash for ideal solutions, can be solved either by Michelsen's algorithm for multiphase normal flash, or by its variation which uses F−1 phase amounts as independent variables. In either case, the resulting algorithm is actually...... simpler than the corresponding normal flash algorithm. Unlike normal flash, multiphase negative flash for ideal solutions can diverge if the feasible domain for phase amounts is not closed. This can be judged readily during the iteration process. The algorithm can also be extended to the partial negative...
Yousefian, V.; Weinberg, M.H.; Haimes, R.
1980-02-01
The NASA CEC Code was the starting point for PACKAGE, whose function is to evaluate the composition of a multiphase combustion product mixture under the following chemical conditions: (1) total equilibrium with pure condensed species; (2) total equilibrium with ideal liquid solution; (3) partial equilibrium/partial finite rate chemistry; and (4) fully finite rate chemistry. The last three conditions were developed to treat the evolution of complex mixtures such as coal combustion products. The thermodynamic variable pairs considered are either pressure (P) and enthalpy, P and entropy, at P and temperature. Minimization of Gibbs free energy is used. This report gives detailed discussions of formulation and input/output information used in the code. Sample problems are given. The code development, description, and current programming constraints are discussed. (DLC)
Applications of turbulent and multi-phase combustion
Kuo, Kenneth Kuan-yun
2012-01-01
A hands-on, integrated approach to solving combustion problems in diverse areas An understanding of turbulence, combustion, and multiphase reacting flows is essential for engineers and scientists in many industries, including power genera-tion, jet and rocket propulsion, pollution control, fire prevention and safety, and material processing. This book offers a highly practical discussion of burning behavior and chemical processes occurring in diverse materials, arming readers with the tools they need to solve the most complex combustion problems facing the scientific community today. The
Multiphase modeling of geologic carbon sequestration in saline aquifers.
Bandilla, Karl W; Celia, Michael A; Birkholzer, Jens T; Cihan, Abdullah; Leister, Evan C
2015-01-01
Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local-scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock.
Metronomic chemotherapy regimens in oncology
M. Yu. Fedyanin
2016-01-01
Full Text Available Metronomic chemotherapy implies the regular use of cytotoxic agents in doses much smaller than the maximum tolerable doses for a long time. Preclinical experiments show that this treatment option has a many-sided (antiangiogenic, immunostimulating, and direct cytotoxic effect on tumor. Moreover, this approach has gained the widest acceptance in treating patients with metastatic breast cancer in clinical practice. By taking into account the high activity of angiogenesis in colon cancer progression, it is interesting to study the impact of metronomic chemotherapy regimens for this nosological entity as well. This literature review considers not only the history of metronomic chemotherapy, the mechanisms of action, and a range of drugs having an antitumor effect in the metronomic regimens, but also analyzes clinical trials of metronomic chemotherapy regimens in patients with metastatic colon cancer.
Hu, Xiaohua; Choi, Kyoo Sil; Sun, Xin; Ren, Yang; Wang, Yangdong
2016-02-26
The micromechanical properties of the constituent phases were characterized for an advanced high strength steels (AHSS) produced by a quenching and partitioning (Q&P) process with in-situ tensile loading under Synchrotron-based high energy X-ray diffraction. The constituent phases present are retained austenite and three martensites (tempered, untempered and freshly formed martensites). For the material investigated, the 200 and 220 lattice strains of the retained austenite phase were calculated by examining the changes of the X-ray diffraction peak positions during deformation. The 200 and 211 lattice strains of the various martensitic phases with similar crystal structures were determined by separating their overlapped diffraction peaks. Apart from tempered and untempered martensite, the diffraction peaks of freshly formed martensite as a result of austenite to martensite transformation can also be able separated due to high initial austenite volume fraction. The phase stresses are first estimated with an empirical relationship through the X-ray diffraction elastic constants (XREC). A multi-phase elasto-plastic self constant model (EPSC) is next used for more accurate determination of the constitutive behaviors of the various phases by comparing the predicted lattice strain distributions and global stress-strain curves with the measured ones. The determined constitutive laws will be used for microstructure-based modeling for sheet formability of the Q&P AHSS steel.
Hu, Xiaohua; Choi, Kyoo Sil; Sun, Xin; Ren, Yang; Wang, Yangdong
2016-12-01
The micromechanical properties of the constituent phases were characterized for advanced high-strength steels (AHSS) produced by a quenching and partitioning (Q&P) process with in situ tensile loading under synchrotron-based, high-energy X-ray diffraction. The constituent phases present are retained austenite and three martensites (tempered, untampered, and freshly formed martensites). For the material investigated, the 200 and 220 lattice strains of the retained austenite phase were calculated by examining the changes of the X-ray diffraction peak positions during deformation. The 200 and 211 lattice strains of the various martensitic phases with similar crystal structures were determined by separating their overlapped diffraction peaks. Apart from tempered and untempered martensite, the diffraction peaks of freshly formed martensite as a result of austenite-to-martensite transformation can also be separated due to a high initial austenite volume fraction. The phase stresses are first estimated with an empirical relationship through the X-ray diffraction elastic constants. A multiphase elasto-plastic self-consistent model is next used for more accurate determination of the constitutive behaviors of the various phases by comparing the predicted lattice strain distributions and global stress-strain curves with the measured ones. The determined constitutive laws will be used for microstructure-based modeling for sheet formability of the Q&P AHSS steel.
Chalbaud, C
2007-07-15
In this work we deal with the interfacial properties of CO{sub 2} at reservoir conditions with a special interest on deep saline aquifers. Each chapter of this dissertation represents a different physical scale studied with different experimental devices and simulation tools. The results obtained in the first part of this study represent a complete data set of brine-CO{sub 2} interfacial tension at reservoir conditions. A semi-analytical equation is proposed in order to facilitate the work of reservoir engineers. The second deals with the interfacial properties at the pore scale using glass micro-models at different wettability conditions. This part shows the wetting behavior of CO{sub 2} on hydrophobic or oil-wet solid surfaces. A pore network model was used for the interpretation and exploitation of these results. The third part corresponds to two different experimental approaches at the core scale at different wettability conditions associated to a modelling at flue Darcy scale. This part is a significant contribution to the validation of COORES compositional reservoir simulator developed by IFP. It has also allow us to estimate multiphase properties, Pc and kr, for brine-CO{sub 2} systems at reservoir conditions. This study presents the necessary scales to model CO{sub 2} storage in deep saline aquifers. (author)
Black hole feedback in a multiphase interstellar medium
Bourne, Martin A.; Nayakshin, Sergei; Hobbs, Alexander
2014-07-01
Ultrafast outflows (UFOs) from supermassive black holes (SMBHs) are thought to regulate the growth of SMBHs and host galaxies, resulting in a number of observational correlations. We present high-resolution numerical simulations of the impact of a thermalized UFO on the ambient gas in the inner part of the host galaxy. Our results depend strongly on whether the gas is homogeneous or clumpy. In the former case all of the ambient gas is driven outward rapidly as expected based on commonly used energy budget arguments, while in the latter the flows of mass and energy de-couple. Carrying most of the energy, the shocked UFO escapes from the bulge via paths of least resistance, taking with it only the low-density phase of the host. Most of the mass is however in the high-density phase, and is affected by the UFO much less strongly, and may even continue to flow inwards. We suggest that the UFO energy leakage through the pores in the multiphase interstellar medium (ISM) may explain why observed SMBHs are so massive despite their overwhelmingly large energy production rates. The multiphase ISM effects reported here are probably under-resolved in cosmological simulations but may be included in prescriptions for active galactic nuclei feedback in future simulations and in semi-analytical models.
MSTS - Multiphase Subsurface Transport Simulator theory manual
White, M.D.; Nichols, W.E.
1993-05-01
The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.
Radiation damage in multiphase ceramics
Men, Danju [Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575 (United States); Patel, Maulik K.; Usov, Igor O. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Toiammou, Moidi; Monnet, Isabelle [CIMAP, CEA/CNRS/ENSICAEN/Universite de Caen-Basse Normandie, Bd Henri Becquerel, BP 5133, F-14070 Caen Cedex 5 (France); Pivin, Jean Claude [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris Sud, UMR 8609, Bat. 108, 91405 Orsay (France); Porter, John R. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States); Mecartney, Martha L., E-mail: martham@uci.edu [Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575 (United States)
2013-11-15
Graphical abstract: Display Omitted -- Abstract: Four-phase ceramic composites containing 3 mol% Y{sub 2}O{sub 3} stabilized ZrO{sub 2} (3Y-TZP), Al{sub 2}O{sub 3}, MgAl{sub 2}O{sub 4}, and LaPO{sub 4} were synthesized as model materials representing inert matrix fuel with enhanced thermal conductivity and decreased radiation-induced microstructural damage with respect to single-phase UO{sub 2}. This multi-phase concept, if successful, could be applied to design advanced nuclear fuels which could then be irradiated to higher burn-ups. 3Y-TZP in the composite represents a host (fuel) phase with the lowest thermal conductivity and Al{sub 2}O{sub 3} is the high thermal conductivity phase. The role of MgAl{sub 2}O{sub 4} and LaPO{sub 4} was to stabilize the structure under irradiation. The radiation response was evaluated by ion irradiation at 500 °C with 10 MeV Au ions and at 800 °C with 92 MeV Xe ions, to simulate damage due to primary knock-on atoms and fission fragments, respectively. Radiation damage and microstructural changes were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy and computational modeling. Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3} stabilized ZrO{sub 2} and MgAl{sub 2}O{sub 4} phases exhibit high amorphization resistance and remain stable when irradiated with both Au and Xe ions. A monoclinic-to-tetragonal phase transformation, however, is promoted by Xe and Au ion irradiation in 3Y-TZP. The LaPO{sub 4} monazite phase appears to melt, dewet the other phases, and recrystallize under Au irradiation, but does not change under Xe irradiation.
Online Slug Detection in Multi-phase Transportation Pipelines Using Electrical Tomography
Pedersen, Simon; Mai, Christian; Hansen, Leif
2015-01-01
Slugging flow in offshore oil & gas multi-phase transportation pipelines cause big challenges as the flow regime induces flow and pressure oscillations in the multi-phase pipelines. The negative impacts of the most severe slugs are significant and thus the elimination of slugging flow....... Based on the results the study concludes that the ERT is able to detect the slug very well when the oil and water is well mixed. Furthermore the traditional pressure transmitters have the limitation that pressure variations can be caused by other operating conditions than slug, such as change...... in the back pressure from control valves. The biggest limitation using ERT is the lack of ability to distinguish between gas and oil, and thus the ERT can only be used as an effective slug detect measurement when the oil-to-water ratio is low....
Effect of forward looking sites on a multi-phase lattice hydrodynamic model
Redhu, Poonam; Gupta, Arvind Kumar
2016-03-01
A new multi-phase lattice hydrodynamic traffic flow model is proposed by considering the effect of multi-forward looking sites on a unidirectional highway. We examined the qualitative properties of proposed model through linear as well as nonlinear stability analysis. It is shown that the multi-anticipation effect can significantly enlarge the stability region on the phase diagram and exhibit three-phase traffic flow. It is also observed that the multi-forward looking sites have prominent influence on traffic flow when driver senses the relative flux of leading vehicles. Theoretical findings are verified using numerical simulation which confirms that the traffic jam is suppressed efficiently by considering the information of leading vehicles in unidirectional multi-phase traffic flow.
Multiphase Systems for Medical Image Region Classification
Garamendi, J. F.; Malpica, N.; Schiavi, E.
2009-05-01
Variational methods for region classification have shown very promising results in medical image analysis. The Chan-Vese model is one of the most popular methods, but its numerical resolution is slow and it has serious drawbacks for most multiphase applications. In this work, we extend the link, stablished by Chambolle, between the two classes binary Chan-Vese model and the Rudin-Osher-Fatemi (ROF) model to a multiphase four classes minimal partition problem. We solve the ROF image restoration model and then we threshold the image by means of a genetic algorithm. This strategy allows for a more efficient algorithm due to the fact that only one well posed elliptic problem is solved instead of solving the coupled parabolic equations arising in the original multiphase Chan-Vese model.
Twin screw subsurface and surface multiphase pumps
Dass, P. [CAN-K GROUP OF COMPANIES, Edmonton, Alberta (Canada)
2011-07-01
A new subsurface twin screw multiphase pump has been developed to replace ESP and other artificial lift technologies. This technology has been under development for a few years, has been field tested and is now going for commercial applications. The subsurface twin screw technology consists of a pair of screws that do not touch and can be run with a top drive or submersible motor; and it carries a lot of benefits. This technology is easy to install and its low slippage makes it highly efficient with heavy oil. In addition twin screw multiphase pumps are capable of handling high viscosity fluids and thus their utilization can save water when used in thermal applications. It also induces savings of chemicals because asphaltenes do not break down easily as well as a reduction in SOR. The subsurface twin screw multiphase pump presented herein is an advanced technology which could be used in thermal applications.
Pinguet, B.; Perez-Damas, C. [Schlumberger (Canada); Gaviria, F.; Kemp, L.; Graham, J.; Coulter, C. [Suncor Energy (Canada)
2011-07-01
In the heavy oil industry, the steam assisted gravity drainage (SAGD) process is often used to enhance oil recovery but it is difficult to measure the flow rate correctly. A test separator combined with additional equipment is typically used to meter SAGD well production, but the challenging environment of this process with unstable flow regimes and high temperatures compromise the accuracy of the results. A multiphase flowmeter (MPFM) based on a Venturi and a dual-energy nuclear fraction meter was developed to address this issue. A test was conducted at the Suncor Firebag project to compare the measurements of MPFM and test separator equipment. Thanks to its design and robustness, the multiphase flowmeter measured flow rates accurately and with good dynamic response and replicability. The multiphase flowrate presented herein met all of the objectives of the test and can be implemented in Suncor operations as it meets the operating requirements of the company.
Chen, Yan-Jun; Wang, Ping-Yang; Liu, Zhen-Hua
2016-11-01
The natural convective heat transfer and flow characteristics of nanofluids in an enclosure are numerically simulated using the multiphase-flow model and single phase model respectively. The simulated results are compared with the experimental results from the published papers to investigate the applicability of these models for nanofluids from a macro standpoint. The effects of Rayleigh number, Grashof number and volume concentration of nanoparticles on the heat transfer and flow characteristics are investigated and discussed. Comparisons of the horizontal and vertical central dimensionless velocity profiles between nanofluid and water for various Grashof numbers are studied. In addition, both streamline contours and isotherms lines for different volume concentrations of nanofluids are analyzed as well. The study results show that a great deviation exists between the simulated result of the single phase model and the experimental data on the relation of Nusselt number and Rayleigh number, which indicates that the single phase model cannot reflect the heat transfer characteristic of nanofluid. While the simulated results using the multiphase-flow model show a good agreement with the experimental data of nanofluid, which means that the multiphase-flow model is more suitable for the numerical study of nanofluid. For the natural convection, the present study holds the point that using Grashof numbers as the benchmark would be more appropriate to describe the heat transfer characteristics of nanofluid. Moreover, the simulated results demonstrate that adding nanoparticles into the base fluid can enhance both the motion of fluid and convection in the enclosure significantly.
Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel
Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)
2017-05-25
The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity
Periodical multiphasic screening and lung cancer prevention.
Carel, R S
1998-06-01
The purpose of this work is to evaluate the utilization of information gathered by multiphasic screening with respect to lung cancer detection and smoking cessation techniques. A cohort (follow-up) study is reported in which cancer incidence and factors affecting its occurrence are evaluated in a group of about 20,000 presumably healthy adults along a period of approximately 10 years following comprehensive multiphasic health examinations. Lung cancer occurrence is primarily related to smoking. The risk is higher in smokers and is dose-dependent; OR = 0.21, (CI = 0.08, .53) in never smokers, OR = 1.53 (CI = 0.8, 3.2) in past and current moderate smokers, OR = 4.92 (CI = 2.18, 11.11) in current heavy smokers. Moreover, smokers with compromised pulmonary function (FEVI/FVC periodical multiphasic health examinations could be utilized by health professionals to encourage smoking cessation and smoking prevention in the appropriate screenees. Various elements of the multiphasic test results could contribute to such prevention efforts. While every smoker should receive appropriate evaluation and consultation regarding nicotine dependence, smokers with reduced pulmonary function represent an extra high risk group to which special attention should be given.
MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES
A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi
2005-06-15
The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studies, and some of the new results are presented in this report. These samples are being scanned in order to
Development of antibiotic regimens using graph based evolutionary algorithms.
Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M
2013-12-01
This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems.
Multiphase transport in polymer electrolyte membrane fuel cells
Gauthier, Eric D.
Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the
Case study in Venezuela : performance of multiphase meter in extra heavy oil
Marin, A. [Petroleos de Venezuela SA, Caracas (Venezuela); Bornia, O.; Pinguet, B. [Schlumberger Canada Ltd., Edmonton, AB (Canada)
2008-10-15
The performance of a multiphase meter that combines Venturi and multi energy gamma rays was investigated during operation in an extra heavy oil field in Venezuela. The Orocual field in Monagas is one of the most diverse oilfields in Venezuela. It produces gas condensate, light and medium oil and has recently started to produce from a heavy and extra-heavy oil reservoir, with a gravity between 8.6 and 11 API and a viscosity range from 6 Pa.s to more than 20 Pa.s at line conditions. Petroleos de Venezuela SA (PDVSA) is currently using cold production systems in this field. PDVSA attempted to estimate the liquid flow rate using conventional storage tanks but was unable to evaluate the gas production in such an environment of low GOR with emulsion, large amounts of foam and high viscosity. Since the density of heavy oil is close to the density of water, gravity separation cannot be applied. Also, since heavy oil is very viscous, proper separation requires a long retention time, which is not feasible in terms of space or economy. In addition, gas bubbles could not flow freely and remained as a gas phase trapped inside the liquid, resulting in an overestimation of some of the liquid flow rate. In order to measure the field's oil, water and gas flow rates, PDVSA tried several multiphase meters but found that a Venturi and multi energy gamma ray combination was the only solution able to accurately measure multiphase flow in its extra heavy oil. A test demonstrated that, compared to a tank system, the overall uncertainty of the Venturi combination was better than 2 per cent. This extended the operating envelope for PDVSA for using this multiphase metering technology, providing the capability to monitor and optimize in real-time the production in this extra heavy oil field. 15 refs., 10 figs.
Pan, L.; Oldenburg, C.M.; Wu, Y.-S.; Pruess, K.
2011-02-14
At its most basic level, the injection of CO{sub 2} into geologic CO{sub 2} storage sites involves a system comprising the wellbore and the target reservoir. The wellbore is the only conduit available to emplace CO{sub 2} into reservoirs for long-term storage. At the same time, wellbores in general have been identified as the most likely conduit for CO{sub 2} and brine leakage from geologic carbon sequestration (GCS) sites, especially those in sedimentary basins with historical hydrocarbon production. We have developed a coupled wellbore and reservoir model for simulating the dynamics of CO{sub 2} injection and leakage through wellbores. The model describes the following processes: (1) upward or downward wellbore flow of CO{sub 2} and variable salinity water with transition from supercritical to gaseous CO{sub 2} including Joule-Thomson cooling, (2) exsolution of CO{sub 2} from the aqueous phase as pressure drops, and (3) cross flow into or interaction with layers of surrounding rock (reservoirs). We use the Drift-Flux Model and related conservation equations for describing transient two-phase non-isothermal wellbore flow of CO{sub 2}-water mixtures under different flow regimes and interacting with surrounding rock. The mass and thermal energy balance equations are solved numerically by a finite difference scheme with wellbore heat transmission to the surrounding rock handled either semi-analytically or numerically. The momentum balance equation for the flow in the wellbore is solved numerically with a semi-explicit scheme. This manual provides instructions for compilation and use of the new model, and presents some example problems to demonstrate its use.
Computational algorithms for multiphase magnetohydrodynamics and applications to accelerator targets
R.V. Samulyak
2010-01-01
Full Text Available An interface-tracking numerical algorithm for the simulation of magnetohydrodynamic multiphase/free surface flows in the low-magnetic-Reynolds-number approximation of (Samulyak R., Du J., Glimm J., Xu Z., J. Comp. Phys., 2007, 226, 1532 is described. The algorithm has been implemented in multi-physics code FronTier and used for the simulation of MHD processes in liquids and weakly ionized plasmas. In this paper, numerical simulations of a liquid mercury jet entering strong and nonuniform magnetic field and interacting with a powerful proton pulse have been performed and compared with experiments. Such a mercury jet is a prototype of the proposed Muon Collider/Neutrino Factory, a future particle accelerator. Simulations demonstrate the elliptic distortion of the mercury jet as it enters the magnetic solenoid at a small angle to the magnetic axis, jet-surface instabilities (filamentation induced by the interaction with proton pulses, and the stabilizing effect of the magnetic field.
Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments
Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob
2016-11-01
Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.
Unsteady RANS and Large Eddy simulations of multiphase diesel injection
Philipp, Jenna; Green, Melissa; Akih-Kumgeh, Benjamin
2015-11-01
Unsteady Reynolds Averaged Navier-Stokes (URANS) and Large Eddy Simulations (LES) of two-phase flow and evaporation of high pressure diesel injection into a quiescent, high temperature environment is investigated. Unsteady RANS and LES are turbulent flow simulation approaches used to determine complex flow fields. The latter allows for more accurate predictions of complex phenomena such as turbulent mixing and physio-chemical processes associated with diesel combustion. In this work we investigate a high pressure diesel injection using the Euler-Lagrange method for multiphase flows as implemented in the Star-CCM+ CFD code. A dispersed liquid phase is represented by Lagrangian particles while the multi-component gas phase is solved using an Eulerian method. Results obtained from the two approaches are compared with respect to spray penetration depth and air entrainment. They are also compared with experimental data taken from the Sandia Engine Combustion Network for ``Spray A''. Characteristics of primary and secondary atomization are qualitatively evaluated for all simulation modes.
Application and Perspectives of Multiphase Induction Motors
Benas Kundrotas
2012-04-01
Full Text Available The article considers the areas of applying multiphase induction motors. Their advantages against three phase motors have become the main reason for employing them in multiphase drives. The paper deals with the six-phase induction motor having two similar three phase windings in the stator shifted by 30 degrees in space and three phase windings in the rotor. Differential equations for this motor are presented and transformed to dq synchronous reference frame. The transformed equations are expressed in a matrix form and solved by MATLAB software using the Dormand-Prince (ode45 method. The transient characteristics of the torque, speed and current of the six-phase induction motor are calculated and discussed.Article in Lithuanian
Variational continuum multiphase poroelasticity theory and applications
Serpieri, Roberto
2017-01-01
This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics. The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations. It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the external stress, the fluid pressure, and the...
Multiphase Transformer Modelling using Finite Element Method
Nor Azizah Mohd Yusoff
2015-03-01
Full Text Available In the year of 1970 saw the starting invention of the five-phase motor as the milestone in advanced electric motor. Through the years, there are many researchers, which passionately worked towards developing for multiphase drive system. They developed a static transformation system to obtain a multiphase supply from the available three-phase supply. This idea gives an influence for further development in electric machines as an example; an efficient solution for bulk power transfer. This paper highlighted the detail descriptions that lead to five-phase supply with fixed voltage and frequency by using Finite-Element Method (FEM. Identifying of specification on a real transformer had been done before applied into software modeling. Therefore, Finite-Element Method provides clearly understandable in terms of visualize the geometry modeling, connection scheme and output waveform.
Multi-phase Combustion and Transport Processes Under the Influence of Acoustic Excitation
Wegener, Jeffrey Lewis
2014-01-01
This experimental study examined the coupling of acoustics with reactive multiphase transport processes and shear flows. The first portion of this dissertation deals with combustion of various liquid fuels when under the influence of externally applied acoustic excitation. For this study, an apparatus at the Energy and Propulsion ResearchLaboratory, UCLA, used a horizontal waveguide to create a standing acoustic wave, wherein burning fuel droplets were positioned near pressure nodes within th...
Experimental characterization of energetic material dynamics for multiphase blast simulation.
Beresh, Steven Jay; Wagner, Justin L.; Kearney, Sean Patrick; Wright, Elton K.; Baer, Melvin R.; Pruett, Brian Owen Matthew
2011-09-01
Currently there is a substantial lack of data for interactions of shock waves with particle fields having volume fractions residing between the dilute and granular regimes, which creates one of the largest sources of uncertainty in the simulation of energetic material detonation. To close this gap, a novel Multiphase Shock Tube has been constructed to drive a planar shock wave into a dense gas-solid field of particles. A nearly spatially isotropic field of particles is generated in the test section by a gravity-fed method that results in a spanwise curtain of spherical 100-micron particles having a volume fraction of about 19%. Interactions with incident shock Mach numbers of 1.66, 1.92, and 2.02 were achieved. High-speed schlieren imaging simultaneous with high-frequency wall pressure measurements are used to reveal the complex wave structure associated with the interaction. Following incident shock impingement, transmitted and reflected shocks are observed, which lead to differences in particle drag across the streamwise dimension of the curtain. Shortly thereafter, the particle field begins to propagate downstream and spread. For all three Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced about 30-40% by the presence of the particle field. X-Ray diagnostics have been developed to penetrate the opacity of the flow, revealing the concentrations throughout the particle field as it expands and spreads downstream with time. Furthermore, an X-Ray particle tracking velocimetry diagnostic has been demonstrated to be feasible for this flow, which can be used to follow the trajectory of tracer particles seeded into the curtain. Additional experiments on single spherical particles accelerated behind an incident shock wave have shown that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness, clarifying confusing results from the historical database of shock tube
Experimental characterization of energetic material dynamics for multiphase blast simulation.
Beresh, Steven Jay; Wagner, Justin L.; Kearney, Sean Patrick; Wright, Elton K.; Baer, Melvin R.; Pruett, Brian Owen Matthew
2011-09-01
Currently there is a substantial lack of data for interactions of shock waves with particle fields having volume fractions residing between the dilute and granular regimes, which creates one of the largest sources of uncertainty in the simulation of energetic material detonation. To close this gap, a novel Multiphase Shock Tube has been constructed to drive a planar shock wave into a dense gas-solid field of particles. A nearly spatially isotropic field of particles is generated in the test section by a gravity-fed method that results in a spanwise curtain of spherical 100-micron particles having a volume fraction of about 19%. Interactions with incident shock Mach numbers of 1.66, 1.92, and 2.02 were achieved. High-speed schlieren imaging simultaneous with high-frequency wall pressure measurements are used to reveal the complex wave structure associated with the interaction. Following incident shock impingement, transmitted and reflected shocks are observed, which lead to differences in particle drag across the streamwise dimension of the curtain. Shortly thereafter, the particle field begins to propagate downstream and spread. For all three Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced about 30-40% by the presence of the particle field. X-Ray diagnostics have been developed to penetrate the opacity of the flow, revealing the concentrations throughout the particle field as it expands and spreads downstream with time. Furthermore, an X-Ray particle tracking velocimetry diagnostic has been demonstrated to be feasible for this flow, which can be used to follow the trajectory of tracer particles seeded into the curtain. Additional experiments on single spherical particles accelerated behind an incident shock wave have shown that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness, clarifying confusing results from the historical database of shock tube
Entropic Lattice Boltzmann Methods for Fluid Mechanics: Thermal, Multi-phase and Turbulence
Chikatamarla, Shyam; Boesch, F.; Frapolli, N.; Mazloomi, A.; Karlin, I.
2014-11-01
With its roots in statistical mechanics and kinetic theory, the lattice Boltzmann method (LBM) is a paradigm-changing innovation, offering for the first time an intrinsically parallel CFD algorithm. Over the past two decades, LBM has achieved numerous results in the field of CFD and is now in a position to challenge state-of-the art CFD techniques. Major restyling of LBM resulted in an unconditionally stable entropic LBM which restored Second Law (Boltzmann H theorem) in the LBM kinetics and thus enabled affordable direct simulations of fluid turbulence. In this talk, we shall review recent advances in ELBM as a practical, modeling-free tool for simulation of complex flow phenomenon. We shall present recent simulations of fluid turbulence including turbulent channel flow, flow past a circular cylinder, creation and dynamics of vortex tubes, and flow past a surface mounted cube. Apart from its achievements in turbulent flow simulations, ELBM has also presented us the opportunity to extend lattice Boltzmann method to higher order lattices which shall be employed for turbulent, multi-phase and thermal flow simulations. A new class of entropy functions are proposed to handle non-ideal equation of state and surface tension terms in multi-phase flows. It is shown the entropy principle brings unconditional stability and thermodynamic consistency to all the three flow regimes considered here. Acknowledgements: ERC Advanced Grant ``ELBM'' and CSCS grant s437 are deeply acknowledged. References:
Sedation regimens for gastrointestinal endoscopy.
Moon, Sung-Hoon
2014-03-01
Sedation allows patients to tolerate unpleasant endoscopic procedures by relieving anxiety, discomfort, or pain. It also reduces a patient's risk of physical injury during endoscopic procedures, while providing the endoscopist with an adequate setting for a detailed examination. Sedation is therefore considered by many endoscopists to be an essential component of gastrointestinal endoscopy. Endoscopic sedation by nonanesthesiologists is a worldwide practice and has been proven effective and safe. Moderate sedation/analgesia is generally accepted as an appropriate target for sedation by nonanesthesiologists. This focused review describes the general principles of endoscopic sedation, the detailed pharmacology of sedatives and analgesics (focused on midazolam, propofol, meperidine, and fentanyl), and the multiple regimens available for use in actual practice.
Aalen, Bengt [Bergab, Goeteborg (Sweden)
2004-10-01
Important quantities of gas can form in an underground repository for nuclear wastes. Gas can be formed through: corroding metals; water and certain organic substances that undergo radiolysis; organic material degrading through microbial activity. The last point is of concern mainly for intermediate-level wastes, which can hold large amounts of organic materials. The first point is the main process for high-level wastes. The gas could transport radioactive substances through the buffer and the geosphere into the biosphere, or affect the performance of the repository in a negative way. The present report gives a review of the knowledge about two-phase flow in connection with deep geologic repositories for spent nuclear fuel.
魏海鹏; 符松
2015-01-01
基于VOF和Mixture两种均相流模型，并结合输运方程类空化模型、k－ε湍流模型和动网格技术，针对圆柱形航行体出水过程进行了数值模拟，获得了无空化、带空泡两种状态下航行体出水过程中的多相流物理景象和表面压力变化历程。根据计算结果分析了 VOF 模型、Mixture 模型在多相流界面捕捉、压力计算等方面的异同，并给出了两种模型的适用范围，在理论研究和工程应用上都具有重要意义。%Here,the prediction capabilities of Mixture model and VOF one for the simulation of unsteady flows around a moving cylindrical vehicle were evaluated.In the simulation,the k-εturbulence model was used along with the transport equation-based cavitation model to simulate the vehicle rising from water process,the dynamic mesh technique was applied. Results were obtained under two states of non-cavitation and cavitation,respectively and the transient flow structures and time evolution of pressure distribution were revealed.According to the numerical results,the difference between the capability of VOF model and that of Mixture model was analyzed.Their applicable ranges are very important for theoretical study and engineering application.
A Course in Transport Phenomena in Multicomponent, Multiphase, Reacting Systems.
Carbonell, R. G.; Whitaker, S.
1978-01-01
This course concentrates on a rigorous development of the multicomponent transport equations, boundary conditions at phase interfaces, and volume-averaged transport equations for multiphase reacting systems. (BB)