WorldWideScience

Sample records for regge-plus-chiral quark approach

  1. Variational approach to chiral quark models

    Energy Technology Data Exchange (ETDEWEB)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira

    1987-03-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation.

  2. A variational approach to chiral quark models

    International Nuclear Information System (INIS)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira.

    1987-01-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation. (author)

  3. Three-plus-one formulation of Regge calculus

    International Nuclear Information System (INIS)

    Piran, T.; Williams, R.M.

    1986-01-01

    Following the work of Lund and Regge for homogeneous spaces, we construct the action for Regge calculus in its three-plus-one form for general space-times. This is achieved in two ways: a first-order formalism and a second-order formalism. We describe the Regge-calculus analogue of solving the initial-value equations using conformal transformations. The second-order formalism is used to study the time development of two simple model universes

  4. Assuming Regge trajectories in holographic QCD: from OPE to Chiral Perturbation Theory

    CERN Document Server

    Cappiello, Luigi; Greynat, David

    2015-01-01

    The Soft Wall model in holographic QCD has Regge trajectories but wrong operator product expansion (OPE) for the two-point vectorial QCD Green function. We correct analytically this problem and describe the axial sector and chiral symmetry breaking. The low energy chiral parameters, $F_{\\pi}$ and $L_{10}$ , are well described analytically by the model in terms of Regge spacing and QCD condensates. The model nicely supports and extends previous theoretical analyses advocating Digamma function to study QCD two-point functions in different momentum regions.

  5. Regge vertex for quark production in the central rapidity region in the next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, M. G., E-mail: M.G.Kozlov@inp.nsk.su; Reznichenko, A. V., E-mail: A.V.Reznichenko@inp.nsk.su [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2016-03-15

    The effective vertex for quark production in the interaction of a Reggeized quark and a Reggeized gluon is calculated in the next-to-leading order (NLO). The resulting vertex is the missing component of the NLO multi-Regge amplitude featuring quark and gluon exchanges in the t channels. This calculation will make it possible to develop in future the bootstrap approach to proving quark Reggeization in the next-to-leading logarithmic approximation.

  6. Solving QCD via multi-Regge theory

    International Nuclear Information System (INIS)

    White, A. R.

    1998-01-01

    A high-energy, transverse momentum cut-off, solution of QCD is outlined. Regge pole and single gluon properties of the pomeron are directly related to the confinement and chiral symmetry breaking properties of the hadron spectrum. This solution, which corresponds to a supercritical phase of Reggeon Field Theory, may only be applicable to QCD with a very special quark content

  7. Regge-plus-resonance predictions for charged-kaon photoproduction from the deuteron

    Directory of Open Access Journals (Sweden)

    Van Cauteren T.

    2010-04-01

    Full Text Available We present a Regge-inspired effective-Lagrangian framework for charged-kaon photoproduction from the deuteron. Quasi-free kaon production is investigated using the Regge-plus-resonance elementary operator within the non-relativistic plane-wave impulse approximation. The Regge-plus-resonance model was developed to describe photoinduced and electroinduced kaon production off protons and can be extended to strangeness production off neutrons. The non-resonant contributions to the amplitude are modelled in terms of K+ (494 and K*+ (892 Regge-trajectory exchange in the t-channel. This amplitude is supplemented with a selection of s-channel resonance-exchange diagrams. We investigate several sources of theoretical uncertainties on the semi-inclusive charged-kaon production cross section. The experimental error bars on the photocoupling helicity amplitudes turn out to put severe limits on the predictive power when considering quasi-free kaon production on a bound neutron.

  8. Quark matter in a chiral chromodielectric model

    International Nuclear Information System (INIS)

    Broniowski, W.; Kutschera, M.; Cibej, M.; Rosina, M.

    1989-03-01

    Zero and finite temperature quark matter is studied in a chiral chromodielectric model with quark, meson and chromodielectric degrees of freedom. Mean field approximation is used. Two cases are considered: two-flavor and three-flavor quark matter. It is found that at sufficiently low densities and temperatures the system is in a chirally broken phase, with quarks acquiring effective masses of the order of 100 MeV. At higher densities and temperatures a chiral phase transition occurs and the quarks become massless. A comparison to traditional nuclear physics suggests that the chirally broken phase with massive quark gas may be the ground state of matter at densities of the order of a few nuclear saturation densities. 24 refs., 5 figs. (author)

  9. Non-uniform chiral phase in effective chiral quark models

    International Nuclear Information System (INIS)

    Sadzikowski, M.; Broniowski, W.

    2000-01-01

    We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)

  10. Quark chiral condensate from the overlap quark propagator

    Science.gov (United States)

    Wang, Chao; Bi, Yujiang; Cai, Hao; Chen, Ying; Gong, Ming; Liu, Zhaofeng

    2017-05-01

    From the overlap lattice quark propagator calculated in the Landau gauge, we determine the quark chiral condensate by fitting operator product expansion formulas to the lattice data. The quark propagators are computed on domain wall fermion configurations generated by the RBC-UKQCD Collaborations with N f = 2+1 flavors. Three ensembles with different light sea quark masses are used at one lattice spacing 1/a = 1.75(4) GeV. We obtain in the SU(2) chiral limit. Supported by National Natural Science Foundation of China (11575197, 11575196, 11335001, 11405178), joint funds of NSFC (U1632104, U1232109), YC and ZL acknowledge the support of NSFC and DFG (CRC110)

  11. Regularities in hadron systematics, Regge trajectories and a string quark model

    International Nuclear Information System (INIS)

    Chekanov, S.V.; Levchenko, B.B.

    2006-08-01

    An empirical principle for the construction of a linear relationship between the total angular momentum and squared-mass of baryons is proposed. In order to examine linearity of the trajectories, a rigorous least-squares regression analysis was performed. Unlike the standard Regge-Chew-Frautschi approach, the constructed trajectories do not have non-linear behaviour. A similar regularity may exist for lowest-mass mesons. The linear baryonic trajectories are well described by a semi-classical picture based on a spinning relativistic string with tension. The obtained numerical solution of this model was used to extract the (di)quark masses. (orig.)

  12. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  13. Parity doublers in chiral potential quark models

    International Nuclear Information System (INIS)

    Kalashnikova, Yu. S.; Nefediev, A. V.; Ribeiro, J. E. F. T.

    2007-01-01

    The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated

  14. Quark fragmentation function and the nonlinear chiral quark model

    International Nuclear Information System (INIS)

    Zhu, Z.K.

    1993-01-01

    The scaling law of the fragmentation function has been proved in this paper. With that, we show that low-P T quark fragmentation function can be studied as a low energy physocs in the light-cone coordinate frame. We therefore use the nonlinear chiral quark model which is able to study the low energy physics under scale Λ CSB to study such a function. Meanwhile the formalism for studying the quark fragmentation function has been established. The nonlinear chiral quark model is quantized on the light-front. We then use old-fashioned perturbation theory to study the quark fragmentation function. Our first order result for such a function shows in agreement with the phenomenological model study of e + e - jet. The probability for u,d pair formation in the e + e - jet from our calculation is also in agreement with the phenomenological model results

  15. Quark contribution to the gluon Regge trajectory at NLO from the high energy effective action

    International Nuclear Information System (INIS)

    Chachamis, G.; Hentschinski, M.; Madrigal Martínez, J.D.; Sabio Vera, A.

    2012-01-01

    The two loop (NLO) diagrams with quark content contributing to the gluon Regge trajectory are computed within the framework of Lipatov's effective action for QCD, using the regularization procedure for longitudinal divergencies recently proposed by two of us in (M. Hentschinski and A. Sabio Vera, 2011). Perfect agreement with previous results in the literature is found, providing a robust check of the regularization prescription and showing that the high energy effective action is a very useful computational tool in the quasi-multi-Regge limit.

  16. Solving QCD using multi-regge theory

    International Nuclear Information System (INIS)

    White, A. R.

    1998-01-01

    This talk outlines the derivation of a high-energy, transverse momentum cut-off, solution of QCD in which the Regge pole and ''single gluon'' properties of the pomeron are directly related to the confinement and chiral symmetry breaking properties of the hadron spectrum. In first approximation, the pomeron is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a supercritical phase of Reggeon Field Theory

  17. Dual chiral density wave in quark matter

    International Nuclear Information System (INIS)

    Tatsumi, Toshitaka

    2002-01-01

    We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)

  18. Chiral symmetry and quark-antiquark pair creation in a strong color-electromagnetic field

    International Nuclear Information System (INIS)

    Suganuma, Hideo; Tatsumi, Toshitaka.

    1993-01-01

    We study the manifestation of chiral symmetry and q-q-bar pair creation in the presence of the external color-electromagnetic field, using the Nambu-Jona-Lasinio model. We derive the compact formulae of the effective potential, the Dyson equation for the dynamical quark mass and the q-q-bar pair creation rate in the covariantly constant color-electromagnetic field. Our results are compared with those in other approaches. The chiral-symmetry restoration takes place by a strong color-electric field, and the rapid reduction of the dynamical quark mass is found around the critical field strength, ε cr ≅4GeV/fm. Natural extension to the three-flavor case including s-quarks is also done. Around quarks or antiquarks, chiral symmetry would be restored by the sufficiently strong color-electric field, which may lead to the chiral bag picture of hadrons. For the early stage for ultrarelativistic heavy-ion collisions, the possibility of the chiral-symmetry restoration is indicated in the central region just after the collisions. (author)

  19. Spin-dependent structure functions of sea quarks in the framework of nonperturbative QCD and new Regge trajectory

    International Nuclear Information System (INIS)

    Dorokhov, A.E.; Kochelev, N.I.

    1991-01-01

    Within the model of QCD vacuum as an instanton liquid the spin-dependent structure functions of sea quarks are obtained. It is shown that the EMC data manages the definition of new Regge trajectory connected with the axial anomaly. The model explains the modern experimental data on the sea quark structure functions. 23 refs.; 3 figs

  20. Approximating chiral quark models with linear σ-models

    International Nuclear Information System (INIS)

    Broniowski, Wojciech; Golli, Bojan

    2003-01-01

    We study the approximation of chiral quark models with simpler models, obtained via gradient expansion. The resulting Lagrangian of the type of the linear σ-model contains, at the lowest level of the gradient-expanded meson action, an additional term of the form ((1)/(2))A(σ∂ μ σ+π∂ μ π) 2 . We investigate the dynamical consequences of this term and its relevance to the phenomenology of the soliton models of the nucleon. It is found that the inclusion of the new term allows for a more efficient approximation of the underlying quark theory, especially in those cases where dynamics allows for a large deviation of the chiral fields from the chiral circle, such as in quark models with non-local regulators. This is of practical importance, since the σ-models with valence quarks only are technically much easier to treat and simpler to solve than the quark models with the full-fledged Dirac sea

  1. Towards understanding Regge trajectories in holographic QCD

    International Nuclear Information System (INIS)

    Cata, Oscar

    2007-01-01

    We reassess a work done by Migdal on the spectrum of low-energy vector mesons in QCD in the light of the anti-de Sitter (AdS)-QCD correspondence. Recently, a tantalizing parallelism was suggested between Migdal's work and a family of holographic duals of QCD. Despite the intriguing similarities, both approaches face a major drawback: the spectrum is in conflict with well-tested Regge scaling. However, it has recently been shown that holographic duals can be modified to accommodate Regge behavior. Therefore, it is interesting to understand whether Regge behavior can also be achieved in Migdal's approach. In this paper we investigate this issue. We find that Migdal's approach, which is based on a modified Pade approximant, is closely related to the issue of quark-hadron duality breakdown in QCD

  2. Quark matter inside neutron stars in an effective chiral model

    International Nuclear Information System (INIS)

    Kotlorz, A.; Kutschera, M.

    1994-02-01

    An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab

  3. Chiral symmetry-breaking and the quark mass

    International Nuclear Information System (INIS)

    Gautam, V.P.; Kar, S.C.

    1988-01-01

    The generation of mass for light and heavy-quark sectors in the case of chiral symmetry-breaking is studied and an attempt is made to find the origin of quark mass and renormalization point corresponding to current-quark mass. (M.G.B.). 12 refs

  4. Kaon quark distribution functions in the chiral constituent quark model

    Science.gov (United States)

    Watanabe, Akira; Sawada, Takahiro; Kao, Chung Wen

    2018-04-01

    We investigate the valence u and s ¯ quark distribution functions of the K+ meson, vK (u )(x ,Q2) and vK (s ¯)(x ,Q2), in the framework of the chiral constituent quark model. We judiciously choose the bare distributions at the initial scale to generate the dressed distributions at the higher scale, considering the meson cloud effects and the QCD evolution, which agree with the phenomenologically satisfactory valence quark distribution of the pion and the experimental data of the ratio vK (u )(x ,Q2)/vπ (u )(x ,Q2) . We show how the meson cloud effects affect the bare distribution functions in detail. We find that a smaller S U (3 ) flavor symmetry breaking effect is observed, compared with results of the preceding studies based on other approaches.

  5. Diphoton production at Tevatron in the quasi-multiple-Regge-kinematics approach

    Energy Technology Data Exchange (ETDEWEB)

    Saleev, V.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Samarskij Gosudarstvennyj Univ., Samara (Russian Federation)

    2009-12-15

    We study the production of prompt diphotons in the central region of rapidity within the frame- work of the quasi-multi-Regge-kinematics approach applying the hypothesis of quark and gluon Reggeization. We describe accurately and without free parameters the experimental data which were obtained by the CDF Collaboration at the Tevatron Collider. It is shown that the main contribution to studied process is given by the direct fusion of two Reggeized gluons into a photon pair, which is described by the effective Reggeon-Reggeon to particle-particle vertex. The contribution from the annihilation of Reggeized quark-antiquark pair into a diphoton is also considered. At the stage of numerical calculations we use the Kimber-Martin-Ryskin prescription for unintegrated quark and gluon distribution functions, with the Martin-Roberts-Stirling-Thorne collinear parton densities for a proton as input. (orig.)

  6. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ehbert, D.

    1980-01-01

    The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Lanta and Tarrach is given. The results of the paper give evidence to the nonlinear chiral Lagrangian favour

  7. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ebert, D.

    1981-01-01

    It is shown that the pion polarizability calculated in a chiral model with quark loops agrees exactly with the analogous quantity found in a chiral meson-baryon model. The results of a paper by Llanta and Tarrach are discussed critically

  8. QCD phase transition with chiral quarks and physical quark masses.

    Science.gov (United States)

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  9. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1981-01-01

    The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given. (orig.)

  10. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ehbert, D.

    1981-01-01

    The pion polarizability is calculated in a chiral meson- quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given [ru

  11. Hadronic interactions from effective chiral Lagrangians of quarks and gluons

    International Nuclear Information System (INIS)

    Krein, G.

    1996-06-01

    We discuss the combined used of the techniques of effective chiral field theory and the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between the nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of the nuclear matter using this formalism. (author). 9 refs., 2 figs

  12. Quark mass correction to chiral separation effect and pseudoscalar condensate

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Er-dong [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); Kavli Institute of Theoretical Physics China, Chinese Academy of Sciences,Beijing 100190 (China); Lin, Shu [School of Physics and Astronomy, Sun Yat-Sen University,No 2 University Road, Zhuhai 519082 (China)

    2017-01-25

    We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.

  13. Color superconductivity from the chiral quark-meson model

    Science.gov (United States)

    Sedrakian, Armen; Tripolt, Ralf-Arno; Wambach, Jochen

    2018-05-01

    We study the two-flavor color superconductivity of low-temperature quark matter in the vicinity of chiral phase transition in the quark-meson model where the interactions between quarks are generated by pion and sigma exchanges. Starting from the Nambu-Gorkov propagator in real-time formulation we obtain finite temperature (real axis) Eliashberg-type equations for the quark self-energies (gap functions) in terms of the in-medium spectral function of mesons. Exact numerical solutions of the coupled nonlinear integral equations for the real and imaginary parts of the gap function are obtained in the zero temperature limit using a model input spectral function. We find that these components of the gap display a complicated structure with the real part being strongly suppressed above 2Δ0, where Δ0 is its on-shell value. We find Δ0 ≃ 40MeV close to the chiral phase transition.

  14. Tetraquarks in a chiral constituent-quark model

    International Nuclear Information System (INIS)

    Vijande, J.; Fernandez, F.; Valcarce, A.; Silvestre-Brac, B.

    2004-01-01

    We analyze the possibility of heavy-light tetraquark bound states by means of a chiral constituent-quark model. The study is done in a variational approach. Special attention is paid to the contribution given by the different terms of the interacting potential and also to the role played by the different color channels. We find a stable state for both qq anti c anti c and qq anti b anti b configurations. Possible decay modes of these structures are analyzed. (orig.)

  15. Tetraquarks in a chiral constituent-quark model

    Energy Technology Data Exchange (ETDEWEB)

    Vijande, J.; Fernandez, F.; Valcarce, A. [Grupo de Fisica Nuclear, Universidad de Salamanca, E-37008, Salamanca (Spain); Silvestre-Brac, B. [Institut des Sciences Nucleaires, 53 Avenue des Martyrs, F-38026, Grenoble Cedex (France)

    2004-03-01

    We analyze the possibility of heavy-light tetraquark bound states by means of a chiral constituent-quark model. The study is done in a variational approach. Special attention is paid to the contribution given by the different terms of the interacting potential and also to the role played by the different color channels. We find a stable state for both qq anti c anti c and qq anti b anti b configurations. Possible decay modes of these structures are analyzed. (orig.)

  16. Quark propagator and chiral condensate in an instanton vacuum

    International Nuclear Information System (INIS)

    D'yakonov, D.I.; Petrov, V.Y.

    1985-01-01

    A new mechanism is proposed for the spontaneous breaking of chiral symmetry of strong interactions in the instanton vacuum of quantum chromodynamics. The mechanism is based on the collectivization of zero-fermion modes of individual instantons in a pseudoparticle medium. The quark propagator in an instanton medium is found, and it is shown that the massless pole of the free propagator cancels out, with the quark assuming a momentum-dependent effective mass. The parameters of the instanton medium found previously are used to obtain the value of the chiral condensate and the effective mass of the quark, which are in good agreement with phenomenology

  17. Quark Fragmentation to Pions in an Effective Chiral Theory

    Directory of Open Access Journals (Sweden)

    Yazaki K.

    2010-04-01

    Full Text Available A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective chiral quark theory of QCD. We concentrate on the pion fragmentation function, taking into account cascade-like processes in a generalized jet-model approach. Numerical results obtained in this NJL-jet model are presented and compared to empirical parametrizations.

  18. Effects of renormalizing the chiral SU(2) quark-meson model

    Science.gov (United States)

    Zacchi, Andreas; Schaffner-Bielich, Jürgen

    2018-04-01

    We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.

  19. The quark mass and baryon numbers of empty chiral bags

    International Nuclear Information System (INIS)

    Jezabek, M.; Zalewski, K.

    1984-01-01

    We show that for spherical chiral bags the baryon number of the Dirac vacuum inside the bag does not depend on quark masses. Thus, the sum of the baryon numbers of an empty chiral bag and the skyrmion surrounding the bag is an integer, which depends on the boundary condition on the surface of the bag. This extends the result obtained by Goldstone and Jaffe for massless quarks. (orig.)

  20. Regge phenomena

    International Nuclear Information System (INIS)

    Michael, C.

    1975-01-01

    Many features of data on high scattering can be best understood from a complex angular momentum or Regge approach. The Regge pole approach as such has had a history of alternating periods of excessive popularity and of rejection. It is thus worthwhile to review the field as it stands at present and to highlight the simple insights given by a Regge pole approach and also to bring out some of the complications such as those which lead to Regge cuts. As well as its tried and tested value in discussing two body and quasi-two body scattering, Regge pole language has much to give to multiparticle scattering and this is sketched in the last section. (author)

  1. Quark propagator and the chiral condensate in an instanton vacuum

    International Nuclear Information System (INIS)

    D'yakonov, D.I.; Petrov, V.Yu.

    1985-01-01

    A new mechanism of spontaneous breaking of chiral symmetry of strong interactions in instanton vacuum of quantum chromodynamics is proposed. The mechanism is based on the collectivization of zero fermion modes of individual instantons in a medium of pseudoparticles. The quark propagator in an instanton medium is found, and it is shown that the massless pole of the free propagator cancels out and quark acquires an effective mass which depends on the momentum. By employjng the characteristics of the instanton medium which was found previously, the value of the chiral condensate and the effective mass of the quark is obtained which is in good agreement with the phenomenology

  2. Chiral Lagrangians and quark condensate in nuclei

    International Nuclear Information System (INIS)

    Delorme, J.; Chanfray, G.; Ericson, M.

    1996-03-01

    The evolution of density of quark condensate in nuclear medium with interacting nucleons, including the short range correlations is examined. Two chiral models are used, the linear sigma model and the non-linear one. It is shown that the quark condensate, as other observables, is independent on the variant selected. The application to physical pions excludes the linear sigma model as a credible one. The non-linear models restricted to pure s-wave pion-nucleon scattering are examined. (author)

  3. Model for dynamical chiral symmetry breaking and quark condensate

    International Nuclear Information System (INIS)

    Nekrasov, M.L.; Rochev, V.E.

    1986-01-01

    In the framework of the model, proposed earlier to describe nonperturbative QCD, the singularity of the type 1/k 4 in the gluon propagator is shown to result in dynamical chiral symmetry breaking and appearance of quark condensate. The value, obtained for quark condensate, is close to the phenomenological one

  4. B meson excitations with chirally improved light quarks

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Tommy [University of Regensburg (Germany); University of Utah (United States); Chakrabarti, Dipanker [University of Regensburg (Germany); Swansea University (United Kingdom); Hagen, Christian; Maurer, Thilo; Schaefer, Andreas [University of Regensburg (Germany); Lang, Christian; Limmer, Markus [University of Graz (Austria)

    2008-07-01

    We present our latest results for the excitations of static-light mesons on both quenched and unquenched lattices, where the light quarks are simulated using the chirally improved (CI) lattice Dirac operator. To improve our results we use a new technique to estimate the light quark propagator. The b quark is treated as infinitely heavy, in the so-called static approximation. We are able to find several excited states reaching from S-waves up to D-waves for both B and B{sub s}.

  5. Chiral bags, skyrmions and quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1984-09-01

    Recent developments on an intriguing connection between the quark-bag description of the baryons (nucleons in particular) and the Skyrmion model are discussed in terms of the constraints coming from chiral anomalies. Topics treated are the leaking baryon charge, axial charge and energy density; the role of chiral anomalies; the role of Skyrme's quartic term and the connection to the meson degrees of freedom; and finally some qualitative implications in nuclei. The presentation is purposely descriptive and intuitive instead of mathematically precise

  6. Excited meson spectroscopy with two chirally improved quarks

    Science.gov (United States)

    Engel, G.; Lang, C. B.; Mohler, D.; Limmer, M.; Schäfer, A.

    The excited isovector meson spectrum is explored using two chirally improved dynamical quarks. Seven ensembles, with pion masses down to \\approx 250 MeV are discussed and used for extrapolations to the physical point. Strange mesons are investigated using partially quenched s-quarks. Using the variational method, we extract excited states in several channels and most of the results are in good agreement with experiment.

  7. Axial charges of octet and decuplet baryons in a perturbative chiral quark model

    Science.gov (United States)

    Liu, X. Y.; Samart, D.; Khosonthongkee, K.; Limphirat, A.; Xu, K.; Yan, Y.

    2018-05-01

    Using the perturbative chiral quark model (PCQM), we investigate and predict in this work axial charges gAB of octet and decuplet N , Σ , Ξ , Δ , Σ*, and Ξ* baryons, considering both the ground and excited states in the quark propagator. The PCQM predictions are in good agreement with the experimental data, lattice-QCD values, and other approaches. In addition, the study reveals that the meson cloud is influential in the PCQM, contributing around 30% to the total values of gAB, and the meson cloud contribution to gAB stems mainly from the diagrams with the ground-state quark propagator while the excited intermediate quark states reduce gAB by 10-20%.

  8. Thermal evolution of massive strange compact objects in a SU(3) chiral Quark Meson model

    Energy Technology Data Exchange (ETDEWEB)

    Zacchi, Andreas

    2017-07-04

    In this work, thermodynamical properties of strongly interacting matter within a chiral SU(2)- and SU(3) chiral Quark Meson model have been analysed. Both effective models describe the development of the quark masses in media via the corresponding fields through chiral symmetry, which is expected to be restored at high temperatures and/or high densities, and spontaneously broken at low temperatures and/or densities. Spontaneous and explicit chiral symmetry breaking patterns give rise to massive Goldstone bosons, which are associated with the pions. Their chiral partners, the sigma mesons, are expected to be degenerate in mass, which was what we studied and observed at large temperatures/densities. The derivation and computation of thermodynamical quantities and properties in both cases can for instance be used to study relativistic and hydrodynamic Heavy Ion Collisions and the early universe for vanishing baryon number (SU(2)-case). They are also interesting for extreme astrophysical scenarios, such as Supernova explosions and the thermal evolution of their remnants, which has been among the topics of this thesis (SU(3)-case). Inclusion of the zero point energy in the SU(2) model has been carried out separately for the meson sector and for the quark sector as well as in a combined approach, where we learned, that the quark sector is quite dominant and that the vacuum fluctuations of the meson fields have little influence on the order parameter, but affect the relativistic degrees of freedom. In the SU(3) case, the inclusion of the zero point energy in the quark sector is much more computationally complex, but, as in the SU(2) case, is also not negliable, as its influence also changes the thermodynamical quantities at finite temperatures in a nontrivial manner. Here some features of the Supernova equation of state have been studied, which look promising for further investigations for Supernovae (proto neutron stars) and also for compact star mergers. The final

  9. Structure functions in the chiral bag model

    International Nuclear Information System (INIS)

    Sanjose, V.; Vento, V.; Centro Mixto CSIC/Valencia Univ., Valencia

    1989-01-01

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.)

  10. Structure functions in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Sanjose, V.; Vento, V.

    1989-07-13

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.).

  11. Chiral superfluidity of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran

    2012-08-01

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T c c ) using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  12. Some Relations for Quark Confinement and Chiral Symmetry Breaking in QCD

    Directory of Open Access Journals (Sweden)

    Suganuma Hideo

    2017-01-01

    Full Text Available We analytically study the relation between quark confinement and spontaneous chiral-symmetry breaking in QCD. In terms of the Dirac eigenmodes, we derive some formulae for the Polyakov loop, its fluctuations, and the string tension from the Wilson loop. We also investigate the Polyakov loop in terms of the eigenmodes of theWilson, the clover and the domain wall fermion kernels, respectively. For the confinement quantities, the low-lying Dirac/fermion eigenmodes are found to give negligible contribution, while they are essential for chiral symmetry breaking. These relations indicate no direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD, which seems to be natural because confinement is realized independently of the quark mass.

  13. Quark disconnected diagrams in chiral perturbation theory

    CERN Document Server

    Della Morte, Michele

    2010-01-01

    We show how quark-disconnected and quark-connected contributions to hadronic n-point functions can be written as independent correlators for which one can derive expressions in partially quenched chiral effective theory. As an example we apply the idea to the case of the hadronic vacuum polarisation. In particular, we consider the cases of the Nf = 2 theory without and with a partially quenched strange quark and also the Nf = 2 + 1 theory. In the latter two cases a parameter-free prediction for the disconnected contribution at NLO in the effective theory is given. Finally we show how twisted boundary conditions can then be used in lattice QCD to improve the q^2 resolution in the connected contributions even when flavour singlet operators are considered.

  14. Thermodynamics of lattice QCD with 2 quark flavours : chiral symmetry and topology

    International Nuclear Information System (INIS)

    Lagae, J.-F.

    1998-01-01

    We have studied the restoration of chiral symmetry in lattice QCD at the finite temperature transition from hadronic matter to a quark-gluon plasma. By measuring the screening masses of flavour singlet and non-singlet meson excitations, we have seen evidence that, although flavour chiral symmetry is restored at this transition, flavour singlet (U(1)) axial symmetry is not. We conclude that this indicates that instantons continue to play an important role in the quark-gluon plasma phase

  15. Chiral perturbation theory approach to hadronic weak amplitudes

    International Nuclear Information System (INIS)

    Rafael, E. de

    1989-01-01

    We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing ΔS=1 and ΔS=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3) Left xSU(3) Right rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI)

  16. Chiral dynamics and heavy quark symmetry in a solvable toy field-theoretic model

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Hill, C.T.

    1994-01-01

    We study a solvable QCD-like toy theory, a generalization of the Nambu--Jona-Lasinio model, which implements chiral symmetries of light quarks and heavy quark symmetry. The chiral symmetric and chiral broken phases can be dynamically tuned. This implies a parity-doubled heavy-light meson system, corresponding to a (0 - ,1 - ) multiplet and a (0 + ,1 + ) heavy spin multiplet. Consequently the mass difference of the two multiplets is given by a Goldberger-Treiman relation and g A is found to be small. The Isgur-Wise function ξ(w), the decay constant f B , and other observables are studied

  17. Chiral quark model with relativistic kinematics

    International Nuclear Information System (INIS)

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The nonstrange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the σ meson) leads to an overall good description of the spectrum

  18. Chiral quark model with relativistic kinematics

    OpenAIRE

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.

  19. Regge pole plus cut model for proton-antiproton elastic scattering at collider and tevatron energies

    International Nuclear Information System (INIS)

    Aleem, Fazal; Saleem, Mohammad

    1988-01-01

    The Regge pole plus cut model has been used to explain the data at the collider energies √=546 and 630 GeV and the most recent differential cross-section results at √=1.8 TeV. Predictions of the model at 1.8 and 40 TeV are compared with those of Bourrely et al. (1984). (author). 22 refs., 7 figs

  20. Chiral superfluidity of the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2012-08-15

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T{sub c}chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  1. Chiral quarks and proton decay

    International Nuclear Information System (INIS)

    Chadha, S.; Daniel, M.; Gounaris, G.J.; Murphy, A.J.

    1984-04-01

    The authors calculate the hadronic matrix elements of baryon decay operators using a chiral effective Lagrangian with quarks, gluons and Goldstone boson fields. The cases where the ΔB=1 operators arise from supersymmetric SU(5) GUT as well as the minimal SU(5) GUT model are studied. In each model the results depend on two parameters. In particular there is a range of values for the two parameters, where the dominant decay modes in the minimal SU(5) GUT are: p→etae + and n→π - e + . (author)

  2. The half-skyrmion phase in a chiral-quark model

    International Nuclear Information System (INIS)

    Mantovani Sarti, Valentina; Vento, Vicente

    2014-01-01

    The Chiral Dilaton Model, where baryons arise as non-topological solitons built from the interaction of quarks and chiral mesons, shows in the high density low temperature regime a two phase scenario in the nuclear matter phase diagram. Dense soliton matter described by the Wigner–Seitz approximation generates a periodic potential in terms of the sigma and pion fields that leads to the formation of a band structure. The analysis up to three times nuclear matter density shows that soliton matter undergoes two separate phase transitions: a delocalization of the baryon number density leading to B=1/2 structures, as in skyrmion matter, at moderate densities, and quark deconfinement at larger densities. This description fits well into the so-called quarkyonic phase where, before deconfinement, nuclear matter should undergo structural changes involving the restoration of fundamental symmetries of QCD

  3. Electromagnetic couplings of the chiral perturbation theory Lagrangian from the perturbative chiral quark model

    International Nuclear Information System (INIS)

    Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh

    2002-01-01

    We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI

  4. A chiral quark model of the nucleon

    International Nuclear Information System (INIS)

    Wakamatsu, M.; Yoshiki, H.

    1991-01-01

    The baryon-number-one extended solution of a chiral quark lagrangian is obtained in the stationary-phase approximation with full inclusion of the sea-quark degrees of freedom. The collective quantization method is then applied to this static solution to obtain the nucleon (and Δ) state with the definite spin and isospin. A fundamental quantity appearing in this quantization procedure is the moment of inertia of the soliton system. We evaluate this quantity without recourse to the derivative expansion, by performing the necessary double sum over all the positive- and negative-energy quark orbitals in the mean field potential. Closed formulas are-derived for the nucleon (and Δ) matrix elements of arbitrary quark bilinear operators. These formulas are then used for calculating various nucleon observables in a nonperturbative manner with inclusion of the sea-quark effects. An especially interesting observable is the spin expectation value of the proton related to the recent EMC experiment. We derive the proton spin sum rule, and then explicitly evaluate the detailed contents of this sum rule. The proton spin analysis is shown to be particularly useful for clarifying the underlying dynamical content of the Skyrme model at quark level, thereby providing us with valuable information about its utility and limitation. (orig.)

  5. Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model

    OpenAIRE

    Akiyama, Satoru; Futami, Yasuhiko

    2003-01-01

    In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the...

  6. Regge cuts: A general approach

    International Nuclear Information System (INIS)

    Weis, J.H.

    1976-01-01

    We discuss an approach to the calculation of Regge-cut contributions to scattering amplitudes which relies only on the general structure of the physical Reggeon couplings. It thus allows a unified treatment of disparate models [such as the Feynman (Mandelstam) graph model and the dual model] and a general derivation of the Abramovskii--Gribov--Kancheli (AGK) rules. The structure of the Reggeon couplings is expressed through integrals over complex helicity. The Regge-cut amplitude can then be obtained, and its s-channel discontinuity, taken; there results a direct derivation of a set of ''cutting rules'' which express the total discontinuity as a sum of terms involving various discontinuities of the Reggeon couplings. The equality of these discontinuities follows directly if the singularities in complex helicity are the usual ones. Thus the AGK rules are seen to be quite model independent. Here we study in detail the simplest example: the Reggeon-particle cut in the four-particle amplitude

  7. Masses and Regge trajectories of triply heavy Ω{sub ccc} and Ω{sub bbb} baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Rai, Ajay Kumar [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India)

    2017-10-15

    The excited state masses of triply charm and triply bottom Ω baryons are exhibited in the present study. The masses are computed for 1S-5S, 1P-5P, 1D-4D and 1F-2F states in the Hypercentral Constituent Quark Model (hCQM) with the hyper Coulomb plus linear potential. The triply charm/bottom baryon masses are experimentally unknown so that the Regge trajectories are plotted using computed masses to assign the quantum numbers of these unknown states. (orig.)

  8. Chemical Potential Dependence of the Dressed-Quark Propagator from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.

  9. Large degeneracy of excited hadrons and quark models

    International Nuclear Information System (INIS)

    Bicudo, P.

    2007-01-01

    The pattern of a large approximate degeneracy of the excited hadron spectra (larger than the chiral restoration degeneracy) is present in the recent experimental report of Bugg. Here we try to model this degeneracy with state of the art quark models. We review how the Coulomb Gauge chiral invariant and confining Bethe-Salpeter equation simplifies in the case of very excited quark-antiquark mesons, including angular or radial excitations, to a Salpeter equation with an ultrarelativistic kinetic energy with the spin-independent part of the potential. The resulting meson spectrum is solved, and the excited chiral restoration is recovered, for all mesons with J>0. Applying the ultrarelativistic simplification to a linear equal-time potential, linear Regge trajectories are obtained, for both angular and radial excitations. The spectrum is also compared with the semiclassical Bohr-Sommerfeld quantization relation. However, the excited angular and radial spectra do not coincide exactly. We then search, with the classical Bertrand theorem, for central potentials producing always classical closed orbits with the ultrarelativistic kinetic energy. We find that no such potential exists, and this implies that no exact larger degeneracy can be obtained in our equal-time framework, with a single principal quantum number comparable to the nonrelativistic Coulomb or harmonic oscillator potentials. Nevertheless we find it plausible that the large experimental approximate degeneracy will be modeled in the future by quark models beyond the present state of the art

  10. Analytical Formulae linking Quark Confinement and Chiral Symmetry Breaking

    International Nuclear Information System (INIS)

    Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro; Suganuma, Hideo

    2016-01-01

    Dirac spectrum representations of the Polyakov loop fluctuations are derived on the temporally odd-number lattice, where the temporal length is odd with the periodic boundary condition. We investigate the Polyakov loop fluctuations based on these analytical relations. It is semi-analytically and numerically found that the low-lying Dirac eigenmodes have little contribution to the Polyakov loop fluctuations, which are sensitive probe for the quark deconfinement. Our results suggest no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD

  11. Chiral Quark-Meson model of N and DELTA with vector mesons

    International Nuclear Information System (INIS)

    Broniowski, W.; Banerjee, M.K.

    1985-10-01

    Vector mesons rho, A 1 and ω are introduced in the Chiral Quark-Meson Theory (CQMT) of N and Δ. We propose a new viewpoint for developing CQMT from QCD at the mean-field level. The SU(2) x SU(2) chiral Lagrangian incorporates universal coupling. Accordingly, rho is coupled to the conserved isospin current, A to the partially conserved axial-vector current (PCAC), and ω to the conserved baryon current. As a result the only parameter of the model not directly related to experiment is the quark-pion coupling constant. A fully self-consistent mean-field solution to the model is found for fields in the hedgehog ansatz. The vector mesons play a very important role in the system. They contribute significantly to the values of observables and produce a high-quality fit to many data. The classical stability of the system with respect to hedgehog excitations is analyzed through the use of the Quark-Meson RPA equations (QMRPA)

  12. A new approach to the Regge calculus

    International Nuclear Information System (INIS)

    Porter, J.

    1987-01-01

    The paper develops a new approach to Regge calculus, a numerical technique used for the calculation of general relativistic spacetimes. The method is developed in an original '3 + 1' form in such a way that it can be applied to inhomogeneous spacetimes. (author)

  13. Lattice QCD with light quark masses: Does chiral symmetry get broken spontaneously

    International Nuclear Information System (INIS)

    Barbour, I.M.; Schierholz, G.; Teper, M.; Gilchrist, J.P.; Schneider, H.

    1983-03-01

    We present a first direct calculation of the properties of QCD for the small quark masses of phenomenological interest without extrapolations. We describe methods specially adapted to invert the fermion matrix at small quark masses. We use these methods to calculate directly on presently used lattice sizes with different boundary conditions. As is to be expected for a finite system, we do not observe spontaneous chiral symmetry breaking. By comparing the results obtained on lattices of different size we see, however, indications that are consistent with eventual spontaneous chiral symmetry breaking in the infinite volume limit. Our calculations underline the importance of using antiperiodic boundary conditions for fermions. (orig.)

  14. Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics

    International Nuclear Information System (INIS)

    Ebert, D.; Feldmann, T.; Friedrich, R.; Reinhardt, H.

    1994-06-01

    By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3) F symmetry breaking effects are estimated and, if possible, confronted with experiment. (orig.)

  15. Chiral Spirals from Discontinuous Chiral Symmetry

    Science.gov (United States)

    Kojo, Toru

    2014-09-01

    Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. NSF Grants PHY09-69790, PHY13-05891.

  16. QCD topological susceptibility from the nonlocal chiral quark model

    Science.gov (United States)

    Nam, Seung-Il; Kao, Chung-Wen

    2017-06-01

    We investigate the quantum chromodynamics (QCD) topological susceptibility χ by using the semi-bosonized nonlocal chiral-quark model (SB-NLχQM) for the leading large- N c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass ( m u,d, m s) ≈ (5, 135) MeV. To compute χ, we derive the local topological charge-density operator Q t( x) from the effective action of SB-NLχQM. We verify that the derived expression for χ in our model satisfies the Witten- Veneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with ρ¯ = 1/3 fm and R¯ = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain χ = (167.67MeV)4, which is comparable with the empirical value χ = (175±5MeV)4 whereas it turns out that χ QL = (194.30MeV)4 in the quenched limit. Thus, we conclude that the value of χ will be reduced around 10 20% by the dynamical-quark contribution.

  17. Electroweak amplitudes in chiral quark models

    International Nuclear Information System (INIS)

    Fiolhais, Manuel

    2004-01-01

    After referring to some basic features of chiral models for baryons, with quarks and mesons, we describe how to construct model states representing physical baryons. We consider soliton models such as the Linear Sigma Model or the Chromodielectric Model, and bag models such as the Cloudy Bag Model. These models are solved approximately using variational approaches whose starting point is a mean-field description. We go beyond the mean-field description by introducing quantum fluctuations in the mesonic degrees of freedom. This is achieved, in a first step, by using a quantum state to represent meson clouds and, secondly, by performing an angular momentum and isospin projection from the mean-field state (actually a coherent state). Model states for baryons (nucleon, Delta, Roper) constructed in this way are used to determine several physical properties. I this seminar we paid a particular attention to the nucleon-delta electromagnetic and weak transition, presenting the model predictions for the electromagnetic and axial amplitudes

  18. Chiral symmetry breaking and the pion quark structure

    International Nuclear Information System (INIS)

    Bernard, V.

    1986-01-01

    The mechanism of dynamical breaking of chiral symmetry in hadronic matter is first studied in the framework of the Nambu and Jona-Lasinio model on one hand and its generalisation to finite hadron size on the other hand. The analysis uses a variational procedure modelled after the BCS superconductor. Our study indicates for example, a great sensitivity of various quantities characterizing the breaking of symmetry to the shape of the interaction. Also the mechanism of breaking of chiral symmetry is essentially related to the mechanism of confinement. When a symmetry is spontaneously broken, there exists a Goldstone particle of zero mass. This is true in our model. This particle, the pion, is obtained as solution of a Bethe Salpeter equation for a qantiq bound state. This enables us to establish a connection between the pion as a Goldstone boson related to spontaneous symmetry breaking and the quark-antiquark structure of the pion. The finite mass of the physical pion is obtained with non zero current quark mass. Various properties of this particle are then studied in the RPA formalism. One important point of our model is the highly collective character of the pion. 85 refs [fr

  19. Nucleon spin-flavor structure in the SU(3)-breaking chiral quark model

    International Nuclear Information System (INIS)

    Song, X.; McCarthy, J.S.; Weber, H.J.

    1997-01-01

    The SU(3) symmetric chiral quark model, which describes interactions between quarks, gluons, and the Goldstone bosons, explains reasonably well many aspects of the flavor and spin structure of the proton, except for the values of f 3 /f 8 and Δ 3 /Δ 8 . Introducing the SU(3)-breaking effect suggested by the mass difference between the strange and nonstrange quarks, we find that this discrepancy can be removed and better overall agreement obtained. copyright 1997 The American Physical Society

  20. Non-leptonic decays in an extended chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Eeg, J. O. [Dept. of Physics, Univ. of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway)

    2012-10-23

    We consider the color suppressed (nonfactorizable) amplitude for the decay mode B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}. We treat the b-quark in the heavy quark limit and the energetic light (u,d,s) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} is suppressed by a factor of order {Lambda}{sub QCD}/m{sub b} with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}.

  1. Approximation of hadron interactions by Regge diagrams with multipomeron exchange

    International Nuclear Information System (INIS)

    Barashenkov, V.S.

    1988-01-01

    A good agreement of hadron diffraction interaction total cross section and their elastic scattering at small angles calculated by summarizing Regge multipomeron exchange diagrams with experiment mentioned by a number of authors results from the fitting of a great variety of the parameters contained in the formulas. The agreement of the other hadron characteristcs with experiment is worse. Distribution of hadron interactions over the number of fragmenting quark-gluon strings calculated by utilizing Regge diagrams is discussed

  2. Spontaneous chiral symmetry breaking and effective quark masses in quantum chromodynamics

    International Nuclear Information System (INIS)

    Miransky, V.A.

    1982-01-01

    The ultraviolet asymptotics of the dynamical effective quark mass is determined directly from the equation for the fermion mass function. The indications about the character of the dynamics of the spontaneous chiral symmetry breaking in QCD are obtained

  3. Chiral symmetry breaking and the Banks-Casher relation in lattice QCD with Wilson quarks

    CERN Document Server

    Giusti, Leonardo

    2009-01-01

    The Banks--Casher relation links the spontaneous breaking of chiral symmetry in QCD to the presence of a non-zero density of quark modes at the low end of the spectrum of the Dirac operator. Spectral observables like the number of modes in a given energy interval are renormalizable and can therefore be computed using the Wilson formulation of lattice QCD even though the latter violates chiral symmetry at energies on the order of the inverse lattice spacing. Using numerical simulations, we find (in two-flavour QCD) that the low quark modes do condense in the expected way. In particular, the chiral condensate can be accurately calculated simply by counting the low modes on large lattices. Other spectral observables can be considered as well and have a potentially wide range of uses.

  4. Quark spin-flavor layered structure with condensed π/sup 0/ field in Chiral bag model

    International Nuclear Information System (INIS)

    Tamagaki, R.; Tatsumi, T.

    1984-01-01

    In order to understand predispositions of high density matter, a new phase possibly arising from the neutron matter under π/sup 0/ condensation is studied in chiral bag model, as a facet in which both quark and pion degrees of freedom are incorporated in a well-developed situation of π/sup 0/ condensation. The aspects of this phase are characterized by the periodic layered structure of the two-dimensional quark matter with a specific spin-flavor order the π/sup 0/ field existent as the Nambu-Goldstone mode between the adjacent layers. Such quark configuration is caused due to the pion-quark coupling at the layer (bag) surface which drastically lowers quark energy. Energy properties of the system are examined, and it is shown that the one-gluon-exchange contribution provides the repulsive effect to prevent the layered structure from collapsing. This model provides an example which can be solved nonperturbatively in the chiral bag model and suggests the possibility of an intermediate stage which may appear prior to the phase transition to uniform quark matter

  5. Ratio of a strange quark mass ms to up or down quark mass mu,d predicted by a quark propagator in the framework of the chiral perturbation theory

    International Nuclear Information System (INIS)

    Peng Jinsong; Meng Chengju; Pan Jihuan; Yuan Tongquan; Zhou Lijuan; Ma Weixing

    2013-01-01

    Based on the fully dressed quark propagator and chiral perturbation theory, we study the ratio of the strange quark mass m s to up or down quark mass m u,d . The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron. An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications. We begin with a brief introduction to the non-perturbation QCD theory, and then study the mass ratio in the framework of the chiral perturbation theory (χPT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p 2 -plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data. Our prediction for the ratio m s /m u,d is consistent with other model predictions such as Lattice QCD, instanton model, QCD sum rules and the empirical values used widely in the literature. As a by-product of this study, our theoretical results, together with other predictions of physical quantities that used this quark propagator in our previous publications, clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD. (authors)

  6. Baryon Regge trajectories from the area-law of Wilson loop

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1989-01-01

    In the proper-time path integral representation of the three-quark Green function, baryon masses are calculated for large angular momenta L. Dynamics is given by vacuum background fields in the Wilson loop. Assuming an area law for large Wilson loops one obtains linear baryon Regge trajectories with the same slope as for mesons. For large L the baryon has an asymmetric structure of the quark-diquark type. Dynamic masses of the quark and diquark are generated, which grow with L. 8 refs

  7. Semiclassical approach to Regge poles trajectories calculations for nonsingular potentials: Thomas-Fermi type

    International Nuclear Information System (INIS)

    Belov, S M; Avdonina, N B; Felfli, Z; Marletta, M; Msezane, A Z; Naboko, S N

    2004-01-01

    A simple semiclassical approach, based on the investigation of anti-Stokes line topology, is presented for calculating Regge poles for nonsingular (Thomas-Fermi type) potentials, namely potentials with singularities at the origin weaker than order -2. The anti-Stokes lines for Thomas-Fermi potentials have a more complicated structure than those of singular potentials and require careful application of complex analysis. The explicit solution of the Bohr-Sommerfeld quantization condition is used to obtain approximate Regge poles. We introduce and employ three hypotheses to obtain several terms of the Regge pole approximation

  8. Qq(Q-bar)(q-bar)' states in chiral SU(3) quark model

    International Nuclear Information System (INIS)

    Zhang Haixia; Zhang Min; Zhang Zongye

    2007-01-01

    We study the masses of Qq(Q-bar)(q-bar)' states with J PC =0 ++ , 1 ++ , 1 +- and 2 ++ in the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q(q') is the light quark (u,d or s). According to our numerical results, it is improbable to make the interpretation of [cn(c-bar)(n-bar)] 1 ++ and [cn(c-bar)(n-bar)] 2 ++ (n=u,d) states as X(3872) and Y(3940), respectively. However, it is interesting to find the tetraquarks in the bq(b-bar)(q-bar)' system. (authors)

  9. Divergence of the quark self-energy in the second quantized chiral bag model

    International Nuclear Information System (INIS)

    Oset, E.

    1983-01-01

    When summing over the intermediate quark states of a spherical cavity, the quark self-energy of the chiral bag model, in lowest order of the pion coupling, is shown to generate a series of terms, each one growing linearly with the angular variable kappa. However, there is a cancellation between terms for different kappa, which finally leads to an overall linearly divergent series. (orig.)

  10. Basic Regge theory rides again

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1979-01-01

    In this series of lectures Regge theory, which plays a role in high-energy production just as in 2 → 2 processes, is considered. It is shown that exclusive applications and tests are hampered by lack of events and phase space but observation of double Pomeron exchange is encouraging for the multi-Regge Model. In inclusive processes, approximate scaling and its approach are described, including development of a central plateau and limiting fragmentation and triple-Regge behaviour. The Regge picture also sets a natural scale of distance in rapidity for discussion of interparticle correlations. All this understanding involves domination of unphysical multiparticle forward amplitudes by the familiar factorising Regge poles seen directly in 2 → 2 reactions. (UK)

  11. Inclusive b and b anti b production with quasi-multi-Regge kinematics at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A. [Hamburg Univ. (Germany). II. Institut fuer Theoretische Physik; Saleev, V.A.; Shipilova, A.V. [Samara State University (Russian Federation)

    2010-03-15

    We consider b-jet hadroproduction in the quasi-multi-Regge-kinematics approach based on the hypothesis of gluon and quark Reggeization in t-channel exchanges at high energies. The preliminary data on inclusive b-jet and b anti b-dijet production taken by the CDF Collaboration at the Fermilab Tevatron are well described without adjusting parameters. We find the main contribution to inclusive b-jet production to be the scattering of a Reggeized gluon and a Reggeized b-quark to a b quark, which is described by the effective Reggeon-Reggeon-quark vertex. The main contribution to b anti b-pair production arises from the scattering of two Reggeized gluons to a b anti b pair, which is described by the effective Reggeon-Reggeon-quark-quark vertex. Our analysis is based on the Kimber-Martin-Ryskin prescription for unintegrated gluon and quark distribution functions using as input the Martin-Roberts-Stirling-Thorne collinear parton distribution functions of the proton. (orig.)

  12. $Z_b(10650)$ and $Z_b(10610)$ states in a chiral quark model

    OpenAIRE

    Li, M. T.; Wang, W. L.; Dong, Y. B.; Zhang, Z. Y.

    2012-01-01

    We perform a systematic study of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ systems by using effective interaction in our chiral quark model. Our results show that the interactions of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ states are attractive, which consequently result in $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ bound states. The recent observed exotic-like hadrons of $Z_b(10610)$ and $Z_b(10650)$ are, therefore in our approach,...

  13. Radial and Regge excitations in unified, grand unified and subconstituent models

    International Nuclear Information System (INIS)

    Schnitzer, H.J.

    1981-01-01

    Necessary group theoretic conditions for all elementary gauge bosons and fermions of an arbitrary renormalizable gauge theory to lie on Regge trajectories are reviewed. It is then argued that in properly unified gauge theories all particles of a given spin lie on Regge trajectories. This then implies that a properly unified gauge theory has no local U(1) factor groups, and no massive fermion singlets. A consideration of the general pattern of Regge and radial recurrences to be expected in quantum field theories suggests that the presence or absence of spin 3/2 quarks and/or leptons in the TeV region will provide crucial clues to enable one to distinguish between various classes of unified, grand unified, and subconstituent models. The correct interpretation of such excited fermions will require correlation with the higgs boson mass and possible radial and Regge excitations of the weak vector bosons. (orig.)

  14. Solving QCD via multi-Regge theory

    International Nuclear Information System (INIS)

    White, A. R.

    1998-01-01

    To solve QCD at high-energy the authors must simultaneously find the hadronic states and the exchanged pomeron (IP) giving UNITARY scattering amplitudes. Experimentally, the IP ∼ a Regge pole at small Q 2 and a single gluon at larger Q 2 . (F 2 D -H1, dijets-ZEUS). In the solution which the author describes, these non-perturbative properties of the IP are directly related to the non-perturbative confinement and chiral symmetry breaking properties of hadrons

  15. Strange star candidates revised within a quark model with chiral mass scaling

    Institute of Scientific and Technical Information of China (English)

    Ang Li; Guang-Xiong Peng; Ju-Fu Lu

    2011-01-01

    We calculate the properties of static strange stars using a quark model with chiral mass scaling. The results are characterized by a large maximum mass (~ 1.6 M⊙) and radius (~ 10 km). Together with a broad collection of modern neutron star models, we discuss some recent astrophysical observational data that could shed new light on the possible presence of strange quark matter in compact stars. We conclude that none of the present astrophysical observations can prove or confute the existence of strange stars.

  16. QCD with two light dynamical chirally improved quarks: Mesons

    Science.gov (United States)

    Engel, Georg P.; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schäfer, Andreas

    2012-02-01

    We present results for the spectrum of light and strange mesons on configurations with two flavors of mass-degenerate Chirally Improved sea quarks. The calculations are performed on seven ensembles of lattice size 163×32 at three different gauge couplings and with pion masses ranging from 250 to 600 MeV. To reliably extract excited states, we use the variational method with an interpolator basis containing both Gaussian and derivative quark sources. Both conventional and exotic channels up to spin 2 are considered. Strange quarks are treated within the partially quenched approximation. For kaons we investigate the mixing of interpolating fields corresponding to definite C-parity in the SU(3) limit. This enlarged basis allows for an improved determination of the low-lying kaon spectrum. In addition to masses we also extract the ratio of the pseudoscalar decay constants of the kaon and pion and obtain FK/Fπ=1.215(41). The results presented here include some ensembles from previous publications and the corresponding results supersede the previously published values.

  17. Lattice-QCD based Schwinger-Dyson approach for Chiral phase transition

    International Nuclear Information System (INIS)

    Iida, Hideaki; Oka, Makoto; Suganuma, Hideo

    2005-01-01

    Dynamical chiral-symmetry breaking in QCD is studied with the Schwinger-Dyson (SD) formalism based on lattice QCD data, i.e., LQCD-based SD formalism. We extract the SD kernel function K(p 2 ) in an Ansatzindependent manner from the lattice data of the quark propagator in the Landau gauge. As remarkable features, we find infrared vanishing and intermediate enhancement of the SD kernel function K(p 2 ). We apply the LQCD-based SD equation to thermal QCD with the quark chemical potential μ q . We find chiral symmetry restoration at T c ∼100MeV for μ q =0. The real part of the quark mass function decreases as T and μ q . At finite density, there appears the imaginary part of the quark mass function, which would lead to the width broadening of hadrons

  18. Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model

    International Nuclear Information System (INIS)

    Dorokhov, Alexander E.

    2004-01-01

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, a μ hvp(1) , is estimated

  19. A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies

    Science.gov (United States)

    Lu, Wei

    2017-09-01

    We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.

  20. Baryon axial-vector couplings and SU(3)-symmetry breaking in chiral quark models

    International Nuclear Information System (INIS)

    Horvat, D.; Ilakovac, A.; Tadic, D.

    1986-01-01

    SU(3)-symmetry breaking is studied in the framework of the chiral bag models. Comparisons are also made with the MIT bag model and the harmonic-oscillator quark model. An important clue for the nature of the symmetry breaking comes from the isoscalar axial-vector coupling constant g/sub A//sup S/ which can be indirectly estimated from the Bjorken sum rules for deep-inelastic scattering. The chiral bag model with two radii reasonably well accounts for the empirical values of g/sub A//sup S/ and of the axial-vector coupling constants measured in hyperon semileptonic decays

  1. Hyperasymptotics and quark-hadron duality violations in QCD

    Science.gov (United States)

    Boito, Diogo; Caprini, Irinel; Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2018-03-01

    We investigate the origin of the quark-hadron duality-violating terms in the expansion of the QCD two-point vector correlation function at large energies in the complex q2 plane. Starting from the dispersive representation for the associated polarization, the analytic continuation of the operator product expansion from the Euclidean to the Minkowski region is performed by means of a generalized Borel-Laplace transform, borrowing techniques from hyperasymptotics. We establish a connection between singularities in the Borel plane and quark-hadron duality-violating contributions. Starting with the assumption that for QCD at Nc=∞ the spectrum approaches a Regge trajectory at large energy, we obtain an expression for quark-hadron duality violations at large, but finite Nc.

  2. Chiral magnetic effect in the anisotropic quark-gluon plasma

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Taghavi, Seyed Farid

    2015-01-01

    An anisotropic thermal plasma phase of a strongly coupled gauge theory can be holographically modelled by an anisotropic AdS black hole. The temperature and anisotropy parameter of the AdS black hole background of interest http://dx.doi.org/10.1007/JHEP07(2011)054 is specified by the location of the horizon and the value of the Dilaton field at the horizon. Interestingly, for the first time, we obtain two functions for the values of the horizon and Dilaton field in terms of the temperature and anisotropy parameter. Then by introducing a number of spinning probe D7-branes in the anisotropic background, we compute the value of the chiral magnetic effect (CME). We observe that in the isotropic and anisotropic plasma the value of the CME is equal for the massless quarks. However, at fixed temperature, raising the anisotropy in the system will increase the value of the CME for the massive quarks.

  3. Strange mesonic transition form factor in the chiral constituent quark model

    International Nuclear Information System (INIS)

    Ito, H.; Ramsey-Musolf, M.J.

    1998-01-01

    The form factor g ρπ (S) (Q 2 ) of the strange vector current transition matrix element left-angle ρ|bar sγ μ s|π right-angle is calculated within the chiral quark model. A strange vector current of the constituent U and D quarks is induced by kaon radiative corrections and this mechanism yields the nonvanishing values of g ρπ (S) (0). The numerical result at the photon point is consistent with the one given by the φ-meson dominance model, but the falloff in the Q 2 dependence is faster than the monopole form factor. Mesonic radiative corrections are also examined for the electromagnetic ρ-to-π and K * -to-K transition amplitudes. copyright 1998 The American Physical Society

  4. Analysis of chiral symmetry breaking mechanism

    International Nuclear Information System (INIS)

    Guo, X. H.; Academia Sinica, Beijing; Huang, T.; CCAST

    1997-01-01

    The renormalization group invariant quark condensate μ is determined both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like δ (q) which is associated with the gluon condensate. The solutions of μ in these two equations are consistent. The authors also obtain the critical strong coupling constant α c above which chiral symmetry breaks in these two approaches. The nonperturbative kernel of the SD equation makes α c smaller and μ bigger. An intuitive picture of the condensation above α c is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity they derive the equations for the nonperturbative quark propagator from the SD equation in the presence of the intermediate range force and find that the intermediate-range force is also responsible for dynamical chiral symmetry breaking

  5. Born term for high-energy meson-hadron collisions from QCD and chiral quark model

    International Nuclear Information System (INIS)

    Ochs, W.; Shimada, T.

    1988-01-01

    Various experimental observations reveal a sizeable hard component in the high-energy 'soft' hadronic collisions. For primary meson beams we propose a QCD Born term which describes the dissociation of the primary meson into a quark-antiquark pair in the gluon field of the target. A pointlike effective pion-quark coupling is assumed as in the chiral quark model by Manohar and Georgi. We derive the total cross sections which for pion beams, for example, are given in terms of f π -2 and some properties of the hadronic final states. In particular, we stress the importance of studying three-jet events in meson-nucleon scattering and discuss the seagull effect. (orig.)

  6. The chiral condensate from lattice QCD with Wilson twisted mass quarks

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, Carsten [Bonn Univ. (Germany). HISKP (Theorie)

    2016-11-01

    Lattice QCD is a very computer time demanding scientific application. Only with the computer time made available on supercomputers like SuperMUC significant progress, like the one reported here, can be reached. Moreover, the computing resources made available by LRZ are used to reduce the systematic uncertainties in our results even further: in another project we are generating ensembles with physical values of the quark masses, such that a chiral extrapolation is not needed anymore.

  7. Double logarithmic asymptotics of quark scattering amplitudes with flavour exchange

    International Nuclear Information System (INIS)

    Kirschner , R.; Lipatov, L.N.

    1982-02-01

    We propose simple equations in terms of the definite signature partial waves of the quark scattering and annihilation amplitudes with quark-quark and quark-antiquark states in the exchange channel. We discuss the singularities in the complex angular momentum plane generated by the double logarithmic contributions and point out their relation to the particle Regge trajectories. (author)

  8. Two-Quark Condensate Changes with Quark Current Mass

    International Nuclear Information System (INIS)

    Lu Changfang; Lue Xiaofu; Wu Xiaohua; Zhan Yongxin

    2009-01-01

    Using the Schwinger-Dyson equation and perturbation theory, we calculate the two-quark condensates for the light quarks u, d, strange quark s and a heavy quark c with their current masses respectively. The results show that the two-quark condensate will decrease when the quark mass increases, which hints the chiral symmetry may be restored for the heavy quarks.

  9. Light-flavor sea-quark distributions in the nucleon in the SU(3) chiral quark soliton model. I. Phenomenological predictions

    International Nuclear Information System (INIS)

    Wakamatsu, M.

    2003-01-01

    Theoretical predictions are given for the light-flavor sea-quark distributions in the nucleon including the strange quark ones on the basis of the flavor SU(3) version of the chiral quark soliton model. Careful account is taken of the SU(3) symmetry breaking effects due to the mass difference Δm s between the strange and nonstrange quarks, which is the only one parameter necessary for the flavor SU(3) generalization of the model. A particular emphasis of study is put on the light-flavor sea-quark asymmetry as exemplified by the observables d-bar(x)-u-bar(x),d-bar(x)/u-bar(x),Δu-bar(x)-Δd-bar(x) as well as on the particle-antiparticle asymmetry of the strange quark distributions represented by s(x)-s-bar(x),s(x)/s-bar(x),Δs(x)-Δs-bar(x) etc. As for the unpolarized sea-quark distributions, the predictions of the model seem qualitatively consistent with the available phenomenological information provided by the NMC data for d-bar(x)-u-bar(x), the E866 data for d-bar(x)/u-bar(x), the CCFR data and the fit of Barone et al. for s(x)/s-bar(x), etc. The model is shown to give several unique predictions also for the spin-dependent sea-quark distribution, such that Δs(x)<<Δs-bar(x) < or approx. 0 and Δd-bar(x)<0<Δu-bar(x), although the verification of these predictions must await more elaborate experimental investigations in the near future

  10. QCD and the chiral critical point

    International Nuclear Information System (INIS)

    Gavin, S.; Gocksch, A.; Pisarski, R.D.

    1994-01-01

    As an extension of QCD, consider a theory with ''2+1'' flavors, where the current quark masses are held in a fixed ratio as the overall scale of the quark masses is varied. At nonzero temperature and baryon density it is expected that in the chiral limit the chiral phase transition is of first order. Increasing the quark mass from zero, the chiral transition becomes more weakly first order, and can end in a chiral critical point. We show that the only massless field at the chiral critical point is a σ meson, with the universality class that of the Ising model. Present day lattice simulations indicate that QCD is (relatively) near to the chiral critical point

  11. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  12. Discrete Quantum Gravity in the Regge Calculus Formalism

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2005-01-01

    We discuss an approach to the discrete quantum gravity in the Regge calculus formalism that was developed in a number of our papers. The Regge calculus is general relativity for a subclass of general Riemannian manifolds called piecewise flat manifolds. The Regge calculus deals with a discrete set of variables, triangulation lengths, and contains continuous general relativity as a special limiting case where the lengths tend to zero. In our approach, the quantum length expectations are nonzero and of the order of the Plank scale, 10 -33 cm, implying a discrete spacetime structure on these scales

  13. Discrete quantum gravitation in formalism of Regge calculus

    International Nuclear Information System (INIS)

    Khatsimovskij, V.M.

    2005-01-01

    One deals with approach to the discrete quantum gravitation in terms of the Regge calculus formalism. The Regge calculus represents the general relativity theory for the Riemann varieties - the piecewise planar varieties. The Regge calculus makes use of the discrete set of variables, triangulation lengths, and contains the continuous general relativity theory serving as a limiting special case when lengths tend to zero. In terms of our approach the quantum mean values of the mentioned lengths differ from zero and 10 -33 cm Planck length and it implies the discrete structure of space-time at the mentioned scales [ru

  14. The role of leading twist operators in the Regge and Lorentzian OPE limits

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Miguel S. [Centro de Física do Porto, Departamento de Física e Astronomia,Faculdade de Ciências da Universidade do Porto,Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Drummond, James [CERN,Geneva 23 (Switzerland); School of Physics and Astronomy, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom); LAPTH, CNRS et Université de Savoie,F-74941 Annecy-le-Vieux Cedex (France); Gonçalves, Vasco; Penedones, João [Centro de Física do Porto, Departamento de Física e Astronomia,Faculdade de Ciências da Universidade do Porto,Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2014-04-14

    We study two kinematical limits, the Regge limit and the Lorentzian OPE limit, of the four-point function of the stress-tensor multiplet in Super Yang-Mills at weak coupling. We explain how both kinematical limits are controlled by the leading twist operators. We use the known expression of the four-point function up to three loops, to extract the pomeron residue at next-to-leading order. Using this data and the known form of pomeron spin up to next-to-leading order, we predict the behaviour of the four-point function in the Regge limit at higher loops. Specifically, we determine the leading log behaviour at any loop order and the next-to-leading log at four loops. Finally, we check the consistency of our results with conformal Regge theory. This leads us to predict the behaviour around J=1 of the OPE coefficient of the spin J leading twist operator in the OPE of two chiral primary operators.

  15. Open charm production at high energies and the quark Reggeization hypothesis

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Shipilova, A.V.

    2008-12-01

    We study open charm production at high energies in the framework of the quasi-multi-Regge-kinematics approach applying the quark-Reggeization hypothesis implemented with Reggeon-Reggeon-particle and Reggeon-particle-particle effective vertices. Adopting the Kimber-Martin-Ryskin unintegrated quark and gluon distribution functions of the proton and photon, we thus nicely describe the proton structure function F 2,c measured at DESY HERA as well as the transverse-momentum distributions of D mesons created by photoproduction at HERA and by hadroproduction at the Fermilab Tevatron. (orig.)

  16. Broken chiral symmetry and the structure of hadrons

    International Nuclear Information System (INIS)

    Spence, W.L.

    1982-01-01

    The spontaneous breaking of chiral symmetry plays a decisive role in the structure of hadrons composed of light quarks. The formalism by which the dynamics of chiral symmetry breaking and its implications for hadronic structure can be explored in a simplified world in which fully relativistic zero-bare-mass quarks interact through a chirally symmetric instantaneous confining potential is presented. By thus modeling the essentials of the chiral limit-N/sub c/ infinity limit of QCD contact is made with the successes of existent semiphenomenological models of hadrons but post assumptions which explicitly violate chiral symetry are avoided. This revised approach then makes possible a unification of the dynamics of hadron structure with the mechanism of spontaneous chiral breaking and guarantees the appearance of the correct Goldstone excitations. The chiral breaking order parameter (absolute value anti psi psi), effective quark mass, and Goldstone boson wave function are obtainable by solving a single non-linear integral equation once a potential has been prescribed. The stability of the chiral asymmetric vacuum must then be established by studying the linear eigenvalue problem which determines the spectrum of states with vacuum quantum numbers. The nature of the instability of the chiral symmetric vacuum that leads to spontaneous symmetry breaking is explained and its apparent contingency on details of the dynamics is emphasized. It is argued that a single massless fermion in a chirally symmetric potential does form bound states for which a semi-classical description is given. Coupling to vacuum pairs of such bound states occasions the possibility of chiral symmetry breakdown

  17. The quark-gluon model for particle production processes

    International Nuclear Information System (INIS)

    Volkovitskij, P.E.

    1983-01-01

    The quark-gluon model for hadronization of strings produced in soft and hard processes is suggested. The model is based on the distribution functions of valence quarks in hadrons which have correct Regge behaviour. The simplest case is discussed in which only the longitudinal degrees of freedom are taken into account

  18. Regge-like relation and a universal description of heavy-light systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kan; Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Lanzhou University, Research Center for Hadron and CSR Physics, Institute of Modern Physics of CAS, Lanzhou (China); Dong, Yubing [Institute of High Energy Physics, CAS, Beijing (China); Theoretical Physics Center for Science Facilities (TPCSF), CAS, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Lue, Qi-Fang [Institute of High Energy Physics, CAS, Beijing (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China); Matsuki, Takayuki [Tokyo Kasei University, Tokyo (Japan); Nishina Center, RIKEN, Theoretical Research Division, Wako, Saitama (Japan)

    2018-01-15

    Using the Regge-like formula (M - m{sub Q}){sup 2} = πσL between hadron mass M and angular momentum L with a heavy quark mass m{sub Q} and a string tension σ, we analyze all the heavy-light systems, i.e., D/D{sub s}/B/B{sub s} mesons and charmed and bottom baryons. Numerical plots are obtained for all the heavy-light mesons of experimental data whose slope becomes nearly equal to 1/2 of that for light hadrons. Assuming that charmed and bottom baryons consist of one heavy quark and one light cluster of two light quarks (diquark), we apply the formula to all the heavy-light baryons including the recently discovered Ω{sub c} and find that these baryons experimentally measured satisfy the above formula. We predict the average mass values of B, B{sub s}, Λ{sub b}, Σ{sub c}, Ξ{sub c}, and Ω{sub c} with L = 2 to be 6.01, 6.13, 6.15, 3.05, 3.07, and 3.34 GeV, respectively. Our results on baryons suggest that these baryons can be safely regarded as heavy quark-light cluster configuration. We also find a universal description for all the heavy-light mesons as well as baryons, i.e., one unique line is enough to describe both of charmed and bottom heavy-light systems. Our results suggest that instead of mass itself, gluon flux energy is essential to obtain a linear trajectory. Our method gives a straight line for B{sub c} although the curved parent Regge trajectory was suggested before. (orig.)

  19. From quarks to pions chiral symmetry and confinement

    CERN Document Server

    Creutz, Michael

    2018-01-01

    At a fundamental level, the interaction of quarks with gluon fields lies at the heart of our understanding of the strong nuclear force. Experimentally, however, we only observe physical hadrons such as protons and pions. This book explores the fascinating physics involved in the path between these contrasting pictures of the world. Along the way, the book discusses symmetries, which play a crucial role in understanding the parameters of the theory, and details of the spectrum of physical particles. This would be the first book to elaborate on the detailed connections between confinement and chiral symmetry, with an emphasis on a unified treatment of the non-perturbative nature of these phenomena. As such, it should be a valuable title on any particle theorist's bookshelf, containing extensive pedagogical material for scientists at the graduate level and above.

  20. Lowest-lying even-parity anti B{sub s} mesons: heavy-quark spin-flavor symmetry, chiral dynamics, and constituent quark-model bare masses

    Energy Technology Data Exchange (ETDEWEB)

    Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. [Centro Mixto CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular (IFIC), Institutos de Investigacion de Paterna, Aptd. 22085, Valencia (Spain)

    2017-03-15

    The discovery of the D{sup *}{sub s0}(2317) and D{sub s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q anti q and (Q anti q)(q anti q) Fock components. In contrast to the c anti s sector, there is no experimental evidence of J{sup P} = 0{sup +}, 1{sup +} bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D{sub s0}{sup *}(2317) and D{sub s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave anti B{sub s} scalar and axial mesons and the anti B{sup (*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels. (orig.)

  1. Chiral dynamics with (nonstrange quarks

    Directory of Open Access Journals (Sweden)

    Kubis Bastian

    2017-01-01

    Full Text Available We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405, the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy–Steiner analysis of pion–nucleon scattering, a high-precision extraction of the elusive pion–nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  2. Dynamical Regge calculus as lattice gravity

    International Nuclear Information System (INIS)

    Hagura, Hiroyuki

    2001-01-01

    We propose a hybrid approach to lattice quantum gravity by combining simultaneously the dynamical triangulation with the Regge calculus, called the dynamical Regge calculus (DRC). In this approach lattice diffeomorphism is realized as an exact symmetry by some hybrid (k, l) moves on the simplicial lattice. Numerical study of 3D pure gravity shows that an entropy of the DRC is not exponetially bounded if we adopt the uniform measure Π i dl i . On the other hand, using the scale-invariant measure Π i dl i /l i , we can calculate observables and observe a large hysteresis between two phases that indicates the first-order nature of the phase transition

  3. Flavor structure of the nucleon electromagnetic form factors and transverse charge densities in the chiral quark-soliton model

    Science.gov (United States)

    Silva, António; Urbano, Diana; Kim, Hyun-Chul

    2018-02-01

    We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model (χQSM) with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (ms) corrections. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). Finally, we discuss the transverse charge densities for both unpolarized and polarized nucleons. The transverse charge density inside a neutron turns out to be negative in the vicinity of the center within the SU(3) χQSM, which can be explained by the contribution of the strange quark.

  4. Geometrical approach to central molecular chirality: a chirality selection rule

    OpenAIRE

    Capozziello, S.; Lattanzi, A.

    2004-01-01

    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  5. Distributions of valence quarks in hadrons at small x in QCD

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Kaidalov, A.B.

    1984-01-01

    Valence u- and d-quark distributions in nucleon and pion at small x (x=-q 2 /2ν is the fraction of the momentum carried by quarks) corresponding to rho and ω Regge pole exchange have been obtained on the basis of the QCD sum rule me-thod

  6. Ostrogradski approach for the Regge-Teitelboim type cosmology

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2009-01-01

    We present an alternative geometric inspired derivation of the quantum cosmology arising from a brane universe in the context of geodetic gravity. We set up the Regge-Teitelboim model to describe our universe, and we recover its original dynamics by thinking of such field theory as a second-order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. Our analysis highlights the second-order derivative nature of the RT model and the inherited geometrical aspect of the theory. A canonical transformation brings us to the internal physical geometry of the theory and induces its quantization straightforwardly. By using the Dirac canonical quantization method our approach comprises the management of both first- and second-class constraints where the counting of degrees of freedom follows accordingly. At the quantum level our Wheeler-De Witt equation agrees with previous results recently found. On these lines, we also comment upon the compatibility of our approach with the Hamiltonian approach proposed by Davidson and coworkers.

  7. A new approach to the Regge calculus

    International Nuclear Information System (INIS)

    Porter, J.

    1987-01-01

    In paper 1 an original '3 + 1' form of Regge calculus was developed. In the current paper the method is tested by application to spherically symmetric vacuum space-times. Three different time slicing conditions are used and, where appropriate, the results are compared with the analytic solution with encouraging results. (author)

  8. Scalar mesons and glueballs in a chiral U(3)xU(3) quark model with 't Hooft interaction

    International Nuclear Information System (INIS)

    Nagy, M.; Volkov, M.K.; Yudichev, V.L.

    2000-01-01

    In a U(3)xU(3) quark chiral model of the Nambu-Jona-Lasino (NJL) type with the 't Hooft interaction, the ground scalar isoscalar mesons and a scalar glueball are described. The glueball (dilaton) is introduced into the effective meson Lagrangian written in a chirally symmetric form on the basis of scale invariance. The singlet-octet mixing of scalar isoscalar mesons and their mixing with the glueball are taken into account. Mass spectra of the scalar mesons and glueball and their strong decays are described

  9. Deep inelastic structure functions in the chiral bag model

    International Nuclear Information System (INIS)

    Sanjose, V.; Vento, V.; Centro Mixto CSIC/Valencia Univ., Valencia

    1989-01-01

    We calculate the structure functions for deep inelastic scattering on baryons in the cavity approximation to the chiral bag model. The behavior of these structure functions is analyzed in the Bjorken limit. We conclude that scaling is satisfied, but not Regge behavior. A trivial extension as a parton model can be achieved by introducing the structure function for the pion in a convolution picture. In this extended version of the model not only scaling but also Regge behavior is satisfied. Conclusions are drawn from the comparison of our results with experimental data. (orig.)

  10. Deep inelastic structure functions in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Sanjose, V. (Valencia Univ. (Spain). Dept. de Didactica de las Ciencias Experimentales); Vento, V. (Valencia Univ. (Spain). Dept. de Fisica Teorica; Centro Mixto CSIC/Valencia Univ., Valencia (Spain). Inst. de Fisica Corpuscular)

    1989-10-02

    We calculate the structure functions for deep inelastic scattering on baryons in the cavity approximation to the chiral bag model. The behavior of these structure functions is analyzed in the Bjorken limit. We conclude that scaling is satisfied, but not Regge behavior. A trivial extension as a parton model can be achieved by introducing the structure function for the pion in a convolution picture. In this extended version of the model not only scaling but also Regge behavior is satisfied. Conclusions are drawn from the comparison of our results with experimental data. (orig.).

  11. Schwinger Dyson equations: Dynamical chiral symmetry breaking and confinement

    International Nuclear Information System (INIS)

    Roberts, C.D.

    1992-01-01

    A representative but not exhaustive review of the Schwinger-Dyson equation (SDE) approach to the nonperturbative study of QCD is presented. The main focus is the SDE for the quark self energy but studies of the gluon propagator and quark-gluon vertex are also discussed insofar as they are important to the quark SDE. The scope of this article is the application of these equations to the study of dynamical chiral symmetry breaking, quark confinement and the phenomenology of the spectrum and dynamics of QCD

  12. Quark Condensate in the Strange Matter

    Institute of Scientific and Technical Information of China (English)

    LU Chang-Fang; LU" Xiao-Fu

    2003-01-01

    In a nonlinear chiral SU(3) framework, we investigate the quark condensate in the strange matter including N, Σ, Ξ, and Λ, making use of chiral symmetry spontaneous breaking Lagrangian and mean-field approximation. The results show that the chiral symmetry is restored partially when the strange matter density increases and that 〈π→2〉 plays a very important role in the strange matter which may approach the constituents of the neutron stars. In addition, we can find that the strange matter density where the π-condensate emerges leads to the ratio of the nucleon number to baryon number.

  13. Light pseudoscalar mesons in a nonlocal SU(3) chiral quark model

    International Nuclear Information System (INIS)

    Scarpettini, A.; Gomez Dumm, D.; Scoccola, Norberto N.

    2004-01-01

    We study the properties of the light pseudoscalar mesons in a three-flavor chiral quark model with nonlocal separable interactions. We concentrate on the evaluation of meson masses and decay constants, considering both the cases of Gaussian and Lorentzian nonlocal regulators. The results are found to be in quite good agreement with the empirical values, in particular in the case of the ratio f K /f π and the anomalous decay π 0 →γγ. In addition, the model leads to a reasonable description of the observed phenomenology in the η-η ' sector, even though it implies the existence of two significantly different state mixing angles

  14. Light pseudoscalar mesons in a nonlocal three flavor chiral quark model

    International Nuclear Information System (INIS)

    Gomez Dumm, D.

    2004-01-01

    We study the properties of light pseudoscalar mesons in a nonlocal three flavor chiral quark model with nonlocal separable interactions. We consider the case of a Gaussian regulator, evaluating meson masses and decay constants. Our results are found to be in good agreement with empirical values, in particular, in the case of the ratio f κ /f π and the decay π 0 → γγ. The model leads also to a reasonable description of the observed phenomenology in the η-η ' sector, where two significantly different mixing angles are required. Detailed description of the work sketched here can be found in Ref. [1]. (author)

  15. Single jet and prompt-photon inclusive production with multi-Regge kinematics: From Tevatron to LHC

    International Nuclear Information System (INIS)

    Kniehl, B. A.; Saleev, V. A.; Shipilova, A. V.; Yatsenko, E. V.

    2011-01-01

    We study single jet and prompt-photon inclusive hadroproduction with multi-Regge kinematics invoking the hypothesis of parton Reggeization in t-channel exchanges at high energy. In this approach, the leading contributions are due to the fusion of two Reggeized gluons into a Yang-Mills gluon and the annihilation of a Reggeized quark-antiquark pair into a photon, respectively. Adopting the Kimber-Martin-Ryskin and Bluemlein prescriptions to derive unintegrated gluon and quark distribution functions of the proton from their collinear counterparts, for which we use the Martin-Roberts-Stirling-Thorne set, we evaluate cross section distributions in transverse momentum (p T ) and rapidity. Without adjusting any free parameters, we find good agreement with measurements by the CDF and D0 Collaborations at the Tevatron and by the ATLAS Collaboration at the LHC in the region 2p T /√(S) < or approx. 0.1, where √(S) is the hadronic c.m. energy.

  16. Single jet and prompt-photon inclusive production with multi-Regge kinematics. From Tevatron to LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A. [Santa Barbara Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics; Saleev, V.A. [Samara State Univ. (Russian Federation); S.P. Korolyov Samara State Aerospace Univ. (Russian Federation); Shipilova, A.V. [Samara State Univ. (Russian Federation); Yatsenko, E.V. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2011-07-15

    We study single jet and prompt-photon inclusive hadroproduction with multi-Regge kinematics invoking the hypothesis of parton Reggeization in t-channel exchanges at high energy. In this approach, the leading contributions are due to the fusion of two Reggeized gluons into a Yang-Mills gluon and the annihilation of a Reggeized quark-antiquark pair into a photon, respectively. Adopting the Kimber-Martin-Ryskin prescription to derive unintegrated gluon and quark distribution functions of the proton from their collinear counterparts, for which we use the Martin-Roberts- Stirling-Thorne set, we evaluate cross section distributions in transverse momentum (p{sub T}) and rapidity. Without adjusting any free parameters, we find good agreement with measurements by the CDF and D0 Collaborations at the Tevatron and by the ATLAS Collaboration at the LHC in the region 2p{sub T}/{radical}(S)

  17. Chiral bag model with constituent quarks: topological and nontopological decisions

    International Nuclear Information System (INIS)

    Malakhov, I.Yu.; Sveshnikov, K.A.; Fedorov, S.M.; Khalili, M.F.

    2002-01-01

    The three-phase modification of the hybrid chiral bag containing along with asymptotic freedom and hadronization phases and also intermediate phase of the constituent quarks is considered. The self-consistent solutions of the equations of the model in the (1 + 1)-dimensional case are determined with an account of the fermion vacuum polarization effects. The bag renormalized complete energy is studied as a function of the parameters characterizing the bag geometry and its topological (baryon) charge. It is shown that for nonzero topological charge there exists the whole series of configurations representing the local minima of the bag complete energy and containing all three phases, whereas the bag energy minimum in the nontopological case corresponds to zero dimensions of the area corresponding to asymptotic freedom phase [ru

  18. Mesonic and baryonic Regge trajectories with quantized masses

    International Nuclear Information System (INIS)

    Hothi, N.; Bisht, S.

    2011-01-01

    We have constructed some Regge trajectories for mesons and baryons by taking the 70 MeV spinless mass quanta as the ultimate building block for the light hadrons. In order to make masses integral multiples of seventy, small changes in masses has been made with due explanation. We have shown how a linear relationship between J and M 2 is maintained by considering quantized hadron masses, which is a direct consequence of the string model and gives a strong clue for quark confinement. It has also been established that mesons and baryons have different slopes and the slopes of baryons is less than the slope of the mesons. This clearly defies the concept of universality of slopes (α ≅ 1.1 GeV 2 ) of hadrons, which can only be achieved if the strings joining the quarks have constant string tension α 1/(2πω) (where ω is the string tension). (author)

  19. Chiral measurements with the Fixed-Point Dirac operator and construction of chiral currents

    International Nuclear Information System (INIS)

    Hasenfratz, P.; Hauswirth, S.; Holland, K.; Joerg, T.; Niedermayer, F.

    2002-01-01

    In this preliminary study, we examine the chiral properties of the parametrized Fixed-Point Dirac operator D FP , see how to improve its chirality via the Overlap construction, measure the renormalized quark condensate Σ-circumflex and the topological susceptibility χ t , and investigate local chirality of near zero modes of the Dirac operator. We also give a general construction of chiral currents and densities for chiral lattice actions

  20. Deconfining chiral transition in QCD on the lattice

    International Nuclear Information System (INIS)

    Kanaya, Kazuyuki

    1995-01-01

    The deconfining chiral transition in finite-temperature QCD is studied on the lattice using Wilson quarks. After discussing the nature of chiral limit with Wilson quarks, we first study the case of two degenerate quarks N F =2, and find that the transition is smooth in the chiral limit on both N t =4 and 6 lattices. For N F =3, on the other hand, clear two state signals are observed for m q t =4 lattices. For a more realistic case of N F =2+1, i.e. two degenerate u and d-quarks and a heavier s-quark, we study the cases m s ≅ 150 and 400 MeV with m u = m d ≅ 0: In contrast to a previous result with staggered quarks, clear two state signals are observed for both cases, suggesting a first order QCD phase transition in the real world. (author)

  1. Effect of Quark Spins to the Hadron Distributions for Chiral Magnetic Wave in Ultrarelativistic Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Byungsik [Korea University, Seoul (Korea, Republic of)

    2017-07-15

    Topological fluctuation of the gluon field in quantum chromodynamics modifies the vacuum structure, and causes various chiral anomalies. In the strong magnetic field generated by semi-central heavy-ion collisions, the axial and vector density fluctuations propagate along the external magnetic field, called the chiral magnetic wave. Up to now the investigation of the various chiral anomalies in heavy ion collisions has been focussed on the charge distribution in the transverse plane. However, this paper points out that the information on the charge distribution is not enough and the spin effect should also be taken into account. Considering the charge and spin distributions together, π{sup ±} with spin 0 are not proper particle species to study the chiral anomalies, as the signal may be significantly suppressed as one of the constituent (anti)quarks should come from background to form the pseudoscalar states. It is, therefore, necessary to analyze explicitly the vector mesons with spin 1 (K⋆{sup ±} (892)) and baryons with spin 3/2 (Δ{sup ++}(1232), Σ{sup −} (1385) and Ω{sup −} ). If the chiral anomaly effects exist, the elliptic flow parameter is expected to be larger for negative particles for each particle species.

  2. Mass generation and chiral symmetry breaking by pseudoparticles

    International Nuclear Information System (INIS)

    Hietarinta, J.; Palmer, W.F.; Pinsky, S.S.

    1978-01-01

    Massless QCD is studied with regard to mass generation and chiral SU(N/sub f/) symmetry breaking from pseudoparticle effects. While mass is generated when there is only one massless quark, and chiral U(1) is always broken, no rigorous indication of the breaking of chiral SU(N/sub f/) and mass generation is seen when there are more than one massless quarks in the original theory

  3. Magnetic test of chiral dynamics in QCD

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    2014-01-01

    Strong magnetic fields in the range eB≫m π 2 effectively probe internal quark structure of chiral mesons and test basic parameters of the chiral theory, such as 〈q-barq〉,f π . We argue on general grounds that 〈q-barq〉 should grow linearly with eB when charged quark degrees of freedom come into play. To make explicit estimates we extend the previously formulated chiral theory, including quark degrees of freedom, to the case of strong magnetic fields and show that the quark condensate |〈q-barq〉| u,d grows quadratically with eB for eB<0.2 GeV 2 and linearly for higher field values. These results agree quantitatively with recent lattice data and differ from χPT predictions

  4. From quarks and gluons to baryon form factors.

    Science.gov (United States)

    Eichmann, Gernot

    2012-04-01

    I briefly summarize recent results for nucleon and [Formula: see text] electromagnetic, axial and transition form factors in the Dyson-Schwinger approach. The calculation of the current diagrams from the quark-gluon level enables a transparent discussion of common features such as: the implications of dynamical chiral symmetry breaking and quark orbital angular momentum, the timelike structure of the form factors, and their interpretation in terms of missing pion-cloud effects.

  5. A nonlocal model of chiral dynamics

    International Nuclear Information System (INIS)

    Holdom, B.; Terning, J.; Verbeek, K.

    1989-01-01

    We consider a nonlocal generalization of the nonlinear σ model. Our chirally symmetric model couples quarks with self-energy Σ(p) to Goldstone bosons (GBs). By integrating out the quarks we obtain a chiral lagrangian, the parameters of which are finite integrals of Σ(p). We find that chiral symmetry is not sufficient to derive the well-known Pagels-Stokar formula for the GB decay constant. We reproduce the Wess-Zumino term and we illustrate the dependence of other four derivative coefficients on Σ(p). (orig.)

  6. Chiral dynamics with (non)strange quarks

    International Nuclear Information System (INIS)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S_1_1 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy–Steiner analysis of pion–nucleon scattering, a high-precision extraction of the elusive pion–nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  7. Chiral dynamics with (non)strange quarks

    Science.gov (United States)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  8. The non-ordinary Regge behavior of the K{sup *}{sub 0}(800) or κ-meson versus the ordinary K{sup *}{sub 0}(1430)

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, J.R.; Rodas, A. [Universidad Complutense de Madrid, Departamento de Fisica Teorica II and UPARCOS, Madrid (Spain)

    2017-06-15

    The Regge trajectory of an elastic resonance can be calculated from dispersion theory, instead of fitted phenomenologically, using only its pole parameters as input. This also provides a correct treatment of resonance widths in Regge trajectories, essential for very wide resonances. In this work we first calculate the K{sup *}{sub 0}(1430) Regge trajectory, finding the ordinary almost real and linear behavior, typical of q anti q resonances. In contrast, for the K{sup *}{sub 0}(800) meson, the resulting Regge trajectory is non-linear and has a much smaller slope than ordinary resonances, being remarkably similar to that of the f{sub 0}(500) or σ meson. The slope of these unusual Regge trajectories seems to scale with the meson masses rather than with scales typical of quark degrees of freedom. We also calculate the range of the interaction responsible for the formation of these resonances. Our results strongly support a non-ordinary, predominantly meson-meson-like, interpretation for the lightest strange and non-strange resonances. (orig.)

  9. Thermodynamics of lattice QCD with massless quarks and chiral 4-fermion interactions

    International Nuclear Information System (INIS)

    Kogut, J. B.

    1998-01-01

    N f = 2 lattice QCD with massless quarks and a weak 4-fermion interaction appears to have the expected second order transition, at least for N t ≥ 6. More work is needed to clarify the N t = 4 case. With more statistics the N t = 6 simulations should produce an accurate determination of the critical exponent β m . Moving to finite mass at β = β c should allow an accurate determination of σ. Hadronic screening masses need further analysis. Other order parameters remain to be analyzed. Unfortunately, there is no obvious way to include 4-fermion interactions with full SU(2) x SU(2) chiral flavor symmetry

  10. Effects of a multi-quark interaction on color superconducting phase transition in an extended NJL model

    International Nuclear Information System (INIS)

    Kashiwa, Kouji; Matsuzaki, Masayuki; Kouno, Hiroaki; Yahiro, Masanobu

    2007-01-01

    We study the interplay of the chiral and the color superconducting phase transition in an extended Nambu-Jona-Lasinio model with a multi-quark interaction that produces the nonlinear chiral-diquark coupling. We observe that this nonlinear coupling adds up coherently with the ω 2 interaction to either produce the chiral-color superconductivity coexistence phase or cancel each other depending on its sign. We discuss that a large coexistence region in the phase diagram is consistent with the quark-diquark picture for the nucleon whereas its smallness is the prerequisite for the applicability of the Ginzburg-Landau approach

  11. The analytic foundations of Regge theory

    International Nuclear Information System (INIS)

    White, A.R.

    1976-01-01

    Regge poles were first introduced into relativistic scattering theory nearly fifteen years ago. The necessity for accompanying Regge cuts was discovered within two years. The intervening years have seen a gradual improvement of our understanding of Regge theory, but, particularly at the multiparticle level, the theory has remained incomplete with its fundamental status unclear. However, on the basis of recent progress a complete and systematic development of the Regge theory of elastic and multiparticle amplitude is given. (Auth.)

  12. Overlap function and Regge cut in a self-consistent multi-Regge model

    International Nuclear Information System (INIS)

    Banerjee, H.; Mallik, S.

    1977-01-01

    A self-consistent multi-Regge model with unit intercept for the input trajectory is presented. Violation of unitarity is avoided in the model by assuming the vanishing of the pomeron-pomeron-hadron vertex, as the mass of either pomeron tends to zero. The model yields an output Regge pole in the inelastic overlap function which for t>0 lies on the r.h.s. of the moving branch point in the complex J-plane, but for t<0 moves to unphysical sheets. The leading Regge-cut contribution to the forward diffraction amplitude can be negative, so that the total cross section predicted by the model attains a limiting value from below

  13. Overlap function and Regge cut in a self-consistent multi-Regge model

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, H [Saha Inst. of Nuclear Physics, Calcutta (India); Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik

    1977-04-21

    A self-consistent multi-Regge model with unit intercept for the input trajectory is presented. Violation of unitarity is avoided in the model by assuming the vanishing of the pomeron-pomeron-hadron vertex, as the mass of either pomeron tends to zero. The model yields an output Regge pole in the inelastic overlap function which for t>0 lies on the r.h.s. of the moving branch point in the complex J-plane, but for t<0 moves to unphysical sheets. The leading Regge-cut contribution to the forward diffraction amplitude can be negative, so that the total cross section predicted by the model attains a limiting value from below.

  14. Chiral Dynamics 2006

    Science.gov (United States)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4

  15. Heavy-light semileptonic decays in staggered chiral perturbation theory

    Science.gov (United States)

    Aubin, C.; Bernard, C.

    2007-07-01

    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (SχPT), working to leading order in 1/mQ, where mQ is the heavy-quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered “fourth-root trick” within SχPT by insertions of factors of 1/4 for each sea-quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Bećirević, Prelovsek, and Zupan, which we generalize to the staggered (and nondegenerate) case. As a byproduct, we obtain the continuum partially quenched results with nondegenerate sea quarks. We analyze the effects of nonleading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors B→π and D→K, when the light quarks are simulated with the staggered action.

  16. Search for pair production of a new heavy quark that decays into a $W$ boson and a light quark in $pp$ collisions at $\\sqrt{s} = 8$ TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-12-22

    A search is presented for pair production of a new heavy quark ($Q$) that decays into a $W$ boson and a light quark ($q$) in the final state where one $W$ boson decays leptonically (to an electron or muon plus a neutrino) and the other $W$ boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb$^{-1}$ of $pp$ collisions at $\\sqrt{s} = 8$ TeV collected by the ATLAS detector at the LHC. No evidence of $Q\\bar{Q}$ production is observed. New chiral quarks with masses below 690 GeV are excluded at 95% confidence level, assuming BR$(Q\\to Wq)=1$. Results are also interpreted in the context of vectorlike quark models, resulting in the limits on the mass of a vectorlike quark in the two-dimensional plane of BR$(Q\\to Wq)$ versus BR$(Q\\to Hq)$.

  17. Analytic structure of the n=7 scattering amplitude in N=4 SYM theory at multi-Regge kinematics. Conformal Regge pole contribution

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Jochen; Kormilitzin, Andrey [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Lipatov, Lev [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation)

    2013-11-15

    We investigate the analytic structure of the 2 {yields} 5 scattering amplitude in the planar limit of N=4 SYM in multi-Regge kinematics in all physical regions. We demonstrate the close connection between Regge pole and Regge cut contributions: in a selected class of kinematic regions (Mandelstam regions) the usual factorizing Regge pole formula develops unphysical singularities which have to be absorbed and compensated by Regge cut contributions. This leads, in the corrections to the BDS formula, to conformal invariant 'renormalized' Regge pole expressions in the remainder function. We compute these renormalized Regge poles for the 2 {yields} 5 scattering amplitude.

  18. Double logarithmic asymptotics of quark amplitudes with flavour exchange

    International Nuclear Information System (INIS)

    Kirschner, R.

    1982-01-01

    Results on the quark scattering and annihilation amplitudes in the Regge region are presented. The perturbative contribution to those amplitudes in the double logarithmic approximation are calculated. In the calculations a method based on dispersion relations and gauge invariance is used. (M.F.W.)

  19. The penta-quark: a new kind of elementary particle?

    International Nuclear Information System (INIS)

    Goeke, K.; Praszatowicz, M.

    2005-01-01

    The discovery of the exotic Θ + with minimal quark structure uudds-bar may provide a sensation since, if confirmed, it is the first baryonic particle that cannot be composed of three quarks. The chiral quark soliton description of baryons has predicted the mass and an upper limit for the decay width of this particle prior to the experiments and in agreement with the present data. The model corresponds to a relativistic mean field description of the nucleon, where the quarks move in a self-consistent mean field of pionic and kaonic character. It uses an effective chiral Lagrangian based on spontaneously broken chiral symmetry of the QCD. In a natural way the chiral quark soliton model describes the well known lowest two multiplets (8, 1 + /2), (10, 3 + /2) and it predicts two more exotic particles being members of an anti-decuplet (10-bar, 1 + /2) consisting of penta-quarks. The very narrow width of the Θ + can be explained by the small overlap of the 5-quark light cone wave function of the Θ + with the small 5-quark light cone component of the wave function of the nucleon. If confirmed, Θ + will not only be a new kind of subatomic particle but will seriously influence our understanding of the structure of ordinary nucleons. (authors)

  20. Regge trajectories for heavy quarkonia from the quadratic form of the spinless Salpeter-type equation

    Science.gov (United States)

    Chen, Jiao-Kai

    2018-03-01

    In this paper, we present one new form of the Regge trajectories for heavy quarkonia which is obtained from the quadratic form of the spinless Salpeter-type equation (QSSE) by employing the Bohr-Sommerfeld quantization approach. The obtained Regge trajectories take the parameterized form M^2={β }({c_l}l+{π }n_r+c_0)^{2/3}+c_1, which are different from the present Regge trajectories. Then we apply the obtained Regge trajectories to fit the spectra of charmonia and bottomonia. The fitted Regge trajectories are in good agreement with the experimental data and the theoretical predictions.

  1. Chiral perturbation theory with nucleons

    International Nuclear Information System (INIS)

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon

  2. Light quark correlators in a mixed-action setup

    Energy Technology Data Exchange (ETDEWEB)

    Bernardoni, Fabio [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Garron, Nicolas [Edinburgh Univ. (United Kingdom). SUPA, School of Physics; Hernandez, Pilar [CSIC-Univ. de Valencia (Spain). Inst. de Fisica Corpuscular; Necco, Silvia [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pena, Carlos [Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC

    2011-11-15

    We report our progress in simulating Neuberger valence fermions on N{sub f}=2 Wilson O(a)-improved sea quarks. We compute correlators with valence quark masses both in the p- and in the e-regime, and we match the results with the predictions of the Chiral Effective Theory in the mixed regime. This allows us to extract the Low Energy Couplings (LECs) of the N{sub f}=2 theory and to test the validity of the approach. (orig.)

  3. Dense baryon matter with isospin and chiral imbalance in the framework of a NJL4 model at large Nc: Duality between chiral symmetry breaking and charged pion condensation

    Science.gov (United States)

    Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.

    2018-03-01

    In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.

  4. Non-perturbative chiral corrections for lattice QCD

    International Nuclear Information System (INIS)

    Thomas, A.W.; Leinweber, D.B.; Lu, D.H.

    2002-01-01

    We explore the chiral aspects of extrapolation of observables calculated within lattice QCD, using the nucleon magnetic moments as an example. Our analysis shows that the biggest effects of chiral dynamics occur for quark masses corresponding to a pion mass below 600 MeV. In this limited range chiral perturbation theory is not rapidly convergent, but we can develop some understanding of the behaviour through chiral quark models. This model dependent analysis leads us to a simple Pade approximant which builds in both the limits m π → 0 and m π → ∞ correctly and permits a consistent, model independent extrapolation to the physical pion mass which should be extremely reliable. (author)

  5. Light-quark, heavy-quark systems: An update

    International Nuclear Information System (INIS)

    Grinstein, B.

    1993-01-01

    The author reviews many of the recently developed applications of Heavy Quark Effective Theory techniques. After a brief update on Luke's theorm, he describes striking relations between heavy baryon form factors, and how to use them to estimate the accuracy of the extraction of |B cb |. He discusses factorization and compares with experiment. An elementary presentation, with sample applications, of reparametrization invariance comes next. The final and most extensive chapter in this review deals with phenomenological lagrangians that incorporate heavy-quark spin-flavor as well as light quark chiral symmetries. He compiles many interesting results and discuss the validity of the calculations

  6. Towards a Unified Quark-Hadron-Matter Equation of State for Applications in Astrophysics and Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Niels-Uwe F. Bastian

    2018-05-01

    Full Text Available We outline an approach to a unified equation of state for quark-hadron matter on the basis of a Φ − derivable approach to the generalized Beth-Uhlenbeck equation of state for a cluster decomposition of thermodynamic quantities like the density. To this end we summarize the cluster virial expansion for nuclear matter and demonstrate the equivalence of the Green’s function approach and the Φ − derivable formulation. As an example, the formation and dissociation of deuterons in nuclear matter is discussed. We formulate the cluster Φ − derivable approach to quark-hadron matter which allows to take into account the specifics of chiral symmetry restoration and deconfinement in triggering the Mott-dissociation of hadrons. This approach unifies the description of a strongly coupled quark-gluon plasma with that of a medium-modified hadron resonance gas description which are contained as limiting cases. The developed formalism shall replace the common two-phase approach to the description of the deconfinement and chiral phase transition that requires a phase transition construction between separately developed equations of state for hadronic and quark matter phases. Applications to the phenomenology of heavy-ion collisions and astrophysics are outlined.

  7. Distinguishing standard model extensions using monotop chirality at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Allahverdi, Rouzbeh [Department of Physics and Astronomy, University of New Mexico,Albuquerque, NM 87131 (United States); Dalchenko, Mykhailo; Dutta, Bhaskar [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Flórez, Andrés [Departamento de Física, Universidad de los Andes,Bogotá, Carrera 1 18A-10, Bloque IP (Colombia); Gao, Yu [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Kamon, Teruki [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Department of Physics, Kyungpook National University,Daegu 702-701 (Korea, Republic of); Kolev, Nikolay [Department of Physics, University of Regina,SK, S4S 0A2 (Canada); Mueller, Ryan [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843-4242 (United States); Segura, Manuel [Departamento de Física, Universidad de los Andes,Bogotá, Carrera 1 18A-10, Bloque IP (Colombia)

    2016-12-13

    We present two minimal extensions of the standard model, each giving rise to baryogenesis. They include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM. Detailed simulation of signal and standard model background events is performed, showing that top quark chirality can be distinguished in hadronic and leptonic decays of the top quarks.

  8. Chiral behavior of K →π l ν decay form factors in lattice QCD with exact chiral symmetry

    Science.gov (United States)

    Aoki, S.; Cossu, G.; Feng, X.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.; Jlqcd Collaboration

    2017-08-01

    We calculate the form factors of the K →π l ν semileptonic decays in three-flavor lattice QCD and study their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses. Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice spacing of 0.11 fm with four pion masses covering 290-540 MeV and a strange quark mass ms close to its physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with high precision. Their dependence on ms and the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields. We compare the results for the semileptonic form factors with ChPT at next-to-next-to-leading order in detail. While many low-energy constants appear at this order, we make use of our data of the light meson electromagnetic form factors in order to control the chiral extrapolation. We determine the normalization of the form factors as f+(0 )=0.9636 (36 )(-35+57) and observe reasonable agreement of their shape with experiment.

  9. Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature

    Science.gov (United States)

    Blaschke, D.; Dubinin, A.; Ebert, D.; Friesen, A. V.

    2018-05-01

    We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.

  10. String theory of the Regge intercept.

    Science.gov (United States)

    Hellerman, S; Swanson, I

    2015-03-20

    Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.

  11. Essence of the Vacuum Quark Condensate

    International Nuclear Information System (INIS)

    Brodsky, Stanley

    2010-01-01

    We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wavefunctions.

  12. Cheshire Cat scenario in A 3+1 dimensional hybrid chiral bag

    International Nuclear Information System (INIS)

    Francia, M. De; Falomir, H.; Santangelo, E.M.

    1995-07-01

    The total energy in the two-phase chiral bag model is studied, including the contribution due to the bag (Casimir energy plus energy of the valence quarks), as well as the one coming from the Skyrmion in the external sector. A consistent determination of the parameters of the model and the renormalization constants in the energy is performed. The total energy shows an approximate independence with the bag radius (separation limit between the phases), in agreement with the Cheshire Cat Principle. (author). 21 refs, 3 figs

  13. Chiral phase transition in a covariant nonlocal NJL model

    International Nuclear Information System (INIS)

    General, I.; Scoccola, N.N.

    2001-01-01

    The properties of the chiral phase transition at finite temperature and chemical potential are investigated within a nonlocal covariant extension of the NJL model based on a separable quark-quark interaction. We find that for low values of T the chiral transition is always of first order and, for finite quark masses, at certain end point the transition turns into a smooth crossover. Our predictions for the position of this point is similar, although somewhat smaller, than previous estimates. (author)

  14. Quantum chromodynamics, chiral symmetry and bag models

    International Nuclear Information System (INIS)

    Soyeur, M.

    1983-08-01

    This course deals with the following subjects: quarks; quantum chromodynamics (the classical Lagrangian of QCD, quark masses, the classical equations of motion of QCD, general properties, lattices); chiral symmetry (massless free Dirac theory, realizations, the σ-model); the M.I.T. bag model (basic assumptions and equations of motion, spherical cavity approximation, properties of hadrons); the chiral bag models (basic assumptions, the cloudy bag model, the little bag model); non-topological soliton bag models

  15. Light-quark, heavy-quark systems: An update

    Science.gov (United States)

    Grinstein, B.

    1993-06-01

    We review many of the recently developed applications of Heavy Quark Effective Theory techniques. After a brief update on Luke's theorem, we describe striking relations between heavy baryon form factors, and how to use them to estimate the accuracy of the extraction of (vert bar)V(sub cb)(vert bar). We discuss factorization and compare with experiment. An elementary presentation, with sample applications, of reparametrization invariance comes next. The final and most extensive chapter in this review deals with phenomenological lagrangians that incorporate heavy-quark spin-flavor as well as light quark chiral symmetries. We compile many interesting results and discuss the validity of the calculations.

  16. Two cosmological solutions of Regge calculus

    International Nuclear Information System (INIS)

    Lewis, S.M.

    1982-01-01

    Two cosmological solutions of Regge calculus are presented which correspond to the flat Friedmann-Robertson-Walker and the Kasner solutions of general relativity. By taking advantage of the symmetries that are present, I am able to show explicitly that a limit of Regge calculus does yield Einstein's equations for these cases. The method of averaging these equations when taking limits is important, especially for the Kasner model. I display the leading error term that arises from keeping the Regge equations in discrete form rather than using their continuum limit. In particular, this work shows that for the ''Reggeized'' Friedmann model the minimum volume is a velocity-dominated singularity as in the continuum Friedmann model. However, unlike the latter, the Regge version has a nonzero minimum volume

  17. Quark and pion effective couplings from polarization effects

    Energy Technology Data Exchange (ETDEWEB)

    Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)

    2016-05-15

    A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)

  18. Relativistic collapse using Regge calculus: Pt. 1

    International Nuclear Information System (INIS)

    Dubal, M.R.; Leicester Univ.

    1989-01-01

    Regge calculus is used to simulate the dynamical collapse of model stars. In this paper we describe the general methodology of including a perfect fluid in dynamical Regge calculus spacetimes. The Regge-Einstein equations for spherical collapse are obtained and are then specialised to mimic a particular continuum gauge. The equivalent continuum problem is also set up. This is to be solved using standard numerical techniques (i.e. the method of finite difference). A subsequent paper will consider the solution of the equations presented here and will use the continuum problem for comparison purposes in order to check the Regge calculus results. (author)

  19. Area Regge calculus and continuum limit

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2002-01-01

    Encountered in the literature generalisations of general relativity to independent area variables are considered, the discrete (generalised Regge calculus) and continuum ones. The generalised Regge calculus can be either with purely area variables or, as we suggest, with area tensor-connection variables. Just for the latter, in particular, we prove that in analogy with corresponding statement in ordinary Regge calculus (by Feinberg, Friedberg, Lee and Ren), passing to the (appropriately defined) continuum limit yields the generalised continuum area tensor-connection general relativity

  20. Topological and nontopological solutions for the chiral bag model with constituent quarks

    International Nuclear Information System (INIS)

    Sveshnikov, K.; Malakhov, I.; Khalili, M.; Fedorov, S.

    2002-01-01

    The three-phase version of the hybrid chiral bag model, containing the phase of asymptotic freedom, the hadronization phase as well as the intermediate phase of constituent quarks is proposed. For this model the self-consistent solutions of different topology are found in (1 + 1)D with due regard for fermion vacuum polarization effects. The renormalized total energy of the bag is studied as a function of its geometry and topological charge. It is shown that in the case of nonzero topological charge there exists a set of configurations being the local minima of the total energy of the bag and containing all the three phases, while in the nontopological case the minimum of the total energy of the bag corresponds to vanishing size of the phase of asymptotic freedom

  1. Quark-antiquark condensates in the hadronic phase

    International Nuclear Information System (INIS)

    Tawfik, A.; Toublan, D.

    2005-01-01

    We use a hadron resonance gas model to calculate the quark-antiquark condensates for light (up and down) and strange quark flavors at finite temperatures and chemical potentials. At zero chemical potentials, we find that at the temperature where the light quark-antiquark condensates entirely vanish the strange quark-antiquark condensate still keeps a relatively large fraction of its value in the vacuum. This is in agreement with results obtained in lattice simulations and in chiral perturbation theory at finite temperature and zero chemical potentials. Furthermore, we find that this effect slowly disappears at larger baryon chemical potential. These results might have significant consequences for our understanding of QCD at finite temperatures and chemical potentials. Concretely, our results imply that there might be a domain of temperatures where chiral symmetry is restored for light quarks, but still broken for strange quark that persists at small chemical potentials. This might have practical consequences for heavy ion collision experiments

  2. Toy model for two chiral nonets

    International Nuclear Information System (INIS)

    Fariborz, Amir H.; Jora, Renata; Schechter, Joseph

    2005-01-01

    Motivated by the possibility that nonets of scalar mesons might be described as mixtures of 'two quark' and 'four quark' components, we further study a toy model in which corresponding chiral nonets (containing also the pseudoscalar partners) interact with each other. Although the 'two quark' and 'four quark' chiral fields transform identically under SU(3) L xSU(3) R transformations, they transform differently under the U(1) A transformation which essentially counts total (quark+antiquark) content of the mesons. To implement this, we formulate an effective Lagrangian which mocks up the U(1) A behavior of the underlying QCD. We derive generating equations which yield Ward identity type relations based only on the assumed symmetry structure. This is applied to the mass spectrum of the low lying pseudoscalars and scalars, as well as their 'excitations'. Assuming isotopic spin invariance, it is possible to disentangle the amount of 'two quark' vs 'four quark' content in the pseudoscalar π,K,η-type states and in the scalar κ-type states. It is found that a small 'four quark' content in the lightest pseudoscalars is consistent with a large 'four quark' content in the lightest of the scalar κ mesons. The present toy model also allows one to easily estimate the strength of a 'four quark' vacuum condensate. There seems to be a rich and interesting structure

  3. Twisted mass lattice QCD with non-degenerate quark masses

    International Nuclear Information System (INIS)

    Muenster, Gernot; Sudmann, Tobias

    2006-01-01

    Quantum Chromodynamics on a lattice with Wilson fermions and a chirally twisted mass term is considered in the framework of chiral perturbation theory. For two and three numbers of quark flavours, respectively, with non-degenerate quark masses the pseudoscalar meson masses and decay constants are calculated in next-to-leading order including lattice effects quadratic in the lattice spacing a

  4. Chiral gravitational waves and baryon superfluid dark matter

    Science.gov (United States)

    Alexander, Stephon; McDonough, Evan; Spergel, David N.

    2018-05-01

    We develop a unified model of darkgenesis and baryogenesis involving strongly interacting dark quarks, utilizing the gravitational anomaly of chiral gauge theories. In these models, both the visible and dark baryon asymmetries are generated by the gravitational anomaly induced by the presence of chiral primordial gravitational waves. We provide a concrete model of an SU(2) gauge theory with two massless quarks. In this model, the dark quarks condense and form a dark baryon charge superfluid (DBS), in which the Higgs-mode acts as cold dark matter. We elucidate the essential features of this dark matter scenario and discuss its phenomenological prospects.

  5. Diffractive production of charm quark/antiquark pairs at RHIC and LHC

    International Nuclear Information System (INIS)

    Luszczak, Marta; Szczurek, Antoni

    2013-01-01

    We have discussed single and central diffractive production of c(bar sign)c pairs in the Ingelman-Schlein model. In these calculations we have included diffractive parton distributions obtained by the H1 collaboration at HERA and absorption effects neglected in some early calculations in the literature. The absorption effects which are responsible for the naive Regge factorization breaking cause that the cross section for diffractive processes is much smaller than that for the fully inclusive case, but could be measured at RHIC and LHC by imposing special condition on rapidity gaps. We discuss also different approaches to diffractive production of heavy quark/antiquark [1, 2, 3]. The particular mechanism is similar to the diffractive dissociation of virtual photons into quarks, which drives diffractive deep inelastic production of charm in the low-mass diffraction, or large β-region.

  6. Diffractive production of charm quark/antiquark pairs at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Luszczak, Marta [University of Rzeszow, PL-35-959 Rzeszow (Poland); Szczurek, Antoni [Institute of Nuclear Physics PAN, PL-31-342 Cracow and University of Rzeszow, PL-35-959 Rzeszow (Poland)

    2013-04-15

    We have discussed single and central diffractive production of c(bar sign)c pairs in the Ingelman-Schlein model. In these calculations we have included diffractive parton distributions obtained by the H1 collaboration at HERA and absorption effects neglected in some early calculations in the literature. The absorption effects which are responsible for the naive Regge factorization breaking cause that the cross section for diffractive processes is much smaller than that for the fully inclusive case, but could be measured at RHIC and LHC by imposing special condition on rapidity gaps. We discuss also different approaches to diffractive production of heavy quark/antiquark [1, 2, 3]. The particular mechanism is similar to the diffractive dissociation of virtual photons into quarks, which drives diffractive deep inelastic production of charm in the low-mass diffraction, or large {beta}-region.

  7. Top quark soliton and its anomalous chromomagnetic moment

    International Nuclear Information System (INIS)

    Berger, J.; Blotz, A.; Kim, H.; Goeke, K.

    1996-01-01

    We show that under the assumption of dynamical symmetry breaking of electroweak interactions by a top quark condensate, motivated by the top mode standard model, the top quark in this effective theory can be considered then as a chiral color soliton. This is realized in an effective four-fermion interaction with chiral SU(3) c as well as SU(2) L circle-times U Y (1) symmetry. In the pure top quark sector the soliton consists of a top valence quark and a Dirac sea of top quarks and top antiquarks coupled to a color octet of Goldstone pions. The mass spectra, isoscalar quadratic radii, and the anomalous chromomagnetic moment because of a nontrivial color form factor are calculated with zero and finite current top quark masses and effects at the hadron colliders are discussed. The anomalous chromomagnetic moment turns out to have a value consistent with the top quark production rates of the D0 and CDF measurements. copyright 1996 The American Physical Society

  8. Regge calculus from discontinuous metrics

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2003-01-01

    Regge calculus is considered as a particular case of the more general system where the linklengths of any two neighbouring 4-tetrahedra do not necessarily coincide on their common face. This system is treated as that one described by metric discontinuous on the faces. In the superspace of all discontinuous metrics the Regge calculus metrics form some hypersurface defined by continuity conditions. Quantum theory of the discontinuous metric system is assumed to be fixed somehow in the form of quantum measure on (the space of functionals on) the superspace. The problem of reducing this measure to the Regge hypersurface is addressed. The quantum Regge calculus measure is defined from a discontinuous metric measure by inserting the δ-function-like phase factor. The requirement that continuity conditions be imposed in a 'face-independent' way fixes this factor uniquely. The term 'face-independent' means that this factor depends only on the (hyper)plane spanned by the face, not on it's form and size. This requirement seems to be natural from the viewpoint of existence of the well-defined continuum limit maximally free of lattice artefacts

  9. Nucleon Mass from a Covariant Three-Quark Faddeev Equation

    International Nuclear Information System (INIS)

    Eichmann, G.; Alkofer, R.; Krassnigg, A.; Nicmorus, D.

    2010-01-01

    We report the first study of the nucleon where the full Poincare-covariant structure of the three-quark amplitude is implemented in the Faddeev equation. We employ an interaction kernel which is consistent with contemporary studies of meson properties and aspects of chiral symmetry and its dynamical breaking, thus yielding a comprehensive approach to hadron physics. The resulting current-mass evolution of the nucleon mass compares well with lattice data and deviates only by ∼5% from the quark-diquark result obtained in previous studies.

  10. The ''closed'' chiral symmetry and its application to tetraquark

    International Nuclear Information System (INIS)

    Chen, Hua-Xing

    2012-01-01

    We investigate the chiral (flavor) structure of tetraquarks, and study chiral transformation properties of the ''non-exotic'' [(anti 3, 3)+(3, anti 3)] and [(8,1)+(1,8)] tetraquark chiral multiplets. We find that as long as this kind of tetraquark states contains one quark and one antiquark having the same chirality, such as q L q L anti q L anti q R + q R q R anti q R anti q L , they transform in the same way as the lowest level anti q q chiral multiplets under chiral transformations. There is only one [(anti 3, 3)+(3, anti 3)] chiral multiplet whose quark-antiquark pairs all have the opposite chirality (q L q L anti q R anti q R + q R q R anti q L anti q L ), and it transforms differently from others. Based on these studies, we construct local tetraquark currents belonging to the ''non-exotic'' chiral multiplet [(anti 3, 3)+(3, anti 3)] and having quantum numbers J PC =1 -+ . (orig.)

  11. Two-color lattice QCD with staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, David

    2015-07-20

    The study of quantum chromodynamics (QCD) at finite temperature and density provides important contributions to the understanding of strong-interaction matter as it is present e.g. in nuclear matter and in neutron stars or as produced in heavy-ion collision experiments. Lattice QCD is a non-perturbative approach, where equations of motion for quarks and gluons are discretized on a finite space-time lattice. The method successfully describes the behavior of QCD in the vacuum and at finite temperature, however it cannot be applied to finite baryon density due to the fermion sign problem. Various QCD-like theories, that offer to draw conclusions about QCD, allow simulations also at finite densities. In this work we investigate two-color QCD as a popular example of a QCD-like theory free from the sign problem with methods from lattice gauge theory. For the generation of gauge configurations with two dynamical quark flavors in the staggered formalism with the ''rooting trick'' we apply the Rational Hybrid Monte Carlo (RHMC) algorithm. We carry out essential preparatory work for future simulations at finite density. As a start, we concentrate on the calculation of the effective potential for the Polyakov loop, which is an order parameter for the confinement-deconfinement transition, in dependence of the temperature and quark mass. It serves as an important input for effective models of QCD. We obtain the effective potential via the histogram method from local distributions of the Polyakov loop. To study the influence of dynamical quarks on gluonic observables, the simulations are performed with large quark masses and are compared to calculations in the pure gauge theory. In the second part of the thesis we examine aspects of the chiral phase transition along the temperature axis. The symmetry group of chiral symmetry in two-color QCD is enlarged to SU(2N{sub f}). Discretized two-color QCD in the staggered formalism exhibits a chiral symmetry breaking

  12. Low-energy hadronic interactions beyond the current algebra approach

    International Nuclear Information System (INIS)

    Ivanov, A.N.; Troitskaya, N.I.; Nagy, M.

    1993-06-01

    The new low-energy AP 3 -interaction, which is produced by convergent box-constituent-quark-loop diagrams, is obtained within chiral perturbation theory at the quark level (CHPT) q with linear realization of chiral U(3) x U(3) symmetry. Its contributions to processes of low-energy interactions of low-lying mesons are investigated. The new interaction goes beyond the framework of the low-energy current algebra approach and of the effective chiral Lagrangians with linear realization of chiral symmetry, constructed at the hadronic level. (author). 17 refs, 3 figs

  13. Classical models for Regge trajectories

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Van Dam, H.; Marmo, G.; Morandi, G.; Mukunda, N.; Samuel, J.; Sudarshan, E.C.G.

    1987-01-01

    Two classical models for particles with internal structure and which describe Regge trajectories are developed. The remarkable geometric and other properties of the two internal spaces are highlighted. It is shown that the conditions of positive time-like four-velocity and energy momentum for the classical system imply strong and physically reasonable conditions on the Regge mass-spin relationship

  14. Unlocking color and flavor in superconducting strange quark matter

    International Nuclear Information System (INIS)

    Alford, Mark; Berges, Juergen; Rajagopal, Krishna

    1999-01-01

    We explore the phase diagram of strongly interacting matter with massless u and d quarks as a function of the strange quark mass m s and the chemical potential μ for baryon number. Neglecting electromagnetism, we describe the different baryonic and quark matter phases at zero temperature. For quark matter, we support our model-independent arguments with a quantitative analysis of a model which uses a four-fermion interaction abstracted from single-gluon exchange. For any finite m s , at sufficiently large μ we find quark matter in a color-flavor-locked state which leaves a global vector-like SU(2) color+L+R symmetry unbroken. As a consequence, chiral symmetry is always broken in sufficiently dense quark matter. As the density is reduced, for sufficiently large m s we observe a first-order transition from the color-flavor-locked phase to color superconducting phase analogous to that in two-flavor QCD. At this unlocking transition chiral symmetry is restored. For realistic values of m s our analysis indicates that chiral symmetry breaking may be present for all densities down to those characteristic of baryonic matter. This supports the idea that quark matter and baryonic matter may be continuously connected in nature. We map the gaps at the quark Fermi surfaces in the high density color-flavor-locked phase onto gaps at the baryon Fermi surfaces at low densities

  15. Thermodynamics of lattice QCD with 2 sextet quarks on Nt=8 lattices

    International Nuclear Information System (INIS)

    Kogut, J. B.; Sinclair, D. K.

    2011-01-01

    We continue our lattice simulations of QCD with 2 flavors of color-sextet quarks as a model for conformal or walking technicolor. A 2-loop perturbative calculation of the β function which describes the evolution of this theory's running coupling constant predicts that it has a second zero at a finite coupling. This nontrivial zero would be an infrared stable fixed point, in which case the theory with massless quarks would be a conformal field theory. However, if the interaction between quarks and antiquarks becomes strong enough that a chiral condensate forms before this IR fixed point is reached, the theory is QCD-like with spontaneously broken chiral symmetry and confinement. However, the presence of the nearby IR fixed point means that there is a range of couplings for which the running coupling evolves very slowly, i.e. it ''walks.'' We are simulating the lattice version of this theory with staggered quarks at finite temperature, studying the changes in couplings at the deconfinement and chiral-symmetry restoring transitions as the temporal extent (N t ) of the lattice, measured in lattice units, is increased. Our earlier results on lattices with N t =4, 6 show both transitions move to weaker couplings as N t increases consistent with walking behavior. In this paper we extend these calculations to N t =8. Although both transitions again move to weaker couplings, the change in the coupling at the chiral transition from N t =6 to N t =8 is appreciably smaller than that from N t =4 to N t =6. This indicates that at N t =4, 6 we are seeing strong-coupling effects and that we will need results from N t >8 to determine if the chiral-transition coupling approaches zero as N t →∞, as needed for the theory to walk.

  16. Wilson loop OPE, analytic continuation and multi-Regge limit

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki

    2014-05-01

    We explore a direct connection between the collinear limit and the multi-Regge limit for scattering amplitudes in the N=4 super Yang-Mills theory. Starting with the collinear expansion for the six-gluon amplitude in the Euclidean kinematic region, we perform an analytic continuation term by term to the so-called Mandelstam region. We find that the result coincides with the collinear expansion of the analytically continued amplitude. We then take the multi-Regge limit, and conjecture that the final result precisely reproduces the one from the BFKL approach. Combining this procedure with the OPE for null polygonal Wilson loops, we explicitly compute the leading contribution in the ''collinear-Regge'' limit up to five loops. Our results agree with all the known results up to four loops. At five-loop, our results up to the next-to-next-to-leading logarithmic approximation (NNLLA) also reproduce the known results, and for the N 3 LLA and the N 4 LLA give non-trivial predictions. We further present an all-loop prediction for the imaginary part of the next-to-double-leading logarithmic approximation. Our procedure has a possibility of an interpolation from weak to strong coupling in the multi-Regge limit with the help of the OPE.

  17. ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ, M.

    2005-07-25

    With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.

  18. The spontaneous breakdown of chiral symmetry in QCD

    International Nuclear Information System (INIS)

    Yoshida, K.

    1980-02-01

    It is suggested that the usual path integral representation of Euclidean vacuum amplitude (tunneling amplitude) in QCD must be supplemented by the explicit boundary condition corresponding to the spontaneous breaking of chiral SU(N) x SU(N). Adopting the trial wave function introduced by Nambu and Jona-Lasinio, one sees that such a path integral automatically breaks also the additional chiral U(1) symmetry of massless quarks. The catastrophe of semi-classical approach to QCD and 'U(1) problem' would be avoided in this way and one has, in principle, a better starting point for the self-consistent calculation

  19. Strong evidence for spontaneous chiral symmetry breaking in (quenched) QCD

    International Nuclear Information System (INIS)

    Barbour, I.M.; Gibbs, P.; Schierholz, G.; Teper, M.; Gilchrist, J.P.; Schneider, H.

    1983-09-01

    We calculate the chiral condensate for all quark masses using Kogut-Susskind fermions in lattice-regularized quenched QCD. The large volume behaviour of at small quark masses demonstrates that the explicit U(1) chiral symmetry is spontaneously broken. We perform the calculation for β = 5.1 to 5.9 and find very good continuum renormalization group behaviour. We infer that the spontaneous breaking we observe belongs to continuum QCD. This constitutes the first unambiguous demonstration of spontaneous chiral symmetry breaking in continuum quenched QCD. (orig.)

  20. Chiral bag model

    International Nuclear Information System (INIS)

    Musakhanov, M.M.

    1980-01-01

    The chiral bag model is considered. It is suggested that pions interact only with the surface of a quark ''bag'' and do not penetrate inside. In the case of a large bag the pion field is rather weak and goes to the linearized chiral bag model. Within that model the baryon mass spectrum, β decay axial constant, magnetic moments of baryons, pion-baryon coupling constants and their form factors are calculated. It is shown that pion corrections to the calculations according to the chiral bag model is essential. The obtained results are found to be in a reasonable agreement with the experimental data

  1. Chiral phase transition in the soft-wall model of AdS/QCD

    International Nuclear Information System (INIS)

    Chelabi, Kaddour; Fang, Zhen; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2016-01-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t’Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.

  2. Non-Regge and hyper-Regge effects in pion-nucleon charge exchange scattering at high energies

    International Nuclear Information System (INIS)

    Joynson, D.; Leader, E.; Nicolescu, B.; Paris-6 Univ., 75; Lopez, C.

    1975-04-01

    The experimental data on the charge exchange differential cross-section and on the difference on the π + p and π - p total cross-sections between 5GeV/c to 200GeV/c are shown to be incompatible with conventional Regge asymptotic behavior. It is shown that an additional term is required which grows in importance with energy. The precise form of the new term cannot be ascertained, but it is shown that it corresponds to a singularity at J=1 in the complex angular momentum plane. Amongst the possible types of additional term there are two which have been closely analysed: a non-Regge behavior, a hyper-Regge term which have allowed very striking predictions in particular for the charge exchange polarisation [fr

  3. Regge calculus: applications to classical and quantum gravity

    International Nuclear Information System (INIS)

    Lewis, S.M.

    1983-01-01

    Regge calculus is a simplicial approximation to general relativity which preserves many topological and geometrical properties of the exact theory. After discussing the foundations of this technique and deriving some basic identities, specific solutions to Regge calculus are analyzed. In particular, the flat Friedmann-Robertson-Walker (FRW) model is shown. This particular model is used in the discussion of the initial value problem for Regge calculus. An Arnowitt-Deser-Misner type of 3 + 1 decomposition is possible only under very special circumstances; solutions with a non-spatially constant lapse can not generally be decomposed. The flat FRW model is also used to compute the accuracy of this approximation method developed by Regge. A three-dimensional toy model of quantum gravity is discussed that was originally formulated by Ponzano and Regge. A more thorough calculation is performed that takes into account additional terms. The renormalization properties of this model are shown. Finally, speculations are made on the interaction of the geometry, topology and quantum effects using Regge calculus, which, because of its simplicial nature, makes these effects more amenable to calculation and intuition

  4. Mass spectrum of low-lying baryons in the ground state in a relativistic potential model of independent quarks with chiral symmetry

    International Nuclear Information System (INIS)

    Barik, N.; Dash, B.K.

    1986-01-01

    Under the assumption that baryons are an assembly of independent quarks, confined in a first approximation by an effective potential U(r) = 1/2(1+γ 0 )(ar 2 +V 0 ) which presumably represents the nonperturbative gluon interactions, the mass spectrum of the low-lying ground-state baryons has been calculated by considering perturbatively the contributions of the residual quark-pion coupling arising out of the requirement of chiral symmetry and that of the quark-gluon coupling due to one-gluon exchange over and above the necessary center-of-mass correction. The physical masses of the baryons so obtained agree quite well with the corresponding experimental value. The strong coupling constant α/sub c/ = 0.58 required here to describe the QCD mass splittings is quite consistent with the idea of treating one-gluon-exchange effects in lowest-order perturbation theory

  5. The Chiral bag model and the little bag

    International Nuclear Information System (INIS)

    Vento, Vincent.

    1980-11-01

    We review the properties of the existing solutions to the Chiral bag equations of motion and discuss how the 'little bag' picture could come about in this scheme. Our analysis leads to a model which is qualitatively similar to the naive quark model with pion cloud corrections. We use this latter approach to look for pion cloud signatures in experimental data

  6. Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, Benoit [CNRS et Paris-Sud 11 Univ., Orsay (France). Lab. de Physique Theorique; Brinet, Mariane [CNRS/IN2P3/UJF, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie; Carrasco, Nuria [Valencia Univ., Burjassot (ES). Dept. de Fisica Teorica and IFC] (and others)

    2011-12-15

    We present preliminary results of the non-perturbative computation of the RI-MOM renormalization constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalization constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit. (orig.)

  7. Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks

    International Nuclear Information System (INIS)

    Blossier, Benoit; Brinet, Mariane; Carrasco, Nuria

    2011-12-01

    We present preliminary results of the non-perturbative computation of the RI-MOM renormalization constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalization constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit. (orig.)

  8. A chiral quark model for meson electroproduction in the S11 partial wave

    International Nuclear Information System (INIS)

    Golli, B.; Sirca, S.

    2011-01-01

    We calculate the meson scattering and electroproduction amplitudes in the S11 partial wave in a coupled-channel approach that incorporates quasi-bound quark-model states. Using the quark wave functions and the quark-meson interaction from the Cloudy Bag Model, we obtain a good overall agreement with the available experimental results for the partial widths of the N(1535) and the N(1650) resonances as well as for the pion, eta and kaon electroproduction amplitudes. Our model is consistent with the N(1535) resonance being dominantly a genuine three-quark state rather than a quasi-bound state of mesons and baryons. (orig.)

  9. Proceedings of the Helmholtz international school physics of heavy quarks and hadrons (HQ2013)

    International Nuclear Information System (INIS)

    Ali, Ahmed; Bystritskiy, Yury; Ivanov, Mikhail

    2014-07-01

    The following topics were dealt with: Higgs boson production and couplings with the ATLAS detector, recent CMS results on heavy quarks and hadrons, mesons with open charm and beauty, new-physics searches in B→D (*) τν τ , spectroscopy and Regge trajectories of heavy quarkonia, weak decays of B s mesons, the possible role of scalar glueball-quarkonia mixing in the f 0 (1370,1500,17100) resonances produced in charmonia decays, effective weak Lagrangians in the Standard Model and B decays, heavy-quark physics in the covariant quark model, application of QCD sum rules to heavy-quark physics, top-quark production, helicity amplitudes and angular decay distributions, small-x behavior of deep-inelastic structure functions F 2 and F 2 cc , XYZ stated, recent Belle results, light and heavy hadrons in AdS/QCD, renorm dynamics, valence quarks and multiparticle production, prompt photons and associated b,c-tagged jet production within the k T factorization approach, heavy quarkonium production at the LHC in the framework of NRQCD and parton Reggeization approach, light-cone distribution amplitudes of bottom baryons, rare semileptonic B + → π + l + l - decay, bimodality phenomenon in finite and infinite systems within an exactly solvable statistical model, CP violation in D meson decays, the scalar mesons in multichannel ππ scattering and decays of the ψ and Υ families, the latest results of the ATLAS experiment on heavy-quark physics, relativistic corrections to pair charmonium production at the LHC, the rise and fall of the fourth quark-lepton generation. (HSI)

  10. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-06-01

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  11. Covariant, chirally symmetric, confining model of mesons

    International Nuclear Information System (INIS)

    Gross, F.; Milana, J.

    1991-01-01

    We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented

  12. An alternative approach to heavy quark bags

    International Nuclear Information System (INIS)

    Baacke, J.; Kasperidus, G.

    1980-01-01

    We discuss a formulation of quark bags where the quark wave function depends only on the relative coordinate and the bag boundary is fixed with respect to the center of mass of the quark system. For technical reasons we have to restrict ourselves to a heavy quark-antiquark system in an s-wave with spherical boundary. A phenomenological application to quarkonium states encourages further investigation of the approach. (orig.)

  13. Nucleon-delta mass difference in the chiral bag plus skyrmion hybrid model

    International Nuclear Information System (INIS)

    Kusaka, K.; Toki, H.

    1988-01-01

    We study the nucleon-delta isobar mass difference in the chiral bag plus skyrmion hybrid model (CSH). While in the Skyrme model the collective rotation solely provides the mass difference, in the CSH model the one-gluon exchange process also contributes in addition to the collective rotation due to the broken symmetry restoration. We study the one-gluon exchange contribution using the collective coordinate projection method. We find that the one-gluon exchange energy tends to compensate for the decreasing tendency of the rotational energy in the large bag region. (orig.)

  14. Collinear and Regge behavior of 2{yields}4 MHV amplitude in N=4 super Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Prygarin, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute (Russian Federation)

    2011-04-15

    We investigate the collinear and Regge behavior of the 2{yields}4 MHV amplitude in N=4 super Yang-Mills theory in the BFKL approach. The expression for the remainder function in the collinear kinematics proposed by Alday, Gaiotto, Maldacena, Sever and Vieira is analytically continued to the Mandelstam region. The result of the continuation in the Regge kinematics shows an agreement with the BFKL approach up to to five-loop level. We present the Regge theory interpretation of the obtained results and discuss some issues related to a possible nonmultiplicative renormalization of the remainder function in the collinear limit. (orig.)

  15. Chiral symmetry breaking from Ginsparg-Wilson fermions

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent

    2000-01-01

    We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter \\Sigma, up to a multiplicative renormalization.

  16. 1/Nc expansion of the quark condensate at finite temperature

    International Nuclear Information System (INIS)

    Blaschke, D.; Kalinovsky, Y.L.; Roepke, G.; Schmidt, S.; Volkov, M.K.

    1996-01-01

    Previously the quark and meson properties in a many quark system at finite temperature have been studied within effective QCD approaches in the Hartree approximation. In the present paper we consider the influence of the mesonic correlations on the quark self-energy and on the quark propagator within a systematic 1/N c expansion. Using a general separable ansatz for the nonlocal interaction, we derive a self-consistent equation for the 1/N c correction to the quark propagator. For a separable model with cutoff form factor, we obtain a decrease of the condensate of the order of 20% at zero temperature. A lowering of the critical temperature for the onset of the chiral restoration transition due to the inclusion of mesonic correlations is obtained with results that seem to be closer to those from lattice calculations. copyright 1996 The American Physical Society

  17. Dimensional reduction and BRST approach to the description of a Regge trajectory

    International Nuclear Information System (INIS)

    Pashnev, A.I.; Tsulaya, M.M.

    1997-01-01

    The local free field theory for Regge trajectory is described in the framework of the BRST-quantization method. The corresponding BRST-charge is constructed with the help of the method of dimensional reduction

  18. Towards the chiral limit in QCD

    International Nuclear Information System (INIS)

    Shailesh Chandrasekharan

    2006-01-01

    Computing hadronic observables by solving QCD from first principles with realistic quark masses is an important challenge in fundamental nuclear and particle physics research. Although lattice QCD provides a rigorous framework for such calculations many difficulties arise. Firstly, there are no good algorithms to solve lattice QCD with realistically light quark masses. Secondly, due to critical slowing down, Monte Carlo algorithms are able to access only small lattice sizes on coarse lattices. Finally, due to sign problems it is almost impossible to study the physics of finite baryon density. Lattice QCD contains roughly three mass scales: the cutoff (or inverse lattice spacing) a -1 , the confinement scale Λ QCD , and the pion mass m π . Most conventional Monte Carlo algorithms for QCD become inefficient in two regimes: when Λ QCD becomes small compared to a -1 and when m π becomes small compared to Λ QCD . The former can be largely controlled by perturbation theory thanks to asymptotic freedom. The latter is more difficult since chiral extrapolations are typically non-analytic and can be unreliable if the calculations are not done at sufficiently small quark masses. For this reason it has been difficult to compute quantities close to the chiral limit. The essential goal behind this proposal was to develop a new approach towards understanding QCD and QCD-like theories with sufficiently light quarks. The proposal was based on a novel cluster algorithm discovered in the strong coupling limit with staggered fermions [1]. This algorithm allowed us to explore the physics of exactly massless quarks and as well as light quarks. Thus, the hope was that this discovery would lead to the complete solution of at least a few strongly coupled QCD-like theories. The solution would be far better than those achievable through conventional methods and thus would be able to shed light on the chiral physics from a new direction. By the end of the funding period, the project led

  19. Corrections to the Banks-Casher relation with Wilson quarks

    CERN Document Server

    Necco, S

    2013-01-01

    The Banks-Casher relation links the spectral density of the Dirac operator with the existence of a chiral condensate and spontaneous breaking of chiral symmetry. This relation receives corrections from a finite value of the quark mass, a finite space-time volume and, if evaluated on a discrete lattice, from the finite value of the lattice spacing a. We present a status report of a determination of these corrections for Wilson quarks.

  20. Quark contributions to baryon magnetic moments in full, quenched, and partially quenched QCD

    International Nuclear Information System (INIS)

    Leinweber, Derek B.

    2004-01-01

    The chiral nonanalytic behavior of quark-flavor contributions to the magnetic moments of octet baryons is determined in full, quenched and partially quenched QCD, using an intuitive and efficient diagrammatic formulation of quenched and partially quenched chiral perturbation theory. The technique provides a separation of quark-sector magnetic-moment contributions into direct sea-quark loop, valence-quark, indirect sea-quark loop and quenched valence contributions, the latter being the conventional view of the quenched approximation. Both meson and baryon mass violations of SU(3)-flavor symmetry are accounted for. Following a comprehensive examination of the individual quark-sector contributions to octet baryon magnetic moments, numerous opportunities to observe and test the underlying structure of baryons and the nature of chiral nonanalytic behavior in QCD and its quenched variants are discussed. In particular, the valence u-quark contribution to the proton magnetic moment provides the optimal opportunity to directly view nonanalytic behavior associated with the meson cloud of full QCD and the quenched meson cloud of quenched QCD. The u quark in Σ + provides the best opportunity to display the artifacts of the quenched approximation

  1. Quark model and QCD

    International Nuclear Information System (INIS)

    Anisovich, V.V.

    1989-06-01

    Using the language of the quarks and gluons for description of the soft hadron physics it is necessary to take into account two characteristic phenomena which prevent one from usage of QCD Lagrangian in the straightforward way, chiral symmetry breaking, and confinement of colour particles. The topics discussed in this context are: QCD in the domain of soft processes, phenomenological Lagrangian for soft processes and exotic mesons, spectroscopy of low-lying hadrons (mesons, baryons and mesons with heavy quarks - c,b -), confinement forces, spectral integration over quark masses. (author) 3 refs.; 19 figs.; 3 tabs

  2. Quantum geometry in dynamical Regge calculus

    International Nuclear Information System (INIS)

    Hagura, Hiroyuki

    2002-01-01

    We study geometric properties of dynamical Regge calculus which is a hybridization of dynamical triangulation and quantum Regge calculus. Lattice diffeomorphisms are generated by certain elementary moves on a simplicial lattice in the hybrid model. At the semiclassical level, we discuss a possibility that the lattice diffeomorphisms give a simple explanation for the Bekenstein-Hawking entropy of a black hole. At the quantum level, numerical calculations of 3D pure gravity show that a fractal structure of the hybrid model is the same as that of dynamical triangulation in the strong-coupling phase. In the weak-coupling phase, on the other hand, space-time becomes a spiky configuration, which often occurs in quantum Regge calculus

  3. Kinetics of the chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Hees, Hendrik van [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany); Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany)

    2016-07-01

    We simulate the kinetics of the chiral phase transition in hot and dense strongly interacting matter within a novel kinetic-theory approach. Employing an effective linear σ model for quarks, σ mesons, and pions we treat the quarks within a test-particle ansatz for solving the Boltzmann transport equation and the mesons in terms of classical fields. The decay-recombination processes like σ <-> anti q+q are treated using a kind of wave-particle dualism using the exact conservation of energy and momentum. After demonstrating the correct thermodynamic limit for particles and fields in a ''box calculation'' we apply the simulation to the dynamics of an expanding fireball similar to the medium created in ultrarelativistic heavy-ion collisions.

  4. Chiral thermodynamics of nuclear matter

    International Nuclear Information System (INIS)

    Fiorilla, Salvatore

    2012-01-01

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  5. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  6. Instanton vacuum at finite density of quark matter

    International Nuclear Information System (INIS)

    Molodtsov, S.V.; Zinovjev, G.M.

    2002-01-01

    We study light quark interactions in the instanton liquid at finite quark/baryon number density analyzing chiral and diquark condensates and investigate the behaviors of quark dynamical mass and both condensates together with instanton liquid density as a function of quark chemical potential. We conclude the quark impact (estimated in the tadpole approximation) on the instanton liquid could shift color superconducting phase transition to higher values of the chemical potential bringing critical quark matter density to the values essentially higher than conventional nuclear one

  7. Quenched chiral logarithms

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1992-04-01

    I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions

  8. Affine connection form of Regge calculus

    Science.gov (United States)

    Khatsymovsky, V. M.

    2016-12-01

    Regge action is represented analogously to how the Palatini action for general relativity (GR) as some functional of the metric and a general connection as independent variables represents the Einstein-Hilbert action. The piecewise flat (or simplicial) spacetime of Regge calculus is equipped with some world coordinates and some piecewise affine metric which is completely defined by the set of edge lengths and the world coordinates of the vertices. The conjugate variables are the general nondegenerate matrices on the three-simplices which play the role of a general discrete connection. Our previous result on some representation of the Regge calculus action in terms of the local Euclidean (Minkowsky) frame vectors and orthogonal connection matrices as independent variables is somewhat modified for the considered case of the general linear group GL(4, R) of the connection matrices. As a result, we have some action invariant w.r.t. arbitrary change of coordinates of the vertices (and related GL(4, R) transformations in the four-simplices). Excluding GL(4, R) connection from this action via the equations of motion we have exactly the Regge action for the considered spacetime.

  9. About chiral models of dense matter and its magnetic properties

    International Nuclear Information System (INIS)

    Kutschera, M.

    1990-12-01

    The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)

  10. Chiral crossover transition in a finite volume

    Science.gov (United States)

    Shi, Chao; Jia, Wenbao; Sun, An; Zhang, Liping; Zong, Hongshi

    2018-02-01

    Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-transition temperature {T}{{c}} of the crossover, showing a significant decrease in {T}{{c}} as L decreases below 3 fm. Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030, 51405027), the Fundamental Research Funds for the Central Universities (020414380074), China Postdoctoral Science Foundation (2016M591808) and Open Research Foundation of State Key Lab. of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology (DMETKF2015015)

  11. Nucleus as a chiral filter: the role of the Δ(1232)

    International Nuclear Information System (INIS)

    Rho, Mannque.

    1982-03-01

    We describe how two different modes of chiral symmetry can be seen in nuclei. In particular, it is shown that the nuclear axial charge or more precisely the O + O - , ΔT=1 transition at zero momentum transfer probe the nuclear configuration wherein the axial charge gsub(A) is effectively enhanced in nuclear medium due to soft pions, symptomatic of the Goldstone realization of chiral symmetry in the medium while the Gamow-Teller resonances probe the configuration wherein soft pions are no longer operative, suggesting an approach toward the Wigner realization of chiral symmetry. Using the celebrated Adler-Weisberger relation, it is argued that the observed approximately 50% quenching of the Gamow-Teller strength reflects the possibility that the Gamow-Teller operator sees the quarks inside the bag, blind to the Goldstone vacuum outside. Some implications on chiral phase transitions are also discussed

  12. The Skyrmions and quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1984-08-01

    It is proposed that the quark-bag description and the Skyrmion description of baryons are related to each other by quantized parameters. Topology (through a chiral anomaly) plays an important role in bridging the fundamental theory of the strong interactions (QCD) to effective theories. Some consequences on the efforts to see quark degrees of freedom in nuclear matter are discussed. It is suggested that at low energies there will be no ''smoking gun'' evidences for quark presence in nuclei

  13. Construction of multi-Regge amplitudes by the Van Hove--Durand method

    International Nuclear Information System (INIS)

    Morrow, R.A.

    1978-01-01

    The Van Hove--Durand method of deriving Regge amplitudes by summing Feynman tree diagrams is extended to the multi-Regge domain. Using previously developed vertex functions for particles of arbitrary spins, single-, double-, and triple-Regge amplitudes incorporating signature are obtained. Criteria necessary to arrive at unique Regge-pole terms are found. It is also shown how external spins can be included

  14. Chiral pion dynamics for spherical nucleon bags

    International Nuclear Information System (INIS)

    Vento, V.; Rho, M.; Nyman, E.M.; Jun, J.H.; Brown, G.E.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1980-01-01

    A chirally symmetric quark-bag model for the nucleon is obtained by introducing an explicit, classical, pion field exterior to the bag. The coupling at the bag surface is determined by the requirement of a conserved axial-vector current. The pion field satisfies equations of motion corresponding to the non-linear sigma-model. We study on this paper the simplified case where the bag and the pion field are spherically symmetric. Corrections due to gluon exchange between the quarks are ignored along with other interactions which split the N- and Δ-masses. The equations of motion for the pion field are solved and we find a substantial pion pressure at the bag surface, along with an attractive contribution to the nucleon self-energy. The total energy of the system, bag plus meson cloud, turns out to be approximately Msub(n)c 2 for a wide range of bag radii, from 1.5 fm down to about 0.5 fm. Introduction of a form factor for the pion would extend the range of possible radii to even smaller values. We propose that the bag with the smallest allowed radius be identified with the 'little bag' discussed before. One surprising result of the paper is that as long as one restricts to spherically symmetric bags, restoring chiral symmetry to the bag model makes the axial-vector current coupling constant gsub(A) to be always too large compared with the experimental value for any bag radius, suggesting a deviation from spherical symmetry for the intrinsic bag wave functions of the 'ground-state' hadrons. (orig.)

  15. NJL-jet model for quark fragmentation functions

    International Nuclear Information System (INIS)

    Ito, T.; Bentz, W.; Cloeet, I. C.; Thomas, A. W.; Yazaki, K.

    2009-01-01

    A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain why the elementary (lowest order) fragmentation process q→qπ is completely inadequate to describe the empirical data, although the crossed process π→qq describes the quark distribution functions in the pion reasonably well. Taking into account cascadelike processes in a generalized jet-model approach, we then show that the momentum and isospin sum rules can be satisfied naturally, without the introduction of ad hoc parameters. We present results for the Nambu-Jona-Lasinio (NJL) model in the invariant mass regularization scheme and compare them with the empirical parametrizations. We argue that the NJL-jet model, developed herein, provides a useful framework with which to calculate the fragmentation functions in an effective chiral quark theory.

  16. Quark Loop Effects on Dressed Gluon Propagator in Framework of Global Color Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; SUN Wei-Min

    2006-01-01

    Based on the global color symmetry model (GCM), a method for obtaining the quark loop effects on the dressed gluon propagator in GCM is developed. In the chiral limit, it is found that the dressed gluon propagator containing the quark loop effects in the Nambu-Goldstone and Wigner phases are quite different. In solving the quark self-energy functions in the two different phases and subsequent study of bag constant one should use the above dressed gluon propagator as input. The above approach for obtaining the current quark mass effects on the dressed gluon propagator is quite general and can also be used to calculate the chemical potential dependence of the dressed gluon propagator.

  17. On the overlap formulation of chiral gauge theory

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Strathdee, J.

    1994-12-01

    The overlap formula proposed by Narayanan and Neuberger in chiral gauge theories is examined. The free chiral and Dirac Green's functions are constructed in this formalism. Four dimensional anomalies are calculated and the usual anomaly cancellation for one standard family of quarks and leptons is verified. (author). 4 refs

  18. A diquark model for baryons containing one heavy quark

    International Nuclear Information System (INIS)

    Ebert, D.; Feldmann, T.; Kettner, C.; Reinhardt, H.

    1995-06-01

    We present a phenomenological ansatz for coupling a heavy quark with two light quarks to form a heavy baryon. The heavy quark is treated in the heavy mass limit, and the light quark dynamics is approximated by propagating scalar and axial vector 'diquarks'. The resulting effective lagrangian, which incorporates heavy quark and chiral symmetry, describes interactions of heavy baryons with Goldstone bosons in the low energy region. As an application, the Isgur-Wise formfactors are estimated. (orig.)

  19. Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory

    Science.gov (United States)

    Lee, Jong-Wan

    2015-05-01

    We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.

  20. Meson spectroscopy, quark mixing and quantum chromodynamics

    International Nuclear Information System (INIS)

    Filippov, A.T.

    1979-01-01

    A semiphenomenological theory of mass spectrum for mesons, consisting of a quark-antiquark pair, is presented. Relativistic kinematical effects of the quark mass differences, the SU(3)-symmetry breaking in slopes of the Regge trajectories and in radially excited states are taken into account. The OZI-rule breaking is taken into account by means of the mixing matrix for the quark wave functions, whose form is suggested by the quantum chromodynamics. A simple extrapolation of expression, given by the quantum chromodynamics from the ''asymptotic freedom'' region to the ''infrared slavery'' region is proposed to describe the dependence of the mixing parameters on the meson masses. To calculate masses and mixing angles for pseudoscalar mesons a condition is proposed that the pion mass is minimal. In this situation the eta-meson mass is near the maximal value. The predictions of the theory for masses and mixing angles of the mesons are in good agreement with the experiment

  1. The perturbative Regge-calculus regime of loop quantum gravity

    International Nuclear Information System (INIS)

    Bianchi, Eugenio; Modesto, Leonardo

    2008-01-01

    The relation between loop quantum gravity and Regge calculus has been pointed out many times in the literature. In particular the large spin asymptotics of the Barrett-Crane vertex amplitude is known to be related to the Regge action. In this paper we study a semiclassical regime of loop quantum gravity and show that it admits an effective description in terms of perturbative area-Regge-calculus. The regime of interest is identified by a class of states given by superpositions of four-valent spin networks, peaked on large spins. As a probe of the dynamics in this regime, we compute explicitly two- and three-area correlation functions at the vertex amplitude level. We find that they match with the ones computed perturbatively in area-Regge-calculus with a single 4-simplex, once a specific perturbative action and measure have been chosen in the Regge-calculus path integral. Correlations of other geometric operators and the existence of this regime for other models for the dynamics are briefly discussed

  2. Non-leptonic weak decay of hadrons and chiral symmetry

    International Nuclear Information System (INIS)

    Suzuki, Katsuhiko

    2000-01-01

    We review the non-leptonic weak decay of hyperons and ΔI=1/2 rule with a special emphasis on the role of chiral symmetry. The soft-pion theorem provides a powerful framework to understand the origin of ΔI=1/2 rule qualitatively. However, quantitative description is still incomplete in any model of the hadrons. Naive chiral perturbation theory cannot explain the parity-conserving and violating amplitudes simultaneously, and convergence of the chiral expansion seems to be worse. We demonstrate how the non-leptonic weak decay amplitudes are sensitive to the quark-pair correlation in the baryons, and show the importance of the strong quark correlation in the spin-0 channel to reproduce the experimental data. We finally remark several related topics. (author)

  3. Chiral condensate from the twisted mass Dirac operator spectrum

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Jansen, Karl; Cyprus Univ., Nicosia

    2013-03-01

    We present the results of our computation of the chiral condensate with N f =2 and N f =2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N f =2 and N f =2+1+1 dynamical flavours.

  4. Baryogenesis of the universe in cSMCS model plus iso-doublet vector quark

    Energy Technology Data Exchange (ETDEWEB)

    Darvishi, Neda [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland)

    2016-11-10

    CP violation of the SM is insufficient to explain the baryon asymmetry in the universe and therefore an additional source of CP violation is needed. Here the extension of the SM by a neutral complex scalar singlet with a nonzero vacuum expectation value (cSMCS) plus a heavy vector quark pair is considered. This model offers the spontaneous CP violation and proper description in the baryogenesis, it leads strong enough first-order electro-weak phase transition to suppress the baryon-violating sphaleron process.

  5. Effective chiral restoration in the ρ' meson in lattice QCD

    International Nuclear Information System (INIS)

    Glozman, L. Ya.; Lang, C. B.; Limmer, Markus

    2010-01-01

    In simulations with dynamical quarks it has been established that the ground state ρ in the infrared is a strong mixture of the two chiral representations (0,1)+(1,0) and (1/2,1/2) b . Its angular momentum content is approximately the 3 S 1 partial wave. Effective chiral restoration in an excited ρ-meson would require that in the infrared this meson couples predominantly to one of the two representations. The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined excited state at different resolution scales. We present results for the first excited state of the ρ-meson using simulations with n f =2 dynamical quarks. We point out, that in the infrared a leading contribution to ρ ' =ρ(1450) comes from (1/2,1/2) b , in contrast to the ρ. The ρ ' wave function contains a significant contribution of the 3 D 1 wave which is not consistent with the quark model prediction.

  6. Effective chiral restoration in the ρ' meson in lattice QCD

    Science.gov (United States)

    Glozman, L. Ya.; Lang, C. B.; Limmer, Markus

    2010-11-01

    In simulations with dynamical quarks it has been established that the ground state ρ in the infrared is a strong mixture of the two chiral representations (0,1)+(1,0) and (1/2,1/2)b. Its angular momentum content is approximately the S13 partial wave. Effective chiral restoration in an excited ρ-meson would require that in the infrared this meson couples predominantly to one of the two representations. The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined excited state at different resolution scales. We present results for the first excited state of the ρ-meson using simulations with nf=2 dynamical quarks. We point out, that in the infrared a leading contribution to ρ'=ρ(1450) comes from (1/2,1/2)b, in contrast to the ρ. The ρ' wave function contains a significant contribution of the D13 wave which is not consistent with the quark model prediction.

  7. Overlap valence quarks on an twisted mass sea

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, K. [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Drach, V.; Garcia-Ramos, E.; Herdoiza, G.; Jansen, K. [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC

    2010-12-15

    We present the results of an investigation of a mixed action approach of overlap valence and maximally twisted mass sea quarks. Employing a particular matching condition on the pion mass, we analyze the continuum limit scaling of the pion decay constant and the role of chiral zero modes of the overlap operator in this process. We employ gauge field configurations generated by the European Twisted Mass Collaboration with linear lattice size L ranging from 1.3 to 1.9 fm. The continuum limit is taken at a fixed value of L=1.3 fm, employing three values of the lattice spacing and two values of the pion mass constructed from sea quarks only. (orig.)

  8. Hyperon sigma terms for 2+1 quark flavours

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R.; Winter, F.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanded Institute for Computational Science, Kobe, Hyogo (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D. [Juelich Research Centre (Germany); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB) (Germany)

    2011-10-15

    QCD lattice simulations determine hadron masses as functions of the quark masses. From the gradients of these masses and using the Feynman- Hellmann theorem the hadron sigma terms can then be determined. We use here a novel approach of keeping the singlet quark mass constant in our simulations which upon using an SU(3) flavour symmetry breaking expansion gives highly constrained (i.e. few parameter) fits for hadron masses in a multiplet. This is a highly advantageous procedure for determining the hadron mass gradient as it avoids the use of delicate chiral perturbation theory. We illustrate the procedure here by estimating the light and strange sigma terms for the baryon octet. (orig.)

  9. Observation of the Top Quark

    Science.gov (United States)

    Kim, S. B.

    1995-08-01

    Top quark production is observed in{bar p}p collisions at{radical}s= 1.8 TeV at the Fermilab Tevatron. The Collider Detector at Fermilab (CDF) and D{O} observe signals consistent with t{bar t} to WWb{bar b}, but inconsistent with the background prediction by 4.8{sigma} (CDF), 4.6a (D{O}). Additional evidence for the top quark Is provided by a peak in the reconstructed mass distribution. The kinematic properties of the excess events are consistent with the top quark decay. They measure the top quark mass to be 176{plus_minus}8(stat.){plus_minus}10(sys.) GeV/c{sup 2} (CDF), 199{sub -21}{sup+19}(stat.){plus_minus}22(sys.) GeV/c{sup 2} (D{O}), and the t{bar t} production cross section to be 6.8{sub -2.4}{sup+3.6}pb (CDF), 6.4{plus_minus}2.2 pb (D{O}).

  10. Sakai-Sugimoto model, tachyon condensation and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Dhar, Avinash; Nag, Partha

    2008-01-01

    We modify the Sakai-Sugimoto model of chiral symmetry breaking to take into account the open string tachyon which stretches between the flavour D8-branes and D8-bar-branes. There are several reasons of consistency for doing this: (i) Even if it might be reasonable to ignore the tachyon in the ultraviolet where the flavour branes and antibranes are well separated and the tachyon is small, it is likely to condense and acquire large values in the infrared where the branes meet. This takes the system far away from the perturbatively stable minimum of the Sakai-Sugimoto model; (ii) The bifundamental coupling of the tachyon to fermions of opposite chirality makes it a suitable candidate for the quark mass and chiral condensate parameters. We show that the modified Sakai-Sugimoto model with the tachyon present has a classical solution satisfying all the desired consistency properties. In this solution chiral symmetry breaking coincides with tachyon condensation. We identify the parameters corresponding to the quark mass and the chiral condensate and also briefly discuss the mesonic spectra

  11. Chiral phase transition of three flavor QCD with nonzero magnetic field using standard staggered fermions

    Science.gov (United States)

    Tomiya, Akio; Ding, Heng-Tong; Mukherjee, Swagato; Schmidt, Christian; Wang, Xiao-Dan

    2018-03-01

    Lattice simulations for (2+1)-flavor QCD with external magnetic field demon-strated that the quark mass is one of the important parameters responsible for the (inverse) magnetic catalysis. We discuss the dependences of chiral condensates and susceptibilities, the Polyakov loop on the magnetic field and quark mass in three degenerate flavor QCD. The lattice simulations are performed using standard staggered fermions and the plaquette action with spatial sizes Nσ = 16 and 24 and a fixed temporal size Nτ = 4. The value of the quark masses are chosen such that the system undergoes a first order chiral phase transition and crossover with zero magnetic field. We find that in light mass regime, the quark chiral condensate undergoes magnetic catalysis in the whole temperature region and the phase transition tend to become stronger as the magnetic field increases. In crossover regime, deconfinement transition temperature is shifted by the magnetic field when quark mass ma is less than 0:4. The lattice cutoff effects are also discussed.

  12. Simulating at realistic quark masses. Light quark masses

    International Nuclear Information System (INIS)

    Goeckeler, M.; Streuer, T.

    2006-11-01

    We present new results for light quark masses. The calculations are performed using two flavours of O(a) improved Wilson fermions. We have reached lattice spacings as small as a ∝0.07 fm and pion masses down to m π ∝340 MeV in our simulations. This gives us significantly better control on the chiral and continuum extrapolations. (orig.)

  13. Chiral properties of non-exotic processes in K-meson physics

    International Nuclear Information System (INIS)

    Ivanov, A.N.; Nagy, M.; Troitskaya, N.I.

    1992-01-01

    The first order corrections in current quark mass expansion are evaluated for the πK-scattering and K 13 -decay amplitudes within Chiral perturbation theory at the quark level. The Ademollo-Gato theorem is discussed in this paper

  14. Hadron spectroscopy with dynamical chirally improved fermions

    Science.gov (United States)

    Gattringer, Christof; Hagen, Christian; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schäfer, Andreas

    2009-03-01

    We simulate two dynamical, mass-degenerate light quarks on 163×32 lattices with a spatial extent of 2.4 fm using the chirally improved Dirac operator. The simulation method, the implementation of the action, and signals of equilibration are discussed in detail. Based on the eigenvalues of the Dirac operator we discuss some qualitative features of our approach. Results for ground-state masses of pseudoscalar and vector mesons as well as for the nucleon and delta baryons are presented.

  15. Hadron spectroscopy with dynamical chirally improved fermions

    International Nuclear Information System (INIS)

    Gattringer, Christof; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Hagen, Christian; Schaefer, Andreas

    2009-01-01

    We simulate two dynamical, mass-degenerate light quarks on 16 3 x32 lattices with a spatial extent of 2.4 fm using the chirally improved Dirac operator. The simulation method, the implementation of the action, and signals of equilibration are discussed in detail. Based on the eigenvalues of the Dirac operator we discuss some qualitative features of our approach. Results for ground-state masses of pseudoscalar and vector mesons as well as for the nucleon and delta baryons are presented.

  16. Area Regge calculus and discontinuous metrics

    International Nuclear Information System (INIS)

    Wainwright, Chris; Williams, Ruth M

    2004-01-01

    Taking the triangle areas as independent variables in the theory of Regge calculus can lead to ambiguities in the edge lengths, which can be interpreted as discontinuities in the metric. We construct solutions to area Regge calculus using a triangulated lattice and find that on a spacelike or timelike hypersurface no such discontinuity can arise. On a null hypersurface however, we can have such a situation and the resulting metric can be interpreted as a so-called refractive wave

  17. Nonequilibrium chiral fluid dynamics including dissipation and noise

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Herold, Christoph; Bleicher, Marcus; Leupold, Stefan

    2011-01-01

    We present a consistent theoretical approach for the study of nonequilibrium effects in chiral fluid dynamics within the framework of the linear σ model with constituent quarks. Treating the quarks as an equilibrated heat bath, we use the influence functional formalism to obtain a Langevin equation for the σ field. This allows us to calculate the explicit form of the damping coefficient and the noise correlators. For a self-consistent derivation of both the dynamics of the σ field and the quark fluid, we have to employ the 2PI (two-particle irreducible) effective action formalism. The energy dissipation from the field to the fluid is treated in the exact formalism of the 2PI effective action where a conserved energy-momentum tensor can be constructed. We derive its form and comment on approximations generating additional terms in the energy-momentum balance of the entire system.

  18. On the two-dimensional model of quantum Regge gravity

    International Nuclear Information System (INIS)

    Khatsimovskij, V.M.

    1991-01-01

    The Ashtekar-like variables are introduced in the Regge calculus. A simplified model of the resulting theory is quantized canonically. The consequences related to quantization of Regge areas are obtained. 10 refs

  19. Lattice analysis of SU(2) chromodynamics with light quarks

    International Nuclear Information System (INIS)

    Laermann, E.

    1986-01-01

    I report on the Monte-Carlo simulation of a SU(2) lattice gauge theory which includes dynamical Kogut-Susskind quarks. On a 16*8 3 lattice the masses of ρ and π mesons are studied, the condensate measuring the chiral symmetry breaking determined, and the potential between static quarks measured. Extrapolations to vanishing quark mass yield a finite ρ mass but a value for the π mass which is compatible with zero, as well as a result different from zero for the quark condensate in accordance with the spontaneous breaking of the chiral symmetry of massless non-Abelian gauge theories. The shape of the q-anti q potential equals the pure gauge potential for small to intermediate distances. However at large distances (σ(fm)) deviations from the linear increase are indicated as they are expected due to the breakup of the flux tube between heavy quarks because of spontaneous quark-pair production. For all numerical calculations it is common that they favor a value for the scale parameter Λsub(anti Manti S)(N F =4) of quantum chromodynamics which is smaller than in the pure gauge field theory. (orig.) [de

  20. Length expectation values in quantum Regge calculus

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2004-01-01

    Regge calculus configuration superspace can be embedded into a more general superspace where the length of any edge is defined ambiguously depending on the 4-tetrahedron containing the edge. Moreover, the latter superspace can be extended further so that even edge lengths in each the 4-tetrahedron are not defined, only area tensors of the 2-faces in it are. We make use of our previous result concerning quantization of the area tensor Regge calculus which gives finite expectation values for areas. Also our result is used showing that quantum measure in the Regge calculus can be uniquely fixed once we know quantum measure on (the space of the functionals on) the superspace of the theory with ambiguously defined edge lengths. We find that in this framework quantization of the usual Regge calculus is defined up to a parameter. The theory may possess nonzero (of the order of Planck scale) or zero length expectation values depending on whether this parameter is larger or smaller than a certain value. Vanishing length expectation values means that the theory is becoming continuous, here dynamically in the originally discrete framework

  1. Recent status of the chiral bag model

    International Nuclear Information System (INIS)

    Hosaka, Atsushi; Toki, Hiroshi.

    1995-01-01

    In this note, recent status of the chiral bag model is presented. As it combines the MIT quark bag model and the Skyrme model, the chiral bag model interpolates the two models smoothly as a function of the chiral bag radius R. The correct limit of R → ∞ is reproduced by including the higher order terms in the Ω expansion of the cranking method. It resolves the so-called small g A problem in a class of models where the semiclassical method is used. (author)

  2. The chiral phase transition for two-flavour QCD at imaginary and zero chemical potential

    CERN Document Server

    Bonati, Claudio; de Forcrand, Philippe; Philipsen, Owe; Sanfillippo, Francesco

    2013-01-01

    The chiral symmetry of QCD with two massless quark flavours gets restored in a non-analytic chiral phase transition at finite temperature and zero density. Whether this is a first-order or a second-order transition has not yet been determined unambiguously, due to the difficulties of simulating light quarks. We investigate the nature of the chiral transition as a function of quark mass and imaginary chemical potential, using staggered fermions on N_t=4 lattices. At sufficiently large imaginary chemical potential, a clear signal for a first-order transition is obtained for small masses, which weakens with decreasing imaginary chemical potential. The second-order critical line m_c(mu_i), which marks the boundary between first-order and crossover behaviour, extrapolates to a finite m_c(mu_i=0) with known critical exponents. This implies a definitely first-order transition in the chiral limit on relatively coarse, N_t=4 lattices.

  3. Chiral condensate from the twisted mass Dirac operator spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration

    2013-03-15

    We present the results of our computation of the chiral condensate with N{sub f}=2 and N{sub f}=2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavours.

  4. Structure of the vacuum in the color dielectric model: confinement and chiral symmetry

    International Nuclear Information System (INIS)

    Mazzolo, A.

    1992-01-01

    Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied

  5. Simulating at realistic quark masses. Light quark masses

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik; Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics; Nakamura, Y.; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Streuer, T. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics and Astronomy; Stueben, H. [Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB) (Germany)

    2006-11-15

    We present new results for light quark masses. The calculations are performed using two flavours of O(a) improved Wilson fermions. We have reached lattice spacings as small as a {proportional_to}0.07 fm and pion masses down to m{sub {pi}} {proportional_to}340 MeV in our simulations. This gives us significantly better control on the chiral and continuum extrapolations. (orig.)

  6. Reduction of the chiral order parameter by a nuclear medium

    International Nuclear Information System (INIS)

    Kienle, P.; Yamazaki, Toshimizu

    2001-01-01

    We propose a model independent procedure to deduce from the 1s-binding energy of heavy, neutron rich pionic atoms, the isovector scattering length b 1 of the pion nucleus interaction. It is related to the pion decay constant f π , the order parameter of spontaneous chiral symmetry breaking and thus to the value of the chiral quark condensate. Based on the results with pionic 205 Pb, we find with the assertion that only the isovector part of the pion-nucleus interaction be modified by a QCD effect, a reduction of the quark condensate by 30% in a 205 Pb nucleus. Forthcoming experiments to measure pionic 1s-binding energies in Sn-isotopes, including isotope shifts, will yield decisive information on the quark condensate without assertion. (orig.)

  7. Analysis of a classical chiral bag model

    International Nuclear Information System (INIS)

    Nadeau, H.

    1985-01-01

    The author studies a classical chiral bag model with a Mexican hat-type potential for the self-coupling of the pion fields. He assumes a static spherical bag of radius R, the hedgehog ansatz for the chiral fields and that the quarks are all in the lowest lying s state. The author has considered three classes of models, the cloudy or pantopionic bags, the little or exopionic bags and the endopionic bags, where the pions are allowed all through space, only outside the bag and only inside the bag respectively. In all cases, the quarks are confined in the interior. He calculates the bag radius R, the bag constant B and the total ground state energy R for wide ranges of the two free parameters of the theory, namely the coupling constant λ and the quark frequency omega. The author focuses the study on the endopionic bags, the least known class, and compares the results with the familiar ones of other classes

  8. Inhomogeneous chiral symmetry breaking in isospin-asymmetric strong-interaction matter

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowski, Daniel

    2017-07-01

    In this thesis we investigate the effects of an isospin asymmetry on inhomogeneous chiral symmetry breaking phases, which are characterized by spatially modulated quarkantiquark condensates. In order to determine the relevance of such phases for the phase diagram of strong-interaction matter, a two-flavor Nambu-Jona-Lasinio model is used to study the properties of the ground state of the system. Confirming the presence of inhomogeneous chiral symmetry breaking in isospin-asymmetric matter for a simple Chiral Density Wave, we generalize the modulation of the quark-antiquark pairs to more complicated shapes and study the effects of different degrees of flavor-mixing on the inhomogeneous phase at non-zero isospin asymmetry. Then, we investigate the occurrence of crystalline chiral symmetry breaking phases in charge-neutral matter, from which we determine the influence of crystalline phases on a quark star by calculating mass-radius sequences. Finally, our model is extended through color-superconducting phases and we study the interplay of these phases with inhomogeneous chiral-symmetry breaking at non-vanishing isospin asymmetry, before we discuss our findings.

  9. A continuous time formulation of the Regge calculus

    International Nuclear Information System (INIS)

    Brewin, Leo

    1988-01-01

    A complete continuous time formulation of the Regge calculus is presented by developing the associated continuous time Regge action. It is shown that the time constraint is, by way of the Bianchi identities conserved by the evolution equations. This analysis leads to an explicit first integral for each of the evolution equations. The dynamical equations of the theory are therefore reduced to a set of first-order differential equations. In this formalism the time constraints reduce to a simple sum of the integration constants. This result is unique to the Regge calculus-there does not appear to be a complete set of first integrals available for the vacuum Einstein equations. (author)

  10. Search for production of vector-like quark pairs and of four top quarks in the lepton plus jets final state in $pp$ collisions at $\\sqrt{s}=8$ TeV with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    A search is presented for pair production of vector-like quarks, both up-type ($T$) and down-type ($B$), as well as for four-top-quark production. The search is based on $pp$ collisions at $\\sqrt{s}=8$ TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider and corresponding to an integrated luminosity of 20.3 fb$^{-1}$. Data are analysed in the lepton plus jets final state, characterised by a high-transverse-momentum isolated electron or muon, large missing transverse momentum and multiple jets. Dedicated analyses are performed targeting three cases: a $T$ quark with significant branching to a $W$ boson and a $b$ quark ($T\\bar{T} \\to Wb$+X), and both a $T$ quark and a $B$ quark with significant branching ratio to a Higgs boson and a third generation quark ($T\\bar{T} \\to Ht$+X and $B\\bar{B} \\to Hb$+X respectively). The analyses exploit characteristic features of the signals to discriminate against the dominant background from top quark pair production, such as the high total transverse ...

  11. Heptagon amplitude in the multi-Regge regime

    International Nuclear Information System (INIS)

    Bartels, J.

    2014-05-01

    As we have shown in previous work, the high energy limit of scattering amplitudes in N=4 supersymmetric Yang-Mills theory corresponds to the infrared limit of the 1-dimensional quantum integrable system that solves minimal area problems in AdS 5 . This insight can be developed into a systematic algorithm to compute the strong coupling limit of amplitudes in the multi-Regge regime through the solution of auxiliary Bethe Ansatz equations. We apply this procedure to compute the scattering amplitude for n=7 external gluons in different multi-Regge regions at infinite 't Hooft coupling. Our formulas are remarkably consistent with the expected form of 7-gluon Regge cut contributions in perturbative gauge theory. A full description of the general algorithm and a derivation of results is given in a forthcoming paper.

  12. A quark structure of hadrons and nuclei

    International Nuclear Information System (INIS)

    Chakrabarty, S.; Deoghuria, S.

    1992-08-01

    In this review we look into the recent understanding of mesons, baryons and nuclei as few quark bound states within the framework of quantum chromodynamics (QCD). In particular, we have reviewed our understanding of the nature of confining interaction, the spin - dependence of colour forces and the role of non-perturbative effects in the study of quark forces in the potential model approach. We also give a comparative study of results obtained by several potential models with reference to the experimental data. We find that although the Lorentz nature of confinement and the nature of spin-dependent colour forces have been better understood now, only a partial understanding of these problems are obtained so far. Our study reveals that properties of baryons could be explained by the same potential model which successfully describe the mesons. However, the nuclei require chiral symmetry and non-perturbative methods for their description. We also discuss the relation between constituent, current and dynamical quark masses. We conclude that QCD motivated approaches have shown much success in explaining many results on hadronic and nuclear data. (author). 212 refs, 14 tabs

  13. Nuclear chiral dynamics and thermodynamics

    Science.gov (United States)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  14. Confinement, Chiral Symmetry Breaking and it's Restoration using Dual QCD Formalism

    Directory of Open Access Journals (Sweden)

    Punetha Garima

    2018-01-01

    Full Text Available Utilizing the dual QCD model in term of magnetic symmetry structure of non- Abelian gauge theories, the dynamical chiral-symmetry breaking using Schwinger-Dyson equation has been investigated. A close relation among the color confinement and chiralsymmetry breaking has been observed and demonstrated by computing dynamical parameters. The recovery of the chiral symmetry has also been discussed at finite temperature through the variation of quark mass function and quark condensate which gradually decreases with temperature and vanishes suddenly near the critical temperature.

  15. Analytic structure of the n=7 scattering amplitude in N=4 SYM theory in multi-Regge kinematics. Conformal Regge cut contribution

    International Nuclear Information System (INIS)

    Bartels, Jochen; Kormilitzin, Andrey; Oxford Univ.; Lipatov, Lev N.; Oxford Univ.; St. Petersburg State Univ.

    2014-11-01

    In this second part of our investigation of the analytic structure of the 2→5 scattering amplitude in the planar limit of N=4 SYM in multi-Regge kinematics we compute, in all kinematic regions, the Regge cut contributions in leading order. The results are infrared finite and conformally invariant.

  16. Calculation of relativistic model stars using Regge calculus

    International Nuclear Information System (INIS)

    Porter, J.

    1987-01-01

    A new approach to the Regge calculus, developed in a previous paper, is used in conjunction with the velocity potential version of relativistic fluid dynamics due to Schutz [1970, Phys. Rev., D, 2, 2762] to calculate relativistic model stars. The results are compared with those obtained when the Tolman-Oppenheimer-Volkov equations are solved by other numerical methods. The agreement is found to be excellent. (author)

  17. fK /f{pi} in Full QCD with Domain Wall Valence Quarks

    Energy Technology Data Exchange (ETDEWEB)

    Silas Beane; Paulo Bedaque; Konstantinos Orginos; Martin Savage

    2007-05-01

    We compute the ratio of pseudoscalar decay constants f{sub K}/f{sub {pi}} using domain-wall valence quarks and rooted improved Kogut-Susskind sea quarks. By employing continuum chiral perturbation theory, we extract the Gasser-Leutwyler low-energy constant L{sub 5}, and extrapolate f{sub K}/f{sub {pi}} to the physical point. We find: f{sub K}/f{sub {pi}} = 1.218 {+-} 0.002{sub -0.024}{sup +0.011} where the first error is statistical and the second error is an estimate of the systematic due to chiral extrapolation and fitting procedures. This value agrees within the uncertainties with the determination by the MILC collaboration, calculated using Kogut-Susskind valence quarks, indicating that systematic errors arising from the choice of lattice valence quark are small.

  18. Nuclear phenomena derived from quark-gluon strings

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, Constanca; Providencia, Joao da

    2005-01-01

    provided that the chiral fields are identified with the two-particle strings, which are natural in a QCD framework. Moreover, the model is able to reconcile qualitatively such aspects of hadronic physics as saturation density and binding energy of nuclear matter, surface density of finite nuclei, mass......, for the occurrence of the phases of nuclear matter. The model exhibits a quark deconfinement transition and chiral restoration, which are ingredients of QCD and give qualitatively correct numerics. The effective model is shown to be isomorphic to the Nambu-Jona-Lasinio model and exhibits the correct chirality...

  19. Physics of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1991-01-01

    This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)

  20. Vortex in the chiral quark model

    Science.gov (United States)

    Hadasz, Leszek

    1995-02-01

    We construct the classical vortex solution in the model of chiral field interacting with the non-Abelian SU(2) gauge field. This solution is topologically nontrivial and well localized. We discuss its relevance for effective hadron models based on the flux-tube picture and the possibility of its extension to the higher symmetry gauge groups SU(N).

  1. Unified Chiral models of mesons and baryons

    International Nuclear Information System (INIS)

    Mendez-Galain, R.; Ripka, G.

    1990-01-01

    Unified Chiral models of mesons and baryons are presented. Emphasis is placed on the underlying quark structure of hadrons including the Skyrmion. The Nambu Jona-Lasinio model with vector mesons is discussed

  2. Chiral model predictions for electromagnetic polarizabilities of the nucleon: A 'consumer report'

    International Nuclear Information System (INIS)

    Broniowski, W.

    1992-01-01

    This contribution has two parts: (1) The author critically discusses predictions for the electromagnetic polarizabilities of the nucleon obtained in two different approaches: (a) hedgehog models (HM), such as Skyrmions, chiral quark models, hybrid bags, NJL etc., and (b) chiral perturbation theory (χPT). (2) The author shows new results obtained in HM: N c -counting of polarizabilities, splitting of the neutron and proton polarizabilities (he argues that α n > α p in models with pionic clouds), relevance of dispersive terms in the magnetic polarizability β, important role of the Δ resonance in pionic loops, and the effects of non-minimal substitution terms in the effective lagrangian. 3 refs

  3. Current s - quark mass corrections to the form factors of D - meson semileptonic decays

    International Nuclear Information System (INIS)

    Hussain, F.; Ivanov, A.N.; Troitskaya, N.I.

    1994-11-01

    The infinite mass effective theory, when a heavy quark mass tends to infinity, and Chiral perturbation theory at the quark level, based on the extended Nambu - Jona - Lasinio model with linear realization of chiral U(3) x U(3) symmetry, are applied to the calculations of current s - quark mass corrections to the form factors of the D → K-bar e + ν e and D → K-bar * e + ν e decays. These corrections turn out to be quite significant, of the order of 7 - 20%. The theoretical results are compared with experimental data. (author). 17 refs

  4. Perturbative current quark masses in QCD

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1982-01-01

    Neutral PCAC current quark masses follow from the covariant light plane of QCD requirement that α-m-circumflex(M), which is not inconsistent with the spontaneous breakdown of chiral symmetry. The resulting current quark mass ratio (m sub(s)/m-circumflex) sub(curr)=5 and scale m-circumflex sub(curr)=62 MeV at M=2 Gev are compatible with the observed πNσ - term, the Goldberger-Treiman discrepancy, the low-lying 0 - , 1/2 + , 1 - , 3/2 + hadron mass spectrum, the flavor independence of the dynamically generated quark mass and the perturbative weak binding limit. (author)

  5. Chiral spiral induced by a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Abuki Hiroaki

    2016-01-01

    Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  6. Unified approach to the study of light and heavy mesons in the frameworkof the vacuum-polarization-corrected potential model

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1981-01-01

    Phenomenological evidence from meson spectroscopy is presented to support the view that a unified description of bound light- and heavy-quark systems is possible within the scope of a nonrelativistic-potential-model approach. The vacuum-polarization-corrected potential with its confinement part in the form of an approximately equal admixture of vector and scalar components is found to be a suitable one for the purpose. The overall systematics of the predictions based on this potential model for the meson masses, fine-hyperfine splittings, leptonic decay widths, and the Regge slopes are observed to be consistent with the premise that the forces between quarks and antiquarks are independent of the quark flavors

  7. Factorization of the six-particle multi-Regge amplitude

    International Nuclear Information System (INIS)

    Moen, I.O.

    1975-01-01

    It is shown that factorization of the multi-Regge contribution to the six-particle amplitude follows from the complex-helicity-plane structure, the Steinmann relations, and extended unitarity. The six-particle multi-Regge amplitude also satisfies some new discontinuity relations which are interpreted as resulting from the interplay of singularities required by the Gram-determinant constraint in four-dimensional space-time

  8. Dynamical chiral-symmetry breaking in dual QCD

    International Nuclear Information System (INIS)

    Krein, G.; Williams, A.G.

    1991-01-01

    We have extended recent studies by Baker, Ball, and Zachariasen (BBZ) of dynamical chiral-symmetry breaking in dual QCD. Specifically, we have taken dual QCD to specify the nonperturbative infrared nature of the quark-quark interaction and then we have smoothly connected onto this the known leading-log perturbative QCD interaction in the ultraviolet region. In addition, we have solved for a momentum-dependent self-energy and have used the complete lowest-order dual QCD quark-quark interaction. We calculate the quark condensate left-angle bar qq right-angle and the pion decay constant f π within this model. We find that the dual QCD parameters needed to give acceptable results are reasonably consistent with those extracted from independent physical considerations by BBZ

  9. The proton structure function F sub 2 sup p (x, Q sup 2) at small x in the framework of extended Regge-Eikonal approach

    CERN Document Server

    Petrov, V A

    2001-01-01

    The behaviour of the proton structure function F sub 2 sup p (x, Q sup 2) in the region of small x is described in the framework of the generalized off-shell extention of the Regge-eikonal approach which automatically takes into account off-shell unitarity. A good quality is achieved of description of the experimental data for x < 10 sup - sup 2 and it is argued that the data on F sub 2 sup p (x, Q sup 2) measured at HERA can be fairly well described with classical universal Regge trajectories. No extra, hard trajectories of high intercept are needed for that. The x, Q sup 2 slopes and the effective intercept are discussed as functions of x and Q sup 2

  10. Hadronization of quark-diquark model for nucleon structure and nuclear force by path integral

    International Nuclear Information System (INIS)

    Nagata, Keitaro

    2003-01-01

    One of the central issues of the hadron physics is how to interpret the properties and the origin of nuclear force. Nuclear force is in principle the manifestation of dynamics of quarks and gluons but no trial has been successful yet in describing the nuclear force by using QCD, the fundamental theory of the strong interactions. Phenomenon related to the chiral symmetry and the spontaneous breaking of the chiral symmetry is one of the important phenomena for the understanding of hadron physics. Nambu-Jona-Lasinio (NJL) model is one of the quark system models to explain the phenomena concerning the chiral symmetry. Although the method to deduce the Lagrangian describing mesons by applying the path integral to NJL model has been well known as the bosonization, it has been difficult to extend it to baryons because baryons are three-body system. In this paper, a method is reported to deduce Lagrangian which describes baryon-meson from quark-diquark Lagrangian by assuming that baryons are the bound states of quark and diquark. (S. Funahashi)

  11. Feynman path integral in area tensor Regge calculus and positivity

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2004-01-01

    The versions of quantum measure in the area tensor Regge calculus constructed in the previous paper are studied on the simplest configurations of the system. These are found to be positively defined in the Euclidean case on physical surface corresponding to the ordinary Regge calculus (but not outside this surface), that is, adopt probabilistic interpretation. (Since Euclidean measure is defined via analytical continuation, positivity is not evident property.) An argument for positivity on physical surface on general configurations of area tensor Regge calculus is given

  12. Multi-Regge limit of the n-gluon bubble ansatz

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Schomerus, V.; Sprenger, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-07-15

    We investigate n-gluon scattering amplitudes in the multi-Regge region of N=4 supersymmetric Yang-Mills theory at strong coupling. Through a careful analysis of the thermodynamic bubble ansatz (TBA) for surfaces in AdS{sub 5} with n-g(lu)on boundary conditions we demonstrate that the multi-Regge limit probes the large volume regime of the TBA. In reaching the multi-Regge regime we encounter wall-crossing in the TBA for all n>6. Our results imply that there exists an auxiliary system of algebraic Bethe ansatz equations which encode valuable information on the analytical structure of amplitudes at strong coupling.

  13. Initial data for time-symmetric gravitational radiation using Regge calculus

    International Nuclear Information System (INIS)

    Dubal, M.R.

    1989-01-01

    We apply Regge calculus to the construction of initial data for Brill waves: axisymmetric non-rotating vacuum solutions of Einstein's equation. The Regge calculus solutions are compared with those of the continuum theory, with encouraging results. (author)

  14. On the continuum limit of curvature squared actions in the Regge calculus

    International Nuclear Information System (INIS)

    Eliezer, D.

    1989-01-01

    We evaluate the continuum limit of a family of curvature squared actions for the Regge calculus proposed by Hamber and Williams. The answers depend on how the continuum limit is defined. When the link lengths are defined as the distance in an embedding space between the endpoints of the link, we find that no member of this family approaches the continuum limit correctly. Defining the link lengths as the length of a geodesic between the endpoints of the link, we find that a unique member is selected, and we prove for the general two dimensional compact manifold that this Regge calculus action converges to ∫R 2 √d d 2 x. (orig.)

  15. Chiral symmetry in the strong color-electric field in terms of Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Suganuma, Hideo

    1990-01-01

    We examine the behavior of chiral symmetry in an external gluon field using Nambu-Jona-Lasinio model, which is an effective theory of QCD. The Dyson equation for the dynamical quark mass in the presence of the external color-electric field is obtained. By solving it in the color flux tube inside mesons, chiral symmetry would be restored in the flux tube of mesons and this result supports Chiral Bag picture for mesons. Next we consider the flux tubes formed in the central region for ultra-relativistic heavy-ion collisions, and find the chiral restoration occurs there, so that the current quark mass seems to be suitable in calculating the q-q-bar pair creation rate by the Schwinger formula in the flux-tube picture. (author)

  16. Ginsparg-Wilson pions scattering in a sea of staggered quarks

    International Nuclear Information System (INIS)

    Chen, J.-W.; O'Connell, Donal; Van de Water, Ruth; Walker-Loud, Andre

    2006-01-01

    We calculate isospin 2 pion-pion scattering in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We point out that for some scattering channels, the power-law volume dependence of two-pion states in nonunitary theories such as partially quenched or mixed action QCD is identical to that of QCD. Thus one can extract infinite-volume scattering parameters from mixed action simulations. We then determine the scattering length for both 2 and 2+1 sea quarks in the isospin limit. The scattering length, when expressed in terms of the pion mass and the decay constant measured on the lattice, has no contributions from mixed valence-sea mesons, thus it does not depend upon the parameter, C Mix , that appears in the chiral Lagrangian of the mixed theory. In addition, the contributions which nominally arise from operators appearing in the mixed action O(a 2 m q ) Lagrangian exactly cancel when the scattering length is written in this form. This is in contrast to the scattering length expressed in terms of the bare parameters of the chiral Lagrangian, which explicitly exhibits all the sicknesses and lattice spacing dependence allowed by a partially quenched mixed action theory. These results hold for both 2 and 2+1 flavors of sea quarks

  17. Spinorial Regge trajectories and Hagedorn-like temperatures. Spinorial space-time and preons as an alternative to strings

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2016-11-01

    The development of the statistical bootstrap model for hadrons, quarks and nuclear matter occurred during the 1960s and the 1970s in a period of exceptional theoretical creativity. And if the transition from hadrons to quarks and gluons as fundamental particles was then operated, a transition from standard particles to preons and from the standard space-time to a spinorial one may now be necessary, including related pre-Big Bang scenarios. We present here a brief historical analysis of the scientific problematic of the 1960s in Particle Physics and of its evolution until the end of the 1970s, including cosmological issues. Particular attention is devoted to the exceptional role of Rolf Hagedorn and to the progress of the statistical boostrap model until the experimental search for the quark-gluon plasma started being considered. In parallel, we simultaneously expose recent results and ideas concerning Particle Physics and in Cosmology, an discuss current open questions. Assuming preons to be constituents of the physical vacuum and the standard particles excitations of this vacuum (the superbradyon hypothesis we introduced in 1995), together with a spinorial space-time (SST), a new kind of Regge trajectories is expected to arise where the angular momentum spacing will be of 1/2 instead of 1. Standard particles can lie on such Regge trajectories inside associated internal symmetry multiplets, and the preonic vacuum structure can generate a new approach to Quantum Field Theory. As superbradyons are superluminal preons, some of the vacuum excitations can have critical speeds larger than the speed of light c, but the cosmological evolution selects by itself the particles with the smallest critical speed (the speed of light). In the new Particle Physics and Cosmology emerging from the pattern thus developed, Hagedornlike temperatures will naturally be present. As new space, time, momentum and energy scales are expected to be generated by the preonic vacuum dynamics, the

  18. Composite mesons in self-confining chiral solitons

    International Nuclear Information System (INIS)

    Tandy, P.C.; Frank, M.R.

    1991-01-01

    Most quark-meson models for formation of a baryon as a bag or soliton solution begin with elementary local meson fields including a classical scalar configuration that provides repulsion of valence quarks from the vacuum. This presentation explores aspects of the very different formation mechanism that operates in a model where chiral effective meson fields are composite objects generated from bilocal qq-bar fluctuation fields and the dynamical quark mass can be self-confining. The focus is on the dynamical self-energy for quarks and the related distributed vertex for quark meson coupling. Initial numerical work to explore the practical consequences of these features is presented in the context of a static mean-field soliton. The particular method employed to identify the energy functional at the mean field or Hartree level is to obtain the standard effective action from the Legendre transformation with the help of a chemical potential constraint for the baryon number. The purpose of this approach is two-fold. First, a possible future consideration of radiative corrections might be undertaken by systematically continuing with the loop expansion beyond the lowest level. A second, more practical reason, is that in the presence of a general space-time dependent dynamical self-energy for quarks there are wavefunction renormalisation effects and energy self-consistencies to be defined and maintained for the valence quark states and eigenvalues. Speculations are made on whether this point of view can motivate meson-nucleon relativistic field models containing intrinsic cutoffs for use in nuclear physics. 29 refs., 5 figs

  19. Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in $pp$ collisions at $\\sqrt{s}=8$ TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Childers, John Taylor; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saimpert, Matthias; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-08-20

    A search for pair production of vector-like quarks, both up-type ($T$) and down-type ($B$), as well as for four-top-quark production, is presented. The search is based on $pp$ collisions at $\\sqrt{s}=8$ TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider and corresponding to an integrated luminosity of 20.3 fb$^{-1}$. Data are analysed in the lepton-plus-jets final state, characterised by an isolated electron or muon with high transverse momentum, large missing transverse momentum and multiple jets. Dedicated analyses are performed targeting three cases: a $T$ quark with significant branching ratio to a $W$ boson and a $b$-quark ($T\\bar{T} \\to Wb$+X), and both a $T$ quark and a $B$ quark with significant branching ratio to a Higgs boson and a third-generation quark ($T\\bar{T} \\to Ht$+X and $B\\bar{B} \\to Hb$+X respectively). No significant excess of events above the Standard Model expectation is observed, and 95% CL lower limits are derived on the masses of the vector-like $T$ and $B...

  20. Regge asymptotics of scattering with flavour exchange in QCD

    International Nuclear Information System (INIS)

    Kirschner, R.

    1994-06-01

    The contribution to the perturbative Regge asymptotics of the exchange of two reggeized fermions with opposite helicity is investigated. The methods of conformal symmetry known for the case of gluon exchange are extended to this case where double-logarithmic contributions dominate the asymptotics. The Regge trajectories at large momentum transfer are calculated. (orig.)

  1. Chiral symmetry breaking and confinement - solutions of relativistic wave equations

    International Nuclear Information System (INIS)

    Murugesan, P.

    1983-01-01

    In this thesis, an attempt is made to explore the question whether confinement automatically leads to chiral symmetry breaking. While it should be accepted that chiral symmetry breaking manifests in nature in the absence of scalar partners of pseudoscalar mesons, it does not necessarily follow that confinement should lead to chiral symmetry breaking. If chiral conserving forces give rise to observed spectrum of hadrons, then the conjuncture that confinement is responsible for chiral symmetry breaking is not valid. The method employed to answer the question whether confinement leads to chiral symmetry breaking or not is to solve relativistic wave equations by introducing chiral conserving as well as chiral breaking confining potentials and compare the results with experimental observations. It is concluded that even though chiral symmetry is broken in nature, confinement of quarks need not be the cause of it

  2. Chirality conservation in the lattice gauge theory

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1978-01-01

    The derivation of conservation laws corresponding to chiral invariance in quantum field theories of interacting quarks and gluons are studied. In particular there is interest in observing how these conservation laws are constrained by the requirement that the field theory be locally gauge invariant. To examine this question, a manifestly gauge-invariant definition of local operators in a quantum field theory is introduced, a definition which relies in an essential way on the use of the formulation of gauge fields on a lattice due to Wilson and Polyakov to regulate ultraviolet divergences. The conceptual basis of the formalism is set out and applied to a long-standing puzzle in the phenomenology of quark-gluon theories: the fact that elementary particle interactions reflect the conservation of isospin-carrying chiral currents but not of the isospin-singlet chiral current. It is well known that the equation for the isospin-singlet current contains an extra term, the operator F/sub mu neu/F/sup mu neu/, not present in the other chirality conservation laws; however, this term conventionally has the form of a total divergence and so still allows the definition of a conserved chiral current. It is found that, when the effects of maintaining gauge invariance are properly taken into account, the structure of this operator is altered by renormalization effects, so that it provides an explicit breaking of the unwanted chiral invariance. The relation between this argument, based on renormaliztion, is traced to a set of more heuristic arguments based on gauge field topology given by 't Hooft; it is shown that the discussion provides a validation, through short-distance analysis, of the picture 'Hooft has proposed. The formal derivation of conservation laws for chiral currents are set out in detail

  3. Magnitude of regge cut contributions in the triple-regge region

    International Nuclear Information System (INIS)

    Bartels, J.; Kramer, G.

    1976-09-01

    Starting from the reggeon calculus, the various possibilities of absorptive Pomeron cut corrections in the triple-Regge region are considered. For the case of pp→pX, we estimate their importance at present day energies. We conclude that at highest ISR energies Pomeron cuts of the eikonal type are not enough, and enhanced diagrams with at least one additional triple Pomeron coupling need to be included. (orig.) [de

  4. Chiral-symmetry breaking and confinement in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [Unibersidade de Lisboa, 104-001, Lisboa, Portugal; Pena, M. T. [Universidade de Lisboa, 1049-001, Lisboa, Portugal; Ribiero, J. E. [Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Universidade de Évora, 7000-671 Évora, Portugal; Universidade de Lisboa, 1049-001 Lisboa, Portugal; Gross, Franz [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  5. Chiral-symmetry breaking and confinement in Minkowski space

    International Nuclear Information System (INIS)

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz

    2016-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab

  6. Chiral-symmetry breaking and confinement in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmar P. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Peña, M. T. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Departamento de Física, Instituto Superior Técnico (IST), Universidadede Lisboa, 1049-001 Lisboa (Portugal); Ribeiro, J. E. [Centro de Física das Interações Fundamentais (CFIF), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora (Portugal); Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Gross, Franz [Thomas Jefferson National Accelerator Facility (JLab), Newport News, Virginia 23606 (United States)

    2016-01-22

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  7. Chiral symmetry breaking parameters from QCD sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Theoretische Kernphysik; Bern Univ. (Switzerland). Inst. fuer Theoretische Physik)

    1982-10-04

    We obtain new QCD sum rules by considering vacuum expectation values of two-point functions, taking all the five quark bilinears into account. These sum rules are employed to extract values of different chiral symmetry breaking parameters in QCD theory. We find masses of light quarks, m=1/2msub(u)+msub(d)=8.4+-1.2 MeV, msub(s)=205+-65 MeV. Further, we obtain corrections to certain soft pion (kaon) PCAC relations and the violation of SU(3) flavour symmetry by the non-strange and strange quark-antiquark vacuum condensate.

  8. Deformed chiral nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics

    1991-04-18

    We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).

  9. Instantons and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Carneiro, C.E.I.; McDougall, N.A.

    1984-01-01

    A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation. (orig.)

  10. Instantons and chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, C.E.I.; McDougall, N.A. (Oxford Univ. (UK). Dept. of Theoretical Physics)

    1984-10-22

    A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation.

  11. The chiral phase transition in two-flavor QCD from imaginary chemical potential

    CERN Document Server

    Bonati, Claudio; D'Elia, Massimo; Philipsen, Owe; Sanfilippo, Francesco

    2014-01-01

    We investigate the order of the finite temperature chiral symmetry restoration transition for QCD with two massless fermions, by using a novel method, based on simulating imaginary values of the quark chemical potential $\\mu=i\\mu_i,\\mu_i\\in\\mathbb{R}$. Our method exploits the fact that, for low enough quark mass $m$ and large enough chemical potential $\\mu_i$, the chiral transition is decidedly first order, then turning into crossover at a critical mass $m_c(\\mu)$. It is thus possible to determine the critical line in the $m - \\mu^2$ plane, which can be safely extrapolated to the chiral limit by taking advantage of the known tricritical indices governing its shape. We test this method with standard staggered fermions and the result of our simulations is that $m_c(\\mu=0)$ is positive, so that the phase transition at zero density is definitely first order in the chiral limit, on our coarse $N_t=4$ lattices with $a\\simeq 0.3\\,\\mathrm{fm}$.

  12. Chiral density wave versus pion condensation at finite density and zero temperature

    Science.gov (United States)

    Andersen, Jens O.; Kneschke, Patrick

    2018-04-01

    The quark-meson model is often used as a low-energy effective model for QCD to study the chiral transition at finite temperature T , baryon chemical potential μB , and isospin chemical potential μI . We determine the parameters of the model by matching the meson and quark masses, as well as the pion decay constant to their physical values using the on shell (OS) and modified minimal subtraction (MS ¯ ) schemes. In this paper, the existence of different phases at zero temperature is studied. In particular, we investigate the competition between an inhomogeneous chiral condensate and a homogeneous pion condensate. For the inhomogeneity, we use a chiral-density wave ansatz. For a sigma mass of 600 MeV, we find that an inhomogeneous chiral condensate exists only for pion masses below approximately 37 MeV. We also show that due to our parameter fixing, the onset of pion condensation takes place exactly at μIc=1/2 mπ in accordance with exact results.

  13. The quantization of Regge calculus

    International Nuclear Information System (INIS)

    Rocek, M.; Williams, R.M.; Cambridge Univ.

    1984-01-01

    We discuss the quantization of Regge's discrete description of Einstein's theory of gravitation. We show how the continuum theory emerges in the weak field long wavelength limit. We also discuss reparametrizations and conformal transformations. (orig.)

  14. Quark-gluon plasma: Status of heavy ion physics

    Indian Academy of Sciences (India)

    Department of Theoretical Physics, Tata Institute of Fundamental Research, ... such as quark confinement and chiral symmetry breaking, and quantitative details ... attempts have been made, and are being made, to address these issues.

  15. Modified Regge calculus as an explanation of dark energy

    International Nuclear Information System (INIS)

    Stuckey, W M; McDevitt, T J; Silberstein, M

    2012-01-01

    Using the Regge calculus, we construct a Regge differential equation for the time evolution of the scale factor a(t) in the Einstein-de Sitter cosmology model (EdS). We propose two modifications to the Regge calculus approach: (1) we allow the graphical links on spatial hypersurfaces to be large, as in direct particle interaction when the interacting particles reside in different galaxies, and (2) we assume that luminosity distance D L is related to graphical proper distance D p by the equation D L = (1+z)√D p ·D p , where the inner product can differ from its usual trivial form. The modified Regge calculus model (MORC), EdS and ΛCDM are compared using the data from the Union2 Compilation, i.e. distance moduli and redshifts for type Ia supernovae. We find that a best fit line through logD L versus logz gives a correlation of 0.9955 and a sum of squares error (SSE) of 1.95. By comparison, the best fit ΛCDM gives SSE = 1.79 using H o = 69.2 kms -1 Mpc, Ω M = 0.29 and Ω Λ = 0.71. The best fit EdS gives SSE = 2.68 using H o 60.9 km s -1 Mpc. The best-fit MORC gives SSE = 1.77 and H o = 73.9 km s -1 Mpc using R = A -1 = 8.38 Gcy and m = 1.71 x 10 52 kg, where R is the current graphical proper distance between nodes, A -1 is the scaling factor from our non-trivial inner product, and m is the nodal mass. Thus, the MORC improves the EdS as well as ΛCDM in accounting for distance moduli and redshifts for type Ia supernovae without having to invoke accelerated expansion, i.e. there is no dark energy and the universe is always decelerating. (paper)

  16. Nuclear matter descriptions including quark structure of the hadrons

    International Nuclear Information System (INIS)

    Huguet, R.

    2008-07-01

    It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)

  17. On the quark-mass dependence of baryon ground-state masses

    International Nuclear Information System (INIS)

    Semke, Alexander

    2010-01-01

    Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)

  18. On the quark-mass dependence of baryon ground-state masses

    Energy Technology Data Exchange (ETDEWEB)

    Semke, Alexander

    2010-02-17

    Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)

  19. Light-light and heavy-light mesons in the model of QCD string with quarks at the ends

    CERN Document Server

    Nefediev, A V

    2002-01-01

    The variational einbein field method is applied to the model of the QCD string with quarks at the ends for the case of light-light and heavy-light mesons. Special attention is payed to the proper string dynamics. The correct string slope of the Regge trajectories is reproduced for light-light states which comes out from the picture of rotating string. Masses of several low-lying orbitally and radially excited states in the D, D_s, B, and B_s meson spectra are calculated and a good agreement with the experimental data as well as with recent lattice calculations is found. The role of the string correction to the interquark interaction is discussed at the example of the identification of D*'(2637) state recently claimed by DELPHI Collaboration. For the heavy-light mesons the standard constants used in Heavy Quark Effective Theory are extracted and compared to the results of other approaches.

  20. From lattice BF gauge theory to area-angle Regge calculus

    International Nuclear Information System (INIS)

    Bonzom, Valentin

    2009-01-01

    We consider Riemannian 4D BF lattice gauge theory, on a triangulation of spacetime. Introducing the simplicity constraints which turn BF theory into simplicial gravity, some geometric quantities of Regge calculus, areas, and 3D and 4D dihedral angles, are identified. The parallel transport conditions are taken care of to ensure a consistent gluing of simplices. We show that these gluing relations, together with the simplicity constraints, contain the constraints of area-angle Regge calculus in a simple way, via the group structure of the underlying BF gauge theory. This provides a precise road from constrained BF theory to area-angle Regge calculus. Doing so, a framework combining variables of lattice BF theory and Regge calculus is built. The action takes a form a la Regge and includes the contribution of the Immirzi parameter. In the absence of simplicity constraints, the standard spin foam model for BF theory is recovered. Insertions of local observables are investigated, leading to Casimir insertions for areas and reproducing for 3D angles known results obtained through angle operators on spin networks. The present formulation is argued to be suitable for deriving spin foam models from discrete path integrals and to unravel their geometric content.

  1. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    Energy Technology Data Exchange (ETDEWEB)

    Buchheim, Thomas

    2017-04-11

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  2. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    International Nuclear Information System (INIS)

    Buchheim, Thomas

    2017-01-01

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  3. Unitarization of pomeron and Regge phenomenology of deep inelastic scattering.

    Energy Technology Data Exchange (ETDEWEB)

    Martynov, E S

    1994-12-31

    Using conventional Regge approach we consider unitarization of supercritical pomeron in DIS and then describe the total photon-proton cross-section and the proton structure functions in the region W{sup 2} = Q{sup 2}(1/x-1) + m{sup 2} {>=} 9 GeV{sup 2}, including the small-x data from HERA. (author). 15 refs., 1 tab., 15 figs.

  4. Regge poles and alpha scattering

    International Nuclear Information System (INIS)

    Ceuleneer, R.

    1974-01-01

    The direct Regge pole model as a means of describing resonances in elastic particle scattering has been used for the analysis of the so-called ''anormalous large angle scattering'' of alpha particles by spinless nuclei. (Z.M.)

  5. Chiral symmetry in perturbative QCD

    International Nuclear Information System (INIS)

    Trueman, T.L.

    1979-04-01

    The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant

  6. Nucleon form factors. Probing the chiral limit

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Physik-Dept.; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2006-10-15

    The electromagnetic form factors provide important hints for the internal structure of the nucleon and continue to be of major interest for experimentalists. For an intermediate range of momentum transfers the form factors can be calculated on the lattice. However, reliability of the results is limited by systematic errors due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet unaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with Nf=2, non-perturbatively O(a)-improved Wilson fermions at very small quark masses down to 340 MeV pion mass, where we start to probe the relevant quark mass region. (orig.)

  7. Nucleon form factors. Probing the chiral limit

    International Nuclear Information System (INIS)

    Goeckeler, M.; Haegler, P.; Horsley, R.

    2006-10-01

    The electromagnetic form factors provide important hints for the internal structure of the nucleon and continue to be of major interest for experimentalists. For an intermediate range of momentum transfers the form factors can be calculated on the lattice. However, reliability of the results is limited by systematic errors due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet unaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with Nf=2, non-perturbatively O(a)-improved Wilson fermions at very small quark masses down to 340 MeV pion mass, where we start to probe the relevant quark mass region. (orig.)

  8. Medium modifications of mesons. Chiral symmetry restoration, in-medium QCD sum rules for D and ρ mesons, and Bethe-Salpeter equations

    Energy Technology Data Exchange (ETDEWEB)

    Hilger, Thomas Uwe

    2012-04-11

    The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes D{sub s} and D{sup *}{sub 0} mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.

  9. Revisiting the pion's scalar form factor in chiral perturbation theory

    CERN Document Server

    Juttner, Andreas

    2012-01-01

    The quark-connected and the quark-disconnected Wick contractions contributing to the pion's scalar form factor are computed in the two and in the three flavour chiral effective theory at next-to-leading order. While the quark-disconnected contribution to the form factor itself turns out to be power-counting suppressed its contribution to the scalar radius is of the same order of magnitude as the one of the quark-connected contribution. This result underlines that neglecting quark-disconnected contributions in simulations of lattice QCD can cause significant systematic effects. The technique used to derive these predictions can be applied to a large class of observables relevant for QCD-phenomenology.

  10. Quark-gluon vertex from the Landau gauge Curci-Ferrari model

    Science.gov (United States)

    Peláez, Marcela; Tissier, Matthieu; Wschebor, Nicolás

    2015-08-01

    We investigate the quark-gluon three-point correlation function within a one-loop computation performed in the Curci-Ferrari massive extension of the Faddeev-Popov gauge-fixed action. The mass term is used as a minimal way for taking into account the influence of the Gribov ambiguity. Our results, with renormalization-group improvement, are compared with lattice data. We show that the comparison is, in general, very satisfactory for the functions which are compatible with chiral symmetry, except for one. We argue that this may be due to large systematic errors when extracting this function from lattice simulations. The quantities which break chiral symmetry are more sensitive to the details of the renormalization scheme. We, however, manage to reproduce some of them with good precision. The chosen parameters allow us to simultaneously fit the quark mass function coming from the quark propagator with reasonable agreement.

  11. The Chiral and Angular Momentum Content of the ρ-Meson

    Science.gov (United States)

    Glozman, L. Ya.; Lang, C. B.; Limmer, M.

    2010-01-01

    It is possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark Fock component of a meson in the infrared, where mass is generated. Using the variational method and a set of interpolators that span a complete chiral basis we extract in a lattice QCD Monte Carlo simulation with n f = 2 dynamical light quarks the orbital angular momentum and spin content of the ρ-meson. We obtain in the infrared a simple 3 S 1 component as a leading component of the ρ-meson with a small admixture of the 3 D 1 partial wave, in agreement with the SU(6) flavor-spin symmetry.

  12. Semiclassical regime of Regge calculus and spin foams

    International Nuclear Information System (INIS)

    Bianchi, Eugenio; Satz, Alejandro

    2009-01-01

    Recent attempts to recover the graviton propagator from spin foam models involve the use of a boundary quantum state peaked on a classical geometry. The question arises whether beyond the case of a single simplex this suffices for peaking the interior geometry in a semiclassical configuration. In this paper we explore this issue in the context of quantum Regge calculus with a general triangulation. Via a stationary phase approximation, we show that the boundary state succeeds in peaking the interior in the appropriate configuration, and that boundary correlations can be computed order by order in an asymptotic expansion. Further, we show that if we replace at each simplex the exponential of the Regge action by its cosine-as expected from the semiclassical limit of spin foam models-then the contribution from the sign-reversed terms is suppressed in the semiclassical regime and the results match those of conventional Regge calculus

  13. Are quarks and leptons composite

    International Nuclear Information System (INIS)

    Harari, H.

    1982-01-01

    The possibility that quarks and leptons are composite was studied. A line of reasoning was pursued which followed several steps. The standard model was assumed and the need to go beyond it was demonstrated. Different classes of ideas were considered. The notion of compositeness and its general difficulties, mainly the scale problem, were studied. A connection between composite massless fermions and an unbroken chiral symmetry was assumed. A general framework based on hypercolor and a chiral symmetry was established. The general requirements for a candidate model were established. A minimal scheme was found and its successes and failures were studied. (HK)

  14. Dual Ginzburg-Landau theory and quark nuclear physics

    International Nuclear Information System (INIS)

    Toki, H.; Suganuma, H.; Ichie, H.; Monden, H.; Umisedo, S.

    1998-01-01

    In quark nuclear physics (QNP), where hadrons and nuclei are described in terms of quarks and gluons, confinement and chiral symmetry breaking are the most fundamental phenomena. The dual Ginzburg-Landau (DGL) theory, which contains monopole fields as the most essential degrees of freedom and their condensation in the vacuum, is able to describe both phenomena. We discuss also the recovery of the chiral symmetry and the deconfinement phase transition at finite temperature in the DGL theory. As for the connection to QCD, we study the instanton configurations in the abelian gauge a la 't Hooft. We find a close connection between instantons and QCD monopoles. We demonstrate also the signature of confinement as the appearance of long monopole trajectories in the MA gauge for the case of dense instanton configurations. (orig.)

  15. Confining but chirally symmetric dense and cold matter

    International Nuclear Information System (INIS)

    Glozman, L. Ya.

    2012-01-01

    The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.

  16. Models for light QCD bound states

    International Nuclear Information System (INIS)

    LaCourse, D.P.

    1992-01-01

    After a brief overview of Regge, tower, and heavy-quark experimental data, this thesis examines two massless wave equations relevant to quark bound states. We establish general conditions on the Lorentz scalar and Lorentz vector potentials which yield arbitrary leading Regge trajectories for the case of circular classical motion. A semi-classical approximation which includes radial motion reproduces remarkably well the exact solutions. Conditions for tower structure are examined, and found to be incompatible with conditions which give a Nambu stringlike Regge slope. The author then proposes a generalization of the usual potential model of quark bound states in which the confining flux tube is a dynamical object carrying both angular momentum and energy. The Q bar Q-string system with spinless quarks is quantized using an implicit operator technique and the resulting relativistic wave equation is solved. For heavy quarks the usual Schroedinger valence-quark model is recovered. The Regge slope with light quarks agree with the classical rotating-string result and is significantly larger and the effects of short-range forces are also considered. A relativistic generalization of the quantized flux tube model predicts the glueball ground state mass to be √3/α' ≅ 1.9 GeV where α' is the normal Regge slope. The groundstate as well as excited levels like considerably above the expectations of previous models and also above various proposed experimental candidates. The glueball Regge slope is only about three-eighths that for valence quark hadrons. A semi-classical calculation of the Regge slope is in good agreement with a numerically exact value

  17. Heavy Quark Dynamics toward thermalization: RAA, υ1, υ2, υ3

    Directory of Open Access Journals (Sweden)

    Plumari Salvatore

    2018-01-01

    Full Text Available We describe the propagation of Heavy quarks (HQs in the quark-gluon plasma (QGP within a relativistic Boltzmann transport (RBT approach. The interaction between heavy quarks and light quarks is described within quasi-particle approach which is able to catch the main features of non-perturbative interaction as the increasing of the interaction in the region of low temperature near TC. In our calculations the hadronization of charm quarks in D mesons is described by mean of an hybrid model of coalescence plus fragmentation. We show that the coalescence play a key role to get a good description of the experimental data for the nuclear suppression factor RAA and the elliptic flow υ2(pT at both RHIC and LHC energies. Moreover, we show some recent results on the direct flow υ1 and triangular flow υ3 of D meson.

  18. Regge calculus and observations. II. Further applications

    International Nuclear Information System (INIS)

    Williams, R.M.; Ellis, G.F.R.

    1983-03-01

    The method, developed in an earlier paper, for tracing geodesics of particles and light rays through Regge calculus space-times, is applied to a number of problems in the Schwarschild geometry. It is possible to obtain accurate predictions of light-bending by taking sufficiently small Regge blocks. Calculations of perihelion precession, Thomas precession and the distortion of a ball of fluid moving on a geodesic can also show good agreement with the analytic solution. However difficulties arise in obtaining accurate predictions for general orbits in these space-times. Applications to other problems in general relativity are discussed briefly. (author)

  19. Regge calculus and observations. II. Further applications.

    Science.gov (United States)

    Williams, Ruth M.; Ellis, G. F. R.

    1984-11-01

    The method, developed in an earlier paper, for tracing geodesies of particles and light rays through Regge calculus space-times, is applied to a number of problems in the Schwarzschild geometry. It is possible to obtain accurate predictions of light bending by taking sufficiently small Regge blocks. Calculations of perihelion precession, Thomas precession, and the distortion of a ball of fluid moving on a geodesic can also show good agreement with the analytic solution. However difficulties arise in obtaining accurate predictions for general orbits in these space-times. Applications to other problems in general relativity are discussed briefly.

  20. The QCD vacuum at infinite momentum

    International Nuclear Information System (INIS)

    White, A.R.

    1988-01-01

    We outline how ''topological confinement'' can be seen by the analysis of Regge limit infra-red divergences. We suggest that it is a necessary bridge between conventional confinement and the parton model at infinite momentum. It is produced by adding a chiral doublet of color sextet quarks to conventional QCD. An immediate signature of the resultant electroweak symmetry breaking would be large cross-sections for W + W/sup /minus// and Z 0 Z 0 pairs at the CERN and Fermilab /bar p/p colliders. 24 refs

  1. High energy production of gluons in a quasi-multi-Regge kinematics

    International Nuclear Information System (INIS)

    Fadin, V.S.; Lipatov, L.N.

    1989-01-01

    Inelastic gluon-gluon scattering amplitudes in the Born approximation for the quasi-multi-Regge kinematics are calculated, starting with the Veneziano-type expression for the inelastic amplitude of the gluon-tachyon scattering with its subsequent simplification in the region of large energies and the Regge slope α'→0. Results obtained allow one to determine the high order corrections to the gluon Regge trajectory, the reggeon-particle vertices and to the integral kernel of the Bethe-Salpeter equation for the vacuum t-channel partial waves. 10 refs.; 7 figs

  2. The hadron to quark/gluon transition

    International Nuclear Information System (INIS)

    Brown, G.E.; Bethe, H.A.; Pizzochero, P.M.

    1991-01-01

    In this paper we are concerned with the hadron to quark/gluon transition. We describe the equilibrium states of hadronic matter by a Hagedorn spectrum; introducing scaling masses, as dictated by the restoration of chiral invariance with increasing temperature, we show that in the chiral SU(2) f limit there is a maximum hadron temperature (T H ) max ≅ 128 MeV. Since the quark/gluon perturbative phase involves restoration of conformal invariance, we take the bag constant to be the conformal anomaly, i.e. the gluon condensate. The stability condition P QG > 0 for the pressure requires that there is a minimum temperature; we find (T QG ) min ≅ 172 MeV for SU(2) f . According to the simple Hagedorn model, there appears to be a region of temperature between (T H ) max and (T QG ) min in which no admissible equilibrium states exist. Since the two phases cannot exist at a common temperature, in this model there is no QCD phase transition. (orig.)

  3. Chiral-symmetry breakdown in large-N chromodynamics

    International Nuclear Information System (INIS)

    Coleman, S.; Witten, E.

    1980-01-01

    Chromodynamics with n flavors of massless quarks is invariant under chiral U(n) x U(n). It is shown that in the limit of a large number of colors, under reasonable assumptions, this symmetry group must spontaneously break down to diagonal U

  4. Axial coupling constant of the nucleon for two flavours of dynamical quarks in finite and infinite volume

    International Nuclear Information System (INIS)

    Khan, A.A.; Goeckeler, M.; Haegler, P.

    2006-03-01

    We present data for the axial coupling constant g A of the nucleon obtained in lattice QCD with two degenerate flavours of dynamical non-perturbatively improved Wilson quarks. The renormalisation is also performed non-perturbatively. For the analysis we give a chiral extrapolation formula for g A based on the small scale expansion scheme of chiral effective field theory for two degenerate quark flavours. Applying this formalism in a finite volume we derive a formula that allows us to extrapolate our data simultaneously to the infinite volume and to the chiral limit. Using the additional lattice data in finite volume we are able to determine the axial coupling of the nucleon in the chiral limit without imposing the known value at the physical point. (Orig.)

  5. Axial coupling constant of the nucleon for two flavours of dynamical quarks in finite and infinite volume

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.A.; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen (DE). Physik-Department, Theoretische Physik] (and others)

    2006-03-15

    We present data for the axial coupling constant g{sub A} of the nucleon obtained in lattice QCD with two degenerate flavours of dynamical non-perturbatively improved Wilson quarks. The renormalisation is also performed non-perturbatively. For the analysis we give a chiral extrapolation formula for g{sub A} based on the small scale expansion scheme of chiral effective field theory for two degenerate quark flavours. Applying this formalism in a finite volume we derive a formula that allows us to extrapolate our data simultaneously to the infinite volume and to the chiral limit. Using the additional lattice data in finite volume we are able to determine the axial coupling of the nucleon in the chiral limit without imposing the known value at the physical point. (Orig.)

  6. Quarks and gluons in the phase diagram of quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Welzbacher, Christian Andreas

    2016-07-14

    In this dissertation we study the phase diagram of strongly interacting matter by approaching the theory of quantum chromodynamics in the functional approach of Dyson-Schwinger equations. With these quantum (field) equations of motions we calculate the non-perturbative quark propagator within the Matsubara formalism. We built up on previous works and extend the so-called truncation scheme, which is necessary to render the infinite tower of Dyson-Schwinger equations finite and study phase transitions of chiral symmetry and the confinement/deconfinement transition. In the first part of this thesis we discuss general aspects of quantum chromodynamics and introduce the Dyson-Schwinger equations in general and present the quark Dyson-Schwinger equation together with its counterpart for the gluon. The Bethe-Salpeter equation is introduced which is necessary to perform two-body bound state calculations. A view on the phase diagram of quantum chromodynamics is given, including the discussion of order parameter for chiral symmetry and confinement. Here we also discuss the dependence of the phase structure on the masses of the quarks. In the following we present the truncation and our results for an unquenched N{sub f} = 2+1 calculation and compare it to previous studies. We highlight some complementary details for the quark and gluon propagator and discus the resulting phase diagram, which is in agreement with previous work. Results for an equivalent of the Columbia plot and the critical surface are discussed. A systematically improved truncation, where the charm quark as a dynamical quark flavour is added, will be presented in Ch. 4. An important aspect in this investigation is the proper adjustment of the scales. This is done by matching vacuum properties of the relevant pseudoscalar mesons separately for N{sub f} = 2+1 and N f = 2+1+1 via a solution of the Bethe-Salpeter equation. A comparison of the resulting N{sub f} = 2+1 and N{sub f} = 2+1+1 phase diagram indicates

  7. Domain wall QCD with physical quark masses

    CERN Document Server

    Blum, T.; Christ, N.H.; Frison, J.; Garron, N.; Hudspith, R.J.; Izubuchi, T.; Janowski, T.; Jung, C.; Jüttner, A.; Kelly, C.; Kenway, R.D.; Lehner, C.; Marinkovic, M.; Mawhinney, R.D.; McGlynn, G.; Murphy, D.J.; Ohta, S.; Portelli, A.; Sachrajda, C.T.; Soni, A.

    2016-01-01

    We present results for several light hadronic quantities ($f_\\pi$, $f_K$, $B_K$, $m_{ud}$, $m_s$, $t_0^{1/2}$, $w_0$) obtained from simulations of 2+1 flavor domain wall lattice QCD with large physical volumes and nearly-physical pion masses at two lattice spacings. We perform a short, O(3)%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum `global fit' with a number of other ensembles with heavier pion masses. We use the physical values of $m_\\pi$, $m_K$ and $m_\\Omega$ to determine the two quark masses and the scale - all other quantities are outputs from our simulations. We obtain results with sub-percent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including: $f_\\pi$ = 130.2(9) MeV; $f_K$ = 155.5(8) MeV; the average up/down quark mass and strange quark mass in the $\\bar {\\rm MS}$ scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, $B_K$...

  8. B→D*lν and B→Dlν form factors in staggered chiral perturbation theory

    International Nuclear Information System (INIS)

    Laiho, Jack; Water, Ruth S. van de

    2006-01-01

    We calculate the B→D and B→D* form factors at zero recoil in staggered chiral perturbation theory. We consider heavy-light mesons in which only the light (u, d, or s) quark is staggered; current lattice simulations generally use a highly improved action such as the Fermilab or nonrelativistic QCD action for the heavy (b or c) quark. We work to lowest nontrivial order in the heavy-quark expansion and to one-loop order in the chiral expansion. We present results for a partially quenched theory with three sea quarks in which there are no mass degeneracies (the ''1+1+1'' theory) and for a partially quenched theory in which the u and d sea quark masses are equal (the ''2+1'' theory). We also present results for full (2+1) QCD, along with a numerical estimate of the size of staggered discretization errors. Finally, we calculate the finite volume corrections to the form factors and estimate their numerical size in current lattice simulations

  9. Modern status of quark bag model

    International Nuclear Information System (INIS)

    Bogolyubov, P.N.; Dorokhov, A.E.

    1987-01-01

    A review contains a modern status of the bag model - a composite quark model of hadrons. The idea of quasi-independent quarks moving in a finite closed region of space is a basic feature of the model. Dubna's formulation of the model and its different versions (MIT, chiral model and others) are given in detail. The role of symmetric and physical principles of the model is underlined, a critical review of mass formulas is given, the relation of the bag model and the soliton-like models (in particular with the Skyrme model) is considered

  10. Scalar resonances as two-quark states

    International Nuclear Information System (INIS)

    Shabalin, E.P.

    1984-01-01

    On the base of the theory with U(3)xU(3) symmetric chiral Lagrangian the properties of the two-quark scalar mesons are considered. It is shown, that the scalar resonances delta (980) and K(1240) may be treated as the p-wave states of anti qq system. The properties of the isovector and strange scalar mesons, obtained as a propetrties of the two-quark states, turn out to be very close to the properties of the isovector scalar resonance delta (980) and strange resonance K(1240)

  11. Phase transition of the first kind with respect to the density in a model of spontaneous breaking of chiral symmetry

    International Nuclear Information System (INIS)

    Bogolyubov, N.P.

    1988-01-01

    A model of the spontaneous breaking of chiral symmetry motivated by quantum chromodynamics is considered at a finite density of the quarks and zero temperature. For zero chemical potential the dynamical quark mass, the bag constant, and the vacuum expectation value are estimated. The dependence of the grand thermodynamic potential on the chemical potential of the quarks and of the energy on the particle number density are calculated. It is found that there is a phase transition of the first kind with respect to the density of the quarks accompanied by restoration of the chiral symmetry. The critical values of the fermion density are found

  12. Hadronic Lorentz violation in chiral perturbation theory including the coupling to external fields

    Science.gov (United States)

    Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.

    2018-05-01

    If any violation of Lorentz symmetry exists in the hadron sector, its ultimate origins must lie at the quark level. We continue the analysis of how the theories at these two levels are connected, using chiral perturbation theory. Considering a 2-flavor quark theory, with dimension-4 operators that break Lorentz symmetry, we derive a low-energy theory of pions and nucleons that is invariant under local chiral transformations and includes the coupling to external fields. The pure meson and baryon sectors, as well as the couplings between them and the couplings to external electromagnetic and weak gauge fields, contain forms of Lorentz violation which depend on linear combinations of quark-level coefficients. In particular, at leading order the electromagnetic couplings depend on the very same combinations as appear in the free particle propagators. This means that observations of electromagnetic processes involving hadrons—such as vacuum Cerenkov radiation, which may be allowed in Lorentz-violating theories—can only reliably constrain certain particular combinations of quark coefficients.

  13. A three-flavor chiral effective model with four baryonic multiplets within the mirror assignment

    Energy Technology Data Exchange (ETDEWEB)

    Olbrich, Lisa; Zetenyi, Miklos; Giacosa, Francesco; Rischke, Dirk H. [Institute for Theoretical Physics, Goethe University Frankfurt am Main (Germany)

    2016-07-01

    Chiral symmetry requires the existence of chiral partners in the hadronic mass spectrum. In this talk, we address the question which is the chiral partner of the nucleon. We employ a chirally symmetric linear sigma model, where hadrons and their chiral partners are treated on the same footing. We construct four spin-1/2 baryon multiplets from left- and right-handed quarks as well as left- and right-handed diquarks. Two of these multiplets transform in a ''mirror'' way, which allows for chirally invariant mass terms. We then embed these baryonic multiplets into the Lagrangian of the extended Linear Sigma Model, which features (pseudo)scalar and (axial-)vector mesons, as well as glueballs. Reducing the Lagrangian to the two-flavor case, we obtain four doublets of nucleonic states. These mix to produce the positive-parity nucleon N(939) and the Roper resonance N(1440), as well as the negative-parity resonances N(1535) and N(1650). We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties of these states. Studying the limit of vanishing quark condensate, we conclude that N(939) and N(1535), as well as N(1440) and N(1650) form pairs of chiral partners.

  14. Exotic Signals of Vectorlike Quarks

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A. [Fermilab; Yu, Felix [U. Mainz, PRISMA

    2016-12-06

    Vectorlike fermions are an important target for hadron collider searches. We show that the vectorlike quarks may predominantly decay via higher-dimensional operators into a quark plus a couple of other Standard Model fermions. Pair production of vectorlike quarks of charge 2/3 at the LHC would then lead to a variety of possible final states, including $t\\bar t + 4\\tau$, $t\\bar b\

  15. Pions and the chiral bag

    International Nuclear Information System (INIS)

    Rho, M.

    1982-01-01

    As an aid to discussing the structure of nucleons and nuclei conceptual framework, heuristic arguments are presented which indicate that a hadron can be considered as a bag consisting of two different phases. The chiral structure of the phase outside the bag is discussed in terms of effective field theories and it is shown to what extent experiments in nuclei can constrain the structure of such theories. Results thus obtained are then combined to set up a set of equations for the bag structure of u and d hadrons, incorporating asymptotic freedom in the phase inside of the bag confinement of quarks and gluons by boundary conditions and spontaneously broken chiral symmetry in the outside. This set of equations which represent a chirally invariant generalization of the M.I.T. bag model is then solved. (U.K.)

  16. Chiral symmetry restoration and quasi-elastic electron-nucleus scattering

    International Nuclear Information System (INIS)

    Henley, E.M.; Krein, G.

    1989-01-01

    Chiral symmetry is known to be an important concept in hadronic interactions. It holds in QCD, but is known to be broken at low energies. It is therefore useful to study chiral symmetry and its breaking together with its consequences in nuclear physics. It is the latter phenomena we consider here. It is difficult to study nonperturbative QCD at low energies and models are needed. The Nambu-Jona-Lasinio (NJL) model fits this category; it incorporates chiral symmetry and its breaking, and allows one to study its effects in nucleons and nuclei. In particular, the constituent quark mass varies with density (ρ) and temperature (T). At high ρ and T chiral symmetry is restored. It is the ρ dependence which yields important effects in electron scattering due to partial restoration of chiral symmetry in nuclei. We begin with the NJL model with a small chiral symmetry breaking

  17. Non-ladder extended renormalization group analysis of the dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Ken-Ichi; Takagi, Kaoru; Terao, Haruhiko; Tomoyose, Masashi [Kanazawa Univ., Inst. for Theoretical Physics, Kanazawa, Ishikawa (Japan)

    2000-04-01

    The order parameters of dynamical chiral symmetry breaking in QCD, the dynamical mass of quarks and the chiral condensates, are evaluated by numerically solving the non-perturbative renormalization group (NPRG) equations. We employ an approximation scheme beyond 'the ladder', that is, beyond the (improved) ladder Schwinger-Dyson equations. The chiral condensates are enhanced in comparison with the ladder approximation, which is phenomenologically favorable. The gauge dependence of the order parameters is reduced significantly in this scheme. (author)

  18. Non-ladder extended renormalization group analysis of the dynamical chiral symmetry breaking

    International Nuclear Information System (INIS)

    Aoki, Ken-Ichi; Takagi, Kaoru; Terao, Haruhiko; Tomoyose, Masashi

    2000-01-01

    The order parameters of dynamical chiral symmetry breaking in QCD, the dynamical mass of quarks and the chiral condensates, are evaluated by numerically solving the non-perturbative renormalization group (NPRG) equations. We employ an approximation scheme beyond 'the ladder', that is, beyond the (improved) ladder Schwinger-Dyson equations. The chiral condensates are enhanced in comparison with the ladder approximation, which is phenomenologically favorable. The gauge dependence of the order parameters is reduced significantly in this scheme. (author)

  19. Effective field theories of baryons and mesons, or, what do quarks do?

    International Nuclear Information System (INIS)

    Keaton, G.L.

    1995-01-01

    This thesis is an attempt to understand the properties of the protons, pions and other hadrons in terms of their fundamental building blocks. In the first chapter the author reviews several of the approaches that have already been developed. The Nambu-Jona-Lasinio model offers the classic example of a derivation of meson properties from a quark Lagrangian. The chiral quark model encodes much of the intuition acquired in recent decades. The author also discusses the non-linear sigma model, the Skyrme model, and the constituent quark model, which is one of the oldest and most successful models. In the constituent quark model, the constituent quark appears to be different from the current quark that appears in the fundamental QCD Lagrangian. Recently it was proposed that the constituent quark is a topological soliton. In chapter 2 the author investigates this soliton, calculating its mass, radius, magnetic moment, color magnetic moment, and spin structure function. Within the approximations used, the magnetic moments and spin structure function cannot simultaneously be made to agree with the constituent quark model. In chapter 3 the author uses a different plan of attack. Rather than trying to model the constituents of the baryon, he begins with an effective field theory of baryons and mesons, with couplings and masses that are simply determined phenomenologically. Meson loop corrections to baryon axial currents are then computed in the 1/N expansion. It is already known that the one-loop corrections are suppressed by a factor 1/N; here it is shown that the two-loop corrections are suppressed by 1/N 2 . To leading order, these corrections are exactly the same as would be calculated in the constituent quark model. This method therefore offers a different approach to the constituent quark

  20. Non-leptonic decays of K-mesons within the chiral quark model

    International Nuclear Information System (INIS)

    Bergan, A.E.

    1996-01-01

    This theses is based upon four previously printed paper. The main result of the first paper was that a very small contribution to K o -anti K o was found for the siamese penguin diagram with a momentum dependent penguin coefficient. The calculation was done with different regularizations. The same momentum dependent penguin interaction was used in the second paper. Dimensional regularization made it possible to calculate analytical results for K→φ, and a relatively small g 8 1/2 factor was found due to large subleading terms. In the third paper nonperturbative effects on the B K parameter were obtained. To order (G 3 ) a vanishing result appeared due to a complete cancellation among the 20 contributing diagrams. In the fourth paper a calculation was made of K→φ which included non-diagonal self-energy effects due to the s→d transition. This calculation made it possible to include a heavy top quark. The calculation was done in two ways. First the unphysical K→φ transition was calculated. The result was then related to the physical K→2φ decay due to chiral symmetry. Then the same result was obtained by a direct calculation of K→2φ. In the CP-conserving case the contribution was small while the CP-violating part was sizable. Due to a large cancellation between the operator Q 6 and Q 8 the contribution was of the same size as ε/ε itself. 76 refs

  1. A new approach to perturbative and non-perturbative dynamics: Regge intercept and the gluon spin

    International Nuclear Information System (INIS)

    Bishari, M.

    1979-01-01

    Relations connecting long distance with short distance dynamics are proposed. These relations are independent of the (apiori unknown) matching length scale, and provide interrelations among parameters characterizing soft and hard scattering processes. In particular, the observed planar Regge intercept imply an underlying field theory mediated by vector gluons. (author)

  2. Non-perturbative studies of QCD at small quark masses

    Energy Technology Data Exchange (ETDEWEB)

    Wennekers, J.

    2006-07-15

    We investigate the quenched approximation of lattice QCD with numerical simulations of Ginsparg-Wilson fermions, which are a fermion discretisation with exact chiral symmetry. We compute the renormalisation constant of the scalar density, which allows to extrapolate the chiral condensate to the continuum limit. Furthermore we match lattice results of matrix elements describing hadronic kaon decays to Chiral Perturbation Theory in finite volume and at almost vanishing quark mass. The resulting low-energy constants in the considered SU(4)-flavour symmetric case indicate a substantial contribution of low scale QCD effects to the {delta}I = 1/2 rule. (Orig.)

  3. Vector and Axial-Vector Correlators in AN Instanton-Like Quark Model

    Science.gov (United States)

    Dorokhov, Alexander E.

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instanton-like quark-quark interaction. This function describes the transition between the high energy asymptotically free region of almost massless current quarks to the low energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, aμ hvp(1), is estimated.

  4. Bifurcation of the Quark Self-Energy: Infra-Red and Ultra-Violet Cut-Offs

    NARCIS (Netherlands)

    Atkinson, D.; Johnson, P. W.

    1987-01-01

    The quark self-energy in massless QCD is studied in the approximation that both the quark-gluon vertex and the gluon propagator remain bare. It is shown that chiral invariance is not spontaneously broken at a critical coupling λc>0, unless both infrared and ultraviolet cutoffs are introduced.

  5. Chiral corrections to the Adler-Weisberger sum rule

    Science.gov (United States)

    Beane, Silas R.; Klco, Natalie

    2016-12-01

    The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .

  6. Preface to the Special Issue: Chiral Symmetry in Hadrons and Nuclei

    International Nuclear Information System (INIS)

    Geng, Lisheng; Meng, Jie; Zhao, Qiang; Zou, Bingsong

    2014-01-01

    The recent past years have seen a remarkable progress towards a unified description of nonperturbative strong interaction phenomena based on the fundamental theory of the strong interaction, quantum chromodynamics, and effective field theories. The papers collected in this special issue focus on the recent progress in hadron and nuclear physics related to the chiral symmetry. They are written based on presentations at the Seventh International Symposium on Chiral Symmetry in Hadron and Nuclei which took place at Beihang University, Beijing, 27-30 October 2013. The sub-topics discussed in these papers include chiral and heavy-quark spin symmetry; chiral dynamics of few-body hadron systems; chiral symmetry and hadrons in a nuclear medium; chiral dynamics in nucleon-nucleon interaction and atomic nuclei; chiral symmetry in rotating nuclei; hadron structure and interactions; exotic hadrons, heavy flavor hadrons and nuclei; mesonic atoms and nuclei

  7. Phenomenology of strongly coupled chiral gauge theories

    International Nuclear Information System (INIS)

    Bai, Yang; Berger, Joshua; Osborne, James; Stefanek, Ben A.

    2016-01-01

    A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1) ′ gauge symmetry such that their bare masses are related to the U(1) ′ -breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of such models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z ′ γ resonance, where the Z ′ naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.

  8. Hierarchy plus anarchy in quark masses and mixings

    International Nuclear Information System (INIS)

    Aguilar-Saavedra, J.A.

    2003-01-01

    We introduce a parametrization of the effect of unknown corrections from new physics on quark and lepton mass matrices. This parametrization is used in order to study how the hierarchies of quark masses and mixing angles are modified by random perturbations of the Yukawa matrices. We discuss several examples of flavor relations predicted by different textures, analyzing how these relations are influenced by the random perturbations. We also comment on the unlikely possibility that unknown corrections contribute significantly to the hierarchy of masses and mixings

  9. q-bar q condensate for light quarks beyond the chiral limit

    International Nuclear Information System (INIS)

    Williams, R.; Fischer, C.S.; Pennington, M.R.

    2007-01-01

    We determine the q-bar q condensate for quark masses from zero up to that of the strange quark within a phenomenologically successful modelling of continuum QCD by solving the quark Schwinger-Dyson equation. The existence of multiple solutions to this equation is the key to an accurate and reliable extraction of this condensate using the operator product expansion. We explain why alternative definitions fail to give the physical condensate

  10. Wave, particle-family duality and the conservation of discrete symmetries in strong interaction

    International Nuclear Information System (INIS)

    van der Spuy, E.

    1984-01-01

    This paper starts from a nonlinear fermion field equation of motion with a strongly coupled self-interaction. Nonperturbative quark solutions of the equation of motion are constructed in terms of a Reggeized infinite component free spinor field. Such a field carries a family of strongly interacting unstable compounds lying on a Regge locus in the analytically continued quark spin. Such a quark field is naturally confined and also possesses the property of asymptotic freedom. Furthermore, the particular field self-regularizes the interactions and naturally breaks the chiral invariance of the equation of motion. We show why and how the existence of such a strongly coupled solution and its particle-family, wave duality forces a change in the field equation of motion such that it conserves C,P,T, although its individual interaction terms are of V-A and thus C,P nonconserving type

  11. Wave, particle-family duality and the conservation of discrete symmetries in strong interaction

    International Nuclear Information System (INIS)

    Van der Spuy, E.

    1984-01-01

    This paper starts from a nonlinear fermion field equation of motion with a strongly coupled selfinteraction. Nonperturbative quark solutions of the equation of motion are constructed in terms of a Reggeized infinite component free spinor field. Such a field carries a family of strongly interacting unstable compounds lying on a Regge locus in the analytically continued quark spin. Such a quark field is naturally confined and also possesses the property of asymptotic freedom. Furthermore the particular field selfregularizes the interactions and naturally breaks the chiral invariance of the equation of motion. We show why and how the existence of such a strongly coupled solution and its particle-family, wave duality forces a change in the field equation of motion such that it conserves C, P, T although its individual interaction terms are of V - A and thus C, P nonconserving type

  12. The effect of the Polyakov loop on the chiral phase transition

    Directory of Open Access Journals (Sweden)

    Szép Zs.

    2011-04-01

    Full Text Available The Polyakov loop is included in the S U(2L × S U(2R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq – T phase diagram is studied for various forms of the Polyakov loop potential.

  13. Sensitive criterion for chirality; Chiral doublet bands in 104Rh59

    International Nuclear Information System (INIS)

    Koike, T.; Starosta, K.; Vaman, C.; Ahn, T.; Fossan, D.B.; Clark, R.M.; Cromaz, M.; Lee, I.Y.; Macchiavelli, A.O.

    2003-01-01

    A particle plus triaxial rotor model was applied to odd-odd nuclei in the A ∼ 130 region in order to study the unique parity πh11/2xνh11/2 rotational bands. With maximum triaxiality assumed and the intermediate axis chosen as the quantization axis for the model calculations, the two lowest energy eigenstates of a given spin have chiral properties. The independence of the quantity S(I) on spin can be used as a new criterion for chirality. In addition, a diminishing staggering amplitude of S(I) with increasing spin implies triaxiality in neighboring odd-A nuclei. Chiral quartet bases were constructed specifically to examine electromagnetic properties for chiral structures. A set of selection rules unique to chirality was derived. Doublet bands built on the πg9/2xνh11/2 configuration have been discovered in odd-odd 104Rh using the 96Zr(11B, 3n) reaction. Based on the discussed criteria for chirality, it is concluded that the doublet bands observed in 104Rh exhibit characteristic chiral properties suggesting a new region of chirality around A ∼110. In addition, magnetic moment measurements have been performed to test the πh11/2xνh11/2 configuration in 128Cs and the πg9/2xνh11/2 configuration in 104Rh

  14. Effects of quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1983-11-01

    The issue as to whether or not quarks will manifest themselves explicitly in nuclear processes is discussed in the light of the recently discovered topological structure of the baryon. Due to the leakage of the baryon charge from a confinement region (bag) into a meson-cloud region, there emerges a sort of topological equivalence principle which renders physically equivalent the description in terms of Goldstone meson fields alone (the Skyrmion) and the description in terms of a bag (confining quarks) surrounded by a meson cloud (the chiral bag model). How this new structure will modify our understanding of the nucleon and the nucleus is examined

  15. Need for spontaneous breakdown of chiral symmetry

    International Nuclear Information System (INIS)

    Salomone, A.; Schechter, J.; Tudron, T.

    1981-01-01

    The question of whether the chiral symmetry of the theory of strong interactions (with massless quarks) is required to be spontaneously broken is examined in the framework of a previously discussed effective Lagrangian for quantum chromodynamics. The assumption that physical masses of the theory be finite leads in a very direct way to the necessity of spontaneous breakdown. This result holds for all N/sub F/> or =2, where N/sub F/ is the number of different flavors of light quarks. The atypical cases N/sub F/ = 1,2 are discussed separately

  16. The Adler sum rule and quark parton distribution functions in nucleon

    International Nuclear Information System (INIS)

    Niegawa, Akira; Sasaki, Ken.

    1975-01-01

    The behaviour of the quark parton distribution functions is discussed through the phenomenological analysis of the deep inelastic e-p and e-n data under constraint of the saturation of the Adler sum rule. It is concluded that in the region 0 0 where the Regge parametrization can be applied, anti u(x) is equal to anti d(x), and both behave as const/x, (x 0 will be 0.04--0.05); for x 0 x 0 is given. The rate of convergence of the Adler sum rule is also discussed. (auth.)

  17. Parton distribution function for quarks in an s-channel approach

    CERN Document Server

    Hautmann, F

    2007-01-01

    We use an s-channel picture of hard hadronic collisions to investigate the parton distribution function for quarks at small momentum fraction x, which corresponds to very high energy scattering. We study the renormalized quark distribution at one loop in this approach. In the high-energy picture, the quark distribution function is expressed in terms of a Wilson-line correlator that represents the cross section for a color dipole to scatter from the proton. We model this Wilson-line correlator in a saturation model. We relate this representation of the quark distribution function to the corresponding representation of the structure function F_T(x,Q^2) for deeply inelastic scattering.

  18. Effective field theory and the quark model

    International Nuclear Information System (INIS)

    Durand, Loyal; Ha, Phuoc; Jaczko, Gregory

    2001-01-01

    We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections

  19. Quark condensation, induced symmetry breaking and color superconductivity at high density

    International Nuclear Information System (INIS)

    Langfeld, Kurt; Rho, Mannque

    1999-01-01

    The phase structure of hadronic matter at high density relevant to the physics of compact stars and relativistic heavy-ion collisions is studied in a low-energy effective quark theory. The relevant phases that figure are (1) chiral condensation, (2) diquark color condensation (color superconductivity) and (3) induced Lorentz-symmetry breaking (''ISB''). For a reasonable strength for the effective four-Fermi current-current interaction implied by the low-energy effective quark theory for systems with a Fermi surface we find that the ''ISB'' phase sets in together with chiral symmetry restoration (with the vanishing quark condensate) at a moderate density while color superconductivity associated with scalar diquark condensation is pushed up to an asymptotic density. Consequently, color superconductivity seems rather unlikely in heavy-ion collisions although it may play a role in compact stars. Lack of confinement in the model makes the result of this analysis only qualitative but the hierarchy of the transitions we find seems to be quite robust

  20. Fundamental quark, lepton correspondence and dynamics with weak decay interactions

    International Nuclear Information System (INIS)

    Van der Spuy, E.

    1977-10-01

    A nonlinear fermion-field equation of motion and its (in principle) exact solutions, making use of the previously developed technique of infinite component free spinor fields, are discussed. It is shown to be essential for the existence of the solutions to introduce the isosymmetry breaking mechanism by coupling the isospin polarization of the domain of the universe of such particle fields to the field isospin. The essential trigger for the isosymmetry breaking mechanism is the existence of the electromagnetic interaction and the photon fields, carrying an infinite range isospin polarization change in the domain. A quartet of proton, neutron, lambda and charmed quark field solutions, with their respective characteristic Regge trajectories and primary isospin quantum numbers, and a quartet of lepton fields electron neutrino, electron, muon, muon nutrino, are shown to emerge naturally. The equations of motion of the quark and lepton propagators are deduced. The complicated charge nature of the quarks and the need for quark confinement is discussed and a correspondence principle is established between the quark and lepton field solutions. The correspondence is such that the dynamics of the leptons on their own appears to be compatible with quantum electrodynamics on the one hand, and on the other hand permits a natural GIM-Cabibbo weak decay interaction with a Cibibbo angle equal to the domain isospin polarization-change phase angle

  1. Chiral model for nucleon and delta

    International Nuclear Information System (INIS)

    Birse, M.C.; Banerjee, M.K.

    1985-01-01

    We propose a model of the nucleon and delta based on the idea that strong QCD forces on length scales approx.0.2--1 fm result in hidden chiral SU(2) x SU(2) symmetry and that there is a separation of roles between these forces which are also responsible for binding quarks in hadrons and the forces which produce absolute confinement. This leads us to study a linear sigma model describing the interactions of quarks, sigma mesons, and pions. We have solved this model in the semiclassical (mean-field) approximation for the hedgehog baryon state. We refer to this solution as a chiral soliton. In the semiclassical approximation the hedgehog state is a linear combination of N and Δ. We project this state onto states of good spin and isospin to calculate matrix elements of various operators in these states. Our results are in reasonable agreement with the observed properties of the nucleon. The mesonic contributions to g/sub A/ and sigma(πN) are about two to three times too large, suggesting the need for quantum corrections

  2. Quark-gluon plasma (Selected Topics)

    International Nuclear Information System (INIS)

    Zakharov, V. I.

    2012-01-01

    Introductory lectures to the theory of (strongly interacting) quark-gluon plasma given at the Winter School of Physics of ITEP (Moscow, February 2010). We emphasize theoretical issues highlighted by the discovery of the low viscosity of the plasma. The topics include relativistic hydrodynamics, manifestations of chiral anomaly in hydrodynamics, superfluidity, relativistic superfluid hydrodynamics, effective stringy scalars, holographic models of Yang-Mills theories.

  3. Dynamical chiral symmetry breaking and confinement : its interrelation and effects on the hadron mass spectrum

    International Nuclear Information System (INIS)

    Schröck, M.

    2013-01-01

    Within the framework of this thesis, the interrelation between the two characteristic phenomena of quantum chromodynamics (QCD), i.e., dynamical chiral symmetry breaking and confinement, is investigated. To this end, we apply lattice gauge field theory techniques and adopt a method to artificially restore the dynamically broken chiral symmetry. The low-mode part of the Dirac eigenspectrum is tied to the dynamical breaking of the chiral symmetry according to the Banks--Casher relation. Utilizing two-flavor dynamical lattice gauge field configurations, we construct valence quark propagators that exclude a variable sized part of the low-mode Dirac spectrum, with the aim of using these as an input for meson and baryon interpolating fields. Subsequently, we explore the behavior of ground and excited states of the low-mode truncated hadrons using the variational analysis method. We look for the existence of confined hadron states and extract effective masses where applicable. Moreover, we explore the evolution of the quark wavefunction renormalization function and the renormalization point invariant mass function of the quark propagator under Dirac low-mode truncation in a gauge fixed setting. Motivated by the necessity of fixing the gauge in the aforementioned study of the quark propagator, we also developed a flexible high performance code for lattice gauge fixing, accelerated by graphic processing units (GPUs) using NVIDIA CUDA (Compute Unified Device Architecture). Lastly, more related but unpublished work on the topic is presented. This includes a study of the locality violation of low-mode truncated Dirac operators, a discussion of the possible extension of the low-mode truncation method to the sea quark sector based on a reweighting scheme, as well as the presentation of an alternative way to restore the dynamically broken chiral symmetry. (author) [de

  4. Finite volume for three-flavour Partially Quenched Chiral Perturbation Theory through NNLO in the meson sector

    Science.gov (United States)

    Bijnens, Johan; Rössler, Thomas

    2015-11-01

    We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark flow technique.

  5. Computation of the chiral condensate using Nf=2 and Nf=2+1+1 dynamical flavors of twisted mass fermions

    International Nuclear Information System (INIS)

    Cichy, K.; Jansen, K.; Shindler, A.; Forschungszentrum Juelich; Forschungszentrum Juelich

    2013-12-01

    We apply the spectral projector method, recently introduced by Giusti and Luescher, to compute the chiral condensate using N f =2 and N f =2+1+1 dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the O(a) improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for N f =2 and N f =2+1+1 dynamical flavors.

  6. Low momentum penguin contributions in a chiral theory

    International Nuclear Information System (INIS)

    Eeg, J.O.

    1985-11-01

    It has been shown that penguin diagram contributions corresponding to u-quark loop momenta below a scale Λsub(x) approximately= 1 GeV are enhanced and could at least partly explain the ΔI=1/2 rule. Thus a previous calculation within the bag model is confirmed. The present caluculation is performed wihtin an effective chiral theory with pions and kaons coupled to quarks. It has been found that low momentum left-left loop contributions are important, while left-right contributions can be neglected

  7. Quarks in hadrons and nuclei and electromagnetic probes

    International Nuclear Information System (INIS)

    Faessler, Amand

    1995-01-01

    Deuteron properties and nuclear magnetic moments are studied in the non-relativistic quark cluster model. The quark cluster model is modified to include chiral symmetry. This reduces the number of parameters. The σ meson is exchanged between quarks and not as in earlier versions between nucleons. The charge monopole, quadrupole and magnetic-dipole form factors and the tensor polarization of the deuteron in this microscopic meson-quark cluster model are calculated. The deuteron wave function is derived from a microscopic 6-quark Hamiltonian which, in addition to a quadratic confinement potential, includes the one-pion and the one-gluon exchange potentials between quarks. The electromagnetic current operators are constructed on the quark level, i.e., the photon is coupled directly to the quarks. Aside from the one-body impulse current, pionic and gluonic exchange current corrections are included. Due to the Pauli principle on the quark level, new quark interchange terms arise in the one-body and two-body current matrix elements, that are not present on the nucleon level. While these additional quark exchange currents are small for low momentum transfers, we find that they appreciably influence the electromagnetic structure of the deuteron beyond a momentum transfer of q = 5fm -1 . (author)

  8. Anomalous quark and gluon contents of light hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, T. (Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory); Kunihiro, T. (Ryukoku Univ., Otsu-City (Japan). Faculty of Science and Technology)

    1992-09-14

    The sea-quark contents such as anti ss, anti cc, anti bb... of the low-lying baryons in the octet and decuplet are calculated with a combined use of the trace anomaly of QCD and a chiral quark model. We find (i) the empirical value of the [pi]-N sigma term ([proportional to] 45 MeV) can be reproduced with a rather small anti ss content of nucleon consistently with the Gell-Mann-Okubo mass formula, (ii) the probability to find a charm quark in nucleon is found to be 0.5% which is consistent with the experimental analysis of the charm structure function of the proton and is necessary to account for the J/[psi]-production in proton-nucleous collisions and (iii) both strange and heavy quarks are equally important for the Higgs-nucleon coupling. The heavy-quark and gluon contents of pion and kaon are briefly mentioned. (orig.).

  9. Quantum Regge calculus in the Lorentzian domain and its Hamiltonian formulation

    International Nuclear Information System (INIS)

    Williams, R.M.; Cambridge Univ.

    1986-01-01

    A formalism is set up for quantum Regge calculus in the Lorentzian domain, calculating the inverse propagator in the free field case. The variables in the Arnowitt-Deser-Misner [1962, Gravitation, an Introduction to Current Research, ed. L. Witten (New York: Wiley) p 227] 3 + 1 formulation of general relativity are related to the Regge calculus variables. (author)

  10. QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-01-01

    We present a systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated NJL model. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling κ. (orig.)

  11. Quark condensates in nuclear matter in the global color symmetry model of QCD

    International Nuclear Information System (INIS)

    Liu Yuxin; Gao Dongfeng; Guo Hua

    2003-01-01

    With the global color symmetry model being extended to finite chemical potential, we study the density dependence of the local and nonlocal scalar quark condensates in nuclear matter. The calculated results indicate that the quark condensates increase smoothly with the increasing of nuclear matter density before the critical value (about 12ρ 0 ) is reached. It also manifests that the chiral symmetry is restored suddenly as the density of nuclear matter reaches its critical value. Meanwhile, the nonlocal quark condensate in nuclear matter changes nonmonotonously against the space-time distance among the quarks

  12. Non-leptonic decays of K-mesons within the chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bergan, A E

    1997-12-31

    This theses is based upon four previously printed paper. The main result of the first paper was that a very small contribution to K{sup o}-anti K{sup o} was found for the siamese penguin diagram with a momentum dependent penguin coefficient. The calculation was done with different regularizations. The same momentum dependent penguin interaction was used in the second paper. Dimensional regularization made it possible to calculate analytical results for K{yields}{phi}, and a relatively small g{sub 8}{sup 1/2} factor was found due to large subleading terms. In the third paper nonperturbative effects on the B{sub K} parameter were obtained. To order (G{sup 3}) a vanishing result appeared due to a complete cancellation among the 20 contributing diagrams. In the fourth paper a calculation was made of K{yields}{phi} which included non-diagonal self-energy effects due to the s{yields}d transition. This calculation made it possible to include a heavy top quark. The calculation was done in two ways. First the unphysical K{yields}{phi} transition was calculated. The result was then related to the physical K{yields}2{phi} decay due to chiral symmetry. Then the same result was obtained by a direct calculation of K{yields}2{phi}. In the CP-conserving case the contribution was small while the CP-violating part was sizable. Due to a large cancellation between the operator Q{sub 6} and Q{sub 8} the contribution was of the same size as {epsilon}/{epsilon} itself. 76 refs.

  13. Baryon chiral perturbation theory extended beyond the low-energy region.

    Science.gov (United States)

    Epelbaum, E; Gegelia, J; Meißner, Ulf-G; Yao, De-Liang

    We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region.

  14. Modeling chiral criticality and its consequences for heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Gabor [Gesellschaft fuer Schwerionenforschung, GSI, Darmstadt (Germany); Friman, Bengt [Gesellschaft fuer Schwerionenforschung, GSI, Darmstadt (Germany); ExtreMe Matter Institute (EMMI), Darmstadt (Germany); Redlich, Krzysztof [ExtreMe Matter Institute (EMMI), Darmstadt (Germany); University of Wroclaw, Faculty of Physics and Astronomy, Wroclaw (Poland); Department of Physics, Duke University, Durham, NC (United States)

    2016-07-01

    We explore the critical fluctuations near the chiral critical endpoint (CEP), which belongs to the Z(2) universality class, in a chiral effective model and discuss possible signals of the CEP, recently explored in nuclear collision experiments. Particular attention is attributed to the dependence of such signals on the location of the phase boundary and the CEP relative to the hypothetical freeze-out conditions in nuclear collisions. We argue that in effective models freeze-out fits to heavy-ion results should not be used directly, and relevant quantities should be investigated on lines of the phase diagram, that are defined self-consistently in the framework of the model. We discuss possible choices for such an approach. Additionally we discuss the effect of the repulsive vector interaction of quarks on the location of the CEP and on the structure of the baryon number cumulant ratios.

  15. Baryon chiral perturbation theory extended beyond the low-energy region

    International Nuclear Information System (INIS)

    Epelbaum, E.; Gegelia, J.; Meissner, Ulf G.; Yao, De-Liang

    2015-01-01

    We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region. (orig.)

  16. Analytic multi-Regge theory and the pomeron in QCD. 1

    International Nuclear Information System (INIS)

    White, A.R.

    1991-01-01

    This paper reports on the formalism of analytic multi-Regge theory developed as a basis for the study of abstract critical and super-critical pomeron high-energy behavior and for related studies of the Regge behavior of spontaneously broken gauge theories and the pomeron in QCD. Asymptotic domains of analyticity for multiparticle amplitudes are shown to follow from properties of field theory and S-matrix theory. General asymptotic dispersion relations are then derived for such amplitudes in which the spectral components are described by the graphical formalism of hexagraphs. Further consequences are distinct Sommerfeld-Watson representations for each hexagraph spectral component, together with a complete set of angular momentum plane unitarity equations which control the form of all multi-Regge amplitudes. Because of this constraint of reggeon unitarity the critical pomeron solution of the reggeon field theory gives the only known non-trivial unitary high-energy S-matrix. By exploiting the full structure of multi-Regge amplitudes as the pomeron becomes super-critical, one can study the simultaneous modification of hadrons and the pomeron. The result is a completely consistent description of the super-critical pomeron appearing in hadron scattering. Reggeon unitarity is satisfied in the super-critical phase by the appearance of a massive gluon (Reggeized vector particle) coupling pair-wise to the pomeron

  17. Independent variables in 3 + 1 Regge calculus

    International Nuclear Information System (INIS)

    Tuckey, P.A.

    1989-01-01

    The space of metrics in 3+1 Regge calculus is discussed, and the problems of counting its dimensions, and of finding independent variables to parametrise the space, are addressed. The most general natural class of metrics is considered first, and bounds on its dimension are obtained, although no good parametrisations are found. The relationship between these metrics and those used in canonical Regge calculus is shown, and this leads to an interesting result via the Bianchi identities. A restricted class of metrics is then considered and independent variables, which parametrise these metrics and which may be computationally convenient, are given. The dimension of this space of metrics gives an improved lower bound for the dimension of the general space. (author)

  18. Quark-quark interactions

    International Nuclear Information System (INIS)

    Jacob, M.

    1982-01-01

    This chapter discusses interactions only at the constituent level, as observed in hadron-hadron collisions. It defines quarks and gluons as constituents of the colliding hadrons, reviews some applications of perturbative OCD, discussing in turn lepton pair production, which in lowest order approximation corresponds to the Drell-Yan process. It investigates whether quark-quark interactions could not lead to some new color structure different from those prevalent for known baryons and mesons, which could be created in hadron interactions, and whether color objects (not specifically quarks or gluons) could not appear as free particles. Discussed is perturbative QCD in hadron collisions; the quark approach to soft processes; and new color structures. It points out that perturbative QCD has been at the origin of much progress in the understanding of hadron interactions at the constituent level

  19. Measurement of the top quark mass using the template method in the lepton plus jets channel with in situ W → jj calibration at CDF-II

    International Nuclear Information System (INIS)

    Adelman, J.; Brubaker, E.; Kim, Y.K.

    2005-01-01

    We report on a measurement of the top quark mass in the lepton plus jets channel of tt bar events from pp bar collisions at √s = 1.96 TeV. This measurement uses an integrated luminosity of 318 pb -1 data, which brings 138 tt bar candidates separated into four subsamples. A top quark mass is reconstructed for each event by using energy and momentum constraints on the top-quark pair decay products. We also employ the reconstructed mass of hadronic W boson decays W→jj to constrain in situ the largest systematic uncertainty of the top quark mass measurement: the jet energy scale. Monte Carlo templates of the reconstructed top quark and W boson masses are produced as a function of the true top quark mass and the jet energy scale. The distribution of reconstructed top quark and W boson masses in the data are compared to the Monte Carlo templates using a likelihood fit to obtain: M top =173.5 - 3 .8 +3.9 GeV/c 2 . This constitutes the most precise measurement of the top quark mass up to date

  20. Parameter retrieval of chiral metamaterials based on the state-space approach.

    Science.gov (United States)

    Zarifi, Davoud; Soleimani, Mohammad; Abdolali, Ali

    2013-08-01

    This paper deals with the introduction of an approach for the electromagnetic characterization of homogeneous chiral layers. The proposed method is based on the state-space approach and properties of a 4×4 state transition matrix. Based on this, first, the forward problem analysis through the state-space method is reviewed and properties of the state transition matrix of a chiral layer are presented and proved as two theorems. The formulation of a proposed electromagnetic characterization method is then presented. In this method, scattering data for a linearly polarized plane wave incident normally on a homogeneous chiral slab are combined with properties of a state transition matrix and provide a powerful characterization method. The main difference with respect to other well-established retrieval procedures based on the use of the scattering parameters relies on the direct computation of the transfer matrix of the slab as opposed to the conventional calculation of the propagation constant and impedance of the modes supported by the medium. The proposed approach allows avoiding nonlinearity of the problem but requires getting enough equations to fulfill the task which was provided by considering some properties of the state transition matrix. To demonstrate the applicability and validity of the method, the constitutive parameters of two well-known dispersive chiral metamaterial structures at microwave frequencies are retrieved. The results show that the proposed method is robust and reliable.

  1. Chiral phase transition at finite chemical potential in 2 +1 -flavor soft-wall anti-de Sitter space QCD

    Science.gov (United States)

    Bartz, Sean P.; Jacobson, Theodore

    2018-04-01

    The phase transition from hadronic matter to chirally symmetric quark-gluon plasma is expected to be a rapid crossover at zero quark chemical potential (μ ), becoming first order at some finite value of μ , indicating the presence of a critical point. Using a three-flavor soft-wall model of anti-de Sitter/QCD, we investigate the effect of varying the light and strange quark masses on the order of the chiral phase transition. At zero quark chemical potential, we reproduce the Columbia Plot, which summarizes the results of lattice QCD and other holographic models. We then extend this holographic model to examine the effects of finite quark chemical potential. We find that the the chemical potential does not affect the critical line that separates first-order from rapid crossover transitions. This excludes the possibility of a critical point in this model, suggesting that a different setup is necessary to reproduce all the features of the QCD phase diagram.

  2. Quark-flavor mixing and the nucleon strangeness form factors

    International Nuclear Information System (INIS)

    Ito, H.

    1995-01-01

    We have calculated the strangeness form factors of the nucleon G E s (Q), G M s (Q) and G A s (Q) and the electromagnetic form factors G E N (Q) as well, by using a relativistic constituent quark model of the nucleon wave function on the light-cone. Octet of Goldstone bosons (π, K, η) are assumed to induce the SU flavor mixing among the light constituent quarks; d-→K+s →d for example, and this mechanism induces the strangeness content in the nucleon. To calculate the meson-loop corrections to the electroweak couplings of constituent quarks, we have employed two models of the quark-meson vertex; (1) composite model of the Goldstone bosons (2) and (3) chiral quark Lagrangian. The loop momenta are regulated in a gauge-invariant way for both models

  3. Two-body hypercharge-exchange reactions in K-p and π+p interactions at 10 and 16 GeV/c

    International Nuclear Information System (INIS)

    Girtler, P.; Otter, G.; Sliwa, K.; Barnham, K.W.J.; Eason, R.M.; Newham, P.; Pollock, B.; Wells, J.; Mandl, F.; Markytan, M.

    1979-01-01

    Cross section values or upper limits are presented for twenty-five two-body hypercharge-exchange reactions in K - p and π + p interactions at 10 and 16 GeV/c. The 16 GeV/c results are compared with some predictions of line-reversal plus exchange-degenerate Regge poles, of SU(3) and of the additive quark model. Agreement is found in all cases. (author)

  4. Strange quark condensate in the nucleon in 2 + 1 flavor QCD.

    Science.gov (United States)

    Toussaint, D; Freeman, W

    2009-09-18

    We calculate the "strange quark content of the nucleon," , which is important for interpreting the results of some dark matter detection experiments. The method is to evaluate quark-line disconnected correlations on the MILC lattice ensembles, which include the effects of dynamical light and strange quarks. After continuum and chiral extrapolations, the result is = 0.69(7)_{stat}(9)_{syst}, in the modified minimal subtraction scheme (2 GeV) regularization, or for the renormalization scheme invariant form, m_{s} partial differentialM_{N}/ partial differentialm_{s} = 59(6)(8) MeV.

  5. Heavy quark free energies for three quark systems at finite temperature

    International Nuclear Information System (INIS)

    Huebner, Kay; Karsch, Frithjof; Kaczmarek, Olaf; Vogt, Oliver

    2008-01-01

    We study the free energy of static three quark systems in singlet, octet, decuplet, and average color channels in the quenched approximation and in 2-flavor QCD at finite temperature. We show that in the high temperature phase singlet and decuplet free energies of three quark systems are well described by the sum of the free energies of three diquark systems plus self-energy contributions of the three quarks. In the confining low temperature phase we find evidence for a Y-shaped flux tube in SU(3) pure gauge theory, which is less evident in 2-flavor QCD due to the onset of string breaking. We also compare the short distance behavior of octet and decuplet free energies to the free energies of single static quarks in the corresponding color representations.

  6. Understanding the nature of Λ(1405) through Regge physics

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Ramírez, César; Danilkin, Igor V.; Mathieu, Vincent; Szczepaniak, Adam P.

    2016-04-01

    It appears that there are two resonances with $J^P= 1/2^-$ quantum numbers in the energy region near the $\\Lambda(1405)$ hyperon. The nature of these states is a topic of current debate. To provide further insight we use Regge phenomenology to access how these two resonances fit the established hyperon spectrum. We find that only one of these resonances is compatible with a three-quark state.

  7. The baryon-baryon interaction in a modified quark model

    International Nuclear Information System (INIS)

    Zhang Zongye; Faessler, Amand; Straub, U.; Glozman, L.Ya.

    1994-01-01

    The quark-cluster model with coupling constants constraint by chiral symmetry is extended to include strange quarks. In this model, besides the confinement and one-gluon exchange potentials, the pseudoscalar mesons and sigma (σ) meson exchanges are included as the nonperturbative effect. Using this interaction we studied the binding energy of the deuteron, the NN scattering phase shifts and the hyperon-nucleon cross sections in the framework of the resonating group method (RGM). The results are reasonably consistent with experiments. ((orig.))

  8. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    International Nuclear Information System (INIS)

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei

    2009-01-01

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG-VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm -1 spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and (25.4±1.3)%, respectively.

  9. Spin content of constituent quarks and one-spin asymmetries in inclusive processes

    International Nuclear Information System (INIS)

    Troshin, S.M.; Tyurin, N.E.

    1995-01-01

    A mechanism for one-spin asymmetries observed in inclusive hadron production is considered. The main role belongs to the orbital angular momentum of the quark-antiquark cloud in the internal structure of constituent quarks. The origin of the asymmetries in pion production is a result of retaining this internal angular orbital momentum by the perturbative phase of QCD under transition from the non-perturbative phase is proved. The non-perturbative hadron structure is based on the results of chiral quark models. 33 refs.; 8 figs

  10. QCD-motivated Nambu-Jona-Lasinio model with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1991-01-01

    A systematic study of the role of the nonperturbative gluon condensate arising in a QCD-motivated Nambu-Jona-Lasinio model is presented. The effects of the gluon condensate on induced meson couplings, the pion decay constant, quark condensate and mass formulae are investigated. An interesting result is the change of the scale Λ of chiral symmetry breaking and of the universal four-quark coupling constant κ. 20 refs

  11. The epsilon regime of chiral perturbation theory with Wilson-type fermions

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Liverpool Univ. (United Kingdom). Theoretical Physics Division

    2009-11-15

    In this proceeding contribution we report on the ongoing effort to simulate Wilson-type fermions in the so called epsilon regime of chiral perturbation theory (cPT).We present results for the chiral condensate and the pseudoscalar decay constant obtained with Wilson twisted mass fermions employing two lattice spacings, two different physical volumes and several quark masses. With this set of simulations we make a first attempt to estimate the systematic uncertainties. (orig.)

  12. The epsilon regime of chiral perturbation theory with Wilson-type fermions

    International Nuclear Information System (INIS)

    Jansen, K.; Shindler, A.

    2009-11-01

    In this proceeding contribution we report on the ongoing effort to simulate Wilson-type fermions in the so called epsilon regime of chiral perturbation theory (cPT).We present results for the chiral condensate and the pseudoscalar decay constant obtained with Wilson twisted mass fermions employing two lattice spacings, two different physical volumes and several quark masses. With this set of simulations we make a first attempt to estimate the systematic uncertainties. (orig.)

  13. Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates

    NARCIS (Netherlands)

    Helmich, F.A.; Lee, C.C.; Schenning, A.P.H.J.; Meijer, E.W.

    2010-01-01

    Chiral memory at the supramolecular level is obtained via a new approach using chiral Zn porphrins and achiral Cu porphyrins. In a "sergeant-and-soldiers" experiment, the Zn "sergeant" transfers its own chirality to Cu "soldiers" and, after chiral amplification, the "sergeant" is removed from the

  14. Chiral dynamics and partonic structure at large transverse distances

    Energy Technology Data Exchange (ETDEWEB)

    Strikman, M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics; Weiss, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States). Theory Center

    2009-12-30

    In this paper, we study large-distance contributions to the nucleon’s parton densities in the transverse coordinate (impact parameter) representation based on generalized parton distributions (GPDs). Chiral dynamics generates a distinct component of the partonic structure, located at momentum fractions x≲Mπ/MN and transverse distances b~1/Mπ. We calculate this component using phenomenological pion exchange with a physical lower limit in b (the transverse “core” radius estimated from the nucleon’s axial form factor, Rcore=0.55 fm) and demonstrate its universal character. This formulation preserves the basic picture of the “pion cloud” model of the nucleon’s sea quark distributions, while restricting its application to the region actually governed by chiral dynamics. It is found that (a) the large-distance component accounts for only ~1/3 of the measured antiquark flavor asymmetry d¯-u¯ at x~0.1; (b) the strange sea quarks s and s¯ are significantly more localized than the light antiquark sea; (c) the nucleon’s singlet quark size for x<0.1 is larger than its gluonic size, (b2)q+q¯>(b2)g, as suggested by the t-slopes of deeply-virtual Compton scattering and exclusive J/ψ production measured at HERA and FNAL. We show that our approach reproduces the general Nc-scaling of parton densities in QCD, thanks to the degeneracy of N and Δ intermediate states in the large-Nc limit. Finally, we also comment on the role of pionic configurations at large longitudinal distances and the limits of their applicability at small x.

  15. The Theory of Quark and Gluon Interactions

    CERN Document Server

    Ynduráin, Francisco J

    2006-01-01

    F. J. Ynduráin's book on Quantum Chromodynamics has become a classic among advanced textbooks. First published in 1983, and translated into Russian in 1986, it now sees its fourth edition. It addresses readers with basic knowledge of field theory and particle phenomenology. The author presents the basic facts of quark and gluon physics in pedagogical form. Theory is always confronted with experimental findings. The reader will learn enough to be able to follow modern research articles. This fourth edition presents a new section on heavy quark effective theories, more material on lattice QCD and on chiral perturbation theory.

  16. Dual Ginzburg-Landau theory and quark nuclear physics

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    1999-01-01

    The elementary building blocks of matter are quarks. Hence, it is fundamental to describe hadrons and nuclei in terms of quarks and gluons, the subject of which is called Quark Nuclear Physics. The quark-dynamics is described by Quantum Chromodynamics (QCD). Our interest is the non-perturbative aspect of QCD as confinement, chiral symmetry breaking, hadronization etc. We introduce the dual Ginzburg-Landau theory (DGL), where the color monopole fields and their condensation is the QCD vacuum, play essential roles in describing these non-perturbative phenomena. We emphasize its connection to QCD through the use of the Abelian gauge. We apply the DGL theory to various observables. We discuss then the connection of the monopole fields with instantons, which are the classical solutions of the non-Abelian gauge theory and connect through the tunneling process QCD vacuum with different winding numbers. (author)

  17. Finite-temperature phase structure of lattice QCD with Wilson quark action

    International Nuclear Information System (INIS)

    Aoki, S.; Ukawa, A.; Umemura, T.

    1996-01-01

    The long-standing issue of the nature of the critical line of lattice QCD with the Wilson quark action at finite temperatures, defined to be the line of vanishing pion screening mass, and its relation to the line of finite-temperature chiral transition is examined. Presented are both analytical and numerical evidence that the critical line forms a cusp at a finite gauge coupling, and that the line of chiral transition runs past the tip of the cusp without touching the critical line. Implications on the continuum limit and the flavor dependence of chiral transition are discussed. copyright 1996 The American Physical Society

  18. Gluon condensation and modelling of quark confinement in QCD-motivated Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Ebert, D.; Emel'yanenko, A.V.

    1992-01-01

    The possibility of modelling of a quark propagator without poles realizing quark confinement is considered on the basis of a nonperturbative gluon propagator including gluon condensation and a dynamical gluon mass. The property of spontaneous chiral symmetry breaking is retained providing us with a reasonable pattern of low-lying meson properties. 2 figs.; 1 tab

  19. Measurement of the ratio of top-quark branching fractions top quark decaying to W boson and bottom quark and top quark decaying to W boson and any quark in the lepton + jets and dilepton channels at the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Dmitri [Univ. of New Mexico, Albuquerque, NM (United States)

    2005-10-01

    According to the Standard Model, the top quark decays to a W boson and a b quark virtually 100% of the time. The measurements of t$\\bar{t}$ production cross section depend strongly on that assumption. We test this hypothesis with a measurement of R = B(t → W b)/B(t → Wq), using a combination of event kinematics and b- tagging techniques. The measurement is carried out using a data sample produced in p$\\bar{p}$ collisions at 1.96 TeV and collected at the Collider Detector at Fermilab between March 2002 and September 2003 with an integrated luminosity of ~ 162 pb-1. The branching ratio R is determined from the relative t$\\bar{t}$¯ tagging rates making the measurement independent of any assumption on the t$\\bar{t}$ cross section. Any two tagging rates are sufficient to determine the R but the problem is overconstrained if more than two tagged subsamples are used. The t$\\bar{t}$ events are classified by the number vii of leptons in the final state. In lepton-plus-jets channel only one of the W bosons decays leptonically, whereas in dilepton channel both W bosons decay leptonically. The measurement of R is performed in both lepton-plus-jets and dilepton samples. In the lepton-plus-jets channel the background is estimated using the artificial neural network (ANN) technique. The ANN approach allows us to measure the signal fraction in samples with any number of tags. By applying this method alone the branching ratio was measured to be R = 1.06$+0.27\\atop{-0.24}$(stat.) ± 0.16(syst.). Alternatively, the tagged background contamination in lepton-plus-jets channel is determined from a traditional a priori method using data driven and Monte Carlo based techniques. A similar approach is used to determine the t$\\bar{t}$ content in the dilepton sample. The combination of ANN background measurement in lepton-plus- jets data sample with the a priori lepton-plus-jets and dilepton estimations leads to improved sensitivity in the final value of R = 1

  20. Conditional probabilities in Ponzano-Regge minisuperspace

    International Nuclear Information System (INIS)

    Petryk, Roman; Schleich, Kristin

    2003-01-01

    We examine the Hartle-Hawking no-boundary initial state for the Ponzano-Regge formulation of gravity in three dimensions. We consider the behavior of conditional probabilities and expectation values for geometrical quantities in this initial state for a simple minisuperspace model consisting of a two-parameter set of anisotropic geometries on a 2-sphere boundary. We find dependence on the cutoff used in the construction of Ponzano-Regge amplitudes for expectation values of edge lengths. However, these expectation values are cutoff independent when computed in certain, but not all, conditional probability distributions. Conditions that yield cutoff independent expectation values are those that constrain the boundary geometry to a finite range of edge lengths. We argue that such conditions have a correspondence to fixing a range of local time, as classically associated with the area of a surface for spatially closed cosmologies. Thus these results may hint at how classical spacetime emerges from quantum amplitudes

  1. The chiral and angular momentum content of the ρ-meson

    International Nuclear Information System (INIS)

    Glozman, L.Y.; Lang, C.B.; Limmer, M.

    2010-01-01

    It is possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark Fock component of a meson in the infrared, where mass is generated. Using the variational method and a set of interpolators that span a complete chiral basis we extract in a lattice QCD Monte Carlo ρ-meson with a small admixture of the 3 D 1 partial wave, in agreement with the SU (6) flavor-spin symmetry. (author)

  2. Bounds for OPE coefficients on the Regge trajectory

    Science.gov (United States)

    Costa, Miguel S.; Hansen, Tobias; Penedones, João

    2017-10-01

    We consider the Regge limit of the CFT correlation functions and , where J is a vector current, T is the stress tensor and O is some scalar operator. These correlation functions are related by a type of Fourier transform to the AdS phase shift of the dual 2-to-2 scattering process. AdS unitarity was conjectured some time ago to be positivity of the imaginary part of this bulk phase shift. This condition was recently proved using purely CFT arguments. For large N CFTs we further expand on these ideas, by considering the phase shift in the Regge limit, which is dominated by the leading Regge pole with spin j( ν), where ν is a spectral parameter. We compute the phase shift as a function of the bulk impact parameter, and then use AdS unitarity to impose bounds on the analytically continued OPE coefficients {C}_JJ}j(ν )} and C TTj(ν) that describe the coupling to the leading Regge trajectory of the current J and stress tensor T. AdS unitarity implies that the OPE coefficients associated to non-minimal couplings of the bulk theory vanish at the intercept value ν = 0, for any CFT. Focusing on the case of large gap theories, this result can be used to show that the physical OPE coefficients {C}_{JJT and C TTT , associated to non-minimal bulk couplings, scale with the gap Δ g as Δ g - 2 or Δ g - 4 . Also, looking directly at the unitarity condition imposed at the OPE coefficients {C_JJT and C TTT results precisely in the known conformal collider bounds, giving a new CFT derivation of these bounds. We finish with remarks on finite N theories and show directly in the CFT that the spin function j( ν) is convex, extending this property to the continuation to complex spin.

  3. XQCAT eXtra Quark Combined Analysis Tool

    CERN Document Server

    Barducci, D; Buchkremer, M; Marrouche, J; Moretti, S; Panizzi, L

    2015-01-01

    XQCAT (eXtra Quark Combined Analysis Tool) is a tool aimed to determine exclusion Confidence Levels (eCLs) for scenarios of new physics characterised by the presence of one or multiple heavy extra quarks (XQ) which interact through Yukawa couplings with any of the Standard Model (SM) quarks. The code uses a database of efficiencies for pre-simulated processes of Quantum Chromo-Dynamics (QCD) pair production and on-shell decays of extra quarks. In the version 1.0 of XQCAT the efficiencies have been computed for a set of seven publicly available search results by the CMS experiment, and the package is subject to future updates to include further searches by both ATLAS and CMS collaborations. The input for the code is a text file in which masses, branching ratios (BRs) and dominant chirality of the couplings of the new quarks are provided. The output of the code is the eCL of the test point for each implemented experimental analysis considered individually and, when possible, in statistical combination.

  4. Partial widths of boson resonances in the quark-gluon model of strong interactions

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Volkovitsky, P.E.

    1981-01-01

    The quark-gluon model of strong interactions based on the topological expansion and the string model ib used for the calculation of the partial widths of boson resonances in the channels with two pseudoscalar mesons. The partial widths of mesons with arbitrary spins lying on the vector and tensor Regge trajectories are expressed in terms of the only rho-meson width. The violation of SU(3) symmetry increases with the growth of the spin of the resonance. The theoretical predictions are in a good agreement with experimental data [ru

  5. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality.

    Science.gov (United States)

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun

    2017-11-01

    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, ( S )-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.

  6. N=4 supersymmetric Yang Mills scattering amplitudes at high energies. The Regge cut contribution

    International Nuclear Information System (INIS)

    Bartels, J.; Sabio Vera, A.

    2008-07-01

    We further investigate, in N=4 supersymmetric Yang Mills theories, the high energy Regge behavior of six-point scattering amplitudes. In particular, for the new Regge cut contribution found in our previous paper, we compute in the leading logarithmic approximation (LLA) the energy spectrum of the BFKL equation in the color octet channel, and we calculate explicitly the two loop corrections to the discontinuities of the amplitudes for the transitions 2→4 and 3→3. We find an explicit solution of the BFKL equation for the octet channel for arbitrary momentum transfers and investigate the intercepts of the Regge singularities in this channel. As an important result we find that the universal collinear and infrared singularities of the BDS formula are not affected by this Regge-cut contribution. (orig.)

  7. Light hadron spectrum and quark masses from quenched lattice QCD

    International Nuclear Information System (INIS)

    Aoki, S.; Boyd, G.; Ejiri, S.; Kaneko, T.; Nagai, K.; Shanahan, H.P.; Burkhalter, R.; Iwasaki, Y.; Kanaya, K.; Ukawa, A.; Yoshie, T.; Fukugita, M.; Hashimoto, S.; Kuramashi, Y.; Okawa, M.

    2003-01-01

    We present the details of simulations for the light hadron spectrum in quenched QCD carried out on the CP-PACS parallel computer. Simulations are made with the Wilson quark action and the plaquette gauge action on lattices of size 32 3 x56-64 3 x112 at four values of lattice spacings in the range a≅0.1-0.05 fm and spatial extent L s a≅3 fm. Hadronic observables are calculated at five quark masses corresponding to m PS /m V ≅0.75-0.4, assuming the u and d quarks are degenerate, but treating the s quark separately. We find that the presence of quenched chiral singularities is supported from an analysis of the pseudoscalar meson data. The physical values of hadron masses are determined using m π , m ρ , and m K (or m φ ) as input to fix the physical scale of lattice spacing and the u, d, and s quark masses. After chiral and continuum extrapolations, the agreement of the calculated mass spectrum with experiment is at a 10% level. In comparison with the statistical accuracy of 1%-3% and systematic errors of at most 1.7% we have achieved, this demonstrates a failure of the quenched approximation for the hadron spectrum: the hyperfine splitting in the meson sector is too small, and in the baryon sector the octet masses and mass splitting of the decuplet are both smaller than experiment. Light quark masses are calculated using two definitions: the conventional one and the one based on the axial-vector Ward identity. The two results converge toward the continuum limit, yielding m ud =4.29(14) -0.79 +0.51 MeV where the first error is statistical and the second one is systematic due to chiral extrapolation. The s quark mass depends on the strange hadron mass chosen for input: m s =113.8(2.3) -2.9 +5.8 MeV from m K and m s =142.3(5.8) -0 +22.0 MeV from m φ , indicating again a failure of the quenched approximation. We obtain the scale of QCD, Λ MS (0) =219.5(5.4) MeV with m ρ used as input. An O(10%) deviation from experiment is observed in the pseudoscalar meson

  8. A gentilionic approach to quark colours

    International Nuclear Information System (INIS)

    Cattani, M.S.D.; Fernandes, N.C.

    1984-01-01

    An extended form of Noether's theorem enable us to identify the colour quantum number with the eigenvalue of the invariant of the algebra of S sup((3)). In the gentilionic approach, the composition of the S sup((3)) colour with the symmetric quark model seems to constitute an exact symmetry of Nature. It is also argued some general properties and the universality of Gentile statistics. (Author) [pt

  9. Facets of confinement and dynamical chiral symmetry breaking

    International Nuclear Information System (INIS)

    Maris, P.; Raya, A.; Roberts, C.D.; Schmidt, S.M.

    2003-01-01

    The gap equation is a cornerstone in understanding dynamical chiral symmetry breaking and may also provide clues to confinement. A symmetry-preserving truncation of its kernel enables proofs of important results and the development of an efficacious phenomenology. We describe a model of the kernel that yields: a momentum-dependent dressed-quark propagator in fair agreement with quenched lattice-QCD results; and chiral limit values, f π 0 =68 MeV and left angle anti q q right angle =-(190 MeV) 3 . It is compared with models inferred from studies of the gauge sector. (orig.)

  10. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Nicmorus Marinescu, Diana

    2007-01-01

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N→Δγ transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit within this

  11. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Nicmorus Marinescu, Diana

    2007-06-14

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit

  12. Theoretical particle physics. Progress report, December 1, 1975--November 30, 1976

    International Nuclear Information System (INIS)

    Chu, S.Y.; Hendry, A.W.; Lichtenberg, D.B.

    1976-08-01

    Research can be divided into two categories, the first dealing with the phenomenological treatment of two-body collisions, and the second dealing with symmetry-breaking and charm within the framework of the quark model. A partial-wave amplitude analysis of π + proton elastic scattering at incident pion momenta between 1.6 GeV/c and 10 GeV/c has been made. The partial wave amplitudes agree with those at lower momenta and are close to the Regge amplitudes at higher momenta. A number of new Δ resonances are suggested. Also high energy proton-proton scattering was analyzed using Reggeon field theory and a bare pomeron intercept above unity. Furthermore, high energy pion-nucleon charge-exchange data were described by including absorptive corrections to a rho Reggeon exchange. In the second category, meson mass spectra, including predicted masses of charmed mesons, in the quark model using attractive 1/r plus linear confining potentials. The quark model was used to obtain relations among electromagnetic mass splittings of mesons, including charmed mesons, to calculate the pion form factor, and to obtain magnetic moments of baryons. Also restrictions on a quark potential with confinement were discussed in order to obtain linear Regge trajectories. A list of publications is included

  13. Strong interactions - quark models

    International Nuclear Information System (INIS)

    Goto, M.; Ferreira, P.L.

    1979-01-01

    The variational method is used for the PSI and upsilon family spectra reproduction from the quark model, through several phenomenological potentials, viz.: linear, linear plus coulomb term and logarithmic. (L.C.) [pt

  14. The Pomeron and hadrons through infra-red analysis of QCD

    International Nuclear Information System (INIS)

    White, A.R.

    1981-01-01

    Infra-red analysis of QCD in the Regge limit is argued to lead to confinement with chiral symmetry breaking. The resulting Pomeron depends strongly on the centre of the gauge group with SU(3) colour producing uniquely the experimentally observed even signature, factorizing, Pomeron. The critical Pomeron (asymptotic rising cross-sections) occurs when QCD is saturated with quarks. New calculations are reviewed showing strong evidence for the emergence of the critical Pomeron diffraction peak at present accelerator energies. This leads to exciting predictions for diffraction scattering at p antip collider energies which could become the most precise experimental confirmation of QCD

  15. Mean multiplicity in the Regge models with rising cross sections

    International Nuclear Information System (INIS)

    Chikovani, Z.E.; Kobylisky, N.A.; Martynov, E.S.

    1979-01-01

    Behaviour of the mean multiplicity and the total cross section σsub(t) of hadron-hadron interactions is considered in the framework of the Regge models at high energies. Generating function was plotted for models of dipole and froissaron, and the mean multiplicity and multiplicity moments were calculated. It is shown that approximately ln 2 S (energy square) in the dipole model, which is in good agreement with the experiment. It is also found that in various Regge models approximately σsub(t)lnS

  16. Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations

    International Nuclear Information System (INIS)

    Müller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2016-01-01

    Here, we present a first-principles study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian S U (N _c) and Abelian U (1) gauge fields. By investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the chiral magnetic and chiral separation effect leads to the formation of a propagating wave. Furthermore, we analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark masses.

  17. Searches for Heavy Quark States at ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00357007; The ATLAS collaboration

    2016-01-01

    This talk highlights the latest results of heavy quark searches from the ATLAS collaboration, mainly on resonance searches and vector-like quarks (VLQs) searches. Searches for $t\\bar{t}$ resonances using lepton-plus-jets events in proton-proton collisions at center-of-mass energy at 8 and 13 TeV are presented. Limits are set for BSM particles such as topcolor-assisted technicolor $Z'$ , Kaluza-Klein (K-K) gluons $g_{KK}$ and K-K excitations of graviton $G_{KK}$ in the TC Randall-Sundrum (R-S) model of extra dimensions. VLQs arise naturally in many models such as Little Higgs and Composite Higgs and typically couple preferably to the third generation SM quarks and weak bosons. Limits are set for vector-like bottom (B) and top (T) quarks decay to lepton-plus-jets final states via Hb+X and Ht+X channels in two analyses using 8 and 13 TeV datasets from ATLAS.

  18. Searches for Heavy Quark States at ATLAS

    CERN Document Server

    Cheng, Hok Chuen; The ATLAS collaboration

    2016-01-01

    This talk highlights the latest results of heavy quark searches from the ATLAS collaboration, mainly on resonance searches and vector-like quarks (VLQs) searches. Searches for t\\bar{t} resonances using lepton-plus-jets events in proton-proton collisions at center-of-mass energy at 8 and 13 TeV are presented. Limits are set for BSM particles such as topcolor-assisted technicolor Z'_{TC} , Kaluza-Klein(K-K) gluons g_{KK} and K-K excitations of graviton G_{KK} in the Randall-Sundrum model of extra dimensions. VLQs arise naturally in many models such as Little Higgs and Composite Higgs and typically couple preferably to the third generation SM quarks and weak bosons. Limits are set for vector-like bottom (B) and top (T) quarks decay to lepton-plus-jets final states via Hb+X and Ht+X channels in two analyses using 8 and 13 TeV datasets from ATLAS.

  19. The contracted Bianchi identities in Regge calculus

    International Nuclear Information System (INIS)

    Williams, Ruth M

    2012-01-01

    In this note, we show explicitly how the linearized contracted Bianchi identities at a vertex in four-dimensional Regge calculus are related to a sum of the equations of motion for all the edges meeting at that vertex. (note)

  20. Chiral phase transition of QCD with N{sub f}=2+1 flavors from holography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Danning [Department of Physics, Jinan University,Guangzhou 510632 (China); Huang, Mei [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); University of Chinese Academy of Sciences,Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,Beijing 100049 (China)

    2017-02-08

    Chiral phase transition for three-flavor N{sub f}=2+1 QCD with m{sub u}=m{sub d}≠m{sub s} is investigated in a modified soft-wall holographic QCD model. Solving temperature dependent chiral condensates from equations of motion of the modified soft-wall model, we extract the quark mass dependence of the order of chiral phase transition in the case of N{sub f}=2+1, and the result is in agreement with the “Columbia Plot”, which is summarized from lattice simulations and other non-perturbative methods. First order phase transition is observed around the three flavor chiral limit m{sub u/d}=0,m{sub s}=0, while at sufficient large quark masses it turns to be a crossover phase transition. The first order and crossover regions are separated by a second order phase transition line. The second order line is divided into two parts by the m{sub u/d}=m{sub s} line, and the m{sub s} dependence of the transition temperature in these two parts are totally contrast, which might indicate that the two parts are governed by different universality classes.

  1. An upper bound on right-chiral weak interactions

    International Nuclear Information System (INIS)

    Stephenson, G.J.; Goldman, T.; Maltman, K.

    1990-01-01

    Weak vertex corrections to the quark-gluon vertex functions produce differing form-factor corrections for quarks of differing chiralities. These differences grow with increasing four-momentum transfer in the gluon leg. Consequently, inclusive polarized proton--proton scattering to a final state jet should show a large parity-violating asymmetry at high energies. The absence of large signals at sufficiently high energies can be interpreted as being due to balancing vertex corrections from a right-handed weak vector boson of limited mass, and limits on the strength of such signals can, in principle, give upper bounds on that mass. 2 refs

  2. An upper bound on right-Chiral weak interactions

    International Nuclear Information System (INIS)

    Stephenson, G.J.; Goldman, T.; Maltman, K.

    1990-01-01

    Weak vertex corrections to the quark-gluon vertex functions produce differing form-factor corrections for quarks of differing chiralities. These differences grow with increasing four-momentum transfer in the gluon leg. Consequently, inclusive polarized proton-proton scattering to a final state jet should show a large parity-violating asymmetry at high energies. The absence of large signals at sufficiently high energies can be interpreted as being due to balancing vertex corrections from a right-handed weak vector boson of limited mass, and limits on the strength of such signals can, in principle, give upper bounds on that mass

  3. Some aspects of chirality: Fermion masses and chiral p-forms

    Energy Technology Data Exchange (ETDEWEB)

    Kleppe, A

    1997-05-01

    The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m{sub 0} implies the existence of other Dirac fields where the corresponding quanta have masses Rm{sub 0}, R{sup 2}m{sub 0}, .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way.

  4. Some aspects of chirality: Fermion masses and chiral p-forms

    International Nuclear Information System (INIS)

    Kleppe, A.

    1997-05-01

    The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m 0 implies the existence of other Dirac fields where the corresponding quanta have masses Rm 0 , R 2 m 0 , .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way

  5. The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Humboldt-Universitaet, Berlin; Jansen, Karl

    2011-11-01

    The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling. (orig.)

  6. Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Ricardo L.S. [Universidade Federal de Santa Maria, Departamento de Fisica, Santa Maria, RS (Brazil); Kent State University, Physics Department, Kent, OH (United States); Timoteo, Varese S. [Universidade Estadual de Campinas (UNICAMP), Grupo de Optica e Modelagem Numerica (GOMNI), Faculdade de Tecnologia, Limeira, SP (Brazil); Avancini, Sidney S.; Pinto, Marcus B. [Universidade Federal de Santa Catarina, Departamento de Fisica, Florianopolis, Santa Catarina (Brazil); Krein, Gastao [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)

    2017-05-15

    The phenomenon of inverse magnetic catalysis of chiral symmetry in QCD predicted by lattice simulations can be reproduced within the Nambu-Jona-Lasinio model if the coupling G of the model decreases with the strength B of the magnetic field and temperature T. The thermo-magnetic dependence of G(B, T) is obtained by fitting recent lattice QCD predictions for the chiral transition order parameter. Different thermodynamic quantities of magnetized quark matter evaluated with G(B, T) are compared with the ones obtained at constant coupling, G. The model with G(B, T) predicts a more dramatic chiral transition as the field intensity increases. In addition, the pressure and magnetization always increase with B for a given temperature. Being parametrized by four magnetic-field-dependent coefficients and having a rather simple exponential thermal dependence our accurate ansatz for the coupling constant can be easily implemented to improve typical model applications to magnetized quark matter. (orig.)

  7. Lattice calculation of heavy-light decay constants with two flavors of dynamical quarks

    International Nuclear Information System (INIS)

    Bernard, C.; Datta, S.; DeGrand, T.; DeTar, C.; Gottlieb, Steven; Heller, Urs M.; McNeile, C.; Orginos, K.; Sugar, R.; Toussaint, D.

    2002-01-01

    We present results for f B , f B s , f D , f D s and their ratios in the presence of two flavors of light sea quarks (N f =2). We use Wilson light valence quarks and Wilson and static heavy valence quarks; the sea quarks are simulated with staggered fermions. Additional quenched simulations with nonperturbatively improved clover fermions allow us to improve our control of the continuum extrapolation. For our central values the masses of the sea quarks are not extrapolated to the physical u, d masses; that is, the central values are ''partially quenched.'' A calculation using 'fat-link clover' valence fermions is also discussed but is not included in our final results. We find, for example, f B =190(7)( -17 +24 )( -2 +11 )( -0 +8 ) MeV, f B s /f B =1.16(1)(2)(2)( -0 +4 ), f D s =241(5)( -26 +27 )( -4 +9 )( -0 +5 ) MeV, and f B /f D s =0.79(2)( -4 +5 )(3)( -0 +5 ), where in each case the first error is statistical and the remaining three are systematic: the error within the partially quenched N f =2 approximation, the error due to the missing strange sea quark and to partial quenching, and an estimate of the effects of chiral logarithms at small quark mass. The last error, though quite significant in decay constant ratios, appears to be smaller than has been recently suggested by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other lattice computations to date, the lattice u,d quark masses are not very light and chiral log effects may not be fully under control

  8. Note on 3-dimensional Regge calculus

    International Nuclear Information System (INIS)

    Soda, Jiro

    1991-01-01

    We shall study 3-dimensional Regge calculus with concentrating the role of the Bianchi identity. As a result, the number of the physical variables is determined to be 12g - 12(g > 1). The reason why Rocek and Williams derived the exact result of Deser, Jackiw and 'tHooft is clarified. (author)

  9. Chiral symmetry breaking and the spin content of the ρ and ρ' mesons

    International Nuclear Information System (INIS)

    Glozman, L.Ya.; Lang, C.B.; Limmer, M.

    2011-01-01

    Using interpolators with different SU(2) L xSU(2) R transformation properties we study the chiral symmetry and spin contents of the ρ and ρ ' mesons in lattice simulations with dynamical quarks. A ratio of couplings of the q-bar γ i τq and q-bar σ 0i τq interpolators to a given meson state at different resolution scales tells one about the degree of chiral symmetry breaking in the meson wave function at these scales. Using a Gaussian gauge invariant smearing of the quark fields in the interpolators, we are able to extract the chiral content of mesons up to the infrared resolution of ∼1 fm. In the ground state ρ meson the chiral symmetry is strongly broken with comparable contributions of both the (0,1)+(1,0) and (1/2,1/2) b chiral representations with the former being the leading contribution. In contrast, in the ρ ' meson the degree of chiral symmetry breaking is manifestly smaller and the leading representation is (1/2,1/2) b . Using a unitary transformation from the chiral basis to the 2S+1 L J basis, we are able to define and measure the angular momentum content of mesons in the rest frame. This definition is different from the traditional one which uses parton distributions in the infinite momentum frame. The ρ meson is practically a 3 S 1 state with no obvious trace of a 'spin crisis'. The ρ ' meson has a sizeable contribution of the 3 D 1 wave, which implies that the ρ ' meson cannot be considered as a pure radial excitation of the ρ meson.

  10. Chiral properties of baryon interpolating fields

    International Nuclear Information System (INIS)

    Nagata, Keitaro; Hosaka, Atsushi; Dmitrasinovic, V.

    2008-01-01

    We study the chiral transformation properties of all possible local (non-derivative) interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We derive and use the relations/identities among the baryon operators with identical quantum numbers that follow from the combined color, Dirac and isospin Fierz transformations. These relations reduce the number of independent baryon operators with any given spin and isospin. The Fierz identities also effectively restrict the allowed baryon chiral multiplets. It turns out that the non-derivative baryons' chiral multiplets have the same dimensionality as their Lorentz representations. For the two independent nucleon operators the only permissible chiral multiplet is the fundamental one, ((1)/(2),0)+(0,(1)/(2)). For the Δ, admissible Lorentz representations are (1,(1)/(2))+((1)/(2),1) and ((3)/(2),0)+(0,(3)/(2)). In the case of the (1,(1)/(2))+((1)/(2),1) chiral multiplet, the I(J)=(3)/(2)((3)/(2)) Δ field has one I(J)=(1)/(2)((3)/(2)) chiral partner; otherwise it has none. We also consider the Abelian (U A (1)) chiral transformation properties of the fields and show that each baryon comes in two varieties: (1) with Abelian axial charge +3; and (2) with Abelian axial charge -1. In case of the nucleon these are the two Ioffe fields; in case of the Δ, the (1,(1)/(2))+((1)/(2),1) multiplet has an Abelian axial charge -1 and the ((3)/(2),0)+(0,(3)/(2)) multiplet has an Abelian axial charge +3. (orig.)

  11. Computation of the chiral condensate using N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors of twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, E. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Forschungszentrum Juelich (Germany). IAS; Forschungszentrum Juelich (Germany). IKP; Forschungszentrum Juelich (Germany). JCHP; Collaboration: European Twisted Mass Collaboration

    2013-12-15

    We apply the spectral projector method, recently introduced by Giusti and Luescher, to compute the chiral condensate using N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the O(a) improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors.

  12. Regge-pole description of potential scattering by means of the phase-integral method

    International Nuclear Information System (INIS)

    Amaha, A.

    1992-01-01

    The application of Regge-pole theory to different atomic and molecular scattering has shown to have promising interpretational power in the differential cross sections. Differential cross sections can be analysed in terms of interference between the 'background' amplitude and a few Regge-pole positions of the scattering matrix (S matrix) representing surface waves around the interaction region. By the analytic continuation of the radial Schroedinger differential equation into the complex plane of angular momentum one can determine the analytic properties of the S matrix which contains the physical information in the scattering processes. For interaction potentials fulfilling certain properties, the study of the S matrix leads to the study of the F matrix introduced by Froeman and Froeman for the treatment of connection problems for phase-integral solutions of the differential equation. In this thesis the quantum mechanical scattering problem is analysed in the framework of Regge-pole theory with the use of the complex-angular-momentum formalism. To determine the S matrix, the relevant F matrix elements which give the stokes constants are derived and their properties are studied. The poles of the S matrix for particular complex values of the angular momentum quantum number are the Regge-poles. Using the Regge-pole positions and residues together with the background integral, the differential cross sections are calculated and compared with corresponding partial-wave representations

  13. Multi-Quarks and Two-Baryon Interaction in Lattice QCD

    International Nuclear Information System (INIS)

    Okiharu, F.; Suganuma, H.; Takahashi, T. T.; Doi, T.

    2006-01-01

    We study multi-quark (3Q,4Q,5Q) systems in lattice QCD. We perform the detailed studies of multi-quark potentials in lattice QCD to clarify the inter-quark interaction in multi-quark systems. We find that all the multi-quark potentials are well described by the OGE Coulomb plus multi-Y-type linear potential, i.e., the multi-Y Ansatz. For multi-quark systems, we observe lattice QCD evidences of 'flip-flop', i.e., flux-tube recombination. These lattice QCD studies give an important bridge between elementary particle physics and nuclear physics

  14. Bottom-hadron production through top quark decay

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi Nejad, Seyed Mohammad

    2009-06-15

    In this thesis we apply perturbative QCD to make precise predictions for some observables in high-energy processes involving bottom-quark. Our first application is a prediction for the energy spectrum of b-flavored hadrons in top quark decay. For that purpose we calculate at NLO the OCD corrections for bottom fragmentation in top decay. The b-quark in the top quark decay is considered once as a massless and once as a massive particle in our calculations. The difference between the differential width calculated in both cases can give us the perturbative fragmentation function of the b-quark. After that using the obtained differential widths and applying ZM-VFNS and GM-VFNS, we make some predictions for the spectrum of B-hadrons produced in top quark decay. The comparison of both approaches shows that the mass effect of the b-quark in the top quark decay is negligible. We also investigate the mass effect of B-hadron in the energy distribution obtained in the previous calculations and we show that this increases the value of the differential width when the energy taken away by the produced parton in top decay is small. Our second application is to obtain the helicity contributions of the W{sup +}-boson in the energy distribution of b-flavored hadrons in top quark decay. For this reason we study the angular decay distribution for the cascade decay of the top-quark (t{yields} b+W{sup +}({yields}e{sup +}+{nu}{sub e})). Using ZM-VFNS we make predictions for the NLO contributions of the longitudinal, the transverse-minus and the transverse-plus helicity of the W{sup +}-boson in the energy distribution of B-hadron. (orig.)

  15. Chiral symmetry breaking and the spin content of hadrons

    Science.gov (United States)

    Glozman, L. Ya.; Lang, C. B.; Limmer, M.

    2012-04-01

    From the parton distributions in the infinite momentum frame, one finds that only about 30% of the nucleon spin is carried by spins of the valence quarks, which gave rise to the term “spin crisis”. Similar results hold for the lowest mesons, as it follows from the lattice simulations. We define the spin content of a meson in the rest frame and use a complete and orthogonal q¯q chiral basis and a unitary transformation from the chiral basis to the 2LJ basis. Then, given a mixture of different allowed chiral representations in the meson wave function at a given resolution scale, one can obtain its spin content at this scale. To obtain the mixture of the chiral representations in the meson, we measure in dynamical lattice simulations a ratio of couplings of interpolators with different chiral structure. For the ρ meson, we obtain practically the 3S1 state with no trace of the spin crisis. Then a natural question arises: which definition does reflect the spin content of a hadron?

  16. Bethe-Salpeter dynamics and the constituent mass concept for heavy quark mesons

    International Nuclear Information System (INIS)

    Souchlas, N.; Stratakis, D.

    2010-01-01

    The definition of a quark as heavy requires a comparison of its mass with the nonperturbative chiral symmetry breaking scale which is about 1 GeV (Λ χ ∼1 GeV) or with the scale Λ QCD ∼0.2 GeV that characterizes the distinction between perturbative and nonperturbative QCD. For quark masses significantly larger than these scales, nonperturbative dressing effects, or equivalently nonperturbative self-energy contributions, and relativistic effects are believed to be less important for physical observables. We explore the concept of a constituent mass for heavy quarks in the Dyson-Schwinger equations formalism, for light-heavy and heavy-heavy quark mesons by studying their masses and electroweak decay constants.

  17. Search for the Chiral Magnetic Effect in Heavy-Ion Collisions and Quantification of the Background with the AMPT Model

    Science.gov (United States)

    Bryon, Jacob

    2017-09-01

    The chiral magnetic effect (CME) arises from the chirality imbalance of quarks and its interaction to the strong magnetic field generated in non-central heavy-ion collisions. Possible formation of domains of quarks with chirality imbalances is an intrinsic property of the Quantum ChromoDynamics (QCD), which describes the fundamental strong interactions among quarks and gluons. Azimuthal-angle correlations have been used to measure the magnitude of charge- separation across the reaction plane, which was predicted to arise from the CME. However, backgrounds from collective motion (flow) of the collision system can also contribute to the correlation observable. In this poster, we investigate the magnitude of the background utilizing the AMPT model, which contains no CME signals. We demonstrate, for Au +Au collisions at 200 and 39 GeV, a scheme to remove the flow background via the event-shape engineering with the vanishing magnitude of the flow vector. We also calculate the ensemble average of the charge-separation observable, and provide a background baseline for the experimental data.

  18. Chiral symmetry and nucleon structure: Low energy aspects

    International Nuclear Information System (INIS)

    Weise, W.

    1989-01-01

    The symmetries and currents of QCD at low energy and long wavelength are realized in the form of mesons, rather than quarks and gluons. In this talk I summarize the merits, but also the limits, of chiral non-linear meson theories and their soliton solutions, in descriptions of nucleon structure and the nucleon-nucleon interaction. (orig.)

  19. WIMP-nucleus scattering in chiral effective theory

    Science.gov (United States)

    Cirigliano, Vincenzo; Graesser, Michael L.; Ovanesyan, Grigory

    2012-10-01

    We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.

  20. Up, down, strange and charm quark masses with Nf=2+1+1 twisted mass lattice QCD

    Directory of Open Access Journals (Sweden)

    N. Carrasco

    2014-10-01

    Full Text Available We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210–450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI′-MOM method. The results for the quark masses converted to the MS¯ scheme are: mud(2 GeV=3.70(17 MeV, ms(2 GeV=99.6(4.3 MeV and mc(mc=1.348(46 GeV. We obtain also the quark mass ratios ms/mud=26.66(32 and mc/ms=11.62(16. By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate mu/md=0.470(56, leading to mu=2.36(24 MeV and md=5.03(26 MeV.

  1. Quark interchange model of baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  2. Quark interchange model of baryon interactions

    International Nuclear Information System (INIS)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers

  3. Chiral symmetry breaking in a semilocalized magnetic field

    Science.gov (United States)

    Cao, Gaoqing

    2018-03-01

    In this work, we explore the pattern of chiral symmetry breaking and restoration in a solvable magnetic field configuration within the Nambu-Jona-Lasinio model. The special semilocalized static magnetic field can roughly mimic the realistic situation in peripheral heavy ion collisions; thus, the study is important for the dynamical evolution of quark matter. We find that the magnetic-field-dependent contribution from discrete spectra usually dominates over the contribution from continuum spectra and chiral symmetry breaking is locally catalyzed by both the magnitude and scale of the magnetic field. The study is finally extended to the case with finite temperature or chemical potential.

  4. Thermodynamics of a solvable quark model inspired by the Gribov-Zwanziger theory

    International Nuclear Information System (INIS)

    Mintz, B.W.; Guimaraes, M.S.

    2013-01-01

    Full text: In an attempt to solve the problem of spurious gauge copies in the path integral approach to gauge theories, V. N. Gribov proposed in 1978 a method to restrict the integration domain of the path integral to only one gauge field representative of each physical field configuration. As a result, the quadratic part of the gluon propagator is modified in the infrared, so that it acquires complex poles, i.e., complex m asses . This implies the absence of gluons in the physical spectrum, which is a necessary condition for confinement. An analogous reasoning may be applied to quark fields coupled to the gauge fields. As a consequence, the quark propagator also gets modified in the infrared, giving rise to unphysical propagators (i.e., with complex poles) at small momenta. Such a property is understood as a sign of both quark confinement and of the breaking of chiral symmetry in the vacuum. In this work, we study the thermodynamics of this model by exactly calculating the partition function using standard methods of finite-temperature quantum field theory. We find that the infrared behavior of the quark propagator leads to a highly nontrivial pressure as a function of the temperature, which is qualitatively close to the results from lattice QCD at finite temperature. (author)

  5. Measurements and searches with top quarks. Measurement of the top quark pair production cress section, the ratio of brnaching fractions and searches for new physics in the top quark sector with the D0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Yvonne

    2008-08-15

    In this thesis measurements and searches in the top quark sector have been presented. With about 0.9 fb{sup -1} of data collected by the D0 detector, the precise measurement of the top quark pair production cross section and the ratio of branching fractions R has been performed in the lepton plus jets final state. Simultaneously with R the top quark pair production cross section {sigma}(p anti p {yields} t anti t) . B{sup 2}(t {yields} W{sub q}) has been extracted. Furthermore, the top quark pair production cross section in the lepton plus jets, dilepton and tau plus lepton final states have been combined for a dataset of about 1 fb{sup -1}, resulting in {sigma}{sub t} {sub anti} {sub t} = 7.83{sup +093}{sub -0.82} (total) pb for a top quark mass of 175 GeV. Based on the cross section combination a global search for the charged Higgs boson in top quark decays in various t anti t final states has been performed. Last but not least, the simultaneous measurement of R and {sigma}{sub t} {sub anti} {sub t} was changed into a simultaneous measurement of {sigma}{sub t} {sub anti} {sub t} and the associated production of a Higgs boson and a top quark pair {sigma}{sub t} {sub anti} {sub tH} . B(H {yields} b anti b). The latter yields the first measurement of {sigma}{sub t} {sub anti} {sub tH} . B(H {yields} b anti b) at D0 and the currently best limits on {sigma}{sub t} {sub anti} {sub tH} . B(H {yields} b anti b) from the Tevatron. (orig.)

  6. Eleven lectures on the physics of the quark-gluon plasma

    International Nuclear Information System (INIS)

    McLerran, L.

    1984-10-01

    These lectures are intended to be an introduction to the physics of the quark-gluon plasma, and were presented at a workshop on The Physics of the Quark-Gluon Plasma held at Hua-Zhong Normal University in Wuhan, People's Republic of China in September, 1983. The lectures cover perturbation theory of the plasma at high temperature as well as the non-perturbative methods and results of lattice gauge theory computations. Physical models of the confinement-deconfinement phase transition and the modes of chiral symmetry breaking are presented. The possibility that a quark-gluon plasma might be produced in ultra-relativistic nuclear collisions is analyzed. Separate entries were prepared for the data base for the eleven lectures

  7. Perspectives in hadron and quark dynamics

    International Nuclear Information System (INIS)

    Amsler, C.; Bressani, T.; Close, F.E.; De Sanctis, E.; Frois, B.; Kunne, F.; Laget, J.M.; von Harrach, D.; Metag, V.; Mulders, P.J.; Riska, D.O.

    1997-01-01

    In the past two decades, quantum chromodynamics (QCD) has emerged as the theory for the strong force with quarks and gluons as the building blocks of nuclear matter at large densities and high temperatures. One of the most exciting challenges for nuclear physics is the study of the non-perturbative regime of QCD. It is this regime which is relevant for understanding how the elementary fields of QCD - quarks and gluons - build up particles such as protons and neutrons. A basic theoretical difficulty is the non-existence of asymptotic, isolated, colored objects. This is a feature of the richness of the vacuum structure of QCD. Understanding the different QCD phases and the transitions among them is the challenge of the modern study of strong interactions. At low energy, chiral symmetry can be used to build aneffective theory of hadron interactions. At higher energies, the parton model uses non-perturbative quark and gluon distributions to describe hadronic scattering processes. (orig)

  8. Effective action for the Regge processes in gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, L.N. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-05-15

    It is shown, that the effective action for the reggeized graviton interactions can be formulated in terms of the reggeon fields A{sup ++} and A{sup --} and the metric tensor g{sub {mu}}{sub {nu}} in such a way, that it is local in the rapidity space and has the property of general covariance. The corresponding effective currents j{sup -} and j{sup +} satisfy the Hamilton-Jacobi equation for a massless particle moving in the gravitational field. These currents are calculated explicitly for the shock wave-like fields and a variation principle for them is formulated. As an application, we reproduce the effective lagrangian for the multi-regge processes in gravity together with the graviton Regge trajectory in the leading logarithmic approximation with taking into account supersymmetric contributions. (orig.)

  9. Pion–nucleon scattering: from chiral perturbation theory to Roy–Steiner equations

    International Nuclear Information System (INIS)

    Kubis, Bastian; Hoferichter, Martin; Elvira, Jacobo Ruiz de; Meißner, Ulf-G.

    2016-01-01

    Ever since Weinberg’s seminal predictions of the pion–nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion–nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion–nucleon dynamics also strongly affects the long-range part of nucleon–nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy–Steiner equations, with chiral dynamics to determine pion–nucleon scattering amplitudes at low energies with high precision.

  10. Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations

    Science.gov (United States)

    Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.

    2016-11-01

    Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.*

  11. arXiv Chiral Effective Theory of Dark Matter Direct Detection

    CERN Document Server

    Bishara, Fady

    2017-02-03

    We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.

  12. Multileptons from heavy quarks

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1984-03-01

    The paper is concerned with a brief look at the various multilepton signals that are expected at p-barp colliders from the production and cascade decay of top quarks, plus the backgrounds from b and c production. (author)

  13. Radiative decays of vector mesons in the chiral bag model

    International Nuclear Information System (INIS)

    Tabachenko, A.N.

    1988-01-01

    A new model of radiative π-meson decays of vector mesons in the chiral bag model is proposed. The quark-π-meson interaction has the form of a pseudoscalar coupling and is located on the bag surface. The vector meson decay width depends on the quark masses, the π-meson decay constant, the radius of the bag, and the free parameter Z 2 , which specifies the disappearance of the bag during the decay. The obtained results for the omega- and p-decay widths are in satisfactory agreement with the experiment

  14. Chiral symmetry breaking and the spin content of the ρ and ρ‧ mesons

    Science.gov (United States)

    Glozman, L. Ya.; Lang, C. B.; Limmer, M.

    2011-11-01

    Using interpolators with different SU(2)L × SU(2)R transformation properties we study the chiral symmetry and spin contents of the ρ and ρ‧ mesons in lattice simulations with dynamical quarks. A ratio of couplings of the qbarγi τq and qbarσ0i τq interpolators to a given meson state at different resolution scales tells one about the degree of chiral symmetry breaking in the meson wave function at these scales. Using a Gaussian gauge invariant smearing of the quark fields in the interpolators, we are able to extract the chiral content of mesons up to the infrared resolution of ∼ 1 fm. In the ground state ρ meson the chiral symmetry is strongly broken with comparable contributions of both the (0 , 1) + (1 , 0) and (1 / 2 , 1 / 2) b chiral representations with the former being the leading contribution. In contrast, in the ρ‧ meson the degree of chiral symmetry breaking is manifestly smaller and the leading representation is (1 / 2 , 1 / 2) b. Using a unitary transformation from the chiral basis to the LJ2S+1 basis, we are able to define and measure the angular momentum content of mesons in the rest frame. This definition is different from the traditional one which uses parton distributions in the infinite momentum frame. The ρ meson is practically a 3S1 state with no obvious trace of a "spin crisis". The ρ‧ meson has a sizeable contribution of the 3D1 wave, which implies that the ρ‧ meson cannot be considered as a pure radial excitation of the ρ meson.

  15. MHV amplitudes for 3→3 gluon scattering in Regge limit

    International Nuclear Information System (INIS)

    Bartels, J.; Prygarin, A.

    2010-12-01

    We calculate corrections to the BDS formula for the six-particle planar MHV amplitude for the gluon transition 3 → 3 in the multi-Regge kinematics for the physical region, in which the Regge pole ansatz is not valid. The remainder function at two loops is obtained by an analytic continuation of the expression derived by Goncharov, Spradlin, Vergu and Volovich to the kinematic region described by the Mandelstam singularity exchange in the crossing channel. It contains both the imaginary and real contributions being in agreement with the BFKL predictions. The real part of the three loop expression is found from a dispersion-like all-loop formula for the remainder function in the multi-Regge kinematics derived by one of the authors. We also make a prediction for the all-loop real part of the remainder function multiplied by the BDS phase, which can be accessible through calculations in the regime of the strong coupling constant. (orig.)

  16. MHV amplitudes for 3{yields}3 gluon scattering in Regge limit

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Prygarin, A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Lipatov, L.N. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute (Russian Federation)

    2010-12-15

    We calculate corrections to the BDS formula for the six-particle planar MHV amplitude for the gluon transition 3 {yields} 3 in the multi-Regge kinematics for the physical region, in which the Regge pole ansatz is not valid. The remainder function at two loops is obtained by an analytic continuation of the expression derived by Goncharov, Spradlin, Vergu and Volovich to the kinematic region described by the Mandelstam singularity exchange in the crossing channel. It contains both the imaginary and real contributions being in agreement with the BFKL predictions. The real part of the three loop expression is found from a dispersion-like all-loop formula for the remainder function in the multi-Regge kinematics derived by one of the authors. We also make a prediction for the all-loop real part of the remainder function multiplied by the BDS phase, which can be accessible through calculations in the regime of the strong coupling constant. (orig.)

  17. On the vacuum baryon number in the chiral bag model

    International Nuclear Information System (INIS)

    Jaroszewicz, T.

    1984-01-01

    We give a rederivation, generalization and interpretation of the result of Goldstone and Jaffe on the vacuum baryon number in the chiral bag model. Our results are based on considering the bag model as a theory of free quarks, massless inside and infinitely massive outside the bag. (orig.)

  18. Top quark mass spectrum from flavor-changing processes

    Energy Technology Data Exchange (ETDEWEB)

    Albright, C.H. (Northern Illinois Univ., Dekalb, IL (USA). Dept. of Physics Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-09-01

    The input from flavor-changing processes is reviewed and results of several analyses are presented on the top quark mass spectrum without recourse to the neutral-current data. A top quark mass in the range 135 {plus minus} 25 GeV is much preferred, but a very massive top quark above 300 GeV can not be ruled out. Comments are made about the future use of the inclusive decay B {yields} {gamma} + X{sub S=1} for constraining the top quark mass. 24 refs., 2 figs.

  19. Nucleon and delta masses in twisted mass chiral perturbation theory

    International Nuclear Information System (INIS)

    Walker-Loud, Andre; Wu, Jackson M.S.

    2005-01-01

    We calculate the masses of the nucleons and deltas in twisted mass heavy baryon chiral perturbation theory. We work to quadratic order in a power counting scheme in which we treat the lattice spacing, a, and the quark masses, m q , to be of the same order. We give expressions for the mass and the mass splitting of the nucleons and deltas both in and away from the isospin limit. We give an argument using the chiral Lagrangian treatment that, in the strong isospin limit, the nucleons remain degenerate and the delta multiplet breaks into two degenerate pairs to all orders in chiral perturbation theory. We show that the mass splitting between the degenerate pairs of the deltas first appears at quadratic order in the lattice spacing. We discuss the subtleties in the effective chiral theory that arise from the inclusion of isospin breaking

  20. Interplay of mesonic and baryonic degrees of freedom in quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Naseemuddin

    2015-11-03

    In this work we study the influence of mesonic and baryonic fluctuations on the phase diagram of quark matter with two flavors. By examining the hadronization process and related techniques, we derive effective low-energy models, where the gluons are integrated out. To be able to compare our model calculations with lattice results at finite chemical potential, we investigate a QCD-like theory with two colors, where the sign-problem is absent. To this end we introduce a quark-meson-diquark model, where the bosonic diquarks play the role of colorless, baryonic degrees of freedom competing with the mesons. To access the phase diagram and determine the phases of chiral and diquark condensation, we employ a functional renormalization group approach allowing for a systematic non-perturbative truncation scheme. Interesting phenomena arise that are known from condensed matter physics, as the BEC-BSC crossover and a phase of condensation within domains. We explore the impact of running wave function renormalizations and Yukawa couplings for the quarks and the boson fields on top of the scale dependence of the effective potential. In the course of this we discuss the Silver Blaze property and its realization within a functional approach. In parallel, we formulate a quark-meson-diquark-baryon model for physical QCD as a low-energy effective theory for baryonic matter at high density, and discuss the relevance of the diquark and baryon degrees of freedom. In this sense, we compute a phase diagram for QCD from functional methods, including a color superconducting phase.

  1. Quasirelativistic quark model in quasipotential approach

    CERN Document Server

    Matveev, V A; Savrin, V I; Sissakian, A N

    2002-01-01

    The relativistic particles interaction is described within the frames of quasipotential approach. The presentation is based on the so called covariant simultaneous formulation of the quantum field theory, where by the theory is considered on the spatial-like three-dimensional hypersurface in the Minkowski space. Special attention is paid to the methods of plotting various quasipotentials as well as to the applications of the quasipotential approach to describing the characteristics of the relativistic particles interaction in the quark models, namely: the hadrons elastic scattering amplitudes, the mass spectra and widths mesons decays, the cross sections of the deep inelastic leptons scattering on the hadrons

  2. From quarks to nucleons in dark matter direct detection

    Science.gov (United States)

    Bishara, Fady; Brod, Joachim; Grinstein, Benjamin; Zupan, Jure

    2017-11-01

    We provide expressions for the nonperturbative matching of the effective field theory describing dark matter interactions with quarks and gluons to the effective theory of nonrelativistic dark matter interacting with nonrelativistic nucleons. We give expressions of leading and subleading order in chiral counting. In general, a single partonic operator matches onto several nonrelativistic operators already at leading order in chiral counting. Keeping only one operator at the time in the nonrelativistic effective theory thus does not properly describe the scattering in direct detection. The matching of the axial-axial partonic level operator, as well as the matching of the operators coupling DM to the QCD anomaly term, include naively momentum suppressed terms. However, these are still of leading chiral order due to pion poles and can be numerically important.

  3. Masses of the light hadrons in the chiral and cloudy bag models

    International Nuclear Information System (INIS)

    Saito, Koichi.

    1983-10-01

    The masses of the light hadrons except for the pion are calculated in the stable chiral and cloudy bag models with the massless or massive u, d quark and pion. Two difficulties in these models, i.e. the lack of stability and the divergence of the quark self-energy, are removed by taking account of a simple non-local quark-pion interaction. The effects of the finite size of the qq-bar pion and the behavior of the quark self-energy are discussed in detail. In our calculation the bag self-energy due to the pion has an important role in the origin of the N-Δ and the Σ-Λ mass differences. The baryon octet and decuplet masses are well reproduced by the present model. (author)

  4. The chiral critical line of $N_{f}=2+1$ QCD at ero and non-zero baryon density

    CERN Document Server

    De Forcrand, Philippe; Forcrand, Philippe de; Philipsen, Owe

    2007-01-01

    We present numerical results for the location of the chiral critical line at finite temperature and zero and non-zero baryon density for QCD with N_f=2+1 flavours of staggered fermions on lattices with temporal extent N_t=4. For degenerate quark masses, we compare our results obtained with the exact RHMC algorithm with earlier, inexact R-algorithm results and find a reduction of 25% in the critical quark mass, for which the first order phase transition changes to a smooth crossover. Extending our analysis to non-degenerate quark masses, we map out the chiral critical line up to the neighbourhood of the physical point, which we confirm to be in the crossover region. Our data are consistent with a tricritical point at a strange quark mass of ~500 MeV. Finally, we investigate the shift of the critical line with finite baryon density, by simulating with an imaginary chemical potential for which there is no sign problem. We observe this shift to be very small or, conversely, the critical endpoint \\mu^c(m_{u,d},m_s...

  5. Nf=2 Lattice QCD and Chiral Perturbation Theory

    International Nuclear Information System (INIS)

    Scorzato, L.; Farchioni, F.; Hofmann, P.; Jansen, K.; Montvay, I.; Muenster, G.; Papinutto, M.; Scholz, E.E.; Shindler, A.; Ukita, N.; Urbach, C.; Wenger, U.; Wetzorke, I.

    2006-01-01

    By employing a twisted mass term, we compare recent results from lattice calculations of N f =2 dynamical Wilson fermions with Wilson Chiral Perturbation Theory (WChPT). The final goal is to determine some com- binations of Gasser-Leutwyler Low Energy Constants (LECs). A wide set of data with different lattice spacings (a ∼ 0.2 - 0.12 fm), different gauge actions (Wilson plaquette, DBW2) and different quark masses (down to the lowest pion mass allowed by lattice artifacts and including negative quark masses) provide a strong check of the applicability of WChPT in this regime and the scaling behaviours in the continuum limit

  6. Disoriented chiral condensates and anomalous production of pions

    International Nuclear Information System (INIS)

    Martinis, M.; Mikuta-Martinis, V.; Crnugelj, J.

    1999-01-01

    The leading-particle effect and the factorization property of the scattering amplitude in the impact parameter space are used to study semiclassical production of pions in the central region. The mechanism is related to the isospin-uniform solution of the nonlinear σ-model coupled to quark degrees of freedom. The multipion exchange potential between two quarks is derived. It is shown that the soft chiral pion Bremsstrahlung also leads to anomalously large fluctuations in the ratio of neutral to charged pion.. We show that only direct production of pions in the form of an isoscalar coherent pulse without isovector pairs can lead to large neutral-charged fluctuations. (Authors)

  7. Short-range correlations in quark and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Froemel, Frank

    2007-06-15

    In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)

  8. Cheshire cat phenomena and quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1986-11-01

    The notion of the ''Cheshire Cat'' principle in hadron structure is developed rigorously in (1+1) dimensions and approximately in (3+1) dimensions for up- and down-quark flavor systems. This phenomenon is invoked to address the issue as to whether or not direct quark-gluon signatures can be ''seen'' in low-energy nuclear phenomena. How addition of the third flavor -strangeness- can modify the Cheshire Cat property is discussed. It is proposed that one of the primary objectives of nuclear physics be to probe -and disturb- the ''vacuum'' of the strong interactions (QCD) and that for this purpose the chiral symmetry SU(3)xSU(3) can play a crucial role in normal and extreme conditions. As an illustration, kaon condensation at a density ρ>∼ 3ρ 0 is discussed in terms of a toy model and is related to ''cleansing'' of the quark condensates from the vacuum

  9. Scalar mesons as a mixing of two and four quark states

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Vijande, J.; Fernandez, F.; Valcarce, A.

    2005-01-01

    The scalar mesons are a puzzling problem in meson spectroscopy: they appear to be too numerous and with a mass often incompatible with usual quark-quark potentials. In this paper, we study the possibility to describe them as a mixing of states composed of one and two quark-antiquark pairs. A potential containing confinement, gluon exchange and boson exchange, as expected from chiral symmetry, is used in a consistent way to calculate the two and four quark states separately. Then, a coupling between these states is introduced as a constant term depending only on the flavour of the created pair. The description is largely improved. To refine the treatment, a coupling with a glueball is also considered. All the experimental resonances seem to fit correctly in this scheme. (author)

  10. Scalar mesons as a mixing of two and four quark states

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, B. [Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Grenoble (France); Vijande, J.; Fernandez, F.; Valcarce, A. [Universidad de Salamanca, Salamanca (Spain). Grupo de Fisica Nuclear

    2005-07-01

    The scalar mesons are a puzzling problem in meson spectroscopy: they appear to be too numerous and with a mass often incompatible with usual quark-quark potentials. In this paper, we study the possibility to describe them as a mixing of states composed of one and two quark-antiquark pairs. A potential containing confinement, gluon exchange and boson exchange, as expected from chiral symmetry, is used in a consistent way to calculate the two and four quark states separately. Then, a coupling between these states is introduced as a constant term depending only on the flavour of the created pair. The description is largely improved. To refine the treatment, a coupling with a glueball is also considered. All the experimental resonances seem to fit correctly in this scheme. (author)

  11. The fundamental theorem of linearised Regge calculus

    International Nuclear Information System (INIS)

    Barrett, J.W.

    1987-01-01

    In linearised Regge calculus in a topologically trivial region, the space of linearised deviations of the edge lengths from a flat configuration, divided by the subspace of deformations due to translations of the vertices, is equivalent to the space of the linearised curvatures which satisfy the Bianchi identities. (orig.)

  12. Minkowski space pion model inspired by lattice QCD running quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Clayton S. [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Melo, J.P.B.C. de [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo, SP (Brazil); Frederico, T., E-mail: tobias@ita.br [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil)

    2017-03-10

    The pion structure in Minkowski space is described in terms of an analytic model of the Bethe–Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe–Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward–Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.

  13. Minkowski space pion model inspired by lattice QCD running quark mass

    Directory of Open Access Journals (Sweden)

    Clayton S. Mello

    2017-03-01

    Full Text Available The pion structure in Minkowski space is described in terms of an analytic model of the Bethe–Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe–Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward–Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.

  14. Diffractive dissociation and new quarks

    International Nuclear Information System (INIS)

    White, A.R.

    1983-04-01

    We argue that the chiral limit of QCD can be identified with the strong (diffractive dissociation) coupling limit of reggeon field theory. Critical Pomeron scaling at high energy must then be directly related to an infra-red fixed-point of massless QCD and so requires a large number of flavors. This gives a direct argument that the emergence of diffraction-peak scaling, KNO scaling etc. at anti p-p colliders are evidence of a substantial quark structure still to be discovered

  15. Quark mass effects in quark number susceptibilities

    International Nuclear Information System (INIS)

    Graf, Thorben; Petreczky, Peter

    2017-01-01

    The quark degrees of freedom of the QGP with special focus on mass effects are investigated. A next-to-leading-order perturbation theory approach with quark mass dependence is applied and compared to lattice QCD results. (paper)

  16. Consistency tests of Ampcalculator and chiral amplitudes in SU(3) Chiral Perturbation Theory: A tutorial-based approach

    International Nuclear Information System (INIS)

    Ananthanarayan, B.; Sentitemsu Imsong, I.; Das, Diganta

    2012-01-01

    Ampcalculator (AMPC) is a Mathematica copyright based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O(p 4 )) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G 27 . Another illustrative set of amplitudes at tree level we provide is in the context of τ-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics. (orig.)

  17. Quark-diquark approximation of the three-quark structure of baryons in the quark confinement model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.; Lyubovitskij, V.E.

    1990-01-01

    Octet (1 + /2) and decuplet (3 + /2) of baryons as relativistic three-quark states are investigated in the quark confinement model (QCM), the relativistic quark model, based on some assumptions about hadronization and quark confinement. The quark-diquark approximation of the three-quark structure of baryons is proposed. In the framework of this approach the description of the main low-energy characteristics of baryons as magnetic moments, electromagnetic radii and form factors, ratio of axial and vector constants in semileptonic baryon octet decays, strong form factors and decay widths is given. The obtained results are in agreement with experimental data. 31 refs.; 4 figs.; 5 tabs

  18. Strange baryons in a chiral quark-meson model. Pt. 2

    International Nuclear Information System (INIS)

    McGovern, J.A.; Birse, M.C.

    1990-01-01

    The chrial-quark meson model is used to study baryon properties with realistic breaking of SU(3). The symmetry breaking is assumed to be strong, so that a random phase approximation (RPA) can be used. In this the strange baryons are described as excitations built on the hedgehog soliton and have an excitation energy of 315 MeV. Other properties of strange baryons are obtained by an approximate spin-isospin projection from the RPA wave function. The magnetic moments agree reasonably well with experiment, but the deviations from the experimental values suggest that the method is valid for the case of rather stronger symmetry breaking than is realistic. The dependence of the RPA energy on the magnitude of the symmetry breaking is examined, and found to be strongly nonlinear for realistic values. This supports the idea that a large πN sigma commutator need not imply a large strange-quark content in the proton. For reasonable values of the scalar meson masses the strange-quark condensate is found to be less than 5% of the total, at the mean-field level. We also estimate the contribution to the condensate from RPA correlations. Within a one-mode approximation we find these to be very small, ≅ 2%. (orig.)

  19. Dynamical chiral symmetry breaking and pion decay constant

    International Nuclear Information System (INIS)

    Gogohia, V.Sh.; Kluge, Gy.

    1991-08-01

    Flavour non-singlet, chiral axial-vector Ward-Takahashi identity is investigated in the framework of dynamical chiral symmetry breaking. The use of the condition of stationarity for the bound-state amplitude is proposed in order to fully determine this quantity and the regular piece of the corresponding axial vertex. This makes it possible to express the pion decay constant in terms of the quark propagator variables only. An exact expression was found for the pion decay constant in current algebra and in Jackiw-Johnson representation as well. We also find a new expression for the pion decay constant in the Pagels-Stokar-Cornwall variables within the framework of Jackiw-Johnson representation. (author) 22 refs.; 2 figs

  20. Quark effects in nuclear physics

    International Nuclear Information System (INIS)

    Miller, G.A.

    1983-01-01

    A phenomenological approach which enables the size of quark effects in various nuclear processes is discussed. The principle of conservation of probability provides significant constraints on six quark wave functions. Using this approach, it is found that the low-energy proton-proton weak interaction can be explained in terms of W and Z boson exchanges between quarks. That the value of the asymptotic ratio of D to S state wave functions is influenced (at the 5% level) by quark effects, is another result of our approach. We have not discovered a nuclear effect that can be uniquely explained by quark-quark interactions. However it does seem that quark physics is very relevant for nuclear physics. 52 references