WorldWideScience

Sample records for regeneration stem cell

  1. Müller stem cell dependent retinal regeneration.

    Science.gov (United States)

    Chohan, Annu; Singh, Usha; Kumar, Atul; Kaur, Jasbir

    2017-01-01

    Müller Stem cells to treat ocular diseases has triggered enthusiasm across all medical and scientific communities. Recent development in the field of stem cells has widened the prospects of applying cell based therapies to regenerate ocular tissues that have been irreversibly damaged by disease or injury. Ocular tissues such as the lens and the retina are now known to possess cell having remarkable regenerative abilities. Recent studies have shown that the Müller glia, a cell found in all vertebrate retinas, is the primary source of new neurons, and therefore are considered as the cellular basis for retinal regeneration in mammalian retinas. Here, we review the current status of retinal regeneration of the human eye by Müller stem cells. This review elucidates the current status of retinal regeneration by Müller stem cells, along with major retinal degenerative diseases where these stem cells play regenerative role in retinal repair and replacement. Copyright © 2016. Published by Elsevier B.V.

  2. Potential Use of Stem Cells for Kidney Regeneration

    Directory of Open Access Journals (Sweden)

    Takashi Yokoo

    2011-01-01

    Full Text Available Significant advances have been made in stem cell research over the past decade. A number of nonhematopoietic sources of stem cells (or progenitor cells have been identified, including endothelial stem cells and neural stem cells. These discoveries have been a major step toward the use of stem cells for potential clinical applications of organ regeneration. Accordingly, kidney regeneration is currently gaining considerable attention to replace kidney dialysis as the ultimate therapeutic strategy for renal failure. However, due to anatomic complications, the kidney is believed to be the hardest organ to regenerate; it is virtually impossible to imagine such a complicated organ being completely rebuilt from pluripotent stem cells by gene or chemical manipulation. Nevertheless, several groups are taking on this big challenge. In this manuscript, current advances in renal stem cell research are reviewed and their usefulness for kidney regeneration discussed. We also reviewed the current knowledge of the emerging field of renal stem cell biology.

  3. Stem cell plasticity enables hair regeneration following Lgr5+ cell loss.

    Science.gov (United States)

    Hoeck, Joerg D; Biehs, Brian; Kurtova, Antonina V; Kljavin, Noelyn M; de Sousa E Melo, Felipe; Alicke, Bruno; Koeppen, Hartmut; Modrusan, Zora; Piskol, Robert; de Sauvage, Frederic J

    2017-06-01

    Under injury conditions, dedicated stem cell populations govern tissue regeneration. However, the molecular mechanisms that induce stem cell regeneration and enable plasticity are poorly understood. Here, we investigate stem cell recovery in the context of the hair follicle to understand how two molecularly distinct stem cell populations are integrated. Utilizing diphtheria-toxin-mediated cell ablation of Lgr5 + (leucine-rich repeat-containing G-protein-coupled receptor 5) stem cells, we show that killing of Lgr5 + cells in mice abrogates hair regeneration but this is reversible. During recovery, CD34 + (CD34 antigen) stem cells activate inflammatory response programs and start dividing. Pharmacological attenuation of inflammation inhibits CD34 + cell proliferation. Subsequently, the Wnt pathway controls the recovery of Lgr5 + cells and inhibition of Wnt signalling prevents Lgr5 + cell and hair germ recovery. Thus, our study uncovers a compensatory relationship between two stem cell populations and the underlying molecular mechanisms that enable hair follicle regeneration.

  4. Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges.

    Science.gov (United States)

    Choi, Sung Hyun; Jung, Seok Yun; Kwon, Sang-Mo; Baek, Sang Hong

    2012-01-01

    Ischemic heart disease (IHD) accelerates cardiomyocyte loss, but the developing stem cell research could be useful for regenerating a variety of tissue cells, including cardiomyocytes. Diverse sources of stem cells for IHD have been reported, including embryonic stem cells, induced pluripotent stem cells, skeletal myoblasts, bone marrow-derived stem cells, mesenchymal stem cells, and cardiac stem cells. However, stem cells have unique advantages and disadvantages for cardiac tissue regeneration, which are important considerations in determining the specific cells for improving cell survival and long-term engraftment after transplantation. Additionally, the dosage and administration method of stem cells need to be standardized to increase stability and efficacy for clinical applications. Accordingly, this review presents a summary of the stem cell therapies that have been studied for cardiac regeneration thus far, and discusses the direction of future cardiac regeneration research for stem cells.

  5. Bone regeneration and stem cells

    DEFF Research Database (Denmark)

    Arvidson, K; Abdallah, B M; Applegate, L A

    2011-01-01

    cells, use of platelet rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.......This invited review covers research areas of central importance for orthopedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and fetal stem cells, effects of sex steroids on mesenchymal stem...

  6. Bone regeneration and stem cells

    Science.gov (United States)

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  7. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration].

    Science.gov (United States)

    Liang, Hang; Deng, Xiangyu; Shao, Zengwu

    2017-10-01

    To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.

  8. Myocardial regeneration potential of adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  9. Myocardial regeneration potential of adipose tissue-derived stem cells

    International Nuclear Information System (INIS)

    Bai, Xiaowen; Alt, Eckhard

    2010-01-01

    Research highlights: → Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. → For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. → This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying

  10. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective.

    Science.gov (United States)

    Huang, George T-J; Al-Habib, Mey; Gauthier, Philippe

    2013-03-01

    There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic.

  11. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    Science.gov (United States)

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  12. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Directory of Open Access Journals (Sweden)

    Wataru Sonoyama

    2006-12-01

    Full Text Available Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla. Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  13. Gradual regeneration of mouse testicular stem cells after exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Meistrich, M.L.; Hunter, N.R.; Suzuki, N.; Trostle, P.K.; Withers, H.R.

    1978-01-01

    The regeneration of mouse testicular stem cells during 60 weeks after exposure to 600 or 1200 rad of γ radiation was examined. Restoration of spermatogenesis depended on stem cell survival, regeneration, and differentiation. Several assays were employed to measure the number of stem cells and their ability to repopulate the seminiferous epithelium as follows. Assay 1: The percentage of repopulated tubular cross sections was determined histologically at various times after irradiation. Assay 2: Mice were irradiated and, after given time intervals to allow for regeneration of stem cell numbers, a second dose was given. The percentage of repopulated tubular cross sections was determined 5 weeks later. Assay 3: The ability of the stem cells to produce spermatocytes and spermatids was assayed by the levels of the germ cell specific isoenzyme, LDH-X. Assay 4: The ability of the stem cells to produce sperm was assayed by the number of sperm heads in the testes. In addition, the ability of the stem cells to produce functional spermatozoa was measured by the fertility of the animals. The results obtained were as follows. All assays demonstrated that gradual regeneration of stem cell number occurred simultaneously with repopulation of the seminiferous epithelium by differentiating cells derived from stem cells. The regeneration kinetics of stem cells followed an exponential increase approaching a dose-dependent plateau below the level prior to irradiation. The doubling time for stem cells during the exponential portion was about 2 weeks. The regeneration of stem cell number after depletion by irradiation was gradual and incomplete, and only partially restored spermatogenesis. Correlation of regeneration with fertility data demonstrated that fertility was reestablished when sperm production returned to about 15% of control levels

  14. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration.

    Science.gov (United States)

    Jones, Brendan A; Pei, Ming

    2012-08-01

    Articular cartilage is difficult to heal once injury or disease occurs. Autologous chondrocyte transplantation is a biological treatment with good prognosis, but donor site morbidity and limited cell source are disadvantages. Currently, mesenchymal stem cells (MSCs) are a promising approach for cartilage regeneration. Despite there being various sources, the best candidate for cartilage regeneration is the one with the greatest chondrogenic potential and the least hypertrophic differentiation. These properties are able to insure that the regenerated tissue is hyaline cartilage of high quality. This review article will summarize relevant literature to justify synovium-derived stem cells (SDSCs) as a tissue-specific stem cell for chondrogenesis by comparing synovium and cartilage with respect to anatomical location and functional structure, comparing the growth characterization and chondrogenic capacity of SDSCs and MSCs, evaluating the application of SDSCs in regenerative medicine and diseases, and discussing potential future directions.

  15. Designing the stem cell microenvironment for guided connective tissue regeneration.

    Science.gov (United States)

    Bogdanowicz, Danielle R; Lu, Helen H

    2017-12-01

    Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration. © 2017 New York Academy of Sciences.

  16. The muscle stem cell niche : regulation of satellite cells during regeneration

    NARCIS (Netherlands)

    Boonen, K.J.M.; Post, M.J.

    2008-01-01

    Satellite cells are considered to be adult skeletal muscle stem cells. Their ability to regenerate large muscle defects is highly dependent on their specific niche. When these cells are cultured in vitro, the loss of this niche leads to a loss of proliferative capacity and defective regeneration

  17. Stem cell death and survival in heart regeneration and repair.

    Science.gov (United States)

    Abdelwahid, Eltyeb; Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-03-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.

  18. Repair and regeneration: opportunities for carcinogenesis from tissue stem cells

    OpenAIRE

    Perryman, Scott V; Sylvester, Karl G

    2007-01-01

    This review will discuss the mechanisms of repair and regeneration in various tissue types and how dysregulation of these mechaisms may lead to cancer. Normal homeostasis involves a careful balance between cell loss and cell renewal. Stem and progenitor cells perform these biologic processes as the functional units of regeneration during both tissue homeostasis and repair. The concept of tissue stem cells capable of giving rise to all differentiated cells within a given tissue led to the conc...

  19. Stem cell signaling. An integral program for tissue renewal and regeneration : Wnt signaling and stem cell control

    NARCIS (Netherlands)

    Clevers, Hans; Loh, Kyle M; Nusse, Roel

    2014-01-01

    Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified,

  20. THE POTENTIAL ROLE OF ENDOGENOUS STEM CELLS IN REGENERATION OF THE INNER EAR

    Science.gov (United States)

    Martinez-Monedero, Rodrigo; Oshima, Kazuo; Heller, Stefan; Edge, Albert S.B.

    2007-01-01

    Stem cells in various mammalian tissues retain the capacity to renew themselves and may be able to restore damaged tissue. Their existence has been proven by genetic tracer studies that demonstrate their differentiation into multiple tissue types and by their ability to self-renew through proliferation. Stem cells from the adult nervous system proliferate to form clonal floating colonies called spheres in vitro, and recent studies have demonstrated sphere formation by cells in the cochlea in addition to the vestibular system and the auditory ganglia, indicating that these tissues contain cells with stem cell properties. The presence of stem cells in the inner ear raises the hope of regeneration of mammalian inner ear cells but is difficult to correlate with the lack spontaneous regeneration seen in the inner ear after tissue damage. Loss of stem cells postnatally in the cochlea may correlate with the loss of regenerative capacity and may limit our ability to stimulate regeneration. Retention of sphere forming capacity in adult vestibular tissues suggests that the limited capacity for repair may be attributed to the continued presence of progenitor cells. Future strategies for regeneration must consider the distribution of endogenous stem cells in the inner ear and whether cells with the capacity for regeneration are retained. PMID:17321086

  1. Slow-cycling stem cells in hydra contribute to head regeneration

    Directory of Open Access Journals (Sweden)

    Niraimathi Govindasamy

    2014-11-01

    Full Text Available Adult stem cells face the challenge of maintaining tissue homeostasis by self-renewal while maintaining their proliferation potential over the lifetime of an organism. Continuous proliferation can cause genotoxic/metabolic stress that can compromise the genomic integrity of stem cells. To prevent stem cell exhaustion, highly proliferative adult tissues maintain a pool of quiescent stem cells that divide only in response to injury and thus remain protected from genotoxic stress. Hydra is a remarkable organism with highly proliferative stem cells and ability to regenerate at whole animal level. Intriguingly, hydra does not display consequences of high proliferation, such as senescence or tumour formation. In this study, we investigate if hydra harbours a pool of slow-cycling stem cells that could help prevent undesirable consequences of continuous proliferation. Hydra were pulsed with the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU and then chased in the absence of EdU to monitor the presence of EdU-retaining cells. A significant number of undifferentiated cells of all three lineages in hydra retained EdU for about 8–10 cell cycles, indicating that these cells did not enter cell cycle. These label-retaining cells were resistant to hydroxyurea treatment and were predominantly in the G2 phase of cell cycle. Most significantly, similar to mammalian quiescent stem cells, these cells rapidly entered cell division during head regeneration. This study shows for the first time that, contrary to current beliefs, cells in hydra display heterogeneity in their cell cycle potential and the slow-cycling cells in this population enter cell cycle during head regeneration. These results suggest an early evolution of slow-cycling stem cells in multicellular animals.

  2. Arrhythmogenic consequences of stem cell therapy for cardiac regeneration

    NARCIS (Netherlands)

    Smit, N.W.

    2018-01-01

    A third of the patients that survive a myocardial infarction develop heart failure for which no effective treatment exists. Stem cell therapy could be a possible solution by regeneration of the myocardium. However, the possible electrophysiological effects of interactions between stem cells and

  3. Retinal stem cells and regeneration of vision system.

    Science.gov (United States)

    Yip, Henry K

    2014-01-01

    The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina. Copyright © 2013 Wiley Periodicals, Inc.

  4. Eye Absence Does Not Regulate Planarian Stem Cells during Eye Regeneration.

    Science.gov (United States)

    LoCascio, Samuel A; Lapan, Sylvain W; Reddien, Peter W

    2017-02-27

    Dividing cells called neoblasts contain pluripotent stem cells and drive planarian flatworm regeneration from diverse injuries. A long-standing question is whether neoblasts directly sense and respond to the identity of missing tissues during regeneration. We used the eye to investigate this question. Surprisingly, eye removal was neither sufficient nor necessary for neoblasts to increase eye progenitor production. Neoblasts normally increase eye progenitor production following decapitation, facilitating regeneration. Eye removal alone, however, did not induce this response. Eye regeneration following eye-specific resection resulted from homeostatic rates of eye progenitor production and less cell death in the regenerating eye. Conversely, large head injuries that left eyes intact increased eye progenitor production. Large injuries also non-specifically increased progenitor production for multiple uninjured tissues. We propose a model for eye regeneration in which eye tissue production by planarian stem cells is not directly regulated by the absence of the eye itself. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells.

    Science.gov (United States)

    Erler, Piril; Sweeney, Alexandra; Monaghan, James R

    2017-01-01

    Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa + /BrdU + coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247. © 2016 AlphaMed Press.

  6. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration

    DEFF Research Database (Denmark)

    Jelnes, Peter; Santoni-Rugiu, Eric; Rasmussen, Morten

    2007-01-01

    The experimental protocols used in the investigation of stem cell-mediated liver regeneration in rodents are characterized by activation of the hepatic stem cell compartment in the canals of Hering followed by transit amplification of oval cells and their subsequent differentiation along hepatic...... the molecular phenotypes of oval cells in several of the most commonly used protocols of stem cell-mediated liver regeneration-namely, treatment with 2-acetylaminofluorene and partial (70%) hepatectomy (AAF/PHx); a choline-deficient, ethionine-supplemented (CDE) diet; a 3,5-diethoxycarbonyl-1,4-dihydro...... remarkable phenotypic discrepancies exhibited by oval cells in stem cell-mediated liver regeneration between rats and mice and underline the importance of careful extrapolation between individual species....

  7. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise.

    Science.gov (United States)

    Duelen, Robin; Sampaolesi, Maurilio

    2017-02-01

    Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and selection of the most suitable stem cell type for cardiac regenerative medicine. Human pluripotent stem cells (PSCs) have emerged as attractive cell source to obtain cardiomyocytes (CMs), with potential applications, including drug discovery and toxicity screening, disease modelling and innovative cell therapies. Lessons from embryology offered important insights into the development of stem cell-derived CMs. However, the generation of a CM population, uniform in cardiac subtype, adult maturation and functional properties, is highly recommended. Moreover, hurdles regarding tumorigenesis, graft cell death, immune rejection and arrhythmogenesis need to be overcome in clinical practice. Here we highlight the recent progression in PSC technologies for the regeneration of injured heart. We review novel strategies that might overcome current obstacles in heart regenerative medicine, aiming at improving cell survival and functional integration after cell transplantation. Copyright © 2017. Published by Elsevier B.V.

  8. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise

    Directory of Open Access Journals (Sweden)

    Robin Duelen

    2017-02-01

    Full Text Available Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and selection of the most suitable stem cell type for cardiac regenerative medicine. Human pluripotent stem cells (PSCs have emerged as attractive cell source to obtain cardiomyocytes (CMs, with potential applications, including drug discovery and toxicity screening, disease modelling and innovative cell therapies. Lessons from embryology offered important insights into the development of stem cell-derived CMs. However, the generation of a CM population, uniform in cardiac subtype, adult maturation and functional properties, is highly recommended. Moreover, hurdles regarding tumorigenesis, graft cell death, immune rejection and arrhythmogenesis need to be overcome in clinical practice. Here we highlight the recent progression in PSC technologies for the regeneration of injured heart. We review novel strategies that might overcome current obstacles in heart regenerative medicine, aiming at improving cell survival and functional integration after cell transplantation.

  9. Stem cell regenerative potential combined with nanotechnology and tissue engineering for myocardial regeneration.

    Science.gov (United States)

    Calin, Manuela; Stan, Daniela; Simion, Viorel

    2013-07-01

    The stem cell-based therapy for post-infarction myocardial regeneration has been introduced more than a decade ago, but the functional improvement obtained is limited due to the poor retention and short survival rate of transplanted cells into the damaged myocardium. More recently, the emerging nanotechnology concepts for advanced diagnostics and therapy provide promising opportunities of using stem cells for myocardial regeneration. In this paper will be provided an overview of the use of nanotechnology approaches in stem cell research for: 1) cell labeling to track the distribution of stem cells after transplantation, 2) nanoparticle-mediated gene delivery to stem cells to promote their homing, engraftment, survival and differentiation in the ischemic myocardium and 3) obtaining of bio-inspired materials to provide suitable myocardial scaffolds for delivery of stem cells or stem cell-derived factors.

  10. Stem Cell Therapy in Wound Healing and Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2016-08-01

    a novel approach to many diseases. SUMMARY: Wound healing therapies continue to rapidly evolve, with advances in basic science and engineering research heralding the development of new therapies, as well as ways to modify existing treatments. Stem cell-based therapy is one of the most promising therapeutic concepts for wound healing. Advances in stem cell biology have enabled researchers and clinicians alike with access to cells capable of actively modulating the healing response.  KEYWORDS: wound healing, tissue regeneration, stem cells therapy

  11. Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications.

    Science.gov (United States)

    Ojeh, Nkemcho; Pastar, Irena; Tomic-Canic, Marjana; Stojadinovic, Olivera

    2015-10-23

    The skin is the largest organ of the body and has an array of functions. Skin compartments, epidermis, and hair follicles house stem cells that are indispensable for skin homeostasis and regeneration. These stem cells also contribute to wound repair, resulting in restoration of tissue integrity and function of damaged tissue. Unsuccessful wound healing processes often lead to non-healing wounds. Chronic wounds are caused by depletion of stem cells and a variety of other cellular and molecular mechanisms, many of which are still poorly understood. Current chronic wound therapies are limited, so the search to develop better therapeutic strategies is ongoing. Adult stem cells are gaining recognition as potential candidates for numerous skin pathologies. In this review, we will discuss epidermal and other stem cells present in the skin, and highlight some of the therapeutic applications of epidermal stem cells and other adult stem cells as tools for cell/scaffold-based therapies for non-healing wounds and other skin disorders. We will also discuss emerging concepts and offer some perspectives on how skin tissue-engineered products can be optimized to provide efficacious therapy in cutaneous repair and regeneration.

  12. Stem Cell Extracellular Vesicles: Extended Messages of Regeneration

    Science.gov (United States)

    Riazifar, Milad; Pone, Egest J.; Lötvall, Jan; Zhao, Weian

    2017-01-01

    Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell–derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications. PMID:27814025

  13. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury

    Science.gov (United States)

    Embree, Mildred C.; Chen, Mo; Pylawka, Serhiy; Kong, Danielle; Iwaoka, George M.; Kalajzic, Ivo; Yao, Hai; Shi, Chancheng; Sun, Dongming; Sheu, Tzong-Jen; Koslovsky, David A.; Koch, Alia; Mao, Jeremy J.

    2016-01-01

    Tissue regeneration using stem cell-based transplantation faces many hurdles. Alternatively, therapeutically exploiting endogenous stem cells to regenerate injured or diseased tissue may circumvent these challenges. Here we show resident fibrocartilage stem cells (FCSCs) can be used to regenerate and repair cartilage. We identify FCSCs residing within the superficial zone niche in the temporomandibular joint (TMJ) condyle. A single FCSC spontaneously generates a cartilage anlage, remodels into bone and organizes a haematopoietic microenvironment. Wnt signals deplete the reservoir of FCSCs and cause cartilage degeneration. We also show that intra-articular treatment with the Wnt inhibitor sclerostin sustains the FCSC pool and regenerates cartilage in a TMJ injury model. We demonstrate the promise of exploiting resident FCSCs as a regenerative therapeutic strategy to substitute cell transplantation that could be beneficial for patients suffering from fibrocartilage injury and disease. These data prompt the examination of utilizing this strategy for other musculoskeletal tissues. PMID:27721375

  14. Stem cells to regenerate the newborn brain

    NARCIS (Netherlands)

    van Velthoven, C.T.J.

    2011-01-01

    Perinatal hypoxia-ischemia (HI) is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. In this thesis we investigate whether mesenchymal stem cells (MSC) regenerate the neonatal brain after HI injury. We show that transplantation of MSC after neonatal brain injury

  15. Engaging Stem Cells for Customized Tendon Regeneration

    Directory of Open Access Journals (Sweden)

    Hatim Thaker

    2012-01-01

    Full Text Available The need for a consistent therapeutic approach to tendon injury repair is long overdue. Patients with tendon microtears or full ruptures are eligible for a wide range of invasive and non invasive interventions, often subjectively decided by the physician. Surgery produces the best outcomes, and while studies have been conducted to optimize graft constructs and to track outcomes, the data from these studies have been inconclusive on the whole. What has been established is a clear understanding of healthy tendon architecture and the inherent process of healing. With this knowledge, tissue regeneration efforts have achieved immense progress in scaffold design, cell line selection, and, more recently, the appropriate use of cytokines and growth factors. This paper evaluates the plasticity of bone-marrow-derived stem cells and the elasticity of recently developed biomaterials towards tendon regeneration efforts. Mesenchymal stem cells (MSCs, hematopoietic progenitor cells, and poly(1,8-octanediol co-citrate scaffolds (POC are discussed in the context of established grafting strategies. With POC scaffolds to cradle the growth of MSCs and hematopoietic progenitor cells, developing a fibroelastic network guided by cytokines and growth factors may contribute towards consistent graft constructs, enhanced functionality, and better patient outcomes.

  16. Regeneration of stem-cells in intestinal epithelium after irradiation

    International Nuclear Information System (INIS)

    Hendry, J.H.

    1979-01-01

    Stem-cells can be defined as pluripotent progenitor cells, capable of both self-renewal and differentitation into all the functional end-cells typical of that cell family. Intestinal crypts contain population of cells which is capable of a) self-renewal following the severe depletion after radiation injury, b) replacing all other cypt cell types, and c) regeneration following repeated depletion (in colon). These are the properties of stem cells. Most measurements of the rate of regeneration of these cells following the severe depletion by radiation have been made by employing large test dose at increasing times. Such measurements have produced widely differing rates of increase in the survival under the test dose, from 4 hours (macrocolonies in jejunum) to 43 hours (microcolonies in stomach). In other tissues, large single test doses have been used to derive the time of doubling survival ratio e.g. for epidermal clones. Although cryptogenic cell number per crypt can be virtually restored by day 4 after a single dose and probably after many such doses, the status quo cannot be reached until the number of crypts is restored to normal. Stem cell numbers form a necessary part of the integrity of epitheliums. The quality of the stem cell function of survivors as expressed in the differentiated progeny, and the maintenance of function of the supportive environment are equally important for late radiation damage. (Yamashita, S.)

  17. Stem cells applications in bone and tooth repair and regeneration: New insights, tools, and hopes.

    Science.gov (United States)

    Abdel Meguid, Eiman; Ke, Yuehai; Ji, Junfeng; El-Hashash, Ahmed H K

    2018-03-01

    The exploration of stem and progenitor cells holds promise for advancing our understanding of the biology of tissue repair and regeneration mechanisms after injury. This will also help in the future use of stem cell therapy for the development of regenerative medicine approaches for the treatment of different tissue-species defects or disorders such as bone, cartilages, and tooth defects or disorders. Bone is a specialized connective tissue, with mineralized extracellular components that provide bones with both strength and rigidity, and thus enable bones to function in body mechanical supports and necessary locomotion process. New insights have been added to the use of different types of stem cells in bone and tooth defects over the last few years. In this concise review, we briefly describe bone structure as well as summarize recent research progress and accumulated information regarding the osteogenic differentiation of stem cells, as well as stem cell contributions to bone repair/regeneration, bone defects or disorders, and both restoration and regeneration of bones and cartilages. We also discuss advances in the osteogenic differentiation and bone regeneration of dental and periodontal stem cells as well as in stem cell contributions to dentine regeneration and tooth engineering. © 2017 Wiley Periodicals, Inc.

  18. Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair

    Science.gov (United States)

    Luo, Lihua; Wang, Xiaoyan; Key, Brian; Lee, Bae Hoon

    2018-01-01

    This review summarizes current advances in dental pulp stem cells (DPSCs) and their potential applications in the nervous diseases. Injured adult mammalian nervous system has a limited regenerative capacity due to an insufficient pool of precursor cells in both central and peripheral nervous systems. Nerve growth is also constrained by inhibitory factors (associated with central myelin) and barrier tissues (glial scarring). Stem cells, possessing the capacity of self-renewal and multicellular differentiation, promise new therapeutic strategies for overcoming these impediments to neural regeneration. Dental pulp stem cells (DPSCs) derive from a cranial neural crest lineage, retain a remarkable potential for neuronal differentiation, and additionally express multiple factors that are suitable for neuronal and axonal regeneration. DPSCs can also express immunomodulatory factors that stimulate formation of blood vessels and enhance regeneration and repair of injured nerve. These unique properties together with their ready accessibility make DPSCs an attractive cell source for tissue engineering in injured and diseased nervous systems. In this review, we interrogate the neuronal differentiation potential as well as the neuroprotective, neurotrophic, angiogenic, and immunomodulatory properties of DPSCs and its application in the injured nervous system. Taken together, DPSCs are an ideal stem cell resource for therapeutic approaches to neural repair and regeneration in nerve diseases. PMID:29853908

  19. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.

    Science.gov (United States)

    Plikus, Maksim V; Mayer, Julie Ann; de la Cruz, Damon; Baker, Ruth E; Maini, Philip K; Maxson, Robert; Chuong, Cheng-Ming

    2008-01-17

    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge are regulated by the surrounding microenvironment, or niche. The activation of such stem cells is cyclic, involving periodic beta-catenin activity. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/beta-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug

  20. Stem Cells in Tissue Repair and Regeneration

    OpenAIRE

    Falanga, Vincent

    2012-01-01

    The field of tissue repair and wound healing has blossomed in the last 30 years. We have gone from recombinant growth factors, to living tissue engineering constructs, to stem cells. The task now is to pursue true regeneration, thus achieving full restoration of structures and their function.

  1. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration

    Directory of Open Access Journals (Sweden)

    Yun Qian

    2017-10-01

    Full Text Available Stem cell treatment and platelet-rich plasma (PRP therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of PRP derived GFs with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  2. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    Science.gov (United States)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  3. Drosophila Sulf1 is required for the termination of intestinal stem cell division during regeneration.

    Science.gov (United States)

    Takemura, Masahiko; Nakato, Hiroshi

    2017-01-15

    Stem cell division is activated to trigger regeneration in response to tissue damage. The molecular mechanisms by which this stem cell mitotic activity is properly repressed at the end of regeneration are poorly understood. Here, we show that a specific modification of heparan sulfate is crucial for regulating Drosophila intestinal stem cell (ISC) division during normal midgut homeostasis and regeneration. Loss of the extracellular heparan sulfate endosulfatase Sulf1 resulted in increased ISC division during normal homeostasis, which was caused by upregulation of mitogenic signaling including the JAK-STAT, EGFR and Hedgehog pathways. Using a regeneration model, we found that ISCs failed to properly halt division at the termination stage in Sulf1 mutants, showing that Sulf1 is required for terminating ISC division at the end of regeneration. We propose that post-transcriptional regulation of mitogen signaling by heparan sulfate structural modifications provides a new regulatory step for precise temporal control of stem cell activity during regeneration. © 2017. Published by The Company of Biologists Ltd.

  4. Role of the immune system in regeneration and its dynamic interplay with adult stem cells.

    Science.gov (United States)

    Abnave, Prasad; Ghigo, Eric

    2018-04-09

    The immune system plays an indispensable role in the process of tissue regeneration following damage as well as during homeostasis. Inflammation and immune cell recruitment are signs of early onset injury. At the wound site, immune cells not only help to clear debris but also secrete numerous signalling molecules that induce appropriate cell proliferation and differentiation programmes essential for successful regeneration. However, the immune system does not always perform a complementary role in regeneration and several reports have suggested that increased inflammation can inhibit the regeneration process. Successful regeneration requires a balanced immune cell response, with the recruitment of accurately polarised immune cells in an appropriate quantity. The regulatory interactions of the immune system with regeneration are not unidirectional. Stem cells, as key players in regeneration, can also modulate the immune system in several ways to facilitate regeneration. In this review, we will focus on recent research demonstrating the key role of immune system in the regeneration process as well as the immunomodulatory effects of stem cells. Finally, we propose that research investigating the interplay between the immune system and stem cells within highly regenerating animals can benefit the identification of the key interactions and molecules required for successful regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Regeneration of tracheal epithelium using mouse induced pluripotent stem cells.

    Science.gov (United States)

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Otsuki, Koshi; Miyake, Masao; Hazama, Akihiro; Wada, Ikuo; Omori, Koichi

    2016-01-01

    Conclusion The findings demonstrated the potential use of induced pluripotent stem cells for regeneration of tracheal epithelium. Objective Autologous tissue implantation techniques using skin or cartilage are often applied in cases of tracheal defects with laryngeal inflammatory lesions and malignant tumor invasion. However, these techniques are invasive with an unstable clinical outcome. The purpose of this study was to investigate regeneration in a tracheal defect site of nude rats after implantation of ciliated epithelium that was differentiated from induced pluripotent stem cells. Method Embryoid bodies were formed from mouse induced pluripotent stem cells. They were cultured with growth factors for 5 days, and then cultured at the air-liquid interface. The degree of differentiation achieved prior to implantation was determined by histological findings and the results of real-time polymerase chain reaction. Embryoid bodies including ciliated epithelium were embedded into collagen gel that served as an artificial scaffold, and then implanted into nude rats, creating an 'air-liquid interface model'. Histological evaluation was performed 7 days after implantation. Results The ciliated epithelial structure survived on the lumen side of regenerated tissue. It was demonstrated histologically that the structure was composed of ciliated epithelial cells.

  6. Endogenous retinal neural stem cell reprogramming for neuronal regeneration

    Directory of Open Access Journals (Sweden)

    Romain Madelaine

    2017-01-01

    Full Text Available In humans, optic nerve injuries and associated neurodegenerative diseases are often followed by permanent vision loss. Consequently, an important challenge is to develop safe and effective methods to replace retinal neurons and thereby restore neuronal functions and vision. Identifying cellular and molecular mechanisms allowing to replace damaged neurons is a major goal for basic and translational research in regenerative medicine. Contrary to mammals, the zebrafish has the capacity to fully regenerate entire parts of the nervous system, including retina. This regenerative process depends on endogenous retinal neural stem cells, the Müller glial cells. Following injury, zebrafish Müller cells go back into cell cycle to proliferate and generate new neurons, while mammalian Müller cells undergo reactive gliosis. Recently, transcription factors and microRNAs have been identified to control the formation of new neurons derived from zebrafish and mammalian Müller cells, indicating that cellular reprogramming can be an efficient strategy to regenerate human retinal neurons. Here we discuss recent insights into the use of endogenous neural stem cell reprogramming for neuronal regeneration, differences between zebrafish and mammalian Müller cells, and the need to pursue the identification and characterization of new molecular factors with an instructive and potent function in order to develop theurapeutic strategies for eye diseases.

  7. Hypertranscription in development, stem cells, and regeneration

    Science.gov (United States)

    Percharde, Michelle; Bulut-Karslioglu, Aydan; Ramalho-Santos, Miguel

    2016-01-01

    SUMMARY Cells can globally up-regulate their transcriptome during specific transitions, a phenomenon called hypertranscription. Evidence for hypertranscription dates back over 70 years, but it has gone largely ignored in the genomics era until recently. We discuss data supporting the notion that hypertranscription is a unifying theme in embryonic development, stem cell biology, regeneration and cell competition. We review the history, methods for analysis, underlying mechanisms and biological significance of hypertranscription. PMID:27989554

  8. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment.

    Science.gov (United States)

    Vanden Berg-Foels, Wendy S

    2014-02-01

    Tissue engineering uses cells, signaling molecules, and/or biomaterials to regenerate injured or diseased tissues. Ex vivo expanded mesenchymal stem cells (MSC) have long been a cornerstone of regeneration therapies; however, drawbacks that include altered signaling responses and reduced homing capacity have prompted investigation of regeneration based on endogenous MSC recruitment. Recent successful proof-of-concept studies have further motivated endogenous MSC recruitment-based approaches. Stem cell migration is required for morphogenesis and organogenesis during development and for tissue maintenance and injury repair in adults. A biomimetic approach to in situ tissue regeneration by endogenous MSC requires the orchestration of three main stages: MSC recruitment, MSC differentiation, and neotissue maturation. The first stage must result in recruitment of a sufficient number of MSC, capable of effecting regeneration, to the injured or diseased tissue. One of the challenges for engineering endogenous MSC recruitment is the selection of effective chemoattractant(s). The objective of this review is to synthesize and evaluate evidence of recruitment efficacy by reported chemoattractants, including growth factors, chemokines, and other more recently appreciated MSC chemoattractants. The influence of MSC tissue sources, cell culture methods, and the in vitro and in vivo environments is discussed. This growing body of knowledge will serve as a basis for the rational design of regenerative therapies based on endogenous MSC recruitment. Successful endogenous MSC recruitment is the first step of successful tissue regeneration.

  9. Novel application of stem cell-derived factors for periodontal regeneration

    International Nuclear Information System (INIS)

    Inukai, Takeharu; Katagiri, Wataru; Yoshimi, Ryoko; Osugi, Masashi; Kawai, Takamasa; Hibi, Hideharu; Ueda, Minoru

    2013-01-01

    Highlights: ► Mesenchymal stem cells (MSCs) secrete a variety of cytokines. ► Cytokines were detected in conditioned medium from cultured MSCs (MSC-CM). ► MSC-CM enhanced activation of dog MSCs and periodontal ligament cells. ► MSC-CM significantly promoted alveolar bone and cementum regeneration. ► Multiple cytokines contained in MSC-CM promote periodontal regeneration. -- Abstract: The effect of conditioned medium from cultured mesenchymal stem cells (MSC-CM) on periodontal regeneration was evaluated. In vitro, MSC-CM stimulated migration and proliferation of dog MSCs (dMSCs) and dog periodontal ligament cells (dPDLCs). Cytokines such as insulin-like growth factor, vascular endothelial growth factor, transforming growth factor-β1, and hepatocyte growth factor were detected in MSC-CM. In vivo, one-wall critical-size, intrabony periodontal defects were surgically created in the mandible of dogs. Dogs with these defects were divided into three groups that received MSC-CM, PBS, or no implants. Absorbable atelo-collagen sponges (TERUPLUG®) were used as a scaffold material. Based on radiographic and histological observation 4 weeks after transplantation, the defect sites in the MSC-CM group displayed significantly greater alveolar bone and cementum regeneration than the other groups. These findings suggest that MSC-CM enhanced periodontal regeneration due to multiple cytokines contained in MSC-CM.

  10. Mesenchymal Stem Cells as a Potent Cell Source for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Elham Zomorodian

    2012-01-01

    Full Text Available While small bone defects heal spontaneously, large bone defects need surgical intervention for bone transplantation. Autologous bone grafts are the best and safest strategy for bone repair. An alternative method is to use allogenic bone graft. Both methods have limitations, particularly when bone defects are of a critical size. In these cases, bone constructs created by tissue engineering technologies are of utmost importance. Cells are one main component in the manufacture of bone construct. A few cell types, including embryonic stem cells (ESCs, adult osteoblast, and adult stem cells, can be used for this purpose. Mesenchymal stem cells (MSCs, as adult stem cells, possess characteristics that make them good candidate for bone repair. This paper discusses different aspects of MSCs that render them an appropriate cell type for clinical use to promote bone regeneration.

  11. PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis.

    Science.gov (United States)

    Kim, Moon Jong; Xia, Bo; Suh, Han Na; Lee, Sung Ho; Jun, Sohee; Lien, Esther M; Zhang, Jie; Chen, Kaifu; Park, Jae-Il

    2018-03-12

    The underlying mechanisms of how self-renewing cells are controlled in regenerating tissues and cancer remain ambiguous. PCNA-associated factor (PAF) modulates DNA repair via PCNA. Also, PAF hyperactivates Wnt/β-catenin signaling independently of PCNA interaction. We found that PAF is expressed in intestinal stem and progenitor cells (ISCs and IPCs) and markedly upregulated during intestinal regeneration and tumorigenesis. Whereas PAF is dispensable for intestinal homeostasis, upon radiation injury, genetic ablation of PAF impairs intestinal regeneration along with the severe loss of ISCs and Myc expression. Mechanistically, PAF conditionally occupies and transactivates the c-Myc promoter, which induces the expansion of ISCs/IPCs during intestinal regeneration. In mouse models, PAF knockout inhibits Apc inactivation-driven intestinal tumorigenesis with reduced tumor cell stemness and suppressed Wnt/β-catenin signaling activity, supported by transcriptome profiling. Collectively, our results unveil that the PAF-Myc signaling axis is indispensable for intestinal regeneration and tumorigenesis by positively regulating self-renewing cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    Science.gov (United States)

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  13. The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration

    Directory of Open Access Journals (Sweden)

    Luca Gentile

    2011-01-01

    Full Text Available Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine.

  14. Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Seung Taek Ji

    2017-01-01

    Full Text Available The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.

  15. Novel application of stem cell-derived factors for periodontal regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Inukai, Takeharu, E-mail: t-inukai@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan); Katagiri, Wataru, E-mail: w-kat@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan); Yoshimi, Ryoko, E-mail: lianzi@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan); Osugi, Masashi, E-mail: masashi@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan); Kawai, Takamasa, E-mail: takamasa@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan); Hibi, Hideharu, E-mail: hibihi@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan); Ueda, Minoru, E-mail: mueda@med.nagoya-u.ac.jp [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine (Japan)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Mesenchymal stem cells (MSCs) secrete a variety of cytokines. Black-Right-Pointing-Pointer Cytokines were detected in conditioned medium from cultured MSCs (MSC-CM). Black-Right-Pointing-Pointer MSC-CM enhanced activation of dog MSCs and periodontal ligament cells. Black-Right-Pointing-Pointer MSC-CM significantly promoted alveolar bone and cementum regeneration. Black-Right-Pointing-Pointer Multiple cytokines contained in MSC-CM promote periodontal regeneration. -- Abstract: The effect of conditioned medium from cultured mesenchymal stem cells (MSC-CM) on periodontal regeneration was evaluated. In vitro, MSC-CM stimulated migration and proliferation of dog MSCs (dMSCs) and dog periodontal ligament cells (dPDLCs). Cytokines such as insulin-like growth factor, vascular endothelial growth factor, transforming growth factor-{beta}1, and hepatocyte growth factor were detected in MSC-CM. In vivo, one-wall critical-size, intrabony periodontal defects were surgically created in the mandible of dogs. Dogs with these defects were divided into three groups that received MSC-CM, PBS, or no implants. Absorbable atelo-collagen sponges (TERUPLUG Registered-Sign ) were used as a scaffold material. Based on radiographic and histological observation 4 weeks after transplantation, the defect sites in the MSC-CM group displayed significantly greater alveolar bone and cementum regeneration than the other groups. These findings suggest that MSC-CM enhanced periodontal regeneration due to multiple cytokines contained in MSC-CM.

  16. Enhancement of organ regeneration in animal models by a stem cell-stimulating plant mixture.

    Science.gov (United States)

    Kiss, István; Tibold, Antal; Halmosi, Róbert; Bartha, Eva; Koltai, Katalin; Orsós, Zsuzsanna; Bujdosó, László; Ember, István

    2010-06-01

    Adult stem cells play an important role in the regeneration of damaged organs. Attempts have already been made to enhance stem cell production by cytokines, in order to increase the improvement of cardiac functions after myocardial infarction. In our present study we investigated the possibility whether instead of cytokine injection dietary stimulation of stem cell production accelerates the organ regeneration in animals. A dietary supplement, Olimpiq StemXCell (Crystal Institute Ltd., Eger, Hungary), containing plant extracts (previously proved to increase the number of circulating CD34(+) cells) was consumed in human equivalent doses by the experimental animals. In the first experiment carbon tetrachloride was applied to CBA/Ca mice, to induce liver damage, and liver weights between StemXCell-fed and control animals were compared 10 days after the treatment. In the second model experimental diabetes was induced in F344 rats by alloxan. Blood sugar levels were measured for 5 weeks in the control and StemXCell-fed groups. The third part of the study investigated the effect of StemXCell on cardiac functions. Eight weeks after causing a myocardial infarction in Wistar rats by isoproterenol, left ventricular ejection fraction was determined as a functional parameter of myocardial regeneration. In all three animal models StemXCell consumption statistically significantly improved the organ regeneration (relative liver weights, 4.78 +/-0.06 g/100 g vs. 4.97 +/- 0.07 g/100 g; blood sugar levels at week 5, 16 +/- 1.30 mmol/L vs. 10.2 +/- 0.92 mmol/L; ejection fraction, 57.5 +/- 2.23 vs. 68.2 +/- 4.94; controls vs. treated animals, respectively). Our study confirms the hypothesis that dietary enhancement of stem cell production may protect against organ injuries and helps in the regeneration.

  17. Stem cell technology using bioceramics: hard tissue regeneration towards clinical application

    Directory of Open Access Journals (Sweden)

    Hiroe Ohnishi, Yasuaki Oda and Hajime Ohgushi

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells. A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  18. Augmentation of musculoskeletal regeneration: role for pluripotent stem cells.

    Science.gov (United States)

    Jevons, Lauren A; Houghton, Franchesca D; Tare, Rahul S

    2018-03-20

    The rise in the incidence of musculoskeletal diseases is attributed to an increasing ageing population. The debilitating effects of musculoskeletal diseases, coupled with a lack of effective therapies, contribute to huge financial strains on healthcare systems. The focus of regenerative medicine has shifted to pluripotent stem cells (PSCs), namely, human embryonic stem cells and human-induced PSCs, due to the limited success of adult stem cell-based interventions. PSCs constitute a valuable cell source for musculoskeletal regeneration due to their capacity for unlimited self-renewal, ability to differentiate into all cell lineages of the three germ layers and perceived immunoprivileged characteristics. This review summarizes methods for chondrogenic, osteogenic, myogenic and adipogenic differentiation of PSCs and their potential for therapeutic applications.

  19. Original and regenerating lizard tail cartilage contain putative resident stem/progenitor cells.

    Science.gov (United States)

    Alibardi, Lorenzo

    2015-11-01

    Regeneration of cartilaginous tissues is limited in mammals but it occurs with variable extension in lizards (reptiles), including in their vertebrae. The ability of lizard vertebrae to regenerate cartilaginous tissue that is later replaced with bone has been analyzed using tritiated thymidine autoradiography and 5BrdU immunocytochemistry after single pulse or prolonged-pulse and chase experiments. The massive cartilage regeneration that can restore broad vertebral regions and gives rise to a long cartilaginous tube in the regenerating tail, depends from the permanence of some chondrogenic cells within adult vertebrae. Few cells that retain tritiated thymidine or 5-bromodeoxy-uridine for over 35 days are mainly localized in the inter-vertebral cartilage and in sparse chondrogenic regions of the neural arch of the vertebrae, suggesting that they are putative resident stem/progenitor cells. The study supports previous hypothesis indicating that the massive regeneration of the cartilaginous tissue in damaged vertebrae and in the regenerating tail of lizards derive from resident stem cells mainly present in the cartilaginous areas of the vertebrae including in the perichondrium that are retained in adult lizards as growing centers for most of their lifetime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Dixin Cui

    2017-01-01

    Full Text Available Temporomandibular joint osteoarthritis (TMJ OA is a degenerative disease, characterized by progressive cartilage degradation, subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage, traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards tissue repair and regeneration. Mesenchymal stem cells (MSCs, derived from the bone marrow, synovium, and even umbilical cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential, including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and tissue engineering.

  1. Genetically induced cell death in bulge stem cells reveals their redundancy for hair and epidermal regeneration.

    Science.gov (United States)

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2015-03-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent. © 2014 AlphaMed Press.

  2. Fetal stem cells and skeletal muscle regeneration: a therapeutic approach

    Directory of Open Access Journals (Sweden)

    Michela ePozzobon

    2014-08-01

    Full Text Available More than 40% of the body mass is represented by muscle tissue, which possesses the innate ability to regenerate after damage through the activation of muscle specific stem cell, namely satellite cells. Muscle diseases, in particular chronic degenerative state of skeletal muscle such as dystrophies, lead to a perturbation of the regenerative process, which causes the premature exhaustion of satellite cell reservoir due to continue cycles of degeneration/regeneration. Nowadays, the research is focused on different therapeutic approaches, ranging from gene and cell to pharmacological therapy, but still there is not a definitive cure in particular for genetic muscle disease. Taking this in mind, in this article we will give special consideration to muscle diseases and the use of fetal derived stem cells as new approach for therapy. Cells of fetal origin, from cord blood to placenta and amniotic fluid, can be easily obtained without ethical concern, expanded and differentiated in culture, and possess immunemodulatory properties. The in vivo approach in animal models can be helpful to study the mechanism underneath the operating principle of the stem cell reservoir, namely the niche, which holds great potential to understand the onset of muscle pathologies.

  3. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    Science.gov (United States)

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  4. Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes

    OpenAIRE

    Dorronsoro, Akaitz; Robbins, Paul D

    2013-01-01

    Transplantation of adult stem cells is being used to facilitate repair or regeneration of damaged or diseased tissues. However, in many cases, the therapeutic effects of the injected stem cells are mediated by factors secreted by stem cells and not by differentiation of the transplanted stem cells. Recent reports have identified a class of microvesicles, termed exosomes, released by stem cells that are able to confer therapeutic effects on injured renal and cardiac tissue. In this issue of St...

  5. Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation

    Science.gov (United States)

    2012-02-01

    10-1-0927 TITLE: Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation...immunosuppression. Bone Marrow Derived Mesenchymal stem cells (BM-MSCs) are pluripotent cells, capable of differentiation along multiple mesenchymal lineages into...As part of implemented transition from University of Pittsburgh to Johns Hopkins University, we optimized our mesenchymal stem cell (MSC) isolation

  6. Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration

    Science.gov (United States)

    2016-12-01

    Precision Tissue Models”, Distinguished Seminar, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of...in vitro drug screening and potential in vivo retinal neuron repair. The expansion of ganglion cells is tightly related to the spatial arrangement of...AWARD NUMBER: W81XWH-14-1-0522 TITLE: Layer-by-Layer Bioprinting of Stem Cells for Retinal Tissue Regeneration PRINCIPAL INVESTIGATOR

  7. Testing stem cell therapy in a rat model of inflammatory bowel disease: role of bone marrow stem cells and stem cell factor in mucosal regeneration.

    Science.gov (United States)

    Qu, Bo; Xin, Guo-Rong; Zhao, Li-Xia; Xing, Hui; Lian, Li-Ying; Jiang, Hai-Yan; Tong, Jia-Zhao; Wang, Bei-Bei; Jin, Shi-Zhu

    2014-01-01

    The gastrointestinal (GI) mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs) and soluble stem cell factor (SCF) in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD). BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls. PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA), Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group. BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD.

  8. Eye absence does not regulate planarian stem cells during eye regeneration

    OpenAIRE

    LoCascio, Samuel A.; Lapan, Sylvain W.; Reddien, Peter W.

    2017-01-01

    Dividing cells called neoblasts contain pluripotent stem cells and drive planarian flatworm regeneration from diverse injuries. A long-standing question is whether neoblasts directly sense and respond to the identity of missing tissues during regeneration. We used the eye to investigate this question. Surprisingly, eye removal was neither sufficient nor necessary for neoblasts to increase eye progenitor production. Neoblasts normally increase eye progenitor production following decapitation, ...

  9. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration

    OpenAIRE

    Yun Qian; Yun Qian; Qixin Han; Wei Chen; Wei Chen; Jialin Song; Jialin Song; Xiaotian Zhao; Yuanming Ouyang; Yuanming Ouyang; Weien Yuan; Cunyi Fan

    2017-01-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of differen...

  10. In vitro regeneration of kidney from pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Osafune, Kenji, E-mail: osafu@cira.kyoto-u.ac.jp [Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); JST Yamanaka iPS Cell Special Project, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2010-10-01

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.

  11. In vitro regeneration of kidney from pluripotent stem cells

    International Nuclear Information System (INIS)

    Osafune, Kenji

    2010-01-01

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.

  12. Isolation, characterization, and differentiation of stem cells for cartilage regeneration.

    Science.gov (United States)

    Beane, Olivia S; Darling, Eric M

    2012-10-01

    The goal of tissue engineering is to create a functional replacement for tissues damaged by injury or disease. In many cases, impaired tissues cannot provide viable cells, leading to the investigation of stem cells as a possible alternative. Cartilage, in particular, may benefit from the use of stem cells since the tissue has low cellularity and cannot effectively repair itself. To address this need, researchers are investigating the chondrogenic capabilities of several multipotent stem cell sources, including adult and extra-embryonic mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Comparative studies indicate that each cell type has advantages and disadvantages, and while direct comparisons are difficult to make, published data suggest some sources may be more promising for cartilage regeneration than others. In this review, we identify current approaches for isolating and chondrogenically differentiating MSCs from bone marrow, fat, synovium, muscle, and peripheral blood, as well as cells from extra-embryonic tissues, ESCs, and iPSCs. Additionally, we assess chondrogenic induction with growth factors, identifying standard cocktails used for each stem cell type. Cell-only (pellet) and scaffold-based studies are also included, as is a discussion of in vivo results.

  13. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration.

    Science.gov (United States)

    Gao, Hui; Li, Bei; Zhao, Lingzhou; Jin, Yan

    2015-01-01

    Periodontal regeneration is an important part of regenerative medicine, with great clinical significance; however, the effects of nanotopography on the functions of periodontal ligament (PDL) stem cells (PDLSCs) and on PDLSC sheet based periodontal regeneration have never been explored. Titania nanotubes (NTs) layered on titanium (Ti) provide a good platform to study this. In the current study, the influence of NTs of different tube size on the functions of PDLSCs was observed. Afterward, an ectopic implantation model using a Ti/cell sheets/hydroxyapatite (HA) complex was applied to study the effect of the NTs on cell sheet based periodontal regeneration. The NTs were able to enhance the initial PDLSC adhesion and spread, as well as collagen secretion. With the Ti/cell sheets/HA complex model, it was demonstrated that the PDLSC sheets were capable of regenerating the PDL tissue, when combined with bone marrow mesenchymal stem cell (BMSC) sheets and HA, without the need for extra soluble chemical cues. Simultaneously, the NTs improved the periodontal regeneration result of the ectopically implanted Ti/cell sheets/HA complex, giving rise to functionally aligned collagen fiber bundles. Specifically, much denser collagen fibers, with abundant blood vessels as well as cementum-like tissue on the Ti surface, which well-resembled the structure of natural PDL, were observed in the NT5 and NT10 sample groups. Our study provides the first evidence that the nanotopographical cues obviously influence the functions of PDLSCs and improve the PDLSC sheet based periodontal regeneration size dependently, which provides new insight to the periodontal regeneration. The Ti/cell sheets/HA complex may constitute a good model to predict the effect of biomaterials on periodontal regeneration.

  14. Bone marrow adipocytes promote the regeneration of stem cells and hematopoiesis by secreting SCF

    Science.gov (United States)

    Zhou, Bo O.; Yu, Hua; Yue, Rui; Zhao, Zhiyu; Rios, Jonathan J.; Naveiras, Olaia; Morrison, Sean J.

    2017-01-01

    Endothelial cells and Leptin Receptor+ (LepR+) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including Stem Cell Factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF. They arise from Adipoq-Cre/ER+ progenitors, which represent ~5% of LepR+ cells, and proliferate after irradiation. Scf deletion using Adipoq-Cre/ER inhibited hematopoietic regeneration after irradiation or 5-fluorouracil treatment, depleting HSCs and reducing mouse survival. Scf from LepR+ cells, but not endothelial, hematopoietic, or osteoblastic cells, also promoted regeneration. In non-irradiated mice, Scf deletion using Adipoq-Cre/ER did not affect HSC frequency in long bones, which have few adipocytes, but depleted HSCs in tail vertebrae, which have abundant adipocytes. A-ZIP/F1 ‘fatless” mice exhibited delayed hematopoietic regeneration in long bones but not in tail vertebrae, where adipocytes inhibited vascularization. Adipocytes are a niche component that promotes hematopoietic regeneration. PMID:28714970

  15. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration

    Science.gov (United States)

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205

  16. Adipose-Derived Stem Cells Promote Peripheral Nerve Regeneration In Vivo without Differentiation into Schwann-Like Lineage.

    Science.gov (United States)

    Sowa, Yoshihiro; Kishida, Tsunao; Imura, Tetsuya; Numajiri, Toshiaki; Nishino, Kenichi; Tabata, Yasuhiko; Mazda, Osam

    2016-02-01

    During recent decades, multipotent stem cells were found to reside in the adipose tissue, and these adipose-derived stem cells were shown to play beneficial roles, like those of Schwann cells, in peripheral nerve regeneration. However, it has not been well established whether adipose-derived stem cells offer beneficial effects to peripheral nerve injuries in vivo as Schwann cells do. Furthermore, the in situ survival and differentiation of adipose-derived stem cells after transplantation at the injured peripheral nerve tissue remain to be fully elucidated. Adipose-derived stem cells and Schwann cells were transplanted with gelatin hydrogel tubes at the artificially blunted sciatic nerve lesion in mice. Neuroregenerative abilities of them were comparably estimated. Cre-loxP-mediated fate tracking was performed to visualize survival in vivo of transplanted adipose-derived stem cells and to investigate whether they differentiated into Schwann linage cells at the peripheral nerve injury site. The transplantation of adipose-derived stem cells promoted regeneration of axons, formation of myelin, and restoration of denervation muscle atrophy to levels comparable to those achieved by Schwann cell transplantation. The adipose-derived stem cells survived for at least 4 weeks after transplantation without differentiating into Schwann cells. Transplanted adipose-derived stem cells did not differentiate into Schwann cells but promoted peripheral nerve regeneration at the injured site. The neuroregenerative ability was comparable to that of Schwann cells. Adipose-derived stem cells at an undifferentiated stage may be used as an alternative cell source for autologous cell therapy for patients with peripheral nerve injury.

  17. Castration-Resistant Lgr5+ Cells Are Long-Lived Stem Cells Required for Prostatic Regeneration

    Directory of Open Access Journals (Sweden)

    Bu-er Wang

    2015-05-01

    Full Text Available The adult prostate possesses a significant regenerative capacity that is of great interest for understanding adult stem cell biology. We demonstrate that leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5 is expressed in a rare population of prostate epithelial progenitor cells, and a castration-resistant Lgr5+ population exists in regressed prostate tissue. Genetic lineage tracing revealed that Lgr5+ cells and their progeny are primarily luminal. Lgr5+ castration-resistant cells are long lived and upon regeneration, both luminal Lgr5+ cells and basal Lgr5+ cells expand. Moreover, single Lgr5+ cells can generate multilineage prostatic structures in renal transplantation assays. Additionally, Lgr5+ cell depletion revealed that the regenerative potential of the castrated adult prostate depends on Lgr5+ cells. Together, these data reveal insights into the cellular hierarchy of castration-resistant Lgr5+ cells, indicate a requirement for Lgr5+ cells during prostatic regeneration, and identify an Lgr5+ adult stem cell population in the prostate.

  18. Regenerating medicine related to the stem-cells and its mechanisms of action from adults cells

    International Nuclear Information System (INIS)

    Hernandez Ramirez, Porfirio

    2009-01-01

    Regenerating medicine is a branch of Medicine very developed in past years. Advances in this field have been closely linked with the new knowledge achieved on stem-cells and its ability to become in cells of different tissues. This type of medicine is based on the behaviors adopted by organism to substitute those damaged cells by the healthy ones by different processes in specific tissues. Therapeutic measures used may include the stem-cell transplantation, the use of soluble molecules, genic therapy and tissues engineering. Nowadays, the more used method is the adult stem-cells. However, is not well known the mechanisms by which the transplanted cells could to improve or to promote the tissue regeneration. To explain these mechanisms some hypotheses has been proposed including the cellular trans-differentiation, cells fusion, and the effects secondaries to cells release by cells of different soluble molecules with specific actions; in addition to the autocrine and paracrine effects that may have these soluble factors, it is suggested too the existence of a telecrine action. It is probable that more than one of these mechanisms be executed

  19. Dental-derived Stem Cells and whole Tooth Regeneration: an Overview

    OpenAIRE

    Dannan, Aous

    2009-01-01

    The need for new dental tissue-replacement therapies is evident in recent reports which reveal startling statistics regarding the high incidence of tooth decay and tooth loss. Recent advances in the identification and characterization of dental stem cells, and in dental tissue-engineering strategies, suggest that bioengineering approaches may successfully be used to regenerate dental tissues and whole teeth. Interest in dental tissue-regeneration applications continues to increase as clinical...

  20. JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling

    Science.gov (United States)

    Almuedo-Castillo, María; Crespo, Xenia; Seebeck, Florian; Bartscherer, Kerstin; Salò, Emili; Adell, Teresa

    2014-01-01

    Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun–NH2–kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal. PMID:24922054

  1. Transplantation of Human Dental Pulp-Derived Stem Cells or Differentiated Neuronal Cells from Human Dental Pulp-Derived Stem Cells Identically Enhances Regeneration of the Injured Peripheral Nerve.

    Science.gov (United States)

    Ullah, Imran; Park, Ju-Mi; Kang, Young-Hoon; Byun, June-Ho; Kim, Dae-Geon; Kim, Joo-Heon; Kang, Dong-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-09-01

    Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 10 6 hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.

  2. Hair follicle stem cell proliferation, Akt and Wnt signaling activation in TPA-induced hair regeneration.

    Science.gov (United States)

    Qiu, Weiming; Lei, Mingxing; Zhou, Ling; Bai, Xiufeng; Lai, Xiangdong; Yu, Yu; Yang, Tian; Lian, Xiaohua

    2017-06-01

    Regeneration of hair follicles relies on activation of hair follicle stem cells during telogen to anagen transition process in hair cycle. This process is rigorously controlled by intrinsic and environmental factors. 12-o-tetradecanoylphorbol-13-acetate (TPA), a tumor promoter, accelerates reentry of hair follicles into anagen phase. However, it is unclear that how TPA promotes the hair regeneration. In the present study, we topically applied TPA onto the dorsal skin of 2-month-old C57BL/6 female mice to examine the activity of hair follicle stem cells and alteration of signaling pathways during hair regeneration. We found that refractory telogen hair follicles entered anagen prematurely after TPA treatment, with the enhanced proliferation of CD34-positive hair follicle stem cells. Meanwhile, we observed Akt signaling was activated in epidermis, hair infundibulum, bulge and hair bulb, and Wnt signaling was also activated after hair follicle stem cells proliferation. Importantly, after overexpression of DKK1, a specific Wnt signaling inhibitor, the accelerated reentry of hair follicles into anagen induced by TPA was abolished. Our data indicated that TPA-induced hair follicle regeneration is associated with activation of Akt and Wnt/β-catenin signaling.

  3. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Liara M Gonzalez

    Full Text Available Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA, Minichromosome Maintenance Complex 2 (MCM2, Bromodeoxyuridine (BrdU and phosphorylated Histone H3 (pH3 distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/'reserve' stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2; enteroendocrine cells by Chromogranin A (CGA, Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII and sucrase isomaltase (SIM. Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.

  4. Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.

    Science.gov (United States)

    Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu

    2015-11-15

    Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.

  5. Trophic Effects of Dental Pulp Stem Cells on Schwann Cells in Peripheral Nerve Regeneration.

    Science.gov (United States)

    Yamamoto, Tsubasa; Osako, Yohei; Ito, Masataka; Murakami, Masashi; Hayashi, Yuki; Horibe, Hiroshi; Iohara, Koichiro; Takeuchi, Norio; Okui, Nobuyuki; Hirata, Hitoshi; Nakayama, Hidenori; Kurita, Kenichi; Nakashima, Misako

    2016-01-01

    Recently, mesenchymal stem cells have demonstrated a potential for neurotrophy and neurodifferentiation. We have recently isolated mobilized dental pulp stem cells (MDPSCs) using granulocyte-colony stimulating factor (G-CSF) gradient, which has high neurotrophic/angiogenic potential. The aim of this study is to investigate the effects of MDPSC transplantation on peripheral nerve regeneration. Effects of MDPSC transplantation were examined in a rat sciatic nerve defect model and compared with autografts and control conduits containing collagen scaffold. Effects of conditioned medium of MDPSCs were also evaluated in vitro. Transplantation of MDPSCs in the defect demonstrated regeneration of myelinated fibers, whose axons were significantly higher in density compared with those in autografts and control conduits only. Enhanced revascularization was also observed in the MDPSC transplants. The MDPSCs did not directly differentiate into Schwann cell phenotype; localization of these cells near Schwann cells induced several neurotrophic factors. Immunofluorescence labeling demonstrated reduced apoptosis and increased proliferation in resident Schwann cells in the MDPSC transplant compared with control conduits. These trophic effects of MDPSCs on proliferation, migration, and antiapoptosis in Schwann cells were further elucidated in vitro. The results demonstrate that MDPSCs promote axon regeneration through trophic functions, acting on Schwann cells, and promoting angiogenesis.

  6. Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies-where are we now?

    DEFF Research Database (Denmark)

    Dawson, Jonathan I; Kanczler, Janos; Kassem, Moustapha

    2014-01-01

    Skeletal stem cells confer to bone its innate capacity for regeneration and repair. Bone regeneration strategies seek to harness and enhance this regenerative capacity for the replacement of tissue damaged or lost through congenital defects, trauma, functional/esthetic problems, and a broad range...... for musculoskeletal regeneration. Stem Cells 2014;32:35-44...... of diseases associated with an increasingly aged population. This review describes the state of the field and current steps to translate and apply skeletal stem cell biology in the clinic and the problems therein. Challenges are described along with key strategies including the isolation and ex vivo expansion...

  7. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF.

    Science.gov (United States)

    Zhou, Bo O; Yu, Hua; Yue, Rui; Zhao, Zhiyu; Rios, Jonathan J; Naveiras, Olaia; Morrison, Sean J

    2017-08-01

    Endothelial cells and leptin receptor + (LepR + ) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including stem cell factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF. They arise from Adipoq-Cre/ER + progenitors, which represent ∼5% of LepR + cells, and proliferate after irradiation. Scf deletion using Adipoq-Cre/ER inhibited haematopoietic regeneration after irradiation or 5-fluorouracil treatment, depleting HSCs and reducing mouse survival. Scf from LepR + cells, but not endothelial, haematopoietic or osteoblastic cells, also promoted regeneration. In non-irradiated mice, Scf deletion using Adipoq-Cre/ER did not affect HSC frequency in long bones, which have few adipocytes, but depleted HSCs in tail vertebrae, which have abundant adipocytes. A-ZIP/F1 'fatless' mice exhibited delayed haematopoietic regeneration in long bones but not in tail vertebrae, where adipocytes inhibited vascularization. Adipocytes are a niche component that promotes haematopoietic regeneration.

  8. Stem cell therapy for intervertebral disc regeneration: review article

    Directory of Open Access Journals (Sweden)

    Mohsen Sheykhhasan

    2017-02-01

    Full Text Available Intervertebral disks (IVD acts as shock absorber between each of the vertebrae in the spinal column by keeping the vertebrae separated when the shock caused by the action. They also serve to protect the nerves that run down the middle of the spine and intervertebral disks. The disks are made of fibrocartilaginous material. The outside of the disk is made of a strong material called the annulus fibrosus. Inside this protective covering is a jelly-like substance known as mucoprotein gel. This interior is known as the nucleus pulposus. The nucleus pulposus consists of large vacuolated notochord cells, small chondrocyte-like cells, collagen fibrils, and aggrecan, a proteoglycan that aggregates by binding to hyaluronan. Attached to each aggrecan molecule are glycosaminoglycan (GAG chains of chondroitin sulfate and keratan sulfate. Intervertebral disks degeneration is frequently associated with low back and neck pain, which accounts as a disability. Despite the known outcomes of the Intervertebral disks degeneration cascade, the treatment of IVD degeneration is limited in that available conservative and surgical treatments do not reverse the pathology or restore the IVD tissue. Regenerative medicine for IVD degeneration, by injection of Intervertebral disks cells, chondrocytes or stem cells, has been extensively studied in the past decade in various animal models of induced IVD degeneration, and has progressed to clinical trials in the treatment of various spinal disease. Despite preliminary results showing positive effects of cell-injection strategies for IVD regeneration, detailed basic research on Intervertebral disks cells and their niche demonstrates that transplanted cells are unable to survive and adapt in the avascular niche of the IVD. For this therapeutic strategy to succeed, the indications for its use and the patients who would benefit need to be better defined. To surmount these obstacles, the solution will be identified only by focused

  9. The Role of Genetically Modified Mesenchymal Stem Cells in Urinary Bladder Regeneration.

    Science.gov (United States)

    Snow-Lisy, Devon C; Diaz, Edward C; Bury, Matthew I; Fuller, Natalie J; Hannick, Jessica H; Ahmad, Nida; Sharma, Arun K

    2015-01-01

    Recent studies have demonstrated that mesenchymal stem cells (MSCs) combined with CD34+ hematopoietic/stem progenitor cells (HSPCs) can function as surrogate urinary bladder cells to synergistically promote multi-faceted bladder tissue regeneration. However, the molecular pathways governing these events are unknown. The pleiotropic effects of Wnt5a and Cyr61 are known to affect aspects of hematopoiesis, angiogenesis, and muscle and nerve regeneration. Within this study, the effects of Cyr61 and Wnt5a on bladder tissue regeneration were evaluated by grafting scaffolds containing modified human bone marrow derived MSCs. These cell lines were engineered to independently over-express Wnt5a or Cyr61, or to exhibit reduced expression of Cyr61 within the context of a nude rat bladder augmentation model. At 4 weeks post-surgery, data demonstrated increased vessel number (~250 vs ~109 vessels/mm2) and bladder smooth muscle content (~42% vs ~36%) in Cyr61OX (over-expressing) vs Cyr61KD (knock-down) groups. Muscle content decreased to ~25% at 10 weeks in Cyr61KD groups. Wnt5aOX resulted in high numbers of vessels and muscle content (~206 vessels/mm2 and ~51%, respectively) at 4 weeks. Over-expressing cell constructs resulted in peripheral nerve regeneration while Cyr61KD animals were devoid of peripheral nerve regeneration at 4 weeks. At 10 weeks post-grafting, peripheral nerve regeneration was at a minimal level for both Cyr61OX and Wnt5aOX cell lines. Blood vessel and bladder functionality were evident at both time-points in all animals. Results from this study indicate that MSC-based Cyr61OX and Wnt5aOX cell lines play pivotal roles with regards to increasing the levels of functional vasculature, influencing muscle regeneration, and the regeneration of peripheral nerves in a model of bladder augmentation. Wnt5aOX constructs closely approximated the outcomes previously observed with the co-transplantation of MSCs with CD34+ HSPCs and may be specifically targeted as an

  10. A Review of Gene Delivery and Stem Cell Based Therapies for Regenerating Inner Ear Hair Cells

    Directory of Open Access Journals (Sweden)

    Michael S. Detamore

    2011-09-01

    Full Text Available Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.

  11. A review of gene delivery and stem cell based therapies for regenerating inner ear hair cells.

    Science.gov (United States)

    Devarajan, Keerthana; Staecker, Hinrich; Detamore, Michael S

    2011-09-13

    Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.

  12. DENTAL PULP STEM CELLS AND HUMAN PERIAPICAL CYST MESENCHYMAL STEM CELLS IN BONE TISSUE REGENERATION: COMPARISON OF BASAL AND OSTEOGENIC DIFFERENTIATED GENE EXPRESSION OF A NEWLY DISCOVERED MESENCHYMAL STEM CELL LINEAGE.

    Science.gov (United States)

    Tatullo, M; Falisi, G; Amantea, M; Rastelli, C; Paduano, F; Marrelli, M

    2015-01-01

    Bone regeneration is an interesting field of biomedicine. The most recent studies are aimed to achieve a bone regeneration using mesenchymal stem cells (MSCs) taken from more accessible sites: oral and dental tissues have been widely investigated as a rich accessible source of MSCs. Dental Pulp Stem Cells (DPSCs) and human Periapical Cysts Mesenchymal Stem Cells (hPCy-MSCs) represent the new generation MSCs. The aim of this study is to compare the gene expression of these two innovative cell types to highlight the advantages of their use in bone regeneration. The harvesting, culturing and differentiating of cells isolated from dental pulp as well as from periapical cystic tissue were carried out as described in previously published reports. qRT-PCR analyses were performed on osteogenic genes in undifferentiated and osteogenic differentiated cells of DPSC and hPCy-MSC lineage. Real-time RT-PCR data suggested that both DPSCs and hPCy-MSCs cultured in osteogenic media are able to differentiate into osteoblast/odontoblast-like cells: however, some differences indicated that DPSCs seem to be directed more towards dentinogenesis, while hPCy-MSCs seem to be directed more towards osteogenesis.

  13. TOPICAL REVIEW: Stem cell technology using bioceramics: hard tissue regeneration towards clinical application

    Science.gov (United States)

    Ohnishi, Hiroe; Oda, Yasuaki; Ohgushi, Hajime

    2010-02-01

    Mesenchymal stem cells (MSCs) are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells). A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  14. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model.

    Science.gov (United States)

    Ude, Chinedu C; Sulaiman, Shamsul B; Min-Hwei, Ng; Hui-Cheng, Chen; Ahmad, Johan; Yahaya, Norhamdan M; Saim, Aminuddin B; Idrus, Ruszymah B H

    2014-01-01

    In this study, Adipose stem cells (ADSC) and bone marrow stem cells (BMSC), multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model. Osteoarthritis was induced at the right knee of sheep by complete resection of the anterior cruciate ligament and medial meniscus following a 3-weeks exercise regimen. Stem cells from experimental sheep were culture expanded and induced to chondrogenic lineage. Test sheep received a single dose of 2 × 10(7) autologous PKH26-labelled, chondrogenically induced ADSCs or BMSCs as 5 mls injection, while controls received 5 mls culture medium. The proliferation rate of ADSCs 34.4 ± 1.6 hr was significantly higher than that of the BMSCs 48.8 ± 5.3 hr (P = 0.008). Chondrogenic induced BMSCs had significantly higher expressions of chondrogenic specific genes (Collagen II, SOX9 and Aggrecan) compared to chondrogenic ADSCs (P = 0.031, 0.010 and 0.013). Grossly, the treated knee joints showed regenerated de novo cartilages within 6 weeks post-treatment. On the International Cartilage Repair Society grade scores, chondrogenically induced ADSCs and BMSCs groups had significantly lower scores than controls (P = 0.0001 and 0.0001). Fluorescence of the tracking dye (PKH26) in the injected cells showed that they had populated the damaged area of cartilage. Histological staining revealed loosely packed matrixes of de novo cartilages and immunostaining demonstrated the presence of cartilage specific proteins, Collagen II and SOX9. Autologous chondrogenically induced ADSCs and BMSCs could be promising cell sources for cartilage regeneration in osteoarthritis.

  15. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model.

    Directory of Open Access Journals (Sweden)

    Chinedu C Ude

    Full Text Available OBJECTIVES: In this study, Adipose stem cells (ADSC and bone marrow stem cells (BMSC, multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model. METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of the anterior cruciate ligament and medial meniscus following a 3-weeks exercise regimen. Stem cells from experimental sheep were culture expanded and induced to chondrogenic lineage. Test sheep received a single dose of 2 × 10(7 autologous PKH26-labelled, chondrogenically induced ADSCs or BMSCs as 5 mls injection, while controls received 5 mls culture medium. RESULTS: The proliferation rate of ADSCs 34.4 ± 1.6 hr was significantly higher than that of the BMSCs 48.8 ± 5.3 hr (P = 0.008. Chondrogenic induced BMSCs had significantly higher expressions of chondrogenic specific genes (Collagen II, SOX9 and Aggrecan compared to chondrogenic ADSCs (P = 0.031, 0.010 and 0.013. Grossly, the treated knee joints showed regenerated de novo cartilages within 6 weeks post-treatment. On the International Cartilage Repair Society grade scores, chondrogenically induced ADSCs and BMSCs groups had significantly lower scores than controls (P = 0.0001 and 0.0001. Fluorescence of the tracking dye (PKH26 in the injected cells showed that they had populated the damaged area of cartilage. Histological staining revealed loosely packed matrixes of de novo cartilages and immunostaining demonstrated the presence of cartilage specific proteins, Collagen II and SOX9. CONCLUSION: Autologous chondrogenically induced ADSCs and BMSCs could be promising cell sources for cartilage regeneration in osteoarthritis.

  16. Can stem cells really regenerate the human heart? Use your noggin, dickkopf! Lessons from developmental biology.

    Science.gov (United States)

    Sommer, Paula

    2013-06-01

    The human heart is the first organ to develop and its development is fairly well characterised. In theory, the heart has the capacity to regenerate, as its cardiomyocytes may be capable of cell division and the adult heart contains a cardiac stem cell niche, presumably capable of differentiating into cardiomyocytes and other cardiac-associated cell types. However, as with most other organs, these mechanisms are not activated upon serious injury. Several experimental options to induce regeneration of the damaged heart tissue are available: activate the endogenous cardiomyocytes to divide, coax the endogenous population of stem cells to divide and differentiate, or add exogenous cell-based therapy to replace the lost cardiac tissue. This review is a summary of the recent research into all these avenues, discussing the reasons for the limited successes of clinical trials using stem cells after cardiac injury and explaining new advances in basic science. It concludes with a reiteration that chances of successful regeneration would be improved by understanding and implementing the basics of heart development and stem cell biology.

  17. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; hide

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, pcell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  18. MicroRNA profiling of antler stem cells in potentiated and dormant states and their potential roles in antler regeneration.

    Science.gov (United States)

    Ba, Hengxing; Wang, Datao; Li, Chunyi

    2016-04-01

    MicroRNAs (miRNAs) can effectively regulate gene expression at the post-transcriptional level and play a critical role in tissue growth, development and regeneration. Our previous studies showed that antler regeneration is a stem cell-based process and antler stem cells reside in the periosteum of a pedicle, the permanent bony protuberance, from which antler regeneration takes place. Antlers are the only mammalian organ that can fully regenerate and hence provide a unique opportunity to identify miRNAs that are involved in organ regeneration. In the present study, we used next generation sequencing technology sequenced miRNAs of the stem cells derived from either the potentiated or the dormant pedicle periosteum. A population of both conserved and 20 deer-specific miRNAs was identified. These conserved miRNAs were derived from 453 homologous hairpin precursors across 88 animal species, and were further grouped into 167 miRNA families. Among them, the miR-296 is embryonic stem cell-specific. The potentiation process resulted in the significant regulation (>±2 Fold, q value cell potentiation process. This research has identified miRNAs that are associated either with the dormant or the potentiated antler stem cells and identified some target miRNAs for further research into their role played in mammalian organ regeneration.

  19. Stem cell property of postmigratory cranial neural crest cells and their utility in alveolar bone regeneration and tooth development.

    Science.gov (United States)

    Chung, Il-Hyuk; Yamaza, Takayoshi; Zhao, Hu; Choung, Pill-Hoon; Shi, Songtao; Chai, Yang

    2009-04-01

    The vertebrate neural crest is a multipotent cell population that gives rise to a variety of different cell types. We have discovered that postmigratory cranial neural crest cells (CNCCs) maintain mesenchymal stem cell characteristics and show potential utility for the regeneration of craniofacial structures. We are able to induce the osteogenic differentiation of postmigratory CNCCs, and this differentiation is regulated by bone morphogenetic protein (BMP) and transforming growth factor-beta signaling pathways. After transplantation into a host animal, postmigratory CNCCs form bone matrix. CNCC-formed bones are distinct from bones regenerated by bone marrow mesenchymal stem cells. In addition, CNCCs support tooth germ survival via BMP signaling in our CNCC-tooth germ cotransplantation system. Thus, we conclude that postmigratory CNCCs preserve stem cell features, contribute to craniofacial bone formation, and play a fundamental role in supporting tooth organ development. These findings reveal a novel function for postmigratory CNCCs in organ development, and demonstrate the utility of these CNCCs in regenerating craniofacial structures.

  20. Deletion of the Imprinted Gene Grb10 Promotes Hematopoietic Stem Cell Self-Renewal and Regeneration.

    Science.gov (United States)

    Yan, Xiao; Himburg, Heather A; Pohl, Katherine; Quarmyne, Mamle; Tran, Evelyn; Zhang, Yurun; Fang, Tiancheng; Kan, Jenny; Chao, Nelson J; Zhao, Liman; Doan, Phuong L; Chute, John P

    2016-11-01

    Imprinted genes are differentially expressed by adult stem cells, but their functions in regulating adult stem cell fate are incompletely understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an imprinted gene, regulates hematopoietic stem cell (HSC) self-renewal and regeneration. Deletion of the maternal allele of Grb10 in mice (Grb10 m/+ mice) substantially increased HSC long-term repopulating capacity, as compared to that of Grb10 +/+ mice. After total body irradiation (TBI), Grb10 m/+ mice demonstrated accelerated HSC regeneration and hematopoietic reconstitution, as compared to Grb10 +/+ mice. Grb10-deficient HSCs displayed increased proliferation after competitive transplantation or TBI, commensurate with upregulation of CDK4 and Cyclin E. Furthermore, the enhanced HSC regeneration observed in Grb10-deficient mice was dependent on activation of the Akt/mTORC1 pathway. This study reveals a function for the imprinted gene Grb10 in regulating HSC self-renewal and regeneration and suggests that the inhibition of Grb10 can promote hematopoietic regeneration in vivo. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. A prosurvival and proangiogenic stem cell delivery system to promote ischemic limb regeneration.

    Science.gov (United States)

    Xu, Yanyi; Fu, Minghuan; Li, Zhihong; Fan, Zhaobo; Li, Xiaofei; Liu, Ying; Anderson, Peter M; Xie, Xiaoyun; Liu, Zhenguo; Guan, Jianjun

    2016-02-01

    Stem cell therapy is one of the most promising strategies to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the low oxygen and nutrient environment of the injured limbs. To increase therapeutic efficacy, high rates of both short- and long-term cell survival are essential, which current approaches do not support. In this work, we hypothesized that a high rate of short-term cell survival can be achieved by introducing a prosurvival environment into the stem cell delivery system to enhance cell survival before vascularization is established; and that a high rate of long-term cell survival can be attained by building a proangiogenic environment in the system to quickly vascularize the limbs. The system was based on a biodegradable and thermosensitive poly(N-Isopropylacrylamide)-based hydrogel, a prosurvival and proangiogenic growth factor bFGF, and bone marrow-derived mesenchymal stem cells (MSCs). bFGF can be continuously released from the system for 4weeks. The released bFGF significantly improved MSC survival and paracrine effects under low nutrient and oxygen conditions (0% FBS and 1% O2) in vitro. The prosurvival effect of the bFGF on MSCs was resulted from activating cell Kruppel-like factor 4 (KLF4) pathway. When transplanted into the ischemic limbs, the system dramatically improved MSC survival. Some of the engrafted cells were differentiated into skeletal muscle and endothelial cells, respectively. The system also promoted the proliferation of host cells. After only 2weeks of implantation, tissue blood perfusion was completely recovered; and after 4weeks, the muscle fiber diameter was restored similarly to that of the normal limbs. These pronounced results demonstrate that the developed stem cell delivery system has a potential for ischemic limb regeneration. Stem cell therapy is a promising strategy to restore blood perfusion and promote muscle

  2. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    Science.gov (United States)

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. The Role of Genetically Modified Mesenchymal Stem Cells in Urinary Bladder Regeneration.

    Directory of Open Access Journals (Sweden)

    Devon C Snow-Lisy

    Full Text Available Recent studies have demonstrated that mesenchymal stem cells (MSCs combined with CD34+ hematopoietic/stem progenitor cells (HSPCs can function as surrogate urinary bladder cells to synergistically promote multi-faceted bladder tissue regeneration. However, the molecular pathways governing these events are unknown. The pleiotropic effects of Wnt5a and Cyr61 are known to affect aspects of hematopoiesis, angiogenesis, and muscle and nerve regeneration. Within this study, the effects of Cyr61 and Wnt5a on bladder tissue regeneration were evaluated by grafting scaffolds containing modified human bone marrow derived MSCs. These cell lines were engineered to independently over-express Wnt5a or Cyr61, or to exhibit reduced expression of Cyr61 within the context of a nude rat bladder augmentation model. At 4 weeks post-surgery, data demonstrated increased vessel number (~250 vs ~109 vessels/mm2 and bladder smooth muscle content (~42% vs ~36% in Cyr61OX (over-expressing vs Cyr61KD (knock-down groups. Muscle content decreased to ~25% at 10 weeks in Cyr61KD groups. Wnt5aOX resulted in high numbers of vessels and muscle content (~206 vessels/mm2 and ~51%, respectively at 4 weeks. Over-expressing cell constructs resulted in peripheral nerve regeneration while Cyr61KD animals were devoid of peripheral nerve regeneration at 4 weeks. At 10 weeks post-grafting, peripheral nerve regeneration was at a minimal level for both Cyr61OX and Wnt5aOX cell lines. Blood vessel and bladder functionality were evident at both time-points in all animals. Results from this study indicate that MSC-based Cyr61OX and Wnt5aOX cell lines play pivotal roles with regards to increasing the levels of functional vasculature, influencing muscle regeneration, and the regeneration of peripheral nerves in a model of bladder augmentation. Wnt5aOX constructs closely approximated the outcomes previously observed with the co-transplantation of MSCs with CD34+ HSPCs and may be specifically

  4. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration.

    Science.gov (United States)

    Zhang, Lei; Wang, Huaxi; Yang, Yan; Liu, Hui; Zhang, Qihao; Xiang, Qi; Ge, Renshan; Su, Zhijian; Huang, Yadong

    2013-06-28

    Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful information for developing new potential therapies for PADAM (Partial Androgen Deficiency in the Aging Male). Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Distal Regeneration Involves the Age Dependent Activity of Branchial Sac Stem Cells in the Ascidian Ciona intestinalis.

    Science.gov (United States)

    Jeffery, William R

    2015-02-01

    Tunicates have high capacities for regeneration but the underlying mechanisms and their relationship to life cycle progression are not well understood. Here we investigate the regeneration of distal structures in the ascidian tunicate Ciona intestinalis . Analysis of regenerative potential along the proximal-distal body axis indicated that distal organs, such as the siphons, their pigmented sensory organs, and the neural complex, could only be replaced from body fragments containing the branchial sac. Distal regeneration involves the formation of a blastema composed of cells that undergo cell proliferation prior to differentiation and cells that differentiate without cell proliferation. Both cell types originate in the branchial sac and appear in the blastema at different times after distal injury. Whereas the branchial sac stem cells are present in young animals, they are depleted in old animals that have lost their regeneration capacity. Thus Ciona adults contain a population of age-related stem cells located in the branchial sac that are a source of precursors for distal body regeneration.

  6. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo.

    Science.gov (United States)

    Cai, Xinjie; Yang, Fang; Yan, Xiangzhen; Yang, Wanxun; Yu, Na; Oortgiesen, Daniel A W; Wang, Yining; Jansen, John A; Walboomers, X Frank

    2015-04-01

    The implantation of bone marrow-derived mesenchymal stem cells (MSCs) has previously been shown successful to achieve periodontal regeneration. However, the preferred pre-implantation differentiation strategy (e.g. maintenance of stemness, osteogenic or chondrogenic induction) to obtain optimal periodontal regeneration is still unknown. This in vivo study explored which differentiation approach is most suitable for periodontal regeneration. Mesenchymal stem cells were obtained from Fischer rats and seeded onto poly(lactic-co-glycolic acid)/poly(ɛ-caprolactone) electrospun scaffolds, and then pre-cultured under different in vitro conditions: (i) retention of multilineage differentiation potential; (ii) osteogenic differentiation approach; and (iii) chondrogenic differentiation approach. Subsequently, the cell-scaffold constructs were implanted into experimental periodontal defects of Fischer rats, with empty scaffolds as controls. After 6 weeks of implantation, histomorphometrical analyses were applied to evaluate the regenerated periodontal tissues. The chondrogenic differentiation approach showed regeneration of alveolar bone and ligament tissues. The retention of multilineage differentiation potential supported only ligament regeneration, while the osteogenic differentiation approach boosted alveolar bone regeneration. Chondrogenic differentiation of MSCs before implantation is a useful strategy for regeneration of alveolar bone and periodontal ligament, in the currently used rat model. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration

    Science.gov (United States)

    Waters, Renae; Pacelli, Settimio; Maloney, Ryan; Medhi, Indrani; Ahmed, Rafeeq P. H.; Paul, Arghya

    2016-03-01

    A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration.A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07806g

  8. Mesenchymal stem cells in cartilage regeneration.

    Science.gov (United States)

    Savkovic, Vuk; Li, Hanluo; Seon, Jong-Keun; Hacker, Michael; Franz, Sandra; Simon, Jan-Christoph

    2014-01-01

    Articular cartilage provides life-long weight-bearing and mechanical lubrication with extraordinary biomechanical performance and simple structure. However, articular cartilage is apparently vulnerable to multifactorial damage and insufficient to self-repair, isolated in articular capsule without nerves or blood vessels. Osteoarthritis (OA) is known as a degenerative articular cartilage deficiency progressively affecting large proportion of the world population, and restoration of hyaline cartilage is clinical challenge to repair articular cartilage lesion and recreate normal functionality over long period. Mesenchymal stem cells (MSC) are highly proliferative and multipotent somatic cells that are able to differentiate mesoderm-derived cells including chondrocytes and osteoblasts. Continuous endeavors in basic research and preclinical trial have achieved promising outcomes in cartilage regeneration using MSCs. This review focuses on rationale and technologies of MSC-based hyaline cartilage repair involving tissue engineering, 3D biomaterials and growth factors. By comparing conventional treatment and current research progress, we describe insights of advantage and challenge in translation and application of MSC-based chondrogenesis for OA treatment.

  9. Mesenchymal Stem Cells of Dental Origin for Inducing Tissue Regeneration in Periodontitis: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Beatriz Hernández-Monjaraz

    2018-03-01

    Full Text Available Periodontitis is a chronic disease that begins with a period of inflammation of the supporting tissues of the teeth table and then progresses, destroying the tissues until loss of the teeth occurs. The restoration of the damaged dental support apparatus is an extremely complex process due to the regeneration of the cementum, the periodontal ligament, and the alveolar bone. Conventional treatment relies on synthetic materials that fill defects and replace lost dental tissue, but these approaches are not substitutes for a real regeneration of tissue. To address this, there are several approaches to tissue engineering for regenerative dentistry, among them, the use of stem cells. Mesenchymal stem cells (MSC can be obtained from various sources of adult tissues, such as bone marrow, adipose tissue, skin, and tissues of the orofacial area. MSC of dental origin, such as those found in the bone marrow, have immunosuppressive and immunotolerant properties, multipotency, high proliferation rates, and the capacity for tissue repair. However, they are poorly used as sources of tissue for therapeutic purposes. Their accessibility makes them an attractive source of mesenchymal stem cells, so this review describes the field of dental stem cell research and proposes a potential mechanism involved in periodontal tissue regeneration induced by dental MSC.

  10. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    Science.gov (United States)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  11. Distal regeneration involves the age dependent activity of branchial sac stem cells in the ascidian Ciona intestinalis

    Science.gov (United States)

    2014-01-01

    Abstract Tunicates have high capacities for regeneration but the underlying mechanisms and their relationship to life cycle progression are not well understood. Here we investigate the regeneration of distal structures in the ascidian tunicate Ciona intestinalis. Analysis of regenerative potential along the proximal−distal body axis indicated that distal organs, such as the siphons, their pigmented sensory organs, and the neural complex, could only be replaced from body fragments containing the branchial sac. Distal regeneration involves the formation of a blastema composed of cells that undergo cell proliferation prior to differentiation and cells that differentiate without cell proliferation. Both cell types originate in the branchial sac and appear in the blastema at different times after distal injury. Whereas the branchial sac stem cells are present in young animals, they are depleted in old animals that have lost their regeneration capacity. Thus Ciona adults contain a population of age‐related stem cells located in the branchial sac that are a source of precursors for distal body regeneration. PMID:25893097

  12. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    Science.gov (United States)

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  13. Trophic Effects and Regenerative Potential of Mobilized Mesenchymal Stem Cells From Bone Marrow and Adipose Tissue as Alternative Cell Sources for Pulp/Dentin Regeneration.

    Science.gov (United States)

    Murakami, Masashi; Hayashi, Yuki; Iohara, Koichiro; Osako, Yohei; Hirose, Yujiro; Nakashima, Misako

    2015-01-01

    Dental pulp stem cell (DPSC) subsets mobilized by granulocyte-colony-stimulating factor (G-CSF) are safe and efficacious for complete pulp regeneration. The supply of autologous pulp tissue, however, is very limited in the aged. Therefore, alternative sources of mesenchymal stem/progenitor cells (MSCs) are needed for the cell therapy. In this study, DPSCs, bone marrow (BM), and adipose tissue (AD)-derived stem cells of the same individual dog were isolated using G-CSF-induced mobilization (MDPSCs, MBMSCs, and MADSCs). The positive rates of CXCR4 and G-CSFR in MDPSCs were similar to MADSCs and were significantly higher than those in MBMSCs. Trophic effects of MDPSCs on angiogenesis, neurite extension, migration, and antiapoptosis were higher than those of MBMSCs and MADSCs. Pulp-like loose connective tissues were regenerated in all three MSC transplantations. Significantly higher volume of regenerated pulp and higher density of vascularization and innervation were observed in response to MDPSCs compared to MBMSC and MADSC transplantation. Collagenous matrix containing dentin sialophosphoprotein (DSPP)-positive odontoblast-like cells was the highest in MBMSCs and significantly higher in MADSCs compared to MDPSCs. MBMSCs and MADSCs, therefore, have potential for pulp regeneration, although the volume of regenerated pulp tissue, angiogenesis, and reinnervation, were less. Thus, in conclusion, an alternative cell source for dental pulp/dentin regeneration are stem cells from BM and AD tissue.

  14. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015).

    Science.gov (United States)

    Singh, Aastha; Singh, Abhishek; Sen, Dwaipayan

    2016-06-04

    Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.

  15. Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration.

    Science.gov (United States)

    Glaser, Talita; Cappellari, Angélica Regina; Pillat, Micheli Mainardi; Iser, Isabele Cristiana; Wink, Márcia Rosângela; Battastini, Ana Maria Oliveira; Ulrich, Henning

    2012-09-01

    Replacement of lost or dysfunctional tissues by stem cells has recently raised many investigations on therapeutic applications. Purinergic signaling has been shown to regulate proliferation, differentiation, cell death, and successful engraftment of stem cells originated from diverse origins. Adenosine triphosphate release occurs in a controlled way by exocytosis, transporters, and lysosomes or in large amounts from damaged cells, which is then subsequently degraded into adenosine. Paracrine and autocrine mechanisms induced by immune responses present critical factors for the success of stem cell therapy. While P1 receptors generally exert beneficial effects including anti-inflammatory activity, P2 receptor-mediated actions depend on the subtype of stimulated receptors and localization of tissue repair. Pro-inflammatory actions and excitatory tissue damages mainly result from P2X7 receptor activation, while other purinergic receptor subtypes participate in proliferation and differentiation, thereby providing adequate niches for stem cell engraftment and novel mechanisms for cell therapy and endogenous tissue repair. Therapeutic applications based on regulation of purinergic signaling are foreseen for kidney and heart muscle regeneration, Clara-like cell replacement for pulmonary and bronchial epithelial cells as well as for induction of neurogenesis in case of neurodegenerative diseases.

  16. Morphogenetic Mechanisms in the Cyclic Regeneration of Hair Follicles and Deer Antlers from Stem Cells

    Science.gov (United States)

    Li, Chunyi; McMahon, Chris

    2013-01-01

    We have made comparisons between hair follicles (HFs) and antler units (AUs)—two seemingly unrelated mammalian organs. HFs are tiny and concealed within skin, whereas AUs are gigantic and grown externally for visual display. However, these two organs share some striking similarities. Both consist of permanent and cyclic/temporary components and undergo stem-cell-based organogenesis and cyclic regeneration. Stem cells of both organs reside in the permanent part and the growth centres are located in the temporary part of each respective organ. Organogenesis and regeneration of both organs depend on epithelial-mesenchymal interactions. Establishment of these interactions requires stem cells and reactive/niche cells (dermal papilla cells for HFs and epidermal cells for AUs) to be juxtaposed, which is achieved through destruction of the cyclic part to bring the reactive cells into close proximity to the respective stem cell niche. Developments of HFs and AUs are regulated by similar endocrine (particularly testosterone) and paracrine (particularly IGF1) factors. Interestingly, these two organs come to interplay during antlerogenesis. In conclusion, we believe that investigators from the fields of both HF and AU biology could greatly benefit from a comprehensive comparison between these two organs. PMID:24383056

  17. In vitro study of stem cell communication via gap junctions for fibrocartilage regeneration at entheses.

    Science.gov (United States)

    Nayak, Bibhukalyan Prasad; Goh, James Cho Hong; Toh, Siew Lok; Satpathy, Gyan Ranjan

    2010-03-01

    Entheses are fibrocartilaginous organs that bridge ligament with bone at their interface and add significant insertional strength. To replace a severely damaged ligament, a tissue-engineered graft preinstalled with interfacial fibrocartilage, which is being regenerated from stem cells, appears to be more promising than ligament-alone graft. Such a concept can be realized by a biomimetic approach of establishing a dynamic communication of stem cells with bone cells and/or ligament fibroblasts in vitro. The current study has two objectives. The first objective is to demonstrate functional coculture of bone marrow-derived stem cells (BMSCs) with mature bone cells/ligament fibroblasts as evidenced by gap-junctional communication in vitro. The second objective is to investigate the role of BMSCs in the regeneration of fibrocartilage within the coculture. Rabbit bone/ligament fibroblasts were dual-stained with DiI-Red and calcein (gap-junction permeable dye), and cocultured with unlabeled BMSCs at fixed ratio (1:10). The functional gap junction was demonstrated by the transfer of calcein from donor to recipient cells that was confirmed and quantified by flow cytometry. Type 2 collagen (cartilage extracellular matrix-specific protein) expressed by the mixed cell lines in the cocultures were estimated by real-time reverse transcription PCR and compared with that of the ligament-bone coculture (control). Significant transfer of calcein into BMSCs was observed and flow cytometry analyses showed a gradual increase in the percentage of BMSCs acquiring calcein with time. Cocultures that included BMSCs expressed significantly more type 2 collagen compared with the control. The current study, for the first time, reported the expression of gap-junctional communication of BMSCs with two adherent cell lines of musculoskeletal system in vitro and also confirmed that incorporation of stem cells augments fibrocartilage regeneration. The results open up a path to envisage a composite

  18. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration.

    Science.gov (United States)

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-12-01

    Dental-derived mesenchymal stem cells (MSCs) are promising candidates for cartilage regeneration, with a high capacity for chondrogenic differentiation. This property helps make dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs and GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSCs) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by Toluidine Blue and Safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (palginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. Copyright © 2013 Acta Materialia Inc. All rights reserved.

  19. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  20. Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation.

    Science.gov (United States)

    Lee, Don-Ching; Chen, Jong-Hang; Hsu, Tai-Yu; Chang, Li-Hsun; Chang, Hsu; Chi, Ya-Hui; Chiu, Ing-Ming

    2017-03-01

    Regeneration of injured peripheral nerves is a slow, complicated process that could be improved by implantation of neural stem cells (NSCs) or nerve conduit. Implantation of NSCs along with conduits promotes the regeneration of damaged nerve, likely because (i) conduit supports and guides axonal growth from one nerve stump to the other, while preventing fibrous tissue ingrowth and retaining neurotrophic factors; and (ii) implanted NSCs differentiate into Schwann cells and maintain a growth factor enriched microenvironment, which promotes nerve regeneration. In this study, we identified IL12p80 (homodimer of IL12p40) in the cell extracts of implanted nerve conduit combined with NSCs by using protein antibody array and Western blotting. Levels of IL12p80 in these conduits are 1.6-fold higher than those in conduits without NSCs. In the sciatic nerve injury mouse model, implantation of NSCs combined with nerve conduit and IL12p80 improves motor recovery and increases the diameter up to 4.5-fold, at the medial site of the regenerated nerve. In vitro study further revealed that IL12p80 stimulates the Schwann cell differentiation of mouse NSCs through the phosphorylation of signal transducer and activator of transcription 3 (Stat3). These results suggest that IL12p80 can trigger Schwann cell differentiation of mouse NSCs through Stat3 phosphorylation and enhance the functional recovery and the diameter of regenerated nerves in a mouse sciatic nerve injury model. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Transiently Active Wnt/β-Catenin Signaling Is Not Required but Must Be Silenced for Stem Cell Function during Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    Malea M. Murphy

    2014-09-01

    Full Text Available Adult muscle’s exceptional capacity for regeneration is mediated by muscle stem cells, termed satellite cells. As with many stem cells, Wnt/β-catenin signaling has been proposed to be critical in satellite cells during regeneration. Using new genetic reagents, we explicitly test in vivo whether Wnt/β-catenin signaling is necessary and sufficient within satellite cells and their derivatives for regeneration. We find that signaling is transiently active in transit-amplifying myoblasts, but is not required for regeneration or satellite cell self-renewal. Instead, downregulation of transiently activated β-catenin is important to limit the regenerative response, as continuous regeneration is deleterious. Wnt/β-catenin activation in adult satellite cells may simply be a vestige of their developmental lineage, in which β-catenin signaling is critical for fetal myogenesis. In the adult, surprisingly, we show that it is not activation but rather silencing of Wnt/β-catenin signaling that is important for muscle regeneration.

  2. What is a stem cell?

    Science.gov (United States)

    Slack, Jonathan M W

    2018-05-15

    The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells. © 2018 Wiley Periodicals, Inc.

  3. Dental mesenchymal stem cells encapsulated in alginate hydrogel co-delivery microencapsulation system for cartilage regeneration

    Science.gov (United States)

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-01-01

    Dental-derived MSCs are promising candidates for cartilage regeneration, with high chondrogenic differentiation capacity. This property contributes to making dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating Periodontal Ligament Stem Cells (PDLSCs) or Gingival Mesenchymal Stem Cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs, GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSC) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by toluidine blue and safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (Palginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. PMID:23891740

  4. Identification of WOX family genes in Selaginella kraussiana for studies on stem cells and regeneration in lycophytes

    Directory of Open Access Journals (Sweden)

    Yachao eGe

    2016-02-01

    Full Text Available Plant stem cells give rise to all tissues and organs and also serve as the source for plant regeneration. The organization of plant stem cells has undergone a progressive change from simple to complex during the evolution of vascular plants. Most studies on plant stem cells have focused on model angiosperms, the most recently diverged branch of vascular plants. However, our knowledge of stem cell function in other vascular plants is limited. Lycophytes and euphyllophytes (ferns, gymnosperms, and angiosperms are two existing branches of vascular plants that separated more than 400 million years ago. Lycophytes retain many of the features of early vascular plants. Based on genome and transcriptome data, we identified WUSCHEL-RELATED HOMEOBOX (WOX genes in Selaginella kraussiana, a model lycophyte that is convenient for in vitro culture and observations of organ formation and regeneration. WOX genes are key players controlling stem cells in plants. Our results showed that the S. kraussiana genome encodes at least eight members of the WOX family, which represent an early stage of WOX family evolution. Identification of WOX genes in S. kraussiana could be a useful tool for molecular studies on the function of stem cells in lycophytes.

  5. Stem cells and related factors involved in facial nerve function regeneration

    Directory of Open Access Journals (Sweden)

    Kamil H. Nelke

    2015-09-01

    Full Text Available The facial nerve (VII is one of the most important cranial nerves for head and neck surgeons. Its function is closely related to facial expressions that are individual for every person. After its injury or palsy, its functions can be either impaired or absent. Because of the presence of motor, sensory and parasympathetic fibers, the biology of its repair and function restoration depends on many factors. In order to achieve good outcome, many different therapies can be performed in order to restore as much of the nerve function as possible. When rehabilitation and physiotherapy are not sufficient, additional surgical procedures and therapies are taken into serious consideration. The final outcome of many of them is discussable, depending on nerve damage etiology. Stem cells in facial nerve repair are used, but long-term outcomes and results are still not fully known. In order to understand this therapeutic approach, clinicians and surgeons should understand the immunobiology of nerve repair and regeneration. In this review, potential stem cell usage in facial nerve regeneration procedures is discussed.

  6. Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs

    Science.gov (United States)

    Jiménez-Rojo, Lucía; Granchi, Zoraide; Graf, Daniel; Mitsiadis, Thimios A.

    2012-01-01

    The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands, and teeth. Despite varying in number, shape, and function, all these ectodermal organs develop through continuous and reciprocal epithelial–mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein, and fibroblast growth factor signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues. PMID:22539926

  7. Enhanced regeneration potential of mobilized dental pulp stem cells from immature teeth.

    Science.gov (United States)

    Nakayama, H; Iohara, K; Hayashi, Y; Okuwa, Y; Kurita, K; Nakashima, M

    2017-07-01

    We have previously demonstrated that dental pulp stem cells (DPSCs) isolated from mature teeth by granulocyte colony-stimulating factor (G-CSF)-induced mobilization method can enhance angiogenesis/vasculogenesis and improve pulp regeneration when compared with colony-derived DPSCs. However, the efficacy of this method in immature teeth with root-formative stage has never been investigated. Therefore, the aim of this study was to examine the stemness, biological characteristics, and regeneration potential in mobilized DPSCs compared with colony-derived DPSCs from immature teeth. Mobilized DPSCs isolated from immature teeth were compared to colony-derived DPSCs using methods including flow cytometry, migration assays, mRNA expression of angiogenic/neurotrophic factor, and induced differentiation assays. They were also compared in trophic effects of the secretome. Regeneration potential was further compared in an ectopic tooth transplantation model. Mobilized DPSCs had higher migration ability and expressed more angiogenic/neurotrophic factors than DPSCs. The mobilized DPSC secretome produced a higher stimulatory effect on migration, immunomodulation, anti-apoptosis, endothelial differentiation, and neurite extension. In addition, vascularization and pulp regeneration potential were higher in mobilized DPSCs than in DPSCs. G-CSF-induced mobilization method enhances regeneration potential of colony-derived DPSCs from immature teeth. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    Science.gov (United States)

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  9. Gastric stem cells and gastric cancer stem cells

    OpenAIRE

    Han, Myoung-Eun; Oh, Sae-Ock

    2013-01-01

    The gastric epithelium is continuously regenerated by gastric stem cells, which give rise to various kinds of daughter cells, including parietal cells, chief cells, surface mucous cells, mucous neck cells, and enteroendocrine cells. The self-renewal and differentiation of gastric stem cells need delicate regulation to maintain the normal physiology of the stomach. Recently, it was hypothesized that cancer stem cells drive the cancer growth and metastasis. In contrast to conventional clonal ev...

  10. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression.

    Science.gov (United States)

    Cheng, Chia-Wei; Adams, Gregor B; Perin, Laura; Wei, Min; Zhou, Xiaoying; Lam, Ben S; Da Sacco, Stefano; Mirisola, Mario; Quinn, David I; Dorff, Tanya B; Kopchick, John J; Longo, Valter D

    2014-06-05

    Immune system defects are at the center of aging and a range of diseases. Here, we show that prolonged fasting reduces circulating IGF-1 levels and PKA activity in various cell populations, leading to signal transduction changes in long-term hematopoietic stem cells (LT-HSCs) and niche cells that promote stress resistance, self-renewal, and lineage-balanced regeneration. Multiple cycles of fasting abated the immunosuppression and mortality caused by chemotherapy and reversed age-dependent myeloid-bias in mice, in agreement with preliminary data on the protection of lymphocytes from chemotoxicity in fasting patients. The proregenerative effects of fasting on stem cells were recapitulated by deficiencies in either IGF-1 or PKA and blunted by exogenous IGF-1. These findings link the reduced levels of IGF-1 caused by fasting to PKA signaling and establish their crucial role in regulating hematopoietic stem cell protection, self-renewal, and regeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Autologous dental pulp stem cells in periodontal regeneration: a case report.

    Science.gov (United States)

    Aimetti, Mario; Ferrarotti, Francesco; Cricenti, Luca; Mariani, Giulia Maria; Romano, Federica

    2014-01-01

    Histologic findings in animal models suggest that the application of dental pulp stem cells (DPSCs) may promote periodontal regeneration in infrabony defects. This case report describes the clinical and radiographic regenerative potential of autologous DPSCs in the treatment of human noncontained intraosseous defects. A chronic periodontitis patient with one vital third molar requiring extraction was surgically treated. The third molar was extracted and used as an autologous DPSCs source to regenerate the infrabony defect on the mandibular right second premolar. At the 1-year examination, the defect was completely filled with bonelike tissue as confirmed through the reentry procedure.

  12. Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives.

    Science.gov (United States)

    Huang, Yi-Zhou; Xie, Hui-Qi; Silini, Antonietta; Parolini, Ornella; Zhang, Yi; Deng, Li; Huang, Yong-Can

    2017-10-01

    Large articular cartilage defects remain an immense challenge in the field of regenerative medicine because of their poor intrinsic repair capacity. Currently, the available medical interventions can relieve clinical symptoms to some extent, but fail to repair the cartilaginous injuries with authentic hyaline cartilage. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stem/progenitor cells with or without scaffolds. Mesenchymal stem/progenitor cells are promising graft cells for tissue regeneration, but the most suitable source of cells for cartilage repair remains controversial. The tissue origin of mesenchymal stem/progenitor cells notably influences the biological properties and therapeutic potential. It is well known that mesenchymal stem/progenitor cells derived from synovial joint tissues exhibit superior chondrogenic ability compared with those derived from non-joint tissues; thus, these cell populations are considered ideal sources for cartilage regeneration. In addition to the progress in research and promising preclinical results, many important research questions must be answered before widespread success in cartilage regeneration is achieved. This review outlines the biology of stem/progenitor cells derived from the articular cartilage, the synovial membrane, and the synovial fluid, including their tissue distribution, function and biological characteristics. Furthermore, preclinical and clinical trials focusing on their applications for cartilage regeneration are summarized, and future research perspectives are discussed.

  13. Regeneration of musculoskeletal injuries using mesenchymal stem cells loaded scaffolds: review article

    Directory of Open Access Journals (Sweden)

    Maryam Ataie

    2017-07-01

    Full Text Available An increase in the average age of the population and physical activities where the musculoskeletal system is involved as well as large number of people suffering from skeletal injuries which impose high costs on the society. Bone grafting is currently a standard clinical approach to treat or replace lost tissues. Autografts are the most common grafts, but they can lead to complications such as pain, infection, scarring and donor site morbidity. The alternative is allografts, but they also carry the risk of carrying infectious agents or immune rejection. Therefore, surgeons and researchers are looking for new therapeutic methods to improve bone tissue repair. The field of tissue engineering and the use of stem cells as an ideal cell source have emerged as a promising approach in recent years. Three main components in the field of tissue engineering include proper scaffolds, cells and growth factors that their combination leads to formation of tissue-engineered constructs, resulting in tissue repair and regeneration. The use of scaffolds with suitable properties could effectively improve the tissue function or even regenerate the damaged tissue. The main idea of tissue engineering is to design and fabricate an appropriate scaffold which can support cell attachment, proliferation, migration and differentiation to relevant tissue. Scaffold gives the tissue its structural and mechanical properties, for instance flexibility and stiffness that is related with the tissue functions. Biomaterials used to fabricate scaffolds can be categorized into natural or synthetic biodegradable or non-biodegradable materials. Polymers are the most widely used materials in tissue engineering. Growth factors are a group of proteins that cause cell proliferation and differentiation. Two main cell sources are specialized cells of desired tissue and stem cells. However, according to the low proliferation and limited accessibility to the cells of desired tissue, stem cells

  14. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    Science.gov (United States)

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Mesenchymal Stem Cells Enhance Liver Regeneration via Improving Lipid Accumulation and Hippo Signaling

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-01-01

    Full Text Available The liver has the potential to regenerate after injury. It is a challenge to improve liver regeneration (LR after liver resection in clinical practice. Bone morrow-derived mesenchymal stem cells (MSCs have shown to have a role in various liver diseases. To explore the effects of MSCs on LR, we established a model of 70% partial hepatectomy (PHx. Results revealed that infusion of MSCs could improve LR through enhancing cell proliferation and cell growth during the first 2 days after PHx, and MSCs could also restore liver synthesis function. Infusion of MSCs also improved liver lipid accumulation partly via mechanistic target of rapamycin (mTOR signaling and enhanced lipid β-oxidation support energy for LR. Rapamycin-induced inhibition of mTOR decreased liver lipid accumulation at 24 h after PHx, leading to impaired LR. And after infusion of MSCs, a proinflammatory environment formed in the liver, evidenced by increased expression of IL-6 and IL-1β, and thus the STAT3 and Hippo-YAP pathways were activated to improve cell proliferation. Our results demonstrated the function of MSCs on LR after PHx and provided new evidence for stem cell therapy of liver diseases.

  16. Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration.

    Science.gov (United States)

    Kaslin, Jan; Kroehne, Volker; Ganz, Julia; Hans, Stefan; Brand, Michael

    2017-04-15

    Zebrafish can regenerate after brain injury, and the regenerative process is driven by resident stem cells. Stem cells are heterogeneous in the vertebrate brain, but the significance of having heterogeneous stem cells in regeneration is not understood. Limited availability of specific stem cells might impair the regeneration of particular cell lineages. We studied regeneration of the adult zebrafish cerebellum, which contains two major stem and progenitor cell types: ventricular zone and neuroepithelial cells. Using conditional lineage tracing we demonstrate that cerebellar regeneration depends on the availability of specific stem cells. Radial glia-like cells are thought to be the predominant stem cell type in homeostasis and after injury. However, we find that radial glia-like cells play a minor role in adult cerebellar neurogenesis and in recovery after injury. Instead, we find that neuroepithelial cells are the predominant stem cell type supporting cerebellar regeneration after injury. Zebrafish are able to regenerate many, but not all, cell types in the cerebellum, which emphasizes the need to understand the contribution of different adult neural stem and progenitor cell subtypes in the vertebrate central nervous system. © 2017. Published by The Company of Biologists Ltd.

  17. A Miniature Swine Model for Stem Cell-Based De Novo Regeneration of Dental Pulp and Dentin-Like Tissue.

    Science.gov (United States)

    Zhu, Xiaofei; Liu, Jie; Yu, Zongdong; Chen, Chao-An; Aksel, Hacer; Azim, Adham A; Huang, George T-J

    2018-02-01

    The goal of this study was to establish mini-swine as a large animal model for stem cell-based pulp regeneration studies. Swine dental pulp stem cells (sDPSCs) were isolated from mini-swine and characterized in vitro. For in vivo studies, we first employed both ectopic and semi-orthotopic study models using severe combined immunodeficiency mice. One is hydroxyapatite-tricalcium phosphate (HA/TCP) model for pulp-dentin complex formation, and the other is tooth fragment model for complete pulp regeneration with new dentin depositing along the canal walls. We found that sDPSCs are similar to their human counterparts exhibiting mesenchymal stem cell characteristics with ability to form colony forming unit-fibroblastic and odontogenic differentiation potential. sDPSCs formed pulp-dentin complex in the HA/TCP model and showed pulp regeneration capacity in the tooth fragment model. We then tested orthotopic pulp regeneration on mini-swine including the use of multi-rooted teeth. Using autologous sDPSCs carried by hydrogel and transplanted into the mini-swine root canal space, we observed regeneration of vascularized pulp-like tissue with a layer of newly deposited dentin-like (rD) tissue or osteodentin along the canal walls. In some cases, dentin bridge-like structure was observed. Immunohistochemical analysis detected the expression of nestin, dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein in odontoblast-like cells lining against the produced rD. We also tested the use of allogeneic sDPSCs for the same procedures. Similar findings were observed in allogeneic transplantation. This study is the first to show an establishment of mini-swine as a suitable large animal model utilizing multi-rooted teeth for further cell-based pulp regeneration studies.

  18. Neural stem/progenitor cells are activated during tail regeneration in the leopard gecko (Eublepharis macularius).

    Science.gov (United States)

    Gilbert, E A B; Vickaryous, M K

    2018-02-01

    As for many lizards, the leopard gecko (Eublepharis macularius) can self-detach its tail to avoid predation and then regenerate a replacement. The replacement tail includes a regenerated spinal cord with a simple morphology: an ependymal layer surrounded by nerve tracts. We hypothesized that cells within the ependymal layer of the original spinal cord include populations of neural stem/progenitor cells (NSPCs) that contribute to the regenerated spinal cord. Prior to tail loss, we performed a bromodeoxyuridine pulse-chase experiment and found that a subset of ependymal layer cells (ELCs) were label-retaining after a 140-day chase period. Next, we conducted a detailed spatiotemporal characterization of these cells before, during, and after tail regeneration. Our findings show that SOX2, a hallmark protein of NSPCs, is constitutively expressed by virtually all ELCs before, during, and after regeneration. We also found that during regeneration, ELCs express an expanded panel of NSPC and lineage-restricted progenitor cell markers, including MSI-1, SOX9, and TUJ1. Using electron microscopy, we determined that multiciliated, uniciliated, and biciliated cells are present, although the latter was only observed in regenerated spinal cords. Our results demonstrate that cells within the ependymal layer of the original, regenerating and fully regenerate spinal cord represent a heterogeneous population. These include radial glia comparable to Type E and Type B cells, and a neuronal-like population of cerebrospinal fluid-contacting cells. We propose that spinal cord regeneration in geckos represents a truncation of the restorative trajectory observed in some urodeles and teleosts, resulting in the formation of a structurally distinct replacement. © 2017 Wiley Periodicals, Inc.

  19. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice.

    Science.gov (United States)

    Hu, Jingchao; Cao, Yu; Xie, Yilin; Wang, Hua; Fan, Zhipeng; Wang, Jinsong; Zhang, Chunmei; Wang, Jinsong; Wu, Chu-Tse; Wang, Songlin

    2016-09-09

    Periodontitis, one of the most prevalent infectious diseases in humans, results in the destruction of tooth-supporting tissues. The purpose of the present study is to evaluate the effect of cell injection and cell sheet transplantation on periodontal regeneration in a swine model. In the present study, human dental pulp stem cells (hDPSCs) were transplanted into a swine model for periodontal regeneration. Twelve miniature pigs were used to generate periodontitis with bone defects of 5 mm in width, 7 mm in length, and 3 mm in depth. hDPSCs were obtained for bone regeneration using cell injection or cell sheet transplantation. After 12 weeks, clinical, radiological, and histological assessments of regenerated periodontal tissues were performed to compare periodontal regeneration treated with xenogeneic cell injection and cell sheet implantation. Our study showed that translating hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. After 12 weeks, both the hDPSC sheet treatment and hDPSC injection significantly improved periodontal tissue healing clinically in comparison with the control group. The volume of regenerative bone in the hDPSC sheet group (52.7 ± 4.1 mm(3)) was significantly larger than in the hDPSC injection group (32.4 ± 5.1 mm(3)) (P cell sheet transplantation significantly regenerated periodontal bone in swine. The hDPSC sheet had more bone regeneration capacity compared with hDPSC injection.

  20. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration

    Directory of Open Access Journals (Sweden)

    Shila Gilbert

    2015-02-01

    Full Text Available Intestinal epithelial stem cells (IESCs control the intestinal homeostatic response to inflammation and regeneration. The underlying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5+ IESC proliferation. STAT5-deficient mice exhibited worse intestinal histology and impaired crypt regeneration after γ-irradiation. We generated a transgenic mouse model with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC proliferation, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in mouse or human stem cells promoted LGR5+ IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut injury.

  2. Intrathymic radioresistant stem cells follow an IL-2/IL-2R pathway during thymic regeneration after sublethal irradiation

    International Nuclear Information System (INIS)

    Zuniga-Pfluecker, J.C.K.; Kruisbeek, A.M.

    1990-01-01

    Sublethally irradiated mice undergo thymic regeneration which follows a phenotypic pattern of events similar to that observed during normal fetal development. Thymic regeneration after irradiation is the product of a limited pool of intrathymic radioresistant stem cells undergoing simultaneous differentiation. We show that in this model of T cell development, thymic regeneration follows a pathway in which the IL-2R is transiently expressed on CD4-/CD8- cells. IL-2R expression occurred during the exponential growth period of thymic regeneration, and IL-2R blocking prevented this explosive growth. Flow cytometry analysis revealed that the IL-2R blockade affected primarily the development of the immature CD3-/CD4-/CD8- (triple negative) cells and their ability to generate CD3+/CD4+/CD8+ or CD3+/CD4+/CD8- and CD3+/CD4-/CD8+ thymocytes. Thus, our findings demonstrate that blocking of the IL-2R resulted in an arrest in proliferation and differentiation by intrathymic radioresistant stem cells, indicating that the IL-2/IL-2R pathway is necessary for the expansion of immature triple negative T cells

  3. Colorectal cancer stem cells.

    Science.gov (United States)

    Salama, Paul; Platell, Cameron

    2009-10-01

    Somatic stem cells reside at the base of the crypts throughout the colonic mucosa. These cells are essential for the normal regeneration of the colonic epithelium. The stem cells reside within a special 'niche' comprised of intestinal sub-epithelial myofibroblasts that tightly control their function. It has been postulated that mutations within these adult colonic stem cells may induce neoplastic changes. Such cells can then dissociate from the epithelium and travel into the mesenchyme and thus form invasive cancers. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumour. It is this group of cells that exhibits characteristics of colonic stem cells. Although anti-neoplastic agents can induce remissions by inhibiting cell division, the stem cells appear to be remarkably resistant to both standard chemotherapy and radiotherapy. These stem cells may therefore persist after treatment and form the nucleus for cancer recurrence. Hence, future treatment modalities should focus specifically on controlling the cancer stem cells. In this review, we discuss the biology of normal and malignant colonic stem cells.

  4. Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products

    Directory of Open Access Journals (Sweden)

    Ana Rita Caseiro

    2016-01-01

    Full Text Available Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells’ secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.

  5. Changing paradigms in cranio-facial regeneration: current and new strategies for the activation of endogenous stem cells

    Directory of Open Access Journals (Sweden)

    Luigi eMele

    2016-02-01

    Full Text Available Craniofacial area represent a unique district of human body characterized by a very high complexity of tissues, innervation and vascularization, and being deputed to many fundamental function such as eating, speech, expression of emotions, delivery of sensations such as taste, sight and earing. For this reasons, tissue loss in this area following trauma or for example oncologic resection, have a tremendous impact on patients’ quality of life. In the last 20 years regenerative medicine has emerged as one of the most promising approach to solve problem related to trauma, tissue loss, organ failure etc. One of the most powerful tools to be used for tissue regeneration is represented by stem cells, which have been successfully implanted in different tissue/organs with exciting results. Nevertheless both autologous and allogeneic stem cell transplantation raise many practical and ethical concerns that make this approach very difficult to apply in clinical practice. For this reason different cell free approaches have been developed aiming to the mobilization, recruitment and activation of endogenous stem cells into the injury site avoiding exogenous cells implant but instead stimulating patients’ own stem cells to repair the lesion. To this aim many strategies have been used including functionalized bioscaffold, controlled release of stem cell chemoattractants, growth factors, BMPs, Platelet–Rich-Plasma and other new strategies such as ultrasound wave and laser are just being proposed. Here we review all the current and new strategies used for activation and mobilization of endogenous stem cells in the regeneration of craniofacial tissue.

  6. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells.

    Science.gov (United States)

    Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi

    2016-01-01

    Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.

  7. Retinal stem cells and potential cell transplantation treatments

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2014-11-01

    Full Text Available The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells. The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  8. Application of Induced Pluripotent Stem Cells Reprogrammed from Dental Pulp Cells: a Novel Approach for Tooth Regeneration

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhou

    2011-03-01

    Full Text Available Introduction: Candidate human dental stem/progenitor cells have been isolated and charac-terized from dental tissues and shown to hold the capability to differentiate into tooth-generating cells. However, ad-vances in engineering a whole tooth by these stem cells are hindered by various factors, such as the poor availability of human primitive tooth bud stem cells, difficulties in isolating and purifying dental mesenchymal stem cells and ethical controversies when using embryonic oral epithelium. As a result it is meaningful to find other autologous dental cells for the purpose of reconstructing a tooth.The hypothesis: Previous studies demonstrated that somatic cells can be reprogrammed into induced pluripotent stem cells by ex-ogenous expression Oct-4 and Sox-2. On the basis of these findings we can reasonably hypothesize that when transfected with specific transcription factors Oct-4 and Sox-2, dental pulp cells, the main cell in pulp, could also be reprogrammed into induced pluripotent stem cells, which are considered to be of best potential to regenerate a whole tooth. Evaluation of the hypothesis: After transfection with Oct-4 and Sox-2 into human dental pulp cells, the positive colonies are isolated and then identified according to the characteristics of iPS cells. These cells are further investigated the capability in differentiating into ameloblasts and odontoblasts and finally seeded onto the sur-face of a tooth-shaped biodegradable polymer scaffold to detect the ability of constructing a bioengineered tooth.

  9. Organ-level quorum sensing directs regeneration in hair stem cell populations

    Science.gov (United States)

    Chen, Chih-Chiang; Wang, Lei; Plikus, Maksim V.; Jiang, Ting Xin; Murray, Philip J.; Ramos, Raul; Guerrero-Juarez, Christian F.; Hughes, Michael W; Lee, Oscar K.; Shi, Songtao; Widelitz, Randall B.; Lander, Arthur D.; Chuong, Cheng Ming

    2015-01-01

    SUMMARY Coordinated organ behavior is crucial for an effective response to environmental stimuli. By studying regeneration of hair follicles in response to patterned hair removal, we demonstrate that organ-level quorum sensing allows coordinated responses to skin injury. Removing hair at different densities leads to a regeneration of up to 5 times more neighboring, unplucked resting hairs, indicating activation of a collective decision-making process. Through data modeling, the range of the quorum signal was estimated to be on the order of 1 mm, greater than expected for a diffusible molecular cue. Molecular and genetic analysis uncovered a two-step mechanism, where release of CCL2 from injured hairs leads to recruitment of TNF-α secreting macrophages, which accumulate and signal to both plucked and unplucked follicles. By coupling immune response with regeneration, this mechanism allows skin to respond predictively to distress, disregarding mild injury, while meeting stronger injury with full-scale cooperative activation of stem cells. PMID:25860610

  10. Potential of stem cell based therapy and tissue engineering in the regeneration of the central nervous system

    International Nuclear Information System (INIS)

    An Yihua; Tsang, Kent K S; Zhang Han

    2006-01-01

    The insufficiency of self-repair and regeneration of the central nervous system (CNS) leads to difficulty of rehabilitation of the injured brain. In the past few decades, the significant progress in cell therapy and tissue engineering has contributed to the functional recovery of the CNS to a great extent. The present review focuses on the potential role of stem cell based therapy and tissue engineering in the regeneration of the CNS. (topical review)

  11. Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: an advantageous alternative to ES and iPS cells.

    Science.gov (United States)

    Amoh, Yasuyuki; Kanoh, Maho; Niiyama, Shiro; Hamada, Yuko; Kawahara, Katsumasa; Sato, Yuichi; Hoffman, Robert M; Katsuoka, Kensei

    2009-08-01

    The optimal source of stem cells for regenerative medicine is a major question. Embryonic stem (ES) cells have shown promise for pluripotency but have ethical issues and potential to form teratomas. Pluripotent stem cells have been produced from skin cells by either viral-, plasmid- or transposon-mediated gene transfer. These stem cells have been termed induced pluripotent stem cells or iPS cells. iPS cells may also have malignant potential and are inefficiently produced. Embryonic stem cells may not be suited for individualized therapy, since they can undergo immunologic rejection. To address these fundamental problems, our group is developing hair follicle pluripotent stem (hfPS) cells. Our previous studies have shown that mouse hfPS cells can differentiate to neurons, glial cells in vitro, and other cell types, and can promote nerve and spinal cord regeneration in vivo. hfPS cells are located above the hair follicle bulge in what we have termed the hfPS cell area (hfPSA) and are nestin positive and keratin 15 (K-15) negative. Human hfPS cells can also differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In the present study, human hfPS cells were transplanted in the severed sciatic nerve of the mouse where they differentiated into glial fibrillary-acidic-protein (GFAP)-positive Schwann cells and promoted the recovery of pre-existing axons, leading to nerve generation. The regenerated nerve recovered function and, upon electrical stimulation, contracted the gastrocnemius muscle. The hfPS cells can be readily isolated from the human scalp, thereby providing an accessible, autologous and safe source of stem cells for regenerative medicine that have important advantages over ES or iPS cells. (c) 2009 Wiley-Liss, Inc.

  12. GMP-conformant on-site manufacturing of a CD133+ stem cell product for cardiovascular regeneration.

    Science.gov (United States)

    Skorska, Anna; Müller, Paula; Gaebel, Ralf; Große, Jana; Lemcke, Heiko; Lux, Cornelia A; Bastian, Manuela; Hausburg, Frauke; Zarniko, Nicole; Bubritzki, Sandra; Ruch, Ulrike; Tiedemann, Gudrun; David, Robert; Steinhoff, Gustav

    2017-02-10

    CD133 + stem cells represent a promising subpopulation for innovative cell-based therapies in cardiovascular regeneration. Several clinical trials have shown remarkable beneficial effects following their intramyocardial transplantation. Yet, the purification of CD133 + stem cells is typically performed in centralized clean room facilities using semi-automatic manufacturing processes based on magnetic cell sorting (MACS®). However, this requires time-consuming and cost-intensive logistics. CD133 + stem cells were purified from patient-derived sternal bone marrow using the recently developed automatic CliniMACS Prodigy® BM-133 System (Prodigy). The entire manufacturing process, as well as the subsequent quality control of the final cell product (CP), were realized on-site and in compliance with EU guidelines for Good Manufacturing Practice. The biological activity of automatically isolated CD133 + cells was evaluated and compared to manually isolated CD133 + cells via functional assays as well as immunofluorescence microscopy. In addition, the regenerative potential of purified stem cells was assessed 3 weeks after transplantation in immunodeficient mice which had been subjected to experimental myocardial infarction. We established for the first time an on-site manufacturing procedure for stem CPs intended for the treatment of ischemic heart diseases using an automatized system. On average, 0.88 × 10 6 viable CD133 + cells with a mean log 10 depletion of 3.23 ± 0.19 of non-target cells were isolated. Furthermore, we demonstrated that these automatically isolated cells bear proliferation and differentiation capacities comparable to manually isolated cells in vitro. Moreover, the automatically generated CP shows equal cardiac regeneration potential in vivo. Our results indicate that the Prodigy is a powerful system for automatic manufacturing of a CD133 + CP within few hours. Compared to conventional manufacturing processes, future clinical application of

  13. Cardiac regeneration by pharmacologically active microcarriers releasing growth factors and/or transporting adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Monia Savi

    2014-01-01

    Full Text Available We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs, activation of resident cardiac stem cells via growth factors (GFs [hepatocyte growth factor (HGF and insulin-like growth factor 1 (IGF-1:GFs] or both, are improved by pharmacologically active microcarriers (PAMs interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.

  14. Integration and long distance axonal regeneration in the central nervous system from transplanted primitive neural stem cells.

    Science.gov (United States)

    Zhao, Jiagang; Sun, Woong; Cho, Hyo Min; Ouyang, Hong; Li, Wenlin; Lin, Ying; Do, Jiun; Zhang, Liangfang; Ding, Sheng; Liu, Yizhi; Lu, Paul; Zhang, Kang

    2013-01-04

    Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.

  15. Biology of teeth and implants: Host factors - pathology, regeneration, and the role of stem cells.

    Science.gov (United States)

    Eggert, F-Michael; Levin, Liran

    2018-01-01

    In chronic periodontitis and peri-implantitis, cells of the innate and adaptive immune systems are involved directly in the lesions within the tissues of the patient. Absence of a periodontal ligament around implants does not prevent a biologic process similar to that of periodontitis from affecting osseointegration. Our first focus is on factors in the biology of individuals that are responsible for the susceptibility of such individuals to chronic periodontitis and to peri-implantitis. Genetic factors are of significant importance in susceptibility to these diseases. Genetic factors of the host affect the composition of the oral microbiome in the same manner that they influence other microbiomes, such as those of the intestines and of the lungs. Our second focus is on the central role of stem cells in tissue regeneration, in the functioning of innate and adaptive immune systems, and in metabolism of bone. Epithelial cell rests of Malassez (ERM) are stem cells of epithelial origin that maintain the periodontal ligament as well as the cementum and alveolar bone associated with the ligament. The tissue niche within which ERM are found extends into the supracrestal areas of collagen fiber-containing tissues of the gingivae above the bony alveolar crest. Maintenance and regeneration of all periodontal tissues involves the activity of a variety of stem cells. The success of dental implants indicates that important groups of stem cells in the periodontium are active to enable that biologic success. Successful replantation of avulsed teeth and auto-transplantation of teeth is comparable to placing dental implants, and so must also involve periodontal stem cells. Biology of teeth and biology of implants represents the biology of the various stem cells that inhabit specialized niches within the periodontal tissues. Diverse biologic processes must function together successfully to maintain periodontal health. Osseointegration of dental implants does not involve formation of

  16. Mechanical Stretching Promotes Skin Tissue Regeneration via Enhancing Mesenchymal Stem Cell Homing and Transdifferentiation.

    Science.gov (United States)

    Liang, Xiao; Huang, Xiaolu; Zhou, Yiwen; Jin, Rui; Li, Qingfeng

    2016-07-01

    Skin tissue expansion is a clinical procedure for skin regeneration to reconstruct cutaneous defects that can be accompanied by severe complications. The transplantation of mesenchymal stem cells (MSCs) has been proven effective in promoting skin expansion and helping to ameliorate complications; however, systematic understanding of its mechanism remains unclear. MSCs from luciferase-Tg Lewis rats were intravenously transplanted into a rat tissue expansion model to identify homing and transdifferentiation. To clarify underlying mechanisms, a systematic approach was used to identify the differentially expressed genes between mechanically stretched human MSCs and controls. The biological significance of these changes was analyzed through bioinformatic methods. We further investigated genes and pathways of interest to disclose their potential role in mechanical stretching-induced skin regeneration. Cross sections of skin samples from the expanded group showed significantly more luciferase(+) and stromal cell-derived factor 1α (SDF-1α)(+), luciferase(+)keratin 14(+), and luciferase(+)CD31(+) cells than the control group, indicating MSC transdifferentiation into epidermal basal cells and endothelial cells after SDF-1α-mediated homing. Microarray analysis suggested upregulation of genes related to hypoxia, vascularization, and cell proliferation in the stretched human MSCs. Further investigation showed that the homing of MSCs was blocked by short interfering RNA targeted against matrix metalloproteinase 2, and that mechanical stretching-induced vascular endothelial growth factor A upregulation was related to the Janus kinase/signal transducer and activator of transcription (Jak-STAT) and Wnt signaling pathways. This study determines that mechanical stretching might promote skin regeneration by upregulating MSC expression of genes related to hypoxia, vascularization, and cell proliferation; enhancing transplanted MSC homing to the expanded skin; and

  17. Impact of cycling cells and cell cycle regulation on Hydra regeneration.

    Science.gov (United States)

    Buzgariu, Wanda; Wenger, Yvan; Tcaciuc, Nina; Catunda-Lemos, Ana-Paula; Galliot, Brigitte

    2018-01-15

    Hydra tissues are made from three distinct populations of stem cells that continuously cycle and pause in G2 instead of G1. To characterize the role of cell proliferation after mid-gastric bisection, we have (i) used flow cytometry and classical markers to monitor cell cycle modulations, (ii) quantified the transcriptomic regulations of 202 genes associated with cell proliferation during head and foot regeneration, and (iii) compared the impact of anti-proliferative treatments on regeneration efficiency. We confirm two previously reported events: an early mitotic wave in head-regenerating tips, when few cell cycle genes are up-regulated, and an early-late wave of proliferation on the second day, preceded by the up-regulation of 17 cell cycle genes. These regulations appear more intense after mid-gastric bisection than after decapitation, suggesting a position-dependent regulation of cell proliferation during head regeneration. Hydroxyurea, which blocks S-phase progression, delays head regeneration when applied before but not after bisection. This result is consistent with the fact that the Hydra central region is enriched in G2-paused adult stem cells, poised to divide upon injury, thus forming a necessary constitutive pro-blastema. However a prolonged exposure to hydroxyurea does not block regeneration as cells can differentiate apical structures without traversing S-phase, and also escape in few days the hydroxyurea-induced S-phase blockade. Thus Hydra head regeneration, which is a fast event, is highly plastic, relying on large stocks of adult stem cells paused in G2 at amputation time, which immediately divide to proliferate and/or differentiate apical structures even when S-phase is blocked. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The effects of the stem cell on ciliary regeneration of injured rabbit sinonasal epithelium.

    Science.gov (United States)

    Kavuzlu, Ali; Tatar, Emel Çadallı; Karagöz, Tuğba; Pınarlı, Ferda Alpaslan; Tatar, İlkan; Bayır, Ömer; Korkmaz, Mehmet Hakan

    2017-08-01

    Defects in mucosal healing after sinonasal surgery cause infection, scar formation causing obstruction, relapse of the disease within a shorter period and revision surgery. The present study aimed to create a functional ciliated epithelium using a stem cell and stem cell sheet of adipose tissue origin and to show such regeneration ultra-structurally on experimentally injured rabbit nasal epithelium. This was an experimental animal study and basic research. A total of 18 white New Zealand rabbits were divided into three groups. The medial wall of the maxillary sinus of the subjects was peeled off bilaterally. No additional procedure was applied to the subjects in Group 1. In Group 2, adipose tissue-derived mesenchymal stem cell was implanted on the wound edges of the subjects. In Group 3, a stem cell sheet of three layers was laid onto the defect area. All subjects were killed after 3 weeks. The presence of the stem cell stained with bromo-deoxyuridine was assessed with a light microscope, whereas cilia density, ciliated orientation and cilia structure were evaluated with a scanning electron microscope. Ciliary densities in Group 2 and Group 3 were statistically superior compared to the control group (p stem cell increased the healing of the injured maxillary sinus mucosa of the rabbits in terms of cilia presence, density and morphology regardless of the implementation technique. Level of evidence NA.

  19. An update on application of nanotechnology and stem cells in spinal cord injury regeneration.

    Science.gov (United States)

    Nejati-Koshki, Kazem; Mortazavi, Yousef; Pilehvar-Soltanahmadi, Younes; Sheoran, Sumit; Zarghami, Nosratollah

    2017-06-01

    Spinal cord injury (SCI) is damage to the spinal cord that leads to sudden loss of motor and autonomic function and sensory under the level of the injury. The pathophysiological advancement of SCI is divided into two categories: primary injury and secondary injury. Due to the loss of motor, sensory, or cognitive function, a patient's quality of life is likely reduced and places a great burden on society in order to supply health care costs. Therefore, it is important to develop suitable therapeutic strategies for SCI therapy. Nano biomedical systems and stem cell based therapy have the potential to provide new therapeutic availability and efficacy over conventional medicine. Due to their unique properties, nanomaterials and mesenchymal stem cells can be used to offer efficient treatments. Nanoparticles have a potential to deliver therapeutic molecules to the target tissue of interest, reducing side effects of untargeted therapies in unwanted areas. Mesenchymal stem cells (MSCs) can reduce activating inflammation responses that lead to cell death and promote functional recovery and cell growth. We review recent uses of nanomaterials and stem cells in regeneration of SCI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Jiang, Huaqi; Edgar, Bruce A.

    2011-01-01

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  1. Dental pulp stem cells

    DEFF Research Database (Denmark)

    Ashri, N. Y.; Ajlan, S. A.; Aldahmash, Abdullah M.

    2015-01-01

    scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from...... an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors....

  2. In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Manuel Mata

    2017-01-01

    Full Text Available Osteoarthritis is an inflammatory disease in which all joint-related elements, articular cartilage in particular, are affected. The poor regeneration capacity of this tissue together with the lack of pharmacological treatment has led to the development of regenerative medicine methodologies including microfracture and autologous chondrocyte implantation (ACI. The effectiveness of ACI has been shown in vitro and in vivo, but the use of other cell types, including bone marrow and adipose-derived mesenchymal stem cells, is necessary because of the poor proliferation rate of isolated articular chondrocytes. In this investigation, we assessed the chondrogenic ability of human dental pulp stem cells (hDPSCs to regenerate cartilage in vitro and in vivo. hDPSCs and primary isolated rabbit chondrocytes were cultured in chondrogenic culture medium and found to express collagen II and aggrecan. Both cell types were cultured in 3% alginate hydrogels and implanted in a rabbit model of cartilage damage. Three months after surgery, significant cartilage regeneration was observed, particularly in the animals implanted with hDPSCs. Although the results presented here are preliminary, they suggest that hDPSCs may be useful for regeneration of articular cartilage.

  3. In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study.

    Science.gov (United States)

    Mata, Manuel; Milian, Lara; Oliver, Maria; Zurriaga, Javier; Sancho-Tello, Maria; de Llano, Jose Javier Martin; Carda, Carmen

    2017-01-01

    Osteoarthritis is an inflammatory disease in which all joint-related elements, articular cartilage in particular, are affected. The poor regeneration capacity of this tissue together with the lack of pharmacological treatment has led to the development of regenerative medicine methodologies including microfracture and autologous chondrocyte implantation (ACI). The effectiveness of ACI has been shown in vitro and in vivo , but the use of other cell types, including bone marrow and adipose-derived mesenchymal stem cells, is necessary because of the poor proliferation rate of isolated articular chondrocytes. In this investigation, we assessed the chondrogenic ability of human dental pulp stem cells (hDPSCs) to regenerate cartilage in vitro and in vivo . hDPSCs and primary isolated rabbit chondrocytes were cultured in chondrogenic culture medium and found to express collagen II and aggrecan. Both cell types were cultured in 3% alginate hydrogels and implanted in a rabbit model of cartilage damage. Three months after surgery, significant cartilage regeneration was observed, particularly in the animals implanted with hDPSCs. Although the results presented here are preliminary, they suggest that hDPSCs may be useful for regeneration of articular cartilage.

  4. Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength.

    Science.gov (United States)

    Ho, Andrew T V; Palla, Adelaida R; Blake, Matthew R; Yucel, Nora D; Wang, Yu Xin; Magnusson, Klas E G; Holbrook, Colin A; Kraft, Peggy E; Delp, Scott L; Blau, Helen M

    2017-06-27

    Skeletal muscles harbor quiescent muscle-specific stem cells (MuSCs) capable of tissue regeneration throughout life. Muscle injury precipitates a complex inflammatory response in which a multiplicity of cell types, cytokines, and growth factors participate. Here we show that Prostaglandin E2 (PGE2) is an inflammatory cytokine that directly targets MuSCs via the EP4 receptor, leading to MuSC expansion. An acute treatment with PGE2 suffices to robustly augment muscle regeneration by either endogenous or transplanted MuSCs. Loss of PGE2 signaling by specific genetic ablation of the EP4 receptor in MuSCs impairs regeneration, leading to decreased muscle force. Inhibition of PGE2 production through nonsteroidal anti-inflammatory drug (NSAID) administration just after injury similarly hinders regeneration and compromises muscle strength. Mechanistically, the PGE2 EP4 interaction causes MuSC expansion by triggering a cAMP/phosphoCREB pathway that activates the proliferation-inducing transcription factor, Nurr1 Our findings reveal that loss of PGE2 signaling to MuSCs during recovery from injury impedes muscle repair and strength. Through such gain- or loss-of-function experiments, we found that PGE2 signaling acts as a rheostat for muscle stem-cell function. Decreased PGE2 signaling due to NSAIDs or increased PGE2 due to exogenous delivery dictates MuSC function, which determines the outcome of regeneration. The markedly enhanced and accelerated repair of damaged muscles following intramuscular delivery of PGE2 suggests a previously unrecognized indication for this therapeutic agent.

  5. Stem cells in dentistry--part I: stem cell sources.

    Science.gov (United States)

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  6. Adipose stem cells for intervertebral disc regeneration: Current status and concepts for the future: Tissue Engineering Review Series

    NARCIS (Netherlands)

    Hoogendoorn, R.J.W.; Lu, Z.F.; Kroeze, R.J.; Bank, R.A.; Wuisman, P.I.; Helder, M.N.

    2008-01-01

    Introduction Degenerative disc disease and emerging biological treatment approaches Stem cell sources Integration of ASC-based regenerative medicine and surgery In vitro studies Animal models Cells in disc regeneration in vivo In vivo studies Perspective Conclusions Abstract New regenerative

  7. Intestinal stem cells in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu [Department of Developmental Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75235 (United States); Edgar, Bruce A., E-mail: b.edgar@dkfz.de [ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg (Germany); Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  8. Dual Functions of Natural Killer Cells in Selection and Differentiation of Stem Cells; Role in Regulation of Inflammation and Regeneration of Tissues

    Directory of Open Access Journals (Sweden)

    Anahid Jewett, Yan-Gao Man, Han-Ching Tseng

    2013-01-01

    Full Text Available Accumulated evidence from our laboratory indicates that conditioned or anergized NK cells have the ability to induce resistance of healthy stem cells and transformed cancer stem cells through both secreted factors and direct cell-cell contact by inducing differentiation. Cytotoxic function of NK cells is suppressed in the tumor microenvironment by a number of distinct effectors and their secreted factors. Furthermore, decreased peripheral blood NK cell function has been documented in many cancer patients. We have previously shown that NK cells mediate significant cytotoxicity against primary oral squamous carcinoma stem cells (OSCSCs as compared to their more differentiated oral squamous carcinoma cells (OSCCs. In addition, human embryonic stem cells (hESCs, human mesenchymal stem cells (hMSCs, human dental pulp stem cells (hDPSCs and induced human pluripotent stem cells (hiPSCs were all significantly more susceptible to NK cell mediated cytotoxicity than their differentiated counterparts or parental cells from which they were derived. We have also reported that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or gene deletion of COX2 significantly augmented NK cell function. Furthermore, the induction of resistance of the stem cells to NK cell mediated cytotoxicity and their subsequent differentiation is amplified when either the stem cells or the NK cells were cultured in the presence of monocytes. Therefore, we propose that the two stages of NK cell maturation namely CD16+CD56dimCD69- NK cells are important for the lysis of stem cells or poorly differentiated cells whereas the CD16dim/-CD56dim/+CD69+NK cells are important for differentiation and eventual regeneration of the tissues and the resolution of inflammation, thus functionally serving as regulatory NK cells (NKreg. CD16 receptor on the NK cells were found to be the receptor with significant potential to induce NK cell anergy

  9. Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Chul Ho, E-mail: chulsavio@hanmail.net [Department of Otolaryngology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Ahn, SeungHyun [Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Jae Whi; Lee, Byeong Ha [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Lee, Hyeongjin [Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon (Korea, Republic of); Kim, GeunHyung, E-mail: gkimbme@skku.edu [Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-03-01

    Tympanic membrane (TM) perforation is one of the most common otology complications. To date, there has not been reported TM regeneration using bioprinted scaffold. The purpose of this study was to evaluate the efficacy and feasibility of bioprinted polycaprolactone/collagen/alginate-mesenchymal stem cell (PCAMSC) scaffolds for the regeneration of subacute TM perforation. Sprague-Dawley rats were used in an animal model of subacute TM perforation. In the experimental group (n = 7), bioprinted 3D PCAMSC scaffold was placed on the perforation. The control group (n = 7) were treated with polycaprolactone/collagen/alginate (PCA) scaffold. Healing time, acoustic-mechanical properties, and morphological analysis were performed by otoendoscopy, auditory brainstem response (ABR), single-point laser doppler vibrometer (LDV), optical coherence tomography (OCT), and light microscopic evaluation. The closure of the TM perforation was achieved in 100% of the experimental group vs. 72% of the control group, and this difference was statistically significant (p < 0.05). The ABR threshold at all frequencies of the experimental group was recovered to the normal level compared to the control group. TM vibration velocity in the experimental group recovered similar to the normal control level. The difference are very small and they are not statistically significant below 1 kHz (p = 0.074). By OCT and light microscopic examination, regenerated TM of the experimental group showed thickened fibrous and mucosal layer. In contrast, the control group showed well regenerated but less thickened than experimental group. From these results, the cell-laden PCAMSC scaffold offers a significant advantage in the TM regeneration in a rat subacute TM perforation model. It may offer attractive opportunities in the conservative clinical treatment. - Highlights: • MSCs-laden scaffold was fabricated using a centrifugal spinning and cell-printing process. • The cell-laden scaffold showed the outstanding

  10. Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation

    International Nuclear Information System (INIS)

    Jang, Chul Ho; Ahn, SeungHyun; Lee, Jae Whi; Lee, Byeong Ha; Lee, Hyeongjin; Kim, GeunHyung

    2017-01-01

    Tympanic membrane (TM) perforation is one of the most common otology complications. To date, there has not been reported TM regeneration using bioprinted scaffold. The purpose of this study was to evaluate the efficacy and feasibility of bioprinted polycaprolactone/collagen/alginate-mesenchymal stem cell (PCAMSC) scaffolds for the regeneration of subacute TM perforation. Sprague-Dawley rats were used in an animal model of subacute TM perforation. In the experimental group (n = 7), bioprinted 3D PCAMSC scaffold was placed on the perforation. The control group (n = 7) were treated with polycaprolactone/collagen/alginate (PCA) scaffold. Healing time, acoustic-mechanical properties, and morphological analysis were performed by otoendoscopy, auditory brainstem response (ABR), single-point laser doppler vibrometer (LDV), optical coherence tomography (OCT), and light microscopic evaluation. The closure of the TM perforation was achieved in 100% of the experimental group vs. 72% of the control group, and this difference was statistically significant (p < 0.05). The ABR threshold at all frequencies of the experimental group was recovered to the normal level compared to the control group. TM vibration velocity in the experimental group recovered similar to the normal control level. The difference are very small and they are not statistically significant below 1 kHz (p = 0.074). By OCT and light microscopic examination, regenerated TM of the experimental group showed thickened fibrous and mucosal layer. In contrast, the control group showed well regenerated but less thickened than experimental group. From these results, the cell-laden PCAMSC scaffold offers a significant advantage in the TM regeneration in a rat subacute TM perforation model. It may offer attractive opportunities in the conservative clinical treatment. - Highlights: • MSCs-laden scaffold was fabricated using a centrifugal spinning and cell-printing process. • The cell-laden scaffold showed the outstanding

  11. Stem cell research: applicability in dentistry.

    Science.gov (United States)

    Mathur, Shivani; Chopra, Rahul; Pandit, I K; Srivastava, Nikhil; Gugnani, Neeraj

    2014-01-01

    In the face of extraordinary advances in the prevention, diagnosis, and treatment of human diseases, the inability of most tissues and organs to repair and regenerate after damage is a problem that needs to be solved. Stem cell research is being pursued in the hope of achieving major medical breakthroughs. Scientists are striving to create therapies that rebuild or replace damaged cells with tissues grown from stem cells that will offer hope to people suffering from various ailments. Regeneration of damaged periodontal tissue, bone, pulp, and dentin is a problem that dentists face today. Stem cells present in dental pulp, periodontal ligament, and alveolar bone marrow have the potential to repair and regenerate teeth and periodontal structures. These stem cells can be harvested from dental pulp, periodontal ligament, and/or alveolar bone marrow; expanded; embedded in an appropriate scaffold; and transplanted back into a defect to regenerate bone and tooth structures. These cells have the potential to regenerate dentin, periodontal ligament, and cementum and can also be used to restore bone defects. The kind of scaffold, the source of cells, the type of in vitro culturing, and the type of surgical procedure to be used all require careful consideration. The endeavor is clearly multidisciplinary in nature, and the practicing dental surgeon has a critical role in it. Playing this role in the most effective way requires awareness of the huge potential associated with the use of stem cells in a clinical setting, as well as a proper understanding of the related problems.

  12. Mesenchymal dental stem cells in regenerative dentistry.

    Science.gov (United States)

    Rodríguez-Lozano, Francisco-Javier; Insausti, Carmen-Luisa; Iniesta, Francisca; Blanquer, Miguel; Ramírez, María-del-Carmen; Meseguer, Luis; Meseguer-Henarejos, Ana-Belén; Marín, Noemí; Martínez, Salvador; Moraleda, José-María

    2012-11-01

    In the last decade, tissue engineering is a field that has been suffering an enormous expansion in the regenerative medicine and dentistry. The use of cells as mesenchymal dental stem cells of easy access for dentist and oral surgeon, immunosuppressive properties, high proliferation and capacity to differentiate into odontoblasts, cementoblasts, osteoblasts and other cells implicated in the teeth, suppose a good perspective of future in the clinical dentistry. However, is necessary advance in the known of growth factors and signalling molecules implicated in tooth development and regeneration of different structures of teeth. Furthermore, these cells need a fabulous scaffold that facility their integration, differentiation, matrix synthesis and promote multiple specific interactions between cells. In this review, we give a brief description of tooth development and anatomy, definition and classification of stem cells, with special attention of mesenchymal stem cells, commonly used in the cellular therapy for their trasdifferentiation ability, non ethical problems and acceptable results in preliminary clinical trials. In terms of tissue engineering, we provide an overview of different types of mesenchymal stem cells that have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs), and stem cells from apical papilla (SCAPs), growth factors implicated in regeneration teeth and types of scaffolds for dental tissue regeneration.

  13. Stem cell-based approaches in dentistry

    Directory of Open Access Journals (Sweden)

    TA Mitsiadis

    2011-11-01

    Full Text Available Repair of dental pulp and periodontal lesions remains a major clinical challenge. Classical dental treatments require the use of specialised tissue-adapted materials with still questionable efficacy and durability. Stem cell-based therapeutic approaches could offer an attractive alternative in dentistry since they can promise physiologically improved structural and functional outcomes. These therapies necessitate a sufficient number of specific stem cell populations for implantation. Dental mesenchymal stem cells can be easily isolated and are amenable to in vitro expansion while retaining their stemness. In vivo studies realised in small and large animals have evidenced the potential of dental mesenchymal stem cells to promote pulp and periodontal regeneration, but have also underlined new important challenges. The homogeneity of stem cell populations and their quality control, the delivery method, the quality of the regenerated dental tissues and their integration to the host tissue are some of the key challenges. The use of bioactive scaffolds that can elicit effective tissue repair response, through activation and mobilisation of endogenous stem cell populations, constitutes another emerging therapeutic strategy. Finally, the use of stem cells and induced pluripotent cells for the regeneration of entire teeth represents a novel promising alternative to dental implant treatment after tooth loss. In this mini-review, we present the currently applied techniques in restorative dentistry and the various attempts that are made to bridge gaps in knowledge regarding treatment strategies by translating basic stem cell research into the dental practice.

  14. The Urodele Limb Regeneration Blastema: The Cell Potential

    Directory of Open Access Journals (Sweden)

    Kenyon S. Tweedell

    2010-01-01

    Full Text Available The developmental potential of the limb regeneration blastema, a mass of mesenchymal cells of mixed origins, was once considered as being pluripotent, capable of forming all cell types. Now evidence asserts that the blastema is a heterogeneous mixture of progenitor cells derived from tissues of the amputation site, with limited developmental potential, plus various stem cells with multipotent abilities. Many specialized cells, bone, cartilage, muscle, and Schwann cells, at the injury site undergo dedifferentiation to a progenitor state and maintain their cell lineage as they redifferentiate in the regenerate. Muscle satellite reserve stem cells that are active in repair of injured muscle may also dedifferentiate and contribute new muscle cells to the limb blastema. Other cells from the dermis act as multipotent stem cells that replenish dermal fibroblasts and differentiate into cartilage. The blastema primordium is a self-organized, equipotential system, but at the cellular level can compensate for specific cell loss. It is able to induce dedifferentiation of introduced exogenous cells and such cells may be transformed into new cell types. Indigenous cells of the blastema associated with amputated tissues may also transform or possibly transdifferentiate into new cell types. The blastema is a microenvironment that enables dedifferentiation, redifferentiation, transdifferentiation, and stem cell activation, leading to progenitor cells of the limb regenerate.

  15. Chitosan derived co-spheroids of neural stem cells and mesenchymal stem cells for neural regeneration.

    Science.gov (United States)

    Han, Hao-Wei; Hsu, Shan-Hui

    2017-10-01

    Chitosan has been considered as candidate biomaterials for neural applications. The effective treatment of neurodegeneration or injury to the central nervous system (CNS) is still in lack nowadays. Adult neural stem cells (NSCs) represents a promising cell source to treat the CNS diseases but they are limited in number. Here, we developed the core-shell spheroids of NSCs (shell) and mesenchymal stem cells (MSCs, core) by co-culturing cells on the chitosan surface. The NSCs in chitosan derived co-spheroids displayed a higher survival rate than those in NSC homo-spheroids. The direct interaction of NSCs with MSCs in the co-spheroids increased the Notch activity and differentiation tendency of NSCs. Meanwhile, the differentiation potential of MSCs in chitosan derived co-spheroids was significantly enhanced toward neural lineages. Furthermore, NSC homo-spheroids and NSC/MSC co-spheroids derived on chitosan were evaluated for their in vivo efficacy by the embryonic and adult zebrafish brain injury models. The locomotion activity of zebrafish receiving chitosan derived NSC homo-spheroids or NSC/MSC co-spheroids was partially rescued in both models. Meanwhile, the higher survival rate was observed in the group of adult zebrafish implanted with chitosan derived NSC/MSC co-spheroids as compared to NSC homo-spheroids. These evidences indicate that chitosan may provide an extracellular matrix-like environment to drive the interaction and the morphological assembly between NSCs and MSCs and promote their neural differentiation capacities, which can be used for neural regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors.

    Science.gov (United States)

    Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E; Cao, Mengjun; Wu, Yaojiong

    2016-12-01

    : Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. ©AlphaMed Press.

  17. Satellite Cells and the Muscle Stem Cell Niche

    Science.gov (United States)

    Yin, Hang; Price, Feodor

    2013-01-01

    Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration. PMID:23303905

  18. Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cells function for soft tissue regeneration

    Science.gov (United States)

    Li, Hong-Mian; Peng, Qi-Liu; Huang, Min-Hong; Li, De-Quan; Liang, Yi-Dan; Chi, Gang-Yi; Li, De-Hui; Yu, Bing-Chao; Huang, Ji-Rong

    2016-01-01

    Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering. PMID:27191987

  19. Mesenchymal stem cells and differentiated insulin producing cells are new horizons for pancreatic regeneration in type I diabetes mellitus.

    Science.gov (United States)

    Domouky, Ayat M; Hegab, Ashraf S; Al-Shahat, Amal; Raafat, Nermin

    2017-06-01

    Diabetes mellitus has become the third human killer following cancer and cardiovascular disease. Millions of patients, often children, suffer from type 1 diabetes (T1D). Stem cells created hopes to regenerate damaged body tissues and restore their function. This work aimed at clarifying and comparing the therapeutic potential of differentiated and non-differentiated mesenchymal stem cells (MSCs) as a new line of therapy for T1D. 40 Female albino rats divided into group I (control): 10 rats and group II (diabetic), III and IV, 10 rats in each, were injected with streptozotocin (50mg/kg body weight). Group III (MSCs) were transplanted with bone marrow derived MSCs from male rats and group IV (IPCs) with differentiated insulin producing cells. Blood and pancreatic tissue samples were taken from all rats for biochemical and histological studies. MSCs reduced hyperglycemia in diabetic rats on day 15 while IPCs normalizes blood glucose level on day 7. Histological and morphometric analysis of pancreas of experimental diabetic rats showed improvement in MSCs-treated group but in IPCs-treated group, β-cells insulin immunoreactions were obviously returned to normal, with normal distribution of β-cells in the center and other cells at the periphery. Meanwhile, most of the pathological lesions were still detected in diabetic rats. MSCs transplantation can reduce blood glucose level in recipient diabetic rats. IPCs initiate endogenous pancreatic regeneration by neogenesis of islets. IPCs are better than MSCs in regeneration of β-cells. So, IPCs therapy can be considered clinically to offer a hope for patients suffering from T1D. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Localization and characterization of STRO-1 cells in the deer pedicle and regenerating antler.

    Directory of Open Access Journals (Sweden)

    Hans J Rolf

    2008-04-01

    Full Text Available The annual regeneration of deer antlers is a unique developmental event in mammals, which as a rule possess only a very limited capacity to regenerate lost appendages. Studying antler regeneration can therefore provide a deeper insight into the mechanisms that prevent limb regeneration in humans and other mammals, and, with regard to medical treatments, may possibly even show ways how to overcome these limitations. Traditionally, antler regeneration has been characterized as a process involving the formation of a blastema from de-differentiated cells. More recently it has, however, been hypothesized that antler regeneration is a stem cell-based process. Thus far, direct evidence for the presence of stem cells in primary or regenerating antlers was lacking. Here we demonstrate the presence of cells positive for the mesenchymal stem cell marker STRO-1 in the chondrogenic growth zone and the perivascular tissue of the cartilaginous zone in primary and regenerating antlers as well as in the pedicle of fallow deer (Dama dama. In addition, cells positive for the stem cell/progenitor cell markers STRO-1, CD133 and CD271 (LNGFR were isolated from the growth zones of regenerating fallow deer antlers as well as the pedicle periosteum and cultivated for extended periods of time. We found evidence that STRO-1(+ cells isolated from the different locations are able to differentiate in vitro along the osteogenic and adipogenic lineages. Our results support the view that the annual process of antler regeneration might depend on the periodic activation of mesenchymal progenitor cells located in the pedicle periosteum. The findings of the present study indicate that not only limited tissue regeneration, but also extensive appendage regeneration in a postnatal mammal can occur as a stem cell-based process.

  1. Skin appendage-derived stem cells: cell biology and potential for wound repair.

    Science.gov (United States)

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.

  2. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells.

    Science.gov (United States)

    García-Prat, Laura; Sousa-Victor, Pedro; Muñoz-Cánoves, Pura

    2013-09-01

    Aging of an organism is associated with the functional decline of tissues and organs, as well as a sharp decline in the regenerative capacity of stem cells. A prevailing view holds that the aging rate of an individual depends on the ratio of tissue attrition to tissue regeneration. Therefore, manipulations that favor the balance towards regeneration may prevent or delay aging. Skeletal muscle is a specialized tissue composed of postmitotic myofibers that contract to generate force. Satellite cells are the adult stem cells responsible for skeletal muscle regeneration. Recent studies on the biology of skeletal muscle and satellite cells in aging have uncovered the critical impact of systemic and niche factors on stem cell functionality and demonstrated the capacity of aged satellite cells to rejuvenate and increase their regenerative potential when exposed to a youthful environment. Here we review the current literature on the coordinated relationship between cell extrinsic and intrinsic factors that regulate the function of satellite cells, and ultimately determine tissue homeostasis and repair during aging, and which encourage the search for new anti-aging strategies. © 2013 The Authors Journal compilation © 2013 FEBS.

  3. Microencapsulation of Stem Cells for Therapy.

    Science.gov (United States)

    Leslie, Shirae K; Kinney, Ramsey C; Schwartz, Zvi; Boyan, Barbara D

    2017-01-01

    An increasing demand to regenerate tissues from patient-derived sources has led to the development of cell-based therapies using autologous stem cells, thereby decreasing immune rejection of scaffolds coupled with allogeneic stem cells or allografts. Adult stem cells are multipotent and are readily available in tissues such as fat and bone marrow. They possess the ability to repair and regenerate tissue through the production of therapeutic factors, particularly vasculogenic proteins. A major challenge in cell-based therapies is localizing the delivered stem cells to the target site. Microencapsulation of cells provides a porous polymeric matrix that can provide a protected environment, localize the cells to one area, and maintain their viability by enabling the exchange of nutrients and waste products between the encapsulated cells and the surrounding tissue. In this chapter, we describe a method to produce injectable microbeads containing a tunable number of stem cells using the biopolymer alginate. The microencapsulation process involves extrusion of the alginate suspension containing cells from a microencapsulator, a syringe pump to control its flow rate, an electrostatic potential to overcome capillary forces and a reduced Ca ++ cross-linking solution containing a nutrient osmolyte, to form microbeads. This method allows the encapsulated cells to remain viable up to three weeks in culture and up to three months in vivo and secrete growth factors capable of supporting tissue regeneration.

  4. Hepatic Leukemia Factor Maintains Quiescence of Hematopoietic Stem Cells and Protects the Stem Cell Pool during Regeneration.

    Science.gov (United States)

    Komorowska, Karolina; Doyle, Alexander; Wahlestedt, Martin; Subramaniam, Agatheeswaran; Debnath, Shubhranshu; Chen, Jun; Soneji, Shamit; Van Handel, Ben; Mikkola, Hanna K A; Miharada, Kenichi; Bryder, David; Larsson, Jonas; Magnusson, Mattias

    2017-12-19

    The transcription factor hepatic leukemia factor (HLF) is strongly expressed in hematopoietic stem cells (HSCs) and is thought to influence both HSC self-renewal and leukemogenesis. However, the physiological role of HLF in hematopoiesis and HSC function is unclear. Here, we report that mice lacking Hlf are viable with essentially normal hematopoietic parameters, including an intact HSC pool during steady-state hematopoiesis. In contrast, when challenged through transplantation, Hlf-deficient HSCs showed an impaired ability to reconstitute hematopoiesis and became gradually exhausted upon serial transplantation. Transcriptional profiling of Hlf-deficient HSCs revealed changes associated with enhanced cellular activation, and cell-cycle analysis demonstrated a significant reduction of quiescent HSCs. Accordingly, toxic insults targeting dividing cells completely eradicated the HSC pool in Hlf-deficient mice. In summary, our findings point to HLF as a critical regulator of HSC quiescence and as an essential factor for maintaining the HSC pool during regeneration. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine.

    Science.gov (United States)

    Cao, Yu; Liu, Zhenhai; Xie, Yilin; Hu, Jingchao; Wang, Hua; Fan, Zhipeng; Zhang, Chunmei; Wang, Jingsong; Wu, Chu-Tse; Wang, Songlin

    2015-12-15

    Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor (HGF) and human dental pulp stem cells (DPSCs) in periodontal tissue regeneration in swine. In the present study, we transferred an adenovirus that carried HGF gene into human DPSCs (HGF-hDPSCs) under good manufacturing practice (GMP) conditions. These cells were then transplanted into a swine model for periodontal regeneration. Twenty miniature pigs were used to generate periodontitis with bone defect of 5 mm in width, 7 mm in length, and 3 mm in depth. After 12 weeks, clinical, radiological, quantitative and histological assessment of regenerated periodontal tissues was performed to compare periodontal regeneration in swine treated with cell implantation. Our study showed that injecting HGF-hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. A hDPSC or HGF-hDPSC sheet showed superior periodontal tissue regeneration compared to the injection of dissociated cells. However, the sheets required surgical placement; thus, they were suitable for surgically-managed periodontitis treatments. The adenovirus-mediated transfer of the HGF gene markedly decreased hDPSC apoptosis in a hypoxic environment or in serum-free medium, and it increased blood vessel regeneration. This study indicated that HGF-hDPSCs produced under GMP conditions significantly improved periodontal bone regeneration in swine; thus, this method represents a potential clinical application for periodontal regeneration.

  6. Modulating the stem cell niche for tissue regeneration

    Science.gov (United States)

    Lane, Steven W; Williams, David A; Watt, Fiona M

    2015-01-01

    The field of regenerative medicine holds considerable promise for treating diseases that are currently intractable. Although many researchers are adopting the strategy of cell transplantation for tissue repair, an alternative approach to therapy is to manipulate the stem cell microenvironment, or niche, to facilitate repair by endogenous stem cells. The niche is highly dynamic, with multiple opportunities for intervention. These include administration of small molecules, biologics or biomaterials that target specific aspects of the niche, such as cell-cell and cell–extracellular matrix interactions, to stimulate expansion or differentiation of stem cells, or to cause reversion of differentiated cells to stem cells. Nevertheless, there are several challenges in targeting the niche therapeutically, not least that of achieving specificity of delivery and responses. We envisage that successful treatments in regenerative medicine will involve different combinations of factors to target stem cells and niche cells, applied at different times to effect recovery according to the dynamics of stem cell–niche interactions. PMID:25093887

  7. Concise Review: Quiescence in Adult Stem Cells

    DEFF Research Database (Denmark)

    Rumman, M; Dhawan, J; Kassem, Moustapha

    2015-01-01

    Adult stem cells (ASCs) are tissue resident stem cells responsible for tissue homeostasis and regeneration following injury. In uninjured tissues, ASCs exist in a nonproliferating, reversibly cell cycle-arrested state known as quiescence or G0. A key function of the quiescent state is to preserve...... stemness in ASCs by preventing precocious differentiation, and thus maintaining a pool of undifferentiated ASCs. Recent evidences suggest that quiescence is an actively maintained state and that excessive or defective quiescence may lead to compromised tissue regeneration or tumorigenesis. The aim...

  8. Translational findings from cardiovascular stem cell research.

    Science.gov (United States)

    Mazhari, Ramesh; Hare, Joshua M

    2012-01-01

    The possibility of using stem cells to regenerate damaged myocardium has been actively investigated since the late 1990s. Consistent with the traditional view that the heart is a "postmitotic" organ that possesses minimal capacity for self-repair, much of the preclinical and clinical work has focused exclusively on introducing stem cells into the heart, with the hope of differentiation of these cells into functioning cardiomyocytes. This approach is ongoing and retains promise but to date has yielded inconsistent successes. More recently, it has become widely appreciated that the heart possesses endogenous repair mechanisms that, if adequately stimulated, might regenerate damaged cardiac tissue from in situ cardiac stem cells. Accordingly, much recent work has focused on engaging and enhancing endogenous cardiac repair mechanisms. This article reviews the literature on stem cell-based myocardial regeneration, placing emphasis on the mutually enriching interaction between basic and clinical research. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Dental pulp stem cells in regenerative dentistry.

    Science.gov (United States)

    Casagrande, Luciano; Cordeiro, Mabel M; Nör, Silvia A; Nör, Jacques E

    2011-01-01

    Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer's disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry.

  10. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Luan Xiying [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Wang Yong [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Xiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Qiaoyan [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Li Mingzhong [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Lu Shenzhou [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Zhang Huanxiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Zhang Xueguang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China)

    2006-12-15

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture.

  11. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    International Nuclear Information System (INIS)

    Luan Xiying; Wang Yong; Duan Xiang; Duan Qiaoyan; Li Mingzhong; Lu Shenzhou; Zhang Huanxiang; Zhang Xueguang

    2006-01-01

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture

  12. Asymmetric cell division of stem cells in the lung and other systems

    Directory of Open Access Journals (Sweden)

    Mohamed eBerika

    2014-07-01

    Full Text Available New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric versus symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division in the lung stem cells with other tissues in different organisms.

  13. Regeneration of cervical reserve cell-like cells from human induced pluripotent stem cells (iPSCs): A new approach to finding targets for cervical cancer stem cell treatment.

    Science.gov (United States)

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Ogishima, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2017-06-20

    Cervical reserve cells are epithelial progenitor cells that are pathologically evident as the origin of cervical cancer. Thus, investigating the characteristics of cervical reserve cells could yield insight into the features of cervical cancer stem cells (CSCs). In this study, we established a method for the regeneration of cervical reserve cell-like properties from human induced pluripotent stem cells (iPSCs) and named these cells induced reserve cell-like cells (iRCs). Approximately 70% of iRCs were positive for the reserve cell markers p63, CK5 and CK8. iRCs also expressed the SC junction markers CK7, AGR2, CD63, MMP7 and GDA. While iRCs expressed neither ERα nor ERβ, they expressed CA125. These data indicated that iRCs possessed characteristics of cervical epithelial progenitor cells. iRCs secreted higher levels of several inflammatory cytokines such as macrophage migration inhibitory factor (MIF), soluble intercellular adhesion molecule 1 (sICAM-1) and C-X-C motif ligand 10 (CXCL-10) compared with normal cervical epithelial cells. iRCs also expressed human leukocyte antigen-G (HLA-G), which is an important cell-surface antigen for immune tolerance and carcinogenesis. Together with the fact that cervical CSCs can originate from reserve cells, our data suggested that iRCs were potent immune modulators that might favor cervical cancer cell survival. In conclusion, by generating reserve cell-like properties from iPSCs, we provide a new approach that may yield new insight into cervical cancer stem cells and help find new oncogenic targets.

  14. Renal stem cells: fact or science fiction?

    Science.gov (United States)

    McCampbell, Kristen K; Wingert, Rebecca A

    2012-06-01

    The kidney is widely regarded as an organ without regenerative abilities. However, in recent years this dogma has been challenged on the basis of observations of kidney recovery following acute injury, and the identification of renal populations that demonstrate stem cell characteristics in various species. It is currently speculated that the human kidney can regenerate in some contexts, but the mechanisms of renal regeneration remain poorly understood. Numerous controversies surround the potency, behaviour and origins of the cell types that are proposed to perform kidney regeneration. The present review explores the current understanding of renal stem cells and kidney regeneration events, and examines the future challenges in using these insights to create new clinical treatments for kidney disease.

  15. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    Science.gov (United States)

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  16. LIVER AND BONE MARROW STEM/PROGENITOR CELLS AS REGULATORS OF REPARATIVE REGENERATION OF DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    А. V. Lundup

    2010-01-01

    Full Text Available In this review the modern information about effectiveness of liver insufficiency treatment by stem/ progenitor cells of liver (oval cells and bone marrow (hemopoietic cells and mesenchymal cells was presented. It is shown that medical action of these cells is referred on normalization of liver cell interaction and reorganization of processes of a reparative regeneration in damaged liver. It is believed that application of mesenchymal stromal cells from an autological bone marrow is the most perspective strategy. However, for definitive judgement about regenerative possibilities of the autological bone marrow cells it is necessary to carry out large-scale double blind clinical researches. 

  17. Plasticity of intestinal epithelial cells in regeneration and cancer

    NARCIS (Netherlands)

    Tetteh, Paul W.

    2015-01-01

    Cellular plasticity refers to the ability of a cell to change its fate or identity in response to external or intrinsic factors. Regeneration of the intestinal epithelium after injury is driven mainly by plasticity of crypt stem cells that can rapidly divide to replace all the lost cells. Stem cell

  18. The enhancement of haemopoietic stem cell recovery in irradiated mice by prior treatment with cyclophosphamide

    International Nuclear Information System (INIS)

    Blackett, N.M.; Aguado, M.

    1979-01-01

    Studies are reported of the enhancement of stem cell recovery following whole body irradiation as a result of prior administration of cyclophosphamide. It is shown that the much larger enhancement of regeneration observed for the hosts own surviving stem cells, compared to the regeneration of injected bone marrow stem cells, is due to the different numbers of stem cells initiating the regeneration in conjunction with the time course of stem cell regeneration. The results show that the environmental changes produced by cyclophosphamide greatly enhance haemopoietic recovery even though at the dose used this agent is relatively toxic to stem cells. Furthermore it has been shown that the level of stem cell regeneration is nearly independent of the γ-ray dose in the range 3-8 gray (300-800 rad). If human bone marrow should respond similarly it follows that regeneration produced by cytotoxic drugs administered prior to radiation embodies a considerable safety factor as far as recovery of the haemopoietic system is concerned. (author)

  19. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  20. Stem cell dynamics in the hair follicle niche

    Science.gov (United States)

    Rompolas, Panteleimon; Greco, Valentina

    2014-01-01

    Hair follicles are skin appendages of the mammalian skin that have the ability to periodically and stereotypically regenerate in order to continuously produce new hair over our lifetime. The ability of the hair follicle to regenerate is due to the presence of stem cells that along with other cell populations and non-cellular components, including molecular signals and extracellular material, make up a niche microenvironment. Mounting evidence suggests that the niche is critical for regulating stem cell behavior and thus the process of regeneration. Here we review the literature concerning past and current studies that have utilized mouse genetic models, combined with other approaches to dissect the molecular and cellular composition of the hair follicle niche. We also discuss our current understanding of how stem cells operate within the niche during the process of tissue regeneration and the factors that regulate their behavior. PMID:24361866

  1. Endogenous Cartilage Repair by Recruitment of Stem Cells.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Articular cartilage has a very limited capacity for repair after injury. The adult body has a pool of stem cells that are mobilized during injury or disease. These cells exist inside niches in bone marrow, muscle, adipose tissue, synovium, and other connective tissues. A method that mobilizes this endogenous pool of stem cells will provide a less costly and less invasive alternative if these cells successfully regenerate defective cartilage. Traditional microfracture procedures employ the concept of bone marrow stimulation to regenerate cartilage. However, the regenerated tissue usually is fibrous cartilage, which has very poor mechanical properties compared to those of normal hyaline cartilage. A method that directs the migration of a large number of autologous mesenchymal stem cells toward injury sites, retains these cells around the defects, and induces chondrogenic differentiation that would enhance success of endogenous cartilage repair. This review briefly summarizes chemokines and growth factors that induce recruitment, proliferation, and differentiation of endogenous progenitor cells, endogenous cell sources for regenerating cartilage, scaffolds for delivery of bioactive factors, and bioadhesive materials that are necessary to bring about endogenous cartilage repair.

  2. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold.

    Science.gov (United States)

    Moshaverinia, Alireza; Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H; Shi, Songtao

    2014-02-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications.

  3. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1

    Science.gov (United States)

    Zhou, Bo O; Ding, Lei; Morrison, Sean J

    2015-01-01

    Hematopoietic stem cells (HSCs) are maintained by a perivascular niche in bone marrow but it is unclear whether the niche is reciprocally regulated by HSCs. Here, we systematically assessed the expression and function of Angiopoietin-1 (Angpt1) in bone marrow. Angpt1 was not expressed by osteoblasts. Angpt1 was most highly expressed by HSCs, and at lower levels by c-kit+ hematopoietic progenitors, megakaryocytes, and Leptin Receptor+ (LepR+) stromal cells. Global conditional deletion of Angpt1, or deletion from osteoblasts, LepR+ cells, Nes-cre-expressing cells, megakaryocytes, endothelial cells or hematopoietic cells in normal mice did not affect hematopoiesis, HSC maintenance, or HSC quiescence. Deletion of Angpt1 from hematopoietic cells and LepR+ cells had little effect on vasculature or HSC frequency under steady-state conditions but accelerated vascular and hematopoietic recovery after irradiation while increasing vascular leakiness. Hematopoietic stem/progenitor cells and LepR+ stromal cells regulate niche regeneration by secreting Angpt1, reducing vascular leakiness but slowing niche recovery. DOI: http://dx.doi.org/10.7554/eLife.05521.001 PMID:25821987

  4. Periodontal tissue engineering strategies based on nonoral stem cells.

    Science.gov (United States)

    Requicha, João Filipe; Viegas, Carlos Alberto; Muñoz, Fernando; Reis, Rui Luís; Gomes, Manuela Estima

    2014-01-01

    Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  5. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration.

    Science.gov (United States)

    Nakashima, Misako; Iohara, Koichiro; Sugiyama, Masahiko

    2009-01-01

    Dental caries is a common public health problem, causing early loss of dental pulp and resultant tooth loss. Dental pulp has important functions to sustain teeth providing nutrient and oxygen supply, innervation, reactionary/reparative dentin formation and immune response. Regeneration of pulp is an unmet need in endodontic therapy, and angiogenesis/vasculogenesis and neurogenesis are critical for pulp regeneration. Permanent and deciduous pulp tissue is easily available from teeth after extraction without ethical issues and has potential for clinical use. In this review, we introduce some stem cell subfractions, CD31(-)/CD146(-) SP cells and CD105(+) cells with high angiogenic and neurogenic potential, derived from human adult dental pulp tissue. Potential utility of these cells is addressed as a source of cells for treatment of cerebral and limb ischemia and pulp inflammation complete with angiogenesis and vasculogenesis.

  6. Signaling factors in stem cell-mediated repair of infarcted myocardium

    NARCIS (Netherlands)

    Vandervelde, S; van Luyn, MJA; Tio, RA; Harmsen, MC

    Myocardial infarction leads to scar formation and subsequent reduced cardiac performance. The ultimate therapy after myocardial infarction would pursue stem cell-based regeneration. The aim of stem cell-mediated cardiac repair embodies restoration of cardiac function by regeneration of healthy

  7. An Overview of Long Noncoding RNAs Involved in Bone Regeneration from Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Shuping Peng

    2018-01-01

    Full Text Available Bone regeneration is very important for the recovery of some diseases including osteoporosis and bone fracture trauma. It is a multiple-step- and multiple-gene-involved complex process, including the matrix secretion and calcium mineralization by osteoblasts differentiated from mesenchymal stem cells (MSCs and the absorption of calcium and phosphorus by osteoclasts differentiated from hematopoietic stem cells. Long noncoding RNAs (lncRNAs are a family of transcripts longer than 200 nt without or with very low protein-coding potential. Recent studies have demonstrated that lncRNAs are widely involved in the regulation of lineage commitment and differentiation of stem cells through multiple mechanisms. In this review, we will summarize the roles and molecular mechanism of lncRNAs including H19, MALAT1, MODR, HOTAIR, DANCR, MEG3, HoxA-AS3, and MIAT in osteogenesis ossification; lncRNA ZBED3-AS1 and CTA-941F9.9, DANCR, and HIT in chondrogenic differentiation; and lncRNA DANCR in osteoclast differentiation. These findings will facilitate the development and application of novel molecular drugs which regulate the balance of bone formation and absorption.

  8. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    Science.gov (United States)

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  9. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  10. Plant and animal stem cells: similar yet different

    NARCIS (Netherlands)

    Heidstra, R.; Sabatini, S.

    2014-01-01

    The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into

  11. Stem cells-the hidden treasure: A strategic review

    Directory of Open Access Journals (Sweden)

    Hitesh Chopra

    2013-01-01

    Full Text Available In today′s scenario, medical and dental professionals face a mammoth task while treating perplexing medical situations like organ failure or tissue loss. Though, different strategies exist to replace them, but ideal one is the same natural tissue or organ. In this aspect, stem cells have emerged in a promising way to provide an ideal replacement. There are different types of stem cells starting from the embryonic stage referred to as human embryonic stem cells to adult stem cells. Though in dentistry stem cell research is lagging as compared to the medical field but still a lot progress has been achieved in recent years. The stem cells have been isolated from dental pulp, human exfoliated deciduous teeth, and apical papilla and so on. These stem cells have provided exciting results like dentin-pulp regeneration, periodontal regeneration but ambiguity still prevails. As a result, much has to be further researched before its clinical application becomes a reality. Hence, these stem cells opened a new avenue in the field of regenerative dentistry.

  12. Kidney stem cells in development, regeneration and cancer.

    Science.gov (United States)

    Dziedzic, Klaudyna; Pleniceanu, Oren; Dekel, Benjamin

    2014-12-01

    The generation of nephrons during development depends on differentiation via a mesenchymal to epithelial transition (MET) of self-renewing, tissue-specific stem cells confined to a specific anatomic niche of the nephrogenic cortex. These cells may transform to generate oncogenic stem cells and drive pediatric renal cancer. Once nephron epithelia are formed the view of post-MET tissue renal growth and maintenance by adult tissue-specific epithelial stem cells becomes controversial. Recently, genetic lineage tracing that followed clonal evolution of single kidney cells showed that the need for new cells is constantly driven by fate-restricted unipotent clonal expansions in varying kidney segments arguing against a multipotent adult stem cell model. Lineage-restriction was similarly maintained in kidney organoids grown in culture. Importantly, kidney cells in which Wnt was activated were traced to give significant clonal progeny indicating a clonogenic hierarchy. In vivo nephron epithelia may be endowed with the capacity akin to that of unipotent epithelial stem/progenitor such that under specific stimuli can clonally expand/self renew by local proliferation of mature differentiated cells. Finding ways to ex vivo preserve and expand the observed in vivo kidney-forming capacity inherent to both the fetal and adult kidneys is crucial for taking renal regenerative medicine forward. Some of the strategies used to achieve this are sorting human fetal nephron stem/progenitor cells, growing adult nephrospheres or reprogramming differentiated kidney cells toward expandable renal progenitors. Copyright © 2014. Published by Elsevier Ltd.

  13. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2016-06-01

    Full Text Available Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous. The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells, early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium, using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration, timing for cell therapy (immediate vs. a few days after injury, single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  14. Neural stem cells enhance nerve regeneration after sciatic nerve injury in rats.

    Science.gov (United States)

    Xu, Lin; Zhou, Shuai; Feng, Guo-Ying; Zhang, Lu-Ping; Zhao, Dong-Mei; Sun, Yi; Liu, Qian; Huang, Fei

    2012-10-01

    With the development of tissue engineering and the shortage of autologous nerve grafts in nerve reconstruction, cell transplantation in a conduit is an alternative strategy to improve nerve regeneration. The present study evaluated the effects and mechanism of brain-derived neural stem cells (NSCs) on sciatic nerve injury in rats. At the transection of the sciatic nerve, a 10-mm gap between the nerve stumps was bridged with a silicon conduit filled with 5 × 10(5) NSCs. In control experiments, the conduit was filled with nerve growth factor (NGF) or normal saline (NS). The functional and morphological properties of regenerated nerves were investigated, and expression of hepatocyte growth factor (HGF) and NGF was measured. One week later, there was no connection through the conduit. Four or eight weeks later, fibrous connections were evident between the proximal and distal segments. Motor function was revealed by measurement of the sciatic functional index (SFI) and sciatic nerve conduction velocity (NCV). Functional recovery in the NSC and NGF groups was significantly more advanced than that in the NS group. NSCs showed significant improvement in axon myelination of the regenerated nerves. Expression of NGF and HGF in the injured sciatic nerve was significantly lower in the NS group than in the NSCs and NGF groups. These results and other advantages of NSCs, such as ease of harvest and relative abundance, suggest that NSCs could be used clinically to enhance peripheral nerve repair.

  15. Stem Cell Therapies in Orthopaedic Trauma

    OpenAIRE

    Marcucio, Ralph S.; Nauth, Aaron; Giannoudis, Peter V.; Bahney, Chelsea; Piuzzi, Nicolas S.; Muschler, George; Miclau, Theodore

    2015-01-01

    Stem cells offer great promise to help understand the normal mechanisms of tissue renewal, regeneration, and repair, and also for development of cell-based therapies to treat patients after tissue injury. Most adult tissues contain stem cells and progenitor cells that contribute to homeostasis, remodeling and repair. Multiple stem and progenitor cell populations in bone are found in the marrow, the endosteum, and the periosteum. They contribute to the fracture healing process after injury and...

  16. Fabrication of bioactive conduits containing the fibroblast growth factor 1 and neural stem cells for peripheral nerve regeneration across a 15 mm critical gap

    International Nuclear Information System (INIS)

    Ni, Hsiao-Chiang; Tseng, Ting-Chen; Hsu, Shan-hui; Chen, Jeng-Rung; Chiu, Ing-Ming

    2013-01-01

    Nerve conduits are often used in combination with bioactive molecules and stem cells to enhance peripheral nerve regeneration. In this study, the acidic fibroblast growth factor 1 (FGF1) was immobilized onto the microporous/micropatterned poly (D, L-lactic acid) (PLA) nerve conduits after open air plasma treatment. PLA substrates grafted with chitosan in the presence of a small amount of gold nanoparticles (nano Au) showed a protective effect on the activity of the immobilized FGF1 in vitro. Different conduits were tested for their ability to bridge a 15 mm critical gap defect in a rat sciatic nerve injury model. Axon regeneration and functional recovery were evaluated by histology, walking track analysis and electrophysiology. Among different conduits, PLA conduits grafted with chitosan–nano Au and the FGF1 after plasma activation had the greatest regeneration capacity and functional recovery in the experimental animals. When the above conduit was seeded with aligned neural stem cells, the efficacy was further enhanced and it approached that of the autograft group. This work suggested that microporous/micropatterned nerve conduits containing bioactive growth factors may be successfully fabricated by micropatterning techniques, open plasma activation, and immobilization, which, combined with aligned stem cells, may synergistically contribute to the regeneration of the severely damaged peripheral nerve. (paper)

  17. Mammary Stem Cells and Breast Cancer Stem Cells: Molecular Connections and Clinical Implications.

    Science.gov (United States)

    Celià-Terrassa, Toni

    2018-05-04

    Cancer arises from subpopulations of transformed cells with high tumor initiation and repopulation ability, known as cancer stem cells (CSCs), which share many similarities with their normal counterparts. In the mammary gland, several studies have shown common molecular regulators between adult mammary stem cells (MaSCs) and breast cancer stem cells (bCSCs). Cell plasticity and self-renewal are essential abilities for MaSCs to maintain tissue homeostasis and regenerate the gland after pregnancy. Intriguingly, these properties are similarly executed in breast cancer stem cells to drive tumor initiation, tumor heterogeneity and recurrence after chemotherapy. In addition, both stem cell phenotypes are strongly influenced by external signals from the microenvironment, immune cells and supportive specific niches. This review focuses on the intrinsic and extrinsic connections of MaSC and bCSCs with clinical implications for breast cancer progression and their possible therapeutic applications.

  18. Adult neural stem cells: The promise of the future

    Directory of Open Access Journals (Sweden)

    Philippe Taupin

    2007-01-01

    Full Text Available Philippe TaupinNational Neuroscience Institute, National University of SingaporeAbstract: Stem cells are self-renewing undifferentiated cells that give rise to multiple types of specialized cells of the body. In the adult, stem cells are multipotents and contribute to homeostasis of the tissues and regeneration after injury. Until recently, it was believed that the adult brain was devoid of stem cells, hence unable to make new neurons and regenerate. With the recent evidences that neurogenesis occurs in the adult brain and neural stem cells (NSCs reside in the adult central nervous system (CNS, the adult brain has the potential to regenerate and may be amenable to repair. The function(s of NSCs in the adult CNS remains the source of intense research and debates. The promise of the future of adult NSCs is to redefine the functioning and physiopathology of the CNS, as well as to treat a broad range of CNS diseases and injuries.Keywords: neurogenesis, transdifferentiation, plasticity, cellular therapy

  19. Tissue regeneration and biomineralization in sea urchins: role of Notch signaling and presence of stem cell markers.

    Directory of Open Access Journals (Sweden)

    Helena C Reinardy

    Full Text Available Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions.

  20. Stem cells in retinal regeneration: past, present and future.

    Science.gov (United States)

    Ramsden, Conor M; Powner, Michael B; Carr, Amanda-Jayne F; Smart, Matthew J K; da Cruz, Lyndon; Coffey, Peter J

    2013-06-01

    Stem cell therapy for retinal disease is under way, and several clinical trials are currently recruiting. These trials use human embryonic, foetal and umbilical cord tissue-derived stem cells and bone marrow-derived stem cells to treat visual disorders such as age-related macular degeneration, Stargardt's disease and retinitis pigmentosa. Over a decade of analysing the developmental cues involved in retinal generation and stem cell biology, coupled with extensive surgical research, have yielded differing cellular approaches to tackle these retinopathies. Here, we review these various stem cell-based approaches for treating retinal diseases and discuss future directions and challenges for the field.

  1. Skin appendage-derived stem cells: cell biology and potential for wound repair

    OpenAIRE

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundament...

  2. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2

    NARCIS (Netherlands)

    Simmini, Salvatore; Bialecka, Monika; Huch, Meritxell; Kester, Lennart; van de Wetering, Marc; Sato, Toshiro; Beck, Felix; van Oudenaarden, Alexander; Clevers, Hans; Deschamps, Jacqueline

    2014-01-01

    The endodermal lining of the adult gastro-intestinal tract harbours stem cells that are responsible for the day-to-day regeneration of the epithelium. Stem cells residing in the pyloric glands of the stomach and in the small intestinal crypts differ in their differentiation programme and in the gene

  3. Acceleration of Regeneration of Large Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    Science.gov (United States)

    2016-09-01

    AWARD NUMBER: W811XWH-13-1-0310 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Zhongyu Li, MD, PhD RECIPIENT: Wake Forest University Health Sciences...REPORT DATE September 2016 2. REPORT TYPE Annual 3. DATES COVERED 1Sep2015 - 31Aug2016 4. TITLE AND SUBTITLE Acceleration of Regeneration of Large

  4. Imperative Role of Dental Pulp Stem Cells in Regenerative Therapies

    African Journals Online (AJOL)

    Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, ...

  5. Dental Pulp Stem Cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues

    Directory of Open Access Journals (Sweden)

    Maitane eAurrekoetxea

    2015-10-01

    Full Text Available Dental pulp stem cells, or DPSC, are neural crest-derived cells with an outstanding capacity to differentiate along multiple cell lineages of interest for cell therapy. In particular, highly efficient osteo/dentinogenic differentiation of DPSC can be achieved using simple in vitro protocols, making these cells a very attractive and promising tool for the future treatment of dental and periodontal diseases. Among craniomaxillofacial organs, the tooth and salivary gland are two such cases in which complete regeneration by tissue engineering using DPSC appears to be possible, as research over the last decade has made substantial progress in experimental models of partial or total regeneration of both organs, by cell recombination technology. Moreover, DPSC seem to be a particularly good choice for the regeneration of nerve tissues, including injured or transected cranial nerves. In this context, the oral cavity appears to be an excellent testing ground for new regenerative therapies using DPSC. However, many issues and challenges need yet to be addressed before these cells can be employed in clinical therapy. In this review, we point out some important aspects on the biology of DPSC with regard to their use for the reconstruction of different craniomaxillofacial tissues and organs, with special emphasis on cranial bones, nerves, teeth, and salivary glands. We suggest new ideas and strategies to fully exploit the capacities of DPSC for bioengineering of the aforementioned tissues.

  6. Rejuvenating Strategies for Stem Cell-based Therapies in Aging

    Science.gov (United States)

    Neves, Joana; Sousa-Victor, Pedro; Jasper, Heinrich

    2017-01-01

    SUMMARY Recent advances in our understanding of tissue regeneration and the development of efficient approaches to induce and differentiate pluripotent stem cells for cell replacement therapies promise exciting avenues for treating degenerative age-related diseases. However, clinical studies and insights from model organisms have identified major roadblocks that normal aging processes impose on tissue regeneration. These new insights suggest that specific targeting of environmental niche components, including growth factors, ECM and immune cells, and intrinsic stem cell properties that are affected by aging will be critical for development of new strategies to improve stem cell function and optimize tissue repair processes. PMID:28157498

  7. A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell.

    Science.gov (United States)

    Siegel, Ashley L; Gurevich, David B; Currie, Peter D

    2013-09-01

    The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type. © 2013 FEBS.

  8. Bioprinting for stem cell research

    Science.gov (United States)

    Tasoglu, Savas; Demirci, Utkan

    2012-01-01

    Recently, there has been a growing interest to apply bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized proteins can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cell of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics. PMID:23260439

  9. Human Urine Derived Stem Cells in Combination with β-TCP Can Be Applied for Bone Regeneration.

    Directory of Open Access Journals (Sweden)

    Junjie Guan

    Full Text Available Bone tissue engineering requires highly proliferative stem cells that are easy to isolate. Human urine stem cells (USCs are abundant and can be easily harvested without using an invasive procedure. In addition, in our previous studies, USCs have been proved to be able to differentiate into osteoblasts, chondrocytes, and adipocytes. Therefore, USCs may have great potential and advantages to be applied as a cell source for tissue engineering. However, there are no published studies that describe the interactions between USCs and biomaterials and applications of USCs for bone tissue engineering. Therefore, the objective of the present study was to evaluate the interactions between USCs with a typical bone tissue engineering scaffold, beta-Tricalcium Phosphate (β-TCP, and to determine whether the USCs seeded onto β-TCP scaffold can promote bone regeneration in a segmental femoral defect of rats. Primary USCs were isolated from urine and seeded on β-TCP scaffolds. Results showed that USCs remained viable and proliferated within β-TCP. The osteogenic differentiation of USCs within the scaffolds was demonstrated by increased alkaline phosphatase activity and calcium content. Furthermore, β-TCP with adherent USCs (USCs/β-TCP were implanted in a 6-mm critical size femoral defect of rats for 12 weeks. Bone regeneration was determined using X-ray, micro-CT, and histologic analyses. Results further demonstrated that USCs in the scaffolds could enhance new bone formation, which spanned bone defects in 5 out of 11 rats while β-TCP scaffold alone induced modest bone formation. The current study indicated that the USCs can be used as a cell source for bone tissue engineering as they are compatible with bone tissue engineering scaffolds and can stimulate the regeneration of bone in a critical size bone defect.

  10. Role of adipose-derived stem cells in wound healing.

    Science.gov (United States)

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration. © 2014 by the Wound Healing Society.

  11. Tracking of stem cells for treatment in cardiovascular disease

    International Nuclear Information System (INIS)

    Kang, Won Jun

    2005-01-01

    Various stem cells or progenitor cells are being used to treat cardiovascular disease. In ischemic heart disease, stem cell therapy is expected to regenerate damaged myocardium. To evaluate effects of stem cell treatment, the method to image stem cell location, distribution and differentiation is necessary. Optical imaging, MRI, nuclear imaging methods have been used for tracking stem cells. The methods and problems of each imaging technique are reviewed

  12. Stem cell sources for cardiac regeneration

    NARCIS (Netherlands)

    Roccio, M.; Goumans, M. J.; Sluijter, J. P. G.; Doevendans, P. A.

    Cell-based cardiac repair has the ambitious aim to replace the malfunctioning cardiac muscle developed after myocardial infarction, with new contractile cardiomyocytes and vessels. Different stem cell populations have been intensively studied in the last decade as a potential source of new

  13. Spatio-temporal neural stem cell behavior that leads to both perfect and imperfect structural brain regeneration in adult newts.

    Science.gov (United States)

    Urata, Yuko; Yamashita, Wataru; Inoue, Takeshi; Agata, Kiyokazu

    2018-06-14

    Adult newts can regenerate large parts of their brain from adult neural stem cells (NSCs), but how adult NSCs reorganize brain structures during regeneration remains unclear. In development, elaborate brain structures are produced under broadly coordinated regulations of embryonic NSCs in the neural tube, whereas brain regeneration entails exquisite control of the reestablishment of certain brain parts, suggesting a yet-unknown mechanism directs NSCs upon partial brain excision. Here we report that upon one-quarter excision of the adult newt ( Pleurodeles waltl ) mesencephalon, active participation of local NSCs around specific brain subregions' boundaries leads to some imperfect and some perfect brain regeneration along an individual's rostrocaudal axis. Regeneration phenotypes depend on how the wound closing occurs using local NSCs, and perfect regeneration replicates development-like processes but takes more than one year. Our findings indicate that newt brain regeneration is supported by modularity of boundary-domain NSCs with self-organizing ability in neighboring fields. © 2018. Published by The Company of Biologists Ltd.

  14. The potential application of stem cell in dentistry

    Directory of Open Access Journals (Sweden)

    Ketut Suardita

    2006-12-01

    Full Text Available Stem cells are generally defined as cells that have the capacity to self-renewal and differentiate to specialize cell. There are two kinds of stem cell, embryonic stem cell and adult stem cells. Stem cell therapy has been used to treat diseases including Parkinson’s and Alzheimer’s diseases, spinal cord injury, stroke, burns, heart diseases, diabetes, osteoarthritis, and rheumatoid arthritis. Stem cells were found in dental pulp, periodontal ligament, and alveolar bone marrow. Because of their potential in medical therapy, stem cells were used to regenerate lost or damage teeth and periodontal structures. This article discusses the potential application of stem cells for dental field.

  15. The Potential of Stem Cells in Treatment of Traumatic Brain Injury.

    Science.gov (United States)

    Weston, Nicole M; Sun, Dong

    2018-01-25

    Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair. Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain. Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.

  16. Cells supporting long-term hemopoiesis in the culture are incapable of regeneration after irrdiation

    International Nuclear Information System (INIS)

    Deryugina, E.I.; Drize, N.I.; Chertkov, I.L.

    1987-01-01

    It has been revealed by competitive repopulation assay that hemopoietic stem cells capable of supporting long-term hemopoiesis in the culture failed to regenerate after irradiation. 19 weeks after irradiation with 4 Gy the content of hemopoietic stem cells was 0.5% normal, while regeneration of CFUs was achieved up to subnormal level

  17. Stem Cells and Herbal Acupuncture Therapy

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2005-12-01

    Full Text Available Stem cell therapy implies the birth of regenerative medicine. Regenerative medicine signify treatment through regeneration of cells which was impossible by existing medicine. Stem cell is classified into embryonic stem cell and adult stem cell and they have distinctive benefits and limitations. Researches on stem cell are already under active progression and is expected to be commercially available in the near future. One may not relate the stem cell treatment with Oriental medicine, but can be interpreted as the fundamental treatment action of Oriental medicine is being investigated in more concrete manner. When it comes to difficult to cure diseases, there is no boundary between eastern and western medicine, and one must be ready to face and overcome changes lying ahead.

  18. Three-Dimensional Bioprinting Nanotechnologies towards Clinical Application of Stem Cells and Their Secretome in Salivary Gland Regeneration

    Directory of Open Access Journals (Sweden)

    Joao N. Ferreira

    2016-01-01

    Full Text Available Salivary gland (SG functional damage and severe dry mouth (or xerostomia are commonly observed in a wide range of medical conditions from autoimmune to metabolic disorders as well as after radiotherapy to treat specific head and neck cancers. No effective therapy has been developed to completely restore the SG functional damage on the long-term and reverse the poor quality of life of xerostomia patients. Cell- and secretome-based strategies are currently being tested in vitro and in vivo for the repair and/or regeneration of the damaged SG using (1 epithelial SG stem/progenitor cells from salispheres or explant cultures as well as (2 nonepithelial stem cell types and/or their bioactive secretome. These strategies will be the focus of our review. Herein, innovative 3D bioprinting nanotechnologies for the generation of organotypic cultures and SG organoids/mini-glands will also be discussed. These bioprinting technologies will allow researchers to analyze the secretome components and extracellular matrix production, as well as their biofunctional effects in 3D mini-glands ex vivo. Improving our understanding of the SG secretome is critical to develop effective secretome-based therapies towards the regeneration and/or repair of all SG compartments for proper restoration of saliva secretion and flow into the oral cavity.

  19. Skin Stem Cells in Skin Cell Therapy

    Directory of Open Access Journals (Sweden)

    Mollapour Sisakht

    2015-12-01

    Full Text Available Context Preclinical and clinical research has shown that stem cell therapy is a promising therapeutic option for many diseases. This article describes skin stem cells sources and their therapeutic applications. Evidence Acquisition Compared with conventional methods, cell therapy reduces the surgical burden for patients because it is simple and less time-consuming. Skin cell therapy has been developed for variety of diseases. By isolation of the skin stem cell from the niche, in vitro expansion and transplantation of cells offers a surprising healing capacity profile. Results Stem cells located in skin cells have shown interesting properties such as plasticity, transdifferentiation, and specificity. Mesenchymal cells of the dermis, hypodermis, and other sources are currently being investigated to promote regeneration. Conclusions Because skin stem cells are highly accessible from autologous sources and their immunological profile is unique, they are ideal for therapeutic approaches. Optimization of administrative routes requires more investigation own to the lack of a standard protocol.

  20. A functional model for adult stem cells in epithelial tissues.

    NARCIS (Netherlands)

    Verstappen, J.; Katsaros, C.; Torensma, R.; Hoff, J.W. Von den

    2009-01-01

    Tissue turnover, regeneration, and repair take place throughout life. Stem cells are key players in these processes. The characteristics and niches of the stem cell populations in different tissues, and even in related tissues, vary extensively. In this review, stem cell differentiation and stem

  1. Delivery of adipose-derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration.

    Science.gov (United States)

    Allbright, Kassandra O; Bliley, Jacqueline M; Havis, Emmanuelle; Kim, Deok-Yeol; Dibernardo, Gabriella A; Grybowski, Damian; Waldner, Matthias; James, Isaac B; Sivak, Wesley N; Rubin, J Peter; Marra, Kacey G

    2018-02-06

    Peripheral nerve damage is associated with high long-term morbidity. Because of beneficial secretome, immunomodulatory effects, and ease of clinical translation, transplantation with adipose-derived stem cells (ASC) represents a promising therapeutic modality. Effect of ASC delivery in poloxamer hydrogel was assessed in a rat sciatic nerve model of critical-sized (1.5 cm) peripheral nerve injury. Nerve/muscle unit regeneration was assessed via immunostaining explanted nerve, quantitative polymerase chain reaction (qPCR), and histological analysis of reinnervating gastrocnemius muscle. On the basis of viability data, 10% poloxamer hydrogel was selected for in vivo study. Six weeks after transection and repair, the group treated with poloxamer delivered ASCs demonstrated longest axonal regrowth. The qPCR results indicated that the inclusion of ASCs appeared to result in expression of factors that aid in reinnervating muscle tissue. Delivery of ASCs in poloxamer addresses multiple facets of the complexity of nerve/muscle unit regeneration, representing a promising avenue for further study. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  2. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    2010-03-01

    Full Text Available Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo.To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo.Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  3. Functional collagen conduits combined with human mesenchymal stem cells promote regeneration after sciatic nerve transection in dogs.

    Science.gov (United States)

    Cui, Yi; Yao, Yao; Zhao, Yannan; Xiao, Zhifeng; Cao, Zongfu; Han, Sufang; Li, Xing; Huan, Yong; Pan, Juli; Dai, Jianwu

    2018-05-01

    Numerous studies have focused on the development of novel and innovative approaches for the treatment of peripheral nerve injury using artificial nerve guide conduits. In this study, we attempted to bridge 3.5-cm defects of the sciatic nerve with a longitudinally oriented collagen conduit (LOCC) loaded with human umbilical cord mesenchymal stem cells (hUC-MSCs). The LOCC contains a bundle of longitudinally aligned collagenous fibres enclosed in a hollow collagen tube. Our previous studies showed that an LOCC combined with neurotrophic factors enhances peripheral nerve regeneration. However, it remained unknown whether an LOCC seeded with hUC-MSCs could also promote regeneration. In this study, using various histological and electrophysiological analyses, we found that an LOCC provides mechanical support to newly growing nerves and functions as a structural scaffold for cells, thereby stimulating sciatic nerve regeneration. The LOCC and hUC-MSCs synergistically promoted regeneration and improved the functional recovery in a dog model of sciatic nerve injury. Therefore, the combined use of an LOCC and hUC-MSCs might have therapeutic potential for the treatment of peripheral nerve injury. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Regeneration of irradiated salivary glands with stem cell marker expressing cells

    DEFF Research Database (Denmark)

    Nanduri, Lalitha S Y; Maimets, Martti; Pringle, Sarah A

    2011-01-01

    BACKGROUND: Stem cell therapy could be a potential way for reducing radiation-induced hyposalivation and improving the patient's quality of life. However, the identification and purification of salivary gland stem cells have not been accomplished. This study aims to better characterize the stem/p...

  5. Cell-derived micro-environment helps dental pulp stem cells promote dental pulp regeneration.

    Science.gov (United States)

    Zhang, Xuexin; Li, Hui; Sun, Jingjing; Luo, Xiangyou; Yang, Hefeng; Xie, Li; Yang, Bo; Guo, Weihua; Tian, Weidong

    2017-10-01

    The function of the dental pulp is closely connected to the extracellular matrix (ECM) structure, and ECM has received significant attention due to its biological functions for regulating cells. As such, the interaction between the ECM niche and cells is worth exploring for potential clinical uses. In this study, dental pulp stem cell (DPSC)-derived ECM (DPM) was prepared through cell culture and decellularization to function as the cell niche, and changes in DPSC behaviour and histological analysis of dental pulp tissue regeneration were evaluated following the DPM culture. DPM promoted the replication of DPSCs and exhibited retention of their mineralization. Then, the DPM-based culture strategy under odontogenic culture medium was further investigated, and the mineralization-related markers showed that DPSCs were regulated towards odontogenic differentiation. Dental pulp-like tissue with well-arranged ECM was harvested after a 2-month subcutaneous implantation in nude mice with DPM application. Additionally, DPSCs cultured on the plastic culture surface showed the up-regulation of mineralization makers in vitro, but there was a disorder in matrix formation and mineralization when the cells were cultured in vivo. DPM-based cultivation could serve as a cell niche and modulate DPSC behaviour, and this method also provided an alternative to harvest tissue-specific ECM and provided a strategy for ECM-cell interaction. © 2017 John Wiley & Sons Ltd.

  6. Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto.

    Science.gov (United States)

    Pan, Hung-Chuan; Yang, Dar-Yu; Ho, Shu-Peng; Sheu, Meei-Ling; Chen, Chung-Jung; Hwang, Shiaw-Min; Chang, Ming-Hong; Cheng, Fu-Chou

    2009-08-23

    Attenuation of inflammatory cell deposits and associated cytokines prevented the apoptosis of transplanted stem cells in a sciatic nerve crush injury model. Suppression of inflammatory cytokines by fermented soybean extracts (Natto) was also beneficial to nerve regeneration. In this study, the effect of Natto on transplanted human amniotic fluid mesenchymal stem cells (AFS) was evaluated. Peripheral nerve injury was induced in SD rats by crushing a sciatic nerve using a vessel clamp. Animals were categorized into four groups: Group I: no treatment; Group II: fed with Natto (16 mg/day for 7 consecutive days); Group III: AFS embedded in fibrin glue; Group IV: Combination of group II and III therapy. Transplanted AFS and Schwann cell apoptosis, inflammatory cell deposits and associated cytokines, motor function, and nerve regeneration were evaluated 7 or 28 days after injury. The deterioration of neurological function was attenuated by AFS, Natto, or the combined therapy. The combined therapy caused the most significantly beneficial effects. Administration of Natto suppressed the inflammatory responses and correlated with decreased AFS and Schwann cell apoptosis. The decreased AFS apoptosis was in line with neurological improvement such as expression of early regeneration marker of neurofilament and late markers of S-100 and decreased vacuole formation. Administration of either AFS, or Natto, or combined therapy augmented the nerve regeneration. In conclusion, administration of Natto may rescue the AFS and Schwann cells from apoptosis by suppressing the macrophage deposits, associated inflammatory cytokines, and fibrin deposits.

  7. Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto

    Directory of Open Access Journals (Sweden)

    Pan Hung-Chuan

    2009-08-01

    Full Text Available Abstract Attenuation of inflammatory cell deposits and associated cytokines prevented the apoptosis of transplanted stem cells in a sciatic nerve crush injury model. Suppression of inflammatory cytokines by fermented soybean extracts (Natto was also beneficial to nerve regeneration. In this study, the effect of Natto on transplanted human amniotic fluid mesenchymal stem cells (AFS was evaluated. Peripheral nerve injury was induced in SD rats by crushing a sciatic nerve using a vessel clamp. Animals were categorized into four groups: Group I: no treatment; Group II: fed with Natto (16 mg/day for 7 consecutive days; Group III: AFS embedded in fibrin glue; Group IV: Combination of group II and III therapy. Transplanted AFS and Schwann cell apoptosis, inflammatory cell deposits and associated cytokines, motor function, and nerve regeneration were evaluated 7 or 28 days after injury. The deterioration of neurological function was attenuated by AFS, Natto, or the combined therapy. The combined therapy caused the most significantly beneficial effects. Administration of Natto suppressed the inflammatory responses and correlated with decreased AFS and Schwann cell apoptosis. The decreased AFS apoptosis was in line with neurological improvement such as expression of early regeneration marker of neurofilament and late markers of S-100 and decreased vacuole formation. Administration of either AFS, or Natto, or combined therapy augmented the nerve regeneration. In conclusion, administration of Natto may rescue the AFS and Schwann cells from apoptosis by suppressing the macrophage deposits, associated inflammatory cytokines, and fibrin deposits.

  8. Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis.

    Science.gov (United States)

    Tian, Yuhua; Ma, Xianghui; Lv, Cong; Sheng, Xiaole; Li, Xiang; Zhao, Ran; Song, Yongli; Andl, Thomas; Plikus, Maksim V; Sun, Jinyue; Ren, Fazheng; Shuai, Jianwei; Lengner, Christopher J; Cui, Wei; Yu, Zhengquan

    2017-09-05

    Intestinal regeneration and tumorigenesis are believed to be driven by intestinal stem cells (ISCs). Elucidating mechanisms underlying ISC activation during regeneration and tumorigenesis can help uncover the underlying principles of intestinal homeostasis and disease including colorectal cancer. Here we show that miR-31 drives ISC proliferation, and protects ISCs against apoptosis, both during homeostasis and regeneration in response to ionizing radiation injury. Furthermore, miR-31 has oncogenic properties, promoting intestinal tumorigenesis. Mechanistically, miR-31 acts to balance input from Wnt, BMP, TGFβ signals to coordinate control of intestinal homeostasis, regeneration and tumorigenesis. We further find that miR-31 is regulated by the STAT3 signaling pathway in response to radiation injury. These findings identify miR-31 as a critical modulator of ISC biology, and a potential therapeutic target for a broad range of intestinal regenerative disorders and cancers.

  9. Efficient Isolation of Cardiac Stem Cells from Brown Adipose

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2010-01-01

    Full Text Available Cardiac stem cells represent a logical cell type to exploit in cardiac regeneration. The efficient harvest of cardiac stem cells from a suitable source would turn promising in cardiac stem cell therapy. Brown adipose was recently found to be a new source of cardiac stem cells, instrumental to myocardial regeneration. Unfortunately, an efficient method for the cell isolation is unavailable so far. In our study we have developed a new method for the efficient isolation of cardiac stem cells from brown adipose by combining different enzymes. Results showed that the total cell yield dramatically increased (more than 10 times, P<.01 compared with that by previous method. The content of CD133-positive cells (reported to differentiate into cardiomyocytes with a high frequency was much higher than that in the previous report (22.43% versus 3.5%. Moreover, the isolated cells could be the efficiently differentiated into functional cardiomyocytes in optimized conditions. Thus, the new method we established would be of great use in further exploring cardiac stem cell therapy.

  10. Molecular regulation of human hematopoietic stem cells

    NARCIS (Netherlands)

    van Galen, P.L.J.

    2014-01-01

    Peter van Galen focuses on understanding the determinants that maintain the stem cell state. Using human hematopoietic stem cells (HSCs) as a model, processes that govern self-renewal and tissue regeneration were investigated. Specifically, a role for microRNAs in balancing the human HSC

  11. Therapeutic potential of stem cells in auditory hair cell repair

    Directory of Open Access Journals (Sweden)

    Ryuji Hata

    2009-01-01

    Full Text Available The prevalence of acquired hearing loss is very high. About 10% of the total population and more than one third of the population over 65 years suffer from debilitating hearing loss. The most common type of hearing loss in adults is idiopathic sudden sensorineural hearing loss (ISSHL. In the majority of cases, ISSHL is permanent and typically associated with loss of sensory hair cells in the organ of Corti. Following the loss of sensory hair cells, the auditory neurons undergo secondary degeneration. Sensory hair cells and auditory neurons do not regenerate throughout life, and loss of these cells is irreversible and cumulative. However, recent advances in stem cell biology have gained hope that stem cell therapy comes closer to regenerating sensory hair cells in humans. A major advance in the prospects for the use of stem cells to restore normal hearing comes with the recent discovery that hair cells can be generated ex vivo from embryonic stem (ES cells, adult inner ear stem cells and neural stem cells. Furthermore, there is increasing evidence that stem cells can promote damaged cell repair in part by secreting diffusible molecules such as growth factors. These results suggest that stem-cell-based treatment regimens can be applicable to the damaged inner ear as future clinical applications.Previously we have established an animal model of cochlear ischemia in gerbils and showed progressive hair cell loss up to 4 days after ischemia. Auditory brain stem response (ABR recordings have demonstrated that this gerbil model displays severe deafness just after cochlear ischemia and gradually recovers thereafter. These pathological findings and clinical manifestations are reminiscent of ISSHL in humans. In this study, we have shown the effectiveness of stem cell therapy by using this animal model of ISSHL.

  12. Plasticity within stem cell hierarchies in mammalian epithelia.

    Science.gov (United States)

    Tetteh, Paul W; Farin, Henner F; Clevers, Hans

    2015-02-01

    Tissue homeostasis and regeneration are fueled by resident stem cells that have the capacity to self-renew, and to generate all the differentiated cell types that characterize a particular tissue. Classical models of such cellular hierarchies propose that commitment and differentiation occur unidirectionally, with the arrows 'pointing away' from the stem cell. Recent studies, all based on genetic lineage tracing, describe various strategies employed by epithelial stem cell hierarchies to replace damaged or lost cells. While transdifferentiation from one tissue type into another ('metaplasia') appears to be generally forbidden in nonpathological contexts, plasticity within an individual tissue stem cell hierarchy may be much more common than previously appreciated. In this review, we discuss recent examples of such plasticity in selected mammalian epithelia, highlighting the different modes of regeneration and their implications for our understanding of cellular hierarchy and tissue self-renewal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. CRISPR-Mediated Genomic Deletion of Sox2 in the Axolotl Shows a Requirement in Spinal Cord Neural Stem Cell Amplification during Tail Regeneration

    Directory of Open Access Journals (Sweden)

    Ji-Feng Fei

    2014-09-01

    Full Text Available The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs and clustered regularly interspaced short palindromic repeats (CRISPRs in the knockout of three loci in the axolotl and find that CRISPRs show highly penetrant knockout with less toxic effects compared to TALENs. Deletion of Sox2 in up to 100% of cells yielded viable F0 larvae with normal SC organization and ependymoglial cell marker expression such as GFAP and ZO-1. However, upon tail amputation, neural stem cell proliferation was inhibited, resulting in spinal-cord-specific regeneration failure. In contrast, the mesodermal blastema formed normally. Sox3 expression during development, but not regeneration, most likely allowed embryonic survival and the regeneration-specific phenotype. This analysis represents the first tissue-specific regeneration phenotype from the genomic deletion of a gene in the axolotl.

  14. The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians?

    Science.gov (United States)

    Sarig, Rachel; Tzahor, Eldad

    2017-04-01

    Regeneration in mammals is restricted to distinct tissues and occurs mainly by expansion and maturation of resident stem cells. During regeneration, even subtle mutations in the proliferating cells may cause a detrimental effect by eliciting abnormal differentiation or malignant transformation. Indeed, cancer in mammals has been shown to arise through deregulation of stem cells maturation, which often leads to a differentiation block and cell transformation. In contrast, lower organisms such as amphibians retain a remarkable regenerative capacity in various organs, which occurs via de- and re-differentiation of mature cells. Interestingly, regenerating amphibian cells are highly resistant to oncogenic transformation. Therapeutic approaches to improve mammalian regeneration mainly include stem-cell transplantations; but, these have proved unsuccessful in non-regenerating organs such as the heart. A recently developed approach is to induce de-differentiation of mature cardiomyocytes using factors that trigger their re-entry into the cell cycle. This novel approach raises numerous questions regarding the balance between transformation and regeneration induced by de-differentiation of mature mammalian somatic cells. Can this balance be controlled artificially? Do de-differentiated cells acquire the protection mechanisms seen in regenerating cells of lower organisms? Is this model unique to the cardiac tissue, which rarely develops tumors? This review describes regeneration processes in both mammals and lower organisms and, particularly, the ability of regenerating cells to avoid transformation. By comparing the characteristics of mammalian embryonic and somatic cells, we discuss therapeutic strategies of using various cell populations for regeneration. Finally, we describe a novel cardiac regeneration approach and its implications for regenerative medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email

  15. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman′s syndrome

    Directory of Open Access Journals (Sweden)

    Chaitanya B Nagori

    2011-01-01

    Full Text Available In a woman with severe Asherman′s syndrome, curettage followed by placement of intrauterine contraceptive device (IUCD (IUCD with cyclical hormonal therapy was tried for 6 months, for development of the endometrium. When this failed, autologous stem cells were tried as an alternative therapy. From adult autologous stem cells isolated from patient′s own bone marrow, endometrial angiogenic stem cells were separated using immunomagnetic isolation. These cells were placed in the endometrial cavity under ultrasound guidance after curettage. Patient was then given cyclical hormonal therapy. Endometrium was assessed intermittently on ultrasound. On development of endometrium with a thickness of 8 mm and good vascularity, in vitro fertilization and embryo transfer was done. This resulted in positive biochemical pregnancy followed by confirmation of gestational sac, yolk sac, and embryonic pole with cardiac activity on ultrasound. Endometrial angiogenic stem cells isolated from autologous adult stem cells could regenerate injured endometrium not responding to conventional treatment for Asherman′s syndrome.

  16. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.

    Science.gov (United States)

    Aquino-Martínez, Rubén; Angelo, Alcira P; Pujol, Francesc Ventura

    2017-11-16

    Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca 2+ -containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO 4 ) on MSC migration. In addition, to evaluate the influence of CaSO 4 on MSC differentiation and the potential molecular mechanisms involved. A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO 4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO 4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO 4 treatment was also evaluated by qPCR. CaSO 4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO 4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO 4 -containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO 4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO 4 effects on MSC migration. Specific CaSO 4 concentrations induce bone regeneration of calvarial defects in part by acting on the host's undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO 4 regulates BMP-2-induced MSC migration by differentially activating the PI3

  17. In vivo stem cell transplantation using reduced cell numbers.

    Science.gov (United States)

    Tsutsui, Takeo W

    2015-01-01

    Dental pulp stem cell (DPSC) characterization is essential for regeneration of a dentin/pulp like complex in vivo. This is especially important for identifying the potential of DPSCs to function as stem cells. Previously reported DPSC transplantation methods have used with huge numbers of cells, along with hydroxyapatite/tricalcium phosphate (HA/TCP), gelatin and fibrin, and collagen scaffolds. This protocol describe a transplantation protocol that uses fewer cells and a temperature-responsive cell culture dish.

  18. Unmasking Stem/Progenitor Cell Properties in Differentiated Epithelial Cells Using Short-term Transplantation

    National Research Council Canada - National Science Library

    Lewis, Michael T

    2006-01-01

    ...) To determine the range of mammary stem cell types participating in gland regeneration. 2) To develop the short-term transplantation assay as a means by which critical regulators of stem and progenitor cell behavior can be discovered and evaluated. Relevance: Studies will provide a direct test of prevailing stem cell models.

  19. Unmasking Stem/Progenitor Cell Properties in Differentiated Epithelial Cells Using Short-term Transplantation

    National Research Council Canada - National Science Library

    Lewis, Michael T

    2007-01-01

    ...) To determine the range of mammary stem cell types participating in gland regeneration. 2) To develop the short-term transplantation assay as a means by which critical regulators of stem and progenitor cell behavior can be discovered and evaluated. Relevance: Studies will provide a direct test of prevailing stem cell models.

  20. In vitro differentiation of primordial germ cells and oocyte-like cells from stem cells.

    Science.gov (United States)

    Costa, José J N; Souza, Glaucinete B; Soares, Maria A A; Ribeiro, Regislane P; van den Hurk, Robert; Silva, José R V

    2018-02-01

    Infertility is the result of failure due to an organic disorder of the reproductive organs, especially their gametes. Recently, much progress has been made on generating germ cells, including oocytes, from various types of stem cells. This review focuses on advances in female germ cell differentiation from different kinds of stem cells, with emphasis on embryonic stem cells, adult stem cells, and induced pluripotent stem cells. The advantages and disadvantages of the derivation of female germ cells from several types of stem cells are also highlighted, as well as the ability of stem cells to generate mature and functional female gametes. This review shows that stem cell therapies have opened new frontiers in medicine, especially in the reproductive area, with the possibility of regenerating fertility.

  1. Stem cell self-renewal in intestinal crypt

    NARCIS (Netherlands)

    Simons, B.D.; Clevers, H.

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine

  2. Individual fates of mesenchymal stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Drasdo Dirk

    2010-05-01

    Full Text Available Abstract Background In vitro cultivated stem cell populations are in general heterogeneous with respect to their expression of differentiation markers. In hematopoietic progenitor populations, this heterogeneity has been shown to regenerate within days from isolated subpopulations defined by high or low marker expression. This kind of plasticity has been suggested to be a fundamental feature of mesenchymal stem cells (MSCs as well. Here, we study MSC plasticity on the level of individual cells applying a multi-scale computer model that is based on the concept of noise-driven stem cell differentiation. Results By simulation studies, we provide detailed insight into the kinetics of MSC organisation. Monitoring the fates of individual cells in high and low oxygen culture, we calculated the average transition times of individual cells into stem cell and differentiated states. We predict that at low oxygen the heterogeneity of a MSC population with respect to differentiation regenerates from any selected subpopulation in about two days. At high oxygen, regeneration becomes substantially slowed down. Simulation results on the composition of the functional stem cell pool of MSC populations suggest that most of the cells that constitute this pool originate from more differentiated cells. Conclusions Individual cell-based models are well-suited to provide quantitative predictions on essential features of the spatio-temporal organisation of MSC in vitro. Our predictions on MSC plasticity and its dependence on the environment motivate a number of in vitro experiments for validation. They may contribute to a better understanding of MSC organisation in vitro, including features of clonal expansion, environmental adaptation and stem cell ageing.

  3. Regenerative Endodontics in light of the stem cell paradigm

    Science.gov (United States)

    Rosa, Vinicius; Botero, Tatiana M.; Nör, Jacques E.

    2013-01-01

    Stem cells play a critical role in development and in tissue regeneration. The dental pulp contains a small sub-population of stem cells that are involved in the response of the pulp to caries progression. Specifically, stem cells replace odontoblasts that have undergone cell death as a consequence of the cariogenic challenge. Stem cells also secrete factors that have the potential to enhance pulp vascularization and provide the oxygen and nutrients required for the dentinogenic response that is typically observed in teeth with deep caries. However, the same angiogenic factors that are required for dentin regeneration may ultimately contribute to the demise of the pulp by enhancing vascular permeability and interstitial pressure. Recent studies focused on the biology of dental pulp stem cells revealed that the multipotency and angiogenic capacity of these cells could be exploited therapeutically in dental pulp tissue engineering. Collectively, these findings suggest new treatment paradigms in the field of Endodontics. The goal of this review is to discuss the potential impact of dental pulp stem cells to Regenerative Endodontics. PMID:21726222

  4. Hydrostatic pressure in combination with topographical cues affects the fate of bone marrow‐derived human mesenchymal stem cells for bone tissue regeneration

    Science.gov (United States)

    El Haj, Alicia J.

    2017-01-01

    Abstract Topographical and mechanical cues are vital for cell fate, tissue development in vivo, and to mimic the native cell growth environment in vitro. To date, the combinatory effect of mechanical and topographical cues as not been thoroughly investigated. This study investigates the effect of PCL nanofiber alignment and hydrostatic pressure on stem cell differentiation for bone tissue regeneration. Bone marrow‐derived human mesenchymal stem cells were seeded onto standard tissue culture plastic and electrospun random and aligned nanofibers. These substrates were either cultured statically or subjected to intermittent hydrostatic pressure at 270 kPa, 1 Hz for 60 min daily over 21 days in osteogenic medium. Data revealed higher cell metabolic activities for all mechanically stimulated cell culture formats compared with non‐stimulated controls; and random fibers compared with aligned fibers. Fiber orientation influenced cell morphology and patterns of calcium deposition. Significant up‐regulation of Collagen‐I, ALP, and Runx‐2 were observed for random and aligned fibers following mechanical stimulation; highest levels of osteogenic markers were expressed when hydrostatic pressure was applied to random fibers. These results indicate that fiber alignment and hydrostatic pressure direct stem cell fate and are important stimulus for tissue regeneration. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: A: 629–640, 2018. PMID:28984025

  5. Immunomodulatory Role of Stem Cell from Human Exfoliated Deciduous Teeth on Periodontal Regeneration.

    Science.gov (United States)

    Gao, Xianling; Shen, Zongshan; Guan, Meiliang; Huang, Qiting; Chen, Lingling; Qin, Wei; Ge, Xiaohu; Chen, Haijia; Xiao, Yin; Lin, Zhengmei

    2018-03-20

    Periodontitis is initiated by the infection of periodontal bacteria and subsequent tissue inflammation due to immunoreaction, eventually leading to periodontal apparatus loss. Stem cells from human exfoliated deciduous teeth (SHEDs) have exhibited beneficial characteristics in dental tissue regeneration. However, the immunomodulatory functions of SHEDs have not been elucidated in the context of periodontitis treatment. In this study, we investigated the potential immunomodulatory effects of SHEDs on experimental periodontitis and demonstrated that multi-dose delivery of SHEDs led to periodontal tissue regeneration. SHEDs and monocytes/macrophages were cocultured in transwell systems and SHEDs were found to be capable of promoting monocyte/macrophages conversion to CD206+ M2-like phenotype. Bioluminescence imaging (BLI) was employed to assess the survival and distribution of SHEDs after delivery in periodontal tissues in an induced periodontitis model, and BLI revealed that SHEDs survived for approximately 7 days in periodontal tissues with little tissue diffusion. Then, multi-dose SHEDs delivery was applied to treat periodontitis at 7-day intervals. Results showed that muti-dose SHEDs altered the cytokine expression profile in gingival crevicular fluid, reduced gum bleeding, increased new attachment of periodontal ligament and decreased osteoclast differentiation. Micro-computed tomography analysis showed SHEDs administration significantly increased periodontal regeneration and alveolar bone volume, and decreased distance of cementoenamel junction to alveolar bone crest (CEJ-ABC). Furthermore, an increase in the number of CD206+ M2 macrophages was observed in periodontal tissues following the delivery of SHEDs, which aligned well with the promoted conversion to CD206+ M2-like cells from monocytes/macrophages in vitro after stimulation by SHEDs. This study demonstrated in a rat periodontitis model that local delivery of SHEDs attributed to the induction of M2

  6. Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases

    Directory of Open Access Journals (Sweden)

    Irina V. Kholodenko

    2017-01-01

    Full Text Available The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.

  7. Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates.

    Science.gov (United States)

    Kondo, Shimpei; Muneta, Takeshi; Nakagawa, Yusuke; Koga, Hideyuki; Watanabe, Toshifumi; Tsuji, Kunikazu; Sotome, Shinichi; Okawa, Atsushi; Kiuchi, Shinji; Ono, Hideo; Mizuno, Mitsuru; Sekiya, Ichiro

    2017-06-01

    Transplantation of aggregates of synovial mesenchymal stem cells (MSCs) enhanced meniscus regeneration in rats. Anatomy and biological properties of the meniscus depend on animal species. To apply this technique clinically, it is valuable to investigate the use of animals genetically close to humans. We investigated whether transplantation of aggregates of autologous synovial MSCs promoted meniscal regeneration in aged primates. Chynomolgus primates between 12 and 13 years old were used. After the anterior halves of the medial menisci in both knees were removed, an average of 14 aggregates consisting of 250,000 synovial MSCs were transplanted onto the meniscus defect. No aggregates were transplanted to the opposite knee for the control. Meniscus and articular cartilage were analyzed macroscopically, histologically, and by MRI T1rho mapping at 8 (n = 3) and 16 weeks (n = 4). The medial meniscus was larger and the modified Pauli's histological score for the regenerated meniscus was better in the MSC group than in the control group in each primate at 8 and 16 weeks. Mankin's score for the medial femoral condyle cartilage was better in the MSC group than in the control group in all primates at 16 weeks. T1rho value for both the regenerated meniscus and adjacent articular cartilage in the MSC group was closer to the normal meniscus than in the control group in all primates at 16 weeks. Transplantation of aggregates of autologous synovial MSCs promoted meniscus regeneration and delayed progression of degeneration of articular cartilage in aged primates. This is the first report dealing with meniscus regeneration in primates. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1274-1282, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo

    Czech Academy of Sciences Publication Activity Database

    Prosecká, Eva; Rampichová, Michala; Litvinec, Andrej; Tonar, Z.; Králíčková, M.; Vojtová, L.; Kochová, P.; Plencner, Martin; Buzgo, Matej; Míčková, Andrea; Jančář, J.; Amler, Evžen

    2015-01-01

    Roč. 103, č. 2 (2015), s. 671-682 ISSN 1549-3296 Institutional support: RVO:68378041 Keywords : bone regeneration * mesenchymal stem cells * collagen/hydroxyapatite scaffold Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.263, year: 2015

  9. Mesenchymal Stem Cells in Oriented PLGA/ACECM Composite Scaffolds Enhance Structure-Specific Regeneration of Hyaline Cartilage in a Rabbit Model.

    Science.gov (United States)

    Guo, Weimin; Zheng, Xifu; Zhang, Weiguo; Chen, Mingxue; Wang, Zhenyong; Hao, Chunxiang; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing; Liu, Shuyun; Lu, Shibi; Guo, Quanyi

    2018-01-01

    Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects.

  10. Identification and molecular regulation of neural stem cells in the olfactory epithelium

    International Nuclear Information System (INIS)

    Beites, Crestina L.; Kawauchi, Shimako; Crocker, Candice E.; Calof, Anne L.

    2005-01-01

    The sensory neurons that subserve olfaction, olfactory receptor neurons (ORNs), are regenerated throughout life, making the neuroepithelium in which they reside [the olfactory epithelium (OE)] an excellent model for studying how intrinsic and extrinsic factors regulate stem cell dynamics and neurogenesis during development and regeneration. Numerous studies indicate that transcription factors and signaling molecules together regulate generation of ORNs from stem and progenitor cells during development, and work on regenerative neurogenesis indicates that these same factors may operate at postnatal ages as well. This review describes our current knowledge of the identity of the OE neural stem cell; the different cell types that are thought to be the progeny (directly or indirectly) of this stem cell; and the factors that influence cell differentiation in the OE neuronal lineage. We review data suggesting that (1) the ORN lineage contains three distinct proliferating cell types-a stem cell and two populations of transit amplifying cells; (2) in established OE, these three cell types are present within the basal cell compartment of the epithelium; and (3) the stem cell that gives rise ultimately to ORNs may also generate two glial cell types of the primary olfactory pathway: sustentacular cells (SUS), which lie within OE proper; and olfactory ensheathing cells (OEC), which envelope the olfactory nerve. In addition, we describe factors that are both made by and found within the microenvironment of OE stem and progenitor cells, and which exert crucial growth regulatory effects on these cells. Thus, as with other regenerating tissues, the basis of regeneration in the OE appears be a population of stem cells, which resides within a microenvironment (niche) consisting of factors crucial for maintenance of its capacity for proliferation and differentiation

  11. Cancer stem cell hypotheses: Impact on modern molecular

    Indian Academy of Sciences (India)

    basis for the so-called cancer stem cell (CSC) hypotheses. The first exact proof of CSC ... or less equal ability for tumour regeneration and repopulation. (Nowell 1976 .... Also, there are reports that the 'stemness' (stem-like properties) of brain.

  12. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration

    OpenAIRE

    Mokalled, Mayssa H.; Johnson, Aaron N.; Creemers, Esther E.; Olson, Eric N.

    2012-01-01

    Muscle repair is regulated by satellite cells, adult skeletal muscle stem cells that control muscle regeneration by proliferating and fusing with injured myofibers. MyoD is required for muscle regeneration; however, the mechanisms regulating MyoD expression in satellite cells are unclear. In this study, Olson and colleagues have demonstrated that deletion of MASTR and MRTF-A, two members of the Myocardin family of transcription factors, leads to skeletal muscle regeneration defects and down-r...

  13. Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer's disease.

    Science.gov (United States)

    Wang, Feixiang; Jia, Yali; Liu, Jiajing; Zhai, Jinglei; Cao, Ning; Yue, Wen; He, Huixia; Pei, Xuetao

    2017-06-01

    Alzheimer's disease (AD) is an incurable neurodegenerative disease and many types of stem cells have been used in AD therapy with some favorable effects. In this study, we investigated the potential therapeutical effects of human dental pulp stem cells (hDPSCs) on AD cellular model which established by okadaic acid (OA)-induced damage to human neuroblastoma cell line, SH-SY5Y, in vitro for 24 h. After confirmed the AD cellular model, the cells were co-culture with hDPSCs by transwell co-culture system till 24 h for treatment. Then the cytomorphology of the hDPSCs-treated cells were found to restore gradually with re-elongation of retracted dendrites. Meanwhile, Cell Counting Kit-8 assay and Hoechst 33258 staining showed that hDPSCs caused significant increase in the viability and decrease in apoptosis of the model cells, respectively. Observation of DiI labeling also exhibited the prolongation dendrites in hDPSCs-treated cells which were obviously different from the retraction dendrites in AD model cells. Furthermore, specific staining of α-tubulin and F-actin demonstrated that the hDPSCs-treated cells had the morphology of restored neurons, with elongated dendrites, densely arranged microfilaments, and thickened microtubular fibrils. In addition, results from western blotting revealed that phosphorylation at Ser 396 of Tau protein was significantly suppressed by adding of hDPSCs. These results indicate that hDPSCs may promote regeneration of damaged neuron cells in vitro model of AD and may serve as a useful cell source for treatment of AD. © 2017 International Federation for Cell Biology.

  14. Effects of umbilical cord tissue mesenchymal stem cells (UCX® on rat sciatic nerve regeneration after neurotmesis injuries

    Directory of Open Access Journals (Sweden)

    Gärtner A

    2013-04-01

    Full Text Available Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs, obtained by a proprietary method (UCX®, was evaluated on end-to-end rat sciatic nerve repair. Furthermore, in order to promote both, end-to-end nerve fiber contacts and MSC cell-cell interaction, as well as reduce the flush away effect of the cells after administration, a commercially available haemostatic sealant, Floseal®, was used as vehicle. Both, functional and morphologic recoveries were evaluated along the healing period using extensor postural thrust (EPT, withdrawal reflex latency (WRL, ankle kinematics analysis, and either histological analysis or stereology, in the hyper-acute, acute and chronic phases of healing. The histological analysis of the hyper-acute and acute phase studies revealed that in the group treated with UCX ® alone the Wallerian degeneration was improved for the subsequent process of regeneration, the fiber organization was higher, and the extent of fibrosis was lower. The chronic phase experimental groups revealed that treatment with UCX® induced an increased number of regenerated fibers and thickening of the myelin sheet. Kinematics analysis showed that the ankle joint angle determined for untreated animals was significantly different from any of the treated groups at the instant of initial contact (IC. At opposite toe off (OT and heel rise (HR, differences were found between untreated animals and the groups treated with either UCX® alone or UCX® administered with Floseal®. Overall, the UCX® application presented

  15. Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution

    NARCIS (Netherlands)

    Stokman, Geurt; Leemans, Jaklien C.; Claessen, Nike; Weening, Jan J.; Florquin, Sandrine

    2005-01-01

    Acute renal failure and tubular cell loss as a result of ischemia constitute major challenges in renal pathophysiology. Increasing evidence suggests important roles for bone marrow stem cells in the regeneration of renal tissue after injury. This study investigated whether the enhanced availability

  16. Stem cell migration after irradiation

    International Nuclear Information System (INIS)

    Nothdurft, W.; Fliedner, T.M.

    1979-01-01

    The survival rate of irradiated rodents could be significantly improved by shielding only the small parts of hemopoietic tissues during the course of irradiation. The populations of circulating stem cells in adult organisms are considered to be of some importance for the homeostasis between the many sites of blood cell formation and for the necessary flexibility of hemopoietic response in the face of fluctuating demands. Pluripotent stem cells are migrating through peripheral blood as has been shown for several mammalian species. Under steady state conditions, the exchange of stem cells between the different sites of blood cell formation appears to be restricted. Their presence in blood and the fact that they are in balance with the extravascular stem cell pool may well be of significance for the surveilance of the integrity of local stem cell populations. Any decrease of stem cell population in blood below a critical size results in the rapid immigration of circulating stem cells in order to restore local stem cell pool size. Blood stem cells are involved in the regeneration after whole-body irradiation if the stem cell population in bone marrows is reduced to less than 10% of the normal state. In the animals subjected to partial-body irradiation, the circulating stem cells appear to be the only source for the repopulation of the heavily irradiated, aplastic sites of hemopoietic organs. (Yamashita, S.)

  17. Isolation of sphere-forming stem cells from the mouse inner ear.

    Science.gov (United States)

    Oshima, Kazuo; Senn, Pascal; Heller, Stefan

    2009-01-01

    The mammalian inner ear has very limited ability to regenerate lost sensory hair cells. This deficiency becomes apparent when hair cell loss leads to hearing loss as a result of either ototoxic insult or the aging process. Coincidently, with this inability to regenerate lost hair cells, the adult cochlea does not appear to harbor cells with a proliferative capacity that could serve as progenitor cells for lost cells. In contrast, adult mammalian vestibular sensory epithelia display a limited ability for hair cell regeneration, and sphere-forming cells with stem cell features can be isolated from the adult murine vestibular system. The neonatal inner ear, however, does harbor sphere-forming stem cells residing in cochlear and vestibular tissues. Here, we provide protocols to isolate sphere-forming stem cells from neonatal vestibular and cochlear sensory epithelia as well as from the spiral ganglion. We further describe procedures for sphere propagation, cell differentiation, and characterization of inner ear cell types derived from spheres. Sphere-forming stem cells from the mouse inner ear are an important tool for the development of cellular replacement strategies of damaged inner ears and are a bona fide progenitor cell source for transplantation studies.

  18. Roles of neural stem cells in the repair of peripheral nerve injury.

    Science.gov (United States)

    Wang, Chong; Lu, Chang-Feng; Peng, Jiang; Hu, Cheng-Dong; Wang, Yu

    2017-12-01

    Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.

  19. Stem cell biology and cell transplantation therapy in the retina.

    Science.gov (United States)

    Osakada, Fumitaka; Hirami, Yasuhiko; Takahashi, Masayo

    2010-01-01

    Embryonic stem (ES) cells, which are derived from the inner cell mass of mammalian blastocyst stage embryos, have the ability to differentiate into any cell type in the body and to grow indefinitely while maintaining pluripotency. During development, cells undergo progressive and irreversible differentiation into specialized adult cell types. Remarkably, in spite of this restriction in potential, adult somatic cells can be reprogrammed and returned to the naive state of pluripotency found in the early embryo simply by forcing expression of a defined set of transcription factors. These induced pluripotent stem (iPS) cells are molecularly and functionally equivalent to ES cells and provide powerful in vitro models for development, disease, and drug screening, as well as material for cell replacement therapy. Since functional impairment results from cell loss in most central nervous system (CNS) diseases, recovery of lost cells is an important treatment strategy. Although adult neurogenesis occurs in restricted regions, the CNS has poor potential for regeneration to compensate for cell loss. Thus, cell transplantation into damaged or diseased CNS tissues is a promising approach to treating various neurodegenerative disorders. Transplantation of photoreceptors or retinal pigment epithelium cells derived from human ES cells can restore some visual function. Patient-specific iPS cells may lead to customized cell therapy. However, regeneration of retinal function will require a detailed understanding of eye development, visual system circuitry, and retinal degeneration pathology. Here, we review the current progress in retinal regeneration, focusing on the therapeutic potential of pluripotent stem cells.

  20. Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration

    Directory of Open Access Journals (Sweden)

    G-S Huang

    2013-10-01

    Full Text Available Three-dimensional (3D cellular spheroids have recently emerged as a new trend to replace suspended single cells in modern cell-based therapies because of their greater regeneration capacities in vitro. They may lose the 3D structure during a change of microenvironment, which poses challenges to their translation in vivo. Besides, the conventional microporous scaffolds may have difficulty in accommodating these relatively large spheroids. Here we revealed a novel design of microenvironment for delivering and sustaining the 3D spheroids. Biodegradable scaffolds with macroporosity to accommodate mesenchymal stem cell (MSC spheroids were made by solid freeform fabrication (SFF from the solution of poly(D,L-lactide-co-glycolide. Their internal surface was modified with chitosan following air plasma treatment in order to preserve the morphology of the spheroids. It was demonstrated that human MSC spheroids loaded in SFF scaffolds produced a significantly larger amount of cartilage-associated extracellular matrix in vitro and in NOD/SCID mice compared to single cells in the same scaffolds. Implantation of MSC spheroid-loaded scaffolds into the chondral defects of rabbit knees showed superior cartilage regeneration. This study establishes new perspectives in designing the spheroid-sustaining microenvironment within a tissue engineering scaffold for in vivo applications.

  1. STEM CELL ORIGIN DIFFERENTLY AFFECTS BONE TISSUE ENGINEERING STRATEGIES.

    Directory of Open Access Journals (Sweden)

    Monica eMattioli-Belmonte

    2015-09-01

    Full Text Available Bone tissue engineering is a promising research area for the improvement of traditional bone grafting procedure drawbacks. Thanks to the capability of self-renewal and multi-lineage differentiation, stem cells are one of the major actors in tissue engineering approaches, and adult mesenchymal stem cells (MSCs are considered to be appropriate for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs are the earliest- discovered and well-known stem cell population used in bone tissue engineering. However, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signalling molecules enabled the surgeon to design, recreate the missing tissue in its near natural form. On the basis of these considerations, we analysed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e. periodontal ligament, maxillary periosteum as well as adipose-derived stem cells, in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, considering their peculiar features, they may alternatively represent interesting cell sources in different stem cell-based bone/periodontal tissue regeneration approaches.

  2. Hydrostatic pressure in combination with topographical cues affects the fate of bone marrow-derived human mesenchymal stem cells for bone tissue regeneration.

    Science.gov (United States)

    Reinwald, Yvonne; El Haj, Alicia J

    2018-03-01

    Topographical and mechanical cues are vital for cell fate, tissue development in vivo, and to mimic the native cell growth environment in vitro. To date, the combinatory effect of mechanical and topographical cues as not been thoroughly investigated. This study investigates the effect of PCL nanofiber alignment and hydrostatic pressure on stem cell differentiation for bone tissue regeneration. Bone marrow-derived human mesenchymal stem cells were seeded onto standard tissue culture plastic and electrospun random and aligned nanofibers. These substrates were either cultured statically or subjected to intermittent hydrostatic pressure at 270 kPa, 1 Hz for 60 min daily over 21 days in osteogenic medium. Data revealed higher cell metabolic activities for all mechanically stimulated cell culture formats compared with non-stimulated controls; and random fibers compared with aligned fibers. Fiber orientation influenced cell morphology and patterns of calcium deposition. Significant up-regulation of Collagen-I, ALP, and Runx-2 were observed for random and aligned fibers following mechanical stimulation; highest levels of osteogenic markers were expressed when hydrostatic pressure was applied to random fibers. These results indicate that fiber alignment and hydrostatic pressure direct stem cell fate and are important stimulus for tissue regeneration. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: A: 629-640, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  3. Adipose-derived mesenchymal stem cells accelerate nerve regeneration and functional recovery in a rat model of recurrent laryngeal nerve injury

    Directory of Open Access Journals (Sweden)

    Yun Li

    2017-01-01

    Full Text Available Medialization thyroplasty or injection laryngoplasty for unilateral vocal fold paralysis cannot restore mobility of the vocal fold. Recent studies have shown that transplantation of mesenchymal stem cells is effective in the repair of nerve injuries. This study investigated whether adipose-derived stem cell transplantation could repair recurrent laryngeal nerve injury. Rat models of recurrent laryngeal nerve injury were established by crushing with micro forceps. Adipose-derived mesenchymal stem cells (ADSCs; 8 × 105 or differentiated Schwann-like adipose-derived mesenchymal stem cells (dADSCs; 8 × 105 or extracellular matrix were injected at the site of injury. At 2, 4 and 6 weeks post-surgery, a higher density of myelinated nerve fiber, thicker myelin sheath, improved vocal fold movement, better recovery of nerve conduction capacity and reduced thyroarytenoid muscle atrophy were found in ADSCs and dADSCs groups compared with the extracellular matrix group. The effects were more pronounced in the ADSCs group than in the dADSCs group. These experimental results indicated that ADSCs transplantation could be an early interventional strategy to promote regeneration after recurrent laryngeal nerve injury.

  4. Skin bioengineering and stem cells for severe burn treatment

    International Nuclear Information System (INIS)

    Lataillade, J.J.; Trouillas, M.; Alexaline, M.; Brachet, M.; Bey, E.; Duhamel, P.; Leclerc, T.; Bargues, L.

    2015-01-01

    Severely burned patients need definitive and efficient wound coverage. The outcome of massive burns has improved with cultured epithelial auto-grafts (CEA). In spite of its fragility, percentage of success, cost of treatment and long-term tendency to contracture, this surgical technique has been developed in some burn centres. The first improvements involved combining CEA and dermis-like substitutes. Cultured skin substitutes provide faster skin closure and satisfying functional results. These methods have been used successfully in massive burns. A second improvement was to enable skin regeneration by using epidermal stem cells. Stem cells can differentiate into keratinocytes, to promote wound repair and to regenerate skin appendages. Human mesenchymal stem cells foster wound healing and were used in cutaneous radiation syndrome. Skin regeneration and tissue engineering methods remain a complex challenge and offer the possibility of new treatment for injured and burned patients. (authors)

  5. Regeneration of irradiated salivary glands with stem cell marker expressing cells

    NARCIS (Netherlands)

    Nanduri, Lalitha S. Y.; Maimets, Martti; Pringle, Sarah A.; van der Zwaag, Marianne; van Os, Ronald P.; Coppes, Robert P.

    Background: Stem cell therapy could be a potential way for reducing radiation-induced hyposalivation and improving the patient's quality of life. However, the identification and purification of salivary gland stem cells have not been accomplished. This study aims to better characterize the

  6. Update on small intestinal stem cells.

    Science.gov (United States)

    Tesori, Valentina; Puglisi, Maria Ausiliatrice; Lattanzi, Wanda; Gasbarrini, Giovanni Battista; Gasbarrini, Antonio

    2013-08-07

    Among somatic stem cells, those residing in the intestine represent a fascinating and poorly explored research field. Particularly, somatic stem cells reside in the small intestine at the level of the crypt base, in a constant balance between self-renewal and differentiation. Aim of the present review is to delve into the mechanisms that regulate the delicate equilibrium through which intestinal stem cells orchestrate intestinal architecture. To this aim, special focus will be addressed to identify the integrating signals from the surrounding niche, supporting a model whereby distinct cell populations facilitate homeostatic vs injury-induced regeneration.

  7. CD13 Promotes Mesenchymal Stem Cell-mediated regeneration of ischemic muscle

    Directory of Open Access Journals (Sweden)

    M. Mamunur eRahman

    2014-01-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotent, tissue-resident cells that can facilitate tissue regeneration and thus show great promise as potential therapeutic agents. Functional MSCs have been isolated and characterized from a wide array of adult tissues and are universally identified by the shared expression of a core panel of MSCs markers. One of these markers is the multifunctional cell surface peptidase CD13 that has been shown to be expressed on human and murine MSCs from many tissues. To investigate whether this universal expression indicates a functional role for CD13 in MSC biology we isolated, expanded and characterized MSCs from bone marrow of wild type (WT and CD13KO mice. Characterization of these cells demonstrated that both WT and CD13KO MSCs expressed the full complement of MSC markers (CD29, CD44, CD49e, CD105, Sca1, showed comparable proliferation rates and were capable of differentiating toward the adipogenic and osteogenic lineages. However, MSCs lacking CD13 were unable to differentiate into vascular cells, consistent with our previous characterization of CD13 as an angiogenic regulator. Compared to WT MSCs, adhesion and migration on various extracellular matrices of CD13KO MSCs were significantly impaired, which correlated with decreased phospho-FAK levels and cytoskeletal alterations. Crosslinking human MSCs with activating CD13 antibodies increased cell adhesion to endothelial monolayers and induced FAK activation in a time dependent manner. In agreement with these in vitro data, intramuscular injection of CD13KO MSCs in a model of severe ischemic limb injury resulted in significantly poorer perfusion, decreased ambulation, increased necrosis and impaired vascularization compared to those receiving WT MSCs. This study suggests that CD13 regulates FAK activation to promote MSC adhesion and migration, thus contributing to MSC-mediated tissue repair. CD13 may present a viable target to enhance the efficacy of mesenchymal

  8. Engineering Stem Cells for Biomedical Applications

    Science.gov (United States)

    Yin, Perry T.; Han, Edward

    2018-01-01

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134

  9. Engineering Stem Cells for Biomedical Applications.

    Science.gov (United States)

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-07

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Co-culture of Adult Mesenchymal Stem Cells and Nucleus Pulposus Cells in Bilaminar Pellets for Intervertebral Disc Regeneration.

    Science.gov (United States)

    Allon, Aliza A; Schneider, Richard A; Lotz, Jeffrey C

    2009-01-01

    Our goal is to optimize stem cell-based tissue engineering strategies in the context of the intervertebral disc environment. We explored the benefits of co-culturing nucleus pulposus cells (NPC) and adult mesenchymal stem cells (MSC) using a novel spherical bilaminar pellet culture system where one cell type is enclosed in a sphere of the other cell type. Our 3D system provides a structure that exploits embryonic processes such as tissue induction and condensation. We observed a unique phenomenon: the budding of co-culture pellets and the formation of satellite pellets that separate from the main pellet. MSC and NPC co-culture pellets were formed with three different structural organizations. The first had random organization. The other two had bilaminar organization with either MSC inside and NPC outside or NPC inside and MSC outside. By 14 days, all co-culture pellets exhibited budding and spontaneously generated satellite pellets. The satellite pellets were composed of both cell types and, surprisingly, all had the same bilaminar organization with MSC on the inside and NPC on the outside. This organization was independent of the structure of the main pellet that the satellites stemmed from. The main pellets generated satellite pellets that spontaneously organized into a bilaminar structure. This implies that structural organization occurs naturally in this cell culture system and may be inherently favorable for cell-based tissue engineering strategies. The occurrence of budding and the organization of satellite pellets may have important implications for the use of co-culture pellets in cell-based therapies for disc regeneration. From a therapeutic point of view, the generation of satellite pellets may be a beneficial feature that would serve to spread donor cells throughout the host matrix and restore normal matrix composition in a sustainable way, ultimately renewing tissue function.

  11. The Promise and Perils of Stem Cell Therapeutics

    OpenAIRE

    Daley, George Q.

    2012-01-01

    Stem cells are the seeds of tissue repair and regeneration and a promising source for novel therapies. However, apart from hematopoietic stem cell (HSC) transplantation for hematologic disease, essentially all other stem cell treatments remain experimental. High hopes have inspired numerous clinical trials, but it has been difficult to obtain unequivocal evidence for robust clinical benefit, likely owing to our primitive state of knowledge about therapeutic mechanisms. Outside the standard cl...

  12. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise

    OpenAIRE

    Robin Duelen; Maurilio Sampaolesi

    2017-01-01

    Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and s...

  13. Cardiac regeneration using pluripotent stem cells—Progression to large animal models

    Directory of Open Access Journals (Sweden)

    James J.H. Chong

    2014-11-01

    Full Text Available Pluripotent stem cells (PSCs have indisputable cardiomyogenic potential and therefore have been intensively investigated as a potential cardiac regenerative therapy. Current directed differentiation protocols are able to produce high yields of cardiomyocytes from PSCs and studies in small animal models of cardiovascular disease have proven sustained engraftment and functional efficacy. Therefore, the time is ripe for cardiac regenerative therapies using PSC derivatives to be tested in large animal models that more closely resemble the hearts of humans. In this review, we discuss the results of our recent study using human embryonic stem cell derived cardiomyocytes (hESC-CM in a non-human primate model of ischemic cardiac injury. Large scale remuscularization, electromechanical coupling and short-term arrhythmias demonstrated by our hESC-CM grafts are discussed in the context of other studies using adult stem cells for cardiac regeneration.

  14. Regenerative medicine in dental and oral tissues: Dental pulp mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Janti Sudiono

    2017-08-01

    Full Text Available Background. Regenerative medicine is a new therapeutic modality using cell, stem cell and tissue engineering technologies. Purpose. To describe the regenerative capacity of dental pulp mesenchymal stem cell. Review. In dentistry, stem cell and tissue engineering technologies develop incredibly and attract great interest, due to the capacity to facilitate innovation in dental material and regeneration of dental and oral tissues. Mesenchymal stem cells derived from dental pulp, periodontal ligament and dental follicle, can be isolated, cultured and differentiated into various cells, so that can be useful for regeneration of dental, nerves, periodontal and bone tissues. Tissue engineering is a technology in reconstructive biology, which utilizes mechanical, cellular, or biological mediators to facilitate regeneration or reconstruction of a particular tissue. The multipotency, high proliferation rates and accessibility, make dental pulp as an attractive source of mesenchymal stem cells for tissue regeneration. Revitalized dental pulp and continued root development is the focus of regenerative endodontic while biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum is the focus of regenerative periodontic. Conclucion. Dentin-derived morphogens such as BMP are known to be involved in the regulation of odontogenesis. The multipotency and angiogenic capacity of DPSCs as the regenerative capacity of human dentin / pulp complex indicated that dental pulp may contain progenitors that are responsible for dentin repair. The human periodontal ligament is a viable alternative source for possible primitive precursors to be used in stem cell therapy.

  15. A Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Trošan, Peter; Čejka, Čestmír; Javorková, Eliška; Zajícová, Alena; Heřmánková, Barbora; Chudíčková, Milada; Čejková, Jitka

    2015-01-01

    Roč. 4, č. 9 (2015), s. 1052-1063 ISSN 2157-6564 R&D Projects: GA ČR(CZ) GA14-12580S; GA MZd NT14102; GA MŠk(CZ) LO1309; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378041 Keywords : limbal stem cells * mesenchymal stem cells * alkali-injured ocular surface * corneal regeneration * stem cell-based therapy Subject RIV: FF - HEENT, Dentistry Impact factor: 4.247, year: 2015

  16. Global MicroRNA Profiling in Human Bone Marrow Skeletal—Stromal or Mesenchymal–Stem Cells Identified Candidates for Bone Regeneration

    DEFF Research Database (Denmark)

    Chang, Chi Chih; Venø, Morten T.; Chen, Li

    2018-01-01

    Bone remodeling and regeneration are highly regulated multistep processes involving posttranscriptional regulation by microRNAs (miRNAs). Here, we performed a global profiling of differentially expressed miRNAs in bone-marrow-derived skeletal cells (BMSCs; also known as stromal or mesenchymal stem......RNAs for enhancing bone tissue regeneration. Scaffolds functionalized with miRNA nano-carriers enhanced osteoblastogenesis in 3D culture and retained this ability at least 2 weeks after storage. Additionally, anti-miR-222 enhanced in vivo ectopic bone formation through targeting the cell-cycle inhibitor CDKN1B...... cells) during in vitro osteoblast differentiation. We functionally validated the regulatory effects of several miRNAs on osteoblast differentiation and identified 15 miRNAs, most significantly miR-222 and miR-423, as regulators of osteoblastogenesis. In addition, we tested the possible targeting of mi...

  17. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration

    Directory of Open Access Journals (Sweden)

    Rubén Aquino-Martínez

    2017-11-01

    Full Text Available Abstract Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO4 on MSC migration. In addition, to evaluate the influence of CaSO4 on MSC differentiation and the potential molecular mechanisms involved. Methods A circular calvarial bone defect (5 mm diameter was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO4 treatment was also evaluated by qPCR. Results CaSO4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO4-containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO4 effects on MSC migration. Conclusions Specific CaSO4 concentrations induce bone regeneration of calvarial defects in part by acting on the host’s undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO4 regulates BMP-2-induced

  18. Advancements in stem cells treatment of skeletal muscle wasting

    Directory of Open Access Journals (Sweden)

    mirella emeregalli

    2014-02-01

    Full Text Available Muscular dystrophies (MDs are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging.

  19. Msh homeobox 1 (Msx1)- and Msx2-overexpressing bone marrow-derived mesenchymal stem cells resemble blastema cells and enhance regeneration in mice.

    Science.gov (United States)

    Taghiyar, Leila; Hesaraki, Mahdi; Sayahpour, Forough Azam; Satarian, Leila; Hosseini, Samaneh; Aghdami, Naser; Baghaban Eslaminejad, Mohamadreza

    2017-06-23

    Amputation of the proximal region in mammals is not followed by regeneration because blastema cells (BCs) and expression of regenerative genes, such as Msh homeobox ( Msx ) genes, are absent in this animal group. The lack of BCs and positional information in other cells is therefore the main obstacle to therapeutic approaches for limb regeneration. Hence, this study aimed to create blastema-like cells (BlCs) by overexpressing Msx1 and Msx2 genes in mouse bone marrow-derived mesenchymal stem cells (mBMSCs) to regenerate a proximally amputated digit tip. We transduced mBMSCs with Msx1 and Msx2 genes and compared osteogenic activity and expression levels of several Msx -regulated genes ( Bmp4 , Fgf8 , and keratin 14 ( K14 )) in BlC groups, including MSX1, MSX2, and MSX1/2 (in a 1:1 ratio) with those in mBMSCs and BCs in vitro and in vivo following injection into the amputation site. We found that Msx gene overexpression increased expression of specific blastemal markers and enhanced the proliferation rate and osteogenesis of BlCs compared with mBMSCs and BCs via activation of Fgf8 and Bmp4 Histological analyses indicated full regrowth of digit tips in the Msx -overexpressing groups, particularly in MSX1/2, through endochondral ossification 6 weeks post-injection. In contrast, mBMSCs and BCs formed abnormal bone and nail. Full digit tip was regenerated only in the MSX1/2 group and was related to boosted Bmp4, Fgf8 , and K14 gene expression and to limb-patterning properties resulting from Msx1 and Msx2 overexpression. We propose that Msx -transduced cells that can regenerate epithelial and mesenchymal tissues may potentially be utilized in limb regeneration. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Aging and stem cell therapy: AMPK as an applicable pharmacological target for rejuvenation of aged stem cells and achieving higher efficacy in stem cell therapy.

    Science.gov (United States)

    Khorraminejad-Shirazi, Mohammadhossein; Farahmandnia, Mohammad; Kardeh, Bahareh; Estedlal, Alireza; Kardeh, Sina; Monabati, Ahmad

    2017-10-19

    In recent years, tissue regeneration has become a promising field for developing stem cell-based transplantation therapies for human patients. Adult stem cells are affected by the same aging mechanisms that involve somatic cells. One of the mechanisms involved in cellular aging is hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and disruption of 5' adenosine monophosphate-activated protein kinase (AMPK). Aging of stem cells results in their impaired regenerative capacity and depletion of stem cell pools in adult tissue, which results in lower efficacy of stem cell therapy. By utilizing an effective therapeutic intervention for aged stem cells, stem cell therapy can become more promising for future application. mTORC1 inhibition is a practical approach to preserve the stem cell pool. In this article, we review the dynamic interaction between sirtuin (silent mating type information regulation 2 homolog) 1, AMPK, and mTORC1. We propose that using AMPK activators such as 5-aminoimidazole-4-carboxamide ribonucleotide, A769662, metformin, and oxidized nicotinamide adenine dinucleotide (NAD + ) are practical ways to be employed for achieving better optimized results in stem cell-based transplantation therapies. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  1. Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair.

    Science.gov (United States)

    Mozafari, Roghayeh; Kyrylenko, Sergiy; Castro, Mateus Vidigal; Ferreira, Rui Seabra; Barraviera, Benedito; Oliveira, Alexandre Leite Rodrigues

    2018-01-01

    Peripheral nerve injury is a worldwide clinical problem, and the preferred surgical method for treating it is the end-to-end neurorrhaphy. When it is not possible due to a large nerve gap, autologous nerve grafting is used. However, these surgical techniques result in nerve regeneration at highly variable degrees. It is thus very important to seek complementary techniques to improve motor and sensory recovery. One promising approach could be cell therapy. Transplantation therapy with human embryonic stem cells (hESCs) is appealing because these cells are pluripotent and can differentiate into specialized cell types and have self-renewal ability. Therefore, the main objective of this study was to find conditions under which functional recovery is improved after sciatic nerve neurorrhaphy. We assumed that hESC, either alone or in combination with heterologous fibrin sealant scaffold, could be used to support regeneration in a mouse model of sciatic nerve injury and repair via autografting with end-to-end neurorrhaphy. Five millimeters of the sciatic nerve of C57BL/6 J mice were transected off and rotated 180 degrees to simulate an injury, and then stumps were sutured. Next, we applied heterologous fibrin sealant and/or human embryonic stem cells genetically altered to overexpress fibroblast growth factor 2 (FGF2) at the site of the injury. The study was designed to include six experimental groups comprising neurorrhaphy (N), neurorrhaphy + heterologous fibrin sealant (N + F), neurorrhaphy + heterologous fibrin sealant + doxycycline (N + F + D), neurorrhaphy + heterologous fibrin sealant + wild-type hESC (N + F + W), neurorrhaphy + heterologous fibrin sealant + hESC off (N + F + T), and neurorrhaphy + heterologous fibrin sealant + hESC on via doxycycline (N + F + D + T). We evaluated the recovery rate using Catwalk and von Frey functional recovery tests, as well as immunohistochemistry analysis. The experiments indicated that

  2. The pluripotency of hair follicle stem cells.

    Science.gov (United States)

    Hoffman, Robert M

    2006-02-01

    The hair follicle bulge area is an abundant, easily accessible source of actively growing, pluripotent adult stem cells. Nestin, a protein marker for neural stem cells, is also expressed in follicle stem cells as well as their immediate differentiated progeny. The nestin-expressing hair follicle stem cells differentiated into neurons, glial cells, keratinocytes and smooth muscle cells in vitro. Hair-follicle stem cells were implanted into the gap region of a severed sciatic nerve. The hair follicle stem cells greatly enhanced the rate of nerve regeneration and the restoration of nerve function. The follicle stem cells transdifferentiated largely into Schwann cells which are known to support neuron regrowth. Function of the rejoined sciatic nerve was measured by contraction of the gastrocnemius muscle upon electrical stimulation. After severing the tibial nerve and subsequent transplantation of hair-follicle stem cells, the transplanted mice recovered the ability to walk normally. These results suggest that hair-follicle stem cells provide an important accessible, autologous source of adult stem cells for regenerative medicine.

  3. EMT/MET at the Crossroad of Stemness, Regeneration and Oncogenesis: The Ying-Yang Equilibrium Recapitulated in Cell Spheroids

    Directory of Open Access Journals (Sweden)

    Elvira Forte

    2017-07-01

    Full Text Available The epithelial-to-mesenchymal transition (EMT is an essential trans-differentiation process, which plays a critical role in embryonic development, wound healing, tissue regeneration, organ fibrosis, and cancer progression. It is the fundamental mechanism by which epithelial cells lose many of their characteristics while acquiring features typical of mesenchymal cells, such as migratory capacity and invasiveness. Depending on the contest, EMT is complemented and balanced by the reverse process, the mesenchymal-to-epithelial transition (MET. In the saving economy of the living organisms, the same (Ying-Yang tool is integrated as a physiological strategy in embryonic development, as well as in the course of reparative or disease processes, prominently fibrosis, tumor invasion and metastasis. These mechanisms and their related signaling (e.g., TGF-β and BMPs have been effectively studied in vitro by tissue-derived cell spheroids models. These three-dimensional (3D cell culture systems, whose phenotype has been shown to be strongly dependent on TGF-β-regulated EMT/MET processes, present the advantage of recapitulating in vitro the hypoxic in vivo micro-environment of tissue stem cell niches and their formation. These spheroids, therefore, nicely reproduce the finely regulated Ying-Yang equilibrium, which, together with other mechanisms, can be determinant in cell fate decisions in many pathophysiological scenarios, such as differentiation, fibrosis, regeneration, and oncogenesis. In this review, current progress in the knowledge of signaling pathways affecting EMT/MET and stemness regulation will be outlined by comparing data obtained from cellular spheroids systems, as ex vivo niches of stem cells derived from normal and tumoral tissues. The mechanistic correspondence in vivo and the possible pharmacological perspective will be also explored, focusing especially on the TGF-β-related networks, as well as others, such as SNAI1, PTEN, and EGR1. This

  4. Mesenchymal Stem Cells in Tissue Growth and Repair

    OpenAIRE

    Kalinina, N.I.; Sysoeva, V.Yu.; Rubina, K.A.; Parfenova, Ye.V.; Tkachuk, V.A.

    2011-01-01

    It has been established in the recent several decades that stem cells play a crucial role in tissue renewal and regeneration. Mesenchymal stem cells (MSCs) are part of the most important population of adult stem cells. These cells have hereby been identified for the very first time and subsequently isolated from bone marrow stroma. Bone marrow-derived MSCs have been believed to play the role of a source of cells for the renewal and repair of connective tissues, including bone, cartilage and a...

  5. Local application of IGFBP5 protein enhanced periodontal tissue regeneration via increasing the migration, cell proliferation and osteo/dentinogenic differentiation of mesenchymal stem cells in an inflammatory niche.

    Science.gov (United States)

    Han, Nannan; Zhang, Fengqiu; Li, Guoqing; Zhang, Xiuli; Lin, Xiao; Yang, Haoqing; Wang, Lijun; Cao, Yangyang; Du, Juan; Fan, Zhipeng

    2017-09-29

    Periodontitis is a widespread infectious disease ultimately resulting in tooth loss. The number of mesenchymal stem cells (MSCs) in patients with periodontitis is decreased, and MSC functions are impaired. Rescuing the impaired function of MSCs in periodontitis is the key for treatment, especially in a manner independent of exogenous MSCs. Our previous study found that overexpressed insulin-like growth factor binding protein 5 (IGFBP5) could promote exogenous MSC-mediated periodontal tissue regeneration. Here, we investigate the role of IGFBP5 protein in MSCs and periodontal tissue regeneration independent of exogenous MSCs in an inflammatory niche. TNFα was used to mimic the inflammatory niche. Lentiviral IGFBP5 shRNA was used to silence IGFBP5 and recombinant human IGFBP5 protein (rhIGFBP5) was used to stimulate the periodontal ligament stem cells (PDLSCs) and bone marrow stem cells (BMSCs). The effects of IGFBP5 on PDLSCs were evaluated using the scratch-simulated wound migration, Transwell chemotaxis, alkaline phosphatase (ALP) activity, Alizarin red staining, Cell Counting Kit-8, Western blot, Real-time PCR, Co-IP and ChIP assays. The swine model of periodontitis was used to investigate the functions of IGFBP5 for periodontal regeneration and its anti-inflammation effect. We discovered that 0.5 ng/ml rhIGFBP5 protein enhanced the migration, chemotaxis, osteo/dentinogenic differentiation and cell proliferation of MSCs under the inflammatory condition. Moreover, 0.5 ng/ml rhIGFBP5 application could rescue the impaired functions of IGFBP5-silenced-MSCs in the inflammatory niche. Furthermore, local injection of rhIGFBP5 could promote periodontal tissue regeneration and relieve the local inflammation in a minipig model of periodontitis. Mechanistically, we found that BCOR negatively regulated the expression of IGFBP5 in MSCs. BCOR formed a protein complex with histone demethylase KDM6B and raised histone K27 methylation in the IGFBP5 promoter. This study

  6. Controlling Adult Stem Cell Behavior Using Nanodiamond-Reinforced Hydrogel: Implication in Bone Regeneration Therapy.

    Science.gov (United States)

    Pacelli, Settimio; Maloney, Ryan; Chakravarti, Aparna R; Whitlow, Jonathan; Basu, Sayantani; Modaresi, Saman; Gehrke, Stevin; Paul, Arghya

    2017-07-26

    Nanodiamonds (NDs) have attracted considerable attention as drug delivery nanocarriers due to their low cytotoxicity and facile surface functionalization. Given these features, NDs have been recently investigated for the fabrication of nanocomposite hydrogels for tissue engineering. Here we report the synthesis of a hydrogel using photocrosslinkable gelatin methacrylamide (GelMA) and NDs as a three-dimensional scaffold for drug delivery and stem cell-guided bone regeneration. We investigated the effect of different concentration of NDs on the physical and mechanical properties of the GelMA hydrogel network. The inclusion of NDs increased the network stiffness, which in turn augmented the traction forces generated by human adipose stem cells (hASCs). We also tested the ability of NDs to adsorb and modulate the release of a model drug dexamethasone (Dex) to promote the osteogenic differentiation of hASCs. The ND-Dex complexes modulated gene expression, cell area, and focal adhesion number in hASCs. Moreover, the integration of the ND-Dex complex within GelMA hydrogels allowed a higher retention of Dex over time, resulting in significantly increased alkaline phosphatase activity and calcium deposition of encapsulated hASCs. These results suggest that conventional GelMA hydrogels can be coupled with conjugated NDs to develop a novel platform for bone tissue engineering.

  7. Stem cell self-renewal in intestinal crypt

    International Nuclear Information System (INIS)

    Simons, Benjamin D.; Clevers, Hans

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine and colon has remained the subject of debate. Recent studies based on targeted lineage tracing strategies, combined with the development of an organotypic culture system, have identified the crypt base columnar cell as the intestinal stem cell, and have unveiled the strategy by which the balance between proliferation and differentiation is maintained. These results show that intestinal stem cells operate in a dynamic environment in which frequent and stochastic stem cell loss is compensated by the proliferation of neighboring stem cells. We review the basis of these experimental findings and the insights they offer into the mechanisms of homeostatic stem cell regulation.

  8. CD146+ human umbilical cord perivascular cells maintain stemness under hypoxia and as a cell source for skeletal regeneration.

    Directory of Open Access Journals (Sweden)

    Wing Pui Tsang

    Full Text Available The human umbilical cord perivascular cells (HUCPVCs have been considered as an alternative source of mesenchymal progenitors for cell based regenerative medicine. However, the biological properties of these cells remain to be well characterized. In the present study, HUCPVCs were isolated and sorted by CD146(+ pericyte marker. The purified CD146(+ HUCPVCs were induced to differentiate efficiently into osteoblast, chondrocyte and adipocyte lineages in vitro. Six weeks following subcutaneous transplantation of CD146(+ HUCPVCs-Gelfoam-alginate 3D complexes in severe combined immunodeficiency (SCID mice, newly formed bone matrix with embedded osteocytes of donor origin was observed. The functional engraftment of CD146(+ HUCPVCs in the new bone regenerates was further confirmed in a critical-sized bone defect model in SCID mice. Hypoxic conditions suppressed osteogenic differentiation while increased cell proliferation and colony-forming efficiency of CD146(+ HUCPVCs as compared to that under normoxic conditions. Re-oxygenation restored the multi-differentiation potential of the CD146(+ HUCPVCs. Western blot analysis revealed an upregulation of HIF-1α, HIF-2α, and OCT-4 protein expression in CD146(+ HUCPVCs under hypoxia, while there was no remarkable change in SOX2 and NANOG expression. The gene expression profiles of stem cell transcription factors between cells treated by normoxia and hypoxic conditions were compared by PCR array analysis. Intriguingly, PPAR-γ was dramatically downregulated (20-fold in mRNA expression under hypoxia, and was revealed to possess a putative binding site in the Hif-2α gene promoter region. Chromatin immunoprecipitation assays confirmed the binding of PPAR-γ protein to the Hif-2α promoter and the binding was suppressed by hypoxia treatment. Luciferase reporter assay showed that the Hif-2α promoter activity was suppressed by PPAR expression. Thus, PPAR-γ may involve in the regulation of HIF-2α for stemness

  9. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  10. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  11. Isolation, Characterization, and Differentiation of Stem Cells for Cartilage Regeneration

    OpenAIRE

    Beane, Olivia S.; Darling, Eric M.

    2012-01-01

    The goal of tissue engineering is to create a functional replacement for tissues damaged by injury or disease. In many cases, impaired tissues cannot provide viable cells, leading to the investigation of stem cells as a possible alternative. Cartilage, in particular, may benefit from the use of stem cells since the tissue has low cellularity and cannot effectively repair itself. To address this need, researchers are investigating the chondrogenic capabilities of several multipotent stem cell ...

  12. New advances in stem cell research: practical implications for regenerative medicine.

    Science.gov (United States)

    Ratajczak, Mariusz Z; Jadczyk, Tomasz; Pędziwiatr, Daniel; Wojakowski, Wojciech

    2014-01-01

    Regenerative medicine is searching for stem cells that can be safely and efficiently employed for regeneration of damaged solid organs (e.g., the heart, brain, or liver). Ideal for this purpose would be pluripotent stem cells, which, according to their definition, have broad potential to differentiate into all types of adult cells. For almost 20 years, there have been unsuccessful attempts to harness controversial embryonic stem cells (ESCs) isolated from embryos. Induced pluripotent stem cells (iPSCs), generated by genetic modification of adult somatic cells, are a more promising source. However, both iPSC and ESCs are associated with a risk of teratoma formation. At the same time, various types of more‑differentiated adult stem and progenitor cells derived from the bone marrow, umbilical cord blood, mobilized peripheral blood, or fat tissue are being employed in clinical trials to regenerate damaged solid organs. However, for most of these cells, there is a lack of convincing documentation for successful regeneration of the treated organs. Beneficial effects of those cells might be explained by paracrine effects of growth factors, cytokines, chemokines, bioactive lipids, and extracellular microvesicles, which are released from the cells and have trophic, antiapoptotic, and angiopoietic effects. Nevertheless, there is evidence that adult tissues harbor a promising population of very rare dormant stem cells with broad differentiation potential. In this review, we will discuss various potential sources of stem cells for regenerative medicine and the mechanisms that explain some of their beneficial effects as well as highlight the results of the first clinical trials.  

  13. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    Science.gov (United States)

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  14. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study.

    Science.gov (United States)

    Nakashima, Misako; Iohara, Koichiro; Murakami, Masashi; Nakamura, Hiroshi; Sato, Yayoi; Ariji, Yoshiko; Matsushita, Kenji

    2017-03-09

    Experiments have previously demonstrated the therapeutic potential of mobilized dental pulp stem cells (MDPSCs) for complete pulp regeneration. The aim of the present pilot clinical study is to assess the safety, potential efficacy, and feasibility of autologous transplantation of MDPSCs in pulpectomized teeth. Five patients with irreversible pulpitis were enrolled and monitored for up to 24 weeks following MDPSC transplantation. The MDPSCs were isolated from discarded teeth and expanded based on good manufacturing practice (GMP). The quality of the MDPSCs at passages 9 or 10 was ascertained by karyotype analyses. The MDPSCs were transplanted with granulocyte colony-stimulating factor (G-CSF) in atelocollagen into pulpectomized teeth. The clinical and laboratory evaluations demonstrated no adverse events or toxicity. The electric pulp test (EPT) of the pulp at 4 weeks demonstrated a robust positive response. The signal intensity of magnetic resonance imaging (MRI) of the regenerated tissue in the root canal after 24 weeks was similar to that of normal dental pulp in the untreated control. Finally, cone beam computed tomography demonstrated functional dentin formation in three of the five patients. Human MDPSCs are safe and efficacious for complete pulp regeneration in humans in this pilot clinical study.

  15. Stem cell therapy to treat heart ischaemia

    DEFF Research Database (Denmark)

    Ali Qayyum, Abbas; Mathiasen, Anders Bruun; Kastrup, Jens

    2014-01-01

    (CABG), morbidity and mortality is still high in patients with CAD. Along with PCI and CABG or in patients without options for revascularization, stem cell regenerative therapy in controlled trials is a possibility. Stem cells are believed to exert their actions by angiogenesis and regeneration...... of cardiomyocytes. Recently published clinical trials and meta-analysis of stem cell studies have shown encouraging results with increased left ventricle ejection fraction and reduced symptoms in patients with CAD and heart failure. There is some evidence of mesenchymal stem cell being more effective compared...... to other cell types and cell therapy may be more effective in patients with known diabetes mellitus. However, further investigations are warranted....

  16. Comparison of fibroblast cell regeneration in three different concentrations of Wharton’s Jelly mesenchymal stem cells conditioned medium (WJMSCs-CM)

    Science.gov (United States)

    Untoro, E. G.; Asrianti, D.; Usman, M.; Meidyawati, R.; Margono, A.

    2017-08-01

    Wharton’s Jelly-derived mesenchymal stem cells (WJMSCs) have gained interest as an alternative source of stem cells for regenerative medicine. Although many studies have characterized Wharton’s Jelly biologically, the effects of different concentrations in a cultured medium have not yet been compared. Damaged fibroblasts, the primary components of irreversible dental pulpitis, irreversibly impair the ability to regenerate and lead to the disruption of extracellular matrix. This study was performed to evaluate the potency of three WJMSCs-CM concentrations in improving serum-starved fibroblasts. Fibroblasts were cultivated in five passages, and divided into four groups. The first group (the control group) consisted of fibroblast cells that had been treated using starvation methods. The other groups (the treatment groups) were treated with various concentration of WJMSCs-CM (50%, 25% and 12.5%). Proliferative ability was evaluated using a cell count method and analyzed with a one-way ANOVA. Cultivation of serum-starved fibroblasts produced significantly higher cell counts in 12.5% WJMSCs-CM compared to the 50% group. It can be concluded that 12.5% WJMSCs-CM is the most efficient concentration for fibroblast proliferation.

  17. The Role of Recipient T Cells in Mesenchymal Stem Cell-Based Tissue Regeneration

    OpenAIRE

    Liu, Yi; Wang, Songlin; Shi, Songtao

    2012-01-01

    Significant progress has been made in stem cell biology, regenerative medicine, and stem cell-based tissue engineering. Such scientific strides highlight the potential of replacing or repairing damaged tissues in congenital abnormalities, diseases, or injuries, as well as constructing functional tissue or organs in vivo. Since mesenchymal stem cells (MSCs) are capable of differentiating into bone-forming cells, they constitute an appropriate cell source to repair damaged bone tissues. In addi...

  18. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    M Pei

    2011-11-01

    Full Text Available Cell-based therapy is a promising biological approach for the treatment of cartilage defects. Due to the small size of autologous cartilage samples available for cell transplantation in patients, cells need to be expanded to yield a sufficient cell number for cartilage repair. However, chondrocytes and adult stem cells tend to become replicatively senescent once they are expanded on conventional plastic flasks. Many studies demonstrate that the loss of cell properties is concomitant with the decreased cell proliferation capacity. This is a significant challenge for cartilage tissue engineering and regeneration. Despite much progress having been made in cell expansion, there are still concerns over expanded cell size and quality for cell transplantation applications. Recently, in vivo investigations in stem cell niches have suggested the importance of developing an in vitro stem cell microenvironment for cell expansion and tissue-specific differentiation. Our and other investigators’ work indicates that a decellularized stem cell matrix (DSCM may provide such an expansion system to yield large-quantity and high-quality cells for cartilage tissue engineering and regeneration. This review briefly introduces key parameters in an in vivo stem cell niche and focuses on our recent work on DSCM for its rejuvenating or reprograming effect on various adult stem cells and chondrocytes. Since research in DSCM is still in its infancy, we are only able to discuss some potential mechanisms of DSCM on cell proliferation and chondrogenic potential. Further investigations of the underlying mechanism and in vivo regeneration capacity will allow this approach to be used in clinics.

  19. Callus regeneration from stem explants of Pseudarthira viscida (L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... regeneration frequency have come from tissue culture work done in ... Table 1. In vitro responses from stem callus of Psudarthria viscida Wight & Arn. Growth .... plantlets regeneration from cotyledonary callus of Tomato.

  20. Role of bone marrow-derived stem cells, renal progenitor cells and stem cell factor in chronic renal allograft nephropathy

    Directory of Open Access Journals (Sweden)

    Hayam Abdel Meguid El Aggan

    2013-09-01

    Full Text Available Introduction: Chronic allograft nephropathy (CAN is a poorly understood clinico-pathological entity associated with chronic allograft loss due to immunologic and non-immunologic causes. It remains the leading cause of late allograft loss. Bone marrow derived stem cells are undifferentiated cells typically characterized by their capacity for self renewal, ability to give rise to multiple differentiated cellular population, including hematopoietic (HSCs and mesenchymal stem cells (MSCs. Characterization of HSCs includes their multipotency, expression of typical surface markers such as CD34 and CD45, while characterization of MSC includes their multipotency, expression of typical surface markers such as CD90 and CD105, and the absence of hemopoietic lineage markers. Aim & methods: The aim of the present work was to study the role of bone marrow-derived HSCs and MSCs, renal progenitor cells and SCF in chronic renal allograft nephropathy in relation to renal hemodynamics and histopathological changes. We studied 30 patients with kidney transplantation for more than 6 months, divided into 15 patients with stable serum creatinine and 15 patients who developed CAN. Detection of HSCs and MSCs in the peripheral blood using flow cytometry via detection of CD34, CD45, CD117 and CD106, as well as immunohistochemical detection of CD34, CD133, VEGF and αSMA in transplanted kidney biopsies of patients with CAN were done. Results: There was a significant increase in the levels of SCF, number of peripheral blood HSCs and MSCs in both transplanted patient groups than the controls and they were higher in patients of group Ia than patients of group Ib, (F = 39.73, P < 0.001, (F = 13.28, P < 0.001, (F = 11.94, P < 0.001, respectively and this was accompanied by evident expression of markers of renal repair. Conclusion: Stem cells might have a role in renal regeneration in CAN and this may pave the way toward the use of stem cells in correction of CAN. KEYWORDS

  1. Combination of Bioactive Polymeric Membranes and Stem Cells for Periodontal Regeneration: In Vitro and In Vivo Analyses.

    Science.gov (United States)

    Gonçalves, Flávia; de Moraes, Míriam Santos; Ferreira, Lorraine Braga; Carreira, Ana Cláudia Oliveira; Kossugue, Patrícia Mayumi; Boaro, Letícia Cristina Cidreira; Bentini, Ricardo; Garcia, Célia Regina da Silva; Sogayar, Mari Cleide; Arana-Chavez, Victor Elias; Catalani, Luiz Henrique

    2016-01-01

    Regeneration of periodontal tissues requires a concerted effort to obtain consistent and predictable results in vivo. The aim of the present study was to test a new family of bioactive polymeric membranes in combination with stem cell therapy for periodontal regeneration. In particular, the novel polyester poly(isosorbide succinate-co-L-lactide) (PisPLLA) was compared with poly(L-lactide) (PLLA). Both polymers were combined with collagen (COL), hydroxyapatite (HA) and the growth factor bone morphogenetic protein-7 (BMP7), and their osteoinductive capacity was evaluated via in vitro and in vivo experiments. Membranes composed of PLLA/COL/HA or PisPLLA/COL/HA were able to promote periodontal regeneration and new bone formation in fenestration defects in rat jaws. According to quantitative real-time polymerase chain reaction (qRT-PCR) and Alizarin Red assays, better osteoconductive capacity and increased extracellular mineralization were observed for PLLA/COL/HA, whereas better osteoinductive properties were associated with PisPLLA/COL/HA. We concluded that membranes composed of either PisPLLA/COL/HA or PLLA/COL/HA present promising results in vitro as well as in vivo and that these materials could be potentially applied in periodontal regeneration.

  2. Modulation of Host Osseointegration during Bone Regeneration by Controlling Exogenous Stem Cells Differentiation Using a Material Approach.

    Science.gov (United States)

    Yu, Xiaohua; Wang, Liping; Xia, Zengmin; Chen, Li; Jiang, Xi; Rowe, David; Wei, Mei

    2014-02-01

    Stem cell-based tissue engineering for large bone defect healing has attracted enormous attention in regenerative medicine. However, sufficient osseointegration of the grafts combined with exogenous stem cells still remains a major challenge. Here we developed a material approach to modulate the integration of the grafts to the host tissue when exogenous bone marrow stromal cells (BMSCs) were used as donor cells. Distinctive osseointegration of bone grafts was observed as we varied the content of hydroxyapatite (HA) in the tissue scaffolds implanted in a mouse femur model. More than 80% of new bone was formed in the first two weeks of implantation in high HA content scaffold but lack of host integration while only less than 5% of the new bone was formed during this time period in the no HA group but with much stronger host integration. Cell origin analysis leveraging GFP reporter indicates new bone in HA containing groups was mainly derived from donor BMSCs. In comparison, both host and donor cells were found on new bone surface in the no HA groups which led to seamless bridging between host tissue and the scaffold. Most importantly, host integration during bone formation is closely dictated to the content of HA present in the scaffolds. Taken together, we demonstrate a material approach to modulate the osseointegration of bone grafts in the context of exogenous stem cell-based bone healing strategy which might lead to fully functional bone tissue regeneration.

  3. Coexistence of Quiescent and Active Adult Stem Cells in Mammals

    NARCIS (Netherlands)

    Li, Linheng; Clevers, Hans

    2010-01-01

    Adult stem cells are crucial for physiological tissue renewal and regeneration after injury. Prevailing models assume the existence of a single quiescent population of stem cells residing in a specialized niche of a given tissue. Emerging evidence indicates that both quiescent (out of cell cycle and

  4. Genetic modification of stem cells for improved therapy of the infarcted myocardium.

    Science.gov (United States)

    Haider, Husnain Kh; Mustafa, Anique; Feng, Yuliang; Ashraf, Muhammad

    2011-10-03

    The conventional treatment modalities for ischemic heart disease only provide symptomatic relief to the patient without repairing and regenerating the damaged myocardium. Stem cell transplantation has emerged as a promising alternative therapeutic approach for cardiovascular diseases. Stem cells possess the potential of differentiation to adopt morphofunctional cardiac and vasculogenic phenotypes to repopulate the scar tissue and restore regional blood flow in the ischemic myocardium. These beneficial therapeutic effects make stem cell transplantation the method of choice for the treatment of ischemic heart disease. The efficacy of stem cell transplantation may be augmented by genetic manipulation of the cells prior to transplantation. Not only will insertion of therapeutic transgene(s) into the stem cells support the survival and differentiation of cells in the unfavorable microenvironment of the ischemic myocardium, but also the genetically manipulated stem cells will serve as a source of the transgene expression product in the heart for therapeutic benefits. We provide an overview of the extensively studied stem cell types for cardiac regeneration, the various methods in which these cells have been genetically manipulated and rationale of genetic modification of stem cells for use in regenerative cardiovascular therapeutics.

  5. Transplantation Dose Alters the Differentiation Program of Hematopoietic Stem Cells.

    Science.gov (United States)

    Brewer, Casey; Chu, Elizabeth; Chin, Mike; Lu, Rong

    2016-05-24

    Hematopoietic stem cell (HSC) transplantation is the most prevalent stem cell therapy, but it remains a risky procedure. To improve this treatment, it is important to understand how transplanted stem cells rebuild the blood and immune systems and how this process is impacted by transplantation variables such as the HSC dose. Here, we find that, in the long term following transplantation, 70%-80% of donor-HSC-derived clones do not produce all measured blood cell types. High HSC doses lead to more clones that exhibit balanced lymphocyte production, whereas low doses produce more T-cell-specialized clones. High HSC doses also produce significantly higher proportions of early-differentiating clones compared to low doses. These complex differentiation behaviors uncover the clonal-level regeneration dynamics of hematopoietic regeneration and suggest that transplantation dose can be exploited to improve stem cell therapy. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Stem cell therapy: the great promise in lung disease.

    Science.gov (United States)

    Siniscalco, Dario; Sullo, Nikol; Maione, Sabatino; Rossi, Francesco; D'Agostino, Bruno

    2008-06-01

    Lung injuries are leading causes of morbidity and mortality worldwide. Pulmonary diseases such as asthma or chronic obstructive pulmonary disease characterized by loss of lung elasticity, small airway tethers, and luminal obstruction with inflammatory mucoid secretions, or idiopathic pulmonary fibrosis characterized by excessive matrix deposition and destruction of the normal lung architecture, have essentially symptomatic treatments and their management is costly to the health care system.Regeneration of tissue by stem cells from endogenous, exogenous, and even genetically modified cells is a promising novel therapy. The use of adult stem cells to help with lung regeneration and repair could be a newer technology in clinical and regenerative medicine. In fact, different studies have shown that bone marrow progenitor cells contribute to repair and remodeling of lung in animal models of progressive pulmonary hypertension.Therefore, lung stem cell biology may provide novel approaches to therapy and could represent a great promise for the future of molecular medicine. In fact, several diseases can be slowed or even blocked by stem cell transplantation.

  7. Nanomaterials for Engineering Stem Cell Responses.

    Science.gov (United States)

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration.

    Science.gov (United States)

    Lee, Christopher Sd; Burnsed, Olivia A; Raghuram, Vineeth; Kalisvaart, Jonathan; Boyan, Barbara D; Schwartz, Zvi

    2012-08-24

    Adipose stem cells (ASCs) secrete many trophic factors that can stimulate tissue repair, including angiogenic factors, but little is known about how ASCs and their secreted factors influence cartilage regeneration. Therefore, the aim of this study was to determine the effects ASC-secreted factors have in repairing chondral defects. ASCs isolated from male Sprague Dawley rats were cultured in monolayer or alginate microbeads supplemented with growth (GM) or chondrogenic medium (CM). Subsequent co-culture, conditioned media, and in vivo cartilage defect studies were performed. ASC monolayers and microbeads cultured in CM had decreased FGF-2 gene expression and VEGF-A secretion compared to ASCs cultured in GM. Chondrocytes co-cultured with GM-cultured ASCs for 7 days had decreased mRNAs for col2, comp, and runx2. Chondrocytes treated for 12 or 24 hours with conditioned medium from GM-cultured ASCs had reduced sox9, acan, and col2 mRNAs; reduced proliferation and proteoglycan synthesis; and increased apoptosis. ASC-conditioned medium also increased endothelial cell tube lengthening whereas conditioned medium from CM-cultured ASCs had no effect. Treating ASCs with CM reduced or abolished these deleterious effects while adding a neutralizing antibody for VEGF-A eliminated ASC-conditioned medium induced chondrocyte apoptosis and restored proteoglycan synthesis. FGF-2 also mitigated the deleterious effects VEGF-A had on chondrocyte apoptosis and phenotype. When GM-grown ASC pellets were implanted in 1 mm non-critical hyaline cartilage defects in vivo, cartilage regeneration was inhibited as evaluated by radiographic and equilibrium partitioning of an ionic contrast agent via microCT imaging. Histology revealed that defects with GM-cultured ASCs had no tissue ingrowth from the edges of the defect whereas empty defects and defects with CM-grown ASCs had similar amounts of neocartilage formation. ASCs must be treated to reduce the secretion of VEGF-A and other factors that

  9. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  10. Stem cells in bone tissue engineering

    International Nuclear Information System (INIS)

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik; Mantalaris, Anathathios

    2010-01-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  11. Effects of irradiation on stem cell response to differentiation inhibitors in the Planarian Dugesia etrusca

    Energy Technology Data Exchange (ETDEWEB)

    Steele, V.E.; Lange, C.S.

    1976-07-01

    The planarian owes its extensive powers of regeneration to the possession of a totipotential stem cell system. The survival of the animal after irradiation depends mainly upon this system. In this respect the planarian is analogous to mammalian organ systems such as bone marrow or gut epithelium. The differentiated cells control the course of stem cell mediated tissue renewal by the secretion of differentiator and/or inhibitor substances. One such inhibitor substance, present in extracts prepared from homogenized whole planarians, specifically inhibits brain formation. This substance is organ specific, but not species specific. The differentiative integrity of the stem cells after irradiation is measured by comparing the regenerated brain volumes resulting from the presence or absence of the brain inhibitory extract during the regeneration period. Our data suggest that increasing doses of x irradiation decreases the ability of the stem cells to respond to differentiative substances. The data presented also explore the possibility of altering the postirradiation recovery pattern by shifting the differentiative demands placed on the stem cells. The final proportions of animals (one-half regenerated with, and one-half without, the extract) surviving after 60 days were not significantly different.

  12. Protein and Molecular Characterization of a Clinically Compliant Amniotic Fluid Stem Cell-Derived Extracellular Vesicle Fraction Capable of Accelerating Muscle Regeneration Through Enhancement of Angiogenesis.

    Science.gov (United States)

    Mellows, Ben; Mitchell, Robert; Antonioli, Manuela; Kretz, Oliver; Chambers, David; Zeuner, Marie-Theres; Denecke, Bernd; Musante, Luca; Ramachandra, Durrgah L; Debacq-Chainiaux, Florence; Holthofer, Harry; Joch, Barbara; Ray, Steve; Widera, Darius; David, Anna L; Huber, Tobias B; Dengjel, Joern; De Coppi, Paolo; Patel, Ketan

    2017-09-15

    The secretome of human amniotic fluid stem cells (AFSCs) has great potential as a therapeutic agent in regenerative medicine. However, it must be produced in a clinically compliant manner before it can be used in humans. In this study, we developed a means of producing a biologically active secretome from AFSCs that is free of all exogenous molecules. We demonstrate that the full secretome is capable of promoting stem cell proliferation, migration, and protection of cells against senescence. Furthermore, it has significant anti-inflammatory properties. Most importantly, we show that it promotes tissue regeneration in a model of muscle damage. We then demonstrate that the secretome contains extracellular vesicles (EVs) that harbor much, but not all, of the biological activity of the whole secretome. Proteomic characterization of the EV and free secretome fraction shows the presence of numerous molecules specific to each fraction that could be key regulators of tissue regeneration. Intriguingly, we show that the EVs only contain miRNA and not mRNA. This suggests that tissue regeneration in the host is mediated by the action of EVs modifying existing, rather than imposing new, signaling pathways. The EVs harbor significant anti-inflammatory activity as well as promote angiogenesis, the latter may be the mechanistic explanation for their ability to promote muscle regeneration after cardiotoxin injury.

  13. Stem cell therapy for ischemic heart diseases.

    Science.gov (United States)

    Yu, Hong; Lu, Kai; Zhu, Jinyun; Wang, Jian'an

    2017-01-01

    Ischemic heart diseases, especially the myocardial infarction, is a major hazard problem to human health. Despite substantial advances in control of risk factors and therapies with drugs and interventions including bypass surgery and stent placement, the ischemic heart diseases usually result in heart failure (HF), which could aggravate social burden and increase the mortality rate. The current therapeutic methods to treat HF stay at delaying the disease progression without repair and regeneration of the damaged myocardium. While heart transplantation is the only effective therapy for end-stage patients, limited supply of donor heart makes it impossible to meet the substantial demand from patients with HF. Stem cell-based transplantation is one of the most promising treatment for the damaged myocardial tissue. Key recent published literatures and ClinicalTrials.gov. Stem cell-based therapy is a promising strategy for the damaged myocardial tissue. Different kinds of stem cells have their advantages for treatment of Ischemic heart diseases. The efficacy and potency of cell therapies vary significantly from trial to trial; some clinical trials did not show benefit. Diverged effects of cell therapy could be affected by cell types, sources, delivery methods, dose and their mechanisms by which delivered cells exert their effects. Understanding the origin of the regenerated cardiomyocytes, exploring the therapeutic effects of stem cell-derived exosomes and using the cell reprogram technology to improve the efficacy of cell therapy for cardiovascular diseases. Recently, stem cell-derived exosomes emerge as a critical player in paracrine mechanism of stem cell-based therapy. It is promising to exploit exosomes-based cell-free therapy for ischemic heart diseases in the future. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  14. Adult Lung Spheroid Cells Contain Progenitor Cells and Mediate Regeneration in Rodents With Bleomycin-Induced Pulmonary Fibrosis.

    Science.gov (United States)

    Henry, Eric; Cores, Jhon; Hensley, M Taylor; Anthony, Shirena; Vandergriff, Adam; de Andrade, James B M; Allen, Tyler; Caranasos, Thomas G; Lobo, Leonard J; Cheng, Ke

    2015-11-01

    Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis. ©AlphaMed Press.

  15. [Characterization of stem cells derived from the neonatal auditory sensory epithelium].

    Science.gov (United States)

    Diensthuber, M; Heller, S

    2010-11-01

    In contrast to regenerating hair cell-bearing organs of nonmammalian vertebrates the adult mammalian organ of Corti appears to have lost its ability to maintain stem cells. The result is a lack of regenerative ability and irreversible hearing loss following auditory hair cell death. Unexpectedly, the neonatal auditory sensory epithelium has recently been shown to harbor cells with stem cell features. The origin of these cells within the cochlea's sensory epithelium is unknown. We applied a modified neurosphere assay to identify stem cells within distinct subregions of the neonatal mouse auditory sensory epithelium. Sphere cells were characterized by multiple markers and morphologic techniques. Our data reveal that both the greater and the lesser epithelial ridge contribute to the sphere-forming stem cell population derived from the auditory sensory epithelium. These self-renewing sphere cells express a variety of markers for neural and otic progenitor cells and mature inner ear cell types. Stem cells can be isolated from specific regions of the auditory sensory epithelium. The distinct features of these cells imply a potential application in the development of a cell replacement therapy to regenerate the damaged sensory epithelium.

  16. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration.

    Science.gov (United States)

    Martino, Mikaël M; Maruyama, Kenta; Kuhn, Gisela A; Satoh, Takashi; Takeuchi, Osamu; Müller, Ralph; Akira, Shizuo

    2016-03-22

    Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1β which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3β/β-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications.

  17. Treatment of radiation syndrome with emphasis on stem cell implantation

    International Nuclear Information System (INIS)

    Ashry, O.M.

    2010-01-01

    Within few years, the possibility that the human body contains cells that can repair and regenerate damaged and diseased tissue has gone from an unlikely proposition to a virtual certainty. Patients who have received doses of radiation in the potentially low to mid-lethal range (2-6 Gy) will have depression in bone-marrow function with cessation of blood-cell production leading to pancytopenia. Selection of cases for stem cell transplantation is based upon clinical signs and symptoms. Hematopoietic stem cell which produces blood cell progeny provides support for hematopoietic and other cells within the marrow, and has also been a focus for possible tissue repair. Another cell type termed mesenchymal or stromal also exists in the marrow. This cell provides support for hematopoietic and other cells within the marrow, and has also been a focus for possible tissue repair. Stem cells are obtained from bone marrow, peripheral blood, placental and umbilical cord blood, embryonic stem cells and embryonic germ cells. These cells have great potential for clinical research due to their potential to regenerate tissue. As well known, the cryo preservation process can store any cell type, particularly blood cells, for an indeterminate time. (author)

  18. Embryos, Clones, and Stem Cells: A Scientific Primer

    Directory of Open Access Journals (Sweden)

    Kenyon S. Tweedell

    2004-01-01

    Full Text Available This article is intended to give the nonspecialist an insight into the nuances of “clones”, cloning, and stem cells. It distinguishes embryonic and adult stem cells, their normal function in the organism, their origin, and how they are recovered to produce stem cell lines in culture. As background, the fundamental processes of embryo development are reviewed and defined, since the manipulation of stem cell lines into desired specialized cells employs many of the same events. Stem cells are defined and characterized and shown how they function in the intact organism during early development and later during cell regeneration in the adult. The complexity of stem cell recovery and their manipulation into specific cells and tissue is illustrated by reviewing current experimentation on both embryonic and adult stem cells in animals and limited research on human stem cell lines. The current and projected use of stem cells for human diseases and repair, along with the expanding methodology for the recovery of human embryonic stem cells, is described. An assessment on the use of human embryonic stem cells is considered from ethical, legal, religious, and political viewpoints.

  19. Biomaterial property-controlled stem cell fates for cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Yanyi Xu

    2016-09-01

    Full Text Available Myocardial infarction (MI affects more than 8 million people in the United States alone. Due to the insufficient regeneration capacity of the native myocardium, one widely studied approach is cardiac tissue engineering, in which cells are delivered with or without biomaterials and/or regulatory factors to fully regenerate the cardiac functions. Specifically, in vitro cardiac tissue engineering focuses on using biomaterials as a reservoir for cells to attach, as well as a carrier of various regulatory factors such as growth factors and peptides, providing high cell retention and a proper microenvironment for cells to migrate, grow and differentiate within the scaffolds before implantation. Many studies have shown that the full establishment of a functional cardiac tissue in vitro requires synergistic actions between the seeded cells, the tissue culture condition, and the biochemical and biophysical environment provided by the biomaterials-based scaffolds. Proper electrical stimulation and mechanical stretch during the in vitro culture can induce the ordered orientation and differentiation of the seeded cells. On the other hand, the various scaffolds biochemical and biophysical properties such as polymer composition, ligand concentration, biodegradability, scaffold topography and mechanical properties can also have a significant effect on the cellular processes.

  20. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane.

    Science.gov (United States)

    Rohaina, Che Man; Then, Kong Yong; Ng, Angela Min Hwei; Wan Abdul Halim, Wan Haslina; Zahidin, Aida Zairani Mohd; Saim, Aminuddin; Idrus, Ruszymah B H

    2014-03-01

    The cornea can be damaged by a variety of clinical disorders or chemical, mechanical, and thermal injuries. The objectives of this study were to induce bone marrow mesenchymal stem cells (BMSCs) to corneal lineage, to form a tissue engineered corneal substitute (TEC) using BMSCs, and to treat corneal surface defects in a limbal stem cell deficiency model. BMSCs were induced to corneal lineage using limbal medium for 10 days. Induced BMSCs demonstrated upregulation of corneal stem cell markers; β1-integrin, C/EBPδ, ABCG2, and p63, increased protein expression of CK3 and p63 significantly compared with the uninduced ones. For TEC formation, passage 1 BMSCs were trypsinized and seeded on amniotic membrane in a transwell co-culture system and were grown in limbal medium. Limbal stem cell deficiency models were induced by alkaline injury, and the TEC was implanted for 8 weeks. Serial slit lamp evaluation revealed remarkable improvement in corneal regeneration in terms of corneal clarity and reduced vascularization. Histologic and optical coherence tomography analyses demonstrated comparable corneal thickness and achieved stratified epithelium with a compact stromal layer resembling that of normal cornea. CK3 and p63 were expressed in the newly regenerated cornea. In conclusion, BMSCs can be induced into corneal epithelial lineage, and these cells are viable for the formation of TEC, to be used for the reconstruction of the corneal surface in the limbal stem cell deficient model. Copyright © 2014 Mosby, Inc. All rights reserved.

  1. The combination use of platelet-rich fibrin and treated dentin matrix for tooth root regeneration by cell homing.

    Science.gov (United States)

    Ji, Baohui; Sheng, Lei; Chen, Gang; Guo, Shujuan; Xie, Li; Yang, Bo; Guo, Weihua; Tian, Weidong

    2015-01-01

    Endogenous regeneration through cell homing provides an alternative approach for tissue regeneration, except cell transplantation, especially considering clinical translation. However, tooth root regeneration through cell homing remains a provocative approach in need of intensive study. Both platelet-rich fibrin (PRF) and treated dentin matrix (TDM) are warehouses of various growth factors, which can promote cell homing. We hypothesized that endogenous stem cells are able to sense biological cues from PRF membrane and TDM, and contribute to the regeneration of tooth root, including soft and hard periodontal tissues. Therefore, the biological effects of canine PRF and TDM on periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMSCs) were evaluated respectively in vitro. Beagle dogs were used as orthotopic transplantation model. It was found that PRF significantly recruited and stimulated the proliferation of PDLSCs and BMSCs in vitro. Together, PRF and TDM induced cell differentiation by upregulating the mineralization-related gene expression of bone sialoprotein (BSP) and osteopotin (OPN) after 7 days coculture. In vivo, transplantation of autologous PRF and allogeneic TDM into fresh tooth extraction socket achieved successful root regeneration 3 months postsurgery, characterized by the regeneration of cementum and periodontal ligament (PDL)-like tissues with orientated fibers, indicative of functional restoration. The results suggest that tooth root connected to the alveolar bone by cementum-PDL complex can be regenerated through the implantation of PRF and TDM in a tooth socket microenvironment, probably by homing of BMSCs and PDLSCs. Furthermore, bioactive cues and inductive microenvironment are key factors for endogenous regeneration. This approach provides a tangible pathway toward clinical translation.

  2. Intra-Articular Injection of Human Meniscus Stem/Progenitor Cells Promotes Meniscus Regeneration and Ameliorates Osteoarthritis Through Stromal Cell-Derived Factor-1/CXCR4-Mediated Homing

    Science.gov (United States)

    Shen, Weiliang; Chen, Jialin; Zhu, Ting; Chen, Longkun; Zhang, Wei; Fang, Zhi; Heng, Boon Chin; Yin, Zi; Chen, Xiao; Ji, Junfeng

    2014-01-01

    Meniscus injury is frequently encountered in clinical practice. Current surgical therapy involving partial or complete meniscectomy relieves pain in the short-term but often leads to osteoarthritis (OA) in the long-term. In this study, we report a new strategy of articular cartilage protection by intra-articular injection of novel human meniscus stem/progenitor cells (hMeSPCs). We found that hMeSPCs displayed both mesenchymal stem cell characteristics and high expression levels of collagen II. In the rat meniscus injury model, hMeSPC transplantation not only led to more neo-tissue formation and better-defined shape but also resulted in more rounded cells and matured extracellular matrix. Stromal cell-derived factor-1 (SDF-1) enhanced the migration of hMeSPCs, whereas AMD3100 abolished the chemotactic effects of SDF-1 on hMeSPCs, both in vitro and in vivo. In an experimental OA model, transplantation of hMeSPCs effectively protected articular cartilage, as evidenced by reduced expression of OA markers such as collagen I, collagen X, and hypoxia-inducible factor 2α but increased expression of collagen II. Our study demonstrated for the first time that intra-articular injection of hMeSPCs enhanced meniscus regeneration through the SDF-1/CXCR4 axis. Our study highlights a new strategy of intra-articular injection of hMeSPCs for meniscus regeneration. PMID:24448516

  3. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later

    Science.gov (United States)

    Bond, Allison M.; Ming, Guo-li; Song, Hongjun

    2015-01-01

    Summary Adult somatic stem cells in various organs maintain homeostatic tissue regeneration and enhance plasticity. Since its initial discovery five decades ago, investigations of adult neurogenesis and neural stem cells have led to an established and expanding field that has significantly influenced many facets of neuroscience, developmental biology and regenerative medicine. Here we review recent progress and focus on questions related to adult mammalian neural stem cells that also apply to other somatic stem cells. We further discuss emerging topics that are guiding the field toward better understanding adult neural stem cells and ultimately applying these principles to improve human health. PMID:26431181

  4. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse

    NARCIS (Netherlands)

    Merlos-Suarez, A.; Barriga, F.M.; Jung, P.; Iglesias, M.; Cespedes, M.V.; Rossell, D.; Sevillano, M.; Hernando-Momblona, X.; da Silva-Diz, V.; Munoz, P.; Clevers, H.; Sancho, E.; Mangues, R.; Batlle, E.

    2011-01-01

    A frequent complication in colorectal cancer (CRC) is regeneration of the tumor after therapy. Here, we report that a gene signature specific for adult intestinal stem cells (ISCs) predicts disease relapse in CRC patients. ISCs are marked by high expression of the EphB2 receptor, which becomes

  5. Combined use of decellularized allogeneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats.

    Science.gov (United States)

    Sun, Fei; Zhou, Ke; Mi, Wen-juan; Qiu, Jian-hua

    2011-11-01

    Natural biological conduits containing seed cells have been widely used as an alternative strategy for nerve gap reconstruction to replace traditional nerve autograft techniques. The purpose of this study was to investigate the effects of a decellularized allogeneic artery conduit containing autologous transdifferentiated adipose-derived stem cells (dADSCs) on an 8-mm facial nerve branch lesion in a rat model. After 8 weeks, functional evaluation of vibrissae movements and electrophysiological assessment, retrograde labeling of facial motoneurons and morphological analysis of regenerated nerves were performed to assess nerve regeneration. The transected nerves reconstructed with dADSC-seeded artery conduits achieved satisfying regenerative outcomes associated with morphological and functional improvements which approached those achieved with Schwann cell (SC)-seeded artery conduits, and superior to those achieved with artery conduits alone or ADSC-seeded artery conduits, but inferior to those achieved with nerve autografts. Besides, numerous transplanted PKH26-labeled dADSCs maintained their acquired SC-phenotype and myelin sheath-forming capacity inside decellularized artery conduits and were involved in the process of axonal regeneration and remyelination. Collectively, our combined use of decellularized allogeneic artery conduits with autologous dADSCs certainly showed beneficial effects on nerve regeneration and functional restoration, and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Stem cells and cancer: A review

    Directory of Open Access Journals (Sweden)

    Najeeb Ullah

    2016-05-01

    Full Text Available Stem cells are the small units of multicellular creature. Regeneration and self-renewal are the ability of the stem cells. Each tissue is having particular stem cells, specific to it. These normal stem cells are converted into cancer stem cells through mutations in it. Although the expression of oncogenes is enhanced a lot, the tumor-supressing gene is lessened. Cancer stem cells are isolated and visualized through different techniques like immunocytochemical staining, spectral karyotyping, immunohistochemistry, induction method and dissection measures, then are performed histological procedures which include fascination, immunohistochemistry, dispensation, in situ hybridization and also quantitative examination of tissue flow cytometric analysis. For the analysis of quantization, statistical tests are also performed as two-sample t-test, Chi-square test, SD and arithmetic mean. Tumor cells generate glioma spheres. These are used in cancer study. Axin 1 is the gene suppressing cancer. Its removal causes the generation of liver cancer. Curcumin is the most effective for suppressing cancer as it increases the normal stem cell function and decreases the cancer stem cell function. Brahma-related gene 1 is crucial for the safeguarding of the stem cell residents in tissue-specific comportment. Different types of cancers originate through genetic mutation, tissue disorganization and cell proliferation. Tumor configuration is produced by the alteration in original cell culture having stem cells and progenitor cell populations. The developmental facets about cancer cells and cancer stem cells as well as their personal natal functions sustain an intricate steadiness to settle on their personal donations to the efficacy or harmfulness of the biological organization.

  7. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy

    Directory of Open Access Journals (Sweden)

    Ronaldo J. F. C. do Amaral

    2017-01-01

    Full Text Available The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells.

  8. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy.

    Science.gov (United States)

    do Amaral, Ronaldo J F C; Almeida, Henrique V; Kelly, Daniel J; O'Brien, Fergal J; Kearney, Cathal J

    2017-01-01

    The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells.

  9. Stem Cell-Based Therapies for Polyglutamine Diseases.

    Science.gov (United States)

    Mendonça, Liliana S; Onofre, Isabel; Miranda, Catarina Oliveira; Perfeito, Rita; Nóbrega, Clévio; de Almeida, Luís Pereira

    2018-01-01

    Polyglutamine (polyQ) diseases are a family of neurodegenerative disorders with very heterogeneous clinical presentations, although with common features such as progressive neuronal death. Thus, at the time of diagnosis patients might present an extensive and irreversible neuronal death demanding cell replacement or support provided by cell-based therapies. For this purpose stem cells, which include diverse populations ranging from embryonic stem cells (ESCs), to fetal stem cells, mesenchymal stromal cells (MSCs) or induced pluripotent stem cells (iPSCs) have remarkable potential to promote extensive brain regeneration and recovery in neurodegenerative disorders. This regenerative potential has been demonstrated in exciting pre and clinical assays. However, despite these promising results, several drawbacks are hampering their successful clinical implementation. Problems related to ethical issues, quality control of the cells used and the lack of reliable models for the efficacy assessment of human stem cells. In this chapter the main advantages and disadvantages of the available sources of stem cells as well as their efficacy and potential to improve disease outcomes are discussed.

  10. Stem cells in skin regeneration: biomaterials and computational models

    Directory of Open Access Journals (Sweden)

    Daniele eTartarini

    2016-01-01

    Full Text Available The increased incidence of diabetes and tumors, associated with global demographic issues (aging and life styles, has pointed out the importance to develop new strategies for the effective management of skin wounds. Individuals affected by these diseases are in fact highly exposed to the risk of delayed healing of the injured tissue that typically leads to a pathological inflammatory state and consequently to chronic wounds. Therapies based on stem cells have been proposed for the treatment of these wounds, thanks to the ability of stem cells to self-renew and specifically differentiate in response to the target bimolecular environment. Here we discuss how advanced biomedical devices can be developed by combining stem cells with properly engineered biomaterials and computational models. Examples include composite skin substitutes and bioactive dressings with controlled porosity and surface topography for controlling the infiltration and differentiation of the cells. In this scenario, mathematical frameworks for the simulation of cell population growth can provide support for the design of bio-constructs, reducing the need of expensive, time-consuming and ethically controversial animal experimentation.

  11. Stem cells-the future of dentistry: A review

    Directory of Open Access Journals (Sweden)

    Sunil Vyas

    2011-01-01

    Full Text Available Research and development in the last millennium and in the present decade has brought about revolutionary changes in the way we understand and treat diseases. Stem cells are one of the most favorable areas of biology. Stem cell plasticity has resulted in a new field of medicine entitled regenerative medicine and dentistry. Scientists have successfully regenerated tooth root and supporting periodontal ligament to restore tooth function in an animal model. The breakthrough in stem cell research holds significant promise for clinical application in human patients.

  12. Targeted inactivation of integrin-linked kinase in hair follicle stem cells reveals an important modulatory role in skin repair after injury.

    Science.gov (United States)

    Nakrieko, Kerry-Ann; Rudkouskaya, Alena; Irvine, Timothy S; D'Souza, Sudhir J A; Dagnino, Lina

    2011-07-15

    Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15--expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.

  13. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  14. Imperative role of dental pulp stem cells in regenerative therapies: A systematic review

    Directory of Open Access Journals (Sweden)

    Ramchandra Kabir

    2014-01-01

    Full Text Available Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase using keywords like "dental pulp stem cells", "regeneration", "medical applications", "tissue engineering". DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective.

  15. Imperative role of dental pulp stem cells in regenerative therapies: a systematic review.

    Science.gov (United States)

    Kabir, Ramchandra; Gupta, Manish; Aggarwal, Avanti; Sharma, Deepak; Sarin, Anurag; Kola, Mohammed Zaheer

    2014-01-01

    Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs) are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase) using keywords like "dental pulp stem cells", "regeneration", "medical applications", "tissue engineering". DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective.

  16. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells

    Directory of Open Access Journals (Sweden)

    Xiao L

    2014-12-01

    Full Text Available Li Xiao,1 Masanori Nasu2 1Department of Pharmacology, 2Research Center, The Nippon Dental University, Tokyo, Japan Abstract: Adult mesenchymal stem cells (MSCs and epithelial stem cells play essential roles in tissue repair and self-healing. Oral MSCs and epithelial stem cells can be isolated from adult human oral tissues, for example, teeth, periodontal ligament, and gingiva. Cocultivated adult oral epithelial stem cells and MSCs could represent some developmental events, such as epithelial invagination and tubular structure formation, signifying their potentials for tissue regeneration. Oral epithelial stem cells have been used in regenerative medicine over 1 decade. They are able to form a stratified cell sheet under three-dimensional culture conditions. Both experimental and clinical data indicate that the cell sheets can not only safely and effectively reconstruct the damaged cornea in humans, but also repair esophageal ulcer in animal models. Oral MSCs include dental pulp stem cells (DPSCs, stem cells from exfoliated deciduous teeth (SHED, stem cells from apical papilla (SCAP, periodontal ligament stem cells (PDLSCs, and mesenchymal stem cells from gingiva (GMSCs. They are widely applied in both regenerative dentistry and medicine. DPSCs, SHED, and SCAP are able to form dentin–pulp complex when being transplanted into immunodeficient animals. They have been experimentally used for the regeneration of dental pulp, neuron, bone muscle and blood vessels in animal models and have shown promising results. PDLSCs and GMSCs are demonstrated to be ideal cell sources for repairing the damaged tissues of periodontal, muscle, and tendon. Despite the abovementioned applications of oral stem cells, only a few human clinical trials are now underway to use them for the treatment of certain diseases. Since clinical use is the end goal, their true regenerative power and safety need to be further examined.Keywords: oral mesenchymal stem cells, oral

  17. Molecular characterisation of stromal populations derived from human embryonic stem cells

    DEFF Research Database (Denmark)

    Harkness, L.; Twine, N. A.; Abu Dawud, R.

    2015-01-01

    Human bone marrow-derived stromal (skeletal) stem cells (BM-hMSC) are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC) can provide an un...

  18. The Hippo pathway: key interaction and catalytic domains in organ growth control, stem cell self-renewal and tissue regeneration.

    Science.gov (United States)

    Cherrett, Claire; Furutani-Seiki, Makoto; Bagby, Stefan

    2012-01-01

    The Hippo pathway is a conserved pathway that interconnects with several other pathways to regulate organ growth, tissue homoeostasis and regeneration, and stem cell self-renewal. This pathway is unique in its capacity to orchestrate multiple processes, from sensing to execution, necessary for organ expansion. Activation of the Hippo pathway core kinase cassette leads to cytoplasmic sequestration of the nuclear effectors YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), consequently disabling their transcriptional co-activation function. Components upstream of the core kinase cassette have not been well understood, especially in vertebrates, but are gradually being elucidated and include cell polarity and cell adhesion proteins.

  19. Femtosecond laser pulses for chemical-free embryonic and mesenchymal stem cell differentiation

    CSIR Research Space (South Africa)

    Mthunzi, P

    2011-08-01

    Full Text Available Owing to their self renewal and pluripotency properties, stem cells can efficiently advance current therapies in tissue regeneration and/or engineering. Under appropriate culture conditions in vitro, pluripotent stem cells can be primed...

  20. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Science.gov (United States)

    Yoshida, Toshiyuki; Washio, Kaoru; Iwata, Takanori; Okano, Teruo; Ishikawa, Isao

    2012-01-01

    It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy. PMID:22315604

  1. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Toshiyuki Yoshida

    2012-01-01

    Full Text Available It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy.

  2. Ovary and fimbrial stem cells: biology, niche and cancer origins.

    Science.gov (United States)

    Ng, Annie; Barker, Nick

    2015-10-01

    The mammalian ovary is covered by a single-layered epithelium that undergoes rupture and remodelling following each ovulation. Although resident stem cells are presumed to be crucial for this cyclic regeneration, their identity and mode of action have been elusive. Surrogate stemness assays and in vivo fate-mapping studies using recently discovered stem cell markers have identified stem cell pools in the ovary and fimbria that ensure epithelial homeostasis. Recent findings provide insights into intrinsic mechanisms and local extrinsic cues that govern the function of ovarian and fimbrial stem cells. These discoveries have advanced our understanding of stem cell biology in the ovary and fimbria, and lay the foundations for evaluating the contribution of resident stem cells to the initiation and progression of human epithelial ovarian cancer.

  3. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair

    Science.gov (United States)

    Ogura, Yuji; Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Akira, Shizuo; Kumar, Ashok

    2015-01-01

    Satellite cells are resident adult stem cells that are required for regeneration of skeletal muscle. However, signalling mechanisms that regulate satellite cell function are less understood. Here we demonstrate that transforming growth factor-β-activated kinase 1 (TAK1) is important in satellite stem cell homeostasis and function. Inactivation of TAK1 in satellite cells inhibits muscle regeneration in adult mice. TAK1 is essential for satellite cell proliferation and its inactivation causes precocious differentiation. Moreover, TAK1-deficient satellite cells exhibit increased oxidative stress and undergo spontaneous cell death, primarily through necroptosis. TAK1 is required for the activation of NF-κB and JNK in satellite cells. Forced activation of NF-κB improves survival and proliferation of TAK1-deficient satellite cells. Furthermore, TAK1-mediated activation of JNK is essential to prevent oxidative stress and precocious differentiation of satellite cells. Collectively, our study suggests that TAK1 is required for maintaining the pool of satellite stem cells and for regenerative myogenesis. PMID:26648529

  4. Maintenance of sweat glands by stem cells located in the acral epithelium

    International Nuclear Information System (INIS)

    Ohe, Shuichi; Tanaka, Toshihiro; Yanai, Hirotsugu; Komai, Yoshihiro; Omachi, Taichi; Kanno, Shohei; Tanaka, Kiyomichi; Ishigaki, Kazuhiko; Saiga, Kazuho; Nakamura, Naohiro; Ohsugi, Haruyuki; Tokuyama, Yoko; Atsumi, Naho; Hisha, Hiroko; Yoshida, Naoko; Kumano, Keiki; Yamazaki, Fumikazu; Okamoto, Hiroyuki; Ueno, Hiroo

    2015-01-01

    The skin is responsible for a variety of physiological functions and is critical for wound healing and repair. Therefore, the regenerative capacity of the skin is important. However, stem cells responsible for maintaining the acral epithelium had not previously been identified. In this study, we identified the specific stem cells in the acral epithelium that participate in the long-term maintenance of sweat glands, ducts, and interadnexal epidermis and that facilitate the regeneration of these structures following injury. Lgr6-positive cells and Bmi1-positive cells were found to function as long-term multipotent stem cells that maintained the entire eccrine unit and the interadnexal epidermis. However, while Lgr6-positive cells were rapidly cycled and constantly supplied differentiated cells, Bmi1-positive cells were slow to cycle and occasionally entered the cell cycle under physiological conditions. Upon irradiation-induced injury, Bmi1-positive cells rapidly proliferated and regenerated injured epithelial tissue. Therefore, Bmi1-positive stem cells served as reservoir stem cells. Lgr5-positive cells were rapidly cycled and maintained only sweat glands; therefore, we concluded that these cells functioned as lineage-restricted progenitors. Taken together, our data demonstrated the identification of stem cells that maintained the entire acral epithelium and supported the different roles of three cellular classes. - Highlights: • The acral epithelium have two types of stem cells. • Lgr6-positive cells are rapid-cycling, short-term stem cells. • Bmi1-positive cells are slow-cycling stem cells that act as reserver stem cells. • Lgr5 may be a useful sweat gland marker in mice.

  5. Maintenance of sweat glands by stem cells located in the acral epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Ohe, Shuichi [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Department of Dermatology, Kansai Medical University, Osaka 573-1010 (Japan); Tanaka, Toshihiro [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Third Department of Internal Medicine, Kansai Medical University, Osaka 573-1010 (Japan); Yanai, Hirotsugu [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Department of Surgery, Kansai Medical University, Osaka 573-1010 (Japan); Komai, Yoshihiro [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Department of Urology and Andrology, Kansai Medical University, Osaka 573-1010 (Japan); Omachi, Taichi [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Department of Pediatrics, Kansai Medical University, Osaka 573-1010 (Japan); Kanno, Shohei; Tanaka, Kiyomichi; Ishigaki, Kazuhiko; Saiga, Kazuho [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Nakamura, Naohiro [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Third Department of Internal Medicine, Kansai Medical University, Osaka 573-1010 (Japan); Ohsugi, Haruyuki [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Department of Urology and Andrology, Kansai Medical University, Osaka 573-1010 (Japan); Tokuyama, Yoko; Atsumi, Naho; Hisha, Hiroko; Yoshida, Naoko; Kumano, Keiki [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan); Yamazaki, Fumikazu; Okamoto, Hiroyuki [Department of Dermatology, Kansai Medical University, Osaka 573-1010 (Japan); Ueno, Hiroo, E-mail: hueno@hirakata.kmu.ac.jp [Department of Stem Cell Pathology, Kansai Medical University, Osaka 573-1010 (Japan)

    2015-10-23

    The skin is responsible for a variety of physiological functions and is critical for wound healing and repair. Therefore, the regenerative capacity of the skin is important. However, stem cells responsible for maintaining the acral epithelium had not previously been identified. In this study, we identified the specific stem cells in the acral epithelium that participate in the long-term maintenance of sweat glands, ducts, and interadnexal epidermis and that facilitate the regeneration of these structures following injury. Lgr6-positive cells and Bmi1-positive cells were found to function as long-term multipotent stem cells that maintained the entire eccrine unit and the interadnexal epidermis. However, while Lgr6-positive cells were rapidly cycled and constantly supplied differentiated cells, Bmi1-positive cells were slow to cycle and occasionally entered the cell cycle under physiological conditions. Upon irradiation-induced injury, Bmi1-positive cells rapidly proliferated and regenerated injured epithelial tissue. Therefore, Bmi1-positive stem cells served as reservoir stem cells. Lgr5-positive cells were rapidly cycled and maintained only sweat glands; therefore, we concluded that these cells functioned as lineage-restricted progenitors. Taken together, our data demonstrated the identification of stem cells that maintained the entire acral epithelium and supported the different roles of three cellular classes. - Highlights: • The acral epithelium have two types of stem cells. • Lgr6-positive cells are rapid-cycling, short-term stem cells. • Bmi1-positive cells are slow-cycling stem cells that act as reserver stem cells. • Lgr5 may be a useful sweat gland marker in mice.

  6. Cellular and epigenetic drivers of stem cell ageing.

    Science.gov (United States)

    Ermolaeva, Maria; Neri, Francesco; Ori, Alessandro; Rudolph, K Lenhard

    2018-06-01

    Adult tissue stem cells have a pivotal role in tissue maintenance and regeneration throughout the lifespan of multicellular organisms. Loss of tissue homeostasis during post-reproductive lifespan is caused, at least in part, by a decline in stem cell function and is associated with an increased incidence of diseases. Hallmarks of ageing include the accumulation of molecular damage, failure of quality control systems, metabolic changes and alterations in epigenome stability. In this Review, we discuss recent evidence in support of a novel concept whereby cell-intrinsic damage that accumulates during ageing and cell-extrinsic changes in ageing stem cell niches and the blood result in modifications of the stem cell epigenome. These cumulative epigenetic alterations in stem cells might be the cause of the deregulation of developmental pathways seen during ageing. In turn, they could confer a selective advantage to mutant and epigenetically drifted stem cells with altered self-renewal and functions, which contribute to the development of ageing-associated organ dysfunction and disease.

  7. Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration

    Directory of Open Access Journals (Sweden)

    Masakazu Yamamoto

    2018-03-01

    Full Text Available Summary: MyoD and Myf5 are fundamental regulators of skeletal muscle lineage determination in the embryo, and their expression is induced in satellite cells following muscle injury. MyoD and Myf5 are also expressed by satellite cell precursors developmentally, although the relative contribution of historical and injury-induced expression to satellite cell function is unknown. We show that satellite cells lacking both MyoD and Myf5 (double knockout [dKO] are maintained with aging in uninjured muscle. However, injured muscle fails to regenerate and dKO satellite cell progeny accumulate in damaged muscle but do not undergo muscle differentiation. dKO satellite cell progeny continue to express markers of myoblast identity, although their myogenic programming is labile, as demonstrated by dramatic morphological changes and increased propensity for non-myogenic differentiation. These data demonstrate an absolute requirement for either MyoD or Myf5 in muscle regeneration and indicate that their expression after injury stabilizes myogenic identity and confers the capacity for muscle differentiation. : In this article, Goldhamer and colleagues show that loss of both MyoD and Myf5 in skeletal muscle satellite cells results in regenerative failure following injury. Satellite cell progeny accumulate in injured muscle and continue to express markers of myoblast identity, but do not undergo muscle differentiation, and exhibit a propensity for non-myogenic differentiation. Keywords: skeletal muscle regeneration, muscle stem cell programming, muscle differentiation, satellite cell, MyoD, Myf5, adipogenesis, fibrosis, conditional knockout, Cre/loxP

  8. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet.

    Science.gov (United States)

    Li, Dan; Zhu, Lian; Liu, Yu; Yin, Zongqi; Liu, Yi; Liu, Fangjun; He, Aijuan; Feng, Shaoqing; Zhang, Yixin; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong

    2017-05-01

    In vivo niche plays an important role in regulating differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. This study explored the feasibility that chondrocyte sheet created chondrogenic niche retained chondrogenic phenotype of BMSC engineered cartilage (BEC) in subcutaneous environments. Porcine BMSCs were seeded into biodegradable scaffolds followed by 4weeks of chondrogenic induction in vitro to form BEC, which were wrapped with chondrocyte sheets (Sheet group), acellular small intestinal submucosa (SIS, SIS group), or nothing (Blank group) respectively and then implanted subcutaneously into nude mice to trace the maintenance of chondrogenic phenotype. The results showed that all the constructs in Sheet group displayed typical cartilaginous features with abundant lacunae and cartilage specific matrices deposition. These samples became more mature with prolonged in vivo implantation, and few signs of ossification were observed at all time points except for one sample that had not been wrapped completely. Cell labeling results in Sheet group further revealed that the implanted BEC directly participated in cartilage formation. Samples in both SIS and Blank groups mainly showed ossified tissue at all time points with partial fibrogenesis in a few samples. These results suggested that chondrocyte sheet could create a chondrogenic niche for retaining chondrogenic phenotype of BEC in subcutaneous environment and thus provide a novel research model for stable ectopic cartilage regeneration based on stem cells. In vivo niche plays an important role in directing differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. The current study demonstrated that chondrocyte sheet generated by

  9. Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells.

    Science.gov (United States)

    Tosic, Milica; Allen, Anita; Willmann, Dominica; Lepper, Christoph; Kim, Johnny; Duteil, Delphine; Schüle, Roland

    2018-01-25

    Satellite cells are muscle stem cells required for muscle regeneration upon damage. Of note, satellite cells are bipotent and have the capacity to differentiate not only into skeletal myocytes, but also into brown adipocytes. Epigenetic mechanisms regulating fate decision and differentiation of satellite cells during muscle regeneration are not yet fully understood. Here, we show that elevated levels of lysine-specific demethylase 1 (Kdm1a, also known as Lsd1) have a beneficial effect on muscle regeneration and recovery after injury, since Lsd1 directly regulates key myogenic transcription factor genes. Importantly, selective Lsd1 ablation or inhibition in Pax7-positive satellite cells, not only delays muscle regeneration, but changes cell fate towards brown adipocytes. Lsd1 prevents brown adipocyte differentiation of satellite cells by repressing expression of the novel pro-adipogenic transcription factor Glis1. Together, downregulation of Glis1 and upregulation of the muscle-specific transcription program ensure physiological muscle regeneration.

  10. Stem cells from glomerulus to distal tubule: a never-ending story?

    Directory of Open Access Journals (Sweden)

    Melania Puddu

    2016-08-01

    Full Text Available The growing interest of research in the field of renal stem cells and kidney regeneration aims to get results that allow its clinical application, favoring the birth and development of regenerative medicine.Nephrogenesis requires differentiation into epithelial cells of a population of progenitor mesenchymal cells. Since this process ends at 36-38 weeks of gestational age, it is quite likely to imagine that such a population disappears in the human kidney after birth. However, several studies have identified in different parts of the adult kidney cells having the characteristics of stem cells that would be involved in renal regenerative processes. They may be classified as resident mesenchymal/epithelial progenitors and often share the same genetic and epigenetic profile as progenitor stem cells active during embryonic life, thus suggesting a common origin.Current literature includes two lines of thought: one attributes to stem cells a fundamental role in renal regeneration processes while the other sustains the intervention of other mechanisms.The aim of this review is to report on progress made in research in the field of kidney regeneration starting from the past century and arriving at the present, with an analysis of scientific works that have produced the most important results in this field. Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  11. The Need to Study, Mimic, and Target Stem Cell Niches

    NARCIS (Netherlands)

    Vishwakarma, Ajaykumar; Rouwkema, Jeroen; Jones, Peter Anthony; Karp, Jeffrey M.; Vishwakarma, Ajaykumar; Karp, Jeffrey M.

    2017-01-01

    Despite important advances in tissue repair and regeneration over the past few decades, complete functional repair of damaged or diseased human tissues has remained elusive. Recent discoveries in stem cell niche molecular biology and biomaterials engineering may hold the key to true regeneration.

  12. Expression and localization of regenerating gene I in a rat liver regeneration model

    International Nuclear Information System (INIS)

    Wang Jingshu; Koyota, Souichi; Zhou, Xiaoping; Ueno, Yasuharu; Ma Li; Kawagoe, Masami; Koizumi, Yukio; Okamoto, Hiroshi; Sugiyama, Toshihiro

    2009-01-01

    Regenerating gene (Reg) I has been identified as a regenerative/proliferative factor for pancreatic islet cells. We examined Reg I expression in the regenerating liver of a rat model that had been administered 2-acetylaminofluorene and treated with 70% partial hepatectomy (2-AAF/PH model), where hepatocyte and cholangiocyte proliferation was suppressed and the hepatic stem cells and/or hepatic progenitor cells were activated. In a detailed time course study of activation of hepatic stem cells in the 2-AAF/PH model, utilizing immunofluorescence staining with antibodies of Reg I and other cell-type-specific markers, we found that Reg I-expressing cells are present in the bile ductules and increased during regeneration. Reg I-expressing cells were colocalized with CK19, OV6, and AFP. These results demonstrate that Reg I is significantly upregulated in the liver of the 2-AAF/PH rat model, accompanied by the formation of bile ductules during liver regeneration.

  13. Up-to-date Clinical Trials of Hair Regeneration Using Conditioned Media of Adipose-Derived Stem Cells in Male and Female Pattern Hair Loss.

    Science.gov (United States)

    Shin, Hyoseung; Won, Chong Hyun; Chung, Woon-Kyung; Park, Byung-Soon

    2017-01-01

    The primary roles of mesenchymal stem cells (MSCs) are to maintain the stem cell niche, facilitate recovery after injury, and ensure healthy aging and the homeostasis of organ and tissues. MSCs have recently emerged as a new therapeutic option for hair loss. Since adipose-derived stem cells (ADSCs) are the most accessible sources of MSCs, ADSCbased hair regeneration is investigated. Besides replacing degenerated cells in affected organs, ADSCs exhibit their beneficial effects through the paracrine actions of various cytokines and growth factors. Several laboratory experiments and animal studies have shown that ADSC-related proteins can stimulate hair growth. In addition, we introduce our clinical pilot studies using conditioned media of ADSCs for pattern hair loss in men and women. We believe that conditioned media of ADSCs represents a promising alternative therapeutic strategy for hair loss. We also discuss practical therapeutic challenges and the direction of future research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Pancreatic β-cell regeneration: Facultative or dedicated progenitors?

    Science.gov (United States)

    Afelik, Solomon; Rovira, Meritxell

    2017-04-15

    The adult pancreas is only capable of limited regeneration. Unlike highly regenerative tissues such as the skin, intestinal crypts and hematopoietic system, no dedicated adult stem cells or stem cell niche have so far been identified within the adult pancreas. New β cells have been shown to form in the adult pancreas, in response to high physiological demand or experimental β-cell ablation, mostly by replication of existing β cells. The possibility that new β cells are formed from other sources is currently a point of major controversy. Under particular injury conditions, fully differentiated pancreatic duct and acinar cells have been shown to dedifferentiate into a progenitor-like state, however the extent, to which ductal, acinar or other endocrine cells contribute to restoring pancreatic β-cell mass remains to be resolved. In this review we focus on regenerative events in the pancreas with emphasis on the restoration of β-cell mass. We present an overview of regenerative responses noted within the different pancreatic lineages, following injury. We also highlight the intrinsic plasticity of the adult pancreas that allows for inter-conversion of fully differentiated pancreatic lineages through manipulation of few genes or growth factors. Taken together, evidence from a number of studies suggest that differentiated pancreatic lineages could act as facultative progenitor cells, but the extent to which these contribute to β-cell regeneration in vivo is still a matter of contention. Copyright © 2016. Published by Elsevier B.V.

  15. Effect of Exosomes from Rat Adipose-Derived Mesenchymal Stem Cells on Neurite Outgrowth and Sciatic Nerve Regeneration After Crush Injury.

    Science.gov (United States)

    Bucan, Vesna; Vaslaitis, Desiree; Peck, Claas-Tido; Strauß, Sarah; Vogt, Peter M; Radtke, Christine

    2018-06-21

    Peripheral nerve injury requires optimal conditions in both macro-environment and microenvironment for promotion of axonal regeneration. However, most repair strategies of traumatic peripheral nerve injury often lead to dissatisfying results in clinical outcome. Though various strategies have been carried out to improve the macro-environment, the underlying molecular mechanism of axon regeneration in the microenvironment provided by nerve conduit remains unclear. In this study, we evaluate the effects of from adipose-derived mesenchymal stem cells (adMSCs) originating exosomes with respect to sciatic nerve regeneration and neurite growth. Molecular and immunohistochemical techniques were used to investigate the presence of characteristic exosome markers. A co-culture system was established to determine the effect of exosomes on neurite elongation in vitro. The in vivo walking behaviour of rats was evaluated by footprint analysis, and the nerve regeneration was assessed by immunocytochemistry. adMSCs secrete nano-vesicles known as exosomes, which increase neurite outgrowth in vitro and enhance regeneration after sciatic nerve injury in vivo. Furthermore, we showed the presence of neural growth factors transcripts in adMSC exosomes for the first time. Our results demonstrate that exosomes, constitutively produced by adMSCs, are involved in peripheral nerve regeneration and have the potential to be utilised as a therapeutic tool for effective tissue-engineered nerves.

  16. Refined control of cell stemness allowed animal evolution in the oxic realm

    DEFF Research Database (Denmark)

    Hammarlund, Emma U; von Stedingk, Kristoffer; Påhlman, Sven

    2018-01-01

    Animal diversification on Earth has long been presumed to be associated with the increasing extent of oxic niches. Here, we challenge that view. We start with the fact that hypoxia (cells continuously-and paradoxically......-regenerate animal tissue in oxygenated settings. Novel insights from tumour biology illuminate how cell stemness nevertheless can be achieved through the action of oxygen-sensing transcription factors in oxygenated, regenerating tissue. We suggest that these hypoxia-inducible transcription factors provided animals...... with unprecedented control over cell stemness that allowed them to cope with fluctuating oxygen concentrations. Thus, a refinement of the cellular hypoxia-response machinery enabled cell stemness at oxic conditions and, then, animals to evolve into the oxic realm. This view on the onset of animal diversification...

  17. Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet.

    Science.gov (United States)

    Na, Sijia; Zhang, Hao; Huang, Fang; Wang, Weiqi; Ding, Yin; Li, Dechao; Jin, Yan

    2016-03-01

    Dental pulp/dentine complex regeneration is indispensable to the construction of biotissue-engineered tooth roots and represents a promising approach to therapy for irreversible pulpitis. We used a tissue-engineering method based on odontogenic stem cells to design a three-dimensional (3D) and scaffold-free stem-cell sheet-derived pellet (CSDP) with the necessary physical and biological properties. Stem cells were isolated and identified and stem cells from root apical papilla (SCAPs)-based CSDPs were then fabricated and examined. Compact cell aggregates containing a high proportion of extracellular matrix (ECM) components were observed, and the CSDP culture time was prolonged. The expression of alkaline phosphatase (ALP), dentine sialoprotein (DSPP), bone sialoprotein (BSP) and runt-related gene 2 (RUNX2) mRNA was higher in CSDPs than in cell sheets (CSs), indicating that CSDPs have greater odonto/osteogenic potential. To further investigate this hypothesis, CSDPs and CSs were inserted into human treated dentine matrix fragments (hTDMFs) and transplanted into the subcutaneous space in the backs of immunodeficient mice, where they were cultured in vivo for 6 weeks. The root space with CSDPs was filled entirely with a dental pulp-like tissue with well-established vascularity, and a continuous layer of dentine-like tissue was deposited onto the existing dentine. A layer of odontoblast-like cells was found to express DSPP, ALP and BSP, and human mitochondria lined the surface of the newly formed dentine-like tissue. These results clearly indicate that SCAP-CSDPs with a mount of endogenous ECM have a strong capacity to form a heterotopic dental pulp/dentine complex in empty root canals; this method can be used in the fabrication of bioengineered dental roots and also provides an alternative treatment approach for pulp disease. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Influence of exercise and aging on extracellular matrix composition in the skeletal muscle stem cell niche.

    Science.gov (United States)

    Garg, Koyal; Boppart, Marni D

    2016-11-01

    Skeletal muscle is endowed with a remarkable capacity for regeneration, primarily due to the reserve pool of muscle resident satellite cells. The satellite cell is the physiologically quiescent muscle stem cell that resides beneath the basal lamina and adjacent to the sarcolemma. The anatomic location of satellite cells is in close proximity to vasculature where they interact with other muscle resident stem/stromal cells (e.g., mesenchymal stem cells and pericytes) through paracrine mechanisms. This mini-review describes the components of the muscle stem cell niche, as well as the influence of exercise and aging on the muscle stem cell niche. Although exercise promotes ECM reorganization and stem cell accumulation, aging is associated with dense ECM deposition and loss of stem cell function resulting in reduced regenerative capacity and strength. An improved understanding of the niche elements will be valuable to inform the development of therapeutic interventions aimed at improving skeletal muscle regeneration and adaptation over the life span. Copyright © 2016 the American Physiological Society.

  19. Osteogenic differentiation of dental pulp stem cells under the influence of three different materials

    DEFF Research Database (Denmark)

    Ajlan, S. A.; Ashri, N. Y.; Aldahmash, Abdullah M.

    2015-01-01

    Background: Regeneration of periodontal tissues is a major goal of periodontal therapy. Dental pulp stem cells (DPSCs) show mesenchymal cell properties with the potential for dental tissue engineering. Enamel matrix derivative (EMD) and platelet-derived growth factor (PDGF) are examples of materi......Background: Regeneration of periodontal tissues is a major goal of periodontal therapy. Dental pulp stem cells (DPSCs) show mesenchymal cell properties with the potential for dental tissue engineering. Enamel matrix derivative (EMD) and platelet-derived growth factor (PDGF) are examples...

  20. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    Science.gov (United States)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  1. Prion potency in stem cells biology.

    Science.gov (United States)

    Lopes, Marilene H; Santos, Tiago G

    2012-01-01

    Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation, and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.

  2. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    Science.gov (United States)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  3. Autologous stem cell transplantation in refractory Asherman′s syndrome: A novel cell based therapy

    Directory of Open Access Journals (Sweden)

    Neeta Singh

    2014-01-01

    Full Text Available Background : There is substantial evidence that adult stem cell populations exist in human endometrium, and hence it is suggested that either endogenous endometrial stem/progenitor cells can be activated or bone marrow derived stem cells can be transplanted in the uterine cavity for endometrial regeneration in Asherman′s syndrome (AS. Aims and Objectives : The objective was to evaluate the role of sub-endometrial autologous stem cell implantation in women with refractory AS in attaining menstruation and fertility. Setting : Tertiary care referral center. DESIGN: Prospective case series. Materials and Methods : Six cases of refractory AS with failed standard treatment option of hysteroscopic adhesiolysis in the past were included. Mononuclear stem cells (MNCs were implanted in sub-endometrial zone followed by exogenous oral estrogen therapy. Endometrial thickness (ET was assessed at 3, 6, and 9 months. RESULTS: Descriptive statistics and statistical analysis of study variables was carried out using STATA version 9.0. The mean MNC count was 103.3 × 106 (±20.45 with mean CD34+ count being 203,642 (±269,274. Mean of ET (mm at 3 months (4.05 ± 1.40, 6 months (5.46 ± 1.36 and 9 months (5.48 ± 1.14 were significantly (P < 0.05 increased from pretreatment level (1.38 ± 0.39. Five out of six patients resumed menstruation. Conclusion : The autologous stem cell implantation leads to endometrial regeneration reflected by restoration of menstruation in five out of six cases. Autologous stem cell implantation is a promising novel cell based therapy for refractory AS.

  4. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid.

    Science.gov (United States)

    Aihara, Eitaro; Mahe, Maxime M; Schumacher, Michael A; Matthis, Andrea L; Feng, Rui; Ren, Wenwen; Noah, Taeko K; Matsu-ura, Toru; Moore, Sean R; Hong, Christian I; Zavros, Yana; Herness, Scott; Shroyer, Noah F; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A; Montrose, Marshall H

    2015-11-24

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5(+)) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5(+) cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration.

  5. Plasticity within stem cell hierarchies in mammalian epithelia

    NARCIS (Netherlands)

    Tetteh, Paul W; Farin, Henner F; Clevers, Hans

    Tissue homeostasis and regeneration are fueled by resident stem cells that have the capacity to self-renew, and to generate all the differentiated cell types that characterize a particular tissue. Classical models of such cellular hierarchies propose that commitment and differentiation occur

  6. Neuromast hair cells retain the capacity of regeneration during heavy metal exposure.

    Science.gov (United States)

    Montalbano, G; Capillo, G; Laurà, R; Abbate, F; Levanti, M; Guerrera, M C; Ciriaco, E; Germanà, A

    2018-07-01

    The neuromast is the morphological unit of the lateral line of fishes and is composed of a cluster of central sensory cells (hair cells) surrounded by support and mantle cells. Heavy metals exposure leads to disruption of hair cells within the neuromast. It is well known that the zebrafish has the ability to regenerate the hair cells after damage caused by toxicants. The process of regeneration depends on proliferation, differentiation and cellular migration of sensory and non-sensory progenitor cells. Therefore, our study was made in order to identify which cellular types are involved in the complex process of regeneration during heavy metals exposure. For this purpose, adult zebrafish were exposed to various heavy metals (Arsenic, cadmium and zinc) for 72h. After acute (24h) exposure, immunohistochemical localization of S100 (a specific marker for hair cells) in the neuromasts highlighted the hair cells loss. The immunoreaction for Sox2 (a specific marker for stem cells), at the same time, was observed in the support and mantle cells, after exposure to arsenic and cadmium, while only in the support cells after exposure to zinc. After chronic (72h) exposure the hair cells were regenerated, showing an immunoreaction for S100 protein. At the same exposure time to the three metals, a Sox2 immunoreaction was expressed in support and mantle cells. Our results showed for the first time the regenerative capacity of hair cells, not only after, but also during exposure to heavy metals, demonstrated by the presence of different stem cells that can diversify in hair cells. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization.

    Science.gov (United States)

    Joanisse, Sophie; Nederveen, Joshua P; Snijders, Tim; McKay, Bryon R; Parise, Gianni

    2017-01-01

    Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscle's ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults. © 2016 S. Karger AG, Basel.

  8. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system.

    Science.gov (United States)

    Elliott Donaghue, Irja; Tam, Roger; Sefton, Michael V; Shoichet, Molly S

    2014-09-28

    Tissue engineering frequently involves cells and scaffolds to replace damaged or diseased tissue. It originated, in part, as a means of effecting the delivery of biomolecules such as insulin or neurotrophic factors, given that cells are constitutive producers of such therapeutic agents. Thus cell delivery is intrinsic to tissue engineering. Controlled release of biomolecules is also an important tool for enabling cell delivery since the biomolecules can enable cell engraftment, modulate inflammatory response or otherwise benefit the behavior of the delivered cells. We describe advances in cell and biomolecule delivery for tissue regeneration, with emphasis on the central nervous system (CNS). In the first section, the focus is on encapsulated cell therapy. In the second section, the focus is on biomolecule delivery in polymeric nano/microspheres and hydrogels for the nerve regeneration and endogenous cell stimulation. In the third section, the focus is on combination strategies of neural stem/progenitor cell or mesenchymal stem cell and biomolecule delivery for tissue regeneration and repair. In each section, the challenges and potential solutions associated with delivery to the CNS are highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Tissue-specific composite cell aggregates drive periodontium tissue regeneration by reconstructing a regenerative microenvironment.

    Science.gov (United States)

    Zhu, Bin; Liu, Wenjia; Zhang, Hao; Zhao, Xicong; Duan, Yan; Li, Dehua; Jin, Yan

    2017-06-01

    Periodontitis is the most common cause of periodontium destruction. Regeneration of damaged tissue is the expected treatment goal. However, the regeneration of a functional periodontal ligament (PDL) insertion remains a difficulty, due to complicated factors. Recently, periodontal ligament stem cells (PDLSCs) and bone marrow-derived mesenchymal stem cells (BMMSCs) have been shown to participate in PDL regeneration, both pathologically and physiologically. Besides, interactions affect the biofunctions of different derived cells during the regenerative process. Therefore, the purpose of this study was to discuss the different derived composite cell aggregate (CA) systems of PDLSCs and BMMSCs (iliac-derived or jaw-derived) for periodontium regeneration under regenerative microenvironment reconstruction. Our results showed although all three mono-MSC CAs were compacted and the cells arranged regularly in them, jaw-derived BMMSC (JBMMSC) CAs secreted more extracellular matrix than the others. Furthermore, PDLSC/JBMMSC compound CAs highly expressed ALP, Col-I, fibronectin, integrin-β1 and periostin, suggesting that their biofunction is more appropriate for periodontal structure regeneration. Inspiringly, PDLSC/JBMMSC compound CAs regenerated more functional PDL-like tissue insertions in both nude mice ectopic and minipig orthotopic transplantation. The results indicated that the different derived CAs of PDLSCs/JBMMSCs provided an appropriate regenerative microenvironment facilitating a more stable and regular regeneration of functional periodontium tissue. This method may provide a possible strategy to solve periodontium defects in periodontitis and powerful experimental evidence for clinical applications in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Human Periodontal Ligament- and Gingiva-derived Mesenchymal Stem Cells Promote Nerve Regeneration When Encapsulated in Alginate/Hyaluronic Acid 3D Scaffold.

    Science.gov (United States)

    Ansari, Sahar; Diniz, Ivana M; Chen, Chider; Sarrion, Patricia; Tamayol, Ali; Wu, Benjamin M; Moshaverinia, Alireza

    2017-12-01

    Repair or regeneration of damaged nerves is still a challenging clinical task in reconstructive surgeries and regenerative medicine. Here, it is demonstrated that periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) isolated from adult human periodontal and gingival tissues assume neuronal phenotype in vitro and in vivo via a subcutaneous transplantation model in nude mice. PDLSCs and GMSCs are encapsulated in a 3D scaffold based on alginate and hyaluronic acid hydrogels capable of sustained release of human nerve growth factor (NGF). The elasticity of the hydrogels affects the proliferation and differentiation of encapsulated MSCs within scaffolds. Moreover, it is observed that PDLSCs and GMSCs are stained positive for βIII-tubulin, while exhibiting high levels of gene expression related to neurogenic differentiation (βIII-tubulin and glial fibrillary acidic protein) via quantitative polymerase chain reaction (qPCR). Western blot analysis shows the importance of elasticity of the matrix and the presence of NGF in the neurogenic differentiation of encapsulated MSCs. In vivo, immunofluorescence staining for neurogenic specific protein markers confirms islands of dense positively stained structures inside transplanted hydrogels. As far as it is known, this study is the first demonstration of the application of PDLSCs and GMSCs as promising cell therapy candidates for nerve regeneration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  12. Heterogeneity and plasticity of epidermal stem cells

    DEFF Research Database (Denmark)

    Schepeler, Troels; Page, Mahalia E; Jensen, Kim Bak

    2014-01-01

    The epidermis is an integral part of our largest organ, the skin, and protects us against the hostile environment. It is a highly dynamic tissue that, during normal steady-state conditions, undergoes constant turnover. Multiple stem cell populations residing in autonomously maintained compartments...... facilitate this task. In this Review, we discuss stem cell behaviour during normal tissue homeostasis, regeneration and disease within the pilosebaceous unit, an integral structure of the epidermis that is responsible for hair growth and lubrication of the epithelium. We provide an up-to-date view...... of the pilosebaceous unit, encompassing the heterogeneity and plasticity of multiple discrete stem cell populations that are strongly influenced by external cues to maintain their identity and function....

  13. Maintenance of sweat glands by stem cells located in the acral epithelium.

    Science.gov (United States)

    Ohe, Shuichi; Tanaka, Toshihiro; Yanai, Hirotsugu; Komai, Yoshihiro; Omachi, Taichi; Kanno, Shohei; Tanaka, Kiyomichi; Ishigaki, Kazuhiko; Saiga, Kazuho; Nakamura, Naohiro; Ohsugi, Haruyuki; Tokuyama, Yoko; Atsumi, Naho; Hisha, Hiroko; Yoshida, Naoko; Kumano, Keiki; Yamazaki, Fumikazu; Okamoto, Hiroyuki; Ueno, Hiroo

    2015-10-23

    The skin is responsible for a variety of physiological functions and is critical for wound healing and repair. Therefore, the regenerative capacity of the skin is important. However, stem cells responsible for maintaining the acral epithelium had not previously been identified. In this study, we identified the specific stem cells in the acral epithelium that participate in the long-term maintenance of sweat glands, ducts, and interadnexal epidermis and that facilitate the regeneration of these structures following injury. Lgr6-positive cells and Bmi1-positive cells were found to function as long-term multipotent stem cells that maintained the entire eccrine unit and the interadnexal epidermis. However, while Lgr6-positive cells were rapidly cycled and constantly supplied differentiated cells, Bmi1-positive cells were slow to cycle and occasionally entered the cell cycle under physiological conditions. Upon irradiation-induced injury, Bmi1-positive cells rapidly proliferated and regenerated injured epithelial tissue. Therefore, Bmi1-positive stem cells served as reservoir stem cells. Lgr5-positive cells were rapidly cycled and maintained only sweat glands; therefore, we concluded that these cells functioned as lineage-restricted progenitors. Taken together, our data demonstrated the identification of stem cells that maintained the entire acral epithelium and supported the different roles of three cellular classes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. LITERATURE REVIEW ON STEM CELL TREATMENT & ORAL SUBMUCOUS FIBROSIS (OSMF)

    OpenAIRE

    Prathipaty James; Kameswararao

    2015-01-01

    Stem cell therapy is a part of regenerative medicine that involves the use of undifferentiated cells in order to cure the disease. Stem cell - based therapies are being investigated for the treatment of many conditions, including neurodegenerative conditions such as Parkinson's disease, cardiovascular disease, liver disease, diabetes, autoimmune diseases and for nerve regeneration. (1) In orofacial region these therapies are being used for tooth and periodonta...

  15. External fixation of femoral defects in athymic rats: Applications for human stem cell implantation and bone regeneration

    Directory of Open Access Journals (Sweden)

    Terasa Foo

    2013-01-01

    Full Text Available An appropriate animal model is critical for the research of stem/progenitor cell therapy and tissue engineering for bone regeneration in vivo. This study reports the design of an external fixator and its application to critical-sized femoral defects in athymic rats. The external fixator consists of clamps and screws that are readily available from hardware stores as well as Kirschner wires. A total of 35 rats underwent application of the external fixator with creation of a 6-mm bone defect in one femur of each animal. This model had been used in several separate studies, including implantation of collagen gel, umbilical cord blood mesenchymal stem cells, endothelial progenitor cells, or bone morphogenetic protein-2. One rat developed fracture at the proximal pin site and two rats developed deep tissue infection. Pin loosening was found in nine rats, but it only led to the failure of external fixation in two animals. In 8 to 10 weeks, various degrees of bone growth in the femoral defects were observed in different study groups, from full repair of the bone defect with bone morphogenetic protein-2 implantation to fibrous nonunion with collagen gel implantation. The external fixator used in these studies provided sufficient mechanical stability to the bone defects and had a comparable complication rate in athymic rats as in immunocompetent rats. The external fixator does not interfere with the natural environment of a bone defect. This model is particularly valuable for investigation of osteogenesis of human stem/progenitor cells in vivo.

  16. Making sense of Wnt signaling – linking hair cell regeneration to development

    Directory of Open Access Journals (Sweden)

    Lina eJansson

    2015-03-01

    Full Text Available Wnt signaling is a highly conserved pathway crucial for development and homeostasis of multicellular organisms. Secreted Wnt ligands bind Frizzled receptors to regulate diverse processes such as axis patterning, cell division, and cell fate specification. They also serve to govern self-renewal of somatic stem cells in several adult tissues. The complexity of the pathway can be attributed to the myriad of Wnt and Frizzled combinations as well as its diverse context-dependent functions. In the developing mouse inner ear, Wnt signaling plays diverse roles, including specification of the otic placode and patterning of the otic vesicle. At later stages, its activity governs sensory hair cell specification, cell cycle regulation, and hair cell orientation. In regenerating sensory organs from non-mammalian species, Wnt signaling can also regulate the extent of proliferative hair cell regeneration. This review describes the current knowledge of the roles of Wnt signaling and Wnt-responsive cells in hair cell development and regeneration. We also discuss possible future directions and the potential application and limitation of Wnt signaling in augmenting hair cell regeneration.

  17. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    International Nuclear Information System (INIS)

    Nicolay, Nils H.; Sommer, Eva; Lopez, Ramon; Wirkner, Ute; Trinh, Thuy; Sisombath, Sonevisay; Debus, Jürgen; Ho, Anthony D.; Saffrich, Rainer; Huber, Peter E.

    2013-01-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression

  18. Some applications of nanotechnologies in stem cells research

    International Nuclear Information System (INIS)

    Belicchi, M.; Cancedda, R.; Cedola, A.; Fiori, F.; Gavina, M.; Giuliani, A.; Komlev, V.S.; Lagomarsino, S.; Mastrogiacomo, M.; Renghini, C.; Rustichelli, F.

    2009-01-01

    Stem cell based tissue engineering therapies involve the administration of ex vivo manipulated stem cell populations with the purpose of repairing and regenerating damaged or diseased tissue. Currently available methods of monitoring transplanted cells are quite limited. To monitor the outcomes of stem cell therapy longitudinally requires the development of non-destructive strategies that are capable of identifying the location, magnitude, and duration of cellular survival and fate. The recent development of imaging techniques offers great potential to address these critical issues by non-invasively tracking the fate of the transplanted cells. This review offers a focused presentation of some examples of the use of imaging techniques connected to the nanotechnological world in research areas related to stem cells. In particular investigations will be considered concerning tissue-engineered bone, treatment of intervertebral disc degeneration, treatment by human stem cells of muscular dystrophy of Duchenne in small animal models and the repair of spinal cord injuries.

  19. Some applications of nanotechnologies in stem cells research

    Energy Technology Data Exchange (ETDEWEB)

    Belicchi, M. [Fondazione IRCCS Ospedale Policlinico di Milano, Via Francesco Sforza, Milano 20122 (Italy); Cancedda, R. [Istituto Nazionale per la Ricerca sul Cancro and Dipartimento di Oncologia Biologia e Genetica - Universita di Genova, Largo R. Benzi 10, Genova 16132 (Italy); Cedola, A. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cinto Romano 42, Roma 00156 (Italy); Fiori, F. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy); Gavina, M. [Fondazione IRCCS Ospedale Policlinico di Milano, Via Francesco Sforza, Milano 20122 (Italy); Giuliani, A. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); CNISM - Matec (Ancona) (Italy); Komlev, V.S. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); Institute for Physical Chemistry of Ceramics, Russian Academy of Sciences, Ozernaya 48, 119361 Moscow (Russian Federation); Lagomarsino, S. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cinto Romano 42, Roma 00156 (Italy); Mastrogiacomo, M. [Istituto Nazionale per la Ricerca sul Cancro and Dipartimento di Oncologia Biologia e Genetica - Universita di Genova, Largo R. Benzi 10, Genova 16132 (Italy); Renghini, C. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy); Rustichelli, F., E-mail: f.rustichelli@univpm.i [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy)

    2009-12-15

    Stem cell based tissue engineering therapies involve the administration of ex vivo manipulated stem cell populations with the purpose of repairing and regenerating damaged or diseased tissue. Currently available methods of monitoring transplanted cells are quite limited. To monitor the outcomes of stem cell therapy longitudinally requires the development of non-destructive strategies that are capable of identifying the location, magnitude, and duration of cellular survival and fate. The recent development of imaging techniques offers great potential to address these critical issues by non-invasively tracking the fate of the transplanted cells. This review offers a focused presentation of some examples of the use of imaging techniques connected to the nanotechnological world in research areas related to stem cells. In particular investigations will be considered concerning tissue-engineered bone, treatment of intervertebral disc degeneration, treatment by human stem cells of muscular dystrophy of Duchenne in small animal models and the repair of spinal cord injuries.

  20. Epidermal stem cells - role in normal, wounded and pathological psoriatic and cancer skin

    DEFF Research Database (Denmark)

    Kamstrup, M.; Faurschou, A.; Gniadecki, R.

    2008-01-01

    In this review we focus on epidermal stem cells in the normal regeneration of the skin as well as in wounded and psoriatic skin. Furthermore, we discuss current data supporting the idea of cancer stem cells in the pathogenesis of skin carcinoma and malignant melanoma. Epidermal stem cells present...... or transit amplifying cells constitute a primary pathogenetic factor in the epidermal hyperproliferation seen in psoriasis. In cutaneous malignancies mounting evidence supports a stem cell origin in skin carcinoma and malignant melanoma and a possible existence of cancer stem cells Udgivelsesdato: 2008/5...

  1. Stem Cell Therapy for Treatment of Ocular Disorders

    Directory of Open Access Journals (Sweden)

    Padma Priya Sivan

    2016-01-01

    Full Text Available Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented.

  2. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy.

    Science.gov (United States)

    Nori, Satoshi; Nakamura, Masaya; Okano, Hideyuki

    2017-01-01

    Spinal cord injury (SCI) typically damages the long axonal tracts of the spinal cord which results in permanent disability. However, regeneration of the injured spinal cord is approaching reality according to the advances in stem cell biology. Cell transplantation therapy holds potential to lead to recovery following SCI through some positive mechanisms. Grafted cells induce plasticity and regeneration in the injured spinal cord by promoting remyelination of damaged axons, reconstruction of neural circuits by synapse formation between host neurons and graft-derived neurons, and secreting neurotrophic factors to promote axonal elongation as well as reduce retrograde axonal degeneration. In this review, we will delineate (1) the microenvironment of the injured spinal cord that influence the plasticity and regeneration capacity after SCI, (2) a number of different kinds of cell transplantation therapies for SCI that has been extensively studied by researchers, and (3) potential mechanisms of grafted cell-induced regeneration and plasticity in the injured spinal cord. © 2017 Elsevier B.V. All rights reserved.

  3. Perspectives of Stem Cell-Based Therapy for Age-Related Retinal Degenerative Diseases.

    Science.gov (United States)

    Holan, Vladimir; Hermankova, Barbora; Kossl, Jan

    2017-09-01

    Retinal degenerative diseases, which include age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and glaucoma, mostly affect the elderly population and are the most common cause of decreased quality of vision or even blindness. So far, there is no satisfactory treatment protocol to prevent, stop, or cure these disorders. A great hope and promise for patients suffering from retinal diseases is represented by stem cell-based therapy that could replace diseased or missing retinal cells and support regeneration. In this respect, mesenchymal stem cells (MSCs) that can be obtained from the particular patient and used as autologous cells have turned out to be a promising stem cell type for treatment. Here we show that MSCs can differentiate into cells expressing markers of retinal cells, inhibit production of pro-inflammatory cytokines by retinal tissue, and produce a number of growth and neuroprotective factors for retinal regeneration. All of these properties make MSCs a prospective cell type for cell-based therapy of age-related retinal degenerative diseases.

  4. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.

    Science.gov (United States)

    Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T

    2008-12-01

    Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.

  5. Pulp tissue from primary teeth: new source of stem cells

    Directory of Open Access Journals (Sweden)

    Paloma Dias Telles

    2011-06-01

    Full Text Available SHED (stem cells from human exfoliated deciduous teeth represent a population of postnatal stem cells capable of extensive proliferation and multipotential differentiation. Primary teeth may be an ideal source of postnatal stem cells to regenerate tooth structures and bone, and possibly to treat neural tissue injury or degenerative diseases. SHED are highly proliferative cells derived from an accessible tissue source, and therefore hold potential for providing enough cells for clinical applications. In this review, we describe the current knowledge about dental pulp stem cells and discuss tissue engineering approaches that use SHED to replace irreversibly inflamed or necrotic pulps with a healthy and functionally competent tissue that is capable of forming new dentin.

  6. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration

    NARCIS (Netherlands)

    Mokalled, Mayssa H.; Johnson, Aaron N.; Creemers, Esther E.; Olson, Eric N.

    2012-01-01

    In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family

  7. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2015-01-01

    Full Text Available The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs, are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases.

  8. In situ vascular regeneration using substance P-immobilised poly(L-lactide-co-ε-caprolactone scaffolds: stem cell recruitment, angiogenesis, and tissue regeneration

    Directory of Open Access Journals (Sweden)

    M Shafiq

    2011-11-01

    Full Text Available In situ tissue regeneration holds great promise for regenerative medicine and tissue engineering applications. However, to achieve control over long-term and localised presence of biomolecules, certain barriers must be overcome. The aim of this study was to develop electrospun scaffolds for the fabrication of artificial vascular grafts that can be remodelled within a host by endogenous cell recruitment. We fabricated scaffolds by mixing appropriate proportions of linear poly (l-lactide-co-ε-caprolactone (PLCL and substance P (SP-immobilised PLCL, using electrospinning to develop vascular grafts. Substance P was released in a sustained fashion from electrospun membranes for up to 30 d, as revealed by enzyme-linked immunosorbent assay. Immobilised SP remained bioactive and recruited human bone marrow-derived mesenchymal stem cells (hMSCs in an in vitro Trans-well migration assay. The biocompatibility and biological performance of the scaffolds were evaluated by in vivo experiments involving subcutaneous scaffold implantations in Sprague-Dawley rats for up to 28 d followed by histological and immunohistochemical studies. Histological analysis revealed a greater extent of accumulative host cell infiltration and collagen deposition in scaffolds containing higher contents of SP than observed in the control group at both time points. We also observed the presence of a large number of laminin-positive blood vessels and Von Willebrand factor (vWF+ cells in the explants containing SP. Additionally, scaffolds containing SP showed the existence of CD90+ and CD105+ MSCs. Collectively, these findings suggest that the methodology presented here may have broad applications in regenerative medicine, and the novel scaffolding materials can be used for in situ tissue regeneration of soft tissues.

  9. Stem cells in pharmaceutical biotechnology.

    Science.gov (United States)

    Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef

    2011-11-01

    Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All

  10. Increased Arf/p53 activity in stem cells, aging and cancer.

    Science.gov (United States)

    Carrasco-Garcia, Estefania; Moreno, Manuel; Moreno-Cugnon, Leire; Matheu, Ander

    2017-04-01

    Arf/p53 pathway protects the cells against DNA damage induced by acute stress. This characteristic is the responsible for its tumor suppressor activity. Moreover, it regulates the chronic type of stress associated with aging. This is the basis of its anti-aging activity. Indeed, increased gene dosage of Arf/p53 displays elongated longevity and delayed aging. At a cellular level, it has been recently shown that increased dosage of Arf/p53 delays age-associated stem cell exhaustion and the subsequent decline in tissue homeostasis and regeneration. However, p53 can also promote aging if constitutively activated. In this context, p53 reduces tissue regeneration, which correlates with premature exhaustion of stem cells. We discuss here the current evidence linking the Arf/p53 pathway to the processes of aging and cancer through stem cell regulation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  11. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep

    Science.gov (United States)

    Lee, Chang H.; Rodeo, Scott A.; Fortier, Lisa Ann; Lu, Chuanyong; Erisken, Cevat

    2015-01-01

    Regeneration of complex tissues, such as kidney, liver, and cartilage, continues to be a scientific and translational challenge. Survival of ex vivo cultured, transplanted cells in tissue grafts is among one of the key barriers. Meniscus is a complex tissue consisting of collagen fibers and proteoglycans with gradient phenotypes of fibrocartilage and functions to provide congruence of the knee joint, without which the patient is likely to develop arthritis. Endogenous stem/progenitor cells regenerated the knee meniscus upon spatially released human connective tissue growth factor (CTGF) and transforming growth factor–β3 (TGFβ3) from a three-dimensional (3D)–printed biomaterial, enabling functional knee recovery. Sequentially applied CTGF and TGFβ3 were necessary and sufficient to propel mesenchymal stem/progenitor cells, as a heterogeneous population or as single-cell progenies, into fibrochondrocytes that concurrently synthesized procollagens I and IIα. When released from microchannels of 3D–printed, human meniscus scaffolds, CTGF and TGFβ3 induced endogenous stem/progenitor cells to differentiate and synthesize zone-specific type I and II collagens. We then replaced sheep meniscus with anatomically correct, 3D–printed scaffolds that incorporated spatially delivered CTGF and TGFβ3. Endogenous cells regenerated the meniscus with zone-specific matrix phenotypes: primarily type I collagen in the outer zone, and type II collagen in the inner zone, reminiscent of the native meniscus. Spatiotemporally delivered CTGF and TGFβ3 also restored inhomogeneous mechanical properties in the regenerated sheep meniscus. Survival and directed differentiation of endogenous cells in a tissue defect may have implications in the regeneration of complex (heterogeneous) tissues and organs. PMID:25504882

  12. The extraocular muscle stem cell niche is resistant to ageing and disease

    Directory of Open Access Journals (Sweden)

    Luigi eFormicola

    2014-12-01

    Full Text Available Specific muscles are spared in many degenerative myopathies. Most notably, the extraocular muscles (EOMs do not show clinical signs of late stage myopathies including the accumulation of fibrosis and fat. It has been proposed that an altered stem cell niche underlies the resistance of EOMs in these pathologies, however, to date, no reports have provided a detailed characterization of the EOM stem cell niche. PW1/Peg3 is expressed in progenitor cells in all adult tissues including satellite cells and a subset of interstitial non-satellite cell progenitors in muscle. These PW1-positive interstitial cells (PICs include a fibroadipogenic progenitor population (FAPs that give rise to fat and fibrosis in late stage myopathies. PICs/FAPs are mobilized following injury and FAPs exert a promyogenic role upon myoblasts in vitro but require the presence of a minimal population of satellite cells in vivo. We and others recently described that FAPs express promyogenic factors while satellite cells express antimyogenic factors suggesting that PICs/FAPs act as support niche cells in skeletal muscle through paracrine interactions. We analyzed the EOM stem cell niche in young adult and aged wild-type mice and found that the balance between PICs and satellite cells within the EOM stem cell niche is maintained throughout life. Moreover, in the adult mdx mouse model for Duchenne muscular dystrophy, the EOM stem cell niche is unperturbed compared to normal mice, in contrast to Tibialis Anterior (TA muscle, which displays signs of ongoing degeneration/regeneration. Regenerating mdx TA shows increased levels of both PICs and satellite cells, comparable to normal unaffected EOMs. We propose that the increase in PICs that we observe in normal EOMs contributes to preserving the integrity of the myofibers and satellite cells. Our data suggest that molecular cues regulating muscle regeneration are intrinsic properties of EOMs.

  13. Role of RHEB in Regulating Differentiation Fate of Mesenchymal Stem Cells for Cartilage and Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Sajjad Ashraf

    2017-04-01

    Full Text Available Advances in mesenchymal stem cells (MSCs and cell replacement therapies are promising approaches to treat cartilage and bone defects since substantial differentiation capacities of MSCs match the demands of tissue regeneration. Our understanding of the dynamic process requiring indispensable differentiation of MSCs remains limited. Herein, we describe the role of RHEB (Ras homolog enriched in brain regulating gene signature for differentiation of human adipose derived mesenchymal stem cells (ASCs into chondrogenic, osteogenic, and adipogenic lineages. RHEB-overexpression increases the proliferation of the ASCs. RHEB enhances the chondrogenic differentiation of ASCs in 3D culture via upregulation of SOX9 with concomitant increase in glycosaminoglycans (GAGs, and type II collagen (COL2. RHEB increases the osteogenesis via upregulation of runt related transcription factor 2 (RUNX2 with an increase in the calcium and phosphate contents. RHEB also increases the expression of osteogenic markers, osteonectin and osteopontin. RHEB knockdown ASCs were incapable of expressing sufficient SRY (Sex determining region Y-box 9 (SOX9 and RUNX2, and therefore had decreased chondrogenic and osteogenic differentiation. RHEB-overexpression impaired ASCs differentiation into adipogenic lineage, through downregulation of CCAAT/enhancer binding protein beta (C/EBPβ. Conversely, RHEB knockdown abolished the negative regulation of adipogenesis. We demonstrate that RHEB is a novel regulator, with a critical role in ASCs lineage determination, and RHEB-modulated ASCs may be useful as a cell therapy for cartilage and bone defect treatments.

  14. Stem cell metabolism in tissue development and aging

    Science.gov (United States)

    Shyh-Chang, Ng; Daley, George Q.; Cantley, Lewis C.

    2013-01-01

    Recent advances in metabolomics and computational analysis have deepened our appreciation for the role of specific metabolic pathways in dictating cell fate. Once thought to be a mere consequence of the state of a cell, metabolism is now known to play a pivotal role in dictating whether a cell proliferates, differentiates or remains quiescent. Here, we review recent studies of metabolism in stem cells that have revealed a shift in the balance between glycolysis, mitochondrial oxidative phosphorylation and oxidative stress during the maturation of adult stem cells, and during the reprogramming of somatic cells to pluripotency. These insights promise to inform strategies for the directed differentiation of stem cells and to offer the potential for novel metabolic or pharmacological therapies to enhance regeneration and the treatment of degenerative disease. PMID:23715547

  15. Isolation of a stable subpopulation of mobilized dental pulp stem cells (MDPSCs) with high proliferation, migration, and regeneration potential is independent of age.

    Science.gov (United States)

    Horibe, Hiroshi; Murakami, Masashi; Iohara, Koichiro; Hayashi, Yuki; Takeuchi, Norio; Takei, Yoshifumi; Kurita, Kenichi; Nakashima, Misako

    2014-01-01

    Insights into the understanding of the influence of the age of MSCs on their cellular responses and regenerative potential are critical for stem cell therapy in the clinic. We have isolated dental pulp stem cells (DPSCs) subsets based on their migratory response to granulocyte-colony stimulating factor (G-CSF) (MDPSCs) from young and aged donors. The aged MDPSCs were efficiently enriched in stem cells, expressing high levels of trophic factors with high proliferation, migration and anti-apoptotic effects compared to young MDPSCs. In contrast, significant differences in those properties were detected between aged and young colony-derived DPSCs. Unlike DPSCs, MDPSCs showed a small age-dependent increase in senescence-associated β-galactosidase (SA-β-gal) production and senescence markers including p16, p21, Interleukin (IL)-1β, -6, -8, and Groα in long-term culture. There was no difference between aged and young MDPSCs in telomerase activity. The regenerative potential of aged MDPSCs was similar to that of young MDPSCs in an ischemic hindlimb model and an ectopic tooth root model. These results demonstrated that the stem cell properties and the high regenerative potential of MDPSCs are independent of age, demonstrating an immense utility for clinical applications by autologous cell transplantation in dental pulp regeneration and ischemic diseases.

  16. Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters.

    Science.gov (United States)

    Tetteh, Paul W; Basak, Onur; Farin, Henner F; Wiebrands, Kay; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; de Sauvage, Frederic; van Es, Johan H; van Oudenaarden, Alexander; Clevers, Hans

    2016-02-04

    Intestinal crypts display robust regeneration upon injury. The relatively rare secretory precursors can replace lost stem cells, but it is unknown if the abundant enterocyte progenitors that express the Alkaline phosphate intestinal (Alpi) gene also have this capacity. We created an Alpi-IRES-CreERT2 (Alpi(CreER)) knockin allele for lineage tracing. Marked clones consist entirely of enterocytes and are all lost from villus tips within days. Genetic fate-mapping of Alpi(+) cells before or during targeted ablation of Lgr5-expressing stem cells generated numerous long-lived crypt-villus "ribbons," indicative of dedifferentiation of enterocyte precursors into Lgr5(+) stems. By single-cell analysis of dedifferentiating enterocytes, we observed the generation of Paneth-like cells and proliferative stem cells. We conclude that the highly proliferative, short-lived enterocyte precursors serve as a large reservoir of potential stem cells during crypt regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Stem cell treatment of degenerative eye disease

    Directory of Open Access Journals (Sweden)

    Ben Mead

    2015-05-01

    Full Text Available Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs has so far been reliant on mesenchymal stem cells (MSC. Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs, MSC derived from bone marrow (BMSC, adipose tissues (ADSC and dental pulp (DPSC, together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment.

  18. Stem cell treatment of degenerative eye disease.

    Science.gov (United States)

    Mead, Ben; Berry, Martin; Logan, Ann; Scott, Robert A H; Leadbeater, Wendy; Scheven, Ben A

    2015-05-01

    Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment. Copyright © 2015. Published by Elsevier B.V.

  19. Identification of multipotent stem cells from adult dog periodontal ligament.

    Science.gov (United States)

    Wang, Wen-Jun; Zhao, Yu-Ming; Lin, Bi-Chen; Yang, Jie; Ge, Li-Hong

    2012-08-01

    Periodontal diseases, which are characterized by destruction of the connective tissues responsible for restraining the teeth within the jaw, are the main cause of tooth loss. Periodontal regeneration mediated by human periodontal ligament stem cells (hPDLSCs) may offer an alternative strategy for the treatment of periodontal disease. Dogs are a widely used large-animal model for the study of periodontal-disease progression, tissue regeneration, and dental implants, but little attention has been paid to the identification of the cells involved in this species. This study aimed to characterize stem cells isolated from canine periodontal ligament (cPDLSCs). The cPDLSCs, like hPDLSCs, showed clonogenic capability and expressed the mesenchymal stem cell markers STRO-1, CD146, and CD105, but not CD34. After induction of osteogenesis, cPDLSCs showed calcium accumulation in vitro. Moreover, cPDLSCs also showed both adipogenic and chondrogenic potential. Compared with cell-free controls, more cementum/periodontal ligament-like structures were observed in CB-17/SCID mice into which cPDLSCs had been transplanted. These results suggest that cPDLSCs are clonogenic, highly proliferative, and have multidifferentiation potential, and that they could be used as a new cellular therapeutic approach to facilitate successful and more predictable regeneration of periodontal tissue using a canine model of periodontal disease. © 2012 Eur J Oral Sci.

  20. Regulatory T cells and skeletal muscle regeneration.

    Science.gov (United States)

    Schiaffino, Stefano; Pereira, Marcelo G; Ciciliot, Stefano; Rovere-Querini, Patrizia

    2017-02-01

    Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging. © 2016 Federation of European Biochemical Societies.

  1. Piwi and potency: PIWI proteins in animal stem cells and regeneration.

    Science.gov (United States)

    van Wolfswinkel, Josien C

    2014-10-01

    PIWI proteins are well known for their roles in the animal germline. They are essential for germline development and maintenance, and together with their binding partners, the piRNAs, they mediate transposon silencing. More recently, PIWI proteins have also been identified in somatic stem cells in diverse animals. The expression of PIWI proteins in these cells could be related to the ability of such cells to contribute to the germline. However, evaluation of stem cell systems across many different animal phyla suggests that PIWI proteins have an ancestral role in somatic stem cells, irrespective of their contribution to the germ cell lineage. Moreover, the data currently available reveal a possible correlation between the differentiation potential of a cell and its PIWI levels. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  2. Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures

    OpenAIRE

    Lo Monaco, Melissa; Merckx, Greet; Ratajczak, Jessica; Gervois, Pascal; Hilkens, Petra; Clegg, Peter; Bronckaers, Annelies; Vandeweerd, Jean-Michel; Lambrichts, Ivo

    2018-01-01

    Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain...

  3. Purified Human Dental Pulp Stem Cells Promote Osteogenic Regeneration.

    Science.gov (United States)

    Yasui, T; Mabuchi, Y; Toriumi, H; Ebine, T; Niibe, K; Houlihan, D D; Morikawa, S; Onizawa, K; Kawana, H; Akazawa, C; Suzuki, N; Nakagawa, T; Okano, H; Matsuzaki, Y

    2016-02-01

    Human dental pulp stem/progenitor cells (hDPSCs) are attractive candidates for regenerative therapy because they can be easily expanded to generate colony-forming unit-fibroblasts (CFU-Fs) on plastic and the large cell numbers required for transplantation. However, isolation based on adherence to plastic inevitably changes the surface marker expression and biological properties of the cells. Consequently, little is currently known about the original phenotypes of tissue precursor cells that give rise to plastic-adherent CFU-Fs. To better understand the in vivo functions and translational therapeutic potential of hDPSCs and other stem cells, selective cell markers must be identified in the progenitor cells. Here, we identified a dental pulp tissue-specific cell population based on the expression profiles of 2 cell-surface markers LNGFR (CD271) and THY-1 (CD90). Prospectively isolated, dental pulp-derived LNGFR(Low+)THY-1(High+) cells represent a highly enriched population of clonogenic cells--notably, the isolated cells exhibited long-term proliferation and multilineage differentiation potential in vitro. The cells also expressed known mesenchymal cell markers and promoted new bone formation to heal critical-size calvarial defects in vivo. These findings suggest that LNGFR(Low+)THY-1(High+) dental pulp-derived cells provide an excellent source of material for bone regenerative strategies. © International & American Associations for Dental Research 2015.

  4. Carriers in mesenchymal stem cell osteoblast mineralization-State-of-the-art

    DEFF Research Database (Denmark)

    Dahl, Morten; Jørgensen, Niklas Rye; Hørberg, Mette

    2014-01-01

    PURPOSE: Tissue engineering is a new way to regenerate bone tissue, where osteogenic capable cells combine with an appropriate scaffolding material. Our aim was in a Medline Search to evaluate osteoblast mineralization in vitro and in vivo including gene expressing combining mesenchymal stem cells...... (MSCs) and five different carriers, titanium, collagen, calcium carbonate, calcium phosphate and polylactic acid-polyglycolic acid copolymer for purpose of a meta-or a descriptive analysis. MATERIALS AND METHODS: The search included the following MeSH words in different combinations-mesenchymal stem...... cells, alkaline phosphatase, bone regeneration, tissue engineering, drug carriers, tissue scaffolds, titanium, collagen, calcium carbonate, calcium phosphates and polylactic acid-polyglycolic acid copolymer. RESULTS: Two out of 80 articles included numerical values and as control, carriers and cells...

  5. Proteome of human stem cells from periodontal ligament and dental pulp.

    Directory of Open Access Journals (Sweden)

    Enrica Eleuterio

    Full Text Available BACKGROUND: Many adult tissues contain a population of stem cells with the ability to regenerate structures similar to the microenvironments from which they are derived in vivo and represent a promising therapy for the regeneration of complex tissues in the clinical disorder. Human adult stem cells (SCs including bone marrow stem cells (BMSCs, dental pulp stem cells (DPSCs and periodontal ligament stem cells (PDLSCs have been characterized for their high proliferative potential, expression of characteristic SC-associated markers and for the plasticity to differentiate in different lineage in vitro. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study is to define the molecular features of stem cells from oral tissue by comparing the proteomic profiles obtained with 2-DE followed by MALDI-TOF/TOF of ex-vivo cultured human PDLSCs, DPSCs and BMSCs. Our results showed qualitative similarities in the proteome profiles among the SCs examined including some significant quantitative differences. To enrich the knowledge of oral SCs proteome we performed an analysis in narrow range pH 4-7 and 6-9, and we found that DPSCs vs PDLSCs express differentially regulated proteins that are potentially related to growth, regulation and genesis of neuronal cells, suggesting that SCs derived from oral tissue source populations may possess the potential ability of neuronal differentiation which is very consistent with their neural crest origin. CONCLUSION/SIGNIFICANCE: This study identifies some differentially expressed proteins by using comparative analysis between DPSCs and PDLSCs and BMSCs and suggests that stem cells from oral tissue could have a different cell lineage potency compared to BMSCs.

  6. Therapeutic potential of dental pulp stem cells in regenerative medicine: An overview

    Directory of Open Access Journals (Sweden)

    Kavita Verma

    2014-01-01

    Full Text Available The purpose of this review is to gain an overview of the applications of the dental pulp stem cells (DPSCs in the treatment of various medical diseases. Stem cells have the capacity to differentiate and regenerate into various tissues. DPSCs are the adult stem cells that reside in the cell rich zone of the dental pulp. These are the multipotent cells that can be explained by their embryonic origin from the neural crest. Owing to this multipotency, these DPSCs can be used in both dental and medical applications. A review of literature has been performed using electronic and hand-searching methods for the medical applications of DPSCs. On the basis of the available information, DPSCs appear to be a promising alternative for the regeneration of tissues and treatment of various diseases, although, long-term clinical trials and studies are needed to confirm their efficacy.

  7. Fine-tuning Hematopoiesis: Microenvironmental factors regulating self-renewal and differentiation of hematopoietic stem cells

    NARCIS (Netherlands)

    T.C. Luis (Tiago)

    2010-01-01

    markdownabstract__Abstract__ Hematopoietic stem cells (HSCs) have the ability to self renew and generate all lineages of blood cells. Although it is currently well established that hematopoietic stem cells (HSCs) regenerate the blood compartment, it was only in the 1960s that was introduced the

  8. The Evolution of the Stem Cell Theory for Heart Failure.

    Science.gov (United States)

    Silvestre, Jean-Sébastien; Menasché, Philippe

    2015-12-01

    Various stem cell-based approaches for cardiac repair have achieved encouraging results in animal experiments, often leading to their rapid proceeding to clinical testing. However, freewheeling evolutionary developments of the stem cell theory might lead to dystopian scenarios where heterogeneous sources of therapeutic cells could promote mixed clinical outcomes in un-stratified patient populations. This review focuses on the lessons that should be learnt from the first generation of stem cell-based strategies and emphasizes the absolute requirement to better understand the basic mechanisms of stem cell biology and cardiogenesis. We will also discuss about the unexpected "big bang" in the stem cell theory, "blasting" the therapeutic cells to their unchallenged ability to release paracrine factors such as extracellular membrane vesicles. Paradoxically, the natural evolution of the stem cell theory for cardiac regeneration may end with the development of cell-free strategies with multiple cellular targets including cardiomyocytes but also other infiltrating or resident cardiac cells.

  9. The Evolution of the Stem Cell Theory for Heart Failure

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien Silvestre

    2015-12-01

    Full Text Available Various stem cell-based approaches for cardiac repair have achieved encouraging results in animal experiments, often leading to their rapid proceeding to clinical testing. However, freewheeling evolutionary developments of the stem cell theory might lead to dystopian scenarios where heterogeneous sources of therapeutic cells could promote mixed clinical outcomes in un-stratified patient populations. This review focuses on the lessons that should be learnt from the first generation of stem cell-based strategies and emphasizes the absolute requirement to better understand the basic mechanisms of stem cell biology and cardiogenesis. We will also discuss about the unexpected “big bang” in the stem cell theory, “blasting” the therapeutic cells to their unchallenged ability to release paracrine factors such as extracellular membrane vesicles. Paradoxically, the natural evolution of the stem cell theory for cardiac regeneration may end with the development of cell-free strategies with multiple cellular targets including cardiomyocytes but also other infiltrating or resident cardiac cells.

  10. Synovial Mesenchymal Stem Cells Promote Meniscus Regeneration Augmented by an Autologous Achilles Tendon Graft in a Rat Partial Meniscus Defect Model

    Science.gov (United States)

    Ozeki, Nobutake; Muneta, Takeshi; Matsuta, Seiya; Koga, Hideyuki; Nakagawa, Yusuke; Mizuno, Mitsuru; Tsuji, Kunikazu; Mabuchi, Yo; Akazawa, Chihiro; Kobayashi, Eiji; Saito, Tomoyuki; Sekiya, Ichiro

    2015-01-01

    Although meniscus defects and degeneration are strongly correlated with the later development of osteoarthritis, the promise of regenerative medicine strategies is to prevent and/or delay the disease's progression. Meniscal reconstruction has been shown in animal models with tendon grafting and transplantation of mesenchymal stem cells (MSCs); however, these procedures have not shown the same efficacy in clinical studies. Here, our aim was to investigate the ability of tendon grafts pretreated with exogenous synovial-derived MSCs to prevent cartilage degeneration in a rat partial meniscus defect model. We removed the anterior half of the medial meniscus and grafted autologous Achilles tendons with or without a 10-minute pretreatment of the tendon with synovial MSCs. The meniscus and surrounding cartilage were evaluated at 2, 4, and 8 weeks (n = 5). Tendon grafts increased meniscus size irrespective of synovial MSCs. Histological scores for regenerated menisci were better in the tendon + MSC group than in the other two groups at 4 and 8 weeks. Both macroscopic and histological scores for articular cartilage were significantly better in the tendon + MSC group at 8 weeks. Implanted synovial MSCs survived around the grafted tendon and native meniscus integration site by cell tracking assays with luciferase+, LacZ+, DiI+, and/or GFP+ synovial MSCs and/or GFP+ tendons. Flow cytometric analysis showed that transplanted synovial MSCs retained their MSC properties at 7 days and host synovial tissue also contained cells with MSC characteristics. Synovial MSCs promoted meniscus regeneration augmented by autologous Achilles tendon grafts and prevented cartilage degeneration in rats. Stem Cells 2015;33:1927–1938 PMID:25993981

  11. Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis.

    Science.gov (United States)

    Jiang, Nan; Zhou, Jian; Chen, Mo; Schiff, Michael D; Lee, Chang H; Kong, Kimi; Embree, Mildred C; Zhou, Yanheng; Mao, Jeremy J

    2014-02-01

    Rodent incisors provide a classic model for studying epithelial-mesenchymal interactions in development. However, postnatal stem/progenitor cells in rodent incisors have not been exploited for tooth regeneration. Here, we characterized postnatal rat incisor epithelium and mesenchyme stem/progenitor cells and found that they formed enamel- and dentin-like tissues in vivo. Epithelium and mesenchyme cells were harvested separately from the apical region of postnatal 4-5 day rat incisors. Epithelial and mesenchymal phenotypes were confirmed by immunocytochemistry, CFU assay and/or multi-lineage differentiation. CK14+, Sox2+ and Lgr5+ epithelium stem cells from the cervical loop enhanced amelogenin and ameloblastin expression upon BMP4 or FGF3 stimulation, signifying their differentiation towards ameloblast-like cells, whereas mesenchyme stem/progenitor cells upon BMP4, BMP7 and Wnt3a treatment robustly expressed Dspp, a hallmark of odontoblastic differentiation. We then control-released microencapsulated BMP4, BMP7 and Wnt3a in transplants of epithelium and mesenchyme stem/progenitor cells in the renal capsule of athymic mice in vivo. Enamel and dentin-like tissues were generated in two integrated layers with specific expression of amelogenin and ameloblastin in the newly formed, de novo enamel-like tissue, and DSP in dentin-like tissue. These findings suggest that postnatal epithelium and mesenchyme stem/progenitor cells can be primed towards bioengineered tooth regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  13. Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration.

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So-Ichiro; Okano, Hideyuki; Takeda, Shin'ichi; Akazawa, Chihiro

    2015-10-01

    Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin-4 (Ten-4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten-4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten-4-deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten-4-deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten-4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten-4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. © 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  14. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation

    Science.gov (United States)

    Sleep, Eduard; McClendon, Mark T.; Preslar, Adam T.; Chen, Charlotte H.; Sangji, M. Hussain; Pérez, Charles M. Rubert; Haynes, Russell D.; Meade, Thomas J.; Blau, Helen M.; Stupp, Samuel I.

    2017-01-01

    Muscle stem cells are a potent cell population dedicated to efficacious skeletal muscle regeneration, but their therapeutic utility is currently limited by mode of delivery. We developed a cell delivery strategy based on a supramolecular liquid crystal formed by peptide amphiphiles (PAs) that encapsulates cells and growth factors within a muscle-like unidirectionally ordered environment of nanofibers. The stiffness of the PA scaffolds, dependent on amino acid sequence, was found to determine the macroscopic degree of cell alignment templated by the nanofibers in vitro. Furthermore, these PA scaffolds support myogenic progenitor cell survival and proliferation and they can be optimized to induce cell differentiation and maturation. We engineered an in vivo delivery system to assemble scaffolds by injection of a PA solution that enabled coalignment of scaffold nanofibers with endogenous myofibers. These scaffolds locally retained growth factors, displayed degradation rates matching the time course of muscle tissue regeneration, and markedly enhanced the engraftment of muscle stem cells in injured and noninjured muscles in mice. PMID:28874575

  15. [Cell-based therapies - an innovative therapeutic option in ophthalmology: Treating corneal diseases with stem cells].

    Science.gov (United States)

    Bakker, Ann-Christin; Langer, Barbara

    2015-11-01

    Pathological changes and disorders of the cornea are a major cause of severe visual impairment and blindness. Replacement of a pathologically altered cornea with healthy corneal tissue from the eye of a suitable donor is among the most common and successful transplantation procedures in medicine. In Germany, approximately 5000-6000 corneal transplantations are performed each year, but the total demand per year is estimated to be twice as high. With a success rate of 90%, the outcome of cornea transplantation is very favourable. However, long-term maintenance and regeneration of a healthy new cornea requires tissue-specific corneal stem cells residing at the basal layer of the limbus, which is the annular transition zone between the cornea and sclera. When this important limbal stem cell population is destroyed or dysfunctional, a pathological condition known as limbal stem cell deficiency (LSCD) manifests. Limbal stem cell deficiency describes conditions associated with impaired corneal wound healing and regeneration. In this situation, transplantation of healthy limbal stem cells is the only curative treatment approach for restoration of an intact and functional ocular surface. To date, treatment of LSCD presents a great challenge for ophthalmologists. However, innovative, cell-therapeutic approaches may open new, promising treatment perspectives. In February 2015, the European Commission granted marketing authorization to the first stem cell-based treatment in the European Union. The product named Holoclar® is an advanced therapy medicinal product (ATMP) for the treatment of moderate to severe LSCD due to physical and chemical burns in adults. Further cell-based treatment approaches are in clinical development.

  16. TRACKING STEM CELLS IN AN INHERENTLY REGENRATIVE ENVIRONMENT

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Foldager, Casper Bindzus; Hagensen, Mette

    2012-01-01

    of such therapies. The objective of this study was to non-invasively evaluate regeneration over time in a truly regenerative process, the regeneration of an axolotl limb, employing superparamagnetic iron oxide particles (SPIO) contrast agents for stem cell tracking in MRI. Materials and Methods: Amputation of one...... in conjugation with the transfection agent poly-L-lysin (PLL) was tested on cultures of axolotl blastema cells from 7 animals in vitro. PicoGreen-DNA quantification following 3 weeks of culturing was performed to quantify cell viability. MRI-tracking of SPIO labelled blastema cells in the regenerating limb of 5....... Results: SPIO labelling with neither VSOP-C200, Resovist nor Resovist/PLL had any significant effect on blastema cell viability in vitro. Labelled tissue was clearly detectable in vivo 49 days after amputation using MRI (Fig. 1) and a significant decline in signal intensity of labelled limbs versus sham...

  17. Adipose-derived adult stem cells: available technologies for potential clinical regenerative applications in dentistry.

    Science.gov (United States)

    Catalano, Enrico; Cochis, Andrea; Varoni, Elena; Rimondini, Lia; Carrassi, Antonio; Azzimonti, Barbara

    2013-01-01

    Tissue homeostasis depends closely on the activity and welfare of adult stem cells. These cells represent a promising tool for biomedical research since they can aid in treatment and promote the regeneration of damaged organs in many human disorders. Adult stem cells indefinitely preserve their ability to self-renew and differentiate into various phenotypes; this capacity could be promoted in vitro by particular culture conditions (differentiation media) or spontaneously induced in vivo by exploiting the biochemical and mechanical properties of the tissue in which the stem cells are implanted. Among the different sources of adult stem cells, adipose tissue is an attractive possibility thanks to its ready availability and the standard extraction techniques at our disposal today. This review discusses the isolation, characterization, and differentiation of human adipose-derived adult stem cells, as well as regeneration strategies, therapeutic uses, and adverse effects of their delivery. In particular, since oral disorders (e.g., trauma, erosion, and chronic periodontitis) often cause the loss of dental tissue along with functional, phonetic, and aesthetic impairment, this review focuses on the application of human adipose-derived adult stem cells, alone or in combination with biomaterials, in treating oral diseases.

  18. Application of Stem Cell Technology in Dental Regenerative Medicine.

    Science.gov (United States)

    Feng, Ruoxue; Lengner, Chistopher

    2013-07-01

    In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach.

  19. A tissue regeneration approach to bone and cartilage repair

    CERN Document Server

    Dunstan, Colin; Rosen, Vicki

    2015-01-01

    Reviewing exhaustively the current state of the art of tissue engineering strategies for regenerating bones and joints through the use of biomaterials, growth factors and stem cells, along with an investigation of the interactions between biomaterials, bone cells, growth factors and added stem cells and how together skeletal tissues can be optimised, this book serves to highlight the importance of biomaterials composition, surface topography, architectural and mechanical properties in providing support for tissue regeneration. Maximizing reader insights into the importance of the interplay of these attributes with bone cells (osteoblasts, osteocytes and osteoclasts) and cartilage cells (chondrocytes), this book also provides a detailed reference as to how key signalling pathways are activated. The contribution of growth factors to drive tissue regeneration and stem cell recruitment is discussed along with a review the potential and challenges of adult or embryonic mesenchymal stem cells to further enhance the...

  20. Bistable Epigenetic States Explain Age-Dependent Decline in Mesenchymal Stem Cell Heterogeneity.

    Science.gov (United States)

    Hamidouche, Zahia; Rother, Karen; Przybilla, Jens; Krinner, Axel; Clay, Denis; Hopp, Lydia; Fabian, Claire; Stolzing, Alexandra; Binder, Hans; Charbord, Pierre; Galle, Joerg

    2017-03-01

    The molecular mechanisms by which heterogeneity, a major characteristic of stem cells, is achieved are yet unclear. We here study the expression of the membrane stem cell antigen-1 (Sca-1) in mouse bone marrow mesenchymal stem cell (MSC) clones. We show that subpopulations with varying Sca-1 expression profiles regenerate the Sca-1 profile of the mother population within a few days. However, after extensive replication in vitro, the expression profiles shift to lower values and the regeneration time increases. Study of the promoter of Ly6a unravels that the expression level of Sca-1 is related to the promoter occupancy by the activating histone mark H3K4me3. We demonstrate that these findings can be consistently explained by a computational model that considers positive feedback between promoter H3K4me3 modification and gene transcription. This feedback implicates bistable epigenetic states which the cells occupy with an age-dependent frequency due to persistent histone (de-)modification. Our results provide evidence that MSC heterogeneity, and presumably that of other stem cells, is associated with bistable epigenetic states and suggest that MSCs are subject to permanent state fluctuations. Stem Cells 2017;35:694-704. © The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury.

    Science.gov (United States)

    Takeda, Norifumi; Jain, Rajan; Li, Deqiang; Li, Li; Lu, Min Min; Epstein, Jonathan A

    2013-01-01

    Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.

  2. Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation?

    Science.gov (United States)

    Korpershoek, Jasmijn V.; de Windt, Tommy S.; Hagmeijer, Michella H.; Vonk, Lucienne A.; Saris, Daniel B. F.

    2017-01-01

    Background: Meniscus damage can be caused by trauma or degeneration and is therefore common among patients of all ages. Repair or regeneration of the menisci could be of great importance not only for pain relief or regaining function but also to prevent degenerative disease and osteoarthritis. Current treatment does not offer consistent long-term improvement. Although preclinical research focusing on augmentation of meniscal tear repair and regeneration after meniscectomy is encouraging, clinical translation remains difficult. Purpose: To systematically evaluate the literature on in vivo meniscus regeneration and explore the optimal cell sources and conditions for clinical translation. We aimed at thorough evaluation of current evidence as well as clarifying the challenges for future preclinical and clinical studies. Study Design: Systematic review. Methods: A search was conducted using the electronic databases of MEDLINE, Embase, and the Cochrane Collaboration. Search terms included meniscus, regeneration, and cell-based. Results: After screening 81 articles based on title and abstract, 51 articles on in vivo meniscus regeneration could be included; 2 additional articles were identified from the references. Repair and regeneration of the meniscus has been described by intra-articular injection of multipotent mesenchymal stromal (stem) cells from adipose tissue, bone marrow, synovium, or meniscus or the use of these cell types in combination with implantable or injectable scaffolds. The use of fibrochondrocytes, chondrocytes, and transfected myoblasts for meniscus repair and regeneration is limited to the combination with different scaffolds. The comparative in vitro and in vivo studies mentioned in this review indicate that the use of allogeneic cells is as successful as the use of autologous cells. In addition, the implantation or injection of cell-seeded scaffolds increased tissue regeneration and led to better structural organization compared with scaffold

  3. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics

    Directory of Open Access Journals (Sweden)

    Nigel G. Kooreman

    2017-08-01

    Full Text Available There is growing interest in using embryonic stem cell (ESC and induced pluripotent stem cell (iPSC derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an “allogenized” mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.

  4. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    Science.gov (United States)

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  5. Therapeutic strategies involving uterine stem cells in reproductive medicine.

    Science.gov (United States)

    Simoni, Michael; Taylor, Hugh S

    2018-04-12

    The current review provides an update on recent advances in stem cell biology relevant to female reproduction. Stem cells are undifferentiated cells that often serve as a reservoir of cells to regenerate tissue in settings or injury or cell loss. The endometrium has progenitor stem cells that can replace all of the endometrium during each menstrual cycle. In addition, multipotent endometrial cells replace these progenitor cells when depleted. Recruitment of stem cells from outside of the uterus occurs in setting of increased demand such as ischemia or injury. Bone marrow-derived multipotent stem cells are recruited to the uterus by estrogen or injury-induced expression of the chemokine CXCL12. In the setting of overwhelming injury, especially in the setting of low estrogen levels, there may be insufficient stem cell recruitment to adequately repair the uterus resulting in conditions such as Asherman syndrome or other endometrial defects. In contrast, excessive recruitment of stem cells underlies endometriosis. Enhanced understanding of stem-cell mobilization, recruitment, and engraftment has created the possibility of improved therapy for endometrial defects and endometriosis through enhanced manipulation of stem-cell trafficking. Further, the normal endometrium is a rich source of multipotent stem cells that can be used for numerous applications in regenerative medicine beyond reproduction. A better understanding of reproductive stem-cell biology may allow improved treatment of endometrial disease such as Asherman syndrome and other endometrial receptivity defects. Inhibiting stem-cell mobilization may also be helpful in endometriosis therapy. Finally, endometrial derived multipotent stem cells may play a crucial role in cell therapy for regenerative medicine.

  6. Stem/progenitor cells in pituitary organ homeostasis and tumourigenesis

    Science.gov (United States)

    Manshaei, Saba

    2018-01-01

    Evidence for the presence of pituitary gland stem cells has been provided over the last decade using a combination of approaches including in vitro clonogenicity assays, flow cytometric side population analysis, immunohistochemical analysis and genetic approaches. These cells have been demonstrated to be able to self-renew and undergo multipotent differentiation to give rise to all hormonal lineages of the anterior pituitary. Furthermore, evidence exists for their contribution to regeneration of the organ and plastic responses to changing physiological demand. Recently, stem-like cells have been isolated from pituitary neoplasms raising the possibility that a cytological hierarchy exists, in keeping with the cancer stem cell paradigm. In this manuscript, we review the evidence for the existence of pituitary stem cells, their role in maintaining organ homeostasis and the regulation of their differentiation. Furthermore, we explore the emerging concept of stem cells in pituitary tumours and their potential roles in these diseases. PMID:28855316

  7. The epidermis comprises autonomous compartments maintained by distinct stem cell populations

    DEFF Research Database (Denmark)

    Page, Mahalia E; Lombard, Patrick; Ng, Felicia

    2013-01-01

    populations. In contrast, upon wounding, stem cell progeny from multiple compartments acquire lineage plasticity and make permanent contributions to regenerating tissue. We further show that oncogene activation in Lrig1(+ve) cells drives hyperplasia but requires auxiliary stimuli for tumor formation....... In summary, our data demonstrate that epidermal stem cells are lineage restricted during homeostasis and suggest that compartmentalization may constitute a conserved mechanism underlying epithelial tissue maintenance....

  8. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration

    Directory of Open Access Journals (Sweden)

    Eap S

    2015-02-01

    Full Text Available Sandy Eap,1,2,* Laetitia Keller,1–3,* Jessica Schiavi,1,2 Olivier Huck,1,2 Leandro Jacomine,4 Florence Fioretti,1,2 Christian Gauthier,4 Victor Sebastian,1,3,5 Pascale Schwinté,1,2 Nadia Benkirane-Jessel1,21INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, FMTS, Faculté de Médecine, Strasbourg, France; 2Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; 3Department of Chemical Engineering, Aragon Nanoscience Institute, University of Zaragoza, Zaragoza, Spain; 4CNRS (National Center for Scientific Research, ICS (Charles Sadron Institute, Strasbourg, France; 5Networking Research Center of Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain*These authors contributed equally to this workAbstract: New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone nanofibrous implant (from 700 µm to 1 cm thick was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII, 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days’ implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7

  9. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration.

    Science.gov (United States)

    Lin, Ko-Jo; Loi, Mei-Xue; Lien, Gi-Shih; Cheng, Chieh-Feng; Pao, Hsiang-Yin; Chang, Yun-Chuang; Ji, Andrea Tung-Qian; Ho, Jennifer Hui-Chun

    2013-06-14

    topical administration of OFSCs was superior to that of the IL injection. OFSCs from the IL injection clustered in the limbal area and central corneal epithelium, which was associated with a persistent corneal haze. Topical OFSC administration is a simple, non-surgical route for stem cell delivery to promote corneal tissue regeneration through ameliorating acute inflammation and corneal epithelial differentiation. The limbal area serves as a niche for OFSCs differentiating into corneal epithelial cells in the first week, while the stroma is a potential site for anti-inflammation of OFSCs. Inhibition of corneal inflammation is related to corneal transparency.

  10. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration

    Science.gov (United States)

    2013-01-01

    therapeutic effect of the topical administration of OFSCs was superior to that of the IL injection. OFSCs from the IL injection clustered in the limbal area and central corneal epithelium, which was associated with a persistent corneal haze. Conclusions Topical OFSC administration is a simple, non-surgical route for stem cell delivery to promote corneal tissue regeneration through ameliorating acute inflammation and corneal epithelial differentiation. The limbal area serves as a niche for OFSCs differentiating into corneal epithelial cells in the first week, while the stroma is a potential site for anti-inflammation of OFSCs. Inhibition of corneal inflammation is related to corneal transparency. PMID:23769140

  11. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus.

    Directory of Open Access Journals (Sweden)

    Christopher M Weber

    Full Text Available The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these

  12. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells

    Science.gov (United States)

    Yang, Ruifeng; Zheng, Ying; Burrows, Michelle; Liu, Shujing; Wei, Zhi; Nace, Arben; Guo, Wei; Kumar, Suresh; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Epithelial stem cells (EpSCs) in the hair follicle bulge are required for hair follicle growth and cycling. The isolation and propagation of human EpSCs for tissue engineering purposes remains a challenge. Here we develop a strategy to differentiate human iPSCs (hiPSCs) into CD200+/ITGA6+ EpSCs that can reconstitute the epithelial components of the hair follicle and interfollicular epidermis. The hiPSC-derived CD200+/ITGA6+ cells show a similar gene expression signature as EpSCs directly isolated from human hair follicles. Human iPSC-derived CD200+/ITGA6+ cells are capable of generating all hair follicle lineages including the hair shaft, and the inner and outer root sheaths in skin reconstitution assays. The regenerated hair follicles possess a KRT15+ stem cell population and produce hair shafts expressing hair-specific keratins. These results suggest an approach for generating large numbers of human EpSCs for tissue engineering and new treatments for hair loss, wound healing and other degenerative skin disorders.

  13. Guiding osteogenesis of mesenchymal stem cells using carbon-based nanomaterials

    Science.gov (United States)

    Kang, Ee-Seul; Kim, Da-Seul; Suhito, Intan Rosalina; Choo, Sung-Sik; Kim, Seung-Jae; Song, Inbeom; Kim, Tae-Hyung

    2017-01-01

    In the field of regenerative medicine, stem cells are highly promising due to their innate ability to generate multiple types of cells that could replace/repair damaged parts of human organs and tissues. It has been reported that both in vitro and in vivo function/survival of stem cells could significantly be improved by utilizing functional materials such as biodegradable polymers, metal composites, nanopatterns and nanohybrid particles. Of various biocompatible materials available for use in stem cell-based therapy and research, carbon-based materials—including fullerenes graphene/graphene oxide and carbon nanotubes—have been found to possess unique physicochemical characteristics that contribute to the effective guidance of stem cell differentiation into specific lineages. In this review, we discuss a number of previous reports that investigated the use of carbon-based materials to control stem cell behavior, with a particular focus on their immense potential to guide the osteogenesis of mesenchymal stem cells (MSCs). We hope that this review will provide information on the full potential of using various carbon-based materials in stem cell-mediated regenerative therapy, particularly for bone regeneration and repair.

  14. Chemical strategies for pancreatic β cell differentiation, reprogramming, and regeneration.

    Science.gov (United States)

    Ma, Xiaojie; Zhu, Saiyong

    2017-04-01

    Generation of unlimited functional pancreatic β cells is critical for the study of pancreatic biology and treatment of diabetes mellitus. Recent advances have suggested several promising directions, including directed differentiation of pancreatic β cells from pluripotent stem cells, reprogramming of pancreatic β cells from other types of somatic cells, and stimulated proliferation and enhanced functions of existing pancreatic β cells. Small molecules are useful in generating unlimited numbers of functional pancreatic cells in vitro and could be further developed as drugs to stimulate endogenous pancreatic regeneration. Here, we provide an updated summary of recent major achievements in pancreatic β cell differentiation, reprogramming, proliferation, and function. These studies will eventually lead to significant advances in the field of pancreatic biology and regeneration. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. New perspectives in human stem cell therapeutic research

    Directory of Open Access Journals (Sweden)

    Trounson Alan

    2009-06-01

    Full Text Available Abstract Human stem cells are in evaluation in clinical stem cell trials, primarily as autologous bone marrow studies, autologous and allogenic mesenchymal stem cell trials, and some allogenic neural stem cell transplantation projects. Safety and efficacy are being addressed for a number of disease state applications. There is considerable data supporting safety of bone marrow and mesenchymal stem cell transplants but the efficacy data are variable and of mixed benefit. Mechanisms of action of many of these cells are unknown and this raises the concern of unpredictable results in the future. Nevertheless there is considerable optimism that immune suppression and anti-inflammatory properties of mesenchymal stem cells will be of benefit for many conditions such as graft versus host disease, solid organ transplants and pulmonary fibrosis. Where bone marrow and mesenchymal stem cells are being studied for heart disease, stroke and other neurodegenerative disorders, again progress is mixed and mostly without significant benefit. However, correction of multiple sclerosis, at least in the short term is encouraging. Clinical trials on the use of embryonic stem cell derivatives for spinal injury and macular degeneration are beginning and a raft of other clinical trials can be expected soon, for example, the use of neural stem cells for killing inoperable glioma and embryonic stem cells for regenerating β islet cells for diabetes. The change in attitude to embryonic stem cell research with the incoming Obama administration heralds a new co-operative environment for study and evaluation of stem cell therapies. The Californian stem cell initiative (California Institute for Regenerative Medicine has engendered global collaboration for this new medicine that will now also be supported by the US Federal Government. The active participation of governments, academia, biotechnology, pharmaceutical companies, and private investment is a powerful consortium for

  16.  Hair follicle as a novel source of stem cells

    Directory of Open Access Journals (Sweden)

    Romana Joachimiak

    2012-04-01

    Full Text Available  Tissue engineering as a rapidly developing branch of science offers hope for the use of its products in medical practice. Among the components of tissue substitutes are different types of cells, especially stem cells. A promising source of adult stem cells is hair follicles. Development of follicles in the skin takes place even during fetal life. They arise due to the impact of epidermal and mesenchymal cells. The next steps in the formation of hair follicles are under the control of many factors. Hair follicles are the niche of various stem cell populations and are a major source of cells responsible for regeneration of the hair, sebaceous glands and epidermis. The term „hair follicle stem cells” is most often used in relation to the epithelial cell population. Hair follicle stem cell studies are complicated by the fact that these stem cells divide relatively rarely.The aim of this study is to present the characteristics of cells isolated from the hair follicle in the light of recent research.

  17. Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism?

    Science.gov (United States)

    Willems, Christophe; Vankelecom, Hugo

    2014-01-01

    The pituitary gland, key regulator of our endocrine system, produces multiple hormones that steer essential physiological processes. Hence, deficient pituitary function (hypopituitarism) leads to severe disorders. Hypopituitarism can be caused by defective embryonic development, or by damage through tumor growth/resection and traumatic brain injury. Lifelong hormone replacement is needed but associated with significant side effects. It would be more desirable to restore pituitary tissue and function. Recently, we showed that the adult (mouse) pituitary holds regenerative capacity in which local stem cells are involved. Repair of deficient pituitary may therefore be achieved by activating these resident stem cells. Alternatively, pituitary dysfunction may be mended by cell (replacement) therapy. The hormonal cells to be transplanted could be obtained by (trans-)differentiating various kinds of stem cells or other cells. Here, we summarize the studies on pituitary cell regeneration and on (trans-)differentiation toward hormonal cells, and speculate on restorative therapies for pituitary deficiency.

  18. Cartilage constructs from human cord blood stem cells seeded in structurally-graded polycaprolactone scaffolds

    DEFF Research Database (Denmark)

    Munir, Samir; Koch, Thomas Gadegaard; Foldager, Casper Bindzus

    Cartilage is an avascular tissue incapable of regeneration. Current treatment modalities for joint cartilage injuries are inefficient in regenerating hyaline cartilage and often leads to the formation of fibrocartilage with undesirable mechanical properties. There is an increasing interest...... in investigating alternative treatments such as tissue engineering, which combines stem cells with scaffolds to produce cartilage in vitro for subsequent transplant. Previous studies have shown that chondrogenesis of induced stem cells is influenced by various growth factors, oxygen tensions and mechanical...... this novel SGS-PCL scaffold supports the chondrogenic differentiation of MLPCs will be interesting to evaluate since this scaffold possesses mechanical properties absent from other “soft” scaffolds currently being investigated for cartilage regeneration and implantation....

  19. Exosomes and Their Therapeutic Potentials of Stem Cells

    Directory of Open Access Journals (Sweden)

    Chao Han

    2016-01-01

    Full Text Available Exosomes, a group of vesicles originating from the multivesicular bodies (MVBs, are released into the extracellular space when MVBs fuse with the plasma membrane. Numerous studies indicate that exosomes play important roles in cell-to-cell communication, and exosomes from specific cell types and conditions display multiple functions such as exerting positive effects on regeneration in many tissues. It is widely accepted that the therapeutic potential of stem cells may be mediated largely by the paracrine factors, so harnessing the paracrine effects of stem and progenitor cells without affecting these living, replicating, and potentially pluripotent cell populations is an advantage in terms of safety and complexity. Ascending evidence indicated that exosomes might be the main components of paracrine factors; thus, understanding the role of exosomes in each subtype of stem cells is far-reaching. In this review, we discuss the functions of exosomes from different types of stem cells and emphasize the therapeutic potentials of exosomes, providing an alternative way of developing strategies to cure diseases.

  20. Liver Development, Regeneration, and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Janet W. C. Kung

    2010-01-01

    Full Text Available The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers.

  1. Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury.

    Directory of Open Access Journals (Sweden)

    Norifumi Takeda

    Full Text Available Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5 identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.

  2. Neonatal Desensitization Supports Long-Term Survival and Functional Integration of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells in Rat Joint Cartilage Without Immunosuppression

    Science.gov (United States)

    Zhang, Shufang; Jiang, Yang Zi; Zhang, Wei; Chen, Longkun; Tong, Tong; Liu, Wanlu; Mu, Qin; Liu, Hua; Ji, Junfeng; Ouyang, Hong Wei

    2013-01-01

    Immunological response hampers the investigation of human embryonic stem cells (hESCs) or their derivates for tissue regeneration in vivo. Immunosuppression is often used after surgery, but exhibits side effects of significant weight loss and allows only short-term observation. The purpose of this study was to investigate whether neonatal desensitization supports relative long-term survival of hESC-derived mesenchymal stem cells (hESC-MSCs) and promotes cartilage regeneration. hESC-MSCs were injected on the day of birth in rats. Six weeks after neonatal injection, a full-thickness cylindrical cartilage defect was created and transplanted with a hESC-MSC-seeded collagen bilayer scaffold (group d+s+c) or a collagen bilayer scaffold (group d+s). Rats without neonatal injection were transplanted with the hESC-MSC-seeded collagen bilayer scaffold to serve as controls (group s+c). Cartilage regeneration was evaluated by histological analysis, immunohistochemical staining, and biomechanical test. The role of hESC-MSCs in cartilage regeneration was analyzed by CD4 immunostaining, cell death detection, and visualization of human cells in regenerated tissues. hESC-MSCs expressed CD105, CD73, CD90, CD29, and CD44, but not CD45 and CD34, and possessed trilineage differentiation potential. Group d+s+c exhibited greater International Cartilage Repair Society (ICRS) scores than group d+s or group s+c. Abundant collagen type II and improved mechanical properties were detected in group d+s+c. There were less CD4+ inflammatory cell infiltration and cell death at week 1, and hESC-MSCs were found to survive as long as 8 weeks after transplantation in group d+s+c. Our study suggests that neonatal desensitization before transplantation may be an efficient way to develop a powerful tool for preclinical study of human cell-based therapies in animal models. PMID:22788986

  3. Cell-State Transitions Regulated by SLUG Are Critical for Tissue Regeneration and Tumor Initiation

    Directory of Open Access Journals (Sweden)

    Sarah Phillips

    2014-05-01

    Full Text Available Perturbations in stem cell activity and differentiation can lead to developmental defects and cancer. We use an approach involving a quantitative model of cell-state transitions in vitro to gain insights into how SLUG/SNAI2, a key developmental transcription factor, modulates mammary epithelial stem cell activity and differentiation in vivo. In the absence of SLUG, stem cells fail to transition into basal progenitor cells, while existing basal progenitor cells undergo luminal differentiation; together, these changes result in abnormal mammary architecture and defects in tissue function. Furthermore, we show that in the absence of SLUG, mammary stem cell activity necessary for tissue regeneration and cancer initiation is lost. Mechanistically, SLUG regulates differentiation and cellular plasticity by recruiting the chromatin modifier lysine-specific demethylase 1 (LSD1 to promoters of lineage-specific genes to repress transcription. Together, these results demonstrate that SLUG plays a dual role in repressing luminal epithelial differentiation while unlocking stem cell transitions necessary for tumorigenesis.

  4. Heterogeneous Stem Cells in Skin Homeostatis and Wound Repair

    Directory of Open Access Journals (Sweden)

    Anna Meilana

    2015-08-01

    Full Text Available BACKGROUND: The skin protects mammals from insults, infection and dehydration and enables thermoregulation and sensory perception. Various skin-resident cells carry out these diverse functions. Constant turnover of cells and healing upon injury necessitate multiple reservoirs of stem cells. The skin is a complex organ harboring several distinct populations of stem cells and a rich array of cell types. Advances in genetic and imaging tools have brought new findings about the lineage relationships between skin stem cells and their progeny. Such knowledge may offer novel avenues for therapeutics and regenerative medicine. CONTENT: In the past years, our view of the mechanisms that govern skin homeostasis and regeneration have markedly changed. New populations of stem cells have been identified that behave spatio-temporally differently in healthy tissues and in situations of damage, indicating that a great level of stem cell heterogeneity is present in the skin. There are believed to be distinct populations of stem cells in different locations. The lineages that they feed are normally constrained by signals from their local environment, but they can give rise to all epidermal lineages in response to appropriate stimuli. Given the richness of structures such as blood vessels, subcutaneous fat, innervation and the accumulation of fibroblasts under the upper parts of the rete ridges (in the case of human skin, it is reasonable to speculate that the microenvironment might be essential for interfollicular epidermal homeostasis. The bloodstream is probably the main source of long-range signals reaching the skin, and cues provided by the vascular niche might be essential for skin homeostasis. SUMMARY: A key function of the interfollicular epidermis is to act as a protective interface between the body and the external environment, and it contains several architectural elements that enable it to fulfill this function. All elements of the epidermis play

  5. Epithelial Regeneration After Gastric Ulceration Causes Prolonged Cell-Type AlterationsSummary

    Directory of Open Access Journals (Sweden)

    Eitaro Aihara

    2016-09-01

    Full Text Available Background & Aims: The peptic ulcer heals through a complex process, although the ulcer relapse often occurs several years later after healing. Our hypothesis is that even after visual evidence of healing of gastric ulceration, the regenerated epithelium is aberrant for an extended interval, increasing susceptibility of the regenerated epithelium to damage and further diseases. Methods: Gastric ulcers were induced in mice by serosal topical application of acetic acid. Results: Gastric ulcers induced by acetic acid visually healed within 30 days. However, regenerated epithelial architecture was poor. The gene profile of regenerated tissue was abnormal, indicating increased stem/progenitor cells, deficient differentiated gastric cell types, and deranged cell homeostasis. Despite up-regulation of PDX1 in the regenerated epithelium, no mature antral cell type was observed. Four months after healing, the regenerated epithelium lacks parietal cells, trefoil factor 2 (TFF2 and (sex-determining region Y-box 9 (SOX9 remain up-regulated deep in the gastric gland, and the Na/H exchanger 2 (a TFF2 effector in gastric healing remains down-regulated. Gastric ulcer healing was strongly delayed in TFF2 knockout mice, and re-epithelialization was accompanied with mucous metaplasia. After Helicobacter pylori inoculum 30 days after ulceration, we observed that the gastric ulcer selectively relapses at the same site where it originally was induced. Follow-up evaluation at 8 months showed that the relapsed ulcer was not healed in H pylori–infected tissues. Conclusions: These findings show that this macroscopically regenerated epithelium has prolonged abnormal cell distribution and is differentially susceptible to subsequent damage by H pylori. Keywords: Gastric Ulcer Healing, Metaplasia, H pylori, SOX9, TFF2, NHE2

  6. Mesenchymal stem cells (MSCs) as skeletal therapeutics-an update

    DEFF Research Database (Denmark)

    Saeed, H.; Ahsan, M.; Saleem, Z.

    2016-01-01

    Mesenchymal stem cells hold the promise to treat not only several congenital and acquired bone degenerative diseases but also to repair and regenerate morbid bone tissues. Utilizing MSCs, several lines of evidences advocate promising clinical outcomes in skeletal diseases and skeletal tissue repair....../regeneration. In this context, both, autologous and allogeneic cell transfer options have been utilized. Studies suggest that MSCs are transplanted either alone by mixing with autogenous plasma/serum or by loading onto repair/induction supportive resorb-able scaffolds. Thus, this review is aimed at highlighting a wide range...

  7. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay.

    Directory of Open Access Journals (Sweden)

    Kaoru Miyazaki

    Full Text Available Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP, but not endometrial main population cells (EMP, exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay.ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom, a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells.We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo endometrial tissue reconstitution. Using this assay, we demonstrated that ESP

  8. Experimental myocardial stem cell therapy for ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Kastrup, Jens; Mygind, Naja D.; Qayyum, Abbas A.

    2016-01-01

    ), chronic IHD and heart failure. The patients suffer from chest pain (angina), dyspnea and a reduced quality of life. Common for all these conditions is loss of functional cardiomyocytes and endothelial cells. Stem cell therapy to regenerate injured myocardium is a new treatment option which has gained much...... interest in the last 10-15 years especially after STEMI. Many preclinical and clinical studies have shown encouraging results but also very diverse clinical outcomes after stem cell treatment. This diversity in results may be explained by different factors, such as cell isolation technique, infarct...... location, timing and route of delivery, cell dosage, cell type etc. The present review will try to elaborate and clarify the present status for stem cell therapy in STEMI....

  9. Experimental myocardial stem cell therapy for ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Kastrup, Jens; Mygind, Naja D; Qayyum, Abbas A

    2016-01-01

    ), chronic IHD and heart failure. The patients suffer from chest pain (angina), dyspnea and a reduced quality of life. Common for all these conditions is loss of functional cardiomyocytes and endothelial cells. Stem cell therapy to regenerate injured myocardium is a new treatment option which has gained much...... location, timing and route of delivery, cell dosage, cell type etc. The present review will try to elaborate and clarify the present status for stem cell therapy in STEMI....... interest in the last 10-15 years especially after STEMI. Many preclinical and clinical studies have shown encouraging results but also very diverse clinical outcomes after stem cell treatment. This diversity in results may be explained by different factors, such as cell isolation technique, infarct...

  10. Stem cell therapy for retinal diseases

    Science.gov (United States)

    Garcia, José Mauricio; Mendonça, Luisa; Brant, Rodrigo; Abud, Murilo; Regatieri, Caio; Diniz, Bruno

    2015-01-01

    In this review, we discuss about current knowledge about stem cell (SC) therapy in the treatment of retinal degeneration. Both human embryonic stem cell and induced pluripotent stem cell has been growth in culture for a long time, and started to be explored in the treatment of blinding conditions. The Food and Drug Administration, recently, has granted clinical trials using SC retinal therapy to treat complex disorders, as Stargardt’s dystrophy, and patients with geographic atrophy, providing good outcomes. This study’s intent is to overview the critical regeneration of the subretinal anatomy through retinal pigment epithelium transplantation, with the goal of reestablish important pathways from the retina to the occipital cortex of the brain, as well as the differentiation from pluripotent quiescent SC to adult retina, and its relationship with a primary retinal injury, different techniques of transplantation, management of immune rejection and tumorigenicity, its potential application in improving patients’ vision, and, finally, approaching future directions and challenges for the treatment of several conditions. PMID:25621115

  11. Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits

    Directory of Open Access Journals (Sweden)

    Vyacheslav Ogay

    2014-01-01

    Full Text Available Introduction: The purpose of this study was to investigate whether intra-articular injection of synovium-derived mesenchymal stem cells (SD MSCs with low molecular weight hyaluronic acid (HA could promote regeneration of massive cartilage in rabbits. Material and methods: The SD MSCs were harvested from the knees of 10 Flemish giant rabbits, expanded in culture, and characterized. A reproducible 4-mm cylindrical defect was created in the intercondylar groove area using a kit for the mosaic chondroplasty of femoral condyle COR (De Puy, Mitek. The defect was made within the cartilage layer without destruction of subchondral bone. Two weeks after the cartilage defect, SD MSCs (2 × 106 cell/0.15 ml were suspended in 0.5% low molecular weight HA (0.15 ml and injected into the left knee, and HA solution (0.30 ml alone was placed into the right knee. Cartilage regeneration in the experimental and control groups were evaluated by macroscopically and histologically at 10, 30, and 60 days. Results: On day 10, after intra-articular injection of SD MSCs, we observed an early process of cartilage regeneration in the defect area. Histological studies revealed that cartilage defect was covered by a thin layer of spindle-shaped undifferentiated cells and proliferated chodroblasts. In contrast, an injection of HA did not induce reparation of cartilage in the defect area. At 30 days, macroscopic observation showed that the size of cartilage defect after SD MSC injection was significantly smaller than after HA injection. Histological score was also better in the MSC- treated intercondylar defect. At 60 days after MSC treatment, cartilage defect was nearly nonexistent and looked similar to an intact cartilage. Conclusion: Thus, intra-articular injection of SD MSCs can adhere to the defect in the intercondylar area, and promote cartilage regeneration in rabbits.

  12. Human Umbilical Cord MSCs as New Cell Sources for Promoting Periodontal Regeneration in Inflammatory Periodontal Defect.

    Science.gov (United States)

    Shang, Fengqing; Liu, Shiyu; Ming, Leiguo; Tian, Rong; Jin, Fang; Ding, Yin; Zhang, Yongjie; Zhang, Hongmei; Deng, Zhihong; Jin, Yan

    2017-01-01

    Human periodontal ligament stem cells (hPDLSCs) transplantation represents a promising approach for periodontal regeneration; however, the cell source is limited due to the invasive procedure required for cell isolation. As human umbilical cord mesenchymal stem cells (hUCMSCs) can be harvested inexpensively and inexhaustibly, here we evaluated the regenerative potentials of hUCMSCs as compared with hPDLSCs to determine whether hUCMSCs could be used as new cell sources for periodontal regeneration. Methods The characteristics of hUCMSCs, including multi-differentiation ability and anti-inflammatory capability, were determined by comparison with hPDLSCs. We constructed cell aggregates (CA) using hUCMSCs and hPDLSCs respectively. Then hPDLSCs-CA and hUCMSCs-CA were combined with β-tricalcium phosphate bioceramic (β-TCP) respectively and their regenerative potentials were determined in a rat inflammatory periodontal defect model. Results hPDLSCs showed higher osteogenic differentiation potentials than hUCMSCs. Meanwhile, hUCMSCs showed higher extracellular matrix secretion and anti-inflammatory abilities than hPDLSCs. Similar to hPDLSCs, hUCMSCs were able to contribute to regeneration of both soft and hard periodontal tissues under inflammatory periodontitis condition. There were more newly formed bone and periodontal ligaments in hPDLSCs and hUCMSCs groups than in non-cell treated group. Moreover, no significant differences of regenerative promoting effects between hPDLSCs and hUCMSCs were found. Conclusion : hUCMSCs generated similar promoting effects on periodontal regeneration compared with hPDLSCs, and can be used as new cell sources for periodontal regeneration.

  13. Mesenchymal Stem Cells for the Treatment of Skin Diseases

    Directory of Open Access Journals (Sweden)

    Toshio Hasegawa

    2017-08-01

    Full Text Available Mesenchymal stem cell (MSC-based therapy involving both autologous and allogeneic MSCs shows great promise in treating several conditions. MSCs promote wound healing, and can differentiate into multiple cell lineages, including keratinocytes. Therefore, MSCs can be used for the treatment of congenital or acquired skin defects. Because of their immunomodulatory properties, MSCs may be useful for the treatment of inflammatory and autoimmune skin diseases. In particular, MSCs might be effective for the treatment of large vitiligo lesions as immunosuppressant or cultured grafts. MSCs can also be a novel cell source for regenerating hair in the treatment of scarring alopecia and androgenic alopecia. MSCs might also be an effective treatment for alopecia areata, which is associated with autoimmunity. Stem cell therapies with topical administration of MSCs and bone marrow transplantation were shown to alleviate recessive dystrophic epidermolysis bullosa in both animal models and human subjects. In addition to cell transplantation, the mobilization of endogenous MSCs has been attempted for skin regeneration. Overall, this review highlights the great potential of MSCs for the treatment of skin diseases in the near future.

  14. The life and fate of mesenchymal stem cells

    NARCIS (Netherlands)

    E. Eggenhofer (Elke); F. Luk (Franka); M.H. Dahlke (Marc); M.J. Hoogduijn (Martin)

    2014-01-01

    textabstractMesenchymal stem cells (MSC) are present throughout the body and are thought to play a role in tissue regeneration and control of inflammation. MSC can be easily expanded in vitro and their potential as a therapeutic option for degenerative and inflammatory disease is therefore

  15. Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve Repair and Functional Outcomes

    Science.gov (United States)

    2017-07-01

    with autologous mesenchymal stem cells . Exp Neurol. 2007 Apr; 204(2):658-66. 19. Dezawa M., et al., Sciatic nerve regeneration in rats induced by...36 23. Mimura T., et al., Peripheral nerve regeneration by transplantation of bone marrow stromal cell -derived Schwann cells in adult rats. J...AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve

  16. Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans

    Science.gov (United States)

    Arora, Pooja; Sindhu, Annu; Dilbaghi, Neeraj; Chaudhury, Ashok; Rajakumar, Govindasamy; Rahuman, Abdul Abdul

    2012-01-01

    Nanotechnology is a fast growing area of research that aims to create nanomaterials or nanostructures development in stem cell and tissue-based therapies. Concepts and discoveries from the fields of bio nano research provide exciting opportunities of using stem cells for regeneration of tissues and organs. The application of nanotechnology to stem-cell biology would be able to address the challenges of disease therapeutics. This review covers the potential of nanotechnology approaches towards regenerative medicine. Furthermore, it focuses on current aspects of stem- and tissue-cell engineering. The magnetic nanoparticles-based applications in stem-cell research open new frontiers in cell and tissue engineering. PMID:22260258

  17. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  18. New insights into mechanisms of stem cell daughter fate determination in regenerative tissues.

    Science.gov (United States)

    Sada, Aiko; Tumbar, Tudorita

    2013-01-01

    Stem cells can self-renew and differentiate over extended periods of time. Understanding how stem cells acquire their fates is a central question in stem cell biology. Early work in Drosophila germ line and neuroblast showed that fate choice is achieved by strict asymmetric divisions that can generate each time one stem and one differentiated cell. More recent work suggests that during homeostasis, some stem cells can divide symmetrically to generate two differentiated cells or two identical stem cells to compensate for stem cell loss that occurred by direct differentiation or apoptosis. The interplay of all these factors ensures constant tissue regeneration and the maintenance of stem cell pool size. This interplay can be modeled as a population-deterministic dynamics that, at least in some systems, may be described as stochastic behavior. Here, we overview recent progress made on the characterization of stem cell dynamics in regenerative tissues. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. In vitro long-term development of cultured inner ear stem cells of newborn rat.

    Science.gov (United States)

    Carricondo, Francisco; Iglesias, Mari Cruz; Rodríguez, Fernando; Poch-Broto, Joaquin; Gil-Loyzaga, Pablo

    2010-10-01

    The adult mammalian auditory receptor lacks any ability to repair and/or regenerate after injury. However, the late developing cochlea still contains some stem-cell-like elements that might be used to regenerate damaged neurons and/or cells of the organ of Corti. Before their use in any application, stem cell numbers need to be amplified because they are usually rare in late developing and adult tissues. The numerous re-explant cultures required for the progressive amplification process can result in a spontaneous differentiation process. This aspect has been implicated in the tumorigenicity of stem cells when transplanted into a tissue. The aim of this study has been to determine whether cochlear stem cells can proliferate and differentiate spontaneously in long-term cultures without the addition of any factor that might influence these processes. Cochlear stem cells, which express nestin protein, were cultured in monolayers and fed with DMEM containing 5% FBS. They quickly organized themselves into typical spheres exhibiting a high proliferation rate, self-renewal property, and differentiation ability. Secondary cultures of these stem cell spheres spontaneously differentiated into neuroectodermal-like cells. The expression of nestin, glial-fibrillary-acidic protein, vimentin, and neurofilaments was evaluated to identify early differentiation. Nestin expression appeared in primary and secondary cultures. Other markers were also identified in differentiating cells. Further research might demonstrate the spontaneous differentiation of cochlear stem cells and their teratogenic probability when they are used for transplantation.

  20. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    Directory of Open Access Journals (Sweden)

    Satoru Morikawa

    2016-01-01

    Full Text Available Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs. The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research.

  1. [Research progress of Lgr5-positive stem cells in the formation of organoid in 3D culture].

    Science.gov (United States)

    He, Q Q; Li, A; Wang, M H; Gao, X

    2018-06-07

    Stem cell is critical to regeneration of tissue or organ of human. How to promote repair or regeneration in the tissues/organ using its pluripotency is always an important issue. Lgr5-possitive cell is one type of the stem cell-like cells capable of pluripotent differentiation in various tissues/organs of both humans and mice. Current study showed that single or small amount Lgr5-possitive stem cells can grow and form a plurality of organs in 3D culture system, and some organs can present similar biological and physiological properties with the progenitor they were derived. These studies provided new insight into future orientation, for example, Lgr5-possitive inner ear cells were confirmed as inner ear pluripotent cells population, the experiences obtained from organoid studies of Lgr5-possitive cells have certainly showed potential in the future study of inner ear stem cells. This review will focus on the recent progress associated with Lgr 5-positive stem cells forming organoids in the 3D culture.

  2. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine.

    Science.gov (United States)

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C; Nolta, Jan A; Athanasiou, Kyriacos A

    2015-10-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides

  3. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems

    International Nuclear Information System (INIS)

    James, R; Kumbar, S G; Laurencin, C T; Balian, G; Chhabra, A B

    2011-01-01

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable, and when combined with readily available autologous cells, may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stem cells (ADSCs) that were cultured on a poly(dl-lactide-co-glycolide) PLAGA fiber scaffold and compared to a PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker, was upregulated seven- to eightfold at 1 week with GDF-5 treatment when cultured on a 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by fourfold starting at 1 week on treatment with 100 ng mL -1 GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on a PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration.

  4. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems.

    Science.gov (United States)

    James, R; Kumbar, S G; Laurencin, C T; Balian, G; Chhabra, A B

    2011-04-01

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable, and when combined with readily available autologous cells, may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stem cells (ADSCs) that were cultured on a poly(DL-lactide-co-glycolide) PLAGA fiber scaffold and compared to a PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker, was upregulated seven- to eightfold at 1 week with GDF-5 treatment when cultured on a 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by fourfold starting at 1 week on treatment with 100 ng mL(-1) GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on a PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration.

  5. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems

    Energy Technology Data Exchange (ETDEWEB)

    James, R [Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908 (United States); Kumbar, S G; Laurencin, C T [Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030 (United States); Balian, G; Chhabra, A B, E-mail: ac2h@hscmail.mcc.virginia.edu [Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908 (United States)

    2011-04-15

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable, and when combined with readily available autologous cells, may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stem cells (ADSCs) that were cultured on a poly(dl-lactide-co-glycolide) PLAGA fiber scaffold and compared to a PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker, was upregulated seven- to eightfold at 1 week with GDF-5 treatment when cultured on a 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by fourfold starting at 1 week on treatment with 100 ng mL{sup -1} GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on a PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration.

  6. Nanoparticle-labeled stem cells: a novel therapeutic vehicle

    Directory of Open Access Journals (Sweden)

    Abir O El-Sadik

    2010-03-01

    Full Text Available Abir O El-Sadik1, Afaf El-Ansary2, Sherif M Sabry31Stem Cell Unit, Anatomy Department, College of Medicine, Health Science Colleges; 2Biochemistry Department, Science College, King Saud University; 3Anatomy Department, Faculty of Medicine, Cairo University, Cairo, EgyptAbstract: Nanotechnology has been described as a general purpose technology. It has already generated a range of inventions and innovations. Development of nanotechnology will provide clinical medicine with a range of new diagnostic and therapeutic opportunities such as medical imaging, medical diagnosis, drug delivery, and cancer detection and management. Nanoparticles such as manganese, polystyrene, silica, titanium oxide, gold, silver, carbon, quantum dots, and iron oxide have received enormous attention in the creation of new types of analytical tools for biotechnology and life sciences. Labeling of stem cells with nanoparticles overcame the problems in homing and fixing stem cells to their desired site and guiding extension of stem cells to specific directions. Although the biologic effects of some nanoparticles have already been assessed, information on toxicity and possible mechanisms of various particle types remains inadequate. The aim of this review is to give an overview of the mechanisms of internalization and distribution of nanoparticles inside stem cells, as well as the influence of different types of nanoparticles on stem cell viability, proliferation, differentiation, and cytotoxicity, and to assess the role of nanoparticles in tracking the fate of stem cells used in tissue regeneration.Keywords: nanoparticles, stem cells, uptake, differentiation, cytotoxicity, tracking

  7. The epigenetic regulation of stem cell factors in hepatic stellate cells.

    Science.gov (United States)

    Reister, Sven; Kordes, Claus; Sawitza, Iris; Häussinger, Dieter

    2011-10-01

    The epigenetic regulation by DNA methylation is an important mechanism to control the expression of stem cell factors as demonstrated in tumor cells. It was recently shown that hepatic stellate cells (HSC) express stem/progenitor cell factors and have a differentiation potential. The aim of this work was to investigate if the expression of stem cell markers is regulated by DNA methylation during activation of rat HSC. It was found that CD133, Notch1, and Notch3 are regulated via DNA methylation in HSC, whereas Nestin shows no DNA methylation in HSC and other undifferentiated cells such as embryonic stem cells and umbilical cord blood stem cells from rats. In contrast to this, DNA methylation controls Nestin expression in differentiated cells like hepatocytes and the hepatoma cell line H4IIE. Demethylation by 5-Aza-2-deoxycytidine was sufficient to induce Nestin in H4IIE cells. In quiescent stellate cells and embryonic stem cells, the Nestin expression was suppressed by histone H3 methylation at lysine 9, which is another epigenetic mechanism. Apart from the known induction of Nestin in cultured HSC, this intermediate filament protein was also induced after partial hepatectomy, indicating activation of HSC during liver regeneration. Taken together, this study demonstrates for the first time that the expression of stem cell-associated factors such as CD133, Notch1, and Notch3 is controlled by DNA methylation in HSC. The regulation of Nestin by DNA methylation seems to be restricted to differentiated cells, whereas undifferentiated cells use different epigenetic mechanisms such as histone H3 methylation to control Nestin expression.

  8. Skeletal Muscle-derived Hematopoietic Stem Cells: Muscular Dystrophy Therapy by Bone Marrow Transplantation

    OpenAIRE

    Asakura, Atsushi

    2012-01-01

    For postnatal growth and regeneration of skeletal muscle, satellite cells, a self-renewing pool of muscle stem cells, give rise to daughter myogenic precursor cells that contribute to the formation of new muscle fibers. In addition to this key myogenic cell class, adult skeletal muscle also contains hematopoietic stem cell and progenitor cell populations which can be purified as a side population (SP) fraction or as a hematopoietic marker CD45-positive cell population. These muscle-derived he...

  9. Stem cells and the pancreas: from discovery to clinical approach

    Directory of Open Access Journals (Sweden)

    Angelica Dessì

    2016-02-01

    Full Text Available The existence of stem cells within the adult pancreas is supported by the ability of this organ to regenerate its endocrine component in various conditions such as pregnancy and following partial pancreatectomy. Several studies have shown that progenitor or adult stem cells may reside within the pancreas and particularly in the pancreatic ducts, including acinar cells and islets of Langerhans. The discovery of human pluripotent stem cells in the pancreas, and the possibility of development of strategies for generating these, represented a turning point for the therapeutic interventions of type 1 diabetes.Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  10. Rhesus monkey neural stem cell transplantation promotes neural regeneration in rats with hippocampal lesions

    Directory of Open Access Journals (Sweden)

    Li-juan Ye

    2016-01-01

    Full Text Available Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 × 105 cells/μL were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-labeled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.

  11. Insights into cell-free therapeutic approach: Role of stem cell "soup-ernatant".

    Science.gov (United States)

    Raik, Shalini; Kumar, Ajay; Bhattacharyya, Shalmoli

    2018-03-01

    Current advances in medicine have revolutionized the field of regenerative medicine dramatically with newly evolved therapies for repair or replacement of degenerating or injured tissues. Stem cells (SCs) can be harvested from different sources for clinical therapeutics, which include fetal tissues, umbilical cord blood, embryos, and adult tissues. SCs can be isolated and differentiated into desired lineages for tissue regeneration and cell replacement therapy. However, several loopholes need to be addressed properly before this can be extended for large-scale therapeutic application. These include a careful approach for patient safety during SC treatments and tolerance of recipients. SC treatments are associated with a number of risk factors and require successful integration and survival of transplanted cells in the desired microenvironment with concurrent tissue regeneration. Recent studies have focused on developing alternatives that can replace the cell-based therapy using paracrine factors. The development of stem "cell free" therapies can be devoted mainly to the use of soluble factors (secretome), extracellular vesicles, and mitochondrial transfer. The present review emphasizes on the paradigms related to the use of SC-based therapeutics and the potential applications of a cell-free approach as an alternative to cell-based therapy in the area of regenerative medicine. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  12. Planarians as a model of aging to study the interaction between stem cells and senescent cells in vivo

    Directory of Open Access Journals (Sweden)

    Patrick M. Perrigue

    2015-12-01

    Full Text Available The depletion of stem cell pools and the accumulation of senescent cells in animal tissues are linked to aging. Planarians are invertebrate flatworms and are unusual in that their stem cells, called neoblasts, are constantly replacing old and dying cells. By eliminating neoblasts in worms via irradiation, the biological principles of aging are exposed in the absence of wound healing and regeneration, making planaria a powerful tool for aging research.

  13. Targeted reversion of induced pluripotent stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat calvarial bone defect model.

    Science.gov (United States)

    Saito, Akiko; Ooki, Akio; Nakamura, Takashi; Onodera, Shoko; Hayashi, Kamichika; Hasegawa, Daigo; Okudaira, Takahito; Watanabe, Katsuhito; Kato, Hiroshi; Onda, Takeshi; Watanabe, Akira; Kosaki, Kenjiro; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Sakamoto, Teruo; Yamaguchi, Akira; Sueishi, Kenji; Azuma, Toshifumi

    2018-01-22

    Runt-related transcription factor 2 (RUNX2) haploinsufficiency causes cleidocranial dysplasia (CCD) which is characterized by supernumerary teeth, short stature, clavicular dysplasia, and osteoporosis. At present, as a therapeutic strategy for osteoporosis, mesenchymal stem cell (MSC) transplantation therapy is performed in addition to drug therapy. However, MSC-based therapy for osteoporosis in CCD patients is difficult due to a reduction in the ability of MSCs to differentiate into osteoblasts resulting from impaired RUNX2 function. Here, we investigated whether induced pluripotent stem cells (iPSCs) properly differentiate into osteoblasts after repairing the RUNX2 mutation in iPSCs derived from CCD patients to establish normal iPSCs, and whether engraftment of osteoblasts derived from properly reverted iPSCs results in better regeneration in immunodeficient rat calvarial bone defect models. Two cases of CCD patient-derived induced pluripotent stem cells (CCD-iPSCs) were generated using retroviral vectors (OCT3/4, SOX2, KLF4, and c-MYC) or a Sendai virus SeVdp vector (KOSM302L). Reverted iPSCs were established using programmable nucleases, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-derived RNA-guided endonucleases, to correct mutations in CCD-iPSCs. The mRNA expressions of osteoblast-specific markers were analyzed using quantitative reverse-transcriptase polymerase chain reaction. iPSCs-derived osteoblasts were transplanted into rat calvarial bone defects, and bone regeneration was evaluated using microcomputed tomography analysis and histological analysis. Mutation analysis showed that both contained nonsense mutations: one at the very beginning of exon 1 and the other at the initial position of the nuclear matrix-targeting signal. The osteoblasts derived from CCD-iPSCs (CCD-OBs) expressed low levels of several osteoblast differentiation markers, and transplantation of these osteoblasts into calvarial bone defects created in rats with

  14. Concise review: Inner ear stem cells--an oxymoron, but why?

    Science.gov (United States)

    Ronaghi, Mohammad; Nasr, Marjan; Heller, Stefan

    2012-01-01

    Hearing loss, caused by irreversible loss of cochlear sensory hair cells, affects millions of patients worldwide. In this concise review, we examine the conundrum of inner ear stem cells, which obviously are present in the inner ear sensory epithelia of nonmammalian vertebrates, giving these ears the ability to functionally recover even from repetitive ototoxic insults. Despite the inability of the mammalian inner ear to regenerate lost hair cells, there is evidence for cells with regenerative capacity because stem cells can be isolated from vestibular sensory epithelia and from the neonatal cochlea. Challenges and recent progress toward identification of the intrinsic and extrinsic signaling pathways that could be used to re-establish stemness in the mammalian organ of Corti are discussed. Copyright © 2011 AlphaMed Press.

  15. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration.

    Science.gov (United States)

    Xie, Liwei; Yin, Amelia; Nichenko, Anna S; Beedle, Aaron M; Call, Jarrod A; Yin, Hang

    2018-03-13

    The remarkable regeneration capability of skeletal muscle depends on coordinated proliferation and differentiation of satellite cells. The self-renewal of satellite cells is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in satellite cells in vivo remains largely unknown. Here, we report that satellite cells are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic maintenance of satellite cells by maintaining the quiescence, increasing the self-renewal and blocking the myogenic differentiation of satellite cells. HIF2A stabilization in satellite cells cultured under normoxia augmented their engraftment potential in regenerative muscle. Reversely, HIF2A ablation led to the depletion of satellite cells and the consequent regenerative failure in the long-term. In contrast, transient pharmacological inhibition of HIF2A accelerated muscle regeneration by increasing satellite cell proliferation and differentiation. Mechanistically, HIF2A induces the quiescence/self-renewal of satellite cells by binding the promoter of Spry1 gene and activating Spry1 expression. These findings suggest that HIF2A is a pivotal mediator of hypoxia signaling in satellite cells and may be therapeutically targeted to improve muscle regeneration.

  16. β1 Integrins Mediate Attachment of Mesenchymal Stem Cells to Cartilage Lesions

    NARCIS (Netherlands)

    D. Zwolanek (Daniela); M. Flicker (Magdalena); E. Kirstätter (Elisabeth); F. Zaucke (Frank); G.J.V.M. van Osch (Gerjo); R.G. Erben (Reinhold)

    2015-01-01

    textabstractMesenchymal stem cells (MSC) may have great potential for cell-based therapies of osteoarthritis. However, after injection in the joint, only few cells adhere to defective articular cartilage and contribute to cartilage regeneration. Little is known about the molecular mechanisms of MSC

  17. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation.

    Science.gov (United States)

    Robriquet, Florence; Lardenois, Aurélie; Babarit, Candice; Larcher, Thibaut; Dubreil, Laurence; Leroux, Isabelle; Zuber, Céline; Ledevin, Mireille; Deschamps, Jack-Yves; Fromes, Yves; Cherel, Yan; Guevel, Laetitia; Rouger, Karl

    2015-01-01

    Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex molecular

  18. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation.

    Directory of Open Access Journals (Sweden)

    Florence Robriquet

    Full Text Available Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD. We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation.In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells.Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex

  19. Progress of stem/progenitor cell-based therapy for retinal degeneration.

    Science.gov (United States)

    Tang, Zhimin; Zhang, Yi; Wang, Yuyao; Zhang, Dandan; Shen, Bingqiao; Luo, Min; Gu, Ping

    2017-05-10

    Retinal degeneration (RD), such as age-related macular degeneration (AMD) and retinitis pigmentosa, is one of the leading causes of blindness. Presently, no satisfactory therapeutic options are available for these diseases principally because the retina and retinal pigmented epithelium (RPE) do not regenerate, although wet AMD can be prevented from further progression by anti-vascular endothelial growth factor therapy. Nevertheless, stem/progenitor cell approaches exhibit enormous potential for RD treatment using strategies mainly aimed at the rescue and replacement of photoreceptors and RPE. The sources of stem/progenitor cells are classified into two broad categories in this review, which are (1) ocular-derived progenitor cells, such as retinal progenitor cells, and (2) non-ocular-derived stem cells, including embryonic stem cells, induced pluripotent stem cells, and mesenchymal stromal cells. Here, we discuss in detail the progress in the study of four predominant stem/progenitor cell types used in animal models of RD. A short overview of clinical trials involving the stem/progenitor cells is also presented. Currently, stem/progenitor cell therapies for RD still have some drawbacks such as inhibited proliferation and/or differentiation in vitro (with the exception of the RPE) and limited long-term survival and function of grafts in vivo. Despite these challenges, stem/progenitor cells represent the most promising strategy for RD treatment in the near future.

  20. Growth and metabolism of mesenchymal stem cells cultivated on microcarriers

    NARCIS (Netherlands)

    Schop, Deborah

    2010-01-01

    Mesenchymal stem cells, MSCs, are a great potential source for clinical applications in the field of tissue regeneration. Although MSCs can be isolated from several tissues of the human body, e.g. the bone marrow, the tissues does not contain clinically relevant amounts of MSCs for cell therapeutic