Reggeon field theory for large Pomeron loops
Energy Technology Data Exchange (ETDEWEB)
Altinoluk, Tolga [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela,E-15782 Santiago de Compostela, Galicia (Spain); Kovner, Alex [Physics Department, University of Connecticut,2152 Hillside road, Storrs, CT 06269 (United States); Levin, Eugene [Departamento de Física, Universidad Técnica Federico Santa María, and Centro Científico-Tecnolgico de Valparaíso,Avda. España 1680, Casilla 110-V, Valparaíso (Chile); Department of Particle Physics, Tel Aviv University,Tel Aviv 69978 (Israel); Lublinsky, Michael [Physics Department, Ben-Gurion University of the Negev,Beer Sheva 84105 (Israel)
2014-04-10
We analyze the range of applicability of the high energy Reggeon Field Theory H{sub RFT} derived in http://dx.doi.org/10.1088/1126-6708/2009/03/109. We show that this theory is valid as long as at any intermediate value of rapidity η throughout the evolution at least one of the colliding objects is dilute. Importantly, at some values of η the dilute object could be the projectile, while at others it could be the target, so that H{sub RFT} does not reduce to either H{sub JIMWLK} or H{sub KLWMIJ}. When both objects are dense, corrections to the evolution not accounted for in http://dx.doi.org/10.1088/1126-6708/2009/03/109 become important. The same limitation applies to other approaches to high energy evolution available today, such as for example (http://dx.doi.org/10.1103/PhysRevD.78.054019; http://dx.doi.org/10.1103/PhysRevD.78.054020 and http://dx.doi.org/10.1016/S0370-2693(00)00571-2; http://dx.doi.org/10.1140/epjc/s2003-01565-9; http://dx.doi.org/10.1016/j.physletb.2005.10.054). We also show that, in its regime of applicability H{sub RFT} can be simplified. We derive the simpler version of H{sub RFT} and in the large N{sub c} limit rewrite it in terms of the Reggeon creation and annihilation operators. The resulting H{sub RFT} is explicitly self dual and provides the generalization of the Pomeron calculus developed in (http://dx.doi.org/10.1016/S0370-2693(00)00571-2; http://dx.doi.org/10.1140/epjc/s2003-01565-9; http://dx.doi.org/10.1016/j.physletb.2005.10.054) by including higher Reggeons in the evolution. It is applicable for description of ‘large’ Pomeron loops, namely Reggeon graphs where all the splittings occur close in rapidity to one dilute object (projectile), while all the merging close to the other one (target). Additionally we derive, in the same regime expressions for single and double inclusive gluon production (where the gluons are not separated by a large rapidity interval) in terms of the Reggeon degrees of freedom.
Reggeon field theory for large Pomeron loops
International Nuclear Information System (INIS)
Altinoluk, Tolga; Kovner, Alex; Levin, Eugene; Lublinsky, Michael
2014-01-01
We analyze the range of applicability of the high energy Reggeon Field Theory H RFT derived in http://dx.doi.org/10.1088/1126-6708/2009/03/109. We show that this theory is valid as long as at any intermediate value of rapidity η throughout the evolution at least one of the colliding objects is dilute. Importantly, at some values of η the dilute object could be the projectile, while at others it could be the target, so that H RFT does not reduce to either H JIMWLK or H KLWMIJ . When both objects are dense, corrections to the evolution not accounted for in http://dx.doi.org/10.1088/1126-6708/2009/03/109 become important. The same limitation applies to other approaches to high energy evolution available today, such as for example (http://dx.doi.org/10.1103/PhysRevD.78.054019; http://dx.doi.org/10.1103/PhysRevD.78.054020 and http://dx.doi.org/10.1016/S0370-2693(00)00571-2; http://dx.doi.org/10.1140/epjc/s2003-01565-9; http://dx.doi.org/10.1016/j.physletb.2005.10.054). We also show that, in its regime of applicability H RFT can be simplified. We derive the simpler version of H RFT and in the large N c limit rewrite it in terms of the Reggeon creation and annihilation operators. The resulting H RFT is explicitly self dual and provides the generalization of the Pomeron calculus developed in (http://dx.doi.org/10.1016/S0370-2693(00)00571-2; http://dx.doi.org/10.1140/epjc/s2003-01565-9; http://dx.doi.org/10.1016/j.physletb.2005.10.054) by including higher Reggeons in the evolution. It is applicable for description of ‘large’ Pomeron loops, namely Reggeon graphs where all the splittings occur close in rapidity to one dilute object (projectile), while all the merging close to the other one (target). Additionally we derive, in the same regime expressions for single and double inclusive gluon production (where the gluons are not separated by a large rapidity interval) in terms of the Reggeon degrees of freedom
Multiperipheral ring dynamics and a definition of the complete twisted Reggeon loop
International Nuclear Information System (INIS)
Lucht, P.H.
1977-11-01
The t less than 0 multiperipheral formalism of Ciafaloni, DeTar, Misheloff, Mueller, Muzinich and Yesian is reviewed, extended, and applied to the ordered S-matrix whose ring amplitudes comprise the zeroth level of the topological expansion. Toller M-function notation is used throughout. The bootstrap and cylinder problems are formulated in terms of a well defined helicity pole propagator; a definition of the complete twisted Reggeon loop, which appears in the one-twist term of the cylinder, is given as a helicity pole expansion. Some consideration is given to the following subjects: diagonalization, naturality, threshold behavior, Regge cuts, and complex helicity
The n-loop expansion of the Reggeon calculus
International Nuclear Information System (INIS)
Dash, J.W.; Harrington, S.J.
1975-01-01
The technique known in solid state physics as the n-loop expansion is applied to calculate the critical indices of the phi 3 Gribov Reggeon calculus directly in two transverse dimensions. Infrared pathologies of the massless theory require the calculation to be done in the infinite momentum limit of the massive theory. For n = 1 the results are close to those of the epsilon-expansion in O(epsilon). For n = 2 the β function has no zero, analogously to the case in solid state physics. Use of a Pade approximant for β yields sigmasub(tot) approximately (ln s)sup(0.27) at infinity, close to the O(epsilon 2 ) result. (Auth.)
N-loop expansion of the Reggeon calculus
International Nuclear Information System (INIS)
Dash, J.W.; Harrington, S.J.
1975-08-01
The technique known in solid state physics as the n-loop expansion is applied to calculate the critical indices of the phi 3 Gribov Reggeon calculus directly in two transverse dimensions. Infrared pathologies of the massless theory require the calculation to be done in the infinite momentum limit of the massive theory. For n = 1 the results are close to those of the epsilon-expansion in O(epsilon). For n = 2 the β function has no zero, analogously to the case in solid state physics. Use of a Pade approximant for β → sigma/sub tot/ approximately equals(ln s) 0 . 27 at infinity, close to the O(epsilon 2 ) result
QCD Reggeon field theory for every day: Pomeron loops included
International Nuclear Information System (INIS)
Altinoluk, Tolga; Kovner, Alex; Peressutti, Javier; Lublinsky, Michael
2009-01-01
We derive the evolution equation for hadronic scattering amplitude at high energy. Our derivation includes the nonlinear effects of finite partonic density in the hadronic wave function as well as the effect of multiple scatterings for scattering on dense hadronic target. It thus includes Pomeron loops. It is based on the evolution of the hadronic wave function derived in /cite{foam}. The kernel of the evolution equation defines the second quantized Hamiltonian of the QCD Reggeon Field Theory, H RFT beyond the limits considered so far. The two previously known limits of the evolution: dilute target (JIMWLK limit) and dilute projectile (KLWMIJ limit) are recovered directly from our final result. The Hamiltonian H RFT is applicable for the evolution of scattering amplitude for arbitrarily dense hadronic projectiles/targets - from 'dipole-dipole' to 'nucleus-nucleus' scattering processes.
Inclusive gluon production in the QCD Reggeon field theory: Pomeron loops included
International Nuclear Information System (INIS)
Altinoluk, Tolga; Kovner, Alex; Lublinsky, Michael
2009-01-01
We continue the study of hadronic scattering amplitudes at high energy by systematically including nonlinear effects of finite partonic density in hadronic wave function as well as the effects of multiple rescatterings in the scattering process. In this paper we derive expressions for a single inclusive gluon production amplitude and multigluon inclusive production amplitudes when the rapidities of all observed gluons are not very different. We show that at leading order these observables exhibit a semiclassical structure. Beyond the semiclassical result, we find that the gluon emission has some characteristic features different from the JIMWLK and KLWMIJ limits in that the gluons are not emitted independently in rapidity space, but have a correlated component with correlation length (in rapidity space) of order one. We demonstrate the consistency between this feature of the multigluon observables and the Hamiltonian of the QCD Reggeon Field Theory (H RFT ) derived in the companion paper [1]. We also show that the evolution of these observables with total rapidity of the process is generated by H RFT of [1]. We discuss whether this evolution is equivalent to evolution with H JIMWLK as far as this set of observables is concerned.
Reggeon field theory at D = 2 in two-loop approximation
International Nuclear Information System (INIS)
Eremyan, Sh.S.; Nazaryan, A.E.
1982-01-01
A general method of constructing an explicit representation is developed for the pomeron propagator in the presence of additional parameters, such as the pomeron production threshold xi 0 , momentum transfer K vector or the intercept shift delta 0 . The method is shown to be applicable in both one-loop and two-loop approximations. The obtained general formulae allow to consider the pomeron propagator in both asymptotic region and the region of the perturbation theory applicability. Besides, they provide the smooth matching of both these regions. The observed values are calculated, and the results connected with asymptotically high energies are discussed
International Nuclear Information System (INIS)
Yoshida, Toshihiro
1981-01-01
Probabilities of meson production in the sequential decay of Reggeons, which are formed from the projectile and the target in the hadron-hadron to Reggeon-Reggeon processes, are investigated. It is assumed that pair creation of heavy quarks and simultaneous creation of two antiquark-quark pairs are negligible. The leading-order terms with respect to ratio of creation probabilities of anti s s to anti u u (anti d d) are calculated. The production cross sections in the target fragmentation region are given in terms of probabilities in the initial decay of the Reggeons and an effect of manyparticle production. (author)
Brink, L; Scherk, J
1973-01-01
Study of the non-planar orientable single dual loop diagrams in 26 space-time dimensions has revealed an infinite positive-definite spectrum of 'pomeron' intermediate states which couple to reggeons via a bilinear pomeron-reggeon vertex operator. General algebraic techniques are developed to derive the behaviour of this vertex with respect to the Visasoro gauge operators. A reflection and transmission behaviour is found, reminiscent of the behaviour of a wave incident at the interface between two different media (in this case reggeonic and pomeronic). These gauge properties are such as to guarantee the desired 'good properties', namely completeness of the transverse reggeon states when coupled between physical reggeon states on one side, and on the other side, either physical pomeron states or else physical reggeon states created via an intermediate pomeron. This is yet another example of the amazing and gratifying self-consistency of the dual model with respect to duality, transversality and unitarity. (13 r...
Lattice formulations of reggeon interactions
International Nuclear Information System (INIS)
Brower, R.C.; Ellis, J.; Savit, R.; Zinn-Justin, J.
1976-01-01
A class of lattice analogues to reggeon field theory is examined. First the transition from a continuum to a lattice field theory is discussed, emphasizing the necessity of a Wick rotation and the consideration of symmetry properties. Next the theory is transformed to a discrete system with two spins at each lattice site, and the problems of the triple-reggeon interaction and the reggeon energy gap are discussed. It is pointed out that transferring the theory from the continuum to a lattice necesarily introduces new relevant operators not normally present in reggeon field theory. (Auth.)
Studying the perturbative Reggeon
International Nuclear Information System (INIS)
Griffiths, S.; Ross, D.A.
2000-01-01
We consider the flavour non-singlet Reggeon within the context of perturbative QCD. This consists of ladders built out of ''reggeized'' quarks. We propose a method for the numerical solution of the integro-differential equation for the amplitude describing the exchange of such a Reggeon. The solution is known to have a sharp rise at low values of Bjorken-x when applied to non-singlet quantities in deep-inelastic scattering. We show that when the running of the coupling is taken into account this sharp rise is further enhanced, although the Q 2 dependence is suppressed by the introduction of the running coupling. We also investigate the effects of simulating non-perturbative physics by introducing a constituent mass for the soft quarks and an effective mass for the soft gluons exchanged in the t-channel. (orig.)
Transformations to diagonal bases in closed-loop quantum learning control experiments
International Nuclear Information System (INIS)
Cardoza, David; Trallero-Herrero, Carlos; Langhojer, Florian; Rabitz, Herschel; Weinacht, Thomas
2005-01-01
This paper discusses transformations between bases used in closed-loop learning control experiments. The goal is to transform to a basis in which the number of control parameters is minimized and in which the parameters act independently. We demonstrate a simple procedure for testing whether a unitary linear transformation (i.e., a rotation amongst the control variables) is sufficient to reduce the search problem to a set of globally independent variables. This concept is demonstrated with closed-loop molecular fragmentation experiments utilizing shaped, ultrafast laser pulses
Low-energy moments of non-diagonal quark current correlators at four loops
International Nuclear Information System (INIS)
Maier, A.
2015-06-01
We complete the leading four physical terms in the low-energy expansions of heavy-light quark current correlators at four-loop order. As a by-product we reproduce the corresponding top-induced non-singlet correction to the electroweak ρ parameter.
Reggeon calculus at collider energies
International Nuclear Information System (INIS)
Pajares, C.; Varias, A.; Yepes, P.
1983-01-01
The phenomenology of the perturbative reggeon calculus at collider energies is studied. It is found that the graphs which were neglected at ISR energies are still negligeable at √s=540 GeV. The perturbative series for the total cross section still converges reasonably fast. The values of the different parameters which describe rightly the data up to ISR energies give rise to a total cross section of around 60 mb at √s=540 GeV. For these values, the corresponding low mass and high mass eikonal series converges much more slowly. The non perturbative reggeon calculus gives rise to a total cross section less than 60 mb. (orig.)
Instanton contributions in reggeon quantum mechanics
International Nuclear Information System (INIS)
Ciafaloni, M.
1978-01-01
The full semiclassical approximation to reggeon field theory without transverse dimensions is derived. By using Polyakov's method in Lagrangian form and paying due attention to the quantum terms of the potential it is shown that instanton contributions are able to explain the tunnel-like energy gap for α(0)-1>>lambda. (Auth.)
Reggeon field theory and Markov processes
International Nuclear Information System (INIS)
Grassberger, P.; Sundermeyer, K.
1978-01-01
Reggeon field theory with a quartic coupling in addition to the standard cubic one is shown to be mathematically equivalent to a chemical process where a radical can undergo diffusion, absorption, recombination, and autocatalytic production. Physically, these 'radicals' are wee partons. (Auth.)
Czech Academy of Sciences Publication Activity Database
Peregrin, Jaroslav
-, č. 2 (2017), s. 33-43 ISSN 0567-8293 R&D Projects: GA ČR(CZ) GA17-15645S Institutional support: RVO:67985955 Keywords : diagonalization * cardinality * Russell’s paradox * incompleteness of arithmetic Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology
Ambitwistor strings and reggeon amplitudes in N=4 SYM
Directory of Open Access Journals (Sweden)
L.V. Bork
2017-11-01
Full Text Available We consider the description of reggeon amplitudes (Wilson lines form factors in N=4 SYM within the framework of four dimensional ambitwistor string theory. The latter is used to derive scattering equations representation for reggeon amplitudes with multiple reggeized gluons present. It is shown, that corresponding tree-level string correlation function correctly reproduces previously obtained Grassmannian integral representation of reggeon amplitudes in N=4 SYM.
Model for Reggeon-Pomeranchukon cuts
International Nuclear Information System (INIS)
Chia, S.
1977-01-01
A model is presented for calculating Reggeon-Pomeranchukon cuts, making use explicitly of the Mandelstam diagram. External spins are treated in a natural way. Calculation for the general case is outlined and it is shown that in practical application the cut can be calculated in a standard way. Cuts associated with the exchanges of π, rho, B, and A 2 are considered, and characteristics of the RP cuts, as well as the structure functions, are extracted and discussed. It is found that the model differs considerably from the absorption model. Two suppression schemes are operative which control the magnitudes of cut contributions to amplitudes with ''naturality'' opposite to the Reggeon. The πP cut is found to be a unique case because of the smallness of the pion mass. In general, the RP cuts are self-conspiratorial. At very high energies, all cuts, except πP cut, exhibit quasifactorization
Recent progress in reggeon field theory
International Nuclear Information System (INIS)
Sugar, R.L.
1977-01-01
The present status of the pomeron theory in the reggeon field theory is summarized. For α 0 ( 0 -a bare intercept, αsub(oc) - a certain critical value) the theory is in a very good shape. It appears to satisfy both S and t-channel unitarity, and to avoid all of the decreases which plagued the simple pole model of the pomeron. For α 0 >αsub(oc) the situation is less clear
Inclusive central region in perturbative Reggeon calculus
International Nuclear Information System (INIS)
Pajares, C.; Pascual, R.
1976-01-01
The single-particle inclusive cross section and the correlation function are studied in the perturbative approach to Gribov's Reggeon calculus; the leading contributions to both functions are evaluated. The large energy rise of the inclusive cross section appears as a consequence of the Pomerons having an intercept larger than 1. The same set of parameters which describes correctly the cross-section data and the triple-Regge region also describes the inclusive data in the central region
Asymptotic behaviour of a rescattering series for nonlinear reggeons
International Nuclear Information System (INIS)
Akkelin, S.V.; Martynov, E.S.
1990-01-01
A series of elastic re-scattering (both quasi-eikonal and U-matrix ones) for reggeons with nonlinear trajectories are estimated asymptotically. The calculations are performed for models of supercritical and dipole pomerons. A weak dependence of the series of re-scattering on reggeon trajectory nonlinearity is revealed. 13 refs.; 3 figs
QCD unitarity constraints on Reggeon Field Theory
Energy Technology Data Exchange (ETDEWEB)
Kovner, Alex [Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269 (United States); Levin, Eugene [Departemento de Física, Universidad Técnica Federico Santa María,and Centro Científico-Tecnológico de Valparaíso,Avda. Espana 1680, Casilla 110-V, Valparaíso (Chile); Department of Particle Physics, Tel Aviv University,Tel Aviv 69978 (Israel); Lublinsky, Michael [Physics Department, Ben-Gurion University of the Negev,Beer Sheva 84105 (Israel); Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269 (United States)
2016-08-04
We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun’s Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a “black disk limit' as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.
QCD unitarity constraints on Reggeon Field Theory
International Nuclear Information System (INIS)
Kovner, Alex; Levin, Eugene; Lublinsky, Michael
2016-01-01
We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun’s Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a “black disk limit' as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.
The O(epsilon2) scaling law for dsigma/dt in the Reggeon field theory
International Nuclear Information System (INIS)
Dash, J.W.; Grandou, Thierry.
1979-04-01
The two loop contributions were calculated within the epsilon-expansion to the Reggeon Field Theory scaling law for dsigma/dt, derived using the renormalization group and a general renormalization point for the Pomeron propagator. This generalizes the O(epsilon) work of Abarbanel, Bartels, Bronzan, and Sidhu. The invariance of the results under certain coupling constant rescalings is demonstrated. Some qualitative comments were made regarding phenomenological applications. Our amplitude in a certain limit approximates the form of the low energy diffractive amplitude advocated by Kane
Current algebra sum rules for Reggeons
Carlitz, R
1972-01-01
The interplay between the constraints of chiral SU/sub 2/*SU/sub 2/ symmetry and Regge asymptotic behaviour is investigated. The author reviews the derivation of various current algebra sum rules in a study of the reaction pi + alpha to pi + beta . These sum rules imply that all particles may be classified in multiplets of SU/sub 2/*SU/sub 2/ and that each of these multiplets may contain linear combinations of an infinite number of physical states. Extending his study to the reaction pi + alpha to pi + pi + beta , he derives new sum rules involving commutators of the axial charge with the reggeon coupling matrices of the rho and f Regge trajectories. Some applications of these new sum rules are noted, and the general utility of these and related sum rules is discussed. (17 refs).
Hadronic total cross-sections: separation of pomeron and proper reggeon components
International Nuclear Information System (INIS)
Kobylinskij, N.A.; Kosenko, A.I.; Martynov, E.S.; Timokhin, V.V.
1985-01-01
All the data on nucleon-nucleon and meson-nucleon total cross sections are analyzed to distinguish the contributions of rho, A 2 and ω reggeons and to separate the two vacuum components - the pomeron and the f-reggeon ones. The ranges of the f-reggeon parameters when the pomeron shape varies over a wide region are determined. It is established that the f-reggeon intercept is much higher than was previously thought
Reggeon quantum mechanics: a critical discussion
International Nuclear Information System (INIS)
Ciafaloni, M.; Le Bellac, M.; Rossi, G.C.
1977-01-01
The quantum-mechanical problem of reggeon field theory in zero transverse dimensions is re-examined in order to set up a precise mathematical framework for the case μ=α(0)-1>0. The authors establish a Hamiltonian formulation in a Hilbert space for μ 2 (0, infinity) space. It is proved that the S-matrix and the pomeron Green functions, at fixed rapidity Y and triple-pomeron coupling lambda not equal to 0, have a spectral decomposition and are analytic in μ for -infinity 0, most of the qualitative results found by previous authors are confirmed and in particular the tunnelling shift [approximately exp(-μ 2 /2lambda 2 )] setting the scale for the asymptotic behaviour in Y. In the classical limit of lambda/μ small it is found that the action, for μ>0, develops a singularity in Y at some value Ysub(c). Arguements are given to show that for Y approximately Ysub(c) perturbation theory breaks shown. Most of these results are shown to be stable against the addition of a small quartic coupling of the simplest type [lambda'(anti psipsi) 2 ] up to the 'magic' value lambda'=lambda 2 /μ. The existence of a level crossing at this value is confirmed by an analytic continuation in lambda'. (Auth.)
Reggeon and pion contributions in exclusive diffractive processes at HERA
International Nuclear Information System (INIS)
Golec-Biernat, K.; Kwiecinski, J.; Szczurek, A.
1997-01-01
The contribution of subleading f 2 , ω, a 2 and ρ reggeons to the diffractive structure function F 2 D(3) (x P , β, Q 2 )are estimated. In addition we include the pion exchange which was recently found to be responsible for the violation of the Gottfried Sum Rule. The reggeon and pion contribution lead to a violation of the factorization of the diffractive structure function. The diffractive structure function is separated into the contributions with leading proton Δ (n) F 2 D /Δ (p) F 2 D as a function ox x P in the interval 10 -2 P -1 . The effect is due to the exchange of the isovector a 2 and ρ reggeons at smaller x P and the pion exchange at x P > 10 -2 . (author). 27 refs, 4 figs
Covariant loop-calculus for the closed bosonic string
International Nuclear Information System (INIS)
Petersen, J.L.; Sidenius, J.R.
1987-06-01
A previously suggested N-reggeon (N-string) amplitude based on the BRST-formulation is extended by obtaining integrations over Koba-Nielsen-like variables in terms of integrations over quasiconformal ghost fields. Simple sewing rules for reggeons are set up and the N-reggeon amplitude is shown to factorize correctly and to have satisfactory BRST-cohomology properties. Multi-loop amplitudes for arbitrary external states are constructed in the Schottky parametrization. The sewing prescription for antighost zero-modes produces a measure on Schottky space with the characteristic BRST properties. The treatment is inherently local on moduli space, however. (orig./HSI)
Topological cross section in the perturbative Reggeon calculus
International Nuclear Information System (INIS)
Pajares, C.; Pascual, R.
1977-01-01
The topological cross section sigma/sub n/ and the multiplicities are computed in perturbative Reggeon calculus with a pomeron with α (0) > 1. It is found that the data from p-p scattering can be explain with the same set of parameters obtained from fits to other exclusive and inclusive data
Four-pomeron couplings in cut reggeon field theory
International Nuclear Information System (INIS)
Grassberger, P.
1980-01-01
Four-pomeron cutting rules are studied in cut reggeon field theory (CRFT). Without any microscopic model, CRFT allows for three different 4-pomeron couplings. Demanding that CRFT is interpretable as a Markov process, only one of these couplings remains. The cutting rules for the 4-pomeron vertex thus become unique, disagreeing with those found in weak coupling diameter 3 theory. (orig.)
Cut cancellation in the planar integral equation for the Reggeon
International Nuclear Information System (INIS)
Bishari, M.; Veneziano, G.
1975-01-01
Planar unitarity for the Reggeon, analyticity and the multi-Regge assumption with cluster production lead to integral equations of the Chew-Goldberger-Low type with separable self-consistent kernel. Contrary to common prejudice, the authors show the existence of solutions exhibiting moving poles and exact, non-perturbative cancellation of the cut. Previously studied consistency conditions are rederived. (Auth.)
On Reggeon field theories and nonzero vacuum expectation values
International Nuclear Information System (INIS)
Venturi, G.
1976-01-01
In this note it is obtained a satisfactory ''nonrelativistic'' reggeon theory by starting from a ''relativistic'' one, examining its ''nonrelativistic'' limit and allowing a nonzero vacuum expectation value for the pomeron field. In such a context the introduction of secondary trajectories is also studied
Diagonalization of Hamiltonian; Diagonalization of Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Garrido, L M; Pascual, P
1960-07-01
We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.
Could reggeon field theory be an effective theory for QCD in the Regge limit?
Energy Technology Data Exchange (ETDEWEB)
Bartels, Jochen [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Contreras, Carlos [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Avda. España 1680, Casilla 110-V, Valparaiso (Chile); Vacca, G.P. [INFN Sezione di Bologna, DIFA, Via Irnerio 46, I-40126 Bologna (Italy)
2016-03-30
In this paper we investigate the possibility whether, in the extreme limit of high energies and large transverse distances, reggeon field theory might serve as an effective theory of high energy scattering for strong interactions. We analyse the functional renormalization group equations (flow equations) of reggeon field theory and search for fixed points in the space of (local) reggeon field theories. We study in complementary ways the candidate for the scaling solution, investigate its main properties and briefly discuss possible physical interpretations.
Critical exponents for the Reggeon quantum spin model
International Nuclear Information System (INIS)
Brower, R.C.; Furman, M.A.
1978-01-01
The Reggeon quantum spin (RQS) model on the transverse lattice in D dimensional impact parameter space has been conjectured to have the same critical behaviour as the Reggeon field theory (RFT). Thus from a high 'temperature' series of ten (D=2) and twenty (D=1) terms for the RQS model the authors extrapolate to the critical temperature T=Tsub(c) by Pade approximants to obtain the exponents eta=0.238 +- 0.008, z=1.16 +- 0.01, γ=1.271 +- 0.007 for D=2 and eta=0.317 +- 0.002, z=1.272 +- 0.007, γ=1.736 +- 0.001, lambda=0.57 +- 0.03 for D=1. These exponents naturally interpolate between the D=0 and D=4-epsilon results for RFT as expected on the basis of the universality conjecture. (Auth.)
Reggeon, Pomeron and annihilation processes in the dual unitarization scheme
International Nuclear Information System (INIS)
Dias de Deus, J.
1976-07-01
In the framework of the dual unitarization scheme the connection between particle production in processes dominated by Reggeon, Pomeron and Annihilation diagrams is discussed and critical tests of the scheme are suggested. The simple relation for average multiplicities anti nsup(R) = 1/2 anti nsup(P) = 1/3 anti nsup(A) and other relations for inclusive cross-sections and higher moments of the particle distribution are shown to be in reasonable agreement with data. (author)
Building up reggeons and the pomeron from duality and unitarity
International Nuclear Information System (INIS)
Sakai, N.
1975-07-01
The subject is treated under the following headings: duality; unitarity; duality and unitarity; 1/N expansion; Reggeon bootstrap; Pomeron equation; triple Pomeron. The results are summarized: (1) combining duality with unitarity, powerful constraints are obtained; (2) many phenomenological successes have been obtained since some practical methods of calculation were devised; and (3) even the complete unitarization is hopeful; 1/N expansion may be useful for this purpose. (author)
Gribov's reggeon calculus: its physical basis and implications
International Nuclear Information System (INIS)
Baker, M.; Ter-Martirosyan, K.A.
1976-01-01
The equations of Gribov's Reggeon calculus and the cutting rules of Abramovskii, Gribov and Kancheli are derived from the assumption that processes involving large virtual masses are damped. The discussion is carried out entirely in the s channel and no use is made of the details of any particular field theory. Both the mathematical development and the physical picture which evolves rest on the assumed multiperipheral origin of Regge behavior. (Auth.)
Chiral symmetry breaking in gauge theories from Reggeon diagram analysis
International Nuclear Information System (INIS)
White, A.R.
1991-01-01
It is argued that reggeon diagrams can be used to study dynamical properties of gauge theories containing a large number of massless fermions. SU(2) gauge theory is studied in detail and it is argued that there is a high energy solution which is analogous to the solution of the massless Schwinger model. A generalized winding-number condensate produces the massless pseudoscalar spectrum associated with chiral symmetry breaking and a ''trivial'' S-Matrix
Infrared behavior of the Reggeon field theory for the pomeron
International Nuclear Information System (INIS)
Bardeen, W.A.; Dash, J.W.; Pinsky, S.S.; Rabl, V.
1975-01-01
The infrared structure of Reggeon field theory is investigated using renormalization group methods. The infrared fixed point where only the phi 3 interaction is nontrivial is shown to be stable with respect to all higher order interactions within the context of perturbation theory both at D = 2 and in the epsilon-expansion. This may imply that the asymptotic behavior of the total cross section is model independent
International Nuclear Information System (INIS)
Kolevatov, R. S.; Boreskov, K. G.
2013-01-01
We apply the stochastic approach to the calculation of the Reggeon Field Theory (RFT) elastic amplitude and its single diffractive cut. The results for the total, elastic and single difractive cross sections with account of all Pomeron loops are obtained.
Energy Technology Data Exchange (ETDEWEB)
Kolevatov, R. S. [SUBATECH, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes Cedex 3 (France); Boreskov, K. G. [Institute of Theoretical and Experimental Physics, 117259, Moscow (Russian Federation)
2013-04-15
We apply the stochastic approach to the calculation of the Reggeon Field Theory (RFT) elastic amplitude and its single diffractive cut. The results for the total, elastic and single difractive cross sections with account of all Pomeron loops are obtained.
Non-planar corrections to the Pomeron and reggeons in the dual unitarity scheme
International Nuclear Information System (INIS)
Uschersohn, J.
1976-03-01
A special class of non-planar diagrams is studied, those in which the produced clusters are crossed. Insertion of these diagrams in the reggeon propagators accounts for exchange degeneracy breaking. The even signature reggeons get their intercept promoted to a larger value, while the odd signature ones are left unchanged. (author)
Covariant super reggeon calculus for superstrings
International Nuclear Information System (INIS)
Petersen, J.L.; Sidenius, J.R.; Tollsten, A.K.
1988-07-01
A previously developed formalism for the bosonic string is extended to the Neveu-Schwarz-Ramond string using 2-d superspace techniques throughout. 3-string vertices for NS- and R-strings are constructed, sewing rules developed, and the technique of quasi-superconformal modes is set up for constructing the measure on super moduli space. Symmetries, such as superconformal invariance and BRST-invariance, are guaranteed ab initio. Picture changing and bosonization are avoided. Examples are given. The formalism should allow a superstring loop calculus based on supermoduli. Results concerning the ensuing super-Schottky description are given. (orig.)
Traveling wave solution of the Reggeon field theory
International Nuclear Information System (INIS)
Peschanski, Robi
2009-01-01
We identify the nonlinear evolution equation in impact-parameter space for the 'Supercritical Pomeron' in Reggeon field theory as a two-dimensional stochastic Fisher-Kolmogorov-Petrovski-Piscounov equation. It exactly preserves unitarity and leads in its radial form to a high-energy traveling wave solution corresponding to a 'universal' behavior of the impact-parameter front profile of the elastic amplitude; its rapidity dependence and form depend only on one parameter, the noise strength, independently of the initial conditions and of the nonlinear terms restoring unitarity. Theoretical predictions are presented for the three typical distinct regimes corresponding to zero, weak, and strong noise.
Chaotic diagonal recurrent neural network
International Nuclear Information System (INIS)
Wang Xing-Yuan; Zhang Yi
2012-01-01
We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)
Two- and three-loop amplitudes in covariant loop calculus
International Nuclear Information System (INIS)
Roland, K.
1988-04-01
We study 2- and 3-loop vacuum-amplitudes for the closed bosonic string. We compare two sets of expressions for the corresponding density on moduli space: One, based on the covariant Reggeon loop calculus (where modular invariance is not manifest). The other, based on analytic geometry. We want to prove identity between the two sets of expressions. Quite apart from demonstrating modular invariance of the Reggeon results, this would in itself be a remarkable mathematical feature. Identity is established to 'high' order in some moduli and exactly in others. The expansions reveal an essentially number-theoretical structure. Agreement is found only by exploiting the connection between the 4 Jacobi θ-functions and number theory. (orig.)
Two- and three-loop amplitudes in covariant loop calculus
International Nuclear Information System (INIS)
Roland, K.
1989-01-01
We study two- and three-loop vacuum amplitudes for the closed bosonic string. We compare two sets of expressions for the corresponding density on moduli space. One is based on the covariant reggeon loop calculus (where modular invariance is not manifest). The other is based on analytic geometry. We want to prove identity between the two sets of expressions. Quite apart from demonstrating modular invariance of the reggeon results, this would in itself be a remarkable mathematical feature. Identity is established to ''high'' order in some moduli and exactly in others. The expansions reveal an essentially number-theoretic structure. Agreement is found only by exploiting the connection between the four Jacobi θ-functions and number theory. (orig.)
Pion-nucleon charge-exchange polarization by Gribov Reggeon calculus and the derivative rule
International Nuclear Information System (INIS)
Ardill, R.W.B.; Koehler, P.; Moriarty, K.J.M.
1977-01-01
The phenomenological consequences of the Gribov Reggeon calculus for the reaction πsup(-)+p→πdeg+n at 6 GeV/c are investigated and the polarization is obtained. The derivative rules is used to calculate the helicity flip amplitude. The results are very encouraging and would seem to indicate that the Gribov Reggeon calculus can be considered a more satisfactory approach to two-body phenomenology than the absorption model
Reggeon field theory for alpha (0)>1
Amati, Daniele; Le Bellac, M; Marchesini, G
1976-01-01
The asymptotic behaviour of the scattering amplitude is obtained when the pomeron has intercept alpha (0) larger than one. The reggeon field theory is studied by introducing a lattice in impact parameter space. Use is made of a previous result showing that asymptotically the dynamics is controlled at each lattice site ( alpha '=0 case) by a two-level structure. This leads to a non-Hermitean Hamiltonian expressed in terms of spin operators in which the intersite interaction term is proportional to the pomeron slope alpha '. The spectrum of such a system shows a degenerate ground state for alpha (0)> alpha /sub c/>or approximately=1 and a continuum with vanishing excitation gap at alpha (0)= alpha /sub c/. The vacuum does not change structure at the critical value. The criticality is shown by an order parameter which is given by the matrix element of a field operator between the vacuum and its degenerate companion. The nature of this critical phenomenon is better understood by continuously transforming the Hami...
General solution of superconvergent sum rules for scattering of I=1 reggeons on baryons
International Nuclear Information System (INIS)
Grigoryan, A.A.; Khachatryan, G.N.
1986-01-01
Superconvergent sum rules for reggeon-particle scattering are applied to scattering of reggeons α i (i=π, ρ, A 2 ) with isospin I=1 on baryons with strangeness S=-1. The saturation scheme of these sum rules is determined on the basis of experimental data. Two series of baryon resonances with arbitrary isospins I and spins J=I+1/2 and J=I-1/2 are predicted. A general solution for vertices of interaction of these resonances with α i is found. Predictions for coupling vertices B α i B'(B, B'=Λ, Σ, Σ * ) agree well with the experiment. It is shown that the condition of sum rules saturation by minimal number of resonances brings to saturation schemes resulting from experimental data. A general solution of sum rules for scattering of α i reggeons on Ξ and Ω hyperons is analyzed
Computational Lower Bounds Using Diagonalization
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 7. Computational Lower Bounds Using Diagonalization - Languages, Turing Machines and Complexity Classes. M V Panduranga Rao. General Article Volume 14 Issue 7 July 2009 pp 682-690 ...
Reggeon calculus as a low-order perturbation theory for the Pomeron
International Nuclear Information System (INIS)
DeTar, C.
1975-01-01
We review the foundations of the Gribov Reggeon calculus with an emphasis on the relationship between the energy-plane and J-plane descriptions of the diagrams of the calculus. The question of the ''large-rapidity-gap cutoff'' for the Pomeron and the problem of signature are treated in more detail than in the traditional approach to the calculus. Except for some slight differences, the main results agree with Gribov's original formulation. We advocate the use of the Reggeon calculus as a refinement on the contemporary ''two-component'' model for the Pomeron and collect some formulas useful for phenomenological applications
Renormalizability of Reggeon field theory taking into account thresholds and ''mass'' terms at D = 2
International Nuclear Information System (INIS)
Eremyan, S.S.; Nazaryan, A.E.
1982-01-01
It is shown that the inclusion of the Reggeon production thresholds xi 0 = 1n(M 2 /s 0 )roughly-equal2 in Reggeon field theory causes the epsilon-c expansion to become analytic at epsilon-c = 2 and it becomes possible to simultaneously take epsilon-c → 2 and E → 0, which corresponds to the physical dimensionality of space in the limit of asymptotic energies. The introduction of thresholds makes it easier to carry out perturbative calculations at D = 2 by removing the ultraviolet divergences of the theory and is useful for a smooth joining of the perturbative and asymptotic solutions
Diagonalization of the mass matrices
International Nuclear Information System (INIS)
Rhee, S.S.
1984-01-01
It is possible to make 20 types of 3x3 mass matrices which are hermitian. We have obtained unitary matrices which could diagonalize each mass matrix. Since the three elements of mass matrix can be expressed in terms of the three eigenvalues, msub(i), we can also express the unitary matrix in terms of msub(i). (Author)
The modified Gauss diagonalization of polynomial matrices
International Nuclear Information System (INIS)
Saeed, K.
1982-10-01
The Gauss algorithm for diagonalization of constant matrices is modified for application to polynomial matrices. Due to this modification the diagonal elements become pure polynomials rather than rational functions. (author)
Loop Transfer Matrix and Loop Quantum Mechanics
International Nuclear Information System (INIS)
Savvidy, George K.
2000-01-01
The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)
Nondestructive identification of the Bell diagonal state
International Nuclear Information System (INIS)
Jin Jiasen; Yu Changshui; Song Heshan
2011-01-01
We propose a scheme for identifying an unknown Bell diagonal state. In our scheme the measurements are performed on the probe qubits instead of the Bell diagonal state. The distinct advantage is that the quantum state of the evolved Bell diagonal state ensemble plus probe states will still collapse on the original Bell diagonal state ensemble after the measurement on probe states; i.e., our identification is quantum state nondestructive. How to realize our scheme in the framework of cavity electrodynamics is also shown.
Impact factors for Reggeon-gluon transition in N=4 SYM with large number of colours
Energy Technology Data Exchange (ETDEWEB)
Fadin, V.S., E-mail: fadin@inp.nsk.su [Budker Institute of Nuclear Physics of SD RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Fiore, R., E-mail: roberto.fiore@cs.infn.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, Arcavacata di Rende, I-87036 Cosenza (Italy)
2014-06-27
We calculate impact factors for Reggeon-gluon transition in supersymmetric Yang–Mills theory with four supercharges at large number of colours N{sub c}. In the next-to-leading order impact factors are not uniquely defined and must accord with BFKL kernels and energy scales. We obtain the impact factor corresponding to the kernel and the energy evolution parameter, which is invariant under Möbius transformation in momentum space, and show that it is also Möbius invariant up to terms taken into account in the BDS ansatz.
Single-meson inclusive cross sections and sequential decay of Reggeons, 2
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Toshihiro
1984-09-01
The single-particle inclusive cross sections of pions and kaons produced from the incident particles in pp and anti pp scattering is investigated under the assumption of the sequential decay mechanism of Reggeons. The many-particle production effect and the initial-decay effect are estimated from experimental data on pion production cross section with small momentum transfer at 100 and 175 GeV/c. Their Feynman-x dependence is in good agreement with the power-law behaviours C(1-X sub(F))/sup 5/ and C(1-X sub(F))/sup 3/. Predictions are given on kaon production cross section.
Virial expansion for almost diagonal random matrices
Yevtushenko, Oleg; Kravtsov, Vladimir E.
2003-08-01
Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\
Strictly diagonal holomorphic functions on Banach spaces
Directory of Open Access Journals (Sweden)
O. I. Fedak
2016-01-01
Full Text Available In this paper we investigate the boundedness of holomorphic functionals on a Banach space with a normalized basis $\\{e_n\\}$ which have a very special form $f(x=f(0+\\sum_{n=1}^\\infty c_nx_n^n$ and which we call strictly diagonal. We consider under which conditions strictly diagonal functions are entire and uniformly continuous on every ball of a fixed radius.
Diffractive baryon production and the relation between reggeon and photon couplings
International Nuclear Information System (INIS)
Collins, P.D.B.; Gault, F.D.
1976-01-01
The authors illustrate how one can employ the γ-analogy hypothesis, introduced in a previous paper, which relates the couplings of the leading natural-parity reggeon exchanges, P, f and ω, to those of the isoscalar part of the photon. It enables the prediction of the differential cross sections for the diffractive processes pp→pN*(5/2 + ,1688), N*(3/2 - ,1520), and N*(7/2 - ,2190) starting from Regge fits to pp elastic scattering, with just a single free parameter in each case. This success stems from an intimate relation between electromagnetic and hadronic couplings demanded by duality, scaling and vector dominance. Dips due to pole-cut interference in the N* production differential cross sections are not expected because of their more complicated helicity structure. (Auth.)
Off-Diagonal Geometric Phase in a Neutron Interferometer Experiment
International Nuclear Information System (INIS)
Hasegawa, Y.; Loidl, R.; Baron, M.; Badurek, G.; Rauch, H.
2001-01-01
Off-diagonal geometric phases acquired by an evolution of a 1/2 -spin system have been observed by means of a polarized neutron interferometer. We have successfully measured the off-diagonal phase for noncyclic evolutions even when the diagonal geometric phase is undefined. Our data confirm theoretical predictions and the results illustrate the significance of the off-diagonal phase
Diagonal chromatography to study plant protein modifications.
Walton, Alan; Tsiatsiani, Liana; Jacques, Silke; Stes, Elisabeth; Messens, Joris; Van Breusegem, Frank; Goormachtig, Sofie; Gevaert, Kris
2016-08-01
An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and thereby allows for the enrichment of specific, though different types of peptides. Here, we focus on the application of diagonal chromatography for the study of modifications of plant proteins. In particular, we show how diagonal chromatography allows for studying proteins processed by proteases, protein ubiquitination, and the oxidation of protein-bound methionines. We discuss the actual sorting steps needed for each of these applications and the obtained results. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.
Enumeration of diagonally colored Young diagrams
Gyenge, Ádám
2015-01-01
In this note we give a new proof of a closed formula for the multivariable generating series of diagonally colored Young diagrams. This series also describes the Euler characteristics of certain Nakajima quiver varieties. Our proof is a direct combinatorial argument, based on Andrews' work on generalized Frobenius partitions. We also obtain representations of these series in some particular cases as infinite products.
Diagonal Pade approximations for initial value problems
International Nuclear Information System (INIS)
Reusch, M.F.; Ratzan, L.; Pomphrey, N.; Park, W.
1987-06-01
Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab
Vaidya spacetime in the diagonal coordinates
Energy Technology Data Exchange (ETDEWEB)
Berezin, V. A., E-mail: berezin@inr.ac.ru; Dokuchaev, V. I., E-mail: dokuchaev@inr.ac.ru; Eroshenko, Yu. N., E-mail: eroshenko@inr.ac.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)
2017-03-15
We have analyzed the transformation from initial coordinates (v, r) of the Vaidya metric with light coordinate v to the most physical diagonal coordinates (t, r). An exact solution has been obtained for the corresponding metric tensor in the case of a linear dependence of the mass function of the Vaidya metric on light coordinate v. In the diagonal coordinates, a narrow region (with a width proportional to the mass growth rate of a black hole) has been detected near the visibility horizon of the Vaidya accreting black hole, in which the metric differs qualitatively from the Schwarzschild metric and cannot be represented as a small perturbation. It has been shown that, in this case, a single set of diagonal coordinates (t, r) is insufficient to cover the entire range of initial coordinates (v, r) outside the visibility horizon; at least three sets of diagonal coordinates are required, the domains of which are separated by singular surfaces on which the metric components have singularities (either g{sub 00} = 0 or g{sub 00} = ∞). The energy–momentum tensor diverges on these surfaces; however, the tidal forces turn out to be finite, which follows from an analysis of the deviation equations for geodesics. Therefore, these singular surfaces are exclusively coordinate singularities that can be referred to as false fire-walls because there are no physical singularities on them. We have also considered the transformation from the initial coordinates to other diagonal coordinates (η, y), in which the solution is obtained in explicit form, and there is no energy–momentum tensor divergence.
Elastic scattering of virtual photons via a quark loop in the double-logarithmic approximation
Ermolaev, B. I.; Ivanov, D. Yu.; Troyan, S. I.
2018-04-01
We calculate the amplitude of elastic photon-photon scattering via a single quark loop in the double-logarithmic approximation, presuming all external photons to be off-shell and unpolarized. At the same time we account for the running coupling effects. We consider this process in the forward kinematics at arbitrary relations between t and the external photon virtualities. We obtain explicit expressions for the photon-photon scattering amplitudes in all double-logarithmic kinematic regions. Then we calculate the small-x asymptotics of the obtained amplitudes and compare them with the parent amplitudes, thereby fixing the applicability regions of the asymptotics, i.e., fixing the applicability region for the nonvacuum Reggeons. We find that these Reggeons should be used at x <10-8 only.
Institute of Scientific and Technical Information of China (English)
XIONG Wen-Yuan; HU Zhao-Hui; WANG Xin-Wen; ZHOU Li-Juan; XIA Li-Xin; MA Wei-Xing
2008-01-01
Based on analysis of scattering matrix S, and its properties such as analyticity, unitarity, Lorentz invariance, and crossing symmetry relation, the Regge theory was proposed to describe hadron-hadron scattering at high energies before the advent of QCD, and correspondingly a Reggeon concept was born as a mediator of strongly interaction. This theory serves as a successful approach and has explained a great number of experimental data successfully, which proves that the Regge theory can be regarded as a basic theory of hadron interaction at high energies and its validity in many applications. However, as new experimental data come out, we have some difficulties in explaining the data. The new experimental total cross section violates the predictions of Regge theory, which shows that Regge formalism is limited in its applications to high energy data. To understand new experimental measurements, a new exchange theory was consequently born and its mediator is called Pomeron, which has vacuum quantum numbers. The new theory named as Pomeron exchange theory which reproduces the new experimental data of diffractive processes successfully. There are two exchange mediators: Reggeon and Pomeron. Reggeon exchange theory can only produce data at the relatively lower energy region, while Pomeron exchange theory fits the data only at higher-energy region, separately. In order to explain the data in the whole energy region, we propose a Reggeon-Pomeron model to describe high-energy hadron-hadron scattering and other diffractive processes. Although the Reggeon-Pomeron model is successful in describing high-energy hadron-hadron interaction in the whole energy region, it is a phenomenological model After the advent of QCD, people try to reveal the mystery of the phenomenological theory from QCD since hadron-hadron processes is a strong interaction, which is believed to be described by QCD. According to this point of view, we study the QCD nature of Reggeon and Pomeron. We claim
Fast Approximate Joint Diagonalization Incorporating Weight Matrices
Czech Academy of Sciences Publication Activity Database
Tichavský, Petr; Yeredor, A.
2009-01-01
Roč. 57, č. 3 (2009), s. 878-891 ISSN 1053-587X R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : autoregressive processes * blind source separation * nonstationary random processes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.212, year: 2009 http://library.utia.cas.cz/separaty/2009/SI/tichavsky-fast approximate joint diagonalization incorporating weight matrices.pdf
Exact diagonalization library for quantum electron models
Iskakov, Sergei; Danilov, Michael
2018-04-01
We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.
Diagonalizing sensing matrix of broadband RSE
International Nuclear Information System (INIS)
Sato, Shuichi; Kokeyama, Keiko; Kawazoe, Fumiko; Somiya, Kentaro; Kawamura, Seiji
2006-01-01
For a broadband-operated RSE interferometer, a simple and smart length sensing and control scheme was newly proposed. The sensing matrix could be diagonal, owing to a simple allocation of two RF modulations and to a macroscopic displacement of cavity mirrors, which cause a detuning of the RF modulation sidebands. In this article, the idea of the sensing scheme and an optimization of the relevant parameters will be described
On diagonalization in map(M,G)
International Nuclear Information System (INIS)
Blau, M.; Thompson, G.
1995-01-01
Motivated by some questions in the path integral approach to (topological) gauge theories, we are led to address the following question: given a smooth map from a manifold M to a compact group G, is it possible to smoothly ''diagonalize'' it, i.e. conjugate it into a map to a maximal torus T of G? We analyze the local and global obstructions and give a complete solution to the problem for regular maps. We establish that these can always be smoothly diagonalized locally and that the obstructions to doing this globally are non-trivial Weyl group and torus bundles on M. We explain the relation of the obstructions to winding numbers of maps into G/T and restrictions of the structure group of a principal G bundle to T and examine the behaviour of gauge fields under this diagonalization. We also discuss the complications that arise in the presence of non-trivial G-bundles and for non-regular maps. We use these results to justify a Weyl integral formula for functional integrals which, as a novel feature not seen in the finite-dimensional case, contains a summation over all those topological T-sectors which arise as restrictions of a trivial principal G bundle and which was used previously to solve completely Yang-Mills theory and the G/ G model in two dimensions. (orig.)
International Nuclear Information System (INIS)
Kaidalov, A.B.; Volkovitsky, P.E.
1981-01-01
In the framework of the quark-gluon picture for strong interactions based on the topological expansion and the string model, the relations between t differences of hadronic cross- section are obtained. The system of equations for the contribution of secondary reggeons (rho, ω, f, A 2 and phi and f' poles) to the elastic scattering amplitudes for arbitrary hadrons is derived. It is shown that this system has a factorized solution and the secondary reggeon residues for all hadrons are expressed in terms of the universal function g(t). The model predictions are in a good agreement with experimental data [ru
Simultaneous diagonal and off-diagonal order in the Bose-Hubbard Hamiltonian
International Nuclear Information System (INIS)
Scalettar, R.T.; Batrouni, G.G.; Kampf, A.P.; Zimanyi, G.T.
1995-01-01
The Bose-Hubbard model exhibits a rich phase diagram consisting both of insulating regimes where diagonal long-range (solid) order dominates as well as conducting regimes where off-diagonal long-range order (superfluidity) is present. In this paper we describe the results of quantum Monte Carlo calculations of the phase diagram, both for the hard- and soft-core cases, with a particular focus on the possibility of simultaneous superfluid and solid order. We also discuss the appearance of phase separation in the model. The simulations are compared with analytic calculations of the phase diagram and spin-wave dispersion
Three loop HTL perturbation theory at finite temperature and chemical potential
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael [Department of Physics, Kent State University, Kent, OH 44242 (United States); Andersen, Jens O. [Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Bandyopadhyay, Aritra; Haque, Najmul; Mustafa, Munshi G. [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Su, Nan [Faculty of Physics, University of Bielefeld, D-33615 Bielefeld (Germany)
2014-11-15
In this proceedings contribution we present a recent three-loop hard-thermal-loop perturbation theory (HTLpt) calculation of the thermodynamic potential for a finite temperature and chemical potential system of quarks and gluons. We compare the resulting pressure, trace anomaly, and diagonal/off-diagonal quark susceptibilities with lattice data. We show that there is good agreement between the three-loop HTLpt analytic result and available lattice data.
Self-consistent cluster theories for alloys with diagonal and off-diagonal disorder
International Nuclear Information System (INIS)
Gonis, A.; Garland, J.W.
1978-01-01
The molecular coherent-potential approximation (MCPA) and other, simpler cluster approximations for disordered alloys are studied both analytically and numerically for alloys with diagonal and off-diagonal disorder (ODD). First, the MCPA for alloys with only diagonal disorder is rederived within the interactor formalism of Blackman, Esterling, and Berk. This formalism, which simplifies the numerical implementation of the MCPA, is then used to generalize the MCPA so as to take account of ODD. It is shown that the analytic properties of the MCPA are preserved under this generalization. Also, two computationally simple cluster approximations, the self-consistent central-site approximation (SCCSA) and the self-consistent boundary-site approximation (SCBSA), are generalized to include the effects of ODD. It is shown that for one-dimensional systems with only nearest-neighbor hopping the SCBSA yields Green's functions which are identical to those given by the MCPA and thus are analytic, even in the presence of ODD. Finally, the results of numerical calculations are reported for one-dimensional systems with only nearest-neighbor hopping but with both diagonal and off-diagonal disorder. These calculations were performed using the single-site approximation of Blackman, Esterling, and Berk and three different cluster approximations: the multishell method previously proposed by the authors, the SCCSA, and the SCBSA. The results of these calculations are compared with exact results and with previous results obtained using the truncated t-matix approximation and the recent method of Kaplan and Gray. These comparisons suggest that the multishell method and the generalization of the SCBSA given in this paper are more efficient and accurate for the calculation of densities of states for systems with ODD. On the other hand, as expected, the SCCSA was found to yield severely nonanalytic results for the values of band parameters used
ACORNS, Covariance and Correlation Matrix Diagonalization
International Nuclear Information System (INIS)
Szondi, E.J.
1990-01-01
1 - Description of program or function: The program allows the user to verify the different types of covariance/correlation matrices used in the activation neutron spectrometry. 2 - Method of solution: The program performs the diagonalization of the input covariance/relative covariance/correlation matrices. The Eigen values are then analyzed to determine the rank of the matrices. If the Eigen vectors of the pertinent correlation matrix have also been calculated, the program can perform a complete factor analysis (generation of the factor matrix and its rotation in Kaiser's 'varimax' sense to select the origin of the correlations). 3 - Restrictions on the complexity of the problem: Matrix size is limited to 60 on PDP and to 100 on IBM PC/AT
Breaking Megrelishvili protocol using matrix diagonalization
Arzaki, Muhammad; Triantoro Murdiansyah, Danang; Adi Prabowo, Satrio
2018-03-01
In this article we conduct a theoretical security analysis of Megrelishvili protocol—a linear algebra-based key agreement between two participants. We study the computational complexity of Megrelishvili vector-matrix problem (MVMP) as a mathematical problem that strongly relates to the security of Megrelishvili protocol. In particular, we investigate the asymptotic upper bounds for the running time and memory requirement of the MVMP that involves diagonalizable public matrix. Specifically, we devise a diagonalization method for solving the MVMP that is asymptotically faster than all of the previously existing algorithms. We also found an important counterintuitive result: the utilization of primitive matrix in Megrelishvili protocol makes the protocol more vulnerable to attacks.
International Nuclear Information System (INIS)
Migdal, A.A.
1982-01-01
Basic operators acting in the loop space are introduced. The topology of this space and properties of the Stokes type loop functionals are discussed. The parametrically invariant loop calculus developed here is used in the loop dynamics
Finite-Time Attractivity for Diagonally Dominant Systems with Off-Diagonal Delays
Directory of Open Access Journals (Sweden)
T. S. Doan
2012-01-01
Full Text Available We introduce a notion of attractivity for delay equations which are defined on bounded time intervals. Our main result shows that linear delay equations are finite-time attractive, provided that the delay is only in the coupling terms between different components, and the system is diagonally dominant. We apply this result to a nonlinear Lotka-Volterra system and show that the delay is harmless and does not destroy finite-time attractivity.
Quantum Monte Carlo diagonalization method as a variational calculation
International Nuclear Information System (INIS)
Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio.
1997-01-01
A stochastic method for performing large-scale shell model calculations is presented, which utilizes the auxiliary field Monte Carlo technique and diagonalization method. This method overcomes the limitation of the conventional shell model diagonalization and can extremely widen the feasibility of shell model calculations with realistic interactions for spectroscopic study of nuclear structure. (author)
Virial expansion for almost diagonal random matrices
International Nuclear Information System (INIS)
Yevtushenko, Oleg; Kravtsov, Vladimir E
2003-01-01
Energy level statistics of Hermitian random matrices H-circumflex with Gaussian independent random entries H i≥j is studied for a generic ensemble of almost diagonal random matrices with (vertical bar H ii vertical bar 2 ) ∼ 1 and (vertical bar H i≠j vertical bar 2 ) bF(vertical bar i - j vertical bar) parallel 1. We perform a regular expansion of the spectral form-factor K(τ) = 1 + bK 1 (τ) + b 2 K 2 (τ) + c in powers of b parallel 1 with the coefficients K m (τ) that take into account interaction of (m + 1) energy levels. To calculate K m (τ), we develop a diagrammatic technique which is based on the Trotter formula and on the combinatorial problem of graph edges colouring with (m + 1) colours. Expressions for K 1 (τ) and K 2 (τ) in terms of infinite series are found for a generic function F(vertical bar i - j vertical bar ) in the Gaussian orthogonal ensemble (GOE), the Gaussian unitary ensemble (GUE) and in the crossover between them (the almost unitary Gaussian ensemble). The Rosenzweig-Porter and power-law banded matrix ensembles are considered as examples
Separability of three qubit Greenberger-Horne-Zeilinger diagonal states
Han, Kyung Hoon; Kye, Seung-Hyeok
2017-04-01
We characterize the separability of three qubit GHZ diagonal states in terms of entries. This enables us to check separability of GHZ diagonal states without decomposition into the sum of pure product states. In the course of discussion, we show that the necessary criterion of Gühne (2011 Entanglement criteria and full separability of multi-qubit quantum states Phys. Lett. A 375 406-10) for (full) separability of three qubit GHZ diagonal states is sufficient with a simpler formula. The main tool is to use entanglement witnesses which are tri-partite Choi matrices of positive bi-linear maps.
Selectivity in ligand recognition of G-quadruplex loops.
Campbell, Nancy H; Patel, Manisha; Tofa, Amina B; Ghosh, Ragina; Parkinson, Gary N; Neidle, Stephen
2009-03-03
A series of disubstituted acridine ligands have been cocrystallized with a bimolecular DNA G-quadruplex. The ligands have a range of cyclic amino end groups of varying size. The crystal structures show that the diagonal loop in this quadruplex results in a large cavity for these groups, in contrast to the steric constraints imposed by propeller loops in human telomeric quadruplexes. We conclude that the nature of the loop has a significant influence on ligand selectivity for particular quadruplex folds.
Non-diagonal processes of singlet and ordinary quark production
International Nuclear Information System (INIS)
Bejlin, V.A.; Vereshkov, G.M.; Kuksa, V.I.
1995-01-01
Non-diagonal processes of singlet and ordinary quark production are analyzed in the model where the down singlet quark mixes with the ordinary ones. The possibility of experimental selection of h-quark effects is demonstrated
Classical limit of diagonal form factors and HHL correlators
Energy Technology Data Exchange (ETDEWEB)
Bajnok, Zoltan [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Janik, Romuald A. [Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland)
2017-01-16
We propose an expression for the classical limit of diagonal form factors in which we integrate the corresponding observable over the moduli space of classical solutions. In infinite volume the integral has to be regularized by proper subtractions and we present the one, which corresponds to the classical limit of the connected diagonal form factors. In finite volume the integral is finite and can be expressed in terms of the classical infinite volume diagonal form factors and subvolumes of the moduli space. We analyze carefully the periodicity properties of the finite volume moduli space and found a classical analogue of the Bethe-Yang equations. By applying the results to the heavy-heavy-light three point functions we can express their strong coupling limit in terms of the classical limit of the sine-Gordon diagonal form factors.
MVDR Algorithm Based on Estimated Diagonal Loading for Beamforming
Directory of Open Access Journals (Sweden)
Yuteng Xiao
2017-01-01
Full Text Available Beamforming algorithm is widely used in many signal processing fields. At present, the typical beamforming algorithm is MVDR (Minimum Variance Distortionless Response. However, the performance of MVDR algorithm relies on the accurate covariance matrix. The MVDR algorithm declines dramatically with the inaccurate covariance matrix. To solve the problem, studying the beamforming array signal model and beamforming MVDR algorithm, we improve MVDR algorithm based on estimated diagonal loading for beamforming. MVDR optimization model based on diagonal loading compensation is established and the interval of the diagonal loading compensation value is deduced on the basis of the matrix theory. The optimal diagonal loading value in the interval is also determined through the experimental method. The experimental results show that the algorithm compared with existing algorithms is practical and effective.
Determining Diagonal Branches in Mine Ventilation Networks
Krach, Andrzej
2014-12-01
The present paper discusses determining diagonal branches in a mine ventilation network by means of a method based on the relationship A⊗ PT(k, l) = M, which states that the nodal-branch incidence matrix A, modulo-2 multiplied by the transposed path matrix PT(k, l ) from node no. k to node no. l, yields the matrix M where all the elements in rows k and l - corresponding to the start and the end node - are 1, and where the elements in the remaining rows are 0, exclusively. If a row of the matrix M is to contain only "0" elements, the following condition has to be fulfilled: after multiplying the elements of a row of the matrix A by the elements of a column of the matrix PT(k, l), i.e. by the elements of a proper row of the matrix P(k, l ), the result row must display only "0" elements or an even number of "1" entries, as only such a number of "1" entries yields 0 when modulo-2 added - and since the rows of the matrix A correspond to the graph nodes, and the path nodes level is 2 (apart from the nodes k and l, whose level is 1), then the number of "1" elements in a row has to be 0 or 2. If, in turn, the rows k and l of the matrix M are to contain only "1" elements, the following condition has to be fulfilled: after multiplying the elements of the row k or l of the matrix A by the elements of a column of the matrix PT(k, l), the result row must display an uneven number of "1" entries, as only such a number of "1" entries yields 1 when modulo-2 added - and since the rows of the matrix A correspond to the graph nodes, and the level of the i and j path nodes is 1, then the number of "1" elements in a row has to be 1. The process of determining diagonal branches by means of this method was demonstrated using the example of a simple ventilation network with two upcast shafts and one downcast shaft. W artykule przedstawiono metodę wyznaczania bocznic przekątnych w sieci wentylacyjnej kopalni metodą bazującą na zależności A⊗PT(k, l) = M, która podaje, że macierz
Loading factor and inclination parameter of diagonal type MHD generators
International Nuclear Information System (INIS)
Ishikawa, Motoo
1979-01-01
Regarding diagonal type MHD generators is studied the relation between the loading factor and inclination parameter which is required for attaining the maximum power density with a given electrical efficiency on the assumption of infinitely segmented electrodes. The average current density on electrodes is calculated against the Hall parameter, loading factor, and inclination parameter. The diagonal type generator is compared with Faraday type generator regarding the average current density. Decreasing the loading factor from inlet to outlet is appropriate to small size generators but increasing to large size generators. The inclination parameter had better decrease in both generators, being smaller for small generators than for large ones. The average current density on electrodes of diagonal type generators varies less with the loading factor than the Faraday type. In large size generators its value can become smaller compared with that of the Faraday type. (author)
Modified Dynamical Supergravity Breaking and Off-Diagonal Super-Higgs Effects
Gheorghiu, Tamara; Vacaru, Sergiu
2015-01-01
We argue that generic off-diagonal vacuum and nonvacuum solutions for Einstein manifolds mimic physical effects in modified gravity theories (MGTs) and encode certain models of $f(R,T,...)$, Ho\\vrava type with dynamical Lorentz symmetry breaking, induced effective mass for graviton etc. Our main goal is to investigate the dynamical breaking of local supersymmetry determined by off--diagonal solutions in MGTs encoded as effective Einstein spaces. This includes the Deser-Zumino super--Higgs effect, for instance, for an one--loop potential in a (simple but representative) model of $\\mathcal{N}=1, D=4$ supergravity. We develop and apply a new geometric techniques which allows us to decouple the gravitational field equations and integrate them in very general forms with metrics and vierbein fields depending on all spacetime coordinates via various generating and integration functions and parameters. We study how solutions in MGTs may be related to dynamical generation of a gravitino mass and supergravity breaking.
Diagonal Limit for Conformal Blocks in d Dimensions
Hogervorst, Matthijs; Rychkov, Slava
2013-01-01
Conformal blocks in any number of dimensions depend on two variables z, zbar. Here we study their restrictions to the special "diagonal" kinematics z = zbar, previously found useful as a starting point for the conformal bootstrap analysis. We show that conformal blocks on the diagonal satisfy ordinary differential equations, third-order for spin zero and fourth-order for the general case. These ODEs determine the blocks uniquely and lead to an efficient numerical evaluation algorithm. For equal external operator dimensions, we find closed-form solutions in terms of finite sums of 3F2 functions.
A progressive diagonalization scheme for the Rabi Hamiltonian
International Nuclear Information System (INIS)
Pan, Feng; Guan, Xin; Wang, Yin; Draayer, J P
2010-01-01
A diagonalization scheme for the Rabi Hamiltonian, which describes a qubit interacting with a single-mode radiation field via a dipole interaction, is proposed. It is shown that the Rabi Hamiltonian can be solved almost exactly using a progressive scheme that involves a finite set of one variable polynomial equations. The scheme is especially efficient for the lower part of the spectrum. Some low-lying energy levels of the model with several sets of parameters are calculated and compared to those provided by the recently proposed generalized rotating-wave approximation and a full matrix diagonalization.
Spectral Sharpening of Color Sensors: Diagonal Color Constancy and Beyond
Vazquez-Corral, Javier; Bertalmío, Marcelo
2014-01-01
It has now been 20 years since the seminal work by Finlayson et al. on the use/nof spectral sharpening of sensors to achieve diagonal color constancy. Spectral sharpening is/nstill used today by numerous researchers for different goals unrelated to the original goal/nof diagonal color constancy e.g., multispectral processing, shadow removal, location of/nunique hues. This paper reviews the idea of spectral sharpening through the lens of what/nis known today in color constancy, describes the d...
Energy Technology Data Exchange (ETDEWEB)
Dias de Deus, J [Instituto de Fisica e Matematica, Lisboa (Portugal); Kroll, P [Wuppertal Univ. (Gesamthochschule) (Germany, F.R.)
1976-08-21
The inclusion of secondary contributions Reggeons and real parts by changing the radial scale but exactly preserving geometrical scaling (GS) alloys an exclusion of GS to lower energies. The crossover curves in proton proton, Kp, and *pp are in this way correctly described. A GS formula relating two measurable quantities, the depth of the dip in proton proton scattering and the ratio of the real to immaginary part of the amplitude at t=0, is shown to be valid in the 10-1000 GeV region.
Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
DEFF Research Database (Denmark)
Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip
2016-01-01
We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...
Biomechanical pole and leg characteristics during uphill diagonal roller skiing.
Lindinger, Stefan Josef; Göpfert, Caroline; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer
2009-11-01
Diagonal skiing as a major classical technique has hardly been investigated over the last two decades, although technique and racing velocities have developed substantially. The aims of the present study were to 1) analyse pole and leg kinetics and kinematics during submaximal uphill diagonal roller skiing and 2) identify biomechanical factors related to performance. Twelve elite skiers performed a time to exhaustion (performance) test on a treadmill. Joint kinematics and pole/plantar forces were recorded separately during diagonal roller skiing (9 degrees; 11 km/h). Performance was correlated to cycle length (r = 0.77; P Push-off demonstrated performance correlations for impulse of leg force (r = 0.84), relative duration (r= -0.76) and knee flexion (r = 0.73) and extension ROM (r = 0.74). Relative time to peak pole force was associated with performance (r = 0.73). In summary, diagonal roller skiing performance was linked to 1) longer cycle length, 2) greater impulse of force during a shorter push-off with larger flexion/extension ROMs in leg joints, 3) longer leg swing, and 4) later peak pole force, demonstrating the major key characteristics to be emphasised in training.
Diagonalization of Bounded Linear Operators on Separable Quaternionic Hilbert Space
International Nuclear Information System (INIS)
Feng Youling; Cao, Yang; Wang Haijun
2012-01-01
By using the representation of its complex-conjugate pairs, we have investigated the diagonalization of a bounded linear operator on separable infinite-dimensional right quaternionic Hilbert space. The sufficient condition for diagonalizability of quaternionic operators is derived. The result is applied to anti-Hermitian operators, which is essential for solving Schroedinger equation in quaternionic quantum mechanics.
Thermodynamics of Rh nuclear spins calculated by exact diagonalization
DEFF Research Database (Denmark)
Lefmann, K.; Ipsen, J.; Rasmussen, F.B.
2000-01-01
We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positi...
Diagonal Cracking and Shear Strength of Reinforced Concrete Beams
DEFF Research Database (Denmark)
Zhang, Jin-Ping
1997-01-01
The shear failure of non-shear-reinforced concrete beams with normal shear span ratios is observed to be governed in general by the formation of a critical diagonal crack. Under the hypothesis that the cracking of concrete introduces potential yield lines which may be more dangerous than the ones...
A diagonal address generator for a Josephson memory circuit
International Nuclear Information System (INIS)
Suzuki, H.; Hasuo, S.
1987-01-01
The authors propose that a diagonal D address generator, which is useful for a single flux quantum (SFQ) memory cell in the triple coincidence scheme, can be performed by a full adder circuit. For the purpose of evaluating the D address generator for a 16-kbit memory circuit, a 6-bit full adder circuit, using a current-steering flip-flop circuit, has been designed and fabricated with the lead-alloy process. Operating times for the address latch, carry generator, and sum generator were 150 ps, 250 ps/stage, and 1.4 ns, respectively. From these results, they estimate that the time necessary for the diagonal signal generation is 2.8 ns
Diagonalizing quadratic bosonic operators by non-autonomous flow equations
Bach, Volker
2016-01-01
The authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocketâe"Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field.
Off-diagonal Bethe ansatz for exactly solvable models
Wang, Yupeng; Cao, Junpeng; Shi, Kangjie
2015-01-01
This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.
A CLT on the SNR of Diagonally Loaded MVDR Filters
Rubio, Francisco; Mestre, Xavier; Hachem, Walid
2012-08-01
This paper studies the fluctuations of the signal-to-noise ratio (SNR) of minimum variance distorsionless response (MVDR) filters implementing diagonal loading in the estimation of the covariance matrix. Previous results in the signal processing literature are generalized and extended by considering both spatially as well as temporarily correlated samples. Specifically, a central limit theorem (CLT) is established for the fluctuations of the SNR of the diagonally loaded MVDR filter, under both supervised and unsupervised training settings in adaptive filtering applications. Our second-order analysis is based on the Nash-Poincar\\'e inequality and the integration by parts formula for Gaussian functionals, as well as classical tools from statistical asymptotic theory. Numerical evaluations validating the accuracy of the CLT confirm the asymptotic Gaussianity of the fluctuations of the SNR of the MVDR filter.
Isovector and flavor-diagonal charges of the nucleon
Gupta, Rajan; Bhattacharya, Tanmoy; Jang, Yong-Chull; Lin, Huey-Wen; Yoon, Boram
2018-03-01
We present an update on the status of the calculations of isovector and flavor-diagonal charges of the nucleon. The calculations of the isovector charges are being done using ten 2+1+1-flavor HISQ ensembles generated by the MILC collaboration covering the range of lattice spacings a ≈ 0.12, 0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is controlled by using four-state fits to two-point correlators and three-states fits to the three-point correlators. The calculations of the disconnected diagrams needed to estimate flavor-diagonal charges are being done on a subset of six ensembles using the stocastic method. Final results are obtained using a simultaneous fit in M2π, the lattice spacing a and the finite volume parameter MπL keeping only the leading order corrections.
Spectral properties and scaling relations in off diagonally disordered chains
International Nuclear Information System (INIS)
Ure, J.E.; Majlis, N.
1987-07-01
We obtain the localization length L as a function of the energy E and the disorder width W for an off-diagonally disordered chain. This is done performing numerical simulations involving the continued fraction representations of the transfer matrix. The scaling relation L=W s is obtained with values of the exponent s in agreement with calculations of other authors. We also obtain the relation L ∼ |E| v for E → 0, and use it in the Herbert-Spencer-Thouless formula for L to describe the singularity of the density of states near E=0. We show that the slightest diagonal disorder obliterates this singularity. A practical method is presented to calculate the Green function by exploiting its continued fraction expansion. (author). 20 refs, 4 figs
Lee, Jun Chang; Nam, Kyoung Won; Jang, Dong Pyo; Kim, In Young
2015-12-01
Previously suggested diagonal-steering algorithms for binaural hearing support devices have commonly assumed that the direction of the speech signal is known in advance, which is not always the case in many real circumstances. In this study, a new diagonal-steering-based binaural speech localization (BSL) algorithm is proposed, and the performances of the BSL algorithm and the binaural beamforming algorithm, which integrates the BSL and diagonal-steering algorithms, were evaluated using actual speech-in-noise signals in several simulated listening scenarios. Testing sounds were recorded in a KEMAR mannequin setup and two objective indices, improvements in signal-to-noise ratio (SNRi ) and segmental SNR (segSNRi ), were utilized for performance evaluation. Experimental results demonstrated that the accuracy of the BSL was in the 90-100% range when input SNR was -10 to +5 dB range. The average differences between the γ-adjusted and γ-fixed diagonal-steering algorithms (for -15 to +5 dB input SNR) in the talking in the restaurant scenario were 0.203-0.937 dB for SNRi and 0.052-0.437 dB for segSNRi , and in the listening while car driving scenario, the differences were 0.387-0.835 dB for SNRi and 0.259-1.175 dB for segSNRi . In addition, the average difference between the BSL-turned-on and the BSL-turned-off cases for the binaural beamforming algorithm in the listening while car driving scenario was 1.631-4.246 dB for SNRi and 0.574-2.784 dB for segSNRi . In all testing conditions, the γ-adjusted diagonal-steering and BSL algorithm improved the values of the indices more than the conventional algorithms. The binaural beamforming algorithm, which integrates the proposed BSL and diagonal-steering algorithm, is expected to improve the performance of the binaural hearing support devices in noisy situations. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Direct calculation of off-diagonal matrix elements
International Nuclear Information System (INIS)
Killingbeck, J P; Jolicard, G
2011-01-01
Gauss elimination is used in a sequence of calculations which give the squares of the off-diagonal matrix elements of x between quartic oscillator eigenstates, in a modification of the original sum rule approach of Tipping et al to the problem. New and more flexible methods are then devised and tested and are shown to permit the isolation and calculation of individual squared matrix elements of x and x 2 .
Why the South Pacific Convergence Zone is diagonal
Van Der Wiel, Karin; Matthews, Adrian; Joshi, Manoj; Stevens, David
2016-01-01
During austral summer, the majority of precipitation over the Pacific Ocean is concentrated in the South Pacific Convergence Zone (SPCZ). The surface boundary conditions required to support the diagonally (northwest-southeast) oriented SPCZ are determined through a series of experiments with an atmospheric general circulation model. Continental configuration and orography do not have a significant influence on SPCZ orientation and strength. The key necessary boundary condition is the zonally ...
Conformal anomaly of super Wilson loop
Energy Technology Data Exchange (ETDEWEB)
Belitsky, A.V., E-mail: andrei.belitsky@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)
2012-09-11
Classically supersymmetric Wilson loop on a null polygonal contour possesses all symmetries required to match it onto non-MHV amplitudes in maximally supersymmetric Yang-Mills theory. However, to define it quantum mechanically, one is forced to regularize it since perturbative loop diagrams are not well defined due to presence of ultraviolet divergences stemming from integration in the vicinity of the cusps. A regularization that is adopted by practitioners by allowing one to use spinor helicity formalism, on the one hand, and systematically go to higher orders of perturbation theory is based on a version of dimensional regularization, known as Four-Dimensional Helicity scheme. Recently it was demonstrated that its use for the super Wilson loop at one loop breaks both conformal symmetry and Poincare supersymmetry. Presently, we exhibit the origin for these effects and demonstrate how one can undo this breaking. The phenomenon is alike the one emerging in renormalization group mixing of conformal operators in conformal theories when one uses dimensional regularization. The rotation matrix to the diagonal basis is found by means of computing the anomaly in the Ward identity for the conformal boost. Presently, we apply this ideology to the super Wilson loop. We compute the one-loop conformal anomaly for the super Wilson loop and find that the anomaly depends on its Grassmann coordinates. By subtracting this anomalous contribution from the super Wilson loop we restore its interpretation as a dual description for reduced non-MHV amplitudes which are expressed in terms of superconformal invariants.
Off-diagonal series expansion for quantum partition functions
Hen, Itay
2018-05-01
We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.
Exact diagonalization: the Bose-Hubbard model as an example
International Nuclear Information System (INIS)
Zhang, J M; Dong, R X
2010-01-01
We take the Bose-Hubbard model to illustrate exact diagonalization techniques in a pedagogical way. We follow the route of first generating all the basis vectors, then setting up the Hamiltonian matrix with respect to this basis and finally using the Lanczos algorithm to solve low lying eigenstates and eigenvalues. Emphasis is placed on how to enumerate all the basis vectors and how to use the hashing trick to set up the Hamiltonian matrix or matrices corresponding to other quantities. Although our route is not necessarily the most efficient one in practice, the techniques and ideas introduced are quite general and may find use in many other problems.
Benchmarking GW against exact diagonalization for semiempirical models
DEFF Research Database (Denmark)
Kaasbjerg, Kristen; Thygesen, Kristian Sommer
2010-01-01
We calculate ground-state total energies and single-particle excitation energies of seven pi-conjugated molecules described with the semiempirical Pariser-Parr-Pople model using self-consistent many-body perturbation theory at the GW level and exact diagonalization. For the total energies GW capt...... (Hubbard models) where correlation effects dominate over screening/relaxation effects. Finally we illustrate the important role of the derivative discontinuity of the true exchange-correlation functional by computing the exact Kohn-Sham levels of benzene....
Permuting sparse rectangular matrices into block-diagonal form
Energy Technology Data Exchange (ETDEWEB)
Aykanat, Cevdet; Pinar, Ali; Catalyurek, Umit V.
2002-12-09
This work investigates the problem of permuting a sparse rectangular matrix into block diagonal form. Block diagonal form of a matrix grants an inherent parallelism for the solution of the deriving problem, as recently investigated in the context of mathematical programming, LU factorization and QR factorization. We propose graph and hypergraph models to represent the nonzero structure of a matrix, which reduce the permutation problem to those of graph partitioning by vertex separator and hypergraph partitioning, respectively. Besides proposing the models to represent sparse matrices and investigating related combinatorial problems, we provide a detailed survey of relevant literature to bridge the gap between different societies, investigate existing techniques for partitioning and propose new ones, and finally present a thorough empirical study of these techniques. Our experiments on a wide range of matrices, using state-of-the-art graph and hypergraph partitioning tools MeTiS and PaT oH, revealed that the proposed methods yield very effective solutions both in terms of solution quality and run time.
On the performance of diagonal lattice space-time codes
Abediseid, Walid
2013-11-01
There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria [1]-[9]. In this paper, we analyze in details the performance limits of diagonal lattice space-time codes under lattice decoding. We present both lower and upper bounds on the average decoding error probability. We first derive a new closed-form expression for the lower bound using the so-called sphere lower bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is then derived using the union-bound which demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. Combining both the lower and the upper bounds on the average error probability yields a simple upper bound on the the minimum product distance that any (complex) lattice code can achieve. At high-SNR regime, we discuss the outage performance of such codes and provide the achievable diversity-multiplexing tradeoff under lattice decoding. © 2013 IEEE.
Significance of matrix diagonalization in modelling inelastic electron scattering
Energy Technology Data Exchange (ETDEWEB)
Lee, Z. [University of Ulm, Ulm 89081 (Germany); Hambach, R. [University of Ulm, Ulm 89081 (Germany); University of Jena, Jena 07743 (Germany); Kaiser, U.; Rose, H. [University of Ulm, Ulm 89081 (Germany)
2017-04-15
Electron scattering is always applied as one of the routines to investigate nanostructures. Nowadays the development of hardware offers more and more prospect for this technique. For example imaging nanostructures with inelastic scattered electrons may allow to produce component-sensitive images with atomic resolution. Modelling inelastic electron scattering is therefore essential for interpreting these images. The main obstacle to study inelastic scattering problem is its complexity. During inelastic scattering, incident electrons entangle with objects, and the description of this process involves a multidimensional array. Since the simulation usually involves fourdimensional Fourier transforms, the computation is highly inefficient. In this work we have offered one solution to handle the multidimensional problem. By transforming a high dimensional array into twodimensional array, we are able to perform matrix diagonalization and approximate the original multidimensional array with its twodimensional eigenvectors. Our procedure reduces the complicated multidimensional problem to a twodimensional problem. In addition, it minimizes the number of twodimensional problems. This method is very useful for studying multiple inelastic scattering. - Highlights: • 4D problems are involved in modelling inelastic electron scattering. • By means of matrix diagonalization, the 4D problems can be simplified as 2D problems. • The number of 2D problems is minimized by using this approach.
Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed states
International Nuclear Information System (INIS)
Tong, D.M.; Oh, C.H.; Sjoeqvist, Erik; Filipp, Stefan; Kwek, L.C.
2005-01-01
Off-diagonal geometric phases have been developed in order to provide information of the geometry of paths that connect noninterfering quantal states. We propose a kinematic approach to off-diagonal geometric phases for pure and mixed states. We further extend the mixed-state concept proposed in [Phys. Rev. Lett. 90, 050403 (2003)] to degenerate density operators. The first- and second-order off-diagonal geometric phases are analyzed for unitarily evolving pairs of pseudopure states
Hopping transport and electrical conductivity in one-dimensional systems with off-diagonal disorder
International Nuclear Information System (INIS)
Ma Songshan; Xu Hui; Li Yanfeng; Song Zhaoquan
2007-01-01
In this paper, we present a model to describe hopping transport and electrical conductivity of one-dimensional systems with off-diagonal disorder, in which electrons are transported via hopping between localized states. We find that off-diagonal disorder leads to delocalization and drastically enhances the electrical conductivity of systems. The model also quantitatively explains the temperature and electrical field dependence of the conductivity in one-dimensional systems with off-diagonal disorder. In addition, we also show the dependence of the conductivity on the strength of off-diagonal disorder
Self-consistent cluster theory for systems with off-diagonal disorder
International Nuclear Information System (INIS)
Kaplan, T.; Leath, P.L.; Gray, L.J.; Diehl, H.W.
1980-01-01
A self-consistent cluster theory for elementary excitations in systems with diagonal, off-diagonal, and environmental disorder is presented. The theory is developed in augmented space where the configurational average over the disorder is replaced by a ground-state matrix element in a translationally invariant system. The analyticity of the resulting approximate Green's function is proved. Numerical results for the self-consistent single-site and pair approximations are presented for the vibrational and electronic properties of disordered linear chains with diagonal, off-diagonal, and environmental disorder
Diagonal ordering operation technique applied to Morse oscillator
Energy Technology Data Exchange (ETDEWEB)
Popov, Dušan, E-mail: dusan_popov@yahoo.co.uk [Politehnica University Timisoara, Department of Physical Foundations of Engineering, Bd. V. Parvan No. 2, 300223 Timisoara (Romania); Dong, Shi-Hai [CIDETEC, Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Mexico D.F. 07700 (Mexico); Popov, Miodrag [Politehnica University Timisoara, Department of Steel Structures and Building Mechanics, Traian Lalescu Street, No. 2/A, 300223 Timisoara (Romania)
2015-11-15
We generalize the technique called as the integration within a normally ordered product (IWOP) of operators referring to the creation and annihilation operators of the harmonic oscillator coherent states to a new operatorial approach, i.e. the diagonal ordering operation technique (DOOT) about the calculations connected with the normally ordered product of generalized creation and annihilation operators that generate the generalized hypergeometric coherent states. We apply this technique to the coherent states of the Morse oscillator including the mixed (thermal) state case and get the well-known results achieved by other methods in the corresponding coherent state representation. Also, in the last section we construct the coherent states for the continuous dynamics of the Morse oscillator by using two new methods: the discrete–continuous limit, respectively by solving a finite difference equation. Finally, we construct the coherent states corresponding to the whole Morse spectrum (discrete plus continuous) and demonstrate their properties according the Klauder’s prescriptions.
Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae Eun [Catholic Univ. of Daegu, Daegu (Korea, Republic of)
2013-08-15
This study proposes a piezoelectric vibration energy harvester composed of two diagonally segmented energy harvesting units. An auxiliary structural unit is attached to the tip of a host structural unit cantilevered to a vibrating base, where the two components have beam axes in opposite directions from each other and matched short-circuit resonant frequencies. Contrary to the usual observations in two resonant frequency-matched structures, the proposed structure shows little eigenfrequency separation and yields a mode sequence change between the first two modes. These lead to maximum power generation around a specific frequency. By using commercial finite element software, it is shown that the magnitude of the output power from the proposed vibration energy harvester can be substantially improved in comparison with those from conventional cantilevered energy harvesters with the same footprint area and magnitude of a tip mass.
The Diagonal Compression Field Method using Circular Fans
DEFF Research Database (Denmark)
Hansen, Thomas
2005-01-01
This paper presents a new design method, which is a modification of the diagonal compression field method, the modification consisting of the introduction of circular fan stress fields. The traditional method does not allow changes of the concrete compression direction throughout a given beam...... if equilibrium is strictly required. This is conservative, since it is not possible fully to utilize the concrete strength in regions with low shear stresses. The larger inclination (the smaller -value) of the uniaxial concrete stress the more transverse shear reinforcement is needed; hence it would be optimal...... if the -value for a given beam could be set to a low value in regions with high shear stresses and thereafter increased in regions with low shear stresses. Thus the shear reinforcement would be reduced and the concrete strength would be utilized in a better way. In the paper it is shown how circular fan stress...
Quantum Glass of Interacting Bosons with Off-Diagonal Disorder
Piekarska, A. M.; Kopeć, T. K.
2018-04-01
We study disordered interacting bosons described by the Bose-Hubbard model with Gaussian-distributed random tunneling amplitudes. It is shown that the off-diagonal disorder induces a spin-glass-like ground state, characterized by randomly frozen quantum-mechanical U(1) phases of bosons. To access criticality, we employ the "n -replica trick," as in the spin-glass theory, and the Trotter-Suzuki method for decomposition of the statistical density operator, along with numerical calculations. The interplay between disorder, quantum, and thermal fluctuations leads to phase diagrams exhibiting a glassy state of bosons, which are studied as a function of model parameters. The considered system may be relevant for quantum simulators of optical-lattice bosons, where the randomness can be introduced in a controlled way. The latter is supported by a proposition of experimental realization of the system in question.
Bott–Kitaev periodic table and the diagonal map
International Nuclear Information System (INIS)
Kennedy, R; Zirnbauer, M R
2015-01-01
Building on the ten-way symmetry classification of disordered fermions, the authors have recently given a homotopy-theoretic proof of Kitaev's ‘periodic table’ for topological insulators and superconductors. The present paper offers an introduction to the physical setting and the mathematical model used. Basic to the proof is the so-called diagonal map, a natural transformation akin to the Bott map of algebraic topology, which increases by one unit both the momentum-space dimension and the symmetry index of translation-invariant ground states of gapped free-fermion systems. This mapping is illustrated here with a few examples of interest. (Based on a talk delivered by the senior author at the Nobel Symposium on ‘New Forms of Matter: Topological Insulators and Superconductors’; Stockholm, 13–15 June, 2014.) (topical article)
Modified conjugate gradient method for diagonalizing large matrices.
Jie, Quanlin; Liu, Dunhuan
2003-11-01
We present an iterative method to diagonalize large matrices. The basic idea is the same as the conjugate gradient (CG) method, i.e, minimizing the Rayleigh quotient via its gradient and avoiding reintroducing errors to the directions of previous gradients. Each iteration step is to find lowest eigenvector of the matrix in a subspace spanned by the current trial vector and the corresponding gradient of the Rayleigh quotient, as well as some previous trial vectors. The gradient, together with the previous trial vectors, play a similar role as the conjugate gradient of the original CG algorithm. Our numeric tests indicate that this method converges significantly faster than the original CG method. And the computational cost of one iteration step is about the same as the original CG method. It is suitable for first principle calculations.
Closed-Loop Optimal Control Implementations for Space Applications
2016-12-01
with standard linear algebra techniques if is converted to a diagonal square matrix by multiplying by the identity matrix, I , as was done in (1.134...OPTIMAL CONTROL IMPLEMENTATIONS FOR SPACE APPLICATIONS by Colin S. Monk December 2016 Thesis Advisor: Mark Karpenko Second Reader: I. M...COVERED Master’s thesis, Jan-Dec 2016 4. TITLE AND SUBTITLE CLOSED-LOOP OPTIMAL CONTROL IMPLEMENTATIONS FOR SPACE APPLICATIONS 5. FUNDING NUMBERS
Emergency Entry with One Control Torque: Non-Axisymmetric Diagonal Inertia Matrix
Llama, Eduardo Garcia
2011-01-01
In another work, a method was presented, primarily conceived as an emergency backup system, that addressed the problem of a space capsule that needed to execute a safe atmospheric entry from an arbitrary initial attitude and angular rate in the absence of nominal control capability. The proposed concept permits the arrest of a tumbling motion, orientation to the heat shield forward position and the attainment of a ballistic roll rate of a rigid spacecraft with the use of control in one axis only. To show the feasibility of such concept, the technique of single input single output (SISO) feedback linearization using the Lie derivative method was employed and the problem was solved for different number of jets and for different configurations of the inertia matrix: the axisymmetric inertia matrix (I(sub xx) > I(sub yy) = I(sub zz)), a partially complete inertia matrix with I(sub xx) > I(sub yy) > I(sub zz), I(sub xz) not = 0 and a realistic complete inertia matrix with I(sub xx) > I(sub yy) > I)sub zz), I(sub ij) not= 0. The closed loop stability of the proposed non-linear control on the total angle of attack, Theta, was analyzed through the zero dynamics of the internal dynamics for the case where the inertia matrix is axisymmetric (I(sub xx) > I(sub yy) = I(sub zz)). This note focuses on the problem of the diagonal non-axisymmetric inertia matrix (I(sub xx) > I(sub yy) > I(sub zz)), which is half way between the axisymmetric and the partially complete inertia matrices. In this note, the control law for this type of inertia matrix will be determined and its closed-loop stability will be analyzed using the same methods that were used in the other work. In particular, it will be proven that the control system is stable in closed-loop when the actuators only provide a roll torque.
Diagonalization of quark mass matrices and the Cabibbo-Kobayashi-Maskawa matrix
International Nuclear Information System (INIS)
Rasin, A.
1997-08-01
I discuss some general aspect of diagonalizing the quark mass matrices and list all possible parametrizations of the Cabibbo-Kobayashi-Maskawa matrix (CKM) in terms of three rotation angles and a phase. I systematically study the relation between the rotations needed to diagonalize the Yukawa matrices and various parametrizations of the CKM. (author). 17 refs, 1 tab
Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li, E-mail: wlyang@nwu.edu.cn [Institute of Modern Physics, Northwest University, Xian 710069 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2013-10-01
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived.
Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
International Nuclear Information System (INIS)
Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2013-01-01
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived
Diagonalization and Jordan Normal Form--Motivation through "Maple"[R
Glaister, P.
2009-01-01
Following an introduction to the diagonalization of matrices, one of the more difficult topics for students to grasp in linear algebra is the concept of Jordan normal form. In this note, we show how the important notions of diagonalization and Jordan normal form can be introduced and developed through the use of the computer algebra package…
Chaos in non-diagonal spatially homogeneous cosmological models in spacetime dimensions <=10
Demaret, Jacques; de Rop, Yves; Henneaux, Marc
1988-08-01
It is shown that the chaotic oscillatory behaviour, absent in diagonal homogeneous cosmological models in spacetime dimensions between 5 and 10, can be reestablished when off-diagonal terms are included. Also at Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile
Iterative algorithm for joint zero diagonalization with application in blind source separation.
Zhang, Wei-Tao; Lou, Shun-Tian
2011-07-01
A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.
A diagonal approach for the catalytic transformation of carbon dioxide
International Nuclear Information System (INIS)
Gomes, Christophe
2013-01-01
Emissions of carbon dioxide are growing with the massive utilization of hydrocarbons for the production of energy and chemicals, resulting in a threatening global warming. The development of a more sustainable economy is urging to reduce the fingerprint of our current way of life. In this perspective, the organic chemistry industry will face important challenges in the next decades to replace hydrocarbons as a feedstock and use carbon-free energy sources. To tackle this challenge, new catalytic processes have been designed to convert CO 2 to high energy and value-added chemicals (formamides, N-heterocycles and methanol), using a novel diagonal approach. The energy efficiency of the new transformations is ensured by the utilization of mild reductants such as hydro-silanes and hydro-boranes. Importantly the reactions are promoted by organic catalysts, which circumvent the problems of cost, abundance and toxicity usually encountered with metal complexes. Based on theoretical and experimental studies, the understanding of the mechanisms involved in these reactions allowed the rational optimization of the catalysts as well as the reaction conditions, in order to match the requirements of sustainable chemistry. (author) [fr
Nuclear fuel rod grip with modified diagonal spring structures
International Nuclear Information System (INIS)
DeMario, E.E.
1990-01-01
This patent describes a spring structure in a nuclear fuel rod grid including a plurality of inner and outer straps being interleaved with one another to form a matrix of hollow cells. Each of the cells is for receiving one fuel rod and being defined by pairs of opposing wall sections of the straps which wall sections are shared with adjacent cells. Each of the cells has a central longitudinal axis, a fuel rod engaging spring structure of resiliently yieldable material being integrally formed on each wall section of the inner straps. The spring structure comprising: a pair of spaced apart opposite outer portions being integrally attached at their outer ends to the respective wall section. The portions extending in alignment with one another and in generally diagonal relation to the direction of the central longitudinal axis of the one cell; and a middle portion disposed between and integrally connected at its outer ends with respective inner ends of the outer portions. The middle portion extending in generally transverse relation to the direction of the central longitudinal axis of the one cell
Separability of diagonal symmetric states: a quadratic conic optimization problem
Directory of Open Access Journals (Sweden)
Jordi Tura
2018-01-01
Full Text Available We study the separability problem in mixtures of Dicke states i.e., the separability of the so-called Diagonal Symmetric (DS states. First, we show that separability in the case of DS in $C^d\\otimes C^d$ (symmetric qudits can be reformulated as a quadratic conic optimization problem. This connection allows us to exchange concepts and ideas between quantum information and this field of mathematics. For instance, copositive matrices can be understood as indecomposable entanglement witnesses for DS states. As a consequence, we show that positivity of the partial transposition (PPT is sufficient and necessary for separability of DS states for $d \\leq 4$. Furthermore, for $d \\geq 5$, we provide analytic examples of PPT-entangled states. Second, we develop new sufficient separability conditions beyond the PPT criterion for bipartite DS states. Finally, we focus on $N$-partite DS qubits, where PPT is known to be necessary and sufficient for separability. In this case, we present a family of almost DS states that are PPT with respect to each partition but nevertheless entangled.
Improvement of child survival in Mexico: the diagonal approach.
Sepúlveda, Jaime; Bustreo, Flavia; Tapia, Roberto; Rivera, Juan; Lozano, Rafael; Oláiz, Gustavo; Partida, Virgilio; García-García, Lourdes; Valdespino, José Luis
2006-12-02
Public health interventions aimed at children in Mexico have placed the country among the seven countries on track to achieve the goal of child mortality reduction by 2015. We analysed census data, mortality registries, the nominal registry of children, national nutrition surveys, and explored temporal association and biological plausibility to explain the reduction of child, infant, and neonatal mortality rates. During the past 25 years, child mortality rates declined from 64 to 23 per 1000 livebirths. A dramatic decline in diarrhoea mortality rates was recorded. Polio, diphtheria, and measles were eliminated. Nutritional status of children improved significantly for wasting, stunting, and underweight. A selection of highly cost-effective interventions bridging clinics and homes, what we called the diagonal approach, were central to this progress. Although a causal link to the reduction of child mortality was not possible to establish, we saw evidence of temporal association and biological plausibility to the high level of coverage of public health interventions, as well as significant association to the investments in women education, social protection, water, and sanitation. Leadership and continuity of public health policies, along with investments on institutions and human resources strengthening, were also among the reasons for these achievements.
[Improvement of child survival in Mexico: the diagonal approach].
Sepúlveda, Jaime; Bustreo, Flavia; Tapia, Roberto; Rivera, Juan; Lozano, Rafael; Olaiz, Gustavo; Partida, Virgilio; García-García, Ma de Lourdes; Valdespino, José Luis
2007-01-01
Public health interventions aimed at children in Mexico have placed the country among the seven countries on track to achieve the goal of child mortality reduction by 2015. We analysed census data, mortality registries, the nominal registry of children, national nutrition surveys, and explored temporal association and biological plausibility to explain the reduction of child, infant, and neonatal mortality rates. During the past 25 years, child mortality rates declined from 64 to 23 per 1000 livebirths. A dramatic decline in diarrhoea mortality rates was recorded. Polio, diphtheria, and measles were eliminated. Nutritional status of children improved significantly for wasting, stunting, and underweight. A selection of highly cost-effective interventions bridging clinics and homes, what we called the diagonal approach, were central to this progress. Although a causal link to the reduction of child mortality was not possible to establish, we saw evidence of temporal association and biological plausibility to the high level of coverage of public health interventions, as well as significant association to the investments in women education, social protection, water, and sanitation. Leadership and continuity of public health policies, along with investments on institutions and human resources strengthening, were also among the reasons for these achievements.
Power take-off analysis for diagonally connected MHD channels
International Nuclear Information System (INIS)
Pan, Y.C.; Doss, E.D.
1980-01-01
The electrical loading of the power take-off region of diagonally connected MHD channels is investigated by a two-dimensional model. The study examines the loading schemes typical of those proposed for the U-25 and U-25 Bypass channels. The model is applicable for the following four cases: (1) connection with diodes only, (2) connection with diodes and equal resistors, (3) connection with diodes and variable resistances to obtain a given current distribution, and (4) connection with diodes and variable resistors under changing load. The analysis is applicable for the power take-off regions of single or multiple-output systems. The general behaviors of the current and the potential distributions in all four cases are discussed. The analytical results are in good agreement with the experimental data. It is found possible to design the electrical circuit of the channel in the take-off region so as to achieve a fairly even load current output under changing total load current
Comparative study on diagonal equivalent methods of masonry infill panel
Amalia, Aniendhita Rizki; Iranata, Data
2017-06-01
ratio of height to width of 1 to 1.5. Load used in the experiment was based on Uniform Building Code (UBC) 1991. Every method compared was calculated first to get equivalent diagonal strut width. The second step was modelling method using structure analysis software as a frame with a diagonal in a linear mode. The linear mode was chosen based on structure analysis commonly used by structure designers. The frame was loaded and for every model, its load and deformation values were identified. The values of load - deformation of every method were compared to those of experimental test specimen by Mehrabi and open frame. From comparative study performed, Holmes' and Bazan-Meli's equations gave results the closest to the experimental test specimen by Mehrabi. Other equations that gave close values within the limit (by comparing it to the open frame) are Saneinejad-Hobbs, Stafford-Smith, Bazan-Meli, Liauw Kwan, Paulay and Priestley, FEMA 356, Durani Luo, Hendry, Papia and Chen-Iranata.
Diagonal earlobe crease: Prevalence and association with medical ailments
Directory of Open Access Journals (Sweden)
Yugantara Ramesh Kadam
2018-01-01
Full Text Available Context: It has been hypothesized that diagonal earlobe crease (DELC, “Frank's sign” is indicative of coronary artery disease (CAD and/or diabetes mellitus (DM. Several studies have confirmed an association between DELC and cardiac morbidity, mortality, and hypertension (HTN. However, some studies have not found any significant association. Aims: This study aims to find out the prevalence of DELC and its association with CAD, DM, and HTN. Settings and Design: Sangli-Miraj-Kupwad Corporation area. This was a cross-sectional analytical study. Subjects and Methods: Study participants: Adults from 18 to 60 years age. Inclusion criteria: willing to participate in the study Exclusion criteria: Wearing heavy ear rings and excessive normal generalized wrinkling of the skin. Sample size: Sample size 6310, determined after a pilot study revealing DELC in 1.5%. Sampling technique: Two-stage cluster sampling. Duration of study: 6 months. Study tools: Predesigned, pilot tested pro forma. Statistical Analysis: Statistical analysis was done by using SPSS 22 software. Prevalence and percentages were calculated, and Chi-square test was applied. Results: Out of 6638 participants, 179 had DELC. The prevalence of bilateral DELC was 2.7%. The prevalence was significantly high among males (4.13% and in the 51–60 years age group (5.29%. The prevalence of Grade 3 DELC was high and 91% of young adults had Grade 3 DELC. There were 408 (6.15% participants who gave a history of CAD, 827 (12.46% of DM, and 670 (10.09% HTN. Significantly high association observed between DELC and CAD, DM, and HTN. CAD, DM, and HTN were significantly associated with Grade 3. Conclusions: The prevalence of bilateral DELC was 2.7% and is significantly associated with CAD, DM, and HTN.
Groenwold, A.A.; Wood, D.W.; Etman, L.F.P.; Tosserams, S.
2009-01-01
We implement and test a globally convergent sequential approximate optimization algorithm based on (convexified) diagonal quadratic approximations. The algorithm resides in the class of globally convergent optimization methods based on conservative convex separable approximations developed by
Localization for off-diagonal disorder and for continuous Schroedinger operators
International Nuclear Information System (INIS)
Delyon, F.; Souillard, B.; Simon, B.
1987-01-01
We extend the proof of localization by Delyon, Levy, and Souillard to accommodate the Anderson model with off-diagonal disorder and the continuous Schroedinger equation with a random potential. (orig.)
Goodaire, EG; Polcino Milies, C
1996-01-01
For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri
Measurement of off-diagonal transport coefficients in two-phase flow in porous media.
Ramakrishnan, T S; Goode, P A
2015-07-01
The prevalent description of low capillary number two-phase flow in porous media relies on the independence of phase transport. An extended Darcy's law with a saturation dependent effective permeability is used for each phase. The driving force for each phase is given by its pressure gradient and the body force. This diagonally dominant form neglects momentum transfer from one phase to the other. Numerical and analytical modeling in regular geometries have however shown that while this approximation is simple and acceptable in some cases, many practical problems require inclusion of momentum transfer across the interface. Its inclusion leads to a generalized form of extended Darcy's law in which both the diagonal relative permeabilities and the off-diagonal terms depend not only on saturation but also on the viscosity ratio. Analogous to application of thermodynamics to dynamical systems, any of the extended forms of Darcy's law assumes quasi-static interfaces of fluids for describing displacement problems. Despite the importance of the permeability coefficients in oil recovery, soil moisture transport, contaminant removal, etc., direct measurements to infer the magnitude of the off-diagonal coefficients have been lacking. The published data based on cocurrent and countercurrent displacement experiments are necessarily indirect. In this paper, we propose a null experiment to measure the off-diagonal term directly. For a given non-wetting phase pressure-gradient, the null method is based on measuring a counter pressure drop in the wetting phase required to maintain a zero flux. The ratio of the off-diagonal coefficient to the wetting phase diagonal coefficient (relative permeability) may then be determined. The apparatus is described in detail, along with the results obtained. We demonstrate the validity of the experimental results and conclude the paper by comparing experimental data to numerical simulation. Copyright © 2015 Elsevier Inc. All rights reserved.
Nonlinear Spinor Field in Non-Diagonal Bianchi Type Space-Time
Directory of Open Access Journals (Sweden)
Saha Bijan
2018-01-01
Full Text Available Within the scope of the non-diagonal Bianchi cosmological models we have studied the role of the spinor field in the evolution of the Universe. In the non-diagonal Bianchi models the spinor field distribution along the main axis is anisotropic and does not vanish in the absence of the spinor field nonlinearity. Hence within these models perfect fluid, dark energy etc. cannot be simulated by the spinor field nonlinearity. The equation for volume scale V in the case of non-diagonal Bianchi models contains a term with first derivative of V explicitly and does not allow exact solution by quadratures. Like the diagonal models the non-diagonal Bianchi space-time becomes locally rotationally symmetric even in the presence of a spinor field. It was found that depending on the sign of the coupling constant the model allows either an open Universe that rapidly grows up or a close Universe that ends in a Big Crunch singularity.
Directory of Open Access Journals (Sweden)
Arif GÜRAY
2002-01-01
Full Text Available In this work, the diagonal tensile strength of furniture edge joints such as wooden dowel, minifix, and alyan screw was investigated in panel-constructed boards for Suntalam and MDF Lam. For this purpose, a diagonal tensile strength test was applied to the 72 samples. According to the results, the maximum diagonal tensile strength was found to be in MDF Lam boards that jointed with alyan screw.
Multi-subject Manifold Alignment of Functional Network Structures via Joint Diagonalization.
Nenning, Karl-Heinz; Kollndorfer, Kathrin; Schöpf, Veronika; Prayer, Daniela; Langs, Georg
2015-01-01
Functional magnetic resonance imaging group studies rely on the ability to establish correspondence across individuals. This enables location specific comparison of functional brain characteristics. Registration is often based on morphology and does not take variability of functional localization into account. This can lead to a loss of specificity, or confounds when studying diseases. In this paper we propose multi-subject functional registration by manifold alignment via coupled joint diagonalization. The functional network structure of each subject is encoded in a diffusion map, where functional relationships are decoupled from spatial position. Two-step manifold alignment estimates initial correspondences between functionally equivalent regions. Then, coupled joint diagonalization establishes common eigenbases across all individuals, and refines the functional correspondences. We evaluate our approach on fMRI data acquired during a language paradigm. Experiments demonstrate the benefits in matching accuracy achieved by coupled joint diagonalization compared to previously proposed functional alignment approaches, or alignment based on structural correspondences.
Noble, J. H.; Lubasch, M.; Stevens, J.; Jentschura, U. D.
2017-12-01
We describe a matrix diagonalization algorithm for complex symmetric (not Hermitian) matrices, A ̲ =A̲T, which is based on a two-step algorithm involving generalized Householder reflections based on the indefinite inner product 〈 u ̲ , v ̲ 〉 ∗ =∑iuivi. This inner product is linear in both arguments and avoids complex conjugation. The complex symmetric input matrix is transformed to tridiagonal form using generalized Householder transformations (first step). An iterative, generalized QL decomposition of the tridiagonal matrix employing an implicit shift converges toward diagonal form (second step). The QL algorithm employs iterative deflation techniques when a machine-precision zero is encountered "prematurely" on the super-/sub-diagonal. The algorithm allows for a reliable and computationally efficient computation of resonance and antiresonance energies which emerge from complex-scaled Hamiltonians, and for the numerical determination of the real energy eigenvalues of pseudo-Hermitian and PT-symmetric Hamilton matrices. Numerical reference values are provided.
Nonconformal scalar field in uniform isotropic space and the method of Hamiltonian diagonalization
International Nuclear Information System (INIS)
Pavlov, Yu.V.
2001-01-01
One diagonalized metric Hamiltonian of scalar field with arbitrary relation with curvature in N-dimensional uniform isotropic space. One derived spectrum of energies of the appropriate quasi-particles. One calculated energy of quasi-particle appropriate to the canonical Hamiltonian diagonal shape. One structured a modified tensor of energy-pulse with the following features. In case of conformal scalar field it coincides with the metric tensor of energy-pulse. When it is diagonalized the energies of the appropriate particles of nonconformal field are equal to oscillation frequency and the number of such particles produced in non-stationary metric is the finite one. It is shown that Hamiltonian calculated on the basis of the modified tensor of energy-pulse may be derived as a canonical one at certain selection of variables [ru
A new three-dimensional equivalent circuit of diagonal type MHD generator
International Nuclear Information System (INIS)
Yoshida, Masahrau; Komaya, Kiyotoshi; Umoto, Juro
1979-01-01
For a large scale diagonal type generator with oil combustion gas plasma, a new three-dimensional equivalent circuit is proposed, in which threre are considered the leakage resistance of the duct insulator surface, the boundary layer, the ion slip, the effect of the finite electrode segmentation etc. Next, through the relation between the Hall voltage per one electrode pitch region and the load current obtained by use of the equivalent circuit, a suitable size and number of the space elements per region and determined. Further, by comparing in detail the electrical performances of two types of the diagonal generators with diagonal conducting and insulating sidewalls, three-dimensional effects of the sidewalls are discussed. (author)
Rossi-Arnaud, Clelia; Pieroni, Laura; Spataro, Pietro; Baddeley, Alan
2012-09-01
Previous studies, using a modified version of the sequential Corsi block task to examine the impact of symmetry on visuospatial memory, showed an advantage of vertical symmetry over non-symmetrical sequences, but no effect of horizontal or diagonal symmetry. The present four experiments investigated the mechanisms underlying the encoding of vertical, horizontal and diagonal configurations using simultaneous presentation and a dual-task paradigm. Results indicated that the recall of vertically symmetric arrays was always better than that of all other patterns and was not influenced by any of the concurrent tasks. Performance with horizontally or diagonally symmetrical patterns differed, with high performing participants showing little effect of concurrent tasks, while low performers were disrupted by concurrent visuospatial and executive tasks. A verbal interference had no effect on either group. Implications for processes involved in the encoding of symmetry are discussed, together with the crucial importance of individual differences. Copyright © 2012 Elsevier B.V. All rights reserved.
Novel Diagonal Reloading Based Direction of Arrival Estimation in Unknown Non-Uniform Noise
Directory of Open Access Journals (Sweden)
Hao Zhou
2018-01-01
Full Text Available Nested array can expand the degrees of freedom (DOF from difference coarray perspective, but suffering from the performance degradation of direction of arrival (DOA estimation in unknown non-uniform noise. In this paper, a novel diagonal reloading (DR based DOA estimation algorithm is proposed using a recently developed nested MIMO array. The elements in the main diagonal of the sample covariance matrix are eliminated; next the smallest MN-K eigenvalues of the revised matrix are obtained and averaged to estimate the sum value of the signal power. Further the estimated sum value is filled into the main diagonal of the revised matrix for estimating the signal covariance matrix. In this case, the negative effect of noise is eliminated without losing the useful information of the signal matrix. Besides, the degrees of freedom are expanded obviously, resulting in the performance improvement. Several simulations are conducted to demonstrate the effectiveness of the proposed algorithm.
Diagonal Likelihood Ratio Test for Equality of Mean Vectors in High-Dimensional Data
Hu, Zongliang; Tong, Tiejun; Genton, Marc G.
2017-01-01
We propose a likelihood ratio test framework for testing normal mean vectors in high-dimensional data under two common scenarios: the one-sample test and the two-sample test with equal covariance matrices. We derive the test statistics under the assumption that the covariance matrices follow a diagonal matrix structure. In comparison with the diagonal Hotelling's tests, our proposed test statistics display some interesting characteristics. In particular, they are a summation of the log-transformed squared t-statistics rather than a direct summation of those components. More importantly, to derive the asymptotic normality of our test statistics under the null and local alternative hypotheses, we do not require the assumption that the covariance matrix follows a diagonal matrix structure. As a consequence, our proposed test methods are very flexible and can be widely applied in practice. Finally, simulation studies and a real data analysis are also conducted to demonstrate the advantages of our likelihood ratio test method.
DEFF Research Database (Denmark)
Zhang, Shuai; Zhao, Kun; Ying, Zhinong
2015-01-01
mechanism of the mismatch of these three bandwidth ranges is also explained. Furthermore, the diagonal antenna-chassis mode is also studied for MIMO elements in the adjacent and diagonal corner locations. As a practical example, a wideband collocated LTE MIMO antenna is proposed and measured. It covers......A diagonal antenna-chassis mode is investigated in long-term evolution multiple-input-multiple-output (LTE MIMO) antennas. The MIMO bandwidth is defined in this paper as the overlap range of the low-envelope correlation coefficient, high total efficiency, and -6-dB impedance matching bandwidths...... the bands of 740960 and 1700-2700 MHz, where the total efficiencies are better than -3.4 and -1.8 dB, with lower than 0.5 and 0.1, respectively. The measurements agree well with the simulations. Since the proposed method only needs to modify the excitation locations of the MIMO elements on the chassis...
International Nuclear Information System (INIS)
Jiang, Tongsong; Jiang, Ziwu; Zhang, Zhaozhong
2015-01-01
In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics
Lawler, Gregory F.; Werner, Wendelin
2003-01-01
We define a natural conformally invariant measure on unrooted Brownian loops in the plane and study some of its properties. We relate this measure to a measure on loops rooted at a boundary point of a domain and show how this relation gives a way to ``chronologically add Brownian loops'' to simple curves in the plane.
Yildiz Ulus, Aysegul
2013-01-01
This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…
Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity
Directory of Open Access Journals (Sweden)
Sergiu I. Vacaru
2016-01-01
Full Text Available Using our anholonomic frame deformation method, we show how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates and undergoing a phase of ultra-slow contraction can be constructed in massive gravity. In this paper, there are found and studied new classes of locally anisotropic and (inhomogeneous cosmological metrics with open and closed spatial geometries. The late time acceleration is present due to effective cosmological terms induced by nonlinear off-diagonal interactions and graviton mass. The off-diagonal cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann–Lamaître–Robertson–Walker (FLRW coordinates. We show that the solutions include matter, graviton mass and other effective sources modeling nonlinear gravitational and matter fields interactions in modified and/or massive gravity, with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects. There are stated and analyzed the conditions when such configurations mimic interesting solutions in general relativity and modifications and recast the general Painlevé–Gullstrand and FLRW metrics. Finally, we elaborate on a reconstruction procedure for a subclass of off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes, with an emphasis on open issues and observable signatures.
Relation between Feynman Cycles and Off-Diagonal Long-Range Order
International Nuclear Information System (INIS)
Ueltschi, Daniel
2006-01-01
The usual order parameter for Bose-Einstein condensation involves the off-diagonal correlation function of Penrose and Onsager, but an alternative is Feynman's notion of infinite cycles. We present a formula that relates both order parameters. We discuss its validity with the help of rigorous results and heuristic arguments. The conclusion is that infinite cycles do not always represent the Bose condensate
Stability of matrices with sufficiently strong negative-dominant-diagonal submatrices
Nieuwenhuis, H.J.; Schoonbeek, L.
A well-known sufficient condition for stability of a system of linear first-order differential equations is that the matrix of the homogeneous dynamics has a negative dominant diagonal. However, this condition cannot be applied to systems of second-order differential equations. In this paper we
Correlation between eigenvalues and sorted diagonal matrix elements of a large dimensional matrix
International Nuclear Information System (INIS)
Arima, A.
2008-01-01
Functional dependences of eigenvalues as functions of sorted diagonal elements are given for realistic nuclear shell model (NSM) hamiltonian, the uniform distribution hamiltonian and the GOE hamiltonian. In the NSM case, the dependence is found to be linear. We discuss extrapolation methods for more accurate predictions for low-lying states. (author)
A dynamical characterization of diagonal-preserving *-isomorphisms of graph C*-algebras
DEFF Research Database (Denmark)
Arklint, Sara; Eilers, Søren; Ruiz, Efren
2017-01-01
We characterize when there exists a diagonal-preserving (Formula presented.)-isomorphism between two graph (Formula presented.)-algebras in terms of the dynamics of the boundary path spaces. In particular, we refine the notion of ‘orbit equivalence’ between the boundary path spaces of the directe...
Hamiltonian diagonalization in foliable space-times: A method to find the modes
International Nuclear Information System (INIS)
Castagnino, M.; Ferraro, R.
1989-01-01
A way to obtain modes diagonalizing the canonical Hamiltonian of a minimally coupled scalar quantum field, in a foliable space-time, is shown. The Cauchy data for these modes are found to be the eigenfunctions of a second-order differential operator that could be interpreted as the squared Hamiltonian for the first-quantized relativistic particle in curved space
Relativistic density matrix in the diagonal momentum representation. Bose-gas
International Nuclear Information System (INIS)
Makhlin, A.N.; Sinyukov, Yu.M.
1984-01-01
The relativistic-invariance treatment of the ideal Bose-system arising from the diagonal momentum representation for the density matrix is developed. The average occupation members and their correlators for statistical systems in arbitrary inertial frames are found on the equal-time hypersurfaces. The relativistic partition function method for the calculation of thermodynamic properties of gases moving as a whole is constructed
Mahomed, Ozayr Haroon; Asmall, Shaidah; Freeman, Melvyn
2014-11-01
The integrated chronic disease management model provides a systematic framework for creating a fundamental change in the orientation of the health system. This model adopts a diagonal approach to health system strengthening by establishing a service-linked base to training, supervision, and the opportunity to try out, assess, and implement integrated interventions.
Energy Technology Data Exchange (ETDEWEB)
Pieper, Andreas [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Kreutzer, Moritz [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany); Alvermann, Andreas, E-mail: alvermann@physik.uni-greifswald.de [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Galgon, Martin [Bergische Universität Wuppertal (Germany); Fehske, Holger [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Hager, Georg [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany); Lang, Bruno [Bergische Universität Wuppertal (Germany); Wellein, Gerhard [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)
2016-11-15
We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need for matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 10{sup 2} innermost eigenpairs of a topological insulator matrix with dimension 10{sup 9} derived from quantum physics applications.
Hathout, Leith
2007-01-01
Counting the number of internal intersection points made by the diagonals of irregular convex polygons where no three diagonals are concurrent is an interesting problem in discrete mathematics. This paper uses an iterative approach to develop a summation relation which tallies the total number of intersections, and shows that this total can be…
Diagonal K-matrices and transfer matrix eigenspectra associated with the G(1)2 R-matrix
International Nuclear Information System (INIS)
Yung, C.M.; Batchelor, M.T.
1995-01-01
We find all the diagonal K-matrices for the R-matrix associated with the minimal representation of the exceptional affine algebra G (1) 2 . The corresponding transfer matrices are diagonalized with a variation of the analytic Bethe ansatz. We find many similarities with the case of the Izergin-Korepin R-matrix associated with the affine algebra A (2) 2 . ((orig.))
Renormalization of loop functions for all loops
International Nuclear Information System (INIS)
Brandt, R.A.; Neri, F.; Sato, M.
1981-01-01
It is shown that the vacuum expectation values W(C 1 ,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp[igcontour-integral/sub C/iA/sub μ/(x)dx/sup μ/] are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub μ/(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multiplied by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub γ/ is a loop which is smooth and simple except for a single cusp of angle γ, then W/sub R/(C/sub γ/) = Z(γ)W(C/sub γ/) is finite for a suitable renormalization factor Z(γ) which depends on γ but on no other characteristic of C/sub γ/. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub γ/) = 1 for an arbitrary but fixed loop C-bar/sub γ/. Next, if C/sub β/ is a loop which is smooth and simple except for a cross point of angles β, then W(C/sub β/) must be renormalized together with the loop functions of associated sets S/sup i//sub β/ = ]C/sup i/ 1 ,xxx, C/sup i//sub p/i] (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub β/equivalentC 1 1 . Then W/sub R/(S/sup i//sub β/) = Z/sup i/j(β)W(S/sup j//sub β/) is finite for a suitable matrix Z/sup i/j
Directory of Open Access Journals (Sweden)
Sebastián B. Lamot
2007-08-01
Full Text Available El surco diagonal es un signo encontrado en el lóbulo de la oreja, que estaría relacionado con la enfermedad arterial coronaria. Nuestro objetivo fue estudiar la utilidad del signo. Se examinaron 104 pacientes (entre 30 y 80 años clasificados por sexo y edad. Cuarenta y nueve tenían enfermedad arterial coronaria diagnosticada por coronariografía (obstrucción > del 70% en una de las grandes arterias y/o gamagrafía de perfusión miocárdica con Talio 201 (defecto fijo. El grupo control estuvo compuesto por 55 pacientes (asintomáticos, con electrocardiograma normal. Los datos obtenidos fueron sensibilidad (61.2%, especificidad (78.2%, valor predictivo positivo de (71.4% y valor predictivo negativo (69.3%.. Observamos una relación significativa entre la presencia de surco diagonal y enfermedad arterial coronaria. Consideramos que este signo podría resultar de utilidad en la práctica clínica, fundamentalmente para los pacientes entre 30 y 60 años.The diagonal earlobe crease is a sign theorically related to coronary artery disease. The purpose of this study was to prove the usefulness of this sign. A total of 104 patients were examined (ages 30 to 80 grouped by age and sex. Forty nine of them were diagnosed of having coronary artery disease by coronary angiography (a 70% obstruction of one of the major arteries, and/or myocardial perfusion imaging with Thallium 201 (fixed defects. The control group included 55 patients (asymptomatic with normal electrocardiogram. Data here obtained included sensitivity (61.2%, specificity (78.2%, positive predictive value (71.4% and negative predictive value (69.3%. We found a significant relation between the presence of the diagonal earlobe crease and coronary artery disease. We consider it a sign that could prove useful in clinical practice, mainly among patients aged between 30 and 60.
The Color Antisymmetric Ghost Propagator and One-Loop Vertex Renormalization
Furui, Sadataka
2007-01-01
The color matrix elements of the ghost triangle diagram that appears in the triple gluon vertex and the ghost-ghost-gluon triangle diagram that appears in the ghost-gluon-ghost vertex are calculated. The ghost-ghost-gluon triangle contains a loop consisting of two color diagonal ghosts and one gluon and a loop consisting of two color antisymmetric ghosts and one gluon. Consequently, the pQCD argument in the infrared region based on the one particle irreducible diagram should be modified. Impl...
The color antisymmetric ghost propagator and one-loop vertex renormalization
International Nuclear Information System (INIS)
Furui, Sadataka
2008-01-01
The color matrix elements of the ghost triangle diagram that appears in the triple gluon vertex and the ghost-ghost-gluon triangle diagram that appears in the ghost-gluon-ghost vertex are calculated. The ghost-ghost-gluon triangle contains a loop consisting of two color diagonal ghosts and one gluon and a loop consisting of two color antisymmetric ghosts and one gluon. Consequently, the pQCD argument in the infrared region based on the one particle irreducible diagram should be modified. Implications for the Kugo-Ojima color confinement and the QCD running coupling are discussed. (author)
Reggeon interactions in perturbative QCD
International Nuclear Information System (INIS)
Kirschner, R.
1994-08-01
We study the pairwise interaction of reggeized gluons and quarks in the Regge limit of perturbative QCD. The interactions are represented as integral kernels in the transverse momentum space and as operators in the impact parameter space. We observe conformal symmetry and holomorphic factorization in all cases. (orig.)
International Nuclear Information System (INIS)
Griffiths, S.
1999-06-01
We consider the description of deep inelastic scattering by perturbative quantum chromo dynamics in the Regge-limit, specifically via the Reggeization of fundamental particles (gluons and quarks) and the description of processes by integro-differential equations such as the BFKL equation. We review the Reggeization of the gluon via Feynman diagrams in the leading-log approximation and then extend this to an original demonstration of the quark's Reggeization. In analogy to the hard Pomeron's description in terms of Reggeized gluons we consider the ρ-meson's trajectory in terms of the exchange of Reggeized quarks and derive the evolution equation describing this. The solutions of this equation, both analytic and numeric, are then looked at in some detail, and we demonstrate how the low-x behaviour is enhanced. We then make modifications to include a running coupling constant and massive propagators, and investigate the effects that these have on the asymptotics of the ρ-trajectory. (author)
Lawler, Gregory F.; Ferreras, José A. Trujillo
2004-01-01
The Brownian loop soup introduced in Lawler and Werner (2004) is a Poissonian realization from a sigma-finite measure on unrooted loops. This measure satisfies both conformal invariance and a restriction property. In this paper, we define a random walk loop soup and show that it converges to the Brownian loop soup. In fact, we give a strong approximation result making use of the strong approximation result of Koml\\'os, Major, and Tusn\\'ady. To make the paper self-contained, we include a proof...
Can we observe open loop transfer functions in a stochastic feedback system ?
International Nuclear Information System (INIS)
Kishida, Kuniharu; Suda, Nobuhide.
1991-01-01
There are two kinds of problems concerning open loop and closed loop transfer functions in a feedback system. One is a problem even in the deterministic case, and the other is in the stochastic case. In the deterministic case it is guaranteed under a necessary and sufficient condition that total sum of degrees of sub-transfer functions coincides to the degree of the total system. In the stochastic case a systematic understanding of a physical state model, a theoretical innovation model and a data-oriented innovation model is indispensable for determination of open loop transfer functions from time series data. Undesirable factors appear in determination of open loop transfer functions, since a transfer function matrix from input noises to output variables has a redundancy factor of diagonal matrix. (author)
On loop extensions and cohomology of loops
Benítez, Rolando Jiménez; Meléndez, Quitzeh Morales
2015-01-01
In this paper are defined cohomology-like groups that classify loop extensions satisfying a given identity in three variables for association identities, and in two variables for the case of commutativity. It is considered a large amount of identities. This groups generalize those defined in works of Nishigori [2] and of Jhonson and Leedham-Green [4]. It is computed the number of metacyclic extensions for trivial action of the quotient on the kernel in one particular case for left Bol loops a...
Neutron transport in irradiation loops (IRENE loop)
International Nuclear Information System (INIS)
Sarsam, Maher.
1980-09-01
This thesis is composed of two parts with different aspects. Part one is a technical description of the loop and its main ancillary facilities as well as of the safety and operational regulations. The measurement methods on the model of the ISIS reactor and on the loop in the OSIRIS reactor are described. Part two deals with the possibility of calculating the powers dissipated by each rod of the fuel cluster, using appropriate computer codes, not only in the reflector but also in the core and to suggest a method of calculation [fr
The resolution of field identification fixed points in diagonal coset theories
International Nuclear Information System (INIS)
Fuchs, J.; Schellekens, B.; Schweigert, C.
1995-09-01
The fixed point resolution problem is solved for diagonal coset theories. The primary fields into which the fixed points are resolved are described by submodules of the branching spaces, obtained as eigenspaces of the automorphisms that implement field identification. To compute the characters and the modular S-matrix we use ''orbit Lie algebras'' and ''twining characters'', which were introduced in a previous paper. The characters of the primary fields are expressed in terms branching functions of twining characters. This allows us to express the modular S-matrix through the S-matrices of the orbit Lie algebras associated to the identification group. Our results can be extended to the larger class of ''generalized diagonal cosets''. (orig.)
Using Volunteer Computing to Study Some Features of Diagonal Latin Squares
Vatutin, Eduard; Zaikin, Oleg; Kochemazov, Stepan; Valyaev, Sergey
2017-12-01
In this research, the study concerns around several features of diagonal Latin squares (DLSs) of small order. Authors of the study suggest an algorithm for computing minimal and maximal numbers of transversals of DLSs. According to this algorithm, all DLSs of a particular order are generated, and for each square all its transversals and diagonal transversals are constructed. The algorithm was implemented and applied to DLSs of order at most 7 on a personal computer. The experiment for order 8 was performed in the volunteer computing project Gerasim@home. In addition, the problem of finding pairs of orthogonal DLSs of order 10 was considered and reduced to Boolean satisfiability problem. The obtained problem turned out to be very hard, therefore it was decomposed into a family of subproblems. In order to solve the problem, the volunteer computing project SAT@home was used. As a result, several dozen pairs of described kind were found.
Wu, Sheng-Jhih; Chu, Moody T.
2017-08-01
An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.
Direct current hopping conductance in one-dimensional diagonal disordered systems
Institute of Scientific and Technical Information of China (English)
Ma Song-Shan; Xu Hui; Liu Xiao-Liang; Xiao Jian-Rong
2006-01-01
Based on a tight-binding disordered model describing a single electron band, we establish a direct current (dc) electronic hopping transport conductance model of one-dimensional diagonal disordered systems, and also derive a dc conductance formula. By calculating the dc conductivity, the relationships between electric field and conductivity and between temperature and conductivity are analysed, and the role played by the degree of disorder in electronic transport is studied. The results indicate the conductivity of systems decreasing with the increase of the degree of disorder, characteristics of negative differential dependence of resistance on temperature at low temperatures in diagonal disordered systems, and the conductivity of systems decreasing with the increase of electric field, featuring the non-Ohm's law conductivity.
International Nuclear Information System (INIS)
Wu, Sheng-Jhih; Chu, Moody T
2017-01-01
An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing–Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations. (paper)
Jain, Mamta; Kumar, Anil; Choudhary, Rishabh Charan
2017-06-01
In this article, we have proposed an improved diagonal queue medical image steganography for patient secret medical data transmission using chaotic standard map, linear feedback shift register, and Rabin cryptosystem, for improvement of previous technique (Jain and Lenka in Springer Brain Inform 3:39-51, 2016). The proposed algorithm comprises four stages, generation of pseudo-random sequences (pseudo-random sequences are generated by linear feedback shift register and standard chaotic map), permutation and XORing using pseudo-random sequences, encryption using Rabin cryptosystem, and steganography using the improved diagonal queues. Security analysis has been carried out. Performance analysis is observed using MSE, PSNR, maximum embedding capacity, as well as by histogram analysis between various Brain disease stego and cover images.
Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.
Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai
2011-01-01
Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs. Published by Elsevier Ltd.
Diagonalization and Many-Body Localization for a Disordered Quantum Spin Chain
Imbrie, John Z
2016-01-01
We consider a weakly interacting quantum spin chain with random local interactions. We prove that many-body localization follows from a physically reasonable assumption that limits the extent of level attraction in the statistics of eigenvalues. In a KAM-style construction, a sequence of local unitary transformations is used to diagonalize the Hamiltonian by deforming the initial tensor product basis into a complete set of exact many-body eigenfunctions.
Exact diagonalization of the D-dimensional spatially confined quantum harmonic oscillator
Directory of Open Access Journals (Sweden)
Kunle Adegoke
2016-01-01
Full Text Available In the existing literature various numerical techniques have been developed to quantize the confined harmonic oscillator in higher dimensions. In obtaining the energy eigenvalues, such methods often involve indirect approaches such as searching for the roots of hypergeometric functions or numerically solving a differential equation. In this paper, however, we derive an explicit matrix representation for the Hamiltonian of a confined quantum harmonic oscillator in higher dimensions, thus facilitating direct diagonalization.
Diagonalization of propagators in thermo field dynamics for relativistic quantum fields
International Nuclear Information System (INIS)
Henning, P.A.; Umezawa, H.
1992-09-01
Two-point functions for interacting quantum fields in statistical systems can be diagnolized by matrix transformations. It is shown, that within the framework of time-dependent Thermo Field Dynamics this diagonalization can be understood as a thermal Bogoliubov transformation to non-interacting statistical quasi-particles. The condition for their unperturbed propagation relates these states to the thermodynamic properties of the system: It requires global equilibrium for stationary situations, or specifies the time evolution according to a kinetic equation. (orig.)
Gradient $L^q$ theory for a class of non-diagonal nonlinear elliptic systems
Czech Academy of Sciences Publication Activity Database
Bulíček, M.; Kalousek, M.; Kaplický, P.; Mácha, Václav
2018-01-01
Roč. 171, June (2018), s. 156-169 ISSN 0362-546X R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : regularity * gradient estimates * non-diagonal elliptic systems Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.192, year: 2016 https://www.sciencedirect.com/science/ article /pii/S0362546X18300385
Off-diagonal helicity density matrix elements for vector mesons produced at LEP
International Nuclear Information System (INIS)
Anselmino, M.; Bertini, M.; Quintairos, P.
1997-05-01
Final state q q-bar interactions may give origin to non zero values of the off-diagonal element ρ 1 of the helicity density matrix of vector mesons produced in e + e - annihilations, as confirmed by recent OPAL data on φ and D * 's. Predictions are given for ρ1,-1 of several mesons produced at large z and small PT, collinear with the parent jet; the values obtained for θ and D * are in agreement with data. (author)
International Nuclear Information System (INIS)
Filippov, G.F.; Chopovsky, L.L.; Vasilevsky, V.S.
1982-01-01
The states of continuous spectrum in a system of two interacting clusters are studied. It is shown that the Hamiltonian diagonalization on the oscillator basis isolates those states in a continuous spectrum whose amplitudes have a node at a certain number of oscillator quanta. As an example the interaction of the 4 He and 3 H nuclei is considered. These nuclei form a coupled system - 7 Li
Gradient $L^q$ theory for a class of non-diagonal nonlinear elliptic systems
Czech Academy of Sciences Publication Activity Database
Bulíček, M.; Kalousek, M.; Kaplický, P.; Mácha, Václav
2018-01-01
Roč. 171, June (2018), s. 156-169 ISSN 0362-546X R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : regularity * gradient estimates * non-diagonal elliptic systems Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.192, year: 2016 https://www.sciencedirect.com/science/article/pii/S0362546X18300385
Workshop report on large-scale matrix diagonalization methods in chemistry theory institute
Energy Technology Data Exchange (ETDEWEB)
Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S. [eds.
1996-10-01
The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems as well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of
International Nuclear Information System (INIS)
Moeller, S.V.
1983-02-01
The procedures used to operate the water loop of the Institute of Nuclear Enginering (IEN) in Brazil are presented. The aim is to help future operators of the training water loop in the operation technique and in a better comprehension of the phenomena occured during the execution of an experience. (E.G.) [pt
Diagonal Likelihood Ratio Test for Equality of Mean Vectors in High-Dimensional Data
Hu, Zongliang
2017-10-27
We propose a likelihood ratio test framework for testing normal mean vectors in high-dimensional data under two common scenarios: the one-sample test and the two-sample test with equal covariance matrices. We derive the test statistics under the assumption that the covariance matrices follow a diagonal matrix structure. In comparison with the diagonal Hotelling\\'s tests, our proposed test statistics display some interesting characteristics. In particular, they are a summation of the log-transformed squared t-statistics rather than a direct summation of those components. More importantly, to derive the asymptotic normality of our test statistics under the null and local alternative hypotheses, we do not require the assumption that the covariance matrix follows a diagonal matrix structure. As a consequence, our proposed test methods are very flexible and can be widely applied in practice. Finally, simulation studies and a real data analysis are also conducted to demonstrate the advantages of our likelihood ratio test method.
Directory of Open Access Journals (Sweden)
Yutaka Misawa
2015-06-01
Full Text Available Building facades play an important role in creating the urban landscape and they can be used effectively to reduce energy usage and environmental impacts, while also incorporating structural seismic-resistant elements in the building perimeter zone. To address these opportunities, the authors propose an integrated facade concept which satisfies architectural facade and environmental design requirements. In Europe, remarkable facade engineering developments have taken place over the last two decades resulting in elegant facades and a reduction in environmental impact; however modifications are needed in Japan to take account of the different seismic and environmental situations. To satisfy these requirements, this paper proposes the use of a diagonally disposed louver system. Diagonally arranged louvers have the potential to provide both seismic resistance and environment adaptation. In many cases, louvers have been designed but not installed due to concerns relating to restricted external sight lines and low levels of natural lighting in the building interior. To overcome these problems, full-scale diagonally arranged louver mock-ups were created to evaluate illumination levels, the quality of the internal daylight environment and external appearance. Interior illumination levels resulting from a series of mock-up experiments were evaluated and correlated with results from a daylight analysis tool.
Images of a Bose-Einstein condensates: diagonal dynamical Bogoliubov vacuum
International Nuclear Information System (INIS)
Dziarmaga, J.; Sacha, K.; Karkuszewski, Z.
2005-01-01
Evolution of a Bose-Einstein condensate subject to a time-dependent external perturbation can be described by a time-dependent Bogoliubov theory: a condensate initially in its ground state evolves into a time-dependent excited state which can be formally written as a time-dependent Bogoliubov vacuum annihilated by time-dependent quasiparticle annihilation operators. We prove that any Bogoliubov vacuum can be brought to a diagonal form in a time-dependent orthonormal basis. This diagonal form is taylored for simulations of quantum measurements on excited condensates. As an example we work out a model of atomic interferometer where a trap potential is split in two parts by a potential barrier, and then atoms are released by opening the double-well trap potential. In the Gross-Pitaevskii approximation the released atoms give a high contrast interference pattern with repeatable position of interference fringes. In the two-mode tight-binding approximation the effect of phase diffusion makes the position of fringes fluctuate from experiment to experiment but every single realisation of experiment gives a high quality interference pattern. The time-dependent Bogoliubov theory is a more realistic description of the experiment which goes beyond both approximations. Using the diagonal time-dependent Bogoliubov vacuum we show that in addition to position fluctuations the interference pattern is also loosing its high quality contrast. (author)
Adaptive PVD Steganography Using Horizontal, Vertical, and Diagonal Edges in Six-Pixel Blocks
Directory of Open Access Journals (Sweden)
Anita Pradhan
2017-01-01
Full Text Available The traditional pixel value differencing (PVD steganographical schemes are easily detected by pixel difference histogram (PDH analysis. This problem could be addressed by adding two tricks: (i utilizing horizontal, vertical, and diagonal edges and (ii using adaptive quantization ranges. This paper presents an adaptive PVD technique using 6-pixel blocks. There are two variants. The proposed adaptive PVD for 2×3-pixel blocks is known as variant 1, and the proposed adaptive PVD for 3×2-pixel blocks is known as variant 2. For every block in variant 1, the four corner pixels are used to hide data bits using the middle column pixels for detecting the horizontal and diagonal edges. Similarly, for every block in variant 2, the four corner pixels are used to hide data bits using the middle row pixels for detecting the vertical and diagonal edges. The quantization ranges are adaptive and are calculated using the correlation of the two middle column/row pixels with the four corner pixels. The technique performs better as compared to the existing adaptive PVD techniques by possessing higher hiding capacity and lesser distortion. Furthermore, it has been proven that the PDH steganalysis and RS steganalysis cannot detect this proposed technique.
Off-diagonal generalization of the mixed-state geometric phase
International Nuclear Information System (INIS)
Filipp, Stefan; Sjoeqvist, Erik
2003-01-01
The concept of off-diagonal geometric phases for mixed quantal states in unitary evolution is developed. We show that these phases arise from three basic ideas: (1) fulfillment of quantum parallel transport of a complete basis, (2) a concept of mixed-state orthogonality adapted to unitary evolution, and (3) a normalization condition. We provide a method for computing the off-diagonal mixed-state phases to any order for unitarities that divide the parallel transported basis of Hilbert space into two parts: one part where each basis vector undergoes cyclic evolution and one part where all basis vectors are permuted among each other. We also demonstrate a purification based experimental procedure for the two lowest-order mixed-state phases and consider a physical scenario for a full characterization of the qubit mixed-state geometric phases in terms of polarization-entangled photon pairs. An alternative second order off-diagonal mixed-state geometric phase, which can be tested in single-particle experiments, is proposed
Directory of Open Access Journals (Sweden)
Jaroslav Peregrin
2017-11-01
Full Text Available It is a trivial fact that if we have a square table filled with numbers, we can always form a column which is not yet contained in the table. Despite its apparent triviality, this fact can lead us the most of the path-breaking results of logic in the second half of the nineteenth and the first half of the twentieth century. We explain how this fact can be used to show that there are more sequences of natural numbers than there are natural numbers, that there are more real numbers than natural numbers and that every set has more subsets than elements (all results due to Cantor; we indicate how this fact can be seen as underlying the celebrated Russell’s paradox; and we show how it can be employed to expose the most fundamental result of mathematical logic of the twentieth century, Gödel’s incompleteness theorem. Finally, we show how this fact yields the unsolvability of the halting problem for Turing machines.
International Nuclear Information System (INIS)
Weinstein, M.
2012-01-01
I will talk about a new way of implementing Lanczos and contraction algorithms to diagonalize lattice Hamiltonians that dramatically reduces the memory required to do the computation, without restricting to variational ansatzes. (author)
International Nuclear Information System (INIS)
Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.
1981-10-01
An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed
Natively unstructured loops differ from other loops.
Directory of Open Access Journals (Sweden)
Avner Schlessinger
2007-07-01
Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested
Introduction to Loop Heat Pipes
Ku, Jentung
2015-01-01
This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.
International Nuclear Information System (INIS)
Brzoska, A.M.; Lenz, F.; Thies, M.; Negele, J.W.
2005-01-01
A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory
... this page: //medlineplus.gov/ency/article/001146.htm Blind loop syndrome To use the sharing features on ... Clinical Professor of Medicine, The George Washington University School of Medicine, Washington, DC. Also reviewed by David ...
National Research Council Canada - National Science Library
Heier, Jeffrey E
2008-01-01
...) processes via the Observe, Orient, Decide, and Act (OODA) Loop concept. As defined by Wikipedia, a mashup is a Website or application that combines the content from more than one source into an integrated presentation...
International Nuclear Information System (INIS)
Sochaski, R.O.
1962-07-01
This report describes broadly the nine in-reactor loops, and their components, located in and around the NRX and NRU reactors at Chalk River. First an introduction and general description is given of the loops and their function, supplemented with a table outlining some loop specifications and nine simplified flow sheets, one for each individual loop. The report then proceeds to classify each loop into two categories, the 'main loop circuit' and the 'auxiliary circuit', and descriptions are given of each circuit's components in turn. These components, in part, are comprised of the main loop pumps, the test section, loop heaters, loop coolers, delayed-neutron monitors, surge tank, Dowtherm coolers, loop piping. Here again photographs, drawings and tables are included to provide a clearer understanding of the descriptive literature and to include, in tables, some specifications of the more important components in each loop. (author)
Dechanneling by dislocation loops
International Nuclear Information System (INIS)
Chalant, Gerard.
1976-09-01
Ion implantation always induces the creation of dislocation loops. When the damage profile is determined by a backscattering technique, the dechanneling by these loops is implicitely at the origin of these measurements. The dechanneling of alpha particles by dislocation loops produced by the coalescence of quenched-in vacancies in aluminium is studied. The dechanneling and the concentration of loops were determined simultaneously. The dechanneling width around dislocation was found equal to lambda=6A, both for perfect and imperfect loops having a mean diameter d=250A. In the latter case, a dechanneling probability chi=0.34 was determined for the stacking fault, in good agreement with previous determination in gold. A general formula is proposed which takes into account the variation of lambda with the curvature (or the diameter d) of the loops. Finally, by a series of isothermal anneals, the self-diffusion energy ΔH of aluminium was measured. The value obtained ΔH=1.32+-0.10eV is in good agreement with the values obtained by other methods [fr
Tunneling splitting in double-proton transfer: direct diagonalization results for porphycene.
Smedarchina, Zorka; Siebrand, Willem; Fernández-Ramos, Antonio
2014-11-07
Zero-point and excited level splittings due to double-proton tunneling are calculated for porphycene and the results are compared with experiment. The calculation makes use of a multidimensional imaginary-mode Hamiltonian, diagonalized directly by an effective reduction of its dimensionality. Porphycene has a complex potential energy surface with nine stationary configurations that allow a variety of tunneling paths, many of which include classically accessible regions. A symmetry-based approach is used to show that the zero-point level, although located above the cis minimum, corresponds to concerted tunneling along a direct trans - trans path; a corresponding cis - cis path is predicted at higher energy. This supports the conclusion of a previous paper [Z. Smedarchina, W. Siebrand, and A. Fernández-Ramos, J. Chem. Phys. 127, 174513 (2007)] based on the instanton approach to a model Hamiltonian of correlated double-proton transfer. A multidimensional tunneling Hamiltonian is then generated, based on a double-minimum potential along the coordinate of concerted proton motion, which is newly evaluated at the RI-CC2/cc-pVTZ level of theory. To make it suitable for diagonalization, its dimensionality is reduced by treating fast weakly coupled modes in the adiabatic approximation. This results in a coordinate-dependent mass of tunneling, which is included in a unique Hermitian form into the kinetic energy operator. The reduced Hamiltonian contains three symmetric and one antisymmetric mode coupled to the tunneling mode and is diagonalized by a modified Jacobi-Davidson algorithm implemented in the Jadamilu software for sparse matrices. The results are in satisfactory agreement with the observed splitting of the zero-point level and several vibrational fundamentals after a partial reassignment, imposed by recently derived selection rules. They also agree well with instanton calculations based on the same Hamiltonian.
Off-diagonal deformations of Kerr metrics and black ellipsoids in heterotic supergravity
Energy Technology Data Exchange (ETDEWEB)
Vacaru, Sergiu I. [Quantum Gravity Research, Topanga, CA (United States); University ' ' Al. I. Cuza' ' , Project IDEI, Iasi (Romania); Irwin, Klee [Quantum Gravity Research, Topanga, CA (United States)
2017-01-15
Geometric methods for constructing exact solutions of equations of motion with first order α{sup '} corrections to the heterotic supergravity action implying a nontrivial Yang-Mills sector and six-dimensional, 6-d, almost-Kaehler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections, and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher-dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections; in particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The corresponding metrics can have (non-) Killing and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain wall configurations, with possible warping nearly almost-Kaehler manifolds, with gravitational and gauge instantons for nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants encoding string gravity effects. A series of examples of exact solutions describing generic off-diagonal supergravity modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed. We prove that it is possible to reproduce the Kerr and other type black solutions in general relativity (with certain types of string corrections) in the 4-d case and to generalize the solutions to non-vacuum configurations in (super-) gravity/string theories. (orig.)
Off-diagonal deformations of Kerr metrics and black ellipsoids in heterotic supergravity
International Nuclear Information System (INIS)
Vacaru, Sergiu I.; Irwin, Klee
2017-01-01
Geometric methods for constructing exact solutions of equations of motion with first order α ' corrections to the heterotic supergravity action implying a nontrivial Yang-Mills sector and six-dimensional, 6-d, almost-Kaehler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections, and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher-dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections; in particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The corresponding metrics can have (non-) Killing and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain wall configurations, with possible warping nearly almost-Kaehler manifolds, with gravitational and gauge instantons for nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants encoding string gravity effects. A series of examples of exact solutions describing generic off-diagonal supergravity modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed. We prove that it is possible to reproduce the Kerr and other type black solutions in general relativity (with certain types of string corrections) in the 4-d case and to generalize the solutions to non-vacuum configurations in (super-) gravity/string theories. (orig.)
Single-Channel Noise Reduction using Unified Joint Diagonalization and Optimal Filtering
DEFF Research Database (Denmark)
Nørholm, Sidsel Marie; Benesty, Jacob; Jensen, Jesper Rindom
2014-01-01
consider two cases, where, respectively, no distortion and distortion are incurred on the desired signal. The former can be achieved when the covariance matrix of the desired signal is rank deficient, which is the case, for example, for voiced speech. In the latter case, the covariance matrix......In this paper, the important problem of single-channel noise reduction is treated from a new perspective. The problem is posed as a filtering problem based on joint diagonalization of the covariance matrices of the desired and noise signals. More specifically, the eigenvectors from the joint...
Caracterización constitutiva de las arenas limosas de Diagonal Mar
Sánchez Rodríguez, Raúl
2004-01-01
La construcción del centro comercial Diagonal Mar en el extremo este del litoral de Barcelona, sobre el depósito deltaico del río Besòs, requirió la ejecución de una gran excavación en arenas limosas saturadas, que alcanzara la cota -18.00 metros con respecto al nivel del mar, protegida por pantallas de unos 60 metros de profundidad. Desde las primeras fases de su ejecución, la instrumentación instalada detectó un comportamiento no esperado por parte del conjunto pantalla/terreno que poní...
Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim
2017-12-15
The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.
Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions
DEFF Research Database (Denmark)
Hansen, Per Christian; Jensen, Søren Holdt
We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both...... diagonal (eigenvalue and singular value) decompositions and rank-revealing triangular decompositions (ULV, URV, VSV, ULLV and ULLIV). In addition we show how the subspace-based algorithms can be evaluated and compared by means of simple FIR filter interpretations. The algorithms are illustrated...... with working Matlab code and applications in speech processing....
Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity
International Nuclear Information System (INIS)
Toh, S. P.; Zainuddin Hishamuddin; Foo Kim Eng
2012-01-01
A two-qubit system in quantum information theory is the simplest bipartite quantum system and its concurrence for pure and mixed states is well known. As a subset of two-qubit systems, Bell-diagonal states can be depicted by a very simple geometrical representation of a tetrahedron with sides of length 2√2. Based on this geometric representation, we propose a simple approach to randomly generate four mixed Bell decomposable states in which the sum of their concurrence is equal to one. (general)
Two-loop renormalization in the standard model, part I. Prolegomena
Energy Technology Data Exchange (ETDEWEB)
Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Ferroglia, A. [Albert-Ludwigs-Univ., Freiburg (Germany). Fakultat fur Phys.]|[Zuerich Univ. (Switzerland). Inst. fuer Theoretische Physik; Passera, M. [Padua Univ. (Italy). Dipt. di Fisica]|[INFN, Sezione di Padova (Italy); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica]|[INFN, Sezione di Torino (Italy)
2006-12-15
In this paper the building blocks for the two-loop renormalization of the Standard Model are introduced with a comprehensive discussion of the special vertices induced in the Lagrangian by a particular diagonalization of the neutral sector and by two alternative treatments of the Higgs tadpoles. Dyson resummed propagators for the gauge bosons are derived, and two-loop Ward-Slavnov-Taylor identities are discussed. In part II, the complete set of counterterms needed for the two-loop renormalization will be derived. In part III, a renormalization scheme will be introduced, connecting the renormalized quantities to an input parameter set of (pseudo-)experimental data, critically discussing renormalization of a gauge theory with unstable particles. (orig.)
Detection of no-model input-output pairs in closed-loop systems.
Potts, Alain Segundo; Alvarado, Christiam Segundo Morales; Garcia, Claudio
2017-11-01
The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable system identification process, since all the pairs with null transfer functions are previously discarded and it can also improve the identified model quality, thus improving the performance of model based controllers. In the available literature, the methods focus just on the open-loop case, since in this case there is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are performed by using the traditional methods and the proposed one to show its effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
The effect of the Polyakov loop on the chiral phase transition
Directory of Open Access Journals (Sweden)
Szép Zs.
2011-04-01
Full Text Available The Polyakov loop is included in the S U(2L × S U(2R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq – T phase diagram is studied for various forms of the Polyakov loop potential.
Directory of Open Access Journals (Sweden)
Musa Atar
2010-02-01
Full Text Available The goal of this study was to determine the effects of different joint angles and adhesives on diagonal tension performances of the box-type furniture made from solid wood and medium density fiberboard (MDF. After drilling joints of 75º, 78º, 81º, 84º, and 87º degrees on Oriental beech, European oak, Scotch pine, and MDF samples, a diagonal tensile test was applied on corners glued with polyvinyl acetate (PVAc and polyurethane (D-VTKA = Desmodur-Vinyl Trieketonol Acetate according to ASTM D 1037 standard. With reference to the obtained results, the highest tensile strength was obtained in European oak with PVAc glue and joint angle of 84º, while the lowest value was obtained in MDF with D-VTKA glue and joint angle of 75º. Considering the interaction of wood, adhesive, and joint angle, the highest tensile strength was obtained in European oak with joint angle of 81º and D-VTKA glue (1.089 N.mm-2, whereas the lowest tensile strength was determined in MDF with joint angle of 75º and PVAc glue (0.163 N.mm-2. Therefore, PVAc as glue and 81º as joint angle could be suggested to obtain some advantageous on the dovetail joint process for box-type furniture made from both solid wood and MDF.
The effects of skiing velocity on mechanical aspects of diagonal cross-country skiing.
Andersson, Erik; Pellegrini, Barbara; Sandbakk, Oyvind; Stüggl, Thomas; Holmberg, Hans-Christer
2014-09-01
Cycle and force characteristics were examined in 11 elite male cross-country skiers using the diagonal stride technique while skiing uphill (7.5°) on snow at moderate (3.5 ± 0.3 m/s), high (4.5 ± 0.4 m/s), and maximal (5.6 ± 0.6 m/s) velocities. Video analysis (50 Hz) was combined with plantar (leg) force (100 Hz), pole force (1,500 Hz), and photocell measurements. Both cycle rate and cycle length increased from moderate to high velocity, while cycle rate increased and cycle length decreased at maximal compared to high velocity. The kick time decreased 26% from moderate to maximal velocity, reaching 0.14 s at maximal. The relative kick and gliding times were only altered at maximal velocity, where these were longer and shorter, respectively. The rate of force development increased with higher velocity. At maximal velocity, sprint-specialists were 14% faster than distance-specialists due to greater cycle rate, peak leg force, and rate of leg force development. In conclusion, large peak leg forces were applied rapidly across all velocities and the shorter relative gliding and longer relative kick phases at maximal velocity allow maintenance of kick duration for force generation. These results emphasise the importance of rapid leg force generation in diagonal skiing.
Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data
Dong, Kai
2015-09-16
DNA sequencing techniques bring novel tools and also statistical challenges to genetic research. In addition to detecting differentially expressed genes, testing the significance of gene sets or pathway analysis has been recognized as an equally important problem. Owing to the “large pp small nn” paradigm, the traditional Hotelling’s T2T2 test suffers from the singularity problem and therefore is not valid in this setting. In this paper, we propose a shrinkage-based diagonal Hotelling’s test for both one-sample and two-sample cases. We also suggest several different ways to derive the approximate null distribution under different scenarios of pp and nn for our proposed shrinkage-based test. Simulation studies show that the proposed method performs comparably to existing competitors when nn is moderate or large, but it is better when nn is small. In addition, we analyze four gene expression data sets and they demonstrate the advantage of our proposed shrinkage-based diagonal Hotelling’s test.
Spectral/spatial optical CDMA code based on Diagonal Eigenvalue Unity
Najjar, Monia; Jellali, Nabiha; Ferchichi, Moez; Rezig, Houria
2017-11-01
A new two dimensional Diagonal Eigenvalue Unity (2D-DEU) code is developed for the spectral⧹spatial optical code division multiple access (OCDMA) system. It has a lower cross correlation value compared to two dimensional diluted perfect difference (2D-DPD), two dimensional Extended Enhanced Double Weight (2D-Extended-EDW) codes. Also, for the same code length, the number of users can be generated by the 2D-DEU code is higher than that provided by the others codes. The Bit Error Rate (BER) numerical analysis is developed by considering the effects of shot noise, phase induced intensity noise (PIIN), and thermal noise. The main result shows that BER is strongly affected by PIIN for the higher source power. The 2D-DEU code performance is compared with 2D-DPD, 2D-Extended-EDW and two dimensional multi-diagonals (2D-MD) codes. This comparison proves that the proposed 2D-DEU system outperforms the related codes.
Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data
Dong, Kai; Pang, Herbert; Tong, Tiejun; Genton, Marc G.
2015-01-01
DNA sequencing techniques bring novel tools and also statistical challenges to genetic research. In addition to detecting differentially expressed genes, testing the significance of gene sets or pathway analysis has been recognized as an equally important problem. Owing to the “large pp small nn” paradigm, the traditional Hotelling’s T2T2 test suffers from the singularity problem and therefore is not valid in this setting. In this paper, we propose a shrinkage-based diagonal Hotelling’s test for both one-sample and two-sample cases. We also suggest several different ways to derive the approximate null distribution under different scenarios of pp and nn for our proposed shrinkage-based test. Simulation studies show that the proposed method performs comparably to existing competitors when nn is moderate or large, but it is better when nn is small. In addition, we analyze four gene expression data sets and they demonstrate the advantage of our proposed shrinkage-based diagonal Hotelling’s test.
Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization
Jentschura, Ulrich; Noble, Jonathan
2014-03-01
We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.
A combined joint diagonalization-MUSIC algorithm for subsurface targets localization
Wang, Yinlin; Sigman, John B.; Barrowes, Benjamin E.; O'Neill, Kevin; Shubitidze, Fridon
2014-06-01
This paper presents a combined joint diagonalization (JD) and multiple signal classification (MUSIC) algorithm for estimating subsurface objects locations from electromagnetic induction (EMI) sensor data, without solving ill-posed inverse-scattering problems. JD is a numerical technique that finds the common eigenvectors that diagonalize a set of multistatic response (MSR) matrices measured by a time-domain EMI sensor. Eigenvalues from targets of interest (TOI) can be then distinguished automatically from noise-related eigenvalues. Filtering is also carried out in JD to improve the signal-to-noise ratio (SNR) of the data. The MUSIC algorithm utilizes the orthogonality between the signal and noise subspaces in the MSR matrix, which can be separated with information provided by JD. An array of theoreticallycalculated Green's functions are then projected onto the noise subspace, and the location of the target is estimated by the minimum of the projection owing to the orthogonality. This combined method is applied to data from the Time-Domain Electromagnetic Multisensor Towed Array Detection System (TEMTADS). Examples of TEMTADS test stand data and field data collected at Spencer Range, Tennessee are analyzed and presented. Results indicate that due to its noniterative mechanism, the method can be executed fast enough to provide real-time estimation of objects' locations in the field.
Theory and applications of generalized operator transforms for diagonalization of spin hamiltonians
International Nuclear Information System (INIS)
Schweiger, A.; Graf, F.; Rist, G.; Guenthard, Hs.H.
1976-01-01
A generalized transform formalism for vector operators is devised for diagonalization of a rather wide class of spin hamiltonians. The operator technique leads to equations for transformation matrices, for which analytical solutions are given. These allow analytical formulation of the transformed electron Zeeman term, the sum of the magnetic hyperfine and nuclear Zeeman term, the electric quadrupole term and the electronic and nuclear Zeeman coupling terms. The angular dependence of energy eigenvalues, frequencies and line strengths of ESR and ENDOR transitions to first order will be expressed as compact bilinear and quadratic forms of the columns of the matrix relating the molecular coordinate system to the laboratory system. Thereby the explicit calculation of rotation matrices may be completely avoided, though the latter formally express the operator transforms. The generalized operator transform is also carried out for the off-diagonal blocks originating from hyperfine interaction terms. This allows the second order energy terms to be expressed explicitly as compact hermitean forms of a simple structure, in particular the explicit structure of mixing terms between hyperfine interactions of different (sets of) nuclei is obtained. The relationship to the conventional Bleaney transform is discussed and the analogy to the generalized operator transform is worked out. (Auth.)
Impact of off-diagonal cross-shell interaction on 14C
Yuan, Cen-Xi
2017-10-01
A shell-model investigation is performed to show the impact on the structure of 14C from the off-diagonal cross-shell interaction, 〈pp|V|sdsd〉, which represents the mixing between the 0 and 2ħω configurations in the psd model space. The observed levels of the positive states in 14C can be nicely described in 0-4ħω or a larger model space through the well defined Hamiltonians, YSOX and WBP, with a reduction of the strength of the 〈pp|V|sdsd〉 interaction in the latter. The observed B(GT) values for 14C can be generally described by YSOX, while WBP and their modifications of the 〈pp|V|sdsd〉 interaction fail for some values. Further investigation shows the effect of such interactions on the configuration mixing and occupancy. The present work shows examples of how the off-diagonal cross-shell interaction strongly drives the nuclear structure. Supported by National Natural Science Foundation of China (11305272), Special Program for Applied Research on Super Computation of the NSFC Guangdong Joint Fund (the second phase), the Guangdong Natural Science Foundation (2014A030313217), the Pearl River S&T Nova Program of Guangzhou (201506010060), the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong special support program (2016TQ03N575), and the Fundamental Research Funds for the Central Universities (17lgzd34)
The Diagon/Gel Implant: A Preliminary Report of 894 Cases
Directory of Open Access Journals (Sweden)
Constantin Stan, MD
2017-07-01
Full Text Available Background:. The breast has always been perceived as the emblem of femininity. Desire of having an ideal breast form has been of interest for a long time. Methods:. This preliminary article is a retrospective analysis of 894 cases of breast augmentation with Diagon/Gel breast implants covered with a micropolyurethane foam (Microthane. The surgical technique employed is a modified dual plane, which enables us to use a new anatomical implant to move the glandular parenchyma into a higher position. Results:. The study extended from January 2010 to September 2015, during which no breast implant developed Baker grade III or IV capsular contracture (CC and only a few adverse events occurred. Patients reported to be highly satisfied with the final outcome, which was very natural both in the form and movement. Conclusions:. The new concept of Diagon/Gel represents the next step in the evolutionary progress of breast implants and allows the surgeon to perform not only a breast augmentation but also parenchymal elevation, which otherwise would have required a mastopexy, and we have called it breast enhancement.
Intersection local times, loop soups and permanental Wick powers
Jan, Yves Le; Rosen, Jay
2017-01-01
Several stochastic processes related to transient Lévy processes with potential densities u(x,y)=u(y-x), that need not be symmetric nor bounded on the diagonal, are defined and studied. They are real valued processes on a space of measures \\mathcal{V} endowed with a metric d. Sufficient conditions are obtained for the continuity of these processes on (\\mathcal{V},d). The processes include n-fold self-intersection local times of transient Lévy processes and permanental chaoses, which are `loop soup n-fold self-intersection local times' constructed from the loop soup of the Lévy process. Loop soups are also used to define permanental Wick powers, which generalizes standard Wick powers, a class of n-th order Gaussian chaoses. Dynkin type isomorphism theorems are obtained that relate the various processes. Poisson chaos processes are defined and permanental Wick powers are shown to have a Poisson chaos decomposition. Additional properties of Poisson chaos processes are studied and a martingale extension is obt...
Conformal boundary loop models
International Nuclear Information System (INIS)
Jacobsen, Jesper Lykke; Saleur, Hubert
2008-01-01
We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling
International Nuclear Information System (INIS)
Brooks, B.R.
1979-09-01
The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m 5 ) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2 1 A' state of SO 2 with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables
International Nuclear Information System (INIS)
Pullin, J.
2015-01-01
Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)
... or scleroderma involving the small intestine History of radiation therapy to the abdomen Diabetes Diverticulosis of the small intestine Complications A blind loop can cause escalating problems, including: Poor absorption of fats. Bacteria in your small intestine break down the bile ...
Improving Loop Dependence Analysis
DEFF Research Database (Denmark)
Jensen, Nicklas Bo; Karlsson, Sven
2017-01-01
Programmers can no longer depend on new processors to have significantly improved single-thread performance. Instead, gains have to come from other sources such as the compiler and its optimization passes. Advanced passes make use of information on the dependencies related to loops. We improve th...
Cytokine loops driving senescence
Czech Academy of Sciences Publication Activity Database
Bartek, Jiří; Hodný, Zdeněk; Lukáš, Jan
2008-01-01
Roč. 10, č. 8 (2008), s. 887-889 ISSN 1465-7392 Institutional research plan: CEZ:AV0Z50520514 Keywords : cellular senescence * cytokines * autocrine feedback loop Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 17.774, year: 2008
Directory of Open Access Journals (Sweden)
Rovelli Carlo
1998-01-01
Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Energy Technology Data Exchange (ETDEWEB)
Sun, Ke-Wei [School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Fujihashi, Yuta; Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan); Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)
2016-05-28
A master equation approach based on an optimized polaron transformation is adopted for dynamics simulation with simultaneous diagonal and off-diagonal spin-boson coupling. Two types of bath spectral density functions are considered, the Ohmic and the sub-Ohmic. The off-diagonal coupling leads asymptotically to a thermal equilibrium with a nonzero population difference P{sub z}(t → ∞) ≠ 0, which implies localization of the system, and it also plays a role in restraining coherent dynamics for the sub-Ohmic case. Since the new method can extend to the stronger coupling regime, we can investigate the coherent-incoherent transition in the sub-Ohmic environment. Relevant phase diagrams are obtained for different temperatures. It is found that the sub-Ohmic environment allows coherent dynamics at a higher temperature than the Ohmic environment.
Towards three-loop QCD corrections to the time-like splitting functions
International Nuclear Information System (INIS)
Gituliar, O.; Moch, S.
2015-05-01
We report on the status of a direct computation of the time-like splitting functions at next-to-next-to-leading order in QCD. Time-like splitting functions govern the collinear kinematics of inclusive hadron production and the evolution of the parton fragmentation distributions. Current knowledge about them at three loops has been inferred by means of crossing symmetry from their related space-like counterparts, which has left certain parts of the off-diagonal quark-gluon splitting function undetermined. This motivates an independent calculation from first principles. We review the tools and methods which are applied to attack the problem.
International Nuclear Information System (INIS)
Nagashima, Keisuke; Fukuda, Takeshi
1991-12-01
Evidence of temperature gradient driven particle flux was observed from the sawtooth induced density propagation phenomenon in JT-60. This off-diagonal particle flux was confirmed using the numerical calculation of measured chord integrated electron density. It was shown that the discrepancies between thermal and particle diffusivities estimated from the perturbation method and energy/particle balance analysis can be explained by considering the flux equations with off-diagonal transport terms. These flux equations were compared with the E x B convective fluxes in an electro-static drift wave instability and it was found that the E x B fluxes are consistent with several experimental observations. (author)
Directory of Open Access Journals (Sweden)
Yurisman
2010-11-01
Full Text Available This paper presents results of numerical and experimental study of shear link behavior, utilizing diagonal stiffener on web of steel profile to increase shear link performance in an eccentric braced frame (EBF of a steel structure system. The specimen is to examine the behavior of shear link by using diagonal stiffener on web part under static monotonic and cyclic load. The cyclic loading pattern conducted in the experiment is adjusted according to AISC loading standards 2005. Analysis was carried out using non-linear finite element method using MSC/NASTRAN software. Link was modeled as CQUAD shell element. Along the boundary of the loading area the nodal are constraint to produce only one direction loading. The length of the link in this analysis is 400mm of the steel profile of WF 200.100. Important parameters considered to effect significantly to the performance of shear link have been analyzed, namely flange and web thicknesses, , thickness and length of web stiffener, thickness of diagonal stiffener and geometric of diagonal stiffener. The behavior of shear link with diagonal web stiffener was compared with the behavior of standard link designed based on AISC 2005 criteria. Analysis results show that diagonal web stiffener is capable to increase shear link performance in terms of stiffness, strength and energy dissipation in supporting lateral load. However, differences in displacement ductility’s between shear links with diagonal stiffener and shear links based on AISC standards have not shown to be significant. Analysis results also show thickness of diagonal stiffener and geometric model of stiffener to have a significant influence on the performance of shear links. To perform validation of the numerical study, the research is followed by experimental work conducted in Structural Mechanic Laboratory Center for Industrial Engineering ITB. The Structures and Mechanics Lab rotary PAU-ITB. The experiments were carried out using three test
Off-diagonal mass generation for Yang-Mills theories in the maximal Abelian gauge
International Nuclear Information System (INIS)
Dudal, D.; Verschelde, H.; Sarandy, M.S.
2007-01-01
We investigate a dynamical mass generation mechanism for the off-diagonal gluons and ghosts in SU(N) Yang-Mills theories, quantized in the maximal Abelian gauge. Such a mass can be seen as evidence for the Abelian dominance in that gauge. It originates from the condensation of a mixed gluon-ghost operator of mass dimension two, which lowers the vacuum energy. We construct an effective potential for this operator by a combined use of the local composite operators technique with algebraic renormalization and we discuss the gauge parameter independence of the results. We also show that it is possible to connect the vacuum energy, due to the mass dimension two condensate discussed here, with the non-trivial vacuum energy originating from the condensate 2 μ >, which has attracted much attention in the Landau gauge. (author)
Energy Technology Data Exchange (ETDEWEB)
Serra, Maria; Husar, Attila; Feroldi, Diego; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya, Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)
2006-08-25
This work is focused on the selection of operating conditions in polymer electrolyte membrane fuel cells. It analyses efficiency and controllability aspects, which change from one operating point to another. Specifically, several operating points that deliver the same amount of net power are compared, and the comparison is done at different net power levels. The study is based on a complex non-linear model, which has been linearised at the selected operating points. Different linear analysis tools are applied to the linear models and results show important controllability differences between operating points. The performance of diagonal control structures with PI controllers at different operating points is also studied. A method for the tuning of the controllers is proposed and applied. The behaviour of the controlled system is simulated with the non-linear model. Conclusions indicate a possible trade-off between controllability and optimisation of hydrogen consumption. (author)
Zhang, Li-qiang; Ma, Ting-ting; Yu, Chang-shui
2018-03-01
The computability of the quantifier of a given quantum resource is the essential challenge in the resource theory and the inevitable bottleneck for its application. Here we focus on the measurement-induced nonlocality and present a redefinition in terms of the skew information subject to a broken observable. It is shown that the obtained quantity possesses an obvious operational meaning, can tackle the noncontractivity of the measurement-induced nonlocality and has analytic expressions for pure states, (2 ⊗d )-dimensional quantum states, and some particular high-dimensional quantum states. Most importantly, an inverse approximate joint diagonalization algorithm, due to its simplicity, high efficiency, stability, and state independence, is presented to provide almost-analytic expressions for any quantum state, which can also shed light on other aspects in physics. To illustrate applications as well as demonstrate the validity of the algorithm, we compare the analytic and numerical expressions of various examples and show their perfect consistency.
Zoeller, Ludwig
2016-04-01
Modern methods of low temperature thermochronology are able to throw light on the geomorphological development of macrorelief landforms. A rarely investigated problem concerns the orientation and morphotectonic evolution of Central European uplands (low to mid-elevation mountain ranges). A conspicuous NW-SE striking boundary takes course through Germany from the Osning and Teutoburg Forest in the NW to the Bavarian Forest in the SE. I call this line the "geomorphological diagonal". East of this line, more or less NW-SE striking morphotectonic features (e.g., Harz Mountains, Sudety) dominate the macrorelief up to the eastern border of Central Europe (Thornquist-Teysseire Lineament), with the exception of the Ohre Rift and Central Bohemia. West of this line, the macrorelief is either characterized by NNE-SSW to N-S oriented structures (e.g., Upper Rhine Rift) and, to a lesser extent, by (S)SW-(E)NE mountain ranges (southern Rhenish Slate Mountains and Ore Mountains) or by no predominance at all. In the Lower Rhine Embayment and along the Middle Rhine River, (N)NW-(S)SE directed morphotectonic features influence the low mountain ranges. In several cases geologists have proven that NW-SE morphotectonic structures are related to the Upper Cretaceous (Santonian to Campanian) "basin inversion" (e.g., von Eynatten et al. 2008). A compilation of low temperature thermochronological data (AFT, [U-Th]/He) from Central Europe clearly supports strong crustal cooling during the Upper Cretaceous and lowermost Tertiary in morphotectonically protruded crustal blocks east of the geomorphological diagonal, whereas west of it the age data available so far exhibit a much larger scatter from Upper Paleozoic to Tertiary without clear evidence of an outstanding Upper Cretaceous crustal cooling event. Based on this data I hypothesize that east of the diagonal macroforms of uplifted denudation surfaces ("peneplains" or "etchplains") may be inherited from the Cretaceous whereas west of it
Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F
2009-07-22
We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.
Thermoelectric behavior of conducting polymers: On the possibility of off-diagonal thermoelectricity
Energy Technology Data Exchange (ETDEWEB)
Mateeva, N; Niculescu, H; Schlenoff, J; Testardi, L
1997-07-01
Non-cubic materials, when structurally aligned, possess sufficient anisotropy to exhibit thermoelectric effects where the electrical and thermal currents are orthogonal (off-diagonal thermoelectricity). The authors discuss the benefits of this form of thermoelectricity for devices and describe a search for suitable properties in the air-stable conducting polymers polyaniline and polypyrrole. They find the simple and general correlation that the logarithm of the electrical conductivity scales linearly with the Seebeck coefficient on doping but with proportionality in excess of the conventional prediction for thermoelectricity. The correlation is unexpected in its universality and unfavorable for thermoelectric applications. A simple model suggests that mobile charges of both signs exist in these polymers, and this leads to reduced thermoelectric efficiency. They also briefly discuss non air-stable polyacetylene, where ambipolar transport does not appear to occur, and where properties seem more favorable for thermoelectricity.
International Nuclear Information System (INIS)
Lay-Ekuakille, Aimé; Pariset, Carlo; Trotta, Amerigo
2010-01-01
The FDM (filter diagonalization method), an interesting technique used in nuclear magnetic resonance data processing for tackling FFT (fast Fourier transform) limitations, can be used by considering pipelines, especially complex configurations, as a vascular apparatus with arteries, veins, capillaries, etc. Thrombosis, which might occur in humans, can be considered as a leakage for the complex pipeline, the human vascular apparatus. The choice of eigenvalues in FDM or in spectra-based techniques is a key issue in recovering the solution of the main equation (for FDM) or frequency domain transformation (for FFT) in order to determine the accuracy in detecting leaks in pipelines. This paper deals with the possibility of improving the leak detection accuracy of the FDM technique thanks to a robust algorithm by assessing the problem of eigenvalues, making it less experimental and more analytical using Tikhonov-based regularization techniques. The paper starts from the results of previous experimental procedures carried out by the authors
A class of symmetric Bell diagonal entanglement witnesses—a geometric perspective
International Nuclear Information System (INIS)
Chruściński, Dariusz
2014-01-01
We provide a class of Bell diagonal entanglement witnesses displaying an additional local symmetry—a maximal commutative subgroup of the unitary group U(n). Remarkably, this class of witnesses is parameterized by a torus being a maximal commutative subgroup of an orthogonal group SO(n−1). It is shown that a generic element from the class defines an indecomposable entanglement witness. The paper provides a geometric perspective for some aspects of the entanglement theory and an interesting interplay between group theory and block-positive operators in C n ⊗C n . This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’. (paper)
Solving block linear systems with low-rank off-diagonal blocks is easily parallelizable
Energy Technology Data Exchange (ETDEWEB)
Menkov, V. [Indiana Univ., Bloomington, IN (United States)
1996-12-31
An easily and efficiently parallelizable direct method is given for solving a block linear system Bx = y, where B = D + Q is the sum of a non-singular block diagonal matrix D and a matrix Q with low-rank blocks. This implicitly defines a new preconditioning method with an operation count close to the cost of calculating a matrix-vector product Qw for some w, plus at most twice the cost of calculating Qw for some w. When implemented on a parallel machine the processor utilization can be as good as that of those operations. Order estimates are given for the general case, and an implementation is compared to block SSOR preconditioning.
Random walk loop soups and conformal loop ensembles
van de Brug, T.; Camia, F.; Lis, M.
2016-01-01
The random walk loop soup is a Poissonian ensemble of lattice loops; it has been extensively studied because of its connections to the discrete Gaussian free field, but was originally introduced by Lawler and Trujillo Ferreras as a discrete version of the Brownian loop soup of Lawler and Werner, a
Dassau, E; Atlas, E; Phillip, M
2010-02-01
The dream of closing the loop is actually the dream of creating an artificial pancreas and freeing the patients from being involved with the care of their own diabetes. Insulin-dependent diabetes (type 1) is a chronic incurable disease which requires constant therapy without the possibility of any 'holidays' or insulin-free days. It means that patients have to inject insulin every day of their life, several times per day, and in order to do it safely they also have to measure their blood glucose levels several times per day. Patients need to plan their meals, their physical activities and their insulin regime - there is only very small room for spontaneous activities. This is why the desire for an artificial pancreas is so strong despite the fact that it will not cure the diabetic patients. Attempts to develop a closed-loop system started in the 1960s but never got to a clinical practical stage of development. In recent years the availability of continuous glucose sensors revived those efforts and stimulated the clinician and researchers to believe that closing the loop might be possible nowadays. Many papers have been published over the years describing several different ideas on how to close the loop. Most of the suggested systems have a sensing arm that measures the blood glucose repeatedly or continuously, an insulin delivery arm that injects insulin upon command and a computer that makes the decisions of when and how much insulin to deliver. The differences between the various published systems in the literature are mainly in their control algorithms. However, there are also differences related to the method and site of glucose measurement and insulin delivery. SC glucose measurements and insulin delivery are the most studied option but other combinations of insulin measurements and glucose delivery including intravascular and intraperitoneal (IP) are explored. We tried to select recent publications that we believe had influenced and inspired people interested
Bojowald, Martin
2008-01-01
Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.
Directory of Open Access Journals (Sweden)
Bojowald Martin
2008-07-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.
Directory of Open Access Journals (Sweden)
Bojowald Martin
2005-12-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.
Litofsky, Joshua; Viswanathan, Rama
2015-01-01
Matrix diagonalization, the key technique at the heart of modern computational chemistry for the numerical solution of the Schrödinger equation, can be easily introduced in the physical chemistry curriculum in a pedagogical context using simple Hückel molecular orbital theory for p bonding in molecules. We present details and results of…
International Nuclear Information System (INIS)
Tanaka, Takeshi; Aizawa, Tadanori; Katou, Kazuzo; Ogasawara, Ken; Kirigaya, Hajime
1993-01-01
Characteristics of 201 Tl myocardial SPECT and ventriculography were studied in 13 patients with acute diagonal branch myocardial infarction. Rest 201 Tl myocardial SPECT and left ventriculography were underwent in chronic phase. In 5 patients electrocardiogram (ECG) changes in acute phase were not definite. In 6 patients it was difficult to identify the obstructed coronary artery with coronary angiography in acute phase. Mean value of maximum creatine phosphokinese (CPK) was 854 (458-1,774) U/l. It seemed to be difficult to diagnose acute diagonal branch myocardial infarction with ECG and/or coronary angiography. In all patients defects were noted on 201 Tl SPECT. Defects were small and noted in the central anterior wall and not in the septum. In 2 patients defects were noted at apex. In left ventriculography dyskinetic motion was noted in 10 patients; one patient showed apical aneurysm and 3 patients showed anterior wall aneurysm. In 3 patients anterior wall showed akinesis. It was concluded that 201 Tl myocardial SPECT were useful for detecting diagonal branch lesion. In case of diagonal branch myocardial infarction size of defects were small and defects were not noted in the septum, however aneurysmal motion was frequently noted. (author)
Directory of Open Access Journals (Sweden)
Jaime Sepúlveda
2007-01-01
Full Text Available Las intervenciones en salud pública dirigidas a niños en México han ubicado a este país entre los siete países encaminados a cumplir las metas de reducción de la mortalidad infantil para 2015. La información para este estudio se ha tomado de diferentes fuentes: los censos poblacionales; los registros de mortalidad de la Secretaría de Salud y del Instituto Nacional de Estadística, Geografía e Informática; el registro nominal de niños recolectado por el Programa de Vacunación Universal; y las encuestas nacionales de nutrición. Con estos datos se estudió la asociación temporal y la plausibilidad biológica de las diferentes intervenciones en salud pública, para explicar la reducción de las tasas de mortalidad entre niños, infantes y recién nacidos. Las tasas de mortalidad en menores de cinco años han descendido de casi 64 muertes a menos de 23 por cada 1 000 niños nacidos vivos registrados en los últimos 25 años. Se observó una reducción drástica en las tasas de mortalidad por diarrea, junto con la eliminación de polio, difteria y sarampión. El estado nutricional de los niños mejoró de manera significativa en cuanto a bajo peso para la talla, baja talla para la edad y bajo peso para la edad. En los últimos 25 años, se mantuvieron intervenciones altamente costo-efectivas que acercaron los servicios de salud de atención primaria a los hogares, lo que aquí se ha llamado estrategia diagonal. A pesar de que no es posible establecer una relación de causalidad entre la reducción de la mortalidad en menores de cinco años y los factores investigados, se presenta evidencia basada en la asociación temporal y en la plausibilidad biológica que indica que la alta cobertura de las intervenciones de salud pública, los avances en educación de las mujeres, protección social, disponibilidad de agua potable y saneamiento, así como nutrición, impactaron en el resultado observado. Por otro lado, el liderazgo y la continuidad
LoopIng: a template-based tool for predicting the structure of protein loops.
Messih, Mario Abdel
2015-08-06
Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.
Wilson loops in minimal surfaces
International Nuclear Information System (INIS)
Drukker, Nadav; Gross, David J.; Ooguri, Hirosi
1999-01-01
The AdS/CFT correspondence suggests that the Wilson loop of the large N gauge theory with N = 4 supersymmetry in 4 dimensions is described by a minimal surface in AdS 5 x S 5 . The authors examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which the authors call BPS loops, whose expectation values are free from ultra-violet divergence. They formulate the loop equation for such loops. To the extent that they have checked, the minimal surface in AdS 5 x S 5 gives a solution of the equation. The authors also discuss the zig-zag symmetry of the loop operator. In the N = 4 gauge theory, they expect the zig-zag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. They will show how this is realized for the minimal surface
Wilson loops and minimal surfaces
International Nuclear Information System (INIS)
Drukker, Nadav; Gross, David J.; Ooguri, Hirosi
1999-01-01
The AdS-CFT correspondence suggests that the Wilson loop of the large N gauge theory with N=4 supersymmetry in four dimensions is described by a minimal surface in AdS 5 xS 5 . We examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which we call BPS loops, whose expectation values are free from ultraviolet divergence. We formulate the loop equation for such loops. To the extent that we have checked, the minimal surface in AdS 5 xS 5 gives a solution of the equation. We also discuss the zigzag symmetry of the loop operator. In the N=4 gauge theory, we expect the zigzag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. We will show how this is realized for the minimal surface. (c) 1999 The American Physical Society
On some properties of conjugacy closed loops
International Nuclear Information System (INIS)
Adeniran, John Olusola
2002-07-01
It is shown that central loops are not conjugacy closed loops but instead are loops of units in their loop algebras that are conjugacy closed. It is also shown that certain inner mappings of a conjugacy closed loop are nuclear. Some invariants of left conjugacy closed loops are obtained. (author)
Two-loop polygon Wilson loops in N = 4 SYM
International Nuclear Information System (INIS)
Anastasiou, C.; Brandhuber, A.; Heslop, P.; Spence, B.; Travaglini, G.; Khoze, V.V.
2009-01-01
We compute for the first time the two-loop corrections to arbitrary n-gon lightlike Wilson loops in N = 4 supersymmetric Yang-Mills theory, using efficient numerical methods. The calculation is motivated by the remarkable agreement between the finite part of planar six-point MHV amplitudes and hexagon Wilson loops which has been observed at two loops. At n = 6 we confirm that the ABDK/BDS ansatz must be corrected by adding a remainder function, which depends only on conformally invariant ratios of kinematic variables. We numerically compute remainder functions for n = 7,8 and verify dual conformal invariance. Furthermore, we study simple and multiple collinear limits of the Wilson loop remainder functions and demonstrate that they have precisely the form required by the collinear factorisation of the corresponding two-loop n-point amplitudes. The number of distinct diagram topologies contributing to the n-gon Wilson loops does not increase with n, and there is a fixed number of 'master integrals', which we have computed. Thus we have essentially computed general polygon Wilson loops, and if the correspondence with amplitudes continues to hold, all planar n-point two-loop MHV amplitudes in the N = 4 theory.
van der Waal, Jeroen; Daenekindt, Stijn; de Koster, Willem
2017-12-01
Various studies on the health consequences of socio-economic position address social mobility. They aim to uncover whether health outcomes are affected by: (1) social mobility, besides, (2) social origin, and (3) social destination. Conventional methods do not, however, estimate these three effects separately, which may produce invalid conclusions. We highlight that diagonal reference models (DRMs) overcome this problem, which we illustrate by focusing on overweight/obesity (OWOB). Using conventional methods (logistic-regression analyses with dummy variables) and DRMs, we examine the effects of intergenerational educational mobility on OWOB (BMI ≥ 25 kg/m 2 ) using survey data representative of the Dutch population aged 18-45 (1569 males, 1771 females). Conventional methods suggest that mobility effects on OWOB are present. Analyses with DRMs, however, indicate that no such effects exist. Conventional analyses of the health consequences of social mobility may produce invalid results. We, therefore, recommend the use of DRMs. DRMs also validly estimate the health consequences of other types of social mobility (e.g. intra- and intergenerational occupational and income mobility) and status inconsistency (e.g. in educational or occupational attainment between partners).
Goodson, James L; Alexander, James P; Linkins, Robert W; Orenstein, Walter A
2017-12-01
In 1988, an estimated 350,000 children were paralyzed by polio and 125 countries reported polio cases, the World Health Assembly passed a resolution to achieve polio eradication by 2000, and the Global Polio Eradication Initiative (GPEI) was established as a partnership focused on eradication. Today, following eradication efforts, polio cases have decreased >99% and eradication of all three types of wild polioviruses is approaching. However, since polio resources substantially support disease surveillance and other health programs, losing polio assets could reverse progress toward achieving Global Vaccine Action Plan goals. Areas covered: As the end of polio approaches and GPEI funds and capacity decrease, we document knowledge, experience, and lessons learned from 30 years of polio eradication. Expert commentary: Transitioning polio assets to measles and rubella (MR) elimination efforts would accelerate progress toward global vaccination coverage and equity. MR elimination feasibility and benefits have long been established. Focusing efforts on MR elimination after achieving polio eradication would make a permanent impact on reducing child mortality but should be done through a 'diagonal approach' of using measles disease transmission to identify areas possibly susceptible to other vaccine-preventable diseases and to strengthen the overall immunization and health systems to achieve disease-specific goals.
Directory of Open Access Journals (Sweden)
Chee Zhou Kam
2013-01-01
Full Text Available A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.
Hagymási, I.; Itai, K.; Sólyom, J.
2012-06-01
We investigate an extended version of the periodic Anderson model (the so-called periodic Anderson-Hubbard model) with the aim to understand the role of interaction between conduction electrons in the formation of the heavy-fermion and mixed-valence states. Two methods are used: (i) variational calculation with the Gutzwiller wave function optimizing numerically the ground-state energy and (ii) exact diagonalization of the Hamiltonian for short chains. The f-level occupancy and the renormalization factor of the quasiparticles are calculated as a function of the energy of the f orbital for a wide range of the interaction parameters. The results obtained by the two methods are in reasonably good agreement for the periodic Anderson model. The agreement is maintained even when the interaction between band electrons, Ud, is taken into account, except for the half-filled case. This discrepancy can be explained by the difference between the physics of the one- and higher-dimensional models. We find that this interaction shifts and widens the energy range of the bare f level, where heavy-fermion behavior can be observed. For large-enough Ud this range may lie even above the bare conduction band. The Gutzwiller method indicates a robust transition from Kondo insulator to Mott insulator in the half-filled model, while Ud enhances the quasiparticle mass when the filling is close to half filling.
Spin-1/2 Heisenberg antiferromagnet on the pyrochlore lattice: An exact diagonalization study
Chandra, V. Ravi; Sahoo, Jyotisman
2018-04-01
We present exact diagonalization calculations for the spin-1/2 nearest-neighbor antiferromagnet on the pyrochlore lattice. We study a section of the lattice in the [111] direction and analyze the Hamiltonian of the breathing pyrochlore system with two coupling constants J1 and J2 for tetrahedra of different orientations and investigate the evolution of the system from the limit of disconnected tetrahedra (J2=0 ) to a correlated state at J1=J2 . We evaluate the low-energy spectrum, two and four spin correlations, and spin chirality correlations for a system size of up to 36 sites. The model shows a fast decay of spin correlations and we confirm the presence of several singlet excitations below the lowest magnetic excitation. We find chirality correlations near J1=J2 to be small at the length scales available at this system size. Evaluation of dimer-dimer correlations and analysis of the nature of the entanglement of the tetrahedral unit shows that the triplet sector of the tetrahedron contributes significantly to the ground-state entanglement at J1=J2 .
An efficient numerical progressive diagonalization scheme for the quantum Rabi model revisited
International Nuclear Information System (INIS)
Pan, Feng; Bao, Lina; Dai, Lianrong; Draayer, Jerry P
2017-01-01
An efficient numerical progressive diagonalization scheme for the quantum Rabi model is revisited. The advantage of the scheme lies in the fact that the quantum Rabi model can be solved almost exactly by using the scheme that only involves a finite set of one variable polynomial equations. The scheme is especially efficient for a specified eigenstate of the model, for example, the ground state. Some low-lying level energies of the model for several sets of parameters are calculated, of which one set of the results is compared to that obtained from the Braak’s exact solution proposed recently. It is shown that the derivative of the entanglement measure defined in terms of the reduced von Neumann entropy with respect to the coupling parameter does reach the maximum near the critical point deduced from the classical limit of the Dicke model, which may provide a probe of the critical point of the crossover in finite quantum many-body systems, such as that in the quantum Rabi model. (paper)
Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review
Kennedy, Christopher A.; Carpenter, Mark H.
2016-01-01
A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances.
Triple Diagonal modeling: A mechanism to focus productivity improvement for business success
Energy Technology Data Exchange (ETDEWEB)
Levine, L.O. [Pacific Northwest Lab., Richland, WA (United States); Villareal, L.D. [Army Depot, Corpus Christi, TX (United States)
1993-09-01
Triple Diagonal (M) modeling is a technique to help quickly diagnose an organization`s existing production system and to identify significant improvement opportunities in executing, controlling, and planning operations. TD modeling is derived from ICAM Definition Language (IDEF 0)-also known as Structured Analysis and Design Technique. It has been used successfully at several Department of Defense remanufacturing facilities trying to accomplish significant production system modernization. TD has several advantages over other modeling techniques. First, it quickly does ``As-ls`` analysis and then moves on to identify improvements. Second, creating one large diagram makes it easier to share the TD model throughout an organization, rather than the many linked 8 1/2 {times} 11`` drawings used in traditional decomposition approaches. Third, it acts as a communication mechanism to share understanding about improvement opportunities that may cross existing functional/organizational boundaries. Finally, TD acts as a vehicle to build a consensus on a prioritized list of improvement efforts that ``hangs togethers as an agenda for systemic changes in the production system and the improved integration of support functions.
Replica Fourier Tansforms on Ultrametric Trees, and Block-Diagonalizing Multi-Replica Matrices
de Dominicis, C.; Carlucci, D. M.; Temesvári, T.
1997-01-01
The analysis of objects living on ultrametric trees, in particular the block-diagonalization of 4-replica matrices M^{α β;γ^δ}, is shown to be dramatically simplified through the introduction of properly chosen operations on those objects. These are the Replica Fourier Transforms on ultrametric trees. Those transformations are defined and used in the present work. On montre que l'analyse d'objets vivant sur un arbre ultramétrique, en particulier, la diagonalisation par blocs d'une matrice M^{α β;γ^δ} dépendant de 4-répliques, se simplifie de façon dramatique si l'on introduit les opérations appropriées sur ces objets. Ce sont les Transformées de Fourier de Répliques sur un arbre ultramétrique. Ces transformations sont définies et utilisées dans le présent travail.
Havasi, Ágnes; Kazemi, Ehsan
2018-04-01
In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.
Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P
2017-03-01
In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf
2016-11-01
This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.
Ahmed, Hassan Yousif; Nisar, K. S.
2013-08-01
Code with ideal in-phase cross correlation (CC) and practical code length to support high number of users are required in spectral amplitude coding-optical code division multiple access (SAC-OCDMA) systems. SAC systems are getting more attractive in the field of OCDMA because of its ability to eliminate the influence of multiple access interference (MAI) and also suppress the effect of phase induced intensity noise (PIIN). In this paper, we have proposed new Diagonal Eigenvalue Unity (DEU) code families with ideal in-phase CC based on Jordan block matrix with simple algebraic ways. Four sets of DEU code families based on the code weight W and number of users N for the combination (even, even), (even, odd), (odd, odd) and (odd, even) are constructed. This combination gives DEU code more flexibility in selection of code weight and number of users. These features made this code a compelling candidate for future optical communication systems. Numerical results show that the proposed DEU system outperforms reported codes. In addition, simulation results taken from a commercial optical systems simulator, Virtual Photonic Instrument (VPI™) shown that, using point to multipoint transmission in passive optical network (PON), DEU has better performance and could support long span with high data rate.
Two-band model with off-diagonal occupation dependent hopping rate
International Nuclear Information System (INIS)
Zawadowski, A.
1989-01-01
In this paper two-band hopping model is treated on a two-dimensional square lattice. The atoms are located at the corners and the middles of the edges of the squares. In addition to the strongly overlapping orbitals of the atoms, there are extra orbitals at the corners, which are weakly hybridized. The assumption is made that the Fermi level is inside the broad band and is every near to the narrow band formed by the extra orbitals. The hamiltonian is Hubbard type, but the off-diagonal part of the two-site interaction t is kept also where one creation or annihilation operator acts on the extra orbital and the others on one of its neighbors. The weak coupling t is enhanced by the on-site Coulomb repulsion at the corners, which enhancement is a power function of the ratio of the broad band width and the narrow bank position measured from the Fermi level. That enhancement is obtained by summation of logarithmic Kondo-type corrections of orbital origin, which reflects the formation of a ground state of new type with strong orbital and spin correlations. Interaction between the particles of the broad band is generated by processes with one heavy and one light particle in the intermediate state
Liu, Yongbin; He, Bing; Liu, Fang; Lu, Siliang; Zhao, Yilei
2016-12-01
Fault pattern identification is a crucial step for the intelligent fault diagnosis of real-time health conditions in monitoring a mechanical system. However, many challenges exist in extracting the effective feature from vibration signals for fault recognition. A new feature fusion method is proposed in this study to extract new features using kernel joint approximate diagonalization of eigen-matrices (KJADE). In the method, the input space that is composed of original features is mapped into a high-dimensional feature space by nonlinear mapping. Then, the new features can be estimated through the eigen-decomposition of the fourth-order cumulative kernel matrix obtained from the feature space. Therefore, the proposed method could be used to reduce data redundancy because it extracts the inherent pattern structure of different fault classes as it is nonlinear by nature. The integration evaluation factor of between-class and within-class scatters (SS) is employed to depict the clustering performance quantitatively, and the new feature subset extracted by the proposed method is fed into a multi-class support vector machine for fault pattern identification. Finally, the effectiveness of the proposed method is verified by experimental vibration signals with different bearing fault types and severities. Results of several cases show that the KJADE algorithm is efficient in feature fusion for bearing fault identification.
Large-scale exact diagonalizations reveal low-momentum scales of nuclei
Forssén, C.; Carlsson, B. D.; Johansson, H. T.; Sääf, D.; Bansal, A.; Hagen, G.; Papenbrock, T.
2018-03-01
Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding 1010 on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for 6Li in model spaces up to Nmax=22 and to reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.
Miranda, Elder Assis; Batalha-Filho, Henrique; Congrains, Carlos; Carvalho, Antônio Freire; Ferreira, Kátia Maria; Del Lama, Marco Antonio
2016-01-01
The South America encompasses the highest levels of biodiversity found anywhere in the world and its rich biota is distributed among many different biogeographical regions. However, many regions of South America are still poorly studied, including its xeric environments, such as the threatened Caatinga and Cerrado phytogeographical domains. In particular, the effects of Quaternary climatic events on the demography of endemic species from xeric habitats are poorly understood. The present study uses an integrative approach to reconstruct the evolutionary history of Partamona rustica, an endemic stingless bee from dry forest diagonal in Brazil, in a spatial-temporal framework. In this sense, we sequenced four mitochondrial genes and genotyped eight microsatellite loci. Our results identified two population groups: one to the west and the other to the east of the São Francisco River Valley (SFRV). These groups split in the late Pleistocene, and the Approximate Bayesian Computation approach and phylogenetic reconstruction indicated that P. rustica originated in the west of the SFRV, subsequently colonising eastern region. Our tests of migration detected reduced gene flow between these groups. Finally, our results also indicated that the inferences both from the genetic data analyses and from the spatial distribution modelling are compatible with historical demographic stability.
Directory of Open Access Journals (Sweden)
Elder Assis Miranda
Full Text Available The South America encompasses the highest levels of biodiversity found anywhere in the world and its rich biota is distributed among many different biogeographical regions. However, many regions of South America are still poorly studied, including its xeric environments, such as the threatened Caatinga and Cerrado phytogeographical domains. In particular, the effects of Quaternary climatic events on the demography of endemic species from xeric habitats are poorly understood. The present study uses an integrative approach to reconstruct the evolutionary history of Partamona rustica, an endemic stingless bee from dry forest diagonal in Brazil, in a spatial-temporal framework. In this sense, we sequenced four mitochondrial genes and genotyped eight microsatellite loci. Our results identified two population groups: one to the west and the other to the east of the São Francisco River Valley (SFRV. These groups split in the late Pleistocene, and the Approximate Bayesian Computation approach and phylogenetic reconstruction indicated that P. rustica originated in the west of the SFRV, subsequently colonising eastern region. Our tests of migration detected reduced gene flow between these groups. Finally, our results also indicated that the inferences both from the genetic data analyses and from the spatial distribution modelling are compatible with historical demographic stability.
Meng, Xi; Nguyen, Bao D; Ridge, Clark; Shaka, A J
2009-01-01
High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to "reduced-dimensionality" strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the filter diagonalization method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra-dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths.
Directory of Open Access Journals (Sweden)
Yong Lv
2018-04-01
Full Text Available The vibration signals of bearings and gears measured from rotating machinery usually have nonlinear, nonstationary characteristics. The local projection algorithm cannot only reduce the noise of the nonlinear system, but can also preserve the nonlinear deterministic structure of the signal. The influence of centroid selection on the performance of noise reduction methods is analyzed, and the multiscale local projection method of centroid was proposed in this paper. This method considers both the geometrical shape and statistical error of the signal in high dimensional phase space, which can effectively eliminate the noise and preserve the complete geometric structure of the attractors. The diagonal slice spectrum can identify the frequency components of quadratic phase coupling and enlarge the coupled frequency component in the nonlinear signal. Therefore, the proposed method based on the above two algorithms can achieve more accurate results of fault diagnosis of gears and rolling bearings. The simulated signal is used to verify its effectiveness in a numerical simulation. Then, the proposed method is conducted for fault diagnosis of gears and rolling bearings in application researches. The fault characteristics of faulty bearings and gears can be extracted successfully in the researches. The experimental results indicate the effectiveness of the novel proposed method.
Diagonal Born-Oppenheimer correction for coupled-cluster wave-functions
Shamasundar, K. R.
2018-06-01
We examine how geometry-dependent normalisation freedom of electronic wave-functions affects extraction of a meaningful diagonal Born-Oppenheimer correction (DBOC) to the ground-state Born-Oppenheimer potential energy surface (PES). By viewing this freedom as a kind of gauge-freedom, it is shown that DBOC and the resulting associated mass-dependent adiabatic PES are gauge-invariant quantities. A sum-over-states (SOS) formula for DBOC which explicitly exhibits this invariance is derived. A biorthogonal formulation suitable for DBOC computations using standard unnormalised coupled-cluster (CC) wave-functions is presented. This is shown to lead to a biorthogonal version of SOS formula with similar properties. On this basis, different computational schemes for evaluating DBOC using approximate CC wave-functions are derived. One of this agrees with the formula used in the current literature. The connection to adiabatic-to-diabatic transformations in non-adiabatic dynamics is explored and complications arising from biorthogonal nature of CC theory are identified.
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.
Meek, Garrett A; Levine, Benjamin G
2016-05-14
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
International Nuclear Information System (INIS)
Cao Jiacong; Lin Xingchun
2008-01-01
An accurate forecast of solar irradiation is required for various solar energy applications and environmental impact analyses in recent years. Comparatively, various irradiation forecast models based on artificial neural networks (ANN) perform much better in accuracy than many conventional prediction models. However, the forecast precision of most existing ANN based forecast models has not been satisfactory to researchers and engineers so far, and the generalization capability of these networks needs further improving. Combining the prominent dynamic properties of a recurrent neural network (RNN) with the enhanced ability of a wavelet neural network (WNN) in mapping nonlinear functions, a diagonal recurrent wavelet neural network (DRWNN) is newly established in this paper to perform fine forecasting of hourly and daily global solar irradiance. Some additional steps, e.g. applying historical information of cloud cover to sample data sets and the cloud cover from the weather forecast to network input, are adopted to help enhance the forecast precision. Besides, a specially scheduled two phase training algorithm is adopted. As examples, both hourly and daily irradiance forecasts are completed using sample data sets in Shanghai and Macau, and comparisons between irradiation models show that the DRWNN models are definitely more accurate
High temperature storage loop :
Energy Technology Data Exchange (ETDEWEB)
Gill, David Dennis; Kolb, William J.
2013-07-01
A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort
Accelerating the loop expansion
International Nuclear Information System (INIS)
Ingermanson, R.
1986-01-01
This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi 4 theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs
Directory of Open Access Journals (Sweden)
Sarah Jane Hobbs
2016-06-01
Full Text Available Background. Although the trot is described as a diagonal gait, contacts of the diagonal pairs of hooves are not usually perfectly synchronized. Although subtle, the timing dissociation between contacts of each diagonal pair could have consequences on gait dynamics and provide insight into the functional strategies employed. This study explores the mechanical effects of different diagonal dissociation patterns when speed was matched between individuals and how these effects link to moderate, natural changes in trotting speed. We anticipate that hind-first diagonal dissociation at contact increases with speed, diagonal dissociation at contact can reduce collision-based energy losses and predominant dissociation patterns will be evident within individuals. Methods. The study was performed in two parts: in the first 17 horses performed speed-matched trotting trials and in the second, five horses each performed 10 trotting trials that represented a range of individually preferred speeds. Standard motion capture provided kinematic data that were synchronized with ground reaction force (GRF data from a series of force plates. The data were analyzed further to determine temporal, speed, GRF, postural, mass distribution, moment, and collision dynamics parameters. Results. Fore-first, synchronous, and hind-first dissociations were found in horses trotting at (3.3 m/s ± 10%. In these speed-matched trials, mean centre of pressure (COP cranio-caudal location differed significantly between the three dissociation categories. The COP moved systematically and significantly (P = .001 from being more caudally located in hind-first dissociation (mean location = 0.41 ± 0.04 through synchronous (0.36 ± 0.02 to a more cranial location in fore-first dissociation (0.32 ± 0.02. Dissociation patterns were found to influence function, posture, and balance parameters. Over a moderate speed range, peak vertical forelimb GRF had a strong relationship with dissociation
Mirror symmetry and loop operators
Energy Technology Data Exchange (ETDEWEB)
Assel, Benjamin [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada)
2015-11-09
Wilson loops in gauge theories pose a fundamental challenge for dualities. Wilson loops are labeled by a representation of the gauge group and should map under duality to loop operators labeled by the same data, yet generically, dual theories have completely different gauge groups. In this paper we resolve this conundrum for three dimensional mirror symmetry. We show that Wilson loops are exchanged under mirror symmetry with Vortex loop operators, whose microscopic definition in terms of a supersymmetric quantum mechanics coupled to the theory encode in a non-trivial way a representation of the original gauge group, despite that the gauge groups of mirror theories can be radically different. Our predictions for the mirror map, which we derive guided by branes in string theory, are confirmed by the computation of the exact expectation value of Wilson and Vortex loop operators on the three-sphere.
Reactor recirculation pump test loop
International Nuclear Information System (INIS)
Taka, Shusei; Kato, Hiroyuki
1979-01-01
A test loop for a reactor primary loop recirculation pumps (PLR pumps) has been constructed at Ebara's Haneda Plant in preparation for production of PLR pumps under license from Byron Jackson Pump Division of Borg-Warner Corporation. This loop can simulate operating conditions for test PLR pumps with 130 per cent of the capacity of pumps for a 1100 MWe BWR plant. A main loop, primary cooling system, water demineralizer, secondary cooling system, instrumentation and control equipment and an electric power supply system make up the test loop. This article describes the test loop itself and test results of two PLR pumps for Fukushima No. 2 N.P.S. Unit 1 and one main circulation pump for HAZ Demonstration Test Facility. (author)
Loop Heat Pipe Startup Behaviors
Ku, Jentung
2016-01-01
A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.
Modeling of compact loop antennas
International Nuclear Information System (INIS)
Baity, F.W.
1987-01-01
A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak
International Nuclear Information System (INIS)
Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.
2013-01-01
We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry
Paul, Clayton R
2010-01-01
"Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.
International Nuclear Information System (INIS)
Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.
2011-01-01
The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.
Galiatsatos, P. G.; Tennyson, J.
2012-11-01
The most time consuming step within the framework of the UK R-matrix molecular codes is that of the diagonalization of the inner region Hamiltonian matrix (IRHM). Here we present the method that we follow to speed up this step. We use shared memory machines (SMM), distributed memory machines (DMM), the OpenMP directive based parallel language, the MPI function based parallel language, the sparse matrix diagonalizers ARPACK and PARPACK, a variation for real symmetric matrices of the official coordinate sparse matrix format and finally a parallel sparse matrix-vector product (PSMV). The efficient application of the previous techniques rely on two important facts: the sparsity of the matrix is large enough (more than 98%) and in order to get back converged results we need a small only part of the matrix spectrum.
On the performance of diagonal lattice space-time codes for the quasi-static MIMO channel
Abediseid, Walid
2013-06-01
There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple-output (MIMO) channel. All the coding design to date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria. In this paper, we analyze in detail the performance of diagonal lattice space-time codes under lattice decoding. We present both upper and lower bounds on the average error probability. We derive a new closed form expression of the lower bound using the so-called sphere-packing bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is simply derived using the union-bound and demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. © 2013 IEEE.
Ci, Penghong; Chen, Zhijiang; Liu, Guoxi; Dong, Shuxiang
2014-01-01
We report a piezoelectric linear motor made of a single Pb(Zr,Ti)O3 square-plate, which operates in two orthogonal and isomorphic face-diagonal-bending modes to produce precision linear motion. A 15 × 15 × 2 mm prototype was fabricated, and the motor generated a driving force of up to 1.8 N and a speed of 170 mm/s under an applied voltage of 100 Vpp at the resonance frequency of 136.5 kHz. The motor shows such advantages as large driving force under relatively low driving voltage, simple structure, and stable motion because of its isomorphic face-diagonal-bending mode.
Gheorghiu, Tamara; Vacaru, Sergiu I
2014-01-01
We find general parameterizations for generic off-diagonal spacetime metrics and matter sources in general relativity, GR, and modified gravity theories when the field equations decouple with respect to certain types of nonholonomic frames of reference. This allows us to construct various classes of exact solutions when the coefficients of fundamental geometric/ physical objects depend on all spacetime coordinates via corresponding classes of generating and integration functions and/or constants. Such (modified) spacetimes can be with Killing and non-Killing symmetries, describe nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants. Our method can be extended to higher dimensions which simplifies some proofs for imbedded and nonholonomically constrained four dimensional configurations. We reproduce the Kerr solution and show how to deform it nonholonomically into new classes of generic off-diagonal solutions depending on 3-8 spacetime coordinates. There are anal...
International Nuclear Information System (INIS)
Ladd-Lively, Jennifer L
2008-01-01
The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO 2 ), uranium tetrafluoride (UF 4 ), and uranium hexafluoride (UF 6 )] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF 6 product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by
Rovelli, Carlo
2008-01-01
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Directory of Open Access Journals (Sweden)
Rovelli Carlo
2008-07-01
Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
International Nuclear Information System (INIS)
Roman, E.; Wiecko, C.
1985-08-01
We study and characterize the eigenstates near the centre of the band of a 1-d tight binding model with off-diagonal disorder Wsub(T). We find a new exponent for the localization length lambda on an energy-dependent range of disorder Wsub(T). We correlate this feature with a change of structure of the wave-function displayed by the behaviour of its fractal dimensionality. (author)
Approximate joint diagonalization and geometric mean of symmetric positive definite matrices.
Directory of Open Access Journals (Sweden)
Marco Congedo
Full Text Available We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD matrices and their approximate joint diagonalization (AJD. Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed with the Fisher information metric. The resulting mean has several important invariance properties and has proven very useful in diverse engineering applications such as biomedical and image data processing. While for two SPD matrices the mean has an algebraic closed form solution, for a set of more than two SPD matrices it can only be estimated by iterative algorithms. However, none of the existing iterative algorithms feature at the same time fast convergence, low computational complexity per iteration and guarantee of convergence. For this reason, recently other definitions of geometric mean based on symmetric divergence measures, such as the Bhattacharyya divergence, have been considered. The resulting means, although possibly useful in practice, do not satisfy all desirable invariance properties. In this paper we consider geometric means of covariance matrices estimated on high-dimensional time-series, assuming that the data is generated according to an instantaneous mixing model, which is very common in signal processing. We show that in these circumstances we can approximate the Fisher information geometric mean by employing an efficient AJD algorithm. Our approximation is in general much closer to the Fisher information geometric mean as compared to its competitors and verifies many invariance properties. Furthermore, convergence is guaranteed, the computational complexity is low and the convergence rate is quadratic. The accuracy of this new geometric mean approximation is demonstrated by means of simulations.
Rotational Angles and Velocities During Down the Line and Diagonal Across Court Volleyball Spikes
Directory of Open Access Journals (Sweden)
Justin R. Brown
2014-05-01
Full Text Available The volleyball spike is an explosive movement that is frequently used to end a rally and earn a point. High velocity spikes are an important skill for a successful volleyball offense. Although the influence of vertical jump height and arm velocity on spiked ball velocity (SBV have been investigated, little is known about the relationship of shoulder and hip angular kinematics with SBV. Other sport skills, like the baseball pitch share similar movement patterns and suggest trunk rotation is important for such movements. The purpose of this study was to examine the relationship of both shoulder and hip angular kinematics with ball velocity during the volleyball spike. Methods: Fourteen Division I collegiate female volleyball players executed down the line (DL and diagonally across-court (DAC spikes in a laboratory setting to measure shoulder and hip angular kinematics and velocities. Each spike was analyzed using a 10 Camera Raptor-E Digital Real Time Camera System. Results: DL SBV was significantly greater than for DAC, respectively (17.54±2.35 vs. 15.97±2.36 m/s, p<0.05. The Shoulder Hip Separation Angle (S-HSA, Shoulder Angular Velocity (SAV, and Hip Angular Velocity (HAV were all significantly correlated with DAC SBV. S-HSA was the most significant predictor of DAC SBV as determined by regression analysis. Conclusions: This study provides support for a relationship between a greater S-HSA and SBV. Future research should continue to 1 examine the influence of core training exercise and rotational skill drills on SBV and 2 examine trunk angular velocities during various types of spikes during play.
Approximate joint diagonalization and geometric mean of symmetric positive definite matrices.
Congedo, Marco; Afsari, Bijan; Barachant, Alexandre; Moakher, Maher
2014-01-01
We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD) matrices and their approximate joint diagonalization (AJD). Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed with the Fisher information metric. The resulting mean has several important invariance properties and has proven very useful in diverse engineering applications such as biomedical and image data processing. While for two SPD matrices the mean has an algebraic closed form solution, for a set of more than two SPD matrices it can only be estimated by iterative algorithms. However, none of the existing iterative algorithms feature at the same time fast convergence, low computational complexity per iteration and guarantee of convergence. For this reason, recently other definitions of geometric mean based on symmetric divergence measures, such as the Bhattacharyya divergence, have been considered. The resulting means, although possibly useful in practice, do not satisfy all desirable invariance properties. In this paper we consider geometric means of covariance matrices estimated on high-dimensional time-series, assuming that the data is generated according to an instantaneous mixing model, which is very common in signal processing. We show that in these circumstances we can approximate the Fisher information geometric mean by employing an efficient AJD algorithm. Our approximation is in general much closer to the Fisher information geometric mean as compared to its competitors and verifies many invariance properties. Furthermore, convergence is guaranteed, the computational complexity is low and the convergence rate is quadratic. The accuracy of this new geometric mean approximation is demonstrated by means of simulations.
Diagonal Earlobe Crease (Frank's Sign): A Predictor of Cerebral Vascular Events.
Nazzal, Saleh; Hijazi, Basem; Khalila, Luai; Blum, Arnon
2017-11-01
Frank's sign was first described in 1973 by an American physician (Sonders T. Frank). It is a diagonal crease in the earlobe that starts from the tragus to the edge of the auricle in an angle of 45° in varying depths. Frank's sign was described as a predictor of future coronary heart disease and peripheral vascular diseases. The aim of the study was to examine the association between Frank's sign and the development of ischemic stroke. This was a prospective study that enrolled consecutive patients admitted with an acute ischemic stroke. Frank's sign was tested in both ears. Clinical data included age, gender, type 2 diabetes mellitus, and hypertension. The study was approved by the institutional review board (the institutional ethics committee). A total of 241 consecutive patients who were hospitalized with an acute stroke and were eligible to take part in the study were recruited. Frank's sign was present in 190 patients (78.8%). Patients were divided according to clinical findings and the findings from brain computed tomography. There were 153 patients with transient ischemic attacks (63.6% of the patients) and 88 with cerebrovascular accidents (36.4% of the patients). A total of 112 patients with transient ischemic attacks had Frank's sign (73.2%), and 78 patients with cerebrovascular accidents had Frank's sign (88.6%), with a statistically significant difference (P <.01). Frank's sign could predict ischemic cerebrovascular events. Patients with classical cardiovascular risk factors had Frank's sign at a higher frequency. Copyright © 2017 Elsevier Inc. All rights reserved.
A totally diverting loop colostomy.
Merrett, N. D.; Gartell, P. C.
1993-01-01
A technique is described where the distal limb of a loop colostomy is tied with nylon or polydioxanone. This ensures total faecal diversion and dispenses with the supporting rod, enabling early application of stoma appliances. The technique does not interfere with the traditional transverse closure of a loop colostomy. PMID:8379632
Higher dimensional loop quantum cosmology
International Nuclear Information System (INIS)
Zhang, Xiangdong
2016-01-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)
International Nuclear Information System (INIS)
Beneke, M.; Falgari, P.; Schwinn, C.
2010-01-01
We consider the total production cross section of heavy coloured particle pairs in hadronic collisions at the production threshold. We construct a basis in colour space that diagonalizes to all orders in perturbation theory the soft function, which appears in a new factorization formula for the combined resummation of soft gluon and Coulomb gluon effects. This extends recent results on the structure of soft anomalous dimensions and allows us to determine an analytic expression for the two-loop soft anomalous dimension at threshold for all production processes of interest.
LoopIng: a template-based tool for predicting the structure of protein loops.
Messih, Mario Abdel; Lepore, Rosalba; Tramontano, Anna
2015-01-01
) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has
Gaykema, R.P.A.; Kuil, J. van der; Hersh, L.B.; Luiten, P.G.M.
1991-01-01
The projections from the Ammon's horn to the cholinergic cell groups in the medial septal and diagonal band nuclei were investigated with anterograde tracing of Phaseolus vulgaris leucoagglutinin combined with immunocytochemical detection of choline acetyltransferase, in the rat. Tracer injections
Cally, Paul S.; Xiong, Ming
2018-01-01
Fast sausage modes in solar magnetic coronal loops are only fully contained in unrealistically short dense loops. Otherwise they are leaky, losing energy to their surrounds as outgoing waves. This causes any oscillation to decay exponentially in time. Simultaneous observations of both period and decay rate therefore reveal the eigenfrequency of the observed mode, and potentially insight into the tubes’ nonuniform internal structure. In this article, a global spectral description of the oscillations is presented that results in an implicit matrix eigenvalue equation where the eigenvalues are associated predominantly with the diagonal terms of the matrix. The off-diagonal terms vanish identically if the tube is uniform. A linearized perturbation approach, applied with respect to a uniform reference model, is developed that makes the eigenvalues explicit. The implicit eigenvalue problem is easily solved numerically though, and it is shown that knowledge of the real and imaginary parts of the eigenfrequency is sufficient to determine the width and density contrast of a boundary layer over which the tubes’ enhanced internal densities drop to ambient values. Linearized density kernels are developed that show sensitivity only to the extreme outside of the loops for radial fundamental modes, especially for small density enhancements, with no sensitivity to the core. Higher radial harmonics do show some internal sensitivity, but these will be more difficult to observe. Only kink modes are sensitive to the tube centres. Variation in internal and external Alfvén speed along the loop is shown to have little effect on the fundamental dimensionless eigenfrequency, though the associated eigenfunction becomes more compact at the loop apex as stratification increases, or may even displace from the apex.
International Nuclear Information System (INIS)
McCormack, B.; Kaita, R.; Kugel, H.; Hatcher, R.
2000-01-01
The Rogowski Loop is one of the most basic diagnostics for tokamak operations. On the National Spherical Torus Experiment (NSTX), the plasma current Rogowski Loop had the constraints of the very limited space available on the center stack, 5,000 volt isolation, flexibility requirements as it remained a part of the Center Stack assembly after the first phase of operation, and a +120 C temperature requirement. For the second phase of operation, four Halo Current Rogowski Loops under the Center Stack tiles will be installed having +600 C and limited space requirements. Also as part of the second operational phase, up to ten Rogowski Loops will installed to measure eddy currents in the Passive Plate support structures with +350 C, restricted space, and flexibility requirements. This presentation will provide the details of the material selection, fabrication techniques, testing, and installation results of the Rogowski Loops that were fabricated for the high temperature operational and bakeout requirements, high voltage isolation requirements, and the space and flexibility requirements imposed upon the Rogowski Loops. In the future operational phases of NSTX, additional Rogowski Loops could be anticipated that will measure toroidal plasma currents in the vacuum vessel and in the Passive Plate assemblies
Two-loop hard-thermal-loop thermodynamics with quarks
International Nuclear Information System (INIS)
Andersen, Jens O.; Petitgirard, Emmanuel; Strickland, Michael
2004-01-01
We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for N f =2 and with exact numerical results obtained in the large-N f limit
String breaking with Wilson loops?
Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de
2003-01-01
A convincing, uncontroversial observation of string breaking, when the static potential is extracted from Wilson loops only, is still missing. This failure can be understood if the overlap of the Wilson loop with the broken string is exponentially small. In that case, the broken string ground state will only be seen if the Wilson loop is long enough. Our preliminary results show string breaking in the context of the 3d SU(2) adjoint static potential, using the L\\"uscher-Weisz exponential variance reduction approach. As a by-product, we measure the fundamental SU(2) static potential with improved accuracy and see clear deviations from Casimir scaling.
BMN correlators by loop equations
International Nuclear Information System (INIS)
Eynard, Bertrand; Kristjansen, Charlotte
2002-01-01
In the BMN approach to N=4 SYM a large class of correlators of interest are expressible in terms of expectation values of traces of words in a zero-dimensional gaussian complex matrix model. We develop a loop-equation based, analytic strategy for evaluating such expectation values to any order in the genus expansion. We reproduce the expectation values which were needed for the calculation of the one-loop, genus one correction to the anomalous dimension of BMN-operators and which were earlier obtained by combinatorial means. Furthermore, we present the expectation values needed for the calculation of the one-loop, genus two correction. (author)
International Nuclear Information System (INIS)
Kalibjian, R.; Chong, Y.P.; Prono, D.S.; Cavagnolo, H.R.
1984-06-01
The ATA provides an electron beam pulse of 70-ns duration at a 1-Hz rate. Our present optical diagnostics technique involve the imaging of the visible light generated by the beam incident onto the plant of a thin sheet of material. It has already been demonstrated that the light generated has a sufficiently fast temporal reponse in performing beam diagnostics. Notwithstanding possible beam emittance degradation due to scattering in the thin sheet, the observation of beam spatial profiles with relatively high efficiencies has provided data complementary to that obtained from beam wall current monitors and from various x-ray probes and other electrical probes. The optical image sensor consists of a gated, intensified television system. The gate pulse of the image intensifier can be appropriately delayed to give frames that are time-positioned from the head to the tail of the beam with a minimum gate time of 5-ns. The spatial correlation of the time frames from pulse to pulse is very good for a stable electron beam; however, when instabilities do occur, it is difficult to properly assess the spatial composition of the head and the tail of the beam on a pulse-to-pulse basis. Multiple gating within a pulse duration becomes desirable but cannot be performed because the recycle time (20-ms) of the TV system is much longer than the beam pulse. For this reason we have developed an optical-loop framing technique that will allow the recording of two frames within one pulse duration with our present gated/intensified TV system
International Nuclear Information System (INIS)
Bui Xuan Hai.
1990-05-01
For an arbitrary skew field T we study the lattice of subgroups of the special linear group Γ=SL(n,T) that contain the subgroup Δ-SD(n,T) of diagonal matrices with Dieudonne's determinant equal to 1. We show that the description of these subgroups is standard in the following sense: For any subgroup H,Δ≤H≤Γ there exists a unique unital net such that Γ(σ) ≤H≤N(σ), where Γ(σ) is the net subgroup that corresponds to the net σ and N(σ) is the normalizer of Γ(σ) in Γ. (author). 11 refs
Off-diagonal helicity density matrix elements for vector mesons produced in polarized e+e- processes
International Nuclear Information System (INIS)
Anselmino, M.; Murgia, F.; Quintairos, P.
1999-04-01
Final state q q-bar interactions give origin to non zero values of the off-diagonal element ρ 1,-1 of the helicity density matrix of vector mesons produced in e + e - annihilations, as confirmed by recent OPAL data on φ, D * and K * 's. New predictions are given for ρ 1,-1 of several mesons produced at large x E and small p T - i.e. collinear with the parent jet - in the annihilation of polarized 3 + and 3 - , the results depend strongly on the elementary dynamics and allow further non trivial tests of the standard model. (author)
Gigantic transverse voltage induced via off-diagonal thermoelectric effect in CaxCoO2 thin films
Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Adachi, Hideaki; Yamada, Yuka
2010-07-01
Gigantic transverse voltages exceeding several tens volt have been observed in CaxCoO2 thin films with tilted c-axis orientation upon illumination of nanosecond laser pulses. The voltage signals were highly anisotropic within the film surface showing close relation with the c-axis tilt direction. The magnitude and the decay time of the voltage strongly depended on the film thickness. These results confirm that the large laser-induced voltage originates from a phenomenon termed the off-diagonal thermoelectric effect, by which a film out-of-plane temperature gradient leads to generation of a film in-plane voltage.
Domain wall partition function of the eight-vertex model with a non-diagonal reflecting end
International Nuclear Information System (INIS)
Yang Wenli; Chen Xi; Feng Jun; Hao Kun; Shi Kangjie; Sun Chengyi; Yang Zhanying; Zhang Yaozhong
2011-01-01
With the help of the Drinfeld twist or factorizing F-matrix for the eight-vertex SOS model, we derive the recursion relations of the partition function for the eight-vertex model with a generic non-diagonal reflecting end and domain wall boundary condition. Solving the recursion relations, we obtain the explicit determinant expression of the partition function. Our result shows that, contrary to the eight-vertex model without a reflecting end, the partition function can be expressed as a single determinant.
Loop equations in the theory of gravitation
International Nuclear Information System (INIS)
Makeenko, Yu.M.; Voronov, N.A.
1981-01-01
Loop-space variables (matrices of parallel transport) for the theory of gravitation are described. Loop equations, which are equivalent to the Einstein equations, are derived in the classical case. Loop equations are derived for gravity with cosmological constant as well. An analogy with the loop-space approach in Yang-Mills theory is discussed [ru
Kalman Orbit Optimized Loop Tracking
Young, Lawrence E.; Meehan, Thomas K.
2011-01-01
Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.
A type of loop algebra and the associated loop algebras
International Nuclear Information System (INIS)
Tam Honwah; Zhang Yufeng
2008-01-01
A higher-dimensional twisted loop algebra is constructed. As its application, a new Lax pair is presented, whose compatibility gives rise to a Liouville integrable hierarchy of evolution equations by making use of Tu scheme. One of the reduction cases of the hierarchy is an analogous of the well-known AKNS system. Next, the twisted loop algebra, furthermore, is extended to another higher dimensional loop algebra, from which a hierarchy of evolution equations with 11-potential component functions is obtained, whose reduction is just standard AKNS system. Especially, we prove that an arbitrary linear combination of the four Hamiltonian operators directly obtained from the recurrence relations is still a Hamiltonian operator. Therefore, the hierarchy with 11-potential functions possesses 4-Hamiltonian structures. Finally, an integrable coupling of the hierarchy is worked out
Amaral, Marcelo M.; Aschheim, Raymond; Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I.; Woolridge, Daniel
2017-09-01
The goal of this work is to elaborate on new geometric methods of constructing exact and parametric quasiperiodic solutions for anamorphic cosmology models in modified gravity theories, MGTs, and general relativity, GR. There exist previously studied generic off-diagonal and diagonalizable cosmological metrics encoding gravitational and matter fields with quasicrystal like structures, QC, and holonomy corrections from loop quantum gravity, LQG. We apply the anholonomic frame deformation method, AFDM, in order to decouple the (modified) gravitational and matter field equations in general form. This allows us to find integral varieties of cosmological solutions determined by generating functions, effective sources, integration functions and constants. The coefficients of metrics and connections for such cosmological configurations depend, in general, on all spacetime coordinates and can be chosen to generate observable (quasi)-periodic/aperiodic/fractal/stochastic/(super) cluster/filament/polymer like (continuous, stochastic, fractal and/or discrete structures) in MGTs and/or GR. In this work, we study new classes of solutions for anamorphic cosmology with LQG holonomy corrections. Such solutions are characterized by nonlinear symmetries of generating functions for generic off-diagonal cosmological metrics and generalized connections, with possible nonholonomic constraints to Levi-Civita configurations and diagonalizable metrics depending only on a time like coordinate. We argue that anamorphic quasiperiodic cosmological models integrate the concept of quantum discrete spacetime, with certain gravitational QC-like vacuum and nonvacuum structures. And, that of a contracting universe that homogenizes, isotropizes and flattens without introducing initial conditions or multiverse problems.
Côrtes, A.M.A.
2015-02-20
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise divergence-free. When applied to discretized Stokes equations, these spaces generate a symmetric and indefinite saddle-point linear system. Krylov subspace methods are usually the most efficient procedures to solve such systems. One of such methods, for symmetric systems, is the Minimum Residual Method (MINRES). However, the efficiency and robustness of Krylov subspace methods is closely tied to appropriate preconditioning strategies. For the discrete Stokes system, in particular, block-diagonal strategies provide efficient preconditioners. In this article, we compare the performance of block-diagonal preconditioners for several block choices. We verify how the eigenvalue clustering promoted by the preconditioning strategies affects MINRES convergence. We also compare the number of iterations and wall-clock timings. We conclude that among the building blocks we tested, the strategy with relaxed inner conjugate gradients preconditioned with incomplete Cholesky provided the best results.
Cô rtes, A.M.A.; Coutinho, A.L.G.A.; Dalcin, L.; Calo, Victor M.
2015-01-01
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf-sup stable and pointwise divergence-free. When applied to discretized Stokes equations, these spaces generate a symmetric and indefinite saddle-point linear system. Krylov subspace methods are usually the most efficient procedures to solve such systems. One of such methods, for symmetric systems, is the Minimum Residual Method (MINRES). However, the efficiency and robustness of Krylov subspace methods is closely tied to appropriate preconditioning strategies. For the discrete Stokes system, in particular, block-diagonal strategies provide efficient preconditioners. In this article, we compare the performance of block-diagonal preconditioners for several block choices. We verify how the eigenvalue clustering promoted by the preconditioning strategies affects MINRES convergence. We also compare the number of iterations and wall-clock timings. We conclude that among the building blocks we tested, the strategy with relaxed inner conjugate gradients preconditioned with incomplete Cholesky provided the best results.
Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.
Chevallier, Maguelonne; Krauth, Werner
2007-11-01
We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.
Directory of Open Access Journals (Sweden)
Н. А. Колесник
2017-06-01
Full Text Available When predicting deformations and determining measures to protect underworked objects, angular parameters are used: the boundary angles, the angles of total shift, the angle of maximum crop. The values of these angular parameters are given in the normative documents, but only for sections across and along the strike of the formation. However, at present, longwall face mining is mainly being carried out along a diagonal direction to the strike of the formation. In connection with this, the determination of the values of the angular parameters for such conditions is a topical task.The method of determination and the analytical dependences of the angles of total shifts and angles of maximum crop in sections of the longitudinal and transverse axes of coal-mining faces developed along diagonal directions to the strike of the formation are proposed. These angular parameters are used for prognosis of deformations of the earth's surface and for determining the characteristic zones of influence of mine workings on the local places.
Directory of Open Access Journals (Sweden)
Norimasa Shiomi
2003-01-01
Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.
Macfarlane, J. J.
1992-01-01
We investigate the convergence properties of Lambda-acceleration methods for non-LTE radiative transfer problems in planar and spherical geometry. Matrix elements of the 'exact' A-operator are used to accelerate convergence to a solution in which both the radiative transfer and atomic rate equations are simultaneously satisfied. Convergence properties of two-level and multilevel atomic systems are investigated for methods using: (1) the complete Lambda-operator, and (2) the diagonal of the Lambda-operator. We find that the convergence properties for the method utilizing the complete Lambda-operator are significantly better than those of the diagonal Lambda-operator method, often reducing the number of iterations needed for convergence by a factor of between two and seven. However, the overall computational time required for large scale calculations - that is, those with many atomic levels and spatial zones - is typically a factor of a few larger for the complete Lambda-operator method, suggesting that the approach should be best applied to problems in which convergence is especially difficult.
Lin, Cheng-Feng; Hua, Shiang-Hua; Huang, Ming-Tung; Lee, Hsing-Hsan; Liao, Jen-Chieh
2015-01-01
The contribution of core neuromuscular control to the dynamic stability of badminton players with and without knee pain during backhand lunges has not been investigated. Accordingly, this study compared the kinematics of the lower extremity, the trunk movement, the muscle activation and the balance performance of knee-injured and knee-uninjured badminton players when performing backhand stroke diagonal lunges. Seventeen participants with chronic knee pain (injured group) and 17 healthy participants (control group) randomly performed two diagonal backhand lunges in the forward and backward directions, respectively. This study showed that the injured group had lower frontal and horizontal motions of the knee joint, a smaller hip-shoulder separation angle and a reduced trunk tilt angle. In addition, the injured group exhibited a greater left paraspinal muscle activity, while the control group demonstrated a greater activation of the vastus lateralis, vastus medialis and medial gastrocnemius muscle groups. Finally, the injured group showed a smaller distance between centre of mass (COM) and centre of pressure, and a lower peak COM velocity when performing the backhand backward lunge tasks. In conclusion, the injured group used reduced knee and trunk motions to complete the backhand lunge tasks. Furthermore, the paraspinal muscles contributed to the lunge performance of the individuals with knee pain, whereas the knee extensors and ankle plantar flexor played a greater role for those without knee pain.
Tritium Management Loop Design Status
Energy Technology Data Exchange (ETDEWEB)
Rader, Jordan D. [ORNL; Felde, David K. [ORNL; McFarlane, Joanna [ORNL; Greenwood, Michael Scott [ORNL; Qualls, A L. [ORNL; Calderoni, Pattrick [Idaho National Laboratory (INL)
2017-12-01
This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through a nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.
Criteria for saturated magnetization loop
International Nuclear Information System (INIS)
Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A.M.H. de; Schmidt, J.E.; Geshev, J.
2016-01-01
Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe_3O_4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.
Criteria for saturated magnetization loop
Energy Technology Data Exchange (ETDEWEB)
Harres, A. [Departamento de Física, UFSM, Santa Maria, 97105-900 Rio Grande do Sul (Brazil); Mikhov, M. [Faculty of Physics, University of Sofia, 1164 Sofia (Bulgaria); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain); Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Andrade, A.M.H. de; Schmidt, J.E. [Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil); Geshev, J., E-mail: julian@if.ufrgs.br [Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)
2016-03-15
Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe{sub 3}O{sub 4} and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.
Diagonal form factors and heavy-heavy-light three-point functions at weak coupling
International Nuclear Information System (INIS)
Hollo, Laszlo; Jiang, Yunfeng; Petrovskii, Andrei
2015-01-01
In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.
Diagonal form factors and heavy-heavy-light three-point functions at weak coupling
Energy Technology Data Exchange (ETDEWEB)
Hollo, Laszlo [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Jiang, Yunfeng; Petrovskii, Andrei [Institut de Physique Théorique, DSM, CEA, URA2306 CNRS,Saclay, F-91191 Gif-sur-Yvette (France)
2015-09-18
In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.
Thermodynamics in Loop Quantum Cosmology
International Nuclear Information System (INIS)
Li, L.F.; Zhu, J.Y.
2009-01-01
Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.
High pressure experimental water loop
International Nuclear Information System (INIS)
Grenon, M.
1958-01-01
A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr
Integrable systems and loop coproducts
International Nuclear Information System (INIS)
Musso, Fabio
2010-01-01
We present a generalization of a framework for the construction of classical integrable systems that we call loop coproduct formulation (Musso 2010 J. Phys. A: Math. Theor. 43 434026). In this paper, the loop coproduct formulation includes systems of Gelfand-Tsetlin type, the linear r-matrix formulation, the Sklyanin algebras, the reflection algebras, the coalgebra symmetry approach and some of its generalizations as particular cases, showing that all these apparently different approaches have a common algebraic origin. On the other hand, all these subcases do not exhaust the domain of applicability of this new technique, so that new possible directions of investigation do naturally emerge in this framework.
Perturbations in loop quantum cosmology
International Nuclear Information System (INIS)
Nelson, W; Agullo, I; Ashtekar, A
2014-01-01
The era of precision cosmology has allowed us to accurately determine many important cosmological parameters, in particular via the CMB. Confronting Loop Quantum Cosmology with these observations provides us with a powerful test of the theory. For this to be possible, we need a detailed understanding of the generation and evolution of inhomogeneous perturbations during the early, quantum gravity phase of the universe. Here, we have described how Loop Quantum Cosmology provides a completion of the inflationary paradigm, that is consistent with the observed power spectra of the CMB
LISA Pathfinder: OPD loop characterisation
Born, Michael; LPF Collaboration
2017-05-01
The optical metrology system (OMS) of the LISA Pathfinder mission is measuring the distance between two free-floating test masses with unprecedented precision. One of the four OMS heterodyne interferometers reads out the phase difference between the reference and the measurement laser beam. This phase from the reference interferometer is common to all other longitudinal interferometer read outs and therefore subtracted. In addition, the phase is fed back via the digital optical pathlength difference (OPD) control loop to keep it close to zero. Here, we analyse the loop parameters and compare them to on-ground measurement results.
LOOP: engineering marvel, economic calamity
Energy Technology Data Exchange (ETDEWEB)
Brossard, E B
1985-01-01
The Louisiana Offshore Oil Port (LOOP) is the first superport built in the Lower 48. The United States was the only major oil-importing country that did not have a superport, and therefore, could not offload very large crude carriers (VLCCs). Unfortunately, a number of factors changed after it was decided to build LOOP, and these, plus the onerous provisions of the Deepwater Ports Act of 1974, which authorized superports, prevented LOOP from operating economically. LOOP's facilities consist of an offshore platform complex with three single-point-mooring (SPM) system buoys, 19 miles offshore in 110 feet of water, as well as a 32-million-barrel storage terminal 31 miles inland at Clovelly Salt Dome, and connecting pipelines offshore and onshore. By the time LOOP was started-up in May 1981, demand for oil had declined, because of rises in the price of oil, and the source of US oil imports had shifted back to the western hemisphere, away from the eastern hemisphere, closer to the US. The refinery mix in the US also changed, because of up-grading of a number of big refineries, which further reduced demand and made heavier crudes from countries like Mexico and Venezuela more economical. Because of reduced oil imports and shorter hauls, oil shippers started using or continued to use smaller tankers. Smaller tankers are not economical for LOOP, nor do they need LOOP. The start-up of the Trans-Alaska Pipeline System (TAPS) in mid-1977 backed out 1.5 million bd/sup -1/ of foreign imports. TAPS' capacity coincides with LOOP's offloading capacity of 1.4 million bd/sup -1/. US decontrol of domestic crude in 1981 and increased drilling, plus general energy conservation further reduced US oil imports. US consumption declined to 15.1 million bd/sup -1/ in 1983, from 18.8 million bd/sup -1/ in 1978. This award-winning superport needed federal decontrol and increased oil imports along with more VLCCs, in order to operate economically.
International Nuclear Information System (INIS)
Bern, Z.
2004-01-01
Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes
International Nuclear Information System (INIS)
Bern, Z.; Dixon, L.J.; Kosower, D.A.
2004-01-01
Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes
Fermions and loops on graphs: I. Loop calculus for determinants
International Nuclear Information System (INIS)
Chernyak, Vladimir Y; Chertkov, Michael
2008-01-01
This paper is the first in a series devoted to evaluation of the partition function in statistical models on graphs with loops in terms of the Berezin/fermion integrals. The paper focuses on a representation of the determinant of a square matrix in terms of a finite series, where each term corresponds to a loop on the graph. The representation is based on a fermion version of the loop calculus, previously introduced by the authors for graphical models with finite alphabets. Our construction contains two levels. First, we represent the determinant in terms of an integral over anti-commuting Grassmann variables, with some reparametrization/gauge freedom hidden in the formulation. Second, we show that a special choice of the gauge, called the BP (Bethe–Peierls or belief propagation) gauge, yields the desired loop representation. The set of gauge fixing BP conditions is equivalent to the Gaussian BP equations, discussed in the past as efficient (linear scaling) heuristics for estimating the covariance of a sparse positive matrix
Robust fault detection in open loop vs. closed loop
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Stoustrup, J.
1997-01-01
The robustness aspects of fault detection and isolation (FDI) for uncertain systems are considered. The FDI problem is considered in a standard problem formulation. The FDI design problem is analyzed both in the case where the control input signal is considered as a known external input signal (o...... (open loop) and when the input signal is generated by a feedback controller...
A virtual closed loop method for closed loop identification
Agüero, J.C.; Goodwin, G.C.; Hof, Van den P.M.J.
2011-01-01
Indirect methods for the identification of linear plant models on the basis of closed loop data are based on the use of (reconstructed) input signals that are uncorrelated with the noise. This generally requires exact (linear) controller knowledge. On the other hand, direct identification requires
Free loop spaces and cyclohedra
Czech Academy of Sciences Publication Activity Database
Markl, Martin
2003-01-01
Roč. 71, - (2003), s. 151-157 R&D Projects: GA AV ČR IAA1019203 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : cyclohedron * free loop space * recognition Subject RIV: BA - General Mathematics
Feedback - closing the loop digitally
International Nuclear Information System (INIS)
Zagel, J.; Chase, B.
1992-01-01
Many feedback and feedforward systems are now using microprocessors within the loop. We describe the wide range of possibilities and problems that arise. We also propose some ideas for analysis and testing, including examples of motion control in the Flying Wire systems in Main Ring and Tevatron and Low Level RF control now being built for the Fermilab Linac upgrade. (author)
Morbidity of temporary loop ileostomies
Bakx, R.; Busch, O. R. C.; Bemelman, W. A.; Veldink, G. J.; Slors, J. F. M.; van Lanschot, J. J. B.
2004-01-01
Background/Aims: A temporary loop ileostomy is constructed to protect a distal colonic anastomosis. Closure is usually performed not earlier than 8 - 12 weeks after the primary operation. During this period, stoma-related complications can occur and enhance the adverse effect on quality of life. The
Wilson loops in Kerr gravitation
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.
1981-01-01
The ordered integrals for several paths in Kerr gravitation is computed in a compact form. When the path is closed its relation with the angular parallel displacement is discussed and the corresponding Wilson loop is calculated. The validity of Mandelstam relations for gauge fields is also explicitly verified. (Author) [pt
Loop quantum cosmology: Recent progress
Indian Academy of Sciences (India)
Aspects of the full theory of loop quantum gravity can be studied in a simpler .... group) 1-forms and vector fields and Λ is an SO(3)-matrix indicating the internal ... are p and c which are related to the more familiar scale factor by the relations.
PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS
Energy Technology Data Exchange (ETDEWEB)
Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)
2016-11-10
Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.
Loop quantum cosmology and singularities.
Struyve, Ward
2017-08-15
Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.
PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS
International Nuclear Information System (INIS)
Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.
2016-01-01
Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.
Independent SU(2)-loop variables
International Nuclear Information System (INIS)
Loll, R.
1991-04-01
We give a reduction procedure for SU(2)-trace variables and introduce a complete set of indepentent, gauge-invariant and almost local loop variables for the configuration space of SU(2)-lattice gauge theory in 2+1 dimensions. (orig.)
An experimental study of dislocation loop nucleation
International Nuclear Information System (INIS)
Bounaud, J.Y.; Leteurtre, J.
1975-01-01
The nucleation of dislocation loops is experimentally studied by observing the demixion of the Burgers vectors of dislocation loops nucleated in copper whiskers irradiated in flexion by fission fragments at room temperature. The demixion of Burgers vectors is observed by the dimensional effects of dislocation loops: after irradiation, the applied stress is removed; the whisker shows a residual strain that is due to loops because, after an annealing treatment to evaporate dislocation loops, each whisker recovers its initial straight shape. Everywhere along the whisker, the radius of curvature is measured and plotted vs the max. applied stress. Estimations of the interstitial and vacancy dislocation loop nuclei are derived [fr
International Nuclear Information System (INIS)
Dudal, D.; Verschelde, H.; Gracey, J.A.; Lemes, V.E.R.; Sobreiro, R.F.; Sorella, S.P.; Sarandy, M.S.
2004-01-01
We investigate a dynamical mass generation mechanism for the off-diagonal gluons and ghosts in SU(N) Yang-Mills theories, quantized in the maximal Abelian gauge. Such a mass can be seen as evidence for the Abelian dominance in that gauge. It originates from the condensation of a mixed gluon-ghost operator of mass dimension two, which lowers the vacuum energy. We construct an effective potential for this operator by a combined use of the local composite operators technique with the algebraic renormalization and we discuss the gauge parameter independence of the results. We also show that it is possible to connect the vacuum energy, due to the mass dimension-two condensate discussed here, with the nontrivial vacuum energy originating from the condensate μ 2 >, which has attracted much attention in the Landau gauge
Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang
2018-02-01
The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.
Directory of Open Access Journals (Sweden)
Ibrahim Avgin
2017-01-01
Full Text Available Using the coherent potential approximation, we investigate the effects of disorder on the optical absorption and the density of states of Frenkel exciton systems on square, rectangular, and triangular lattices with nearest-neighbor interactions and a Gaussian distribution of transition energies. The analysis is based on an elliptic integral approach that gives results over the entire spectrum. The results for the square lattice are in good agreement with the finite-array calculations of Schreiber and Toyozawa. Our findings suggest that the coherent potential approximation can be useful in interpreting the optical properties of two-dimensional systems with dominant nearest-neighbor interactions and Gaussian diagonal disorder provided the optically active states are Frenkel excitons.
Estimation of complex permittivity using loop antenna
DEFF Research Database (Denmark)
Lenler-Eriksen, Hans-Rudolph; Meincke, Peter
2004-01-01
A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....
A True Open-Loop Synchronization Technique
DEFF Research Database (Denmark)
Golestan, Saeed; Vidal, Ana; Yepes, Alejandro G.
2016-01-01
Synchronization techniques can be broadly classified into two major categories: Closed-loop and open-loop methods. The open-loop synchronization (OLS) techniques, contrary to the closed-loop ones, are unconditionally stable and benefit from a fast dynamic response. Their performance, however, tends...... is to develop a true OLS (and therefore, unconditionally stable) technique without any need for the calculation of sine and cosine functions. The effectiveness of the proposed synchronization technique is confirmed through the simulation and experimental results....
Automation of loop amplitudes in numerical approach
International Nuclear Information System (INIS)
Fujimoto, J.; Ishikawa, T.; Shimizu, Y.; Kato, K.; Nakazawa, N.; Kaneko, T.
1997-01-01
An automatic calculating system GRACE-L1 of one-loop Feynman amplitude is reviewed. This system can be applied to 2 to 2-body one-loop processes. A sample calculation of 2 to 3-body one-loop amplitudes is also presented. (orig.)
Fluctuation current in superconducting loops
International Nuclear Information System (INIS)
Berger, Jorge
2012-01-01
A superconducting loop that encloses noninteger flux holds a permanent current. On the average, this current is also present above T c , and has been measured in recent years. We are able to evaluate the permanent current within the TDGL or the Kramer-Watts-Tobin models for loops of general configuration, i.e., we don't require uniform cross section, material or temperature. We can also consider situations in which the width is not negligible in comparison to the radius. Our results agree with experiments. The situations with which we deal at present include fluctuation superconductivity in two-band superconductors, equilibrium thermal fluctuations of supercurrent along a weak link, and ratchet effects.
Loop connectors in dentogenic diastema
Directory of Open Access Journals (Sweden)
Sanjna Nayar
2015-01-01
Full Text Available Patients with a missing tooth along with diastema have limited treatment options to restore the edentulous space. The use of a conventional fixed partial denture (FPD to replace the missing tooth may result in too wide anterior teeth leading to poor esthetics. Loss of anterior teeth with existing diastema may result in excess space available for pontic. This condition presents great esthetic challenge for prosthodontist. If implant supported prosthesis is not possible because of inadequate bone support, FPD along with loop connector may be a treatment option to maintain the diastema and provide optimal esthetic restoration. Here, we report a clinical case where FPD along with loop connector was used to achieve esthetic rehabilitation in maxillary anterior region in which midline diastema has been maintained.
In pile helium loop ''COMEDIE''
International Nuclear Information System (INIS)
Abassin, J.J.; Blanchard, R.J.; Gentil, J.
1981-01-01
The SR1 test in the COMEDIE loop has permitted to demonstrate particularly the device operation reliability with a fuel loading. The post-irradiation examinations have pointed out the good filter efficiency and have enabled to determine the deposition profiles either for the activation products (e.g.: 51 Cr, 60 Co) or for the fission products (e.g.: sup(110m)Ag, 131 I, 134 Cs, 137 Cs). (author)
Hrdá, Marcela; Kulich, Tomáš; Repiský, Michal; Noga, Jozef; Malkina, Olga L; Malkin, Vladimir G
2014-09-05
A recently developed Thouless-expansion-based diagonalization-free approach for improving the efficiency of self-consistent field (SCF) methods (Noga and Šimunek, J. Chem. Theory Comput. 2010, 6, 2706) has been adapted to the four-component relativistic scheme and implemented within the program package ReSpect. In addition to the implementation, the method has been thoroughly analyzed, particularly with respect to cases for which it is difficult or computationally expensive to find a good initial guess. Based on this analysis, several modifications of the original algorithm, refining its stability and efficiency, are proposed. To demonstrate the robustness and efficiency of the improved algorithm, we present the results of four-component diagonalization-free SCF calculations on several heavy-metal complexes, the largest of which contains more than 80 atoms (about 6000 4-spinor basis functions). The diagonalization-free procedure is about twice as fast as the corresponding diagonalization. Copyright © 2014 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Kumar, V.; Mookerjee, A.; Srivastava, V.K.
1980-09-01
We have developed here a self-consistent coherent potential approximation generalized to take into account effect of clusters. Off-diagonal disorder and short-range order are taken into account. A graphical method married to the recursion technique, enables us to work on realistic three-dimensional lattices. Calculations are shown for a binary alloy on a diamond lattice. (author)
Dispersion relations in loop calculations
International Nuclear Information System (INIS)
Kniehl, B.A.
1996-01-01
These lecture notes give a pedagogical introduction to the use of dispersion relations in loop calculations. We first derive dispersion relations which allow us to recover the real part of a physical amplitude from the knowledge of its absorptive part along the branch cut. In perturbative calculations, the latter may be constructed by means of Cutkosky's rule, which is briefly discussed. For illustration, we apply this procedure at one loop to the photon vacuum-polarization function induced by leptons as well as to the γf anti-f vertex form factor generated by the exchange of a massive vector boson between the two fermion legs. We also show how the hadronic contribution to the photon vacuum polarization may be extracted from the total cross section of hadron production in e + e - annihilation measured as a function of energy. Finally, we outline the application of dispersive techniques at the two-loop level, considering as an example the bosonic decay width of a high-mass Higgs boson. (author)
Oscillation damping of chiral string loops
International Nuclear Information System (INIS)
Babichev, Eugeny; Dokuchaev, Vyacheslav
2002-01-01
Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations
Modular invariance and covariant loop calculus
International Nuclear Information System (INIS)
Petersen, J.L.; Roland, K.O.; Sidenius, J.R.
1988-01-01
The covariant loop calculus provides and efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit 2- and 3- loop results derived using analytic geometry (1 loop is known to be ok). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various non-trivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)
Algorithm for counting large directed loops
Energy Technology Data Exchange (ETDEWEB)
Bianconi, Ginestra [Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy); Gulbahce, Natali [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, NM 87545 (United States)
2008-06-06
We derive a Belief-Propagation algorithm for counting large loops in a directed network. We evaluate the distribution of the number of small loops in a directed random network with given degree sequence. We apply the algorithm to a few characteristic directed networks of various network sizes and loop structures and compare the algorithm with exhaustive counting results when possible. The algorithm is adequate in estimating loop counts for large directed networks and can be used to compare the loop structure of directed networks and their randomized counterparts.
Functional Fourier transforms and the loop equation
International Nuclear Information System (INIS)
Bershadskii, M.A.; Vaisburd, I.D.; Migdal, A.A.
1986-01-01
The Migdal-Makeenko momentum-space loop equation is investigated. This equation is derived from the ordinary loop equation by taking the Fourier transform of the Wilson functional. A perturbation theory is constructed for the new equation and it is proved that the action of the loop operator is determined by vertex functions which coincide with those of the previous equation. It is shown how the ghost loop arises in direct iterations of the momentum-space equation with respect to the coupling constant. A simple example is used to illustrate the mechanism of appearance of an integration in the interior loops in transition to observables
Modular invariance and covariant loop calculus
International Nuclear Information System (INIS)
Petersen, J.L.; Roland, K.O.; Sidenius, J.R.
1988-01-01
The covariant loop calculus provides an efficient technique for computing explicit expressions for the density on moduli space corresponding to arbitrary (bosonic string) loop diagrams. Since modular invariance is not manifest, however, we carry out a detailed comparison with known explicit two- and three-loop results derived using analytic geometry (one loop is known to be okay). We establish identity to 'high' order in some moduli and exactly in others. Agreement is found as a result of various nontrivial cancellations, in part related to number theory. We feel our results provide very strong support for the correctness of the covariant loop calculus approach. (orig.)
Hyperstaticity and loops in frictional granular packings
Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.
2009-06-01
The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.
On the regge-cut cancellation in planar amplitude of the dual unitarisation scheme
International Nuclear Information System (INIS)
Kwiecinski, J.; Sakai, N.
1976-09-01
The problem of the Regge-cut cancellation in equations for planar Reggeons is considered by using the j-plane methods in treating the underlying integral equations. It is shown that the kernel should have the zero which cancels the Reggeon-loop singularity in order to eliminate the cut in the Reggeon-Reggeon scattering amplitudes besides amplitudes involving external particles. This zero (nonsense zero) implies that the finite size cluster is incompatable with the cut cancellation. Two alternatives no-double-counting conditions of the 'Reggeon-bootstrap' (the Oxford Rutherford model and the Finkelstein-Koplik model) are examined and it is found that the Regge-cut cannot be cancelled because of the finite size of the cluster. Substantial modifications of the 'Reggeon-bootstrap' model may be necessary if the Regge-cut is to be cancelled. (author)
Loop diagrams without γ matrices
International Nuclear Information System (INIS)
McKeon, D.G.C.; Rebhan, A.
1993-01-01
By using a quantum-mechanical path integral to compute matrix elements of the form left-angle x|exp(-iHt)|y right-angle, radiative corrections in quantum-field theory can be evaluated without encountering loop-momentum integrals. In this paper we demonstrate how Dirac γ matrices that occur in the proper-time ''Hamiltonian'' H lead to the introduction of a quantum-mechanical path integral corresponding to a superparticle analogous to one proposed recently by Fradkin and Gitman. Direct evaluation of this path integral circumvents many of the usual algebraic manipulations of γ matrices in the computation of quantum-field-theoretical Green's functions involving fermions
Perturbation calculations with Wilson loop
International Nuclear Information System (INIS)
Peixoto Junior, L.B.
1984-01-01
We present perturbative calculations with the Wilson loop (WL). The dimensional regularization method is used with a special attention concerning to the problem of divergences in the WL expansion in second and fourth orders, in three and four dimensions. We show that the residue in the pole, in 4d, of the fourth order graphs contribution sum is important for the charge renormalization. We compute up to second order the exact expression of the WL, in three-dimensional gauge theories with topological mass as well as its assimptotic behaviour for small and large distances. the author [pt
Syaina, L. P.; Majidi, M. A.
2018-04-01
Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.
Directory of Open Access Journals (Sweden)
Kashinski D.O.
2015-01-01
Full Text Available We describe our implementation of the block diagonalization method for calculating the potential surfaces necessary to treat dissociative recombination (DR of electrons with N2H+. Using the methodology we have developed over the past few years, we performed multi-reference, configuration interaction calculations for N2H+ and N2H with a large active space using the GAMESS electronic structure code. We treated both linear and bent geometries of the molecules, with N2 fixed at its equilibrium separation. Because of the strong Rydberg-valence coupling in N2H, it is essential to isolate the appropriate dissociating, autoionizing states. Our procedure requires only modest additional effort beyond the standard methodology. The results indicate that the crossing between the dissociating neutral curve and the initial ion potential is not favorably located for DR, even if the molecule bends. The present calculations thereby confirm our earlier results for linear N2H and reinforce the conclusion that the direct mechanism for DR is likely to be inefficient. We also describe interesting features of our preliminary calculations on SH.
Kadhim, Rasim Azeez; Fadhil, Hilal Adnan; Aljunid, S. A.; Razalli, Mohamad Shahrazel
2014-10-01
A new two dimensional codes family, namely two dimensional multi-diagonal (2D-MD) codes, is proposed for spectral/spatial non-coherent OCDMA systems based on the one dimensional MD code. Since the MD code has the property of zero cross correlation, the proposed 2D-MD code also has this property. So that, the multi-access interference (MAI) is fully eliminated and the phase induced intensity noise (PIIN) is suppressed with the proposed code. Code performance is analyzed in terms of bit error rate (BER) while considering the effect of shot noise, PIIN, and thermal noise. The performance of the proposed code is compared with the related MD, modified quadratic congruence (MQC), two dimensional perfect difference (2D-PD) and two dimensional diluted perfect difference (2D-DPD) codes. The analytical and the simulation results reveal that the proposed 2D-MD code outperforms the other codes. Moreover, a large number of simultaneous users can be accommodated at low BER and high data rate.
International Nuclear Information System (INIS)
Ogino, Masao
2016-01-01
Actual problems in science and industrial applications are modeled by multi-materials and large-scale unstructured mesh, and the finite element analysis has been widely used to solve such problems on the parallel computer. However, for large-scale problems, the iterative methods for linear finite element equations suffer from slow or no convergence. Therefore, numerical methods having both robust convergence and scalable parallel efficiency are in great demand. The domain decomposition method is well known as an iterative substructuring method, and is an efficient approach for parallel finite element methods. Moreover, the balancing preconditioner achieves robust convergence. However, in case of problems consisting of very different materials, the convergence becomes bad. There are some research to solve this issue, however not suitable for cases of complex shape and composite materials. In this study, to improve convergence of the balancing preconditioner for multi-materials, a balancing preconditioner combined with the diagonal scaling preconditioner, called Scaled-BDD method, is proposed. Some numerical results are included which indicate that the proposed method has robust convergence for the number of subdomains and shows high performances compared with the original balancing preconditioner. (author)
Directory of Open Access Journals (Sweden)
Viet Tra
2017-12-01
Full Text Available This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs trained via the stochastic diagonal Levenberg-Marquardt (S-DLM algorithm. The CNNs utilize the spectral energy maps (SEMs of the acoustic emission (AE signals as inputs and automatically learn the optimal features, which yield the best discriminative models for diagnosing incipient bearing defects under variable operating speeds. The SEMs are two-dimensional maps that show the distribution of energy across different bands of the AE spectrum. It is hypothesized that the variation of a bearing’s speed would not alter the overall shape of the AE spectrum rather, it may only scale and translate it. Thus, at different speeds, the same defect would yield SEMs that are scaled and shifted versions of each other. This hypothesis is confirmed by the experimental results, where CNNs trained using the S-DLM algorithm yield significantly better diagnostic performance under variable operating speeds compared to existing methods. In this work, the performance of different training algorithms is also evaluated to select the best training algorithm for the CNNs. The proposed method is used to diagnose both single and compound defects at six different operating speeds.
Meng, Xi; Nguyen, Bao D.; Ridge, Clark; Shaka, A. J.
2009-01-01
High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to “reduced-dimensionality” strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the Filter Diagonalization Method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths. PMID:18926747
Directory of Open Access Journals (Sweden)
Guinter Neutzling Schneid
2016-01-01
Full Text Available The dimensional stability of the paper may change due to middle exchange moisture, releasing the latent stress acquired into the manufacturing process. One result of this tension release is the diagonal curl. This study aims to conduct a sensitivity analysis of the different input’s variables of an industrial paper machine, along with some laboratory measurements, in order to identify the importance in production of paperboard quality control and relate to the property of the paper called twist. A survey was made of the production history, relating to 2012, to observe the products with the highest quality losses. From this, they were correlated with the critical points of measurement profile in the machine cross direction and consequently with the paper. It was found some changes once the variables correlated with twist, referring to the three analyzes of the profile (tender side, middle and drive side. It was revealed, from the sensitivity analysis, that the most important and sensitive variables, respectively for the tender side, middle and drive side, were total flow from the top layer, vapor pressure in the 6th group of drying cylinders and mass flow side of the bottom layer of the formation of paperboard.
Generation of second harmonic in off-diagonal magneto-impedance in Co-based amorphous ribbons
International Nuclear Information System (INIS)
Buznikov, N A; Yoon, S S; Jin, L; Kim, C O; Kim, C G
2006-01-01
The off-diagonal magneto-impedance in Co-based amorphous ribbons was measured using a pick-up coil wound around the sample. The ribbons were annealed in air or in vacuum in the presence of a weak magnetic field. The evolution of the first and second harmonics in the pick-up coil voltage as a function of the current amplitude was studied. At low current amplitudes, the first harmonic dominates in the frequency spectrum of the voltage, and at sufficiently high current amplitudes, the amplitude of the second harmonic becomes higher than that of the first harmonic. For air-annealed ribbons, the asymmetric two-peak behaviour of the field dependences of the harmonic amplitudes was observed, which is related to the coupling between the amorphous phase and surface crystalline layers appearing after annealing. For vacuum-annealed samples, the first harmonic has a maximum at zero external field, and the field dependence of the second harmonic exhibits symmetric two-peak behaviour. The experimental results are interpreted in terms of a quasi-static rotational model. It is shown that the appearance of the second harmonic in the pick-up coil voltage is related to the anti-symmetrical distribution of the transverse field induced by the current. The calculated dependences are in qualitative agreement with the experimental data
Gauge theory loop operators and Liouville theory
International Nuclear Information System (INIS)
Drukker, Nadav; Teschner, Joerg
2009-10-01
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S 4 - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)
Gauge theory loop operators and Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-10-15
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)
Loop quantization as a continuum limit
International Nuclear Information System (INIS)
Manrique, Elisa; Oeckl, Robert; Weber, Axel; Zapata, Jose A
2006-01-01
We present an implementation of Wilson's renormalization group and a continuum limit tailored for loop quantization. The dynamics of loop-quantized theories is constructed as a continuum limit of the dynamics of effective theories. After presenting the general formalism we show as a first explicit example the 2D Ising field theory, an interacting relativistic quantum field theory with local degrees of freedom quantized by loop quantization techniques
Quantum chromodynamics as dynamics of loops
International Nuclear Information System (INIS)
Makeenko, Yu.M.; Migdal, A.A.
1981-01-01
QCD is entirely reformulated in terms of white composite fields - the traces of the loop products. The 1/N expansion turns out to be the WKB (Hartree-Fock) approximation for these fields. The 'classical' equation describing the N = infinite case is reduced tp a bootstrap form. New, manifestly gauge-invariant perturbation theory in the loop space, reproducing asymptotic freedom, is developed by iterations of this equation. The area law appears to be a self-consistent solution at large loops. (orig.)
International Nuclear Information System (INIS)
Fort, H.
1994-01-01
We present a survey on the state of the art in the formulation of lattice compact QED in the space of loops. In a first part we review our most recent Hamiltonian results which signal a second order transition for (3+1) compact QED. We devote the second part to the Lagrangian loop formalism, showing the equivalence of the recently proposed loop action with the Villain form. (orig.)
LMFBR with booster pump in pumping loop
International Nuclear Information System (INIS)
Rubinstein, H.J.
1975-01-01
A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation
Soft Neutrosophic Loops and Their Generalization
Directory of Open Access Journals (Sweden)
Mumtaz Ali
2014-06-01
Full Text Available Soft set theory is a general mathematical tool for dealing with uncertain, fuzzy, not clearly defined objects. In this paper we introduced soft neutrosophic loop,soft neutosophic biloop, soft neutrosophic N -loop with the discuission of some of their characteristics. We also introduced a new type of soft neutrophic loop, the so called soft strong neutrosophic loop which is of pure neutrosophic character. This notion also found in all the other corresponding notions of soft neutrosophic thoery. We also given some of their properties of this newly born soft structure related to the strong part of neutrosophic theory.
Vertically Polarized Omnidirectional Printed Slot Loop Antenna
DEFF Research Database (Denmark)
Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper
2015-01-01
A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....
Quantum chromodynamics as dynamics of loops
International Nuclear Information System (INIS)
Makeenko, Yu.; Migdal, A.A.
1980-01-01
The problem of a possibility of reformulating quantum chromodynamics (QCD) in terms of colourless composite fields instead of coloured quarks and gluons is considered. The role of such fields is played by the gauge invariant loop functionals. The Shwinger equations of motion is derived in the loop space which completely describe dynamics of the loop fields. New manifestly gauge invariant diagram technique in the loop space is developed. These diagrams reproduce asymptotic freedom in the ultraviolet range and are consistent with the confinement law in the infrared range
In pile helium loop ''Comedie''
International Nuclear Information System (INIS)
Blanchard, R.J.
1985-01-01
The loop is located in the SILOE reactor at Centre d'Etudes Nucleaires de Grenoble. The purpose and objectives are divided into two groups, principal and secondary. The primary objective was to provide basic data on the deposition behavior of important condensable fission products on a variety of steel surfaces, i.e. temperature (sorption isotherms) and mass transfer (physical adsorption) dependencies; to provide information concerning the degree of penetration of important fission products into the metals comprising the heat exchanger-recuperator tubes as a function of alloy type and/or metal temperature; to provide complementary information on the reentrainment (liftoff) of important fission and activation products by performing out-of-pile blowdown experiments on tube samples representative of the alloy types used in the heat exchanger-recuperator and of the surface temperatures experienced during plateout. The secondary objective was to provide information concerning the migration of important fission products through graphite. To this end, concentration profiles in the web between the fuel rods containing the fission product source and the coolant channels and in the graphite diffusion sample will be measured to study the corrosion of metallic specimens placed in the conditions of high temperature gas cooled reactor. The first experiment SRO enables to determine the loop characteristics and possibilities related to thermal, thermodynamic, chemical and neutronic properties. The second experiment has been carried out in high temperature gas cooled reactor operating conditions. It enables to determine in particular the deposition axial profile of activation and fission products in the plateout section constituting the heat exchanger, the fission products balance trapped in the different filter components, and the cumulated released fraction of solid fission products. The SR1 test permits to demonstrate in particular the Comedie loop operation reliability, either
Rapid Simulation of Flat Knitting Loops Based On the Yarn Texture and Loop Geometrical Model
Directory of Open Access Journals (Sweden)
Lu Zhiwen
2017-06-01
Full Text Available In order to create realistic loop primitives suitable for the fast computer-aided design (CAD of the flat knitted fabric, we have a research on the geometric model of the loop as well as the variation of the loop surface. Establish the texture variation model based on the changing process from the normal yarn to loop that provides the realistic texture of the simulative loop. Then optimize the simulative loop based on illumination variation. This paper develops the computer program with the optimization algorithm and achieves the loop simulation of different yarns to verify the feasibility of the proposed algorithm. Our work provides a fast CAD of the flat knitted fabric with loop simulation, and it is not only more realistic but also material adjustable. Meanwhile it also provides theoretical value for the flat knitted fabric computer simulation.
International Nuclear Information System (INIS)
Csernai, L.P.; Zimanyi, J.; Gyarmati, B.; Lovas, R.G.
1978-01-01
The finite-range Gaussian force and delta-force have been diagonalized in a basis of 27 particle-hole states with Jsup(π)=1 - in 116 Sn. Depending on the range of the force, 3.9-7.1% of the total transition rate has been found in the 6-9 MeV excitation energy region, which comprises the unperturbed energies of the basis states containing neutron threshold states. (Auth.)
International Nuclear Information System (INIS)
Krohn, B.J.
1976-10-01
Diagonal F/sup (4)/ and F/sup (6)/ coefficients of Moret-Bailly are presented for 2 less than or equal to J less than or equal to 100 along with multiples of these quantities that are convenient for fine-structure analysis in P -, Q -, and R - branches of fundamental-type bands in highly resolved infrared spectra of spherical-top molecules
CERN. Geneva
2016-01-01
Developing in python is fast. Computation, however, can often be another story. Or at least that is how it may seem. When working with arrays and numerical datasets one can subvert many of python’s computational limitations by utilizing numpy. Numpy is python’s standard matrix computation library. Many python users only use numpy to store and generate arrays, failing to utilize one of python’s most powerful computational tools. By leveraging numpy’s ufuncs, aggregation, broadcasting and slicing/masking/indexing functionality one can cut back on slow python loops and increase the speed of their programs by as much as 100x. This talk aims at teaching attendees how to use these tools through toy examples.
Closed loop steam cooled airfoil
Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.
2006-04-18
An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.
International Nuclear Information System (INIS)
Molique, H.; Dudek, J.
1997-01-01
A particle-number conserving approach is presented to solve the nuclear mean-field plus pairing Hamiltonian problem with a realistic deformed Woods-Saxon single-particle potential. The method is designed for the state-dependent monopole pairing Hamiltonian H pair =summation αβ G αβ c α † c bar α † c bar β c β with an arbitrary set of matrix elements G αβ . Symmetries of the Hamiltonians on the many-body level are discussed using the language of P symmetry introduced earlier in the literature and are employed to diagonalize the problem; the only essential approximation used is a many-body (Fock-space) basis cutoff. An optimal basis construction is discussed and the stability of the final result with respect to the basis cutoff is illustrated in details. Extensions of the concept of P symmetry are introduced and their consequences for an optimal many-body basis cutoff construction are exploited. An algorithm is constructed allowing to solve the pairing problems in the many-body spaces corresponding to p∼40 particles on n∼80 levels and for several dozens of lowest lying states with precision ∼(1 endash 2) % within seconds of the CPU time on a CRAY computer. Among applications, the presence of the low-lying seniority s=0 solutions, that are usually poorly described in terms of the standard approximations (BCS, HFB), is discussed and demonstrated to play a role in the interpretation of the spectra of rotating nuclei. copyright 1997 The American Physical Society
Quadrilaterals: Diagonals and Area
McGraw, Rebecca
2017-01-01
The task shared in this article provides geometry students with opportunities to recall and use basic geometry vocabulary, extend their knowledge of area relationships, and create area formulas. It is characterized by reasoning and sense making (NCTM 2009) and the "Construct viable arguments and critique the reasoning of others"…
Neocortical electrical stimulation for epilepsy : Closed-loop versus open-loop
Vassileva, Albena; van Blooijs, Dorien; Leijten, Frans; Huiskamp, Geertjan
2018-01-01
The aim of this review is to evaluate whether open-loop or closed-loop neocortical electrical stimulation should be the preferred approach to manage seizures in intractable epilepsy. Twenty cases of open-loop neocortical stimulation with an implanted device have been reported, in 5 case studies.
Newtonian gravity in loop quantum gravity
Smolin, Lee
2010-01-01
We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.
Holonomy loops, spectral triples and quantum gravity
DEFF Research Database (Denmark)
Johannes, Aastrup; Grimstrup, Jesper Møller; Nest, Ryszard
2009-01-01
We review the motivation, construction and physical interpretation of a semi-finite spectral triple obtained through a rearrangement of central elements of loop quantum gravity. The triple is based on a countable set of oriented graphs and the algebra consists of generalized holonomy loops...
Feedback loop compensates for rectifier nonlinearity
1966-01-01
Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.
Loop calculus for lattice gauge theories
International Nuclear Information System (INIS)
Gambini, R.; Leal, L.; Trias, A.; Departamento de Fisica Aplicada, Facultad de Ingenieria, Universidad Central de Venezuela, Apartado 47724, Caracas 1051, Venezuela; Departament de Matematiques, Universitat Politecnica de Catalunya, Escuela Tecnica Superior de Enginyers de Telecomunicaciones, Barcelona 08034, Spain)
1989-01-01
Hamiltonian calculations are performed using a loop-labeled basis where the full set of identities for the SU(N) gauge models has been incorporated. The loops are classified as clusterlike structures and the eigenvalue problem leads to a linear set of finite-difference equations easily amenable to numerical treatment. Encouraging results are reported for SU(2) at spatial dimension 2
Design Principles for Closed Loop Supply Chains
H.R. Krikke (Harold); C.P. Pappis (Costas); G.T. Tsoulfas; J.M. Bloemhof-Ruwaard (Jacqueline)
2001-01-01
textabstractIn this paper we study design principles for closed loop supply chains. Closed loop supply chains aim at closing material flows thereby limiting emission and residual waste, but also providing customer service at low cost. We study 'traditional' and 'new' design principles known in the
The Wilson loop and some applications
International Nuclear Information System (INIS)
Bezerra, V.B.
1983-04-01
A simple relation between the classical Wilson loop and the angular deviation in the parallel displacement is found. An example of potentials which give field copies and which suplly the same classical Wilson loop for a particular trajectory is exhibited. The asymptotic behaviour of the Wilson loop for the BPST instanton and the meron, is discussed. By using the dimensional regularization technique to calculate the second order term of the quantum Wilson loop, the influence of geometrical factors for the residue in the pole due to contact points, cuspides and intersections, in function of the space-time ν, is investigated. Charge renormalization in Quantum electrodynamics is finally calculated by using the quantum Wilson loop. (L.C.) [pt
The Wilson loop and some applications
International Nuclear Information System (INIS)
Bezerra, V.B.
1983-01-01
A simple relation between the classical Wilson loop and the angular deviation in the parallel shift is found. An example of potential which given field copies and which give the same classical Wilson loop for a given trajectory is exchibited. Afterwards, the asymptotic behaviour of the Wilson loop for the BPST instanton and meron is discussed. Using the dimensional regularization technique to calculate the second order term of Quantum Wilson loop, the influence of geometrical factors for the residue in the polo due to contact points, cusp and intersections, in function of the upsilon dimension of the space-time is investigated. Finally, the charge renormalization in Quantum Electrodynamics using Quantum Wilson loop is calculated. (L.C.) [pt
Hydraulic loop: practices using open control systems
International Nuclear Information System (INIS)
Carrasco, J.A.; Alonso, L.; Sanchez, F.
1998-01-01
The Tecnatom Hydraulic Loop is a dynamic training platform. It has been designed with the purpose of improving the work in teams. With this system, the student can obtain a full scope vision of a system. The hydraulic Loop is a part of the Tecnatom Maintenance Centre. The first objective of the hydraulic Loop is the instruction in components, process and process control using open control system. All the personal of an electric power plant can be trained in the Hydraulic Loop with specific courses. The development of a dynamic tool for tests previous to plant installations has been an additional objective of the Hydraulic Loop. The use of this platform is complementary to the use of full-scope simulators in order to debug and to analyse advanced control strategies. (Author)
Osmotic mechanism of the loop extrusion process
Yamamoto, Tetsuya; Schiessel, Helmut
2017-09-01
The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber between the two connected rings. With this mechanism, the frequency of the interactions between chromatin segments depends on the loading and unloading rates of dimers at the corresponding sites.
Feedback Loop Gains and Feedback Behavior (1996)
DEFF Research Database (Denmark)
Kampmann, Christian Erik
2012-01-01
Linking feedback loops and system behavior is part of the foundation of system dynamics, yet the lack of formal tools has so far prevented a systematic application of the concept, except for very simple systems. Having such tools at their disposal would be a great help to analysts in understanding...... large, complicated simulation models. The paper applies tools from graph theory formally linking individual feedback loop strengths to the system eigenvalues. The significance of a link or a loop gain and an eigenvalue can be expressed in the eigenvalue elasticity, i.e., the relative change...... of an eigenvalue resulting from a relative change in the gain. The elasticities of individual links and loops may be found through simple matrix operations on the linearized system. Even though the number of feedback loops can grow rapidly with system size, reaching astronomical proportions even for modest systems...
A kinematic view of loop closure.
Coutsias, Evangelos A; Seok, Chaok; Jacobson, Matthew P; Dill, Ken A
2004-03-01
We consider the problem of loop closure, i.e., of finding the ensemble of possible backbone structures of a chain segment of a protein molecule that is geometrically consistent with preceding and following parts of the chain whose structures are given. We reduce this problem of determining the loop conformations of six torsions to finding the real roots of a 16th degree polynomial in one variable, based on the robotics literature on the kinematics of the equivalent rotator linkage in the most general case of oblique rotators. We provide a simple intuitive view and derivation of the polynomial for the case in which each of the three pair of torsional axes has a common point. Our method generalizes previous work on analytical loop closure in that the torsion angles need not be consecutive, and any rigid intervening segments are allowed between the free torsions. Our approach also allows for a small degree of flexibility in the bond angles and the peptide torsion angles; this substantially enlarges the space of solvable configurations as is demonstrated by an application of the method to the modeling of cyclic pentapeptides. We give further applications to two important problems. First, we show that this analytical loop closure algorithm can be efficiently combined with an existing loop-construction algorithm to sample loops longer than three residues. Second, we show that Monte Carlo minimization is made severalfold more efficient by employing the local moves generated by the loop closure algorithm, when applied to the global minimization of an eight-residue loop. Our loop closure algorithm is freely available at http://dillgroup. ucsf.edu/loop_closure/. Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 510-528, 2004
Sequence-structure relationships in RNA loops: establishing the basis for loop homology modeling.
Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk
2010-01-01
The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence-structure relationships in loops. Loops differing by structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts.
Cooke-Nieves, Natasha Anika
Science education research has consistently shown that elementary teachers have a low self-efficacy and background knowledge to teach science. When they teach science, there is a lack of field experiences and inquiry-based instruction at the elementary level due to limited resources, both material and pedagogical. This study focused on an analysis of a professional development (PD) model designed by the author known as the Collaborative Diagonal Learning Network (CDLN). The purpose of this study was to examine elementary school teacher participants pedagogical content knowledge related to their experiences in a CDLN model. The CDLN model taught formal and informal instruction using a science coach and an informal educational institution. Another purpose for this research included a theoretical analysis of the CDLN model to see if its design enabled teachers to expand their resource knowledge of available science education materials. The four-month-long study used qualitative data obtained during an in-service professional development program facilitated by a science coach and educators from a large natural history museum. Using case study as the research design, four elementary school teachers were asked to evaluate the effectiveness of their science coach and museum educator workshop sessions. During the duration of this study, semi-structured individual/group interviews and open-ended pre/post PD questionnaires were used. Other data sources included researcher field notes from lesson observations, museum field trips, audio-recorded workshop sessions, email correspondence, and teacher-created artifacts. The data were analyzed using a constructivist grounded theory approach. Themes that emerged included increased self-efficacy; increased pedagogical content knowledge; increased knowledge of museum education resources and access; creation of a professional learning community; and increased knowledge of science notebooking. Implications for formal and informal
TS LOOP ALCOVE VENTILATION ANALYSIS
International Nuclear Information System (INIS)
T.M. Lahnalampi
2000-01-01
The scope of this analysis is to examine the existing, constructor installed, physical ventilation installations located in each of the Exploratory Studies Facility (ESF) Topopah Springs (TS) Loop Alcoves No.1, No.2, No.3, No.4, No.6, and No.7. Alcove No.5 is excluded from the scope of this analysis since it is an A/E design system. Each ventilation installation will be analyzed for the purpose of determining if requirements for acceptance into the A/E design technical baseline have been met. The ventilation installations will be evaluated using Occupational Safety and Health Administration (OSHA) standards and Exploratory Studies Facility Design Requirements (ESFDR) (YMP 1997) requirements. The end product will be a technical analysis that will define ventilation installation compliance issues, any outstanding field changes, and use-as-is design deviations that are required to bring the ventilation installations into compliance with requirements for acceptance into the A/E design technical baseline. The analysis will provide guidance for alcove ventilation component design modifications to be developed to correct any deficient components that do not meet minimum requirements and standards
Loops in hierarchical channel networks
Katifori, Eleni; Magnasco, Marcelo
2012-02-01
Nature provides us with many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated and natural graphs extracted from digitized images of dicotyledonous leaves and animal vasculature. We calculate various metrics on the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.
Towards conformal loop quantum gravity
International Nuclear Information System (INIS)
Wang, Charles H-T
2006-01-01
A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity
Stability, structure, and evolution of cool loops
International Nuclear Information System (INIS)
Cally, P.S.; Robb, T.D.
1991-01-01
The criteria for the existence and stability of cool loops are reexamined. It is found that the stability of the loops strongly depends on the form of the heating and radiative loss functions and that if the Ly-alpha peak which appears in most calculations of the radiative loss function is real, cool loops are almost certainly unstable. Removing the hydrogen contribution from the recent loss function Q(T) by Cook et al. (1989) does not produce the much-used result, Q proportional to T-cubed, which is so favorable to cool loop stability. Even using the probably unrealistically favorable loss function Q1 of Cook et al. with the hydrogen contribution removed, the maximum temperature attainable in stable cool loops is a factor of 2-3 too small to account for the excess emission observed in lower transition region lines. Dynamical simulations of cool loop instabilities reveal that the final state of such a model is the hot loop equilibrium. 26 refs
Loop-quantum-gravity vertex amplitude.
Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo
2007-10-19
Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.
Technical specification of HANARO fuel test loop
Energy Technology Data Exchange (ETDEWEB)
Kim, J. Y
1998-03-01
The design and installation of the irradiation test facility for verification test of the fuel performance are very important in connection with maximization of the utilization of HANARO. HANARO fuel test loop was designed in accordance with the same code and standards of nuclear power plant because HANARO FTL will be operated the high pressure and temperature same as nuclear power plant operation conditions. The objective of this study is to confirm the operation limit, safety limit, operation condition and checking points of HANARO fuel test loop. This results will become guidances for the planning of irradiation testing and operation of HANARO fuel test loop. (author). 13 refs., 13 tabs., 8 figs.
Numerical approach to one-loop integrals
International Nuclear Information System (INIS)
Fujimoto, Junpei; Shimizu, Yoshimitsu; Kato, Kiyoshi; Oyanagi, Yoshio.
1992-01-01
Two numerical methods are proposed for the calculation of one-loop scalar integrals. In the first method, the singularity is cancelled by the symmetrization of the integrand and the integration is done by a Monte-Carlo method. In the second one, after the transform of the integrand into a standard form, the integral is reduced into a regular numerical integral. These methods provide us practical tools to evaluate one-loop Feynman diagrams with desired numerical accuracy. They are extended to the integral with numerator and the treatment of the one-loop virtual correction to the cross section is also presented. (author)
Zero point energy of renormalized Wilson loops
International Nuclear Information System (INIS)
Hidaka, Yoshimasa; Pisarski, Robert D.
2009-01-01
The quark-antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero when terms for extrinsic curvature are included. At one loop order, the nonperturbative contribution to the zero point energy is negative, regardless of the sign of the extrinsic curvature term.
Loop corrections to primordial non-Gaussianity
Boran, Sibel; Kahya, E. O.
2018-02-01
We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.
Sigma models and renormalization of string loops
International Nuclear Information System (INIS)
Tseytlin, A.A.
1989-05-01
An extension of the ''σ-model β-functions - string equations of motion'' correspondence to the string loop level is discussed. Special emphasis is made on how the renormalization group acts in string loops and, in particular, on the renormalizability property of the generating functional Z-circumflex for string amplitudes (related to the σ model partition function integrated over moduli). Renormalization of Z-circumflex at one and two loop order is analyzed in some detail. We also discuss an approach to renormalization based on operators of insertion of topological fixtures. (author). 70 refs
Construction of the blowdown and condensation loop
Energy Technology Data Exchange (ETDEWEB)
Park, Choon Kyung; Song, Chul Kyung; Cho, Seok; Chun, S. Y.; Chung, Moon Ki
1997-12-01
The blowdown and condensation loop (B and C loop) has been constructed to get experimental data for designing the safety depressurization system (SDS) and steam sparger which are considered to implement in the Korea Next Generation Reactor (KNGR). In this report, system description on the B and C loop is given in detail, which includes the drawings and technical specification of each component, instrumentation and control system, and the operational procedures and the results of the performance testing. (author). 7 refs., 11 tabs., 48 figs.
Eigenvalue distributions of Wilson loops
International Nuclear Information System (INIS)
Lohmayer, Robert
2010-01-01
In the first part of this thesis, we focus on the distribution of the eigenvalues of the unitary Wilson loop matrix in the two-dimensional case at arbitrary finite N. To characterize the distribution of the eigenvalues, we introduce three density functions (the ''symmetric'', the ''antisymmetric'', and the ''true'' eigenvalue density) which differ at finite N but possess the same infinite-N limit, exhibiting the Durhuus-Olesen phase transition. Using expansions of determinants and inverse determinants in characters of totally symmetric or totally antisymmetric representations of SU(N), the densities at finite N can be expressed in terms of simple sums involving only dimensions and quadratic Casimir invariants of certain irreducible representations of SU(N), allowing for a numerical computation of the densities at arbitrary N to any desired accuracy. We find that the true eigenvalue density, adding N oscillations to the monotonic symmetric density, is in some sense intermediate between the symmetric and the antisymmetric density, which in turn is given by a sum of N delta peaks located at the zeros of the average of the characteristic polynomial. Furthermore, we show that the dependence on N can be made explicit by deriving integral representations for the resolvents associated to the three eigenvalue densities. Using saddle-point approximations, we confirm that all three densities reduce to the Durhuus-Olesen result in the infinite-N limit. In the second part, we study an exponential form of the multiplicative random complex matrix model introduced by Gudowska-Nowak et al. Varying a parameter which can be identified with the area of the Wilson loop in the unitary case, the region of non-vanishing eigenvalue density of the N-dimensional complex product matrix undergoes a topological change at a transition point in the infinite-N limit. We study the transition by a detailed analysis of the average of the modulus square of the characteristic polynomial. Furthermore
Eigenvalue distributions of Wilson loops
Energy Technology Data Exchange (ETDEWEB)
Lohmayer, Robert
2010-07-01
In the first part of this thesis, we focus on the distribution of the eigenvalues of the unitary Wilson loop matrix in the two-dimensional case at arbitrary finite N. To characterize the distribution of the eigenvalues, we introduce three density functions (the ''symmetric'', the ''antisymmetric'', and the ''true'' eigenvalue density) which differ at finite N but possess the same infinite-N limit, exhibiting the Durhuus-Olesen phase transition. Using expansions of determinants and inverse determinants in characters of totally symmetric or totally antisymmetric representations of SU(N), the densities at finite N can be expressed in terms of simple sums involving only dimensions and quadratic Casimir invariants of certain irreducible representations of SU(N), allowing for a numerical computation of the densities at arbitrary N to any desired accuracy. We find that the true eigenvalue density, adding N oscillations to the monotonic symmetric density, is in some sense intermediate between the symmetric and the antisymmetric density, which in turn is given by a sum of N delta peaks located at the zeros of the average of the characteristic polynomial. Furthermore, we show that the dependence on N can be made explicit by deriving integral representations for the resolvents associated to the three eigenvalue densities. Using saddle-point approximations, we confirm that all three densities reduce to the Durhuus-Olesen result in the infinite-N limit. In the second part, we study an exponential form of the multiplicative random complex matrix model introduced by Gudowska-Nowak et al. Varying a parameter which can be identified with the area of the Wilson loop in the unitary case, the region of non-vanishing eigenvalue density of the N-dimensional complex product matrix undergoes a topological change at a transition point in the infinite-N limit. We study the transition by a detailed analysis of the average of the
The Universal One-Loop Effective Action
Drozd, Aleksandra; Quevillon, Jérémie; You, Tevong
2016-01-01
We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.
The universal one-loop effective action
International Nuclear Information System (INIS)
Drozd, Aleksandra; Ellis, John; Quevillon, Jérémie; You, Tevong
2016-01-01
We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.
Mathematical Modeling of Loop Heat Pipes
Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.
1998-01-01
The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.
CHY loop integrands from holomorphic forms
Energy Technology Data Exchange (ETDEWEB)
Gomez, Humberto [Facultad de Ciencias Basicas, Universidad Santiago de Cali,Calle 5 62-00 Barrio Pampalinda, Cali, Valle (Colombia); Perimeter Institute for Theoretical Physics,31 Caroline Street N, Waterloo, ON N2L 2Y5 (Canada); Mizera, Sebastian; Zhang, Guojun [Perimeter Institute for Theoretical Physics,31 Caroline Street N, Waterloo, ON N2L 2Y5 (Canada); Department of Physics & Astronomy, University of Waterloo,Waterloo, ON N2L 3G1 (Canada)
2017-03-16
Recently, the Cachazo-He-Yuan (CHY) approach for calculating scattering amplitudes has been extended beyond tree level. In this paper, we introduce a way of constructing CHY integrands for Φ{sup 3} theory up to two loops from holomorphic forms on Riemann surfaces. We give simple rules for translating Feynman diagrams into the corresponding CHY integrands. As a complementary result, we extend the L-algorithm, originally introduced in https://arxiv.org/abs/1604.05373, to two loops. Using this approach, we are able to analytically verify our prescription for the CHY integrands up to seven external particles at two loops. In addition, it gives a natural way of extending to higher-loop orders.
Observing string breaking with Wilson loops
Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de
2003-01-01
An uncontroversial observation of adjoint string breaking is proposed, while measuring the static potential from Wilson loops only. The overlap of the Wilson loop with the broken-string state is small, but non-vanishing, so that the broken-string groundstate can be seen if the Wilson loop is long enough. We demonstrate this in the context of the (2+1)d SU(2) adjoint static potential, using an improved version of the Luscher-Weisz exponential variance reduction. To complete the picture we perform the more usual multichannel analysis with two basis states, the unbroken-string state and the broken-string state (two so-called gluelumps). As by-products, we obtain the temperature-dependent static potential measured from Polyakov loop correlations, and the fundamental SU(2) static potential with improved accuracy. Comparing the latter with the adjoint potential, we see clear deviations from Casimir scaling.
Federal Laboratory Consortium — RTC has a suite of Hardware-in-the Loop facilities that include three operational facilities that provide performance assessment and production acceptance testing of...
Loop Diuretics in the Treatment of Hypertension.
Malha, Line; Mann, Samuel J
2016-04-01
Loop diuretics are not recommended in current hypertension guidelines largely due to the lack of outcome data. Nevertheless, they have been shown to lower blood pressure and to offer potential advantages over thiazide-type diuretics. Torsemide offers advantages of longer duration of action and once daily dosing (vs. furosemide and bumetanide) and more reliable bioavailability (vs. furosemide). Studies show that the previously employed high doses of thiazide-type diuretics lower BP more than furosemide. Loop diuretics appear to have a preferable side effect profile (less hyponatremia, hypokalemia, and possibly less glucose intolerance). Studies comparing efficacy and side effect profiles of loop diuretics with the lower, currently widely prescribed, thiazide doses are needed. Research is needed to fill gaps in knowledge and common misconceptions about loop diuretic use in hypertension and to determine their rightful place in the antihypertensive arsenal.
Possible hysteresis loops of resonatorless optical bistability
International Nuclear Information System (INIS)
Nguyen Ba An; Le Thi Cat Tuong.
1990-05-01
We qualitatively show that hysteresis loops of intrinsic optical bistability phenomena without any additional feedback may be of various shapes including those of a butterfly and a three-winged bow. (author). 15 refs, 4 figs
Closed loop solar chemical heat pipe
International Nuclear Information System (INIS)
Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.
1991-01-01
The system used for the closed loop operation of the solar chemical heat pipe comprises a reformer, heated by the solar furnace, a methanator and a storage assembly containing a compressor and storage cylinders. (authors). 7 figs
Nonequilibrium Chromosome Looping via Molecular Slip Links
Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.
2017-09-01
We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.
A theory of desynchronisable closed loop system
Directory of Open Access Journals (Sweden)
Harsh Beohar
2010-10-01
Full Text Available The task of implementing a supervisory controller is non-trivial, even though different theories exist that allow automatic synthesis of these controllers in the form of automata. One of the reasons for this discord is due to the asynchronous interaction between a plant and its controller in implementations, whereas the existing supervisory control theories assume synchronous interaction. As a consequence the implementation suffer from the so-called inexact synchronisation problem. In this paper we address the issue of inexact synchronisation in a process algebraic setting, by solving a more general problem of refinement. We construct an asynchronous closed loop system by introducing a communication medium in a given synchronous closed loop system. Our goal is to find sufficient conditions under which a synchronous closed loop system is branching bisimilar to its corresponding asynchronous closed loop system.
Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.
1998-01-01
We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.
Horne, W. B.
1977-01-01
Two runways were evaluated under artificially wetted conditions with the NASA diagonal-braked vehicle (DBV). Results of the evaluation which included a pavement drainage analysis, a pavement skid resistance analysis, and a DBV wet/dry stopping distance ratio analysis indicated that the ungrooved runway surfaces had poor water drainage characteristics and poor skid resistance under wet conditions at high speeds especially in rubbercoated areas of the runways. Grooving runways to a transverse 1-1/4 x 1/4 x 1/4 inch pattern greatly improved both the water drainage and pavement skid resistance capability of these asphaltic concrete surfaces.
Lay-Ekuakille, Aimé; Fabbiano, Laura; Vacca, Gaetano; Kitoko, Joël Kidiamboko; Kulapa, Patrice Bibala; Telesca, Vito
2018-06-04
Pipelines conveying fluids are considered strategic infrastructures to be protected and maintained. They generally serve for transportation of important fluids such as drinkable water, waste water, oil, gas, chemicals, etc. Monitoring and continuous testing, especially on-line, are necessary to assess the condition of pipelines. The paper presents findings related to a comparison between two spectral response algorithms based on the decimated signal diagonalization (DSD) and decimated Padé approximant (DPA) techniques that allow to one to process signals delivered by pressure sensors mounted on an experimental pipeline.
Directory of Open Access Journals (Sweden)
Aimé Lay-Ekuakille
2018-06-01
Full Text Available Pipelines conveying fluids are considered strategic infrastructures to be protected and maintained. They generally serve for transportation of important fluids such as drinkable water, waste water, oil, gas, chemicals, etc. Monitoring and continuous testing, especially on-line, are necessary to assess the condition of pipelines. The paper presents findings related to a comparison between two spectral response algorithms based on the decimated signal diagonalization (DSD and decimated Padé approximant (DPA techniques that allow to one to process signals delivered by pressure sensors mounted on an experimental pipeline.
A multiple-pass ring oscillator based dual-loop phase-locked loop
International Nuclear Information System (INIS)
Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning
2009-01-01
A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-μm RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz - 1 MHz offset from a 5.5 GHz carrier.
A multiple-pass ring oscillator based dual-loop phase-locked loop
Energy Technology Data Exchange (ETDEWEB)
Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning, E-mail: dfchen@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)
2009-10-15
A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-{mu}m RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz - 1 MHz offset from a 5.5 GHz carrier.
Selfdual strings and loop space Nahm equations
International Nuclear Information System (INIS)
Gustavsson, Andreas
2008-01-01
We give two independent arguments why the classical membrane fields should be take values in a loop algebra. The first argument comes from how we may construct selfdual strings in the M5 brane from a loop space version of the Nahm equations. The second argument is that there appears to be no infinite set of finite-dimensional Lie algebras (such as su(N) for any N) that satisfies the algebraic structure of the membrane theory
Laser welding closed-loop power control
DEFF Research Database (Denmark)
Bagger, Claus; Olsen, Flemming Ove
2003-01-01
A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser.......A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser....
FMFT. Fully massive four-loop tadpoles
Energy Technology Data Exchange (ETDEWEB)
Pikelner, Andrey [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2017-07-15
We present FMFT - a package written in FORM that evaluates four-loop fully massive tadpole Feynman diagrams. It is a successor of the MATAD package that has been successfully used to calculate many renormalization group functions at three-loop order in a wide range of quantum field theories especially in the Standard Model. We describe an internal structure of the package and provide some examples of its usage.
Higgs Decay to Photons at Two Loops
International Nuclear Information System (INIS)
Fugel, F.
2007-01-01
The calculation of the two-loop corrections to the partial width of an intermediate-mass Higgs boson decaying into a pair of photons is reviewed. The main focus lies on the electroweak (EW) contributions. The sum of the EW corrections ranges from -4% to 0% for a Higgs mass between 100 GeV and 150 GeV, while the complete correction at two-loop order amounts to less than ± 1.5% in this regime. (author)
Piles of dislocation loops in real crystals
International Nuclear Information System (INIS)
Dubinko, V.I.; Turkin, A.A.; Yanovskij, V.V.
1985-01-01
Behaviour of piles of dislocation loops in crystals was studied in order to define metal swelling under irradiation. Energy of pile interaction with point defects and intrinsic pile energy are studied in the framework of the linear elasticity theory. Preference of dislocation pile calculated in the paper decreases with radiation dose hence, material swelling rate also decreases. Creation of conditions, which assume an existence of piles of dislocation loops being stable under irradiation, is of particular interest
Zero Point Energy of Renormalized Wilson Loops
Hidaka, Yoshimasa; Pisarski, Robert D.
2009-01-01
The quark antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero wh...
FMFT: fully massive four-loop tadpoles
Pikelner, Andrey
2018-03-01
We present FMFT - a package written in FORM that evaluates four-loop fully massive tadpole Feynman diagrams. It is a successor of the MATAD package that has been successfully used to calculate many renormalization group functions at three-loop order in a wide range of quantum field theories especially in the Standard Model. We describe an internal structure of the package and provide some examples of its usage.
Quantum Kinematics of Bosonic Vortex Loops
International Nuclear Information System (INIS)
Goldin, G.A.; Owczarek, R.; Sharp, D.H.
1999-01-01
Poisson structure for vortex filaments (loops and arcs) in 2D ideal incompressible fluid is analyzed in detail. Canonical coordinates and momenta on coadjoint orbits of the area-preserving diffeomorphism group, associated with such vortices, are found. The quantum space of states in the simplest case of ''bosonic'' vortex loops is built within a geometric quantization approach to the description of a quantum fluid. Fock-like structure and non-local creation and annihilation operators of quantum vortex filaments are introduced
Loop space representation of quantum general relativity and the group of loops
International Nuclear Information System (INIS)
Gambini, R.
1991-01-01
The action of the constraints of quantum general relativity on a general state in the loop representation is coded in terms of loop derivatives. These differential operators are related to the infinitesimal generators of the group of loops and generalize the area derivative first considered by Mandelstam. A new sector of solutions of the physical states space of nonperturbative quantum general relativity is found. (orig.)
Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop
Energy Technology Data Exchange (ETDEWEB)
Baily, Scott A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wheat, Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-11-16
The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.
Liquid Lead-Bismuth Materials Test Loop
International Nuclear Information System (INIS)
Tcharnotskaia, Valentina; Ammerman, Curtt; Darling, Timothy; King, Joe; Li, Ning; Shaw, Don; Snodgrass, Leon; Woloshun, Keith
2002-01-01
We designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten lead-bismuth eutectic (LBE). In this paper we present a description of the loop with main components and their functions. Stress distribution in the piping due to sustained, occasional and expansion loads is shown. The loop is designed so that a difference of 100 deg. C can be attained between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow can be activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. We developed oxygen sensors and an oxygen control system to be implemented in the loop. The loop is outfitted with a variety of instruments that are controlled from a computer based data acquisition system. Initial experiments include preconditioning the loop, filling it up with LBE, running at uniform temperature and tuning the oxygen control system. We will present some preliminary results and discuss plans for the future tests. (authors)
Distribution of sizes of erased loops for loop-erased random walks
Dhar, Deepak; Dhar, Abhishek
1997-01-01
We study the distribution of sizes of erased loops for loop-erased random walks on regular and fractal lattices. We show that for arbitrary graphs the probability $P(l)$ of generating a loop of perimeter $l$ is expressible in terms of the probability $P_{st}(l)$ of forming a loop of perimeter $l$ when a bond is added to a random spanning tree on the same graph by the simple relation $P(l)=P_{st}(l)/l$. On $d$-dimensional hypercubical lattices, $P(l)$ varies as $l^{-\\sigma}$ for large $l$, whe...
Hybrid Combustion-Gasification Chemical Looping
Energy Technology Data Exchange (ETDEWEB)
Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault
2009-01-07
For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2
International Nuclear Information System (INIS)
Mielke, Steven L.; Schwenke, David; Schatz, George C.; Garrett, Bruce C.; Peterson, Kirk A.
2009-01-01
Multireference configuration interaction (MRCI) calculations of the Born-Oppenheimer diagonal correction (BODC) for H3 were performed at 1397 symmetry-unique configurations using the Born-Huang approach; isotopic substitution leads to 4041 symmetry-unique configurations for the DH2 mass combination. These results were then fit to a functional form that permits calculation of the BODC for any combination of isotopes. Mean unsigned fitting errors on a test grid of configurations not included in the fitting process were 0.14, 0.12, and 0.65 cm-1 for the H3, DH2, and MuH2 isotopomers, respectively. This representation can be combined with any Born-Oppenheimer potential energy surface (PES) to yield Born-Huang (BH) PESs; herein we choose the CCI potential energy surface, the uncertainties of which (∼0.01 kcal/mol) are much smaller than the magnitude of the BODC. FORTRAN routines to evaluate these BH surfaces are provided. Variational transition state theory calculations are presented comparing thermal rate constants for reactions on the BO and BH surfaces to provide an initial estimate of the significance of the diagonal correction for the dynamics.
Ke, Rihuan; Ng, Michael K.; Sun, Hai-Wei
2015-12-01
In this paper, we study the block lower triangular Toeplitz-like with tri-diagonal blocks system which arises from the time-fractional partial differential equation. Existing fast numerical solver (e.g., fast approximate inversion method) cannot handle such linear system as the main diagonal blocks are different. The main contribution of this paper is to propose a fast direct method for solving this linear system, and to illustrate that the proposed method is much faster than the classical block forward substitution method for solving this linear system. Our idea is based on the divide-and-conquer strategy and together with the fast Fourier transforms for calculating Toeplitz matrix-vector multiplication. The complexity needs O (MNlog2 M) arithmetic operations, where M is the number of blocks (the number of time steps) in the system and N is the size (number of spatial grid points) of each block. Numerical examples from the finite difference discretization of time-fractional partial differential equations are also given to demonstrate the efficiency of the proposed method.
International Nuclear Information System (INIS)
Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas
2015-01-01
We make a rigorous exploration of the profiles of off-diagonal components of frequency-dependent linear (α xy , α yx ), first nonlinear (β xyy , β yxx ), and second nonlinear (γ xxyy , γ yyxx ) polarizabilities of quantum dots driven by Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been applied additively and multiplicatively to the system. An external oscillatory electric field has also been applied to the system. Gradual variations of external frequency, dopant location, and noise strength give rise to interesting features of polarizability components. The observations reveal intricate interplay between noise strength and dopant location which designs the polarizability profiles. Moreover, the mode of application of noise also modulates the polarizability components. Interestingly, in case of additive noise the noise strength has no role on polarizabilities whereas multiplicative noise invites greater delicacy in them. The said interplay provides a rather involved framework to attain stable, enhanced, and often maximized output of linear and nonlinear polarizabilities. - Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • The polarizability components are off-diagonal and frequency-dependent. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Mode of noise application affects polarizabilities
International Nuclear Information System (INIS)
Gvozdikov, V M; Taut, M
2009-01-01
We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σ xx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.
Incremental Closed-loop Identification of Linear Parameter Varying Systems
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, Klaus
2011-01-01
, closed-loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can be extended...
High-temperature helium-loop facility
International Nuclear Information System (INIS)
Tokarz, R.D.
1981-09-01
The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass
Two-phase Heating in Flaring Loops
Zhu, Chunming; Qiu, Jiong; Longcope, Dana W.
2018-03-01
We analyze and model a C5.7 two-ribbon solar flare observed by the Solar Dynamics Observatory, Hinode, and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their footpoints are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the footpoint. In each half loop, the heating rate consists of two phases: intense impulsive heating followed by a low-rate heating that is persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of the “enthalpy-based thermal evolution of loops.” In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in 15 passbands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9 × 1030 erg is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two-fifths of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.
Operation of the hot test loop facilities
International Nuclear Information System (INIS)
Cheong, Moon Ki; Park, Choon Kyeong; Won, Soon Yeon; Yang, Sun Kyu; Cheong, Jang Whan; Cheon, Se Young; Song, Chul Hwa; Jeon, Hyeong Kil; Chang, Suk Kyu; Jeong, Heung Jun; Cho, Young Ro; Kim, Bok Duk; Min, Kyeong Ho
1994-12-01
The objective of this project is to obtain the available experimental data and to develop the measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics department have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within fuel bundle and to understand the characteristic of pressure drop required for improving the nuclear fuel and to develop the advanced measuring techniques. RCS Loop, which is used to measure the CHF, is presently under design and construction. B and C Loop is designed and constructed to assess the automatic depressurization safety system behavior. 4 tabs., 79 figs., 7 refs. (Author) .new
Mass inflation in the loop black hole
International Nuclear Information System (INIS)
Brown, Eric G.; Mann, Robert; Modesto, Leonardo
2011-01-01
In classical general relativity the Cauchy horizon within a two-horizon black hole is unstable via a phenomenon known as mass inflation, in which the mass parameter (and the spacetime curvature) of the black hole diverges at the Cauchy horizon. Here we study this effect for loop black holes - quantum gravitationally corrected black holes from loop quantum gravity - whose construction alleviates the r=0 singularity present in their classical counterparts. We use a simplified model of mass inflation, which makes use of the generalized Dray-'t Hooft relation, to conclude that the Cauchy horizon of loop black holes indeed results in a curvature singularity similar to that found in classical black holes. The Dray-'t Hooft relation is of particular utility in the loop black hole because it does not directly rely upon Einstein's field equations. We elucidate some of the interesting and counterintuitive properties of the loop black hole, and corroborate our results using an alternate model of mass inflation due to Ori.
One-loop calculations with massive particles
International Nuclear Information System (INIS)
Oldenborgh, G.J. van.
1990-01-01
In this thesis some techniques for performing one-loop calculations with massive particles are presented. Numerical techniques are presented necessary for evaluating one-loop integrals which occur in one-loop calculations of photon-photon scattering. The algorithms have been coded in FORTRAN (to evaluate the scalar integrals) and the algebraic language FORM (to reduce the tensor integrals to scalar integrals). Applications are made in the theory of the strong interaction, QCD, i.e. in handling one-loop integrals with massive particles, in order to regulate the infinities by mass parameters encountered in this theory. However this simplifies the computation considerably, the description of the proton structure functions have to be renormalized in order to obtain physical results. This renormalization is different from the published results for the gluon and thus has to be redone. The first physics results that have been obtained with these new methods are presented. These concern heavy quark production in semi-leptonic interactions, for instance neutrino charm production and top production at the electron-proton (ep) collider HERA and the proposed LEP/LHC combination. Total and differential cross-sections for one-loop corrections to top production at the HERA and proposed LEP/HLC ep colliders are given and structure functions for charmed quark production are compared with previously published results. (author). 58 refs.; 18 figs.; 5 tabs
Bootstrapping the Three-Loop Hexagon
Energy Technology Data Exchange (ETDEWEB)
Dixon, Lance J.; /CERN /SLAC; Drummond, James M.; /CERN /Annecy, LAPTH; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP
2011-11-08
We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.
Logical inference techniques for loop parallelization
Oancea, Cosmin E.
2012-01-01
This paper presents a fully automatic approach to loop parallelization that integrates the use of static and run-time analysis and thus overcomes many known difficulties such as nonlinear and indirect array indexing and complex control flow. Our hybrid analysis framework validates the parallelization transformation by verifying the independence of the loop\\'s memory references. To this end it represents array references using the USR (uniform set representation) language and expresses the independence condition as an equation, S = Ø, where S is a set expression representing array indexes. Using a language instead of an array-abstraction representation for S results in a smaller number of conservative approximations but exhibits a potentially-high runtime cost. To alleviate this cost we introduce a language translation F from the USR set-expression language to an equally rich language of predicates (F(S) ⇒ S = Ø). Loop parallelization is then validated using a novel logic inference algorithm that factorizes the obtained complex predicates (F(S)) into a sequence of sufficient-independence conditions that are evaluated first statically and, when needed, dynamically, in increasing order of their estimated complexities. We evaluate our automated solution on 26 benchmarks from PERFECTCLUB and SPEC suites and show that our approach is effective in parallelizing large, complex loops and obtains much better full program speedups than the Intel and IBM Fortran compilers. Copyright © 2012 ACM.
Variational solution of the loop equation in QCD
International Nuclear Information System (INIS)
Agishtein, M.E.; Migdal, A.A.
1988-01-01
A new technique for the large N loop equation of QCD is worked out. The Wilson loop W(C) is approximated by a Gaussian functional. The parameters are fitted to the loop equation, after which the equation is statisfied up to 0.2%. The resulting Wilson loop corresponds to linearly rising Regge trajectories. The problem of tachyon is still present, but it could be cured by iteration of the loop equation starting from this variational solution. (orig.)
Variational solution of the loop equation in QCD
International Nuclear Information System (INIS)
Agishtein, M.E.; Migdal, A.A.
1988-01-01
A new technique for the large N loop equation of QCD is worked out. The Wilson loop W(C) is approximated by a Gaussian functional. The parameters are fitted to the loop equation, after which the equation is satisfied up to 0.2%. The resulting Wilson loop corresponds to linearly rising Regge trajectories. The problem of tachyon is still present, but it could be cured by iteration of the loop equation starting from this variational solution
BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis
Energy Technology Data Exchange (ETDEWEB)
Bianchi, Marco S. [Institut für Physik, Humboldt-Universität zu Berlin,Newtonstraße 15, 12489 Berlin (Germany); Griguolo, Luca [Dipartimento di Fisica e Scienze della Terra, Università di Parmaand INFN Gruppo Collegato di Parma,Viale G.P. Usberti 7/A, 43100 Parma (Italy); Leoni, Matias [Physics Department, FCEyN-UBA & IFIBA-CONICETCiudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Penati, Silvia [Dipartimento di Fisica, Università di Milano-Bicoccaand INFN, Sezione di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Seminara, Domenico [Dipartimento di Fisica, Università di Firenzeand INFN Sezione di Firenze,via G. Sansone 1, 50019 Sesto Fiorentino (Italy)
2014-06-19
We study a family of circular BPS Wilson loops in N=6 super Chern-Simons-matter theories, generalizing the usual 1/2-BPS circle. The scalar and fermionic couplings depend on two deformation parameters and these operators can be considered as the ABJ(M) counterpart of the DGRT latitudes defined in N=4 SYM. We perform a complete two-loop analysis of their vacuum expectation value, discuss the appearance of framing-like phases and propose a general relation with cohomologically equivalent bosonic operators. We make an all-loop proposal for computing the Bremsstrahlung function associated to the 1/2-BPS cusp in terms of these generalized Wilson loops. When applied to our two-loop result it reproduces the known expression. Finally, we comment on the generalization of this proposal to the bosonic 1/6-BPS case.
Flat Knitting Loop Deformation Simulation Based on Interlacing Point Model
Directory of Open Access Journals (Sweden)
Jiang Gaoming
2017-12-01
Full Text Available In order to create realistic loop primitives suitable for the faster CAD of the flat-knitted fabric, we have performed research on the model of the loop as well as the variation of the loop surface. This paper proposes an interlacing point-based model for the loop center curve, and uses the cubic Bezier curve to fit the central curve of the regular loop, elongated loop, transfer loop, and irregular deformed loop. In this way, a general model for the central curve of the deformed loop is obtained. The obtained model is then utilized to perform texture mapping, texture interpolation, and brightness processing, simulating a clearly structured and lifelike deformed loop. The computer program LOOP is developed by using the algorithm. The deformed loop is simulated with different yarns, and the deformed loop is applied to design of a cable stitch, demonstrating feasibility of the proposed algorithm. This paper provides a loop primitive simulation method characterized by lifelikeness, yarn material variability, and deformation flexibility, and facilitates the loop-based fast computer-aided design (CAD of the knitted fabric.
Transition probability spaces in loop quantum gravity
Guo, Xiao-Kan
2018-03-01
We study the (generalized) transition probability spaces, in the sense of Mielnik and Cantoni, for spacetime quantum states in loop quantum gravity. First, we show that loop quantum gravity admits the structures of transition probability spaces. This is exemplified by first checking such structures in covariant quantum mechanics and then identifying the transition probability spaces in spin foam models via a simplified version of general boundary formulation. The transition probability space thus defined gives a simple way to reconstruct the discrete analog of the Hilbert space of the canonical theory and the relevant quantum logical structures. Second, we show that the transition probability space and in particular the spin foam model are 2-categories. Then we discuss how to realize in spin foam models two proposals by Crane about the mathematical structures of quantum gravity, namely, the quantum topos and causal sites. We conclude that transition probability spaces provide us with an alternative framework to understand various foundational questions of loop quantum gravity.
Solar flare loops observations and interpretations
Huang, Guangli; Ji, Haisheng; Ning, Zongjun
2018-01-01
This book provides results of analysis of typical solar events, statistical analysis, the diagnostics of energetic electrons and magnetic field, as well as the global behavior of solar flaring loops such as their contraction and expansion. It pays particular attention to analyzing solar flare loops with microwave, hard X-ray, optical and EUV emissions, as well as the theories of their radiation, and electron acceleration/transport. The results concerning influence of the pitch-angle anisotropy of non-thermal electrons on their microwave and hard X-ray emissions, new spectral behaviors in X-ray and microwave bands, and results related to the contraction of flaring loops, are widely discussed in the literature of solar physics. The book is useful for graduate students and researchers in solar and space physics.
Automatic Loop Parallelization via Compiler Guided Refactoring
DEFF Research Database (Denmark)
Larsen, Per; Ladelsky, Razya; Lidman, Jacob
For many parallel applications, performance relies not on instruction-level parallelism, but on loop-level parallelism. Unfortunately, many modern applications are written in ways that obstruct automatic loop parallelization. Since we cannot identify sufficient parallelization opportunities...... for these codes in a static, off-line compiler, we developed an interactive compilation feedback system that guides the programmer in iteratively modifying application source, thereby improving the compiler’s ability to generate loop-parallel code. We use this compilation system to modify two sequential...... benchmarks, finding that the code parallelized in this way runs up to 8.3 times faster on an octo-core Intel Xeon 5570 system and up to 12.5 times faster on a quad-core IBM POWER6 system. Benchmark performance varies significantly between the systems. This suggests that semi-automatic parallelization should...
Microwave emission from flaring magnetic loops
International Nuclear Information System (INIS)
Vlahos, L.
1980-01-01
The microwave emission from a flaring loop is considered. In particular the author examines the question: What will be the characteristics of the radio emission at centimeter wavelengths from a small compact flaring loop when the mechanism which pumps magnetic energy into the plasma in the form of heating and/or electron acceleration satisfies the conditions: (a) the magnetic energy is released in a small volume compared to the volume of the loop, and the rate at which magnetic energy is transformed into plasma energy is faster than the energy losses from the same volume. This causes a local enhancement of the temperature by as much as one or two orders of magnitude above the coronal temperature; (b) The bulk of the energy released goes into heating the plasma and heats primarily the electrons. (Auth.)
Experimental loop for SH2 (LECS)
International Nuclear Information System (INIS)
Strehar, N.R.; Bruzzoni, Pablo; Moras, J.J.; Cogozzo, E.O.
1981-01-01
An experimental loop is described for circulation of SH 2 that operates at 2 x 10 6 Pascal and 33 deg C. It was designed and constructed with the purpose of experimentally studying the hydraulic instability phenomenon that can be detected in cold isotopic exchange columns in the Girdler-Sulfide (GS) process of heavy water production. The main features of the different components of the loop are described, as well as the materials, the measurement and control instruments and the auxiliary equipment used, and finally the measuring methods to qualify and quantify the formation of froth. Furthermore, the loop's transportable metallic container is described, which allows to transport and connect it to CNEA's experimental heavy water plant or to any other heavy water plants using the GS method. Some tests made with inert gases that intended to verify the equipment's performance and to select the most adequate sieve trays for its operation are discussed. (M.E.L.) [es
Automated one-loop calculations with GOSAM
International Nuclear Information System (INIS)
Cullen, Gavin; Greiner, Nicolas; Heinrich, Gudrun; Reiter, Thomas; Luisoni, Gionata
2011-11-01
We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)
Automated one-loop calculations with GOSAM
Energy Technology Data Exchange (ETDEWEB)
Cullen, Gavin [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Deutsches Elektronen-Synchrotron, Zeuthen [DESY; Germany; Greiner, Nicolas [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); Heinrich, Gudrun; Reiter, Thomas [Max-Planck-Institut fuer Physik, Muenchen (Germany); Luisoni, Gionata [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Mastrolia, Pierpaolo [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padua Univ. (Italy). Dipt. di Fisica; Ossola, Giovanni [New York City Univ., NY (United States). New York City College of Technology; New York City Univ., NY (United States). The Graduate School and University Center; Tramontano, Francesco [European Organization for Nuclear Research (CERN), Geneva (Switzerland)
2011-11-15
We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)
Covariant diagrams for one-loop matching
International Nuclear Information System (INIS)
Zhang, Zhengkang
2016-10-01
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Covariant diagrams for one-loop matching
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhengkang [Michigan Center for Theoretical Physics (MCTP), University of Michigan,450 Church Street, Ann Arbor, MI 48109 (United States); Deutsches Elektronen-Synchrotron (DESY),Notkestraße 85, 22607 Hamburg (Germany)
2017-05-30
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Defect networks and supersymmetric loop operators
Energy Technology Data Exchange (ETDEWEB)
Bullimore, Mathew [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)
2015-02-10
We consider topological defect networks with junctions in A{sub N−1} Toda CFT and the connection to supersymmetric loop operators in N=2 theories of class S on a four-sphere. Correlation functions in the presence of topological defect networks are computed by exploiting the monodromy of conformal blocks, generalising the notion of a Verlinde operator. Concentrating on a class of topological defects in A{sub 2} Toda theory, we find that the Verlinde operators generate an algebra whose structure is determined by a set of generalised skein relations that encode the representation theory of a quantum group. In the second half of the paper, we explore the dictionary between topological defect networks and supersymmetric loop operators in the N=2{sup ∗} theory by comparing to exact localisation computations. In this context, the the generalised skein relations are related to the operator product expansion of loop operators.
Covariant diagrams for one-loop matching
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhengkang [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2016-10-15
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Covariant diagrams for one-loop matching
International Nuclear Information System (INIS)
Zhang, Zhengkang
2017-01-01
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Proteins mediating DNA loops effectively block transcription.
Vörös, Zsuzsanna; Yan, Yan; Kovari, Daniel T; Finzi, Laura; Dunlap, David
2017-07-01
Loops are ubiquitous topological elements formed when proteins simultaneously bind to two noncontiguous DNA sites. While a loop-mediating protein may regulate initiation at a promoter, the presence of the protein at the other site may be an obstacle for RNA polymerases (RNAP) transcribing a different gene. To test whether a DNA loop alters the extent to which a protein blocks transcription, the lac repressor (LacI) was used. The outcome of in vitro transcription along templates containing two LacI operators separated by 400 bp in the presence of LacI concentrations that produced both looped and unlooped molecules was visualized with scanning force microscopy (SFM). An analysis of transcription elongation complexes, moving for 60 s at an average of 10 nt/s on unlooped DNA templates, revealed that they more often surpassed LacI bound to the lower affinity O2 operator than to the highest affinity Os operator. However, this difference was abrogated in looped DNA molecules where LacI became a strong roadblock independently of the affinity of the operator. Recordings of transcription elongation complexes, using magnetic tweezers, confirmed that they halted for several minutes upon encountering a LacI bound to a single operator. The average pause lifetime is compatible with RNAP waiting for LacI dissociation, however, the LacI open conformation visualized in the SFM images also suggests that LacI could straddle RNAP to let it pass. Independently of the mechanism by which RNAP bypasses the LacI roadblock, the data indicate that an obstacle with looped topology more effectively interferes with transcription. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Coronal Loops: Evolving Beyond the Isothermal Approximation
Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.
2002-05-01
Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.
High-Order Frequency-Locked Loops
DEFF Research Database (Denmark)
Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez
2017-01-01
In very recent years, some attempts for designing high-order frequency-locked loops (FLLs) have been made. Nevertheless, the advantages and disadvantages of these structures, particularly in comparison with a standard FLL and high-order phase-locked loops (PLLs), are rather unclear. This lack...... study, and its small-signal modeling, stability analysis, and parameter tuning are presented. Finally, to gain insight about advantages and disadvantages of high-order FLLs, a theoretical and experimental performance comparison between the designed second-order FLL and a standard FLL (first-order FLL...