WorldWideScience

Sample records for regeneration biological

  1. Biological regeneration of para-nitrophenol loaded activated carbon

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.; Martin, R.J.

    1997-01-01

    Biological regeneration is one of several methods that may be used to restore the adsorptive capacity of exhausted granular activated carbon (GAC). This study deals with in-situ biological regeneration on a pilot scale. The principal objective of this research was to ascertain whether biological regeneration of GAC could occur under conditions typical of water treatment. The important parameters which may have the greatest impact on bio regeneration of a given adsorbate were studied. The research investigated the extent of bio regeneration for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in the total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in he total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated with a mixed culture of bacteria, and lastly the carbon was re-saturated. In the totally exhausted GAC system, the bio regeneration was enhanced by increasing the during of regeneration for a fixed initial biomass content of the bioreactor. The bio regeneration efficiency of the totally exhausted (with PNP) GAC the empty bed contact time (EBCT) and the initial concentration of the substrate had a profound effect on the bio regeneration efficiency. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. (author)

  2. Biological regeneration of phenol-loaded activated carbon (up flow system)

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.J.; Mirajuddin; Martin, R.J.

    1995-01-01

    This paper represents the report on the biological regeneration of totally activated carbon following the experimental studies carried out at the University of Birmingham, U.K. Biological regeneration is one of several methods that may be used to restore the adsorptive capacity of exhausted granular activated carbon. This study deals with in situ biological regeneration on a pilot scale. The principal objective of this research was to ascertain whether biological regeneration of GAC could occur under conditions typical of water treatment. The important parameters which may have the greatest impact on bio regeneration for a given adsorbate were studied. The research investigated the extent of bio regeneration for phenol of concentration 50 mg/l. Bio regeneration in the total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initialing exhausted with an adsorbate; it was then bio regenerated with a mixed culture of bacteria, and lastly the carbon was saturated. In the totally exhausted GAC system, the bio regeneration was enhanced by increasing the duration of regeneration for a fixed initial biomass content of the bioreactor. The regenerated phenol loaded GAC bed had nearly gained its original adsorption after the 5-day period of regeneration. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. (author)

  3. Conduit for regeneration of biological material

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a conduit comprising a first material, having 1) a through-going hole, 2) fibers aligned along the long-axis in the through-going hole, each fiber having a diameter in the range 200-2000 nm. The conduit is preferably for regeneration of biological material, even...

  4. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Ye-Rang Yun

    2010-01-01

    Full Text Available Fibroblast growth factors (FGFs that signal through FGF receptors (FGFRs regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.

  5. Biological regeneration of humic acid-loaded partially exhausted activated carbon (down flow system)

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.J.; Martin, R.J.; Khaliq, F.

    1995-01-01

    This paper represents the report on the biological regeneration of partially exhausted (down flow) activated carbon following the experimental studies carried out at the university of Birmingham, UK. The Research investigated the extent of bio regeneration of humic acid of concentration 100 mg/l. Bio regeneration in the partial exhaustion system (down flow) was evaluated in terms of substrate removal. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. The regeneration performance of the bio regeneration, partially exhausted (with humic acid) carbon increased during initial cycles, later on, it deteriorated significantly with each successive regeneration cycle. Microbial fouling of the carbon, especially at the bottom of the carbon bed was found to produce a substantial deterioration of the bio regeneration performance. (author)

  6. Column adsorption of perchlorate by amine-crosslinked biopolymer based resin and its biological, chemical regeneration properties.

    Science.gov (United States)

    Song, Wen; Xu, Xing; Tan, Xin; Wang, Yan; Ling, Jianya; Gao, Baoyu; Yue, Qinyan

    2015-01-22

    Column adsorption of perchlorate by amine-crosslinked biopolymer based resin was investigated by considering the bed depth, stream flow rate and influent pH. The empty bed contact time (EBCT) increased with the growth of bed depths, meanwhile rising flow rate at constant bed depth (3.4 cm) decreased the breakthrough time. It was observed that perchlorate adsorption capacity was optimum at neutral condition (pH: 6.0, 170.4 mg/g), and decreased at acidic (pH: 3.0, 96.4 mg/g) or alkalic (pH: 12.0, 72.8 mg/g) influents. The predominant strains of the acclimated sludge for resin biological regeneration were the β-subclass of Proteobacteria. Biological regeneration of the saturated amine-crosslinked biopolymer based resin with mixed bacteria have shown its merit with regeneration and biological perchlorate destruction simultaneously, although its regeneration efficiency was only 61.2-84.1% by contrast to chemical regeneration with efficiency more than 95%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Biological – chemical regeneration of desulphurization sorbents based on zinc ferrite

    Directory of Open Access Journals (Sweden)

    Šepelák Vladimír

    2002-03-01

    Full Text Available One of the main sources of air pollution is the combustion of fuels by various thermal and power plants, transport facilities, and metallurgical plants. Main components of industrial gases that pollute air are carbon oxides, nitrogen oxides, sulphur oxides and hydrogen sulphide. Sulphur has received a more attention than any other contaminant, because the sulphur released into the atmosphere in the form of sulphur dioxide or hydrogen sulphide is a precursor of the “acid rain” formation. To meet environmental emission regulations, sulphur and other contaminant species released during the gasification of coal must be removed from the fuel gas stream. The removal of contaminat at high temperatures is referred to as hot-gas cleanup in general and hot-gas desulphurization in particular when sulphur species are the primary contaminants to be remove. In recent years, zinc ferrite is the leading candidate for hot-gas desulphurization, capable of removing sulphur-containing species from coal gas at gasifier exit temperatures. It can also be of being regenerated for a continuous use. The conventional methods of the regeneration of sulphurized sorbents are based on oxidizing pyrolysis of sulphides or on the pressure leaching of sulphides in the water environment at high temperatures. The first results of the experiments using the biological-chemical leaching, as a new way of regeneration of sulphurized sorbent based on zinc ferrite, are presented in this paper. The results show that the biological-chemical leaching leads to the removal of sulphides layers (á-ZnS, â-ZnS from the surface of the sorbent at room temperature. The biological-chemical leaching process results in the increase of the active surface area of the regenerated sorbent.

  8. The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration

    Directory of Open Access Journals (Sweden)

    Luca Gentile

    2011-01-01

    Full Text Available Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine.

  9. Biological conduit small gap sleeve bridging method for peripheral nerve injury: regeneration law of nerve fibers in the conduit

    Directory of Open Access Journals (Sweden)

    Pei-xun Zhang

    2015-01-01

    Full Text Available The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair peripheral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium suture in the treatment of peripheral nerve injury. This study sought to identify the regeneration law of nerve fibers in the biological conduit. A nerve regeneration chamber was constructed in models of sciatic nerve injury using 2-mm small gap sleeve bridging of a biodegradable biological conduit. The results showed that the biological conduit had good histocompatibility. Tissue and cell apoptosis in the conduit apparently lessened, and regenerating nerve fibers were common. The degeneration regeneration law of Schwann cells and axons in the conduit was quite different from that in traditional epineurium suture. During the prime period for nerve fiber regeneration (2-8 weeks, the number of Schwann cells and nerve fibers was higher in both proximal and distal ends, and the effects of the small gap sleeve bridging method were better than those of the traditional epineurium suture. The above results provide an objective and reliable theoretical basis for the clinical application of the biological conduit small gap sleeve bridging method to repair peripheral nerve injury.

  10. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Jung, Won-Kyo

    2015-01-01

    Wound healing is a complex biological process that depends on the wound condition, the patient's health, and the physicochemical support given through external materials. The development of bioactive molecules and engineered tissue substitutes to provide physiochemical support to enhance the wound healing process plays a key role in advancing wound-care management. Thus, identification of ideal molecules in wound treatment is still in progress. The discovery of natural products that contain ideal molecules for skin tissue regeneration has been greatly advanced by exploration of the marine bioenvironment. Consequently, tremendously diverse marine organisms have become a great source of numerous biological macromolecules that can be used to develop tissue-engineered substitutes with wound healing properties. This review summarizes the wound healing process, the properties of macromolecules from marine organisms, and the involvement of these molecules in skin tissue regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Surface biology of collagen scaffold explains blocking of wound contraction and regeneration of skin and peripheral nerves.

    Science.gov (United States)

    Yannas, I V; Tzeranis, D; So, P T

    2015-12-23

    We review the details of preparation and of the recently elucidated mechanism of biological (regenerative) activity of a collagen scaffold (dermis regeneration template, DRT) that has induced regeneration of skin and peripheral nerves (PN) in a variety of animal models and in the clinic. DRT is a 3D protein network with optimized pore size in the range 20-125 µm, degradation half-life 14 ± 7 d and ligand densities that exceed 200 µM α1β1 or α2β1 ligands. The pore has been optimized to allow migration of contractile cells (myofibroblasts, MFB) into the scaffold and to provide sufficient specific surface for cell-scaffold interaction; the degradation half-life provides the required time window for satisfactory binding interaction of MFB with the scaffold surface; and the ligand density supplies the appropriate ligands for specific binding of MFB on the scaffold surface. A dramatic change in MFB phenotype takes place following MFB-scaffold binding which has been shown to result in blocking of wound contraction. In both skin wounds and PN wounds the evidence has shown clearly that contraction blocking by DRT is followed by induction of regeneration of nearly perfect organs. The biologically active structure of DRT is required for contraction blocking; well-matched collagen scaffold controls of DRT, with structures that varied from that of DRT, have failed to induce regeneration. Careful processing of collagen scaffolds is required for adequate biological activity of the scaffold surface. The newly understood mechanism provides a relatively complete paradigm of regenerative medicine that can be used to prepare scaffolds that may induce regeneration of other organs in future studies.

  12. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Science.gov (United States)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-08-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  13. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Energy Technology Data Exchange (ETDEWEB)

    Getoff, Nikola, E-mail: nikola.getoff@univie.ac.a [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Hartmann, Johannes [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Schittl, Heike [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Gerschpacher, Marion [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Quint, Ruth Maria [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria)

    2011-08-15

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light ({lambda}=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  14. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    International Nuclear Information System (INIS)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-01-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  15. The blastema and epimorphic regeneration in mammals.

    Science.gov (United States)

    Seifert, Ashley W; Muneoka, Ken

    2018-01-15

    Studying regeneration in animals where and when it occurs is inherently interesting and a challenging research topic within developmental biology. Historically, vertebrate regeneration has been investigated in animals that display enhanced regenerative abilities and we have learned much from studying organ regeneration in amphibians and fish. From an applied perspective, while regeneration biologists will undoubtedly continue to study poikilothermic animals (i.e., amphibians and fish), studies focused on homeotherms (i.e., mammals and birds) are also necessary to advance regeneration biology. Emerging mammalian models of epimorphic regeneration are poised to help link regenerative biology and regenerative medicine. The regenerating rodent digit tip, which parallels human fingertip regeneration, and the regeneration of large circular defects through the ear pinna in spiny mice and rabbits, provide tractable, experimental systems where complex tissue structures are regrown through blastema formation and morphogenesis. Using these models as examples, we detail similarities and differences between the mammalian blastema and its classical counterpart to arrive at a broad working definition of a vertebrate regeneration blastema. This comparison leads us to conclude that regenerative failure is not related to the availability of regeneration-competent progenitor cells, but is most likely a function of the cellular response to the microenvironment that forms following traumatic injury. Recent studies demonstrating that targeted modification of this microenvironment can restrict or enhance regenerative capabilities in mammals helps provide a roadmap for eventually pushing the limits of human regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Perfluorodecalin and bone regeneration

    Directory of Open Access Journals (Sweden)

    F Tamimi

    2013-01-01

    Full Text Available Perfluorodecalin (PFD is a chemically and biologically inert biomaterial and, as many perfluorocarbons, is also hydrophobic, radiopaque and has a high solute capacity for gases such as oxygen. In this article we have demonstrated, both in vitro and in vivo, that PFD may significantly enhance bone regeneration. Firstly, the potential benefit of PFD was demonstrated by prolonging the survival of bone marrow cells cultured in anaerobic conditions. These findings translated in vivo, where PFD incorporated into bone-marrow-loaded 3D-printed scaffolds substantially improved their capacity to regenerate bone. Secondly, in addition to biological applications, we have also shown that PFD improves the radiopacity of bone regeneration biomaterials, a key feature required for the visualisation of biomaterials during and after surgical implantation. Finally, we have shown how the extreme hydrophobicity of PFD enables the fabrication of highly cohesive self-setting injectable biomaterials for bone regeneration. In conclusion, perfluorocarbons would appear to be highly beneficial additives to a number of regenerative biomaterials, especially those for bone regeneration.

  17. Biology of teeth and implants: Host factors - pathology, regeneration, and the role of stem cells.

    Science.gov (United States)

    Eggert, F-Michael; Levin, Liran

    2018-01-01

    In chronic periodontitis and peri-implantitis, cells of the innate and adaptive immune systems are involved directly in the lesions within the tissues of the patient. Absence of a periodontal ligament around implants does not prevent a biologic process similar to that of periodontitis from affecting osseointegration. Our first focus is on factors in the biology of individuals that are responsible for the susceptibility of such individuals to chronic periodontitis and to peri-implantitis. Genetic factors are of significant importance in susceptibility to these diseases. Genetic factors of the host affect the composition of the oral microbiome in the same manner that they influence other microbiomes, such as those of the intestines and of the lungs. Our second focus is on the central role of stem cells in tissue regeneration, in the functioning of innate and adaptive immune systems, and in metabolism of bone. Epithelial cell rests of Malassez (ERM) are stem cells of epithelial origin that maintain the periodontal ligament as well as the cementum and alveolar bone associated with the ligament. The tissue niche within which ERM are found extends into the supracrestal areas of collagen fiber-containing tissues of the gingivae above the bony alveolar crest. Maintenance and regeneration of all periodontal tissues involves the activity of a variety of stem cells. The success of dental implants indicates that important groups of stem cells in the periodontium are active to enable that biologic success. Successful replantation of avulsed teeth and auto-transplantation of teeth is comparable to placing dental implants, and so must also involve periodontal stem cells. Biology of teeth and biology of implants represents the biology of the various stem cells that inhabit specialized niches within the periodontal tissues. Diverse biologic processes must function together successfully to maintain periodontal health. Osseointegration of dental implants does not involve formation of

  18. Can stem cells really regenerate the human heart? Use your noggin, dickkopf! Lessons from developmental biology.

    Science.gov (United States)

    Sommer, Paula

    2013-06-01

    The human heart is the first organ to develop and its development is fairly well characterised. In theory, the heart has the capacity to regenerate, as its cardiomyocytes may be capable of cell division and the adult heart contains a cardiac stem cell niche, presumably capable of differentiating into cardiomyocytes and other cardiac-associated cell types. However, as with most other organs, these mechanisms are not activated upon serious injury. Several experimental options to induce regeneration of the damaged heart tissue are available: activate the endogenous cardiomyocytes to divide, coax the endogenous population of stem cells to divide and differentiate, or add exogenous cell-based therapy to replace the lost cardiac tissue. This review is a summary of the recent research into all these avenues, discussing the reasons for the limited successes of clinical trials using stem cells after cardiac injury and explaining new advances in basic science. It concludes with a reiteration that chances of successful regeneration would be improved by understanding and implementing the basics of heart development and stem cell biology.

  19. [The influence of biological compatibility of the cyanoacrylate glue on regeneration of the cartilaginous tissue].

    Science.gov (United States)

    Semenov, F V; Skibitskaya, N F

    The objective of the present study was to evaluate the possibility of the application of the cyanoacrylate-based glue for the strengthening of the reconstructed elements of the middle ear and its influence on the regeneration of the cartilaginous tissue. We used the cartilaginous tissue from the auricles of the male California rabbits as a model. The cartilage was destroyed in a standard press. Half of the cartilage thus fragmented was implanted into the left auricle. The remaining part was mixed up with the cyanoacrylate glue and implanted into the right auricle of the same animal. The implanted material was used for the morphological study on day 10, within 1 and 2 months after the beginning of the experiment. The results of the study confirm the absence of the toxic action of the biologically compatible cyanoacrylate-based glue on the regeneration of the cartilaginous and connective tissues which suggests the possibility of its application for the surgical treatment of the diseases of the middle ear.

  20. Periodontal regeneration.

    Science.gov (United States)

    Ivanovski, S

    2009-09-01

    The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Currently, two clinical techniques, based on the principles of "guided tissue regeneration" (GTR) or utilization of the biologically active agent "enamel matrix derivative" (EMD), can be used for the regeneration of intrabony and Class II mandibular furcation periodontal defects. In cases where additional support and space-making requirements are necessary, both of these procedures can be combined with a bone replacement graft. There is no evidence that the combined use of GTR and EMD results in superior clinical results compared to the use of each material in isolation. Great variability in clinical outcomes has been reported in relation to the use of both EMD and GTR, and these procedures can be generally considered to be unpredictable. Careful case selection and treatment planning, including consideration of patient, tooth, site and surgical factors, is required in order to optimize the outcomes of treatment. There are limited data available for the clinical effectiveness of other biologically active molecules, such as growth factors and platelet concentrates, and although promising results have been reported, further clinical trials are required in order to confirm their effectiveness. Current active areas of research are centred on tissue engineering and gene therapy strategies which may result in more predictable regenerative outcomes in the future.

  1. Chitin biological absorbable catheters bridging sural nerve grafts transplanted into sciatic nerve defects promote nerve regeneration.

    Science.gov (United States)

    Wang, Zhi-Yong; Wang, Jian-Wei; Qin, Li-Hua; Zhang, Wei-Guang; Zhang, Pei-Xun; Jiang, Bao-Guo

    2018-06-01

    To investigate the efficacy of chitin biological absorbable catheters in a rat model of autologous nerve transplantation. A segment of sciatic nerve was removed to produce a sciatic nerve defect, and the sural nerve was cut from the ipsilateral leg and used as a graft to bridge the defect, with or without use of a chitin biological absorbable catheter surrounding the graft. The number and morphology of regenerating myelinated fibers, nerve conduction velocity, nerve function index, triceps surae muscle morphology, and sensory function were evaluated at 9 and 12 months after surgery. All of the above parameters were improved in rats in which the nerve graft was bridged with chitin biological absorbable catheters compared with rats without catheters. The results of this study indicate that use of chitin biological absorbable catheters to surround sural nerve grafts bridging sciatic nerve defects promotes recovery of structural, motor, and sensory function and improves muscle fiber morphology. © 2018 John Wiley & Sons Ltd.

  2. Reconsidering regeneration in metazoans: an evo-devo approach

    Directory of Open Access Journals (Sweden)

    Stefano eTiozzo

    2015-06-01

    Full Text Available Regeneration of body structures is an ability widely but unevenly distributed amongst the animal kingdom. Understanding regenerative biology in metazoans means understanding the multiplicity of the cellular and molecular mechanisms that lead to the differentiation, morphogenesis and ultimately the development of a particular regenerating unit. In this manuscript we critically assess the evolutionary considerations suggesting that regeneration is an ancestral trait rather than a mechanism independently evolved in different taxa. As a general method to test evolutionary hypothesis on regeneration, we propose mechanistically dissecting the regenerative processes according to its conserved chronological steps: wound healing, mobilization of cell precursors and morphogenesis. We then suggest interpreting regenerative biology from an evo-devo perspective, proposing a possible theoretical framework and experimental approaches without necessarily invoking a common origin or only multiple losses of regenerative capabilities.

  3. Review: Biological and Molecular Differences between Tail Regeneration and Limb Scarring in Lizard: An Inspiring Model Addressing Limb Regeneration in Amniotes.

    Science.gov (United States)

    Alibardi, Lorenzo

    2017-09-01

    Tissue regeneration in lizards represents a unique model of regeneration and scarring in amniotes. The tail and limb contain putative stem cells but also dedifferentiating cells contribute to regeneration. Following tail amputation, inflammation is low and cell proliferation high, leading to regeneration while the intense inflammation in the limb leads to low proliferation and scarring. FGFs stimulate tail and limb regeneration and are present in the wound epidermis and blastema while they disappear in the limb wound epidermis 2-3 weeks postamputation in the scarring outgrowth. FGFs localize in the tail blastema and the apical epidermal peg (AEP), an epidermal microregion that allows tail growth but is absent in the limb. Inflammatory cells invade the limb blastema and wound epidermis, impeding the formation of an AEP. An embryonic program of growth is activated in the tail, dominated by Wnt-positive and -negative regulators of cell proliferation and noncoding RNAs, that represent the key regenerative genes. The balanced actions of these regulators likely impede the formation of a tumor in the tail tip. Genes for FACIT and fibrillar collagens, protease inhibitors, and embryonic keratins are upregulated in the regenerating tail blastema. A strong downregulation of genes for both B and T-lymphocyte activation suggests the regenerating tail blastema is a temporal immune-tolerated organ, whereas a scarring program is activated in the limb. Wnt inhibitors, pro-inflammatory genes, negative regulators of cell proliferation, downregulation of myogenic genes, proteases, and oxidases favoring scarring are upregulated. The evolution of an efficient immune system may be the main limiting barrier for organ regeneration in amniotes, and the poor regeneration of mammals and birds is associated with the efficiency of their mature immune system. This does not tolerate embryonic antigens formed in reprogrammed embryonic cells (as for neoplastic cells) that are consequently

  4. Network based transcription factor analysis of regenerating axolotl limbs

    Directory of Open Access Journals (Sweden)

    Cameron Jo Ann

    2011-03-01

    Full Text Available Abstract Background Studies on amphibian limb regeneration began in the early 1700's but we still do not completely understand the cellular and molecular events of this unique process. Understanding a complex biological process such as limb regeneration is more complicated than the knowledge of the individual genes or proteins involved. Here we followed a systems biology approach in an effort to construct the networks and pathways of protein interactions involved in formation of the accumulation blastema in regenerating axolotl limbs. Results We used the human orthologs of proteins previously identified by our research team as bait to identify the transcription factor (TF pathways and networks that regulate blastema formation in amputated axolotl limbs. The five most connected factors, c-Myc, SP1, HNF4A, ESR1 and p53 regulate ~50% of the proteins in our data. Among these, c-Myc and SP1 regulate 36.2% of the proteins. c-Myc was the most highly connected TF (71 targets. Network analysis showed that TGF-β1 and fibronectin (FN lead to the activation of these TFs. We found that other TFs known to be involved in epigenetic reprogramming, such as Klf4, Oct4, and Lin28 are also connected to c-Myc and SP1. Conclusions Our study provides a systems biology approach to how different molecular entities inter-connect with each other during the formation of an accumulation blastema in regenerating axolotl limbs. This approach provides an in silico methodology to identify proteins that are not detected by experimental methods such as proteomics but are potentially important to blastema formation. We found that the TFs, c-Myc and SP1 and their target genes could potentially play a central role in limb regeneration. Systems biology has the potential to map out numerous other pathways that are crucial to blastema formation in regeneration-competent limbs, to compare these to the pathways that characterize regeneration-deficient limbs and finally, to identify stem

  5. Connective tissue graft as a biological barrier for guided tissue regeneration in intrabony defects: a histological study in dogs.

    Science.gov (United States)

    Ribeiro, Fernando Salimon; Pontes, Ana Emília Farias; Zuza, Elizangela Partata; da Silva, Vanessa Camila; Lia, Raphael Carlos Comelli; Marcantonio Junior, Elcio

    2015-06-01

    The use of the autogenous periosteal graft as biological barrier has been proposed for periodontal regeneration. The aim of this study was to evaluate the histometric findings of the subepithelial connective tissue graft as barrier in intrabony defects compared to a bioabsorbable membrane. Three-walled intrabony defects were created surgically in the mesial aspect of the right and left maxillary canines in five healthy mongrel dogs. The defects were chronified, and two types of barriers were randomly carried out for guided tissue regeneration in a split-mouth design: the test group with a subepithelial connective tissue graft and the control group with a bioabsorbable membrane. The specimens were processed for histometric analyses of the epithelium (E), connective tissue (CT), newly formed cementum (NC), new bone (NB), and total newly formed tissues (NFT). The test side showed smaller mean of NC (3.6 ± 1.2), NB (2.1 ± 0.7), and NFT (7.7 ± 0.8) than the control group (NC 7.3 ± 0.5; NB 5.3 ± 1.3; NFT 10.1 ± 2.2; P  0.05) and CT (test 2.5 ± 1.1; control 2.0 ± 0.5; P > 0.05) between groups. The bioabsorbable membrane was more effective in maintaining the space for periodontal regeneration than periosteal connective graft when used as barrier. The bioabsorbable membrane showed more favorable regenerative results in intrabony defects in dogs than the subepithelial connective tissue graft as biological barrier.

  6. Regeneration limit of classical Shannon capacity

    Science.gov (United States)

    Sorokina, M. A.; Turitsyn, S. K.

    2014-05-01

    Since Shannon derived the seminal formula for the capacity of the additive linear white Gaussian noise channel, it has commonly been interpreted as the ultimate limit of error-free information transmission rate. However, the capacity above the corresponding linear channel limit can be achieved when noise is suppressed using nonlinear elements; that is, the regenerative function not available in linear systems. Regeneration is a fundamental concept that extends from biology to optical communications. All-optical regeneration of coherent signal has attracted particular attention. Surprisingly, the quantitative impact of regeneration on the Shannon capacity has remained unstudied. Here we propose a new method of designing regenerative transmission systems with capacity that is higher than the corresponding linear channel, and illustrate it by proposing application of the Fourier transform for efficient regeneration of multilevel multidimensional signals. The regenerative Shannon limit—the upper bound of regeneration efficiency—is derived.

  7. Competence and regulatory interactions during regeneration in plants

    Directory of Open Access Journals (Sweden)

    Ajai Joseph Pulianmackal

    2014-04-01

    Full Text Available The ability to regenerate is widely exploited by multitudes of organisms ranging from unicellular bacteria to multicellular plants for their propagation and repair. But the levels of competence for regeneration vary from species to species. While variety of living cells of a plant display regeneration ability, only a few set of cells maintain their stemness in mammals. This highly pliable nature of plant cells in-terms of regeneration can be attributed to their high developmental plasticity. De novo organ initiation can be relatively easily achieved in plants by proper hormonal regulations. Elevated levels of plant hormone auxin induces the formation of proliferating mass of pluripotent cells called callus, which predominantly express lateral root meristem markers and hence is having an identity similar to lateral root primordia. Organ formation can be induced from the callus by modulating the ratio of hormones. An alternative for de novo organogenesis is by the forced expression of plant specific transcription factors. The mechanisms by which plant cells attain competence for regeneration on hormonal treatment or forced expression remain largely elusive. Recent studies have provided some insight into how the epigenetic modifications in plants affect this competence. In this review we discuss the present understanding of regenerative biology in plants and scrutinize the future prospectives of this topic. While discussing about the regeneration in the sporophyte of angiosperms which is well studied, here we outline the regenerative biology of the gametophytic phase and discuss about various strategies of regeneration that have evolved in the domain of life so that a common consensus on the entire process of regeneration can be made.

  8. Emdogain--periodontal regeneration based on biomimicry.

    Science.gov (United States)

    Gestrelius, S; Lyngstadaas, S P; Hammarström, L

    2000-06-01

    Biomimicry has been introduced as a term for innovations inspired by nature [1]. Such innovations may appear in almost every part of modern society. This review on the effects of enamel matrix proteins on the formation of cementum and the development of emdogain for regeneration of periodontal tissues lost due to periodontitis shows an example of biomimicry in dentistry. Findings from clinical and laboratory investigations are summarized and the biological basis for enamel matrix-induced periodontal regeneration is discussed.

  9. Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration.

    Science.gov (United States)

    Wu, Geng; Deng, Xuefeng; Song, Jinqi; Chen, Feiqiang

    2018-01-01

    The development of tailored nanofibrous scaffolds for tendon and ligament tissue engineering has been a goal of clinical research for current researchers. Here, we establish a formation of novel nanofibrous matrix with significant mechanical and biological properties by electro-spinning process. The fine fibrous morphology of the nanostructured hydroxyapatite (HAp) dispersed in the polycaprolactone/chitosan (HAp-PCL/CS) nanofibrous matrix was exhibited by microscopic (SEM and TEM) techniques. The favorable mechanical properties (load and modulus) were achieved. The load and modulus of the HAp-PCL/CS composite fibers was 250.1N and 215.5MPa, which is very similar to that of standard value of the human tendon and ligament tissues. The cellular responses and biocompatibility of HAp-PCL/CS nanofibrous scaffolds were investigated with human osteoblast (HOS) cells for tendon regeneration and examined the primary osteoblast mechanism by in vitro method. The morphological (FE-SEM and fluorescence) microscopic images clearly exhibited that HOS cells are well attached and flatted on the nanofibrous composites. The HAp dispersed PCL/CS nanofibrous scaffolds promoted higher adhesion and proliferation of HOS cells comparable to the nanofibrous scaffolds without HAp nanoparticles. The physic-chemical and biological properties of the synthesized nanofibrous scaffold were very close to that of normal ligament and tendon in human body. Over all, these studied results confirmed that the prepared nanofibrous scaffolds will be effective biomaterial of tendon ligament regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cell migration during heart regeneration in zebrafish.

    Science.gov (United States)

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Meniscus repair and regeneration: review on current methods and research potential

    Directory of Open Access Journals (Sweden)

    C Scotti

    2013-01-01

    Full Text Available Meniscus regeneration is an unsolved clinical challenge. Despite the wide acceptance of the degenerative consequences of meniscectomy, no surgical procedure has succeeded to date in regenerating a functional and long-lasting meniscal fibrocartilage. Research proposed a number of experimental approaches encompassing all the typical strategies of regenerative medicine: cell-free scaffolds, gene therapy, intra-articular delivery of progenitor cells, biological glues for enhanced bonding of reparable tears, partial and total tissue engineered meniscus replacement. None of these approaches has been completely successful and can be considered suitable for all patients, as meniscal tears require specific and patient-related treatments depending on the size and type of lesion. Recent advances in cell biology, biomaterial science and bioengineering (e.g., bioreactors have now the potential to drive meniscus regeneration into a series of clinically relevant strategies. In this tutorial paper, the clinical need for meniscus regeneration strategies will be explained, and past and current experimental studies on meniscus regeneration will be reported.

  12. The “Stars and Stripes” Metaphor for Animal Regeneration-Elucidating Two Fundamental Strategies along a Continuum

    Directory of Open Access Journals (Sweden)

    Baruch Rinkevich

    2012-12-01

    Full Text Available A number of challenges have hindered the development of a unified theory for metazoan regeneration. To describe the full range of complex regeneration phenomena in Animalia, we suggest that metazoans that regenerate missing body parts exhibit biological attributes that are tailored along a morpho-spatial regeneration continuum, illustrated in its polar scenarios by the USA “stars and stripes” flag. Type 1 organisms (“T1, ‘stars’” are typical colonial organisms (but contain unitary taxa that are able to regenerate “whole new stars”, namely, whole bodies and colonial modules, through systemic induction and sometimes multiple regeneration foci (hollow regeneration spheres, resembling the blastula that compete for dominance. They regenerate soma and germ constituents with pluripotent adult stem cells and exhibit somatic-embryogenesis mode of ontogeny. Type 2 organisms (“T2, ‘stripes’” are capable of limited regeneration of somatic constituents via fate-restricted stem cells, and regenerate through centralized inductions that lead to a single regeneration front. T2 organisms are unitary and use preformistic mode of ontogeny. T1 and T2 organisms also differ in interpretation of what constitutes positional information. T2 organisms also execute alternative, less effective, regeneration designs (i.e., scar formation. We assigned 15 characteristics that distinguish between T1/T2 strategies: those involving specific regeneration features and those operating on biological features at the whole-organism level. Two model organisms are discussed, representing the two strategies of T1/T2 along the regeneration continuum, the Botrylloides whole body regeneration (T1 and the mouse digit-tip regeneration (T2 phenomena. The above working hypothesis also postulates that regeneration is a primeval attribute of metazoans. As specified, the “stars and stripes” paradigm allows various combinations of the biological features assigned to T1

  13. The helminth community component species of the wood mouse as biological tags of a ten post-fire-year regeneration process in a Mediterranean ecosystem.

    Science.gov (United States)

    Sáez-Durán, Sandra; Debenedetti, Ángela L; Sainz-Elipe, Sandra; Galán-Puchades, M Teresa; Fuentes, Màrius V

    2018-05-10

    Serra Calderona Natural Park, a Mediterranean ecosystem, has been in post-fire regeneration for 10 years. To elucidate which helminth community component species of the wood mouse, Apodemus sylvaticus, can be considered biological tags of this process, the influence of intrinsic (host density; host sex and age) and extrinsic factors (site, year, and period of capture; vegetation recovery) on their prevalence and abundance has been analysed, comparing a burned and an unburned area. A total of 564 wood mice (408 from the burned and 156 from the unburned area), from the 2nd to the10th post-fire year, was included in this helminthoecological study. The results suggest that the area in post-fire regeneration is still more vulnerable to periodic environmental changes than the unburned area as deduced from the analysis of the helminth populations of Pseudocatenotaenia matovi, Skrjabinotaenia lobata, Trichuris muris, Eucoleus bacillatus and Aonchotheca annulosa. The intermediate and definitive host populations presented a greater variability to these environmental changes in the burned area (Taenia parva, P. matovi, S. lobata, A. annulosa, Syphacia stroma and S. frederici). In the regenerating area, some behavioural changes in certain populations determined by the host sex are taking place (T. parva, Helgimosomoides polygyrus and S. frederici). During the last years studied, a greater similarity in the populational development of some component species between both areas can be appreciated (H. polygyrus and S. stroma). The role of the wood mouse and its helminth parasites as biological tags of the post-fire regeneration process in Mediterranean ecosystems has been confirmed.

  14. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration].

    Science.gov (United States)

    Liang, Hang; Deng, Xiangyu; Shao, Zengwu

    2017-10-01

    To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.

  15. Piezoelectric materials for tissue regeneration: A review.

    Science.gov (United States)

    Rajabi, Amir Hossein; Jaffe, Michael; Arinzeh, Treena Livingston

    2015-09-01

    The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues raised the question whether or not electric fields play an important role in cell function. It has kindled research and the development of technologies in emulating biological electricity for tissue regeneration. Promising effects of electrical stimulation on cell growth and differentiation and tissue growth has led to interest in using piezoelectric scaffolds for tissue repair. Piezoelectric materials can generate electrical activity when deformed. Hence, an external source to apply electrical stimulation or implantation of electrodes is not needed. Various piezoelectric materials have been employed for different tissue repair applications, particularly in bone repair, where charges induced by mechanical stress can enhance bone formation; and in neural tissue engineering, in which electric pulses can stimulate neurite directional outgrowth to fill gaps in nervous tissue injuries. In this review, a summary of piezoelectricity in different biological tissues, mechanisms through which electrical stimulation may affect cellular response, and recent advances in the fabrication and application of piezoelectric scaffolds will be discussed. The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues has kindled research and the development of technologies using electrical stimulation for tissue regeneration. Piezoelectric materials generate electrical activity in response to deformations and allow for the delivery of an electrical stimulus without the need for an external power source. As a scaffold for tissue engineering, growing interest exists due to its potential of providing electrical stimulation to cells to promote tissue formation. In this review, we cover the discovery of piezoelectricity in biological tissues, its connection to streaming potentials, biological response to electrical stimulation and

  16. Group C. Initiator paper. Periodontal regeneration--fact or fiction?

    Science.gov (United States)

    Bartold, P M

    2015-01-01

    Numerous techniques have been tried and tested to regenerate tissues lost to periodontal disease. While there has been some success to date, more work is required to move this to a reliable and clinically predictable procedure. Much of the future success for such treatments will rely largely on our understanding of the biology of both developmental and regenerative processes. Nonetheless, despite the noble goal of periodontal regeneration, the relevance of re-creation of a connective tissue attachment has been questioned. Since formation of a long junctional epithelial attachment to the tooth following a variety of periodontal treatment procedures has been shown to be no more susceptible to further breakdown than a non-diseased site, the question arises as to what purpose do we seek the ultimate outcome of periodontal regeneration? The answer lies in the "fact and fiction" of periodontal regeneration. There is no doubt that the regenerative procedures that have been developed can be shown to be biologically successful at the histological level. Furthermore, the results of periodontal regeneration (particularly guided tissue regeneration) have been stable over the long term (at least up to 10 years). However, the techniques currently under use which show the greatest promise (guided tissue regeneration and growth factors) are still clinically unpredictable because of their highly technique-sensitive nature. In addition, whether the slight clinical improvements offered by these procedures over routine open flap debridement procedures are of cost or patient benefit with regards to improved periodontal health and retention of teeth remains to be established. The next phase in regenerative technologies will undoubtedly involve a deeper understanding of the molecular signaling (both intra- and extra-cellular) and cellular differentiation processes involved in the regenerative processes. So in answer to the question of whether periodontal regeneration is fact or fiction

  17. Problems concerning the microbiological regeneration of a site contaminated with used oil

    International Nuclear Information System (INIS)

    Hollederer, G.; Hofmann, R.; Filip, Z.

    1992-01-01

    After outlining the basic facts of the used oil problem in Germany the report discusses: Biotransformation of hydrocarbons, polychlorinated biphenyls (PCB), pentachlorophenols (PCP), and volatile chlorocarbons; pollutants in soils; microbiological regeneration of groundwater and soil; accompanying procedures of biological regeneration. (HS) [de

  18. Calcium phosphate coatings for bone regeneration

    NARCIS (Netherlands)

    Yang, Liang

    2010-01-01

    As a novel approach to repair and regenerate damaged and degraded bone tissue, tissue engineering has recorded tremendous growth for the last thirty years. This is an emerging interdisciplinary field applying the principles of biology and engineering to the development of viable substitutes that

  19. Liver Development, Regeneration, and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Janet W. C. Kung

    2010-01-01

    Full Text Available The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers.

  20. Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

    DEFF Research Database (Denmark)

    Lopez-Heredia, Marco A.; Łapa, Agata; Mendes, Ana Carina Loureiro

    2017-01-01

    Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetically...... of osteoblast-like cells....

  1. Cellular regeneration in bone marrow with synthesized semiconductor polymers by plasma

    International Nuclear Information System (INIS)

    Morales, J.; Olayo, R.; Alvarez, L.; Mondragon, R.; Morales, A.; Diaz, A.; Rios, C.; Salgado, H.; Cruz, G.; Olayo, M.G.

    2004-01-01

    In this work the intervention of polymers with capacity of conducting electric current for the regeneration of the spinal marrow in rats of laboratory is studied. It is a focus different from the one that up to now has taken in account since it involves medical, biological, physical and chemical sciences. Inside the properties of transporting electric charges, the polymers would have to respond before the biological media with ionic mechanisms of conduction, besides the electronic ones, to promote the regeneration of the spinal marrow. They should also be biocompatible to avoid the rejection of the media before the implantation. (Author)

  2. Chemical strategies for pancreatic β cell differentiation, reprogramming, and regeneration.

    Science.gov (United States)

    Ma, Xiaojie; Zhu, Saiyong

    2017-04-01

    Generation of unlimited functional pancreatic β cells is critical for the study of pancreatic biology and treatment of diabetes mellitus. Recent advances have suggested several promising directions, including directed differentiation of pancreatic β cells from pluripotent stem cells, reprogramming of pancreatic β cells from other types of somatic cells, and stimulated proliferation and enhanced functions of existing pancreatic β cells. Small molecules are useful in generating unlimited numbers of functional pancreatic cells in vitro and could be further developed as drugs to stimulate endogenous pancreatic regeneration. Here, we provide an updated summary of recent major achievements in pancreatic β cell differentiation, reprogramming, proliferation, and function. These studies will eventually lead to significant advances in the field of pancreatic biology and regeneration. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Pulp regeneration: Current approaches and future challenges

    Directory of Open Access Journals (Sweden)

    Jingwen eYANG

    2016-03-01

    Full Text Available Regenerative endodontics aims to replace inflamed/necrotic pulp tissues with regenerated pulp-like tissues to revitalize teeth and improve life quality. Pulp revascularization case reports, which showed successful clinical and radiographic outcomes, indicated the possible clinical application of pulp regeneration via cell homing strategy. From a clinical point of view, functional pulp-like tissues should be regenerated with the characterization of vascularization, re-innervation, and dentin deposition with a regulated rate similar to that of normal pulp. Efficient root canal disinfection and proper size of the apical foramen are the two requisite preconditions for pulp regeneration. Progress has been made on pulp regeneration via cell homing strategies. This review focused on the requisite preconditions and cell homing strategies for pulp regeneration. In addition to the traditionally used mechanical preparation and irrigation, antibiotics, irrigation assisted with EndoVac apical negative-pressure system, and ultrasonic and laser irradiation are now being used in root canal disinfection. In addition, pulp-like tissues could be formed with the apical foramen less than 1 mm, although more studies are needed to determine the appropriate size. Moreover, signaling molecules including stromal cell derived factor (SDF-1α, basic Fibroblast Growth Factor (bFGF, Platelet Derived Growth Factor (PDGF, stem cell factor (SCF, and Granulocyte Colony-Stimulating Factor (G-CSF were used to achieve pulp-like tissue formation via a cell homing strategy. Studies on the cell sources of pulp regeneration might give some indications on the signaling molecular selection. The active recruitment of endogenous cells into root canals to regenerate pulp-like tissues is a novel concept that may offer an unprecedented opportunity for the near-term clinical translation of current biology-based therapies for dental pulp regeneration.

  4. Hypertranscription in development, stem cells, and regeneration

    Science.gov (United States)

    Percharde, Michelle; Bulut-Karslioglu, Aydan; Ramalho-Santos, Miguel

    2016-01-01

    SUMMARY Cells can globally up-regulate their transcriptome during specific transitions, a phenomenon called hypertranscription. Evidence for hypertranscription dates back over 70 years, but it has gone largely ignored in the genomics era until recently. We discuss data supporting the notion that hypertranscription is a unifying theme in embryonic development, stem cell biology, regeneration and cell competition. We review the history, methods for analysis, underlying mechanisms and biological significance of hypertranscription. PMID:27989554

  5. Potential Use of Stem Cells for Kidney Regeneration

    Directory of Open Access Journals (Sweden)

    Takashi Yokoo

    2011-01-01

    Full Text Available Significant advances have been made in stem cell research over the past decade. A number of nonhematopoietic sources of stem cells (or progenitor cells have been identified, including endothelial stem cells and neural stem cells. These discoveries have been a major step toward the use of stem cells for potential clinical applications of organ regeneration. Accordingly, kidney regeneration is currently gaining considerable attention to replace kidney dialysis as the ultimate therapeutic strategy for renal failure. However, due to anatomic complications, the kidney is believed to be the hardest organ to regenerate; it is virtually impossible to imagine such a complicated organ being completely rebuilt from pluripotent stem cells by gene or chemical manipulation. Nevertheless, several groups are taking on this big challenge. In this manuscript, current advances in renal stem cell research are reviewed and their usefulness for kidney regeneration discussed. We also reviewed the current knowledge of the emerging field of renal stem cell biology.

  6. Modeling planarian regeneration: a primer for reverse-engineering the worm.

    Directory of Open Access Journals (Sweden)

    Daniel Lobo

    Full Text Available A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to identify the pathways underlying the remarkable regenerative abilities of model species that perfectly regenerate limbs, brains, and other complex body parts. However, a profound disconnect remains between the deluge of high-resolution genetic and protein data on pathways required for regeneration, and the desired spatial, algorithmic models that show how self-monitoring and growth control arise from the synthesis of cellular activities. This barrier to progress in the understanding of morphogenetic controls may be breached by powerful techniques from the computational sciences-using non-traditional modeling approaches to reverse-engineer systems such as planaria: flatworms with a complex bodyplan and nervous system that are able to regenerate any body part after traumatic injury. Currently, the involvement of experts from outside of molecular genetics is hampered by the specialist literature of molecular developmental biology: impactful collaborations across such different fields require that review literature be available that presents the key functional capabilities of important biological model systems while abstracting away from the often irrelevant and confusing details of specific genes and proteins. To facilitate modeling efforts by computer scientists, physicists, engineers, and mathematicians, we present a different kind of review of planarian regeneration. Focusing on the main patterning properties of this system, we review what is known about the signal exchanges that occur during regenerative repair in planaria and the cellular mechanisms that are thought to underlie them. By establishing an

  7. Bone regeneration with biomaterials and active molecules delivery.

    Science.gov (United States)

    D' Este, Matteo; Eglin, David; Alini, Mauro; Kyllonen, Laura

    2015-01-01

    The combination of biomaterials and drug delivery strategies is a promising avenue towards improved synthetic bone substitutes. With the delivery of active species biomaterials can be provided with the bioactivity they still lack for improved bone regeneration. Recently, a lot of research efforts have been put towards this direction. Biomaterials for bone regeneration have been supplemented with small or biological molecules for improved osteoprogenitor cell recruitment, osteoinductivity, anabolic or angiogenic response, regulation of bone metabolism and others. The scope of this review is to summarize the most recent results in this field.

  8. Endothelial-regenerating cells: an expanding universe.

    Science.gov (United States)

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  9. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  10. Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering

    Science.gov (United States)

    Nau, Thomas; Teuschl, Andreas

    2015-01-01

    Recent advancements in the field of musculoskeletal tissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament (ACL). It is the aim of this article to review the current research efforts and highlight promising tissue engineering strategies. The four main components of tissue engineering also apply in several ACL regeneration research efforts. Scaffolds from biological materials, biodegradable polymers and composite materials are used. The main cell sources are mesenchymal stem cells and ACL fibroblasts. In addition, growth factors and mechanical stimuli are applied. So far, the regenerated ACL constructs have been tested in a few animal studies and the results are encouraging. The different strategies, from in vitro ACL regeneration in bioreactor systems to bio-enhanced repair and regeneration, are under constant development. We expect considerable progress in the near future that will result in a realistic option for ACL surgery soon. PMID:25621217

  11. Repair and regeneration: opportunities for carcinogenesis from tissue stem cells

    OpenAIRE

    Perryman, Scott V; Sylvester, Karl G

    2007-01-01

    This review will discuss the mechanisms of repair and regeneration in various tissue types and how dysregulation of these mechaisms may lead to cancer. Normal homeostasis involves a careful balance between cell loss and cell renewal. Stem and progenitor cells perform these biologic processes as the functional units of regeneration during both tissue homeostasis and repair. The concept of tissue stem cells capable of giving rise to all differentiated cells within a given tissue led to the conc...

  12. Enamel Regeneration - Current Progress and Challenges

    Science.gov (United States)

    Baswaraj; H.K, Navin; K.B, Prasanna

    2014-01-01

    Dental Enamel is the outermost covering of teeth. It is hardest mineralized tissue present in the human body. Enamel faces the challenge of maintaining its integrity in a constant demineralization and remineralization within the oral environment and it is vulnerable to wear, damage, and decay. It cannot regenerate itself, because it is formed by a layer of cells that are lost after the tooth eruption. Conventional treatment relies on synthetic materials to restore lost enamel that cannot mimic natural enamel. With advances in material science and understanding of basic principles of organic matrix mediated mineralization paves a way for formation of synthetic enamel. The knowledge of enamel formation and understanding of protein interactions and their gene products function along with the isolation of postnatal stem cells from various sources in the oral cavity, and the development of smart materials for cell and growth factor delivery, makes possibility for biological based enamel regeneration. This article will review the recent endeavor on biomimetic synthesis and cell based strategies for enamel regeneration. PMID:25386548

  13. Evaluating the Bone Tissue Regeneration Capability of the Chinese Herbal Decoction Danggui Buxue Tang from a Molecular Biology Perspective

    Directory of Open Access Journals (Sweden)

    Wen-Ling Wang

    2014-01-01

    Full Text Available Large bone defects are a considerable challenge to reconstructive surgeons. Numerous traditional Chinese herbal medicines have been used to repair and regenerate bone tissue. This study investigated the bone regeneration potential of Danggui Buxue Tang (DBT, a Chinese herbal decoction prepared from Radix Astragali (RA and Radix Angelicae Sinensis (RAS, from a molecular biology perspective. The optimal ratio of RA and RAS used in DBT for osteoblast culture was obtained by colorimetric and alkaline phosphatase (ALP activity assays. Moreover, the optimal concentration of DBT for bone cell culture was also determined by colorimetric, ALP activity, nodule formation, Western blotting, wound-healing, and tartrate-resistant acid phosphatase activity assays. Consequently, the most appropriate weight ratio of RA to RAS for the proliferation and differentiation of osteoblasts was 5 : 1. Moreover, the most effective concentration of DBT was 1,000 μg/mL, which significantly increased the number of osteoblasts, intracellular ALP levels, and nodule numbers, while inhibiting osteoclast activity. Additionally, 1,000 μg/mL of DBT was able to stimulate p-ERK and p-JNK signal pathway. Therefore, DBT is highly promising for use in accelerating fracture healing in the middle or late healing periods.

  14. Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane

    Science.gov (United States)

    2013-01-01

    Original Articles Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane Teja Guda, PhD,1,2 John...Joint Surg Br 90-B, 1617, 2008. 6. Carlo Reis, E.C., Borges AaPB, Araujo, M.V.F., Mendes, V.C., Guan, L., and Davies, J.E. Periodontal regeneration...Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials–biological foundation and preclinical evi- dence: a

  15. In vitro embryo rescue and plant regeneration following self ...

    African Journals Online (AJOL)

    EJIRO

    2015-07-08

    Jul 8, 2015 ... 2Department of Biological Sciences, College of Natural Sciences, Makerere ... Key words: Cassava, doubled haploids, embryo rescue, plant regeneration, pollen germination, pollen ... breeding as inbred lines are readily tested and used within a ... dominance, allowing the separation of homozygotes from.

  16. Analysis of the dynamic co-expression network of heart regeneration in the zebrafish

    Science.gov (United States)

    Rodius, Sophie; Androsova, Ganna; Götz, Lou; Liechti, Robin; Crespo, Isaac; Merz, Susanne; Nazarov, Petr V.; de Klein, Niek; Jeanty, Céline; González-Rosa, Juan M.; Muller, Arnaud; Bernardin, Francois; Niclou, Simone P.; Vallar, Laurent; Mercader, Nadia; Ibberson, Mark; Xenarios, Ioannis; Azuaje, Francisco

    2016-05-01

    The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration.

  17. Micro-RNAs in regenerating lungs: an integrative systems biology analysis of murine influenza pneumonia.

    Science.gov (United States)

    Tan, Kai Sen; Choi, Hyungwon; Jiang, Xiaoou; Yin, Lu; Seet, Ju Ee; Patzel, Volker; Engelward, Bevin P; Chow, Vincent T

    2014-07-11

    Tissue regeneration in the lungs is gaining increasing interest as a potential influenza management strategy. In this study, we explored the role of microRNAs, short non-coding RNAs involved in post-transcriptional regulation, during pulmonary regeneration after influenza infection. We profiled miRNA and mRNA expression levels following lung injury and tissue regeneration using a murine influenza pneumonia model. BALB/c mice were infected with a sub-lethal dose of influenza A/PR/8(H1N1) virus, and their lungs were harvested at 7 and 15 days post-infection to evaluate the expression of ~300 miRNAs along with ~36,000 genes using microarrays. A global network was constructed between differentially expressed miRNAs and their potential target genes with particular focus on the pulmonary repair and regeneration processes to elucidate the regulatory role of miRNAs in the lung repair pathways. The miRNA arrays revealed a global down-regulation of miRNAs. TargetScan analyses also revealed specific miRNAs highly involved in targeting relevant gene functions in repair such as miR-290 and miR-505 at 7 dpi; and let-7, miR-21 and miR-30 at 15 dpi. The significantly differentially regulated miRNAs are implicated in the activation or suppression of cellular proliferation and stem cell maintenance, which are required during the repair of the damaged lungs. These findings provide opportunities in the development of novel repair strategies in influenza-induced pulmonary injury.

  18. Dissecting the function of Cullin-RING ubiquitin ligase complex genes in planarian regeneration.

    Science.gov (United States)

    Strand, Nicholas S; Allen, John M; Ghulam, Mahjoobah; Taylor, Matthew R; Munday, Roma K; Carrillo, Melissa; Movsesyan, Artem; Zayas, Ricardo M

    2018-01-15

    The ubiquitin system plays a role in nearly every aspect of eukaryotic cell biology. The enzymes responsible for transferring ubiquitin onto specific substrates are the E3 ubiquitin ligases, a large and diverse family of proteins, for which biological roles and target substrates remain largely undefined. Studies using model organisms indicate that ubiquitin signaling mediates key steps in developmental processes and tissue regeneration. Here, we used the freshwater planarian, Schmidtea mediterranea, to investigate the role of Cullin-RING ubiquitin ligase (CRL) complexes in stem cell regulation during regeneration. We identified six S. mediterranea cullin genes, and used RNAi to uncover roles for homologs of Cullin-1, -3 and -4 in planarian regeneration. The cullin-1 RNAi phenotype included defects in blastema formation, organ regeneration, lesions, and lysis. To further investigate the function of cullin-1-mediated cellular processes in planarians, we examined genes encoding the adaptor protein Skp1 and F-box substrate-recognition proteins that are predicted to partner with Cullin-1. RNAi against skp1 resulted in phenotypes similar to cullin-1 RNAi, and an RNAi screen of the F-box genes identified 19 genes that recapitulated aspects of cullin-1 RNAi, including ones that in mammals are involved in stem cell regulation and cancer biology. Our data provides evidence that CRLs play discrete roles in regenerative processes and provide a platform to investigate how CRLs regulate stem cells in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Histological and molecular-biological analyses of poly(3-hydroxybutyrate) (PHB) patches for enhancement of bone regeneration.

    Science.gov (United States)

    Gredes, Tomasz; Gedrange, Tomasz; Hinüber, Claudia; Gelinsky, Michael; Kunert-Keil, Christiane

    2015-05-01

    Tissue engineered cell-seeded constructs with poly(3)hydroxybutyrate (PHB) induced ectopic bone formation after implantation into the back muscle of rats. The objective of our in vivo study was to evaluate the osteogenic potential of pure PHB patches in surgically created cranial defects. For this, PHB patches were analyzed after implantation in surgically created defects on the cranium of adult male rats. After healing periods of 4, 8 and 12 weeks, the bone tissue specimens containing PHB patches were processed and analyzed histologically as well as molecular-biologically. After 4 weeks, the PHB patches were completely embedded in connective tissue. Eight weeks after PHB insertion, bone regeneration proceeding from bearing bone was found in 50% of all treated animals, whereas all PHB treated cavities showed both bone formation and embedding of the patches in bone 12 weeks after surgery. Furthermore, all slices showed pronounced development of blood vessels. Histomorphometric analysis presented a regenerated bone mean value between 46.4 ± 16.1% and 54.2 ± 19.3% after 4-12 weeks of healing. Caveolin-1 staining in capillary-like structures showed a 1.16-1.38 fold increased expression in PHB treated defects compared to controls. Real-time RT-PCR analyses showed significantly lower expressions of Alpl, Col1a1 and VEGFA in cranium defects after treatment with PHB patches compared to untreated bony defects of the same cranium. Within the limits of the presented animal investigation, it could conclude that the tested PHB patches featured a good biocompatibility and an osteoconductive character. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Biological desulfurisation

    Energy Technology Data Exchange (ETDEWEB)

    Arena, B.J. [UOP LLC (United States); Benschop, A.; Janssen, A. [Paques Natural Solutions (Netherlands); Kijlstra, S. [Shell Global Solutions (Netherlands)

    2001-03-01

    This article focuses on the biological THIOPAQ process for removing hydrogen sulphide from refinery gases and recovering elemental sulphur. Details are given of the process which absorbs hydrogen sulphide-containing gas in alkaline solution prior to oxidation of the dissolved sulphur to elemental sulphur in a THIOPAQ aerobic biological reactor, with regeneration of the caustic solution. Sulphur handling options including sulphur wash, the drying of the sulphur cake, and sulphur smelting by pressure liquefaction are described. Agricultural applications of the biologically recovered sulphur, and application of the THIOPAQ process to sulphur recovery are discussed.

  1. Cryogenic regenerators

    International Nuclear Information System (INIS)

    Kush, P.; Joshi, S.C.; Thirumaleshwar, M.

    1986-01-01

    Importance of regenerators in cryogenic refrigerators is highlighted. Design aspects of regenerator are reviewed and the factors involved in the selection of regenerator material are enumerated. Various methods used to calculate the heat transfer coefficient and regenerator effectiveness are mentioned. Variation of effectiveness with various parameters is calculated by a computer programme using the ideal, Ackermann and Tipler formulae. Results are presented in graphical form. Listing of the computer programme is given in the Appendix. (author)

  2. Extraocular muscle regeneration in zebrafish requires late signals from Insulin-like growth factors.

    Science.gov (United States)

    Saera-Vila, Alfonso; Louie, Ke'ale W; Sha, Cuilee; Kelly, Ryan M; Kish, Phillip E; Kahana, Alon

    2018-01-01

    Insulin-like growth factors (Igfs) are key regulators of key biological processes such as embryonic development, growth, and tissue repair and regeneration. The role of Igf in myogenesis is well documented and, in zebrafish, promotes fin and heart regeneration. However, the mechanism of action of Igf in muscle repair and regeneration is not well understood. Using adult zebrafish extraocular muscle (EOM) regeneration as an experimental model, we show that Igf1 receptor blockage using either chemical inhibitors (BMS754807 and NVP-AEW541) or translation-blocking morpholino oligonucleotides (MOs) reduced EOM regeneration. Zebrafish EOMs regeneration depends on myocyte dedifferentiation, which is driven by early epigenetic reprogramming and requires autophagy activation and cell cycle reentry. Inhibition of Igf signaling had no effect on either autophagy activation or cell proliferation, indicating that Igf signaling was not involved in the early reprogramming steps of regeneration. Instead, blocking Igf signaling produced hypercellularity of regenerating EOMs and diminished myosin expression, resulting in lack of mature differentiated muscle fibers even many days after injury, indicating that Igf was involved in late re-differentiation steps. Although it is considered the main mediator of myogenic Igf actions, Akt activation decreased in regenerating EOMs, suggesting that alternative signaling pathways mediate Igf activity in muscle regeneration. In conclusion, Igf signaling is critical for re-differentiation of reprogrammed myoblasts during late steps of zebrafish EOM regeneration, suggesting a regulatory mechanism for determining regenerated muscle size and timing of differentiation, and a potential target for regenerative therapy.

  3. The application of nanomaterials in controlled drug delivery for bone regeneration.

    Science.gov (United States)

    Shi, Shuo; Jiang, Wenbao; Zhao, Tianxiao; Aifantis, Katerina E; Wang, Hui; Lin, Lei; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Li, Xiaoming

    2015-12-01

    Bone regeneration is a complicated process that involves a series of biological events, such as cellular recruitment, proliferation and differentiation, and so forth, which have been found to be significantly affected by controlled drug delivery. Recently, a lot of research studies have been launched on the application of nanomaterials in controlled drug delivery for bone regeneration. In this article, the latest research progress in this area regarding the use of bioceramics-based, polymer-based, metallic oxide-based and other types of nanomaterials in controlled drug delivery for bone regeneration are reviewed and discussed, which indicates that the controlling drug delivery with nanomaterials should be a very promising treatment in orthopedics. Furthermore, some new challenges about the future research on the application of nanomaterials in controlled drug delivery for bone regeneration are described in the conclusion and perspectives part. Copyright © 2015 Wiley Periodicals, Inc.

  4. Scaffolds for Tendon and Ligament Repair and Regeneration

    Science.gov (United States)

    Ratcliffe, Anthony; Butler, David L; Dyment, Nathaniel A; Cagle, Paul J; Proctor, Christopher S; Ratcliffe, Seena S; Flatow, Evan L

    2015-01-01

    Enhanced tendon and ligament repair would have a major impact on orthopaedic surgery outcomes, resulting in reduced repair failures and repeat surgeries, more rapid return to function, and reduced health care costs. Scaffolds have been used for mechanical and biologic reinforcement of repair and regeneration with mixed results. This review summarizes efforts made using biologic and synthetic scaffolds using rotator cuff and ACL as examples of clinical applications, discusses recent advances that have shown promising clinical outcomes, and provides insight into future therapy. PMID:25650098

  5. Insights to regenerate materials: learning from nature

    Science.gov (United States)

    García-Aznar, J. M.; Valero, C.; Gómez-Benito, M. J.; Javierre, E.

    2016-08-01

    Self-healing materials, both biological and engineered, integrate the ability to repair themselves and recover their functionality using the resources inherently available to them. Although significant advances have been made, in recent years, for the design of different concepts of self-healing materials, this work aims to provide some insights into how living materials are able to regenerate or heal when a fracture or injury occurs. The main sensors that regulate this adaptive and regenerative behavior are the cells. These are able to sense the mechanical alterations in their surroundings and regulate their activity in order to remove dead tissue and/or create new tissue. Therefore, understanding how cells are able to regenerate tissues under complex and multiphysics conditions can define the biomimetics guidelines to heal through inert or traditional engineering materials. In this work, we present a combination of experiments and different kinds of multiscale and multiphysics models in order to understand how mechanics regulate some mechanisms at cell and tissue level. This combination of results aims to gain insight into the development of novel strategies for self-healing materials, mimicking the behavior induced by cells and biological tissues.

  6. Adventitious shoot regeneration from leaf explants of the valuable ...

    African Journals Online (AJOL)

    Jane

    2011-08-10

    Aug 10, 2011 ... 2Department of Plant Biology and Plant Biotechnology, St. Joseph's College, Tiruchirappalli – 620 002, South India. Accepted 28 March, 2011 .... Effect of cytokinins (KN and BAP) alone or in combination with NAA on direct shoot bud regeneration from leaf explants of P. barbatus. Plant growth regulator ...

  7. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  8. Tree shelters and other methods for reducing deer damage to hardwood regeneration in the eastern United States

    Science.gov (United States)

    Gary W. Miller

    1998-01-01

    This report summarizes the basic silvicultural problems associated with regenerating commercial hardwood (broadleaf) species in the eastern United States and includes a review of current methods used to reduce the impact of deer browsing. The following topics are discussed: 1) the biological requirements and regeneration mechanism associated with several important tree...

  9. The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians?

    Science.gov (United States)

    Sarig, Rachel; Tzahor, Eldad

    2017-04-01

    Regeneration in mammals is restricted to distinct tissues and occurs mainly by expansion and maturation of resident stem cells. During regeneration, even subtle mutations in the proliferating cells may cause a detrimental effect by eliciting abnormal differentiation or malignant transformation. Indeed, cancer in mammals has been shown to arise through deregulation of stem cells maturation, which often leads to a differentiation block and cell transformation. In contrast, lower organisms such as amphibians retain a remarkable regenerative capacity in various organs, which occurs via de- and re-differentiation of mature cells. Interestingly, regenerating amphibian cells are highly resistant to oncogenic transformation. Therapeutic approaches to improve mammalian regeneration mainly include stem-cell transplantations; but, these have proved unsuccessful in non-regenerating organs such as the heart. A recently developed approach is to induce de-differentiation of mature cardiomyocytes using factors that trigger their re-entry into the cell cycle. This novel approach raises numerous questions regarding the balance between transformation and regeneration induced by de-differentiation of mature mammalian somatic cells. Can this balance be controlled artificially? Do de-differentiated cells acquire the protection mechanisms seen in regenerating cells of lower organisms? Is this model unique to the cardiac tissue, which rarely develops tumors? This review describes regeneration processes in both mammals and lower organisms and, particularly, the ability of regenerating cells to avoid transformation. By comparing the characteristics of mammalian embryonic and somatic cells, we discuss therapeutic strategies of using various cell populations for regeneration. Finally, we describe a novel cardiac regeneration approach and its implications for regenerative medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email

  10. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals

    Science.gov (United States)

    Gawriluk, Thomas R.; Simkin, Jennifer; Thompson, Katherine L.; Biswas, Shishir K.; Clare-Salzler, Zak; Kimani, John M.; Kiama, Stephen G.; Smith, Jeramiah J.; Ezenwa, Vanessa O.; Seifert, Ashley W.

    2016-01-01

    Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp. (spiny mice) and Oryctolagus cuniculus completely regenerate tissue, whereas other rodents including MRL/MpJ ‘healer' mice heal similar injuries by scarring. We demonstrate ear-hole closure is independent of ear size, and closure rate can be modelled with a cubic function. Cellular and genetic analyses reveal that injury induces blastema formation in Acomys cahirinus. Despite cell cycle re-entry in Mus musculus and A. cahirinus, efficient cell cycle progression and proliferation only occurs in spiny mice. Together, our data unite blastema-mediated regeneration in spiny mice with regeneration in other vertebrates such as salamanders, newts and zebrafish, where all healthy adults regenerate in response to injury. PMID:27109826

  11. Study on regeneration effect and mechanism of high-frequency ultrasound on biological activated carbon.

    Science.gov (United States)

    Sun, Zhehao; Liu, Cheng; Cao, Zhen; Chen, Wei

    2018-06-01

    High frequency ultrasonic radiation technology was developed as a novel and efficient means of regenerating spent biological activated carbon (BAC) used in drinking water treatment plants (DWTPs). The results of this study indicated that high frequency ultrasonic treatment could recover the spent BAC, to some extent, with the following optimal conditions: a frequency of 400 kHz, sonication power of 60 W, water temperature of 30 °C, and sonication time of 6 min. Under the above conditions, the iodine value increased from 300 mg/g to 409 mg/g, the volume of total pores and micropores increased from 0.2600 cm 3 /g and 0.1779 cm 3 /g to 0.3560 cm 3 /g and 0.2662 cm 3 /g, respectively; the specific surface area of micropores and the mean pore diameter expanded from 361.15 m 2 /g and 2.0975 nm to 449.92 m 2 /g and 2.1268 nm, respectively. The biological activity increased from 0.0297 mgO 2 /gC·h to 0.0521 mgO 2 /gC·h, while the biomass decreased from 203 nmolP/gC to 180 nmolP/gC. The results of high throughput 16S rRNA gene amplicon sequencing showed that microorganisms such as Clostridia and Nitrospira were markedly decreased due to high frequency ultrasound. The method used in this study caused the inhibition of certain carbon-attached microbials resulting in a negative effect on the removal rate of ammonia-N during the initial stage of the long-term reuse operation. The removal of UV254 and atrazine were restored from 8.1% and 55% to 21% and 76%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. UPF2 is a critical regulator of liver development, function and regeneration

    DEFF Research Database (Denmark)

    Thoren, Lina A; Nørgaard, Gitte A; Weischenfeldt, Joachim

    2010-01-01

    regulatory potential of the NMD pathway in mammals will require the functional assessment of NMD in different tissues. METHODOLOGY/PRINCIPAL FINDINGS: Here we use mouse genetics to address the role of UPF2, a core NMD component, in the development, function and regeneration of the liver. We find that loss....... CONCLUSION/SIGNIFICANCE: Collectively, our data demonstrate the critical role of the NMD pathway in liver development, function and regeneration and highlights the importance of NMD for mammalian biology....... of NMD during fetal liver development is incompatible with postnatal life due to failure of terminal differentiation. Moreover, deletion of Upf2 in the adult liver results in hepatosteatosis and disruption of liver homeostasis. Finally, NMD was found to be absolutely required for liver regeneration...

  13. The combination use of platelet-rich fibrin and treated dentin matrix for tooth root regeneration by cell homing.

    Science.gov (United States)

    Ji, Baohui; Sheng, Lei; Chen, Gang; Guo, Shujuan; Xie, Li; Yang, Bo; Guo, Weihua; Tian, Weidong

    2015-01-01

    Endogenous regeneration through cell homing provides an alternative approach for tissue regeneration, except cell transplantation, especially considering clinical translation. However, tooth root regeneration through cell homing remains a provocative approach in need of intensive study. Both platelet-rich fibrin (PRF) and treated dentin matrix (TDM) are warehouses of various growth factors, which can promote cell homing. We hypothesized that endogenous stem cells are able to sense biological cues from PRF membrane and TDM, and contribute to the regeneration of tooth root, including soft and hard periodontal tissues. Therefore, the biological effects of canine PRF and TDM on periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMSCs) were evaluated respectively in vitro. Beagle dogs were used as orthotopic transplantation model. It was found that PRF significantly recruited and stimulated the proliferation of PDLSCs and BMSCs in vitro. Together, PRF and TDM induced cell differentiation by upregulating the mineralization-related gene expression of bone sialoprotein (BSP) and osteopotin (OPN) after 7 days coculture. In vivo, transplantation of autologous PRF and allogeneic TDM into fresh tooth extraction socket achieved successful root regeneration 3 months postsurgery, characterized by the regeneration of cementum and periodontal ligament (PDL)-like tissues with orientated fibers, indicative of functional restoration. The results suggest that tooth root connected to the alveolar bone by cementum-PDL complex can be regenerated through the implantation of PRF and TDM in a tooth socket microenvironment, probably by homing of BMSCs and PDLSCs. Furthermore, bioactive cues and inductive microenvironment are key factors for endogenous regeneration. This approach provides a tangible pathway toward clinical translation.

  14. Regeneration

    Science.gov (United States)

    George A. Schier; Wayne D. Shepperd; John R. Jones

    1985-01-01

    There are basically two approaches to regenerating aspen stands-sexual reproduction using seed, or vegetative regeneration by root suckering. In the West, root suckering is the most practical method. The advantage of having an existing, well established root system capable of producing numerous root suckers easily outweighs natural or artificial reforestation in the...

  15. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy.

    Science.gov (United States)

    Nori, Satoshi; Nakamura, Masaya; Okano, Hideyuki

    2017-01-01

    Spinal cord injury (SCI) typically damages the long axonal tracts of the spinal cord which results in permanent disability. However, regeneration of the injured spinal cord is approaching reality according to the advances in stem cell biology. Cell transplantation therapy holds potential to lead to recovery following SCI through some positive mechanisms. Grafted cells induce plasticity and regeneration in the injured spinal cord by promoting remyelination of damaged axons, reconstruction of neural circuits by synapse formation between host neurons and graft-derived neurons, and secreting neurotrophic factors to promote axonal elongation as well as reduce retrograde axonal degeneration. In this review, we will delineate (1) the microenvironment of the injured spinal cord that influence the plasticity and regeneration capacity after SCI, (2) a number of different kinds of cell transplantation therapies for SCI that has been extensively studied by researchers, and (3) potential mechanisms of grafted cell-induced regeneration and plasticity in the injured spinal cord. © 2017 Elsevier B.V. All rights reserved.

  16. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration

    Science.gov (United States)

    Haynes, Tracy; Luz-Madrigal, Agustin; Reis, Edimara S.; Echeverri Ruiz, Nancy P.; Grajales-Esquivel, Erika; Tzekou, Apostolia; Tsonis, Panagiotis A.; Lambris, John D.; Del Rio-Tsonis, Katia

    2013-01-01

    Identifying the initiation signals for tissue regeneration in vertebrates is one of the major challenges in regenerative biology. Much of the research thus far has indicated that certain growth factors have key roles. Here we show that complement fragment C3a is sufficient to induce complete regeneration of the embryonic chick retina from stem/progenitor cells present in the eye, independent of fibroblast growth factor receptor signaling. Instead, C3a induces retina regeneration via STAT3 activation, which in turn activates the injury- and inflammation-responsive factors, IL-6, IL-8 and TNF-α. This activation sets forth regulation of Wnt2b, Six3 and Sox2, genes associated with retina stem and progenitor cells. Thus, our results establish a mechanism for retina regeneration based on injury and inflammation signals. Furthermore, our results indicate a unique function for complement anaphylatoxins that implicate these molecules in the induction and complete regeneration of the retina, opening new avenues of experimentation in the field. PMID:23942241

  17. Cartilage regeneration for treatment of osteoarthritis: a paradigm for nonsurgical intervention

    Science.gov (United States)

    Sabaawy, Hatem E.

    2015-01-01

    Osteoarthritis (OA) is associated with articular cartilage abnormalities and affects people of older age: preventative or therapeutic treatment measures for OA and related articular cartilage disorders remain challenging. In this perspective review, we have integrated multiple biological, morphological, developmental, stem cell and homeostasis concepts of articular cartilage to develop a paradigm for cartilage regeneration. OA is conceptually defined as an injury of cartilage that initiates chondrocyte activation, expression of proteases and growth factor release from the matrix. This regenerative process results in the local activation of inflammatory response genes in cartilage without migration of inflammatory cells or angiogenesis. The end results are catabolic and anabolic responses, and it is the balance between these two outcomes that controls remodelling of the matrix and regeneration. A tantalizing clinical clue for cartilage regrowth in OA joints has been observed in surgically created joint distraction. We hypothesize that cartilage growth in these distracted joints may have a biological connection with the size of organs and regeneration. Therefore we propose a novel, practical and nonsurgical intervention to validate the role of distraction in cartilage regeneration in OA. The approach permits normal wake-up activity while during sleep; the index knee is subjected to distraction with a pull traction device. Comparison of follow-up magnetic resonance imaging (MRI) at 3 and 6 months of therapy to those taken before therapy will provide much-needed objective evidence for the use of this mode of therapy for OA. We suggest that the paradigm presented here merits investigation for treatment of OA in knee joints. PMID:26029269

  18. Germline Transgenic Methods for Tracking Cells and Testing Gene Function during Regeneration in the Axolotl

    Science.gov (United States)

    Khattak, Shahryar; Schuez, Maritta; Richter, Tobias; Knapp, Dunja; Haigo, Saori L.; Sandoval-Guzmán, Tatiana; Hradlikova, Kristyna; Duemmler, Annett; Kerney, Ryan; Tanaka, Elly M.

    2013-01-01

    The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum (axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly overexpress the cell-cycle inhibitor p16INK4a, which negatively regulates spinal cord regeneration. These tissue-specific germline axolotl lines and tightly inducible Cre drivers and LoxP reporter lines render this classical regeneration model molecularly accessible. PMID:24052945

  19. A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors

    Directory of Open Access Journals (Sweden)

    Donald M. Bryant

    2017-01-01

    Full Text Available Mammals have extremely limited regenerative capabilities; however, axolotls are profoundly regenerative and can replace entire limbs. The mechanisms underlying limb regeneration remain poorly understood, partly because the enormous and incompletely sequenced genomes of axolotls have hindered the study of genes facilitating regeneration. We assembled and annotated a de novo transcriptome using RNA-sequencing profiles for a broad spectrum of tissues that is estimated to have near-complete sequence information for 88% of axolotl genes. We devised expression analyses that identified the axolotl orthologs of cirbp and kazald1 as highly expressed and enriched in blastemas. Using morpholino anti-sense oligonucleotides, we find evidence that cirbp plays a cytoprotective role during limb regeneration whereas manipulation of kazald1 expression disrupts regeneration. Our transcriptome and annotation resources greatly complement previous transcriptomic studies and will be a valuable resource for future research in regenerative biology.

  20. Cardiomyocyte Regeneration

    Directory of Open Access Journals (Sweden)

    Toshio Nakanishi

    2013-01-01

    Full Text Available The heart was initially believed to be a terminally differentiated organ; once the cardiomyocytes died, no recovery could be made to replace the dead cells. However, around a decade ago, the concept of cardiac stem cells (CSCs in adult hearts was proposed. CSCs differentiate into cardiomyocytes, keeping the heart functioning. Studies have proved the existence of stem cells in the heart. These somatic stem cells have been studied for use in cardiac regeneration. Moreover, recently, induced pluripotent stem cells (iPSCs were invented, and methodologies have now been developed to induce stable cardiomyocyte differentiation and purification of mature cardiomyocytes. A reprogramming method has also been applied to direct reprogramming using cardiac fibroblasts into cardiomyocytes. Here, we address cardiomyocyte differentiation of CSCs and iPSCs. Furthermore, we describe the potential of CSCs in regenerative biology and regenerative medicine.

  1. Alkali-free bioactive glasses for bone regeneration

    OpenAIRE

    Kapoor, Saurabh

    2014-01-01

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tiss...

  2. Desulfurization sorbent regeneration

    Science.gov (United States)

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  3. Peptidomics Analysis of Transient Regeneration in the Neonatal Mouse Heart.

    Science.gov (United States)

    Fan, Yi; Zhang, Qijun; Li, Hua; Cheng, Zijie; Li, Xing; Chen, Yumei; Shen, Yahui; Wang, Liansheng; Song, Guixian; Qian, Lingmei

    2017-09-01

    Neonatal mouse hearts have completely regenerative capability after birth, but the ability to regenerate rapidly lost after 7 days, the mechanism has not been clarified. Previous studies have shown that mRNA profile of adult mouse changed greatly compared to neonatal mouse. So far, there is no research of peptidomics related to heart regeneration. In order to explore the changes of proteins, enzymes, and peptides related to the transient regeneration, we used comparative petidomics technique to compare the endogenous peptides in the mouse heart of postnatal 1 and 7 days. In final, we identified 236 differentially expressed peptides, 169 of which were upregulated and 67 were downregulated in the postnatal 1 day heart, and also predicted 36 functional peptides associated with transient regeneration. The predicted 36 candidate peptides are located in the important domains of precursor proteins and/or contain the post-transcriptional modification (PTM) sites, which are involved in the biological processes of cardiac development, cardiac muscle disease, cell proliferation, necrosis, and apoptosis. In conclusion, for the first time, we compared the peptidomics profiles of neonatal heart between postnatal 1 day and postnatal 7 day. This study provides a new direction and an important basis for the mechanism research of transient regeneration in neonatal heart. J. Cell. Biochem. 118: 2828-2840, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Regeneration performance of CO2-rich solvents by using membrane vacuum regeneration technology: Relationships between absorbent structure and regeneration efficiency

    International Nuclear Information System (INIS)

    Yan, Shuiping; Fang, Mengxiang; Wang, Zhen; Luo, Zhongyang

    2012-01-01

    Highlights: ► MVR may be viable to successfully use less valuable heat to replace high grade steam. ► Increasing OH and amine groups will increase the regeneration efficiency. ► Absorbents with a four carbon chain length will be more attractive to MVR. ► Amino acid salts will be more appropriate for MVR. ► HRM conducted at ambient pressure and low temperature is inferior to MVR. -- Abstract: In order to give a better understanding for the selection of suitable absorbents for the novel membrane vacuum regeneration technology (MVR) which has the potential to reduce CO 2 energy requirement by utilizing the waste heat or low-grade energy, an experimental study to determine the relationships between chemical structure and vacuum regeneration behavior of CO 2 absorbents at 70 °C and 10 kPa was performed. Eleven typical absorbents with different functional groups in their chemical structures were investigated in terms of vacuum regeneration efficiencies. Results showed that the regeneration efficiency decreased with an increase of number of activated hydrogen atom in amine group and decreased with the number of hydroxyl group. Especially, more attention should be paid to these alkanolamines with one hydrogen atom in amine group and two or more hydroxyl groups in the structures due to their better comprehensive performance in regeneration, absorbent loss and CO 2 absorption aspects. Increasing the carbon chain length and amine groups in the absorbent structure contributed to the improvement of regeneration performance and reduction of absorbent volatile loss. These absorbents with a four carbon chain length bonded at amine group might be more attractive to MVR. Furthermore, polyamines were superior to monoamines in terms of higher regeneration efficiencies and lower absorbent losses. Additionally, the individual effects of the potassium carboxylate group and hydroxymethylene group were also compared in this study. Results showed that amino acid salts were more

  5. Current advances in tissue repair and regeneration: the future is bright

    OpenAIRE

    Ninov, N.; Yun, M. H.

    2015-01-01

    The fifth EMBO conference on ‘The Molecular and Cellular Basis of Regeneration and Repair’ took place in the peaceful coastal town of Sant Feliu de Guixols (Spain) on September 2014. The meeting was organised by Emili Saló (U. Barcelona, Spain), Kimberly Mace (U. Manchester, UK), Patrizia Ferretti (University College London, UK) and Michael Brand (Centre for Regenerative Therapies Dresden, Germany) and received the generous support of Society for Developmental Biology, The Company of Biologis...

  6. Complement components of nerve regeneration conditioned fluid influence the microenvironment of nerve regeneration

    Directory of Open Access Journals (Sweden)

    Guang-shuai Li

    2016-01-01

    Full Text Available Nerve regeneration conditioned fluid is secreted by nerve stumps inside a nerve regeneration chamber. A better understanding of the proteinogram of nerve regeneration conditioned fluid can provide evidence for studying the role of the microenvironment in peripheral nerve regeneration. In this study, we used cylindrical silicone tubes as the nerve regeneration chamber model for the repair of injured rat sciatic nerve. Isobaric tags for relative and absolute quantitation proteomics technology and western blot analysis confirmed that there were more than 10 complement components (complement factor I, C1q-A, C1q-B, C2, C3, C4, C5, C7, C8ß and complement factor D in the nerve regeneration conditioned fluid and each varied at different time points. These findings suggest that all these complement components have a functional role in nerve regeneration.

  7. Towards Regeneration of Articular Cartilage

    Science.gov (United States)

    Iwamoto, Masahiro; Ohta, Yoichi; Larmour, Colleen; Enomoto-Iwamoto, Motomi

    2014-01-01

    Articular cartilage is classified into permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in growth plate. In the process of synovial joint development, articular cartilage is originated from the interzone, developing at the edge of the cartilaginous anlagen, it establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators such as Wnts, GDF5, Erg, and PTHLH coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracerllular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier’s groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Further, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. PMID:24078496

  8. Heart regeneration.

    Science.gov (United States)

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Liver regeneration

    NARCIS (Netherlands)

    Chamuleau, R. A.; Bosman, D. K.

    1988-01-01

    Despite great advances in analysing hemodynamic, morphological and biochemical changes during the process of liver regeneration, the exact (patho)physiological mechanism is still unknown. A short survey of literature is given of the kinetics of liver regeneration and the significance of different

  10. Extracellular matrix as a driver for lung regeneration.

    Science.gov (United States)

    Balestrini, Jenna L; Niklason, Laura E

    2015-03-01

    Extracellular matrix has manifold roles in tissue mechanics, guidance of cellular behavior, developmental biology, and regenerative medicine. Over the past several decades, various pre-clinical and clinical studies have shown that many connective tissues may be replaced and/or regenerated using suitable extracellular matrix scaffolds. More recently, decellularization of lung tissue has shown that gentle removal of cells can leave behind a "footprint" within the matrix that may guide cellular adhesion, differentiation and homing following cellular repopulation. Fundamental issues like understanding matrix composition and micro-mechanics remain difficult to tackle, largely because of a lack of available assays and tools for systematically characterizing intact matrix from tissues and organs. This review will critically examine the role of engineered and native extracellular matrix in tissue and lung regeneration, and provide insights into directions for future research and translation.

  11. Gene expression program of regeneration in Eisenia fetida: a transcriptomics study

    Directory of Open Access Journals (Sweden)

    Aksheev Bhambri

    2017-10-01

    Full Text Available Annelids form a connecting link between segmented and non-segmented organisms.  In other words, phylogenetically, the segmented body pattern starts from Annelida, a phylum that consists of thousands of species, including marine worms, freshwater leeches and earthworms that inhabit deep layers of soil to environmental niches in forests and cultivated land. We are using Eisenia fetida (Indian isolate a top dwelling, vermicomposting worm due to its ability to regenerate its posterior after damage, injury or complete removal. On average, Eisenia fetida has 100-110 segments. We separated the anterior (upto 55-60th segment and posterior of the worm, and allowed it to regenerate.  In this model, only the posterior could be regenerated after injury.  We isolated RNA from the regenerated tissue and the immediate adjacent old tissue at 15 days, 20 days and 30 days during regeneration. We carried out transcriptome sequencing and analysis. With the aim of identifying specific factors which promote nerve regeneration, we have annotated the differentially expressed genes. In all organisms which possess a segmented body, the expression pattern of the Hox cluster is conserved. Hox gene expression, a conserved developmental phenomenon in establishment of body plan has been studied by comparative genomics of other annelids like the marine worm Capitella telleta, the leech Helobdella robusta.  We have used a combination of high-throughput sequencing based techniques and validation through cell and molecular biology to identify key aspects of the gene expression program of regeneration in this worm. Besides the transcriptome, we have also done whole genome sequencing, miRnome and metagenome sequencing of this terrestrial annelid.

  12. The Amount of Regenerated Heat Inside the Regenerator of a Stirling Engine

    Directory of Open Access Journals (Sweden)

    J. Škorpík

    2008-01-01

    Full Text Available The paper deals with analytical computing of the regenerated heat inside the regenerator of a Stirling engine. The total sum of the regenerated heat is constructed as a function of the crank angle in the case of Schmidt’s idealization. 

  13. Enhanced regeneration potential of mobilized dental pulp stem cells from immature teeth.

    Science.gov (United States)

    Nakayama, H; Iohara, K; Hayashi, Y; Okuwa, Y; Kurita, K; Nakashima, M

    2017-07-01

    We have previously demonstrated that dental pulp stem cells (DPSCs) isolated from mature teeth by granulocyte colony-stimulating factor (G-CSF)-induced mobilization method can enhance angiogenesis/vasculogenesis and improve pulp regeneration when compared with colony-derived DPSCs. However, the efficacy of this method in immature teeth with root-formative stage has never been investigated. Therefore, the aim of this study was to examine the stemness, biological characteristics, and regeneration potential in mobilized DPSCs compared with colony-derived DPSCs from immature teeth. Mobilized DPSCs isolated from immature teeth were compared to colony-derived DPSCs using methods including flow cytometry, migration assays, mRNA expression of angiogenic/neurotrophic factor, and induced differentiation assays. They were also compared in trophic effects of the secretome. Regeneration potential was further compared in an ectopic tooth transplantation model. Mobilized DPSCs had higher migration ability and expressed more angiogenic/neurotrophic factors than DPSCs. The mobilized DPSC secretome produced a higher stimulatory effect on migration, immunomodulation, anti-apoptosis, endothelial differentiation, and neurite extension. In addition, vascularization and pulp regeneration potential were higher in mobilized DPSCs than in DPSCs. G-CSF-induced mobilization method enhances regeneration potential of colony-derived DPSCs from immature teeth. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Biospheric Life Support - integrating biological regeneration into protection of humans in space.

    Science.gov (United States)

    Rocha, Mauricio; Iha, Koshun

    2016-07-01

    A biosphere stands for a set of biomes (regional biological communities) interacting in a materially closed (though energetically open) ecological system (CES). Earth's biosphere, the thin layer of life on the planet's surface, can be seen as a natural CES- where life "consumables" are regenerated/restored via biological, geological and chemical processes. In Life Sciences, artificial CESs- local ecosystems extracts with varying scales and degrees of closure, are considered convenient/representatives objects of study. For outer space, these concepts have been applied to the issue of life support- a significant consideration as long as distance from Earth increases. In the nineties, growing on the Russian expertise on biological life support, backed by a multidisciplinary science team, the famous Biosphere 2 appeared. That private project innovated, by assembling a set of Earth biomes samples- plus an organic ag one, inside a closed Mars base-like structure, next to 1.5 ha under glass, in Arizona, US. The crew of 8 inside completed their two years contract, though facing setbacks- the system failed, e.g., to produce enough food/air supplies. But their "failures"- if this word can be fairly applied to science endeavors, were as meaningful as their achievements for the future of life support systems (LSS) research. By this period, the Russians had accumulated experience in extended orbital stays, achieving biological outcomes inside their stations- e.g. complete wheat cycles. After reaching the Moon, the US administration decided to change national priorities, putting the space program as part of a "détente" policy, to relieve international tensions. Alongside the US space shuttle program, the Russians were invited to join the new International Space Station (ISS), bringing to that pragmatic project, also their physical/chemical LSS- top air/water regenerative technology at the time. Present US policy keeps the ISS operational, extending its service past its planned

  15. Dual role of delta-like 1 homolog (DLK1) in skeletal muscle development and adult muscle regeneration

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Laborda, Jorge; Baladron, Victoriano

    2013-01-01

    skeletal muscle regeneration by substantial enhancement of the myogenic program and muscle function, possibly by means of an increased number of available myogenic precursor cells. By contrast, Dlk1 fails to alter the adipogenic commitment of muscle-derived progenitors in vitro, as well as intramuscular......Muscle development and regeneration is tightly orchestrated by a specific set of myogenic transcription factors. However, factors that regulate these essential myogenic inducers remain poorly described. Here, we show that delta-like 1 homolog (Dlk1), an imprinted gene best known for its ability...... fat deposition during in vivo regeneration. Collectively, our results suggest a novel and surprising dual biological function of DLK1 as an enhancer of muscle development, but as an inhibitor of adult muscle regeneration....

  16. Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies-where are we now?

    DEFF Research Database (Denmark)

    Dawson, Jonathan I; Kanczler, Janos; Kassem, Moustapha

    2014-01-01

    Skeletal stem cells confer to bone its innate capacity for regeneration and repair. Bone regeneration strategies seek to harness and enhance this regenerative capacity for the replacement of tissue damaged or lost through congenital defects, trauma, functional/esthetic problems, and a broad range...... for musculoskeletal regeneration. Stem Cells 2014;32:35-44...... of diseases associated with an increasingly aged population. This review describes the state of the field and current steps to translate and apply skeletal stem cell biology in the clinic and the problems therein. Challenges are described along with key strategies including the isolation and ex vivo expansion...

  17. Biology and augmentation of tendon-bone insertion repair

    Directory of Open Access Journals (Sweden)

    Lui PPY

    2010-08-01

    Full Text Available Abstract Surgical reattachment of tendon and bone such as in rotator cuff repair, patellar-patella tendon repair and anterior cruciate ligament (ACL reconstruction often fails due to the failure of regeneration of the specialized tissue ("enthesis" which connects tendon to bone. Tendon-to-bone healing taking place between inhomogenous tissues is a slow process compared to healing within homogenous tissue, such as tendon to tendon or bone to bone healing. Therefore special attention must be paid to augment tendon to bone insertion (TBI healing. Apart from surgical fixation, biological and biophysical interventions have been studied aiming at regeneration of TBI healing complex, especially the regeneration of interpositioned fibrocartilage and new bone at the healing junction. This paper described the biology and the factors influencing TBI healing using patella-patellar tendon (PPT healing and tendon graft to bone tunnel healing in ACL reconstruction as examples. Recent development in the improvement of TBI healing and directions for future studies were also reviewed and discussed.

  18. Behaviour of telomere and telomerase during aging and regeneration in zebrafish.

    Science.gov (United States)

    Anchelin, Monique; Murcia, Laura; Alcaraz-Pérez, Francisca; García-Navarro, Esther M; Cayuela, María L

    2011-02-09

    Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio) offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.

  19. Neural tissue engineering options for peripheral nerve regeneration.

    Science.gov (United States)

    Gu, Xiaosong; Ding, Fei; Williams, David F

    2014-08-01

    Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. "We Was Regenerated Out": Regeneration, Recycling and Devaluing Communities

    Directory of Open Access Journals (Sweden)

    Luna Glucksberg

    2014-12-01

    Full Text Available This article looks at well documented processes of urban regeneration and community displacement in the inner-city through an innovative anthropological perspective focused on concepts of waste and value. Using the notion of symbolic devaluation of the working classes developed by Skeggs (1997; 2004, it traces their exclusion from recycling practices while at the same time the estates they live on are being regenerated. Raising questions about the parallels and contradictions between regeneration and recycling, it shows how symbolic devaluation of specifi c areas and their inhabitants are necessary precursors of the physical demolition and removal that characterize regeneration processes. Through an ethnographic approach, the deep connections between people and their waste, and people as waste, are exposed and questioned, showing how valuable middle class selves are produced through appropriate waste management procedures, i.e. individualized recycling, while inner-city, estate dwellers are remade into uncaring, unworthy citizens who cannot take part in this value-producing circuit.

  1. iTRAQ reveals proteomic changes during intestine regeneration in the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Sun, Lina; Xu, Dongxue; Xu, Qinzeng; Sun, Jingchun; Xing, Lili; Zhang, Libin; Yang, Hongsheng

    2017-06-01

    Sea cucumbers have a striking capacity to regenerate most of their viscera after evisceration, which has drawn the interest of many researchers. In this study, the isobaric tag for relative and absolute quantitation (iTRAQ) was utilized to investigate protein abundance changes during intestine regeneration in sea cucumbers. A total of 4073 proteins were identified, and 2321 proteins exhibited significantly differential expressions, with 1100 upregulated and 1221 downregulated proteins. Our results suggest that intestine regeneration constitutes a complex life activity regulated by the cooperation of various biological processes, including cytoskeletal changes, extracellular matrix (ECM) remodeling and ECM-receptor interactions, protein synthesis, signal recognition and transduction, energy production and conversion, and substance transport and metabolism. Additionally, real-time PCR showed mRNA expression of differentially expressed genes correlated positively with their protein levels. Our results provided a basis for studying the regulatory mechanisms associated with sea cucumber regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration.

    Science.gov (United States)

    Nyberg, Ethan L; Farris, Ashley L; Hung, Ben P; Dias, Miguel; Garcia, Juan R; Dorafshar, Amir H; Grayson, Warren L

    2017-01-01

    The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are three key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects.

  3. Biomimetic approaches with smart interfaces for bone regeneration.

    Science.gov (United States)

    Sailaja, G S; Ramesh, P; Vellappally, Sajith; Anil, Sukumaran; Varma, H K

    2016-11-05

    A 'smart tissue interface' is a host tissue-biomaterial interface capable of triggering favourable biochemical events inspired by stimuli responsive mechanisms. In other words, biomaterial surface is instrumental in dictating the interface functionality. This review aims to investigate the fundamental and favourable requirements of a 'smart tissue interface' that can positively influence the degree of healing and promote bone tissue regeneration. A biomaterial surface when interacts synergistically with the dynamic extracellular matrix, the healing process become accelerated through development of a smart interface. The interface functionality relies equally on bound functional groups and conjugated molecules belonging to the biomaterial and the biological milieu it interacts with. The essential conditions for such a special biomimetic environment are discussed. We highlight the impending prospects of smart interfaces and trying to relate the design approaches as well as critical factors that determine species-specific functionality with special reference to bone tissue regeneration.

  4. Biomechanical, microvascular, and cellular factors promote muscle and bone regeneration.

    Science.gov (United States)

    Duda, Georg N; Taylor, William R; Winkler, Tobias; Matziolis, Georg; Heller, Markus O; Haas, Norbert P; Perka, Carsten; Schaser, Klaus-D

    2008-04-01

    It is becoming clear that the long-term outcome of complex bone injuries benefits from approaches that selectively target biomechanical, vascular, and cellular pathways. The typically held view of either biological or mechanical aspects of healing is oversimplified and does not correspond to clinical reality. The fundamental mechanisms of soft tissue regeneration most likely hold the key to understanding healing response.

  5. Nerve regeneration with aid of nanotechnology and cellular engineering.

    Science.gov (United States)

    Sedaghati, Tina; Yang, Shi Yu; Mosahebi, Afshin; Alavijeh, Mohammad S; Seifalian, Alexander M

    2011-01-01

    Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability. In the last few years, numerous microsurgical techniques, such as coaptation, nerve autograft, and different biological or polymeric nerve conduits, have been developed to reconstruct a long segment of damaged peripheral nerve. A few of these techniques are promising and have become popular among surgeons. Advancements in the field of tissue engineering have led to development of synthetic nerve conduits as an alternative for the nerve autograft technique, which is the current practice to bridge nerve defects with gaps larger than 30 mm. However, to date, despite significant progress in this field, no material has been found to be an ideal alternative to the nerve autograft. This article briefly reviews major up-to-date published studies using different materials as an alternative to the nerve autograft to bridge peripheral nerve gaps in an attempt to assess their ability to support and enhance nerve regeneration and their prospective drawbacks, and also highlights the promising hope for nerve regeneration with the next generation of nerve conduits, which has been significantly enhanced with the tissue engineering approach, especially with the aid of nanotechnology in development of the three-dimensional scaffold. The goal is to determine potential alternatives for nerve regeneration and repair that are simply and directly applicable in clinical conditions. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  6. Chemical and microbiological investigations on mineral-oil contaminated soils following on-site regeneration measures

    International Nuclear Information System (INIS)

    Hollerbach, A.; Teschner, M.; Bosecker, K.; Wehner, H.; Kassner, H.

    1992-01-01

    In the site of a former petroleum refinery, where bombing during the second World War has caused in part deep-down contamination of the ground with petroleum and its products, a pilot study with five on-site biological treatment beds was carried through by different firms with the aim to reduce the hydrocarbon content of the soil to 1 gramme per kilogramme of dry weight. Thus, good comparability of the different regeneration measures was given. Sampling was done at the end of the regeneration experiments by obtaining an average sample. (orig.) [de

  7. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant.

    Science.gov (United States)

    Zhang, Wei; Zhou, Zhen; An, Ying; Du, Silu; Ruan, Danian; Zhao, Chengyue; Ren, Ning; Tian, Xiaoce

    2017-07-01

    Simultaneous zeolites regeneration and nitrogen removal were investigated by using a mixed solution of NaClO and NaCl (NaClO-NaCl solution), and effects of the regenerant on ammonium removal performance and textural properties of zeolites were analyzed by long-term adsorption and regeneration operations. Mixed NaClO-NaCl solution removed more NH 4 + exchanged on zeolites and converted more of them to nitrogen than using NaClO or NaCl solution alone. Response surface methodological analysis indicated that molar ratio of hypochlorite and nitrogen (ClO - /N), NaCl concentration and pH value all had significant effects on zeolites regeneration and NH 4 + conversion to nitrogen, and the optimum condition was obtained at ClO - /N of 1.75, NaCl concentration of 20 g/L and pH of 10.0. Zeolites regenerated by mixed NaClO-NaCl solution showed higher ammonium adsorption rate and lower capacity than unused zeolites. Zeolites and the regeneration solution were both effective even after 20 cycles of use. Composition and morphological analysis revealed that the main mineral species and surface morphology of zeolites before and after NaClO-NaCl regeneration were unchanged. Textural analysis indicated that NaClO-NaCl regeneration leads to an increased surface area of zeolites, especially the microporosity. The results indicated that NaClO-NaCl regeneration is an attractive method to achieve sustainable removal of nitrogen from wastewater through zeolite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Study on sweat gland regeneration induced by microenvironment of three-dimensional bioprinting].

    Science.gov (United States)

    Yao, B; Xie, J F; Huang, S; Fu, X B

    2017-01-20

    Sweat glands are abundant in the body surface and essential for thermoregulation. Sweat glands fail to conduct self-repair in patients with large area of burn and trauma, and the body temperature of patients increases in hot climate, which may cause shock or even death. Now, co-culture system, reprogramming, and tissue engineering have made progresses in inducing sweat gland regeneration, but the inductive efficiency and duration need to be improved. Cellular microenvironment can regulate cell biological behavior, including cell migration and cell differentiation. This article reviews the studies of establishment of microenvironment in vitro by three-dimensional bioprinting technology to induce sweat gland regeneration.

  9. The regeneration of epidermal cells of Saintpaulia leaves as a new plant-tissue system for cellular radiation biology

    International Nuclear Information System (INIS)

    Engels, F.M.; Laan, F.M. van der; Leenhouts, H.P.; Chadwick, K.H.

    1980-01-01

    investigation of the nucleus of epidermal cells of the petioles of Saintpaulia leaves by cytofluorimetry revealed that all cells are in a non-cycling pre DNA synthesis phase. Cultivation of dissected leaves results in a synchronous regeneration process of a defined number of cells. Five days after onset of cultivation the cells reach the first mitosis. The nuclear development during the regeneration process is described. Irradiation of the leaves results in a directly visible inhibition of this regenerating capability which is used to quantify cell survival in a tissue. The data show that the radiation response has a similar shape to that of the survival of single cells in culture. This response can be observed before the first mitosis of the cells and its application as a new plant tissue system for cellular radiation research is discussed. (author)

  10. In vivo models of human airway epithelium repair and regeneration

    Directory of Open Access Journals (Sweden)

    C. Coraux

    2005-12-01

    Full Text Available Despite an efficient defence system, the airway surface epithelium, in permanent contact with the external milieu, is frequently injured by inhaled pollutants, microorganisms and viruses. The response of the airway surface epithelium to an acute injury includes a succession of cellular events varying from the loss of the surface epithelium integrity to partial shedding of the epithelium or even to complete denudation of the basement membrane. The epithelium has then to repair and regenerate to restore its functions. The in vivo study of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to reconstitute a functional respiratory epithelium after several weeks. Humanised tracheal xenograft models have been developed in immunodeficient nude and severe combined immunodeficient (SCID mice in order to mimic the natural regeneration process of the human airway epithelium and to analyse the cellular and molecular events involved during the different steps of airway epithelial reconstitution. These models represent very powerful tools for analysing the modulation of the biological functions of the epithelium during its regeneration. They are also very useful for identifying stem/progenitor cells of the human airway epithelium. A better knowledge of the mechanisms involved in airway epithelium regeneration, as well as the characterisation of the epithelial stem and progenitor cells, may pave the way to regenerative therapeutics, allowing the reconstitution of a functional airway epithelium in numerous respiratory diseases, such as asthma, chronic obstructive pulmonary diseases, cystic fibrosis and bronchiolitis.

  11. Regeneration-associated macrophages: a novel approach to boost intrinsic regenerative capacity for axon regeneration

    Directory of Open Access Journals (Sweden)

    Min Jung Kwon

    2016-01-01

    Full Text Available Axons in central nervous system (CNS do not regenerate spontaneously after injuries such as stroke and traumatic spinal cord injury. Both intrinsic and extrinsic factors are responsible for the regeneration failure. Although intensive research efforts have been invested on extrinsic regeneration inhibitors, the extent to which glial inhibitors contribute to the regeneration failure in vivo still remains elusive. Recent experimental evidence has rekindled interests in intrinsic factors for the regulation of regeneration capacity in adult mammals. In this review, we propose that activating macrophages with pro-regenerative molecular signatures could be a novel approach for boosting intrinsic regenerative capacity of CNS neurons. Using a conditioning injury model in which regeneration of central branches of dorsal root ganglia sensory neurons is enhanced by a preceding injury to the peripheral branches, we have demonstrated that perineuronal macrophages surrounding dorsal root ganglia neurons are critically involved in the maintenance of enhanced regeneration capacity. Neuron-derived chemokine (C-C motif ligand 2 (CCL2 seems to mediate neuron-macrophage interactions conveying injury signals to perineuronal macrophages taking on a soley pro-regenerative phenotype, which we designate as regeneration-associated macrophages (RAMs. Manipulation of the CCL2 signaling could boost regeneration potential mimicking the conditioning injury, suggesting that the chemokine-mediated RAM activation could be utilized as a regenerative therapeutic strategy for CNS injuries.

  12. Studying Planarian Regeneration Aboard the International Space Station within the Student Space Flight Experimental Program

    Science.gov (United States)

    Vista SSEP Mission 11 Team; Hagstrom, Danielle; Bartee, Christine; Collins, Eva-Maria S.

    2018-05-01

    The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS) showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP) to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  13. Studying Planarian Regeneration Aboard the International Space Station Within the Student Space Flight Experimental Program

    Directory of Open Access Journals (Sweden)

    Vista SSEP Mission 11 Team

    2018-05-01

    Full Text Available The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  14. Behaviour of telomere and telomerase during aging and regeneration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Monique Anchelin

    Full Text Available Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.

  15. Vegetative regeneration

    Science.gov (United States)

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  16. Biological significance of dead biomass retention trait in Mediterranean Basin species: an analysis between different successional niches and regeneration strategies as functional groups.

    Science.gov (United States)

    Baeza, M J; Santana, V M

    2015-11-01

    Standing dead biomass retention is considered one of the most relevant fuel structural traits to affect plant flammability. However, very little is known about the biological significance of this trait and its distribution between different functional groups. Our aim was to analyse how the proportion of dead biomass produced in Mediterranean species is related to the successional niche of species (early-, mid- and late-successional stages) and the regeneration strategy of species (seeders and resprouters). We evaluated biomass distribution by size classes and standing dead biomass retention in nine dominant species from the Mediterranean Basin in different development stages (5, 9, 14 and 26 years since the last fire). The results revealed significant differences in the standing dead biomass retention of species that presented a distinct successional niche or regeneration strategy. These differences were restricted to the oldest ages studied (>9 years). Tree and small tree resprouters, typical in late-successional stages, presented slight variations with age and a less marked trend to retain dead biomass, while seeder shrubs and dwarf shrubs, characteristic of early-successional stages, showed high dead biomass loads. Our results suggest that the species that tend to retain more dead branches are colonising species that may promote fire in early-successional stages. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Wound repair and regeneration: Mechanisms, signaling, and translation

    Science.gov (United States)

    Eming, Sabine A.; Martin, Paul; Tomic-Canic, Marjana

    2015-01-01

    The cellular and molecular mechanisms underpinning tissue repair and its failure to heal are still poorly understood, and current therapies are limited. Poor wound healing after trauma, surgery, acute illness, or chronic disease conditions affects millions of people worldwide each year and is the consequence of poorly regulated elements of the healthy tissue repair response, including inflammation, angiogenesis, matrix deposition, and cell recruitment. Failure of one or several of these cellular processes is generally linked to an underlying clinical condition, such as vascular disease, diabetes, or aging, which are all frequently associated with healing pathologies. The search for clinical strategies that might improve the body’s natural repair mechanisms will need to be based on a thorough understanding of the basic biology of repair and regeneration. In this review, we highlight emerging concepts in tissue regeneration and repair, and provide some perspectives on how to translate current knowledge into viable clinical approaches for treating patients with wound-healing pathologies. PMID:25473038

  18. Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives.

    Science.gov (United States)

    Huang, Yi-Zhou; Xie, Hui-Qi; Silini, Antonietta; Parolini, Ornella; Zhang, Yi; Deng, Li; Huang, Yong-Can

    2017-10-01

    Large articular cartilage defects remain an immense challenge in the field of regenerative medicine because of their poor intrinsic repair capacity. Currently, the available medical interventions can relieve clinical symptoms to some extent, but fail to repair the cartilaginous injuries with authentic hyaline cartilage. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stem/progenitor cells with or without scaffolds. Mesenchymal stem/progenitor cells are promising graft cells for tissue regeneration, but the most suitable source of cells for cartilage repair remains controversial. The tissue origin of mesenchymal stem/progenitor cells notably influences the biological properties and therapeutic potential. It is well known that mesenchymal stem/progenitor cells derived from synovial joint tissues exhibit superior chondrogenic ability compared with those derived from non-joint tissues; thus, these cell populations are considered ideal sources for cartilage regeneration. In addition to the progress in research and promising preclinical results, many important research questions must be answered before widespread success in cartilage regeneration is achieved. This review outlines the biology of stem/progenitor cells derived from the articular cartilage, the synovial membrane, and the synovial fluid, including their tissue distribution, function and biological characteristics. Furthermore, preclinical and clinical trials focusing on their applications for cartilage regeneration are summarized, and future research perspectives are discussed.

  19. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    S. Saska

    2011-01-01

    Full Text Available The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA, similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration.

  20. Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Torres, A.L.; Gaspar, V.M.; Serra, I.R.; Diogo, G.S.; Fradique, R. [CICS-UBI — Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã (Portugal); Silva, A.P. [CAST-UBI — Centre for Aerospace Science and Technologies, University of Beira Interior, Calçada Fonte do Lameiro, 6201-001 Covilhã (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI — Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã (Portugal)

    2013-10-01

    The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D β-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric–bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. - Graphical abstract: B-TCP:HA–alginate hybrid 3D porous scaffolds for application in bone regeneration. - Highlights: • The produced hybrid 3D scaffolds are prone to be applied in bone tissue engineering. • Alginate coated 3D scaffolds present high mechanical and biological properties. • In vitro assays for evaluation of human osteoblast cell attachment in the presence of the scaffolds • The hybrid 3D scaffolds present suitable mechanical and biological properties for use in bone regenerative medicine.

  1. Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration

    International Nuclear Information System (INIS)

    Torres, A.L.; Gaspar, V.M.; Serra, I.R.; Diogo, G.S.; Fradique, R.; Silva, A.P.; Correia, I.J.

    2013-01-01

    The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D β-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric–bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. - Graphical abstract: B-TCP:HA–alginate hybrid 3D porous scaffolds for application in bone regeneration. - Highlights: • The produced hybrid 3D scaffolds are prone to be applied in bone tissue engineering. • Alginate coated 3D scaffolds present high mechanical and biological properties. • In vitro assays for evaluation of human osteoblast cell attachment in the presence of the scaffolds • The hybrid 3D scaffolds present suitable mechanical and biological properties for use in bone regenerative medicine

  2. Supercritical fluid regeneration of adsorbents

    Science.gov (United States)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  3. Analysis of newly established EST databases reveals similarities between heart regeneration in newt and fish

    Directory of Open Access Journals (Sweden)

    Weis Patrick

    2010-01-01

    Full Text Available Abstract Background The newt Notophthalmus viridescens possesses the remarkable ability to respond to cardiac damage by formation of new myocardial tissue. Surprisingly little is known about changes in gene activities that occur during the course of regeneration. To begin to decipher the molecular processes, that underlie restoration of functional cardiac tissue, we generated an EST database from regenerating newt hearts and compared the transcriptional profile of selected candidates with genes deregulated during zebrafish heart regeneration. Results A cDNA library of 100,000 cDNA clones was generated from newt hearts 14 days after ventricular injury. Sequencing of 11520 cDNA clones resulted in 2894 assembled contigs. BLAST searches revealed 1695 sequences with potential homology to sequences from the NCBI database. BLAST searches to TrEMBL and Swiss-Prot databases assigned 1116 proteins to Gene Ontology terms. We also identified a relatively large set of 174 ORFs, which are likely to be unique for urodele amphibians. Expression analysis of newt-zebrafish homologues confirmed the deregulation of selected genes during heart regeneration. Sequences, BLAST results and GO annotations were visualized in a relational web based database followed by grouping of identified proteins into clusters of GO Terms. Comparison of data from regenerating zebrafish hearts identified biological processes, which were uniformly overrepresented during cardiac regeneration in newt and zebrafish. Conclusion We concluded that heart regeneration in newts and zebrafish led to the activation of similar sets of genes, which suggests that heart regeneration in both species might follow similar principles. The design of the newly established newt EST database allows identification of molecular pathways important for heart regeneration.

  4. Treatment strategy for guided tissue regeneration in various class II furcation defect: Case series

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar Verma

    2013-01-01

    Full Text Available Periodontal regeneration is a main aspect in the treatment of teeth affected by periodontitis. Periodontal regeneration in furcation areas is quite challenging, especially when it is in interproximal region. There are several techniques used alone or in combination considered to achieve periodontal regeneration, including the bone grafts or substitutes, guided tissue regeneration (GTR, root surface modification, and biological mediators. Many factors may account for variability in response to regenerative therapy in class II furcation. This case series describes the management of class II furcation defect in a mesial interproximal region of a maxillary tooth and other with a buccal class II furcation of mandibular tooth, with the help of surgical intervention including the GTR membrane and bone graft materials. This combined treatment resulted in healthy periodontium with a radiographic evidence of alveolar bone gain in both cases. This case series demonstrates that proper diagnosis, followed by removal of etiological factors and utilizing the combined treatment modalities will restore health and function of the tooth with the severe attachment loss.

  5. Weak Evidence of Regeneration Habitat but Strong Evidence of Regeneration Niche for a Leguminous Shrub

    Science.gov (United States)

    Delerue, Florian; Gonzalez, Maya; Michalet, Richard; Pellerin, Sylvain; Augusto, Laurent

    2015-01-01

    The identification of an ecological niche specific to the regeneration phase has mobilised significant attention. However, the importance of the regeneration niche concept remains unclear. Our main objective was to study the existence of such a regeneration niche for a leguminous shrub, Ulex europaeus. This study was carried out in southwest France in the context of water and nutrient stresses (mainly phosphorus limitation) due to the presence of nutrient-poor sandy soils. We analysed the regeneration of the species from the germination of seeds and emergence of new seedlings until the seedlings reached young shrub size. Our design included a P fertilisation treatment. We also investigated microsite characteristics (micro-topography and vegetation development) as they can interact with meteorological conditions and determine water availability for seeds and seedlings. We found that P availability controlled seedling growth and the time necessary to reach young shrub size. Water availability appeared to impact the species germination and seedlings survival. We also found that P and water availability depended on the interactions between microsite characteristics and climatic variations. Finally we found evidence that P and water availability are important ecological factors shaping the regeneration niche of the species, but we found weak evidence that any microsite would be appropriate for the regeneration of the species in the long term. Future studies regarding regeneration niches need to distinguish more clearly the ecological factors important for regeneration (the regeneration niche per se) and the physical world where the seedlings appear and develop (the regeneration habitat). PMID:26098877

  6. Weak Evidence of Regeneration Habitat but Strong Evidence of Regeneration Niche for a Leguminous Shrub.

    Directory of Open Access Journals (Sweden)

    Florian Delerue

    Full Text Available The identification of an ecological niche specific to the regeneration phase has mobilised significant attention. However, the importance of the regeneration niche concept remains unclear. Our main objective was to study the existence of such a regeneration niche for a leguminous shrub, Ulex europaeus. This study was carried out in southwest France in the context of water and nutrient stresses (mainly phosphorus limitation due to the presence of nutrient-poor sandy soils. We analysed the regeneration of the species from the germination of seeds and emergence of new seedlings until the seedlings reached young shrub size. Our design included a P fertilisation treatment. We also investigated microsite characteristics (micro-topography and vegetation development as they can interact with meteorological conditions and determine water availability for seeds and seedlings. We found that P availability controlled seedling growth and the time necessary to reach young shrub size. Water availability appeared to impact the species germination and seedlings survival. We also found that P and water availability depended on the interactions between microsite characteristics and climatic variations. Finally we found evidence that P and water availability are important ecological factors shaping the regeneration niche of the species, but we found weak evidence that any microsite would be appropriate for the regeneration of the species in the long term. Future studies regarding regeneration niches need to distinguish more clearly the ecological factors important for regeneration (the regeneration niche per se and the physical world where the seedlings appear and develop (the regeneration habitat.

  7. Understanding Urban Regeneration in Turkey

    Science.gov (United States)

    Candas, E.; Flacke, J.; Yomralioglu, T.

    2016-06-01

    In Turkey, rapid population growth, informal settlements, and buildings and infrastructures vulnerable to natural hazards are seen as the most important problems of cities. Particularly disaster risk cannot be disregarded, as large parts of various cities are facing risks from earthquakes, floods and landslides and have experienced loss of lives in the recent past. Urban regeneration is an important planning tool implemented by local and central governments in order to reduce to disaster risk and to design livable environments for the citizens. The Law on the Regeneration of Areas under Disaster Risk, commonly known as the Urban Regeneration Law, was enacted in 2012 (Law No.6306, May 2012). The regulation on Implementation of Law No. 6306 explains the fundamental steps of the urban regeneration process. The relevant institutions furnished with various authorities such as expropriation, confiscation and changing the type and place of your property which makes urban regeneration projects very important in terms of property rights. Therefore, urban regeneration projects have to be transparent, comprehensible and acceptable for all actors in the projects. In order to understand the urban regeneration process, the legislation and projects of different municipalities in Istanbul have been analyzed. While some steps of it are spatial data demanding, others relate to land values. In this paper an overview of the urban regeneration history and activities in Turkey is given. Fundamental steps of the urban regeneration process are defined, and particularly spatial-data demanding steps are identified.

  8. An active magnetic regenerator device

    DEFF Research Database (Denmark)

    2015-01-01

    A rotating active magnetic regenerator (AMR) device comprising two or more regenerator beds, a magnet arrangement and a valve arrangement. The valve arrangement comprises a plurality of valve elements arranged substantially immovably with respect to the regenerator beds along a rotational direction...

  9. Cellular regeneration in bone marrow with synthesized semiconductor polymers by plasma; Regeneracion celular en medula espinal con polimeros semiconductores sintetizados por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Morales, J.; Olayo, R. [UAM-I, 09340 Mexico D.F. (Mexico); Alvarez, L.; Mondragon, R.; Morales, A. [UPIITA-IPN, 07000 Mexico D.F. (Mexico); Diaz, A.; Rios, C. [INNN, Mexico D.F. (Mexico); Salgado, H. [IMSS y Proyecto Camina A.C. Mexico D.F. (Mexico); Cruz, G.; Olayo, M.G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    In this work the intervention of polymers with capacity of conducting electric current for the regeneration of the spinal marrow in rats of laboratory is studied. It is a focus different from the one that up to now has taken in account since it involves medical, biological, physical and chemical sciences. Inside the properties of transporting electric charges, the polymers would have to respond before the biological media with ionic mechanisms of conduction, besides the electronic ones, to promote the regeneration of the spinal marrow. They should also be biocompatible to avoid the rejection of the media before the implantation. (Author)

  10. Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis.

    Science.gov (United States)

    Tian, Yuhua; Ma, Xianghui; Lv, Cong; Sheng, Xiaole; Li, Xiang; Zhao, Ran; Song, Yongli; Andl, Thomas; Plikus, Maksim V; Sun, Jinyue; Ren, Fazheng; Shuai, Jianwei; Lengner, Christopher J; Cui, Wei; Yu, Zhengquan

    2017-09-05

    Intestinal regeneration and tumorigenesis are believed to be driven by intestinal stem cells (ISCs). Elucidating mechanisms underlying ISC activation during regeneration and tumorigenesis can help uncover the underlying principles of intestinal homeostasis and disease including colorectal cancer. Here we show that miR-31 drives ISC proliferation, and protects ISCs against apoptosis, both during homeostasis and regeneration in response to ionizing radiation injury. Furthermore, miR-31 has oncogenic properties, promoting intestinal tumorigenesis. Mechanistically, miR-31 acts to balance input from Wnt, BMP, TGFβ signals to coordinate control of intestinal homeostasis, regeneration and tumorigenesis. We further find that miR-31 is regulated by the STAT3 signaling pathway in response to radiation injury. These findings identify miR-31 as a critical modulator of ISC biology, and a potential therapeutic target for a broad range of intestinal regenerative disorders and cancers.

  11. On marginal regeneration

    NARCIS (Netherlands)

    Stein, H.N.

    1991-01-01

    On applying the marginal regeneration concept to the drainage of free liquid films, problems are encountered: the films do not show a "neck" of minimum thickness at the film/border transition; and the causes of the direction dependence of the marginal regeneration are unclear. Both problems can be

  12. miR-378 attenuates muscle regeneration by delaying satellite cell activation and differentiation in mice.

    Science.gov (United States)

    Zeng, Ping; Han, Wanhong; Li, Changyin; Li, Hu; Zhu, Dahai; Zhang, Yong; Liu, Xiaohong

    2016-09-01

    Skeletal muscle mass and homeostasis during postnatal muscle development and regeneration largely depend on adult muscle stem cells (satellite cells). We recently showed that global overexpression of miR-378 significantly reduced skeletal muscle mass in mice. In the current study, we used miR-378 transgenic (Tg) mice to assess the in vivo functional effects of miR-378 on skeletal muscle growth and regeneration. Cross-sectional analysis of skeletal muscle tissues showed that the number and size of myofibers were significantly lower in miR-378 Tg mice than in wild-type mice. Attenuated cardiotoxin-induced muscle regeneration in miR-378 Tg mice was found to be associated with delayed satellite cell activation and differentiation. Mechanistically, miR-378 was found to directly target Igf1r in muscle cells both in vitro and in vivo These miR-378 Tg mice may provide a model for investigating the physiological and pathological roles of skeletal muscle in muscle-associated diseases in humans, particularly in sarcopenia. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Cartilage regeneration for treatment of osteoarthritis: a paradigm for nonsurgical intervention

    OpenAIRE

    Tiku, Moti L.; Sabaawy, Hatem E.

    2015-01-01

    Osteoarthritis (OA) is associated with articular cartilage abnormalities and affects people of older age: preventative or therapeutic treatment measures for OA and related articular cartilage disorders remain challenging. In this perspective review, we have integrated multiple biological, morphological, developmental, stem cell and homeostasis concepts of articular cartilage to develop a paradigm for cartilage regeneration. OA is conceptually defined as an injury of cartilage that initiates c...

  14. Economic analysis of replacement regeneration and coppice regeneration in eucalyptus stands under risk conditions

    Directory of Open Access Journals (Sweden)

    Isabel Carolina de Lima Guedes

    2011-09-01

    Full Text Available Projects are by their very nature subject to conditions of uncertainty that obstruct the decision-making process. Uncertainties involving forestry projects are even greater, as they are combined with time of return on capital invested, being medium to long term. For successful forest planning, it is necessary to quantify uncertainties by converting them into risks. The decision on whether to adopt replacement regeneration or coppice regeneration in a forest stand is influenced by several factors, which include land availability for new forest crops, changes in project end use, oscillations in demand and technological advancement. This study analyzed the economic feasibility of replacement regeneration and coppice regeneration of eucalyptus stands, under deterministic and under risk conditions. Information was gathered about costs and revenues for charcoal production in order to structure the cash flow used in the economic analysis, adopting the Net Present Value method (VPL. Risk assessment was based on simulations running the Monte Carlo method. Results led to the following conclusions: replacement regeneration is economically viable, even if the future stand has the same productivity as the original stand; coppice regeneration is an economically viable option even if productivity is a mere 70% of the original stand (high-tree planted stand, the best risk-return ratio option is restocking the stand (replacement regeneration by one that is 20% more productive; the probabilistic analysis running the Monte Carlo method revealed that invariably there is economic viability for the various replacement and coppice regeneration options being studied, minimizing uncertainties and consequently increasing confidence in decision-making.

  15. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration.

    Science.gov (United States)

    Jones, Brendan A; Pei, Ming

    2012-08-01

    Articular cartilage is difficult to heal once injury or disease occurs. Autologous chondrocyte transplantation is a biological treatment with good prognosis, but donor site morbidity and limited cell source are disadvantages. Currently, mesenchymal stem cells (MSCs) are a promising approach for cartilage regeneration. Despite there being various sources, the best candidate for cartilage regeneration is the one with the greatest chondrogenic potential and the least hypertrophic differentiation. These properties are able to insure that the regenerated tissue is hyaline cartilage of high quality. This review article will summarize relevant literature to justify synovium-derived stem cells (SDSCs) as a tissue-specific stem cell for chondrogenesis by comparing synovium and cartilage with respect to anatomical location and functional structure, comparing the growth characterization and chondrogenic capacity of SDSCs and MSCs, evaluating the application of SDSCs in regenerative medicine and diseases, and discussing potential future directions.

  16. Preformed and regenerated phosphate in ocean general circulation models: can right total concentrations be wrong?

    Directory of Open Access Journals (Sweden)

    O. Duteil

    2012-05-01

    Full Text Available Phosphate distributions simulated by seven state-of-the-art biogeochemical ocean circulation models are evaluated against observations of global ocean nutrient distributions. The biogeochemical models exhibit different structural complexities, ranging from simple nutrient-restoring to multi-nutrient NPZD type models. We evaluate the simulations using the observed volume distribution of phosphate. The errors in these simulated volume class distributions are significantly larger when preformed phosphate (or regenerated phosphate rather than total phosphate is considered. Our analysis reveals that models can achieve similarly good fits to observed total phosphate distributions for a~very different partitioning into preformed and regenerated nutrient components. This has implications for the strength and potential climate sensitivity of the simulated biological carbon pump. We suggest complementing the use of total nutrient distributions for assessing model skill by an evaluation of the respective preformed and regenerated nutrient components.

  17. Early regulation of axolotl limb regeneration.

    Science.gov (United States)

    Makanae, Aki; Satoh, Akira

    2012-10-01

    Amphibian limb regeneration has been studied for a long time. In amphibian limb regeneration, an undifferentiated blastema is formed around the region damaged by amputation. The induction process of blastema formation has remained largely unknown because it is difficult to study the induction of limb regeneration. The recently developed accessory limb model (ALM) allows the investigation of limb induction and reveals early events of amphibian limb regeneration. The interaction between nerves and wound epidermis/epithelium is an important aspect of limb regeneration. During early limb regeneration, neurotrophic factors act on wound epithelium, leading to development of a functional epidermis/epithelium called the apical epithelial cap (AEC). AEC and nerves create a specific environment that inhibits wound healing and induces regeneration through blastema formation. It is suggested that FGF-signaling and MMP activities participate in creating a regenerative environment. To understand why urodele amphibians can create such a regenerative environment and humans cannot, it is necessary to identify the similarities and differences between regenerative and nonregenerative animals. Here we focus on ALM to consider limb regeneration from a new perspective and we also reported that focal adhesion kinase (FAK)-Src signaling controlled fibroblasts migration in axolotl limb regeneration. Copyright © 2012 Wiley Periodicals, Inc.

  18. Stem cells applications in bone and tooth repair and regeneration: New insights, tools, and hopes.

    Science.gov (United States)

    Abdel Meguid, Eiman; Ke, Yuehai; Ji, Junfeng; El-Hashash, Ahmed H K

    2018-03-01

    The exploration of stem and progenitor cells holds promise for advancing our understanding of the biology of tissue repair and regeneration mechanisms after injury. This will also help in the future use of stem cell therapy for the development of regenerative medicine approaches for the treatment of different tissue-species defects or disorders such as bone, cartilages, and tooth defects or disorders. Bone is a specialized connective tissue, with mineralized extracellular components that provide bones with both strength and rigidity, and thus enable bones to function in body mechanical supports and necessary locomotion process. New insights have been added to the use of different types of stem cells in bone and tooth defects over the last few years. In this concise review, we briefly describe bone structure as well as summarize recent research progress and accumulated information regarding the osteogenic differentiation of stem cells, as well as stem cell contributions to bone repair/regeneration, bone defects or disorders, and both restoration and regeneration of bones and cartilages. We also discuss advances in the osteogenic differentiation and bone regeneration of dental and periodontal stem cells as well as in stem cell contributions to dentine regeneration and tooth engineering. © 2017 Wiley Periodicals, Inc.

  19. Regenerating an Arsenic Removal Iron-Based Adsorptive ...

    Science.gov (United States)

    The replacement of exhausted, adsorptive media used to remove arsenic from drinking water accounts for approximately 80% of the total operational and maintenance (O/M) costs of this commonly used small system technology. The results of three, full scale system studies of an on-site media regeneration process (Part 1) showed it to be effective in stripping arsenic and other contaminants from the exhausted media. Part 2, of this two part paper, presents information on the performance of the regenerated media to remove arsenic through multiple regeneration cycles (3) and the approximate cost savings of regeneration over media replacement. The results of the studies indicate that regenerated media is very effective in removing arsenic and the regeneration cost is substantially less than the media replacement cost. On site regeneration, therefore, provides small systems with alternative to media replacement when removing arsenic from drinking water using adsorptive media technology. Part 2 of a two part paper on the performance of the regenerated media to remove arsenic through multiple regeneration cycles (3) and the approximate cost savings of regeneration over media replacement.

  20. Effects of Heavy particle ray on regeneration and reproduction with planarian

    International Nuclear Information System (INIS)

    Watanabe, Kaori; Matsumoto, Midori; Nojima, Kumie

    2006-01-01

    Space age is coming and many topics on cosmic space are pointed out like zero gravity and cosmic ray. Planarian is one of the attractive organisms, which could be a useful laboratory animal for space science. It is famous for its remarkable regeneration ability by pluripotent stem cells called neoblast. And they can produce their offspring by asexual reproduction and sexual reproduction. In this study, we focused on effects of the cosmic ray on the regeneration and the reproduction with planarian. As it has known that the major effective cosmic ray is a heavy particle ray, effects of the heavy particle ray on the regeneration and the reproduction was researched with C290, which is carbon ion beam, and Fe500, which is iron ion beam. In asexual reproduction worms, the irradiations of both beams had effects on dose dependency. The minimum lethal doses of both beams were 6 Gy and their neoblasts were disappeared. And in sexual reproduction worms, the irradiations of both beams also effects on dose dependency and the minimum lethal doses were 12 Gy. It showed that the relative biological effectiveness is different on the reproduction system in planarian. (author)

  1. Skeletal muscle regeneration is modulated by inflammation

    Directory of Open Access Journals (Sweden)

    Wenjun Yang

    2018-04-01

    Full Text Available Skeletal muscle regeneration is a complex process orchestrated by multiple steps. Recent findings indicate that inflammatory responses could play central roles in bridging initial muscle injury responses and timely muscle injury reparation. The various types of immune cells and cytokines have crucial roles in muscle regeneration process. In this review, we briefly summarise the functions of acute inflammation in muscle regeneration. The translational potential of this article: Immune system is closely relevant to the muscle regeneration. Understanding the mechanisms of inflammation in muscle regeneration is therefore critical for the development of effective regenerative, and therapeutic strategies in muscular disorders. This review provides information for muscle regeneration research regarding the effects of inflammation on muscle regeneration. Keywords: Chronic muscle disorders, Cytokines, Immune cells, Inflammation, Muscle regeneration, Muscle stem cells

  2. Functional hepatocellular regeneration measured by hepatobiliary scintigraphy, functional regeneration or functional hepatocytes?

    NARCIS (Netherlands)

    Olthof, Pim B.; Cieslak, Kasia P.; Bennink, Roelof J.; van Gulik, Thomas M.

    2016-01-01

    In a recent issue of this journal, Fernandes et al(1) reported on functional hepatocellular regeneration in elderly patients undergoing hepatectomy. They used (99m) Tc-mebrofinin HBS to quantify liver function before and after surgery and concluded that functional regeneration is already present at

  3. Asymmetric PDLLA membranes containing Bioglass(R) for guided tissue regeneration: characterization and in vitro biological behavior

    NARCIS (Netherlands)

    Leal, A.I.; Caridade, S.G.; Ma, J.; Yu, N.; Gomes, M.; Reis, R.L.; Jansen, J.A.; Walboomers, X.F.; Mano, J.F.

    2013-01-01

    OBJECTIVE: In the treatment of periodontal defects, composite membranes might be applied to protect the injured area and simultaneously stimulate tissue regeneration. This work describes the development and characterization of poly(d,l-lactic acid)/Bioglass(R) (PDLLA/BG) composite membranes with

  4. QPSK regeneration without active phase-locking

    DEFF Research Database (Denmark)

    Kjøller, Niels-Kristian; Da Ros, Francesco; Røge, Kasper Meldgaard

    2016-01-01

    QPSK regeneration without active phase stabilization is investigated in numerical simulations. We propose an improved scheme for phase-locking free QPSK regeneration showing significant improvements in the error vector magnitude of the signal.......QPSK regeneration without active phase stabilization is investigated in numerical simulations. We propose an improved scheme for phase-locking free QPSK regeneration showing significant improvements in the error vector magnitude of the signal....

  5. A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis.

    Directory of Open Access Journals (Sweden)

    Anne Golding

    Full Text Available In certain amphibian models limb regeneration can be promoted or inhibited by the local wound bed environment. This research introduces a device that can be utilized as an experimental tool to characterize the conditions that promotes limb regeneration in the adult frog (Xenopus laevis model. In particular, this device was designed to manipulate the local wound environment via a hydrogel insert. Initial characterization of the hydrogel insert revealed that this interaction had a significant influence on mechanical forces to the animal, due to the contraction of the hydrogel. The material and mechanical properties of the hydrogel insert were a factor in the device design in relation to the comfort of the animal and the ability to effectively manipulate the amputation site. The tunable features of the hydrogel were important in determining the pro-regenerative effects in limb regeneration, which was measured by cartilage spike formation and quantified by micro-computed tomography. The hydrogel insert was a factor in the observed morphological outcomes following amputation. Future work will focus on characterizing and optimizing the device's observed capability to manipulate biological pathways that are essential for limb regeneration. However, the present work provides a framework for the role of a hydrogel in the device and a path forward for more systematic studies.

  6. Role of the autonomic nervous system in rat liver regeneration.

    Science.gov (United States)

    Xu, Cunshuan; Zhang, Xinsheng; Wang, Gaiping; Chang, Cuifang; Zhang, Lianxing; Cheng, Qiuyan; Lu, Ailing

    2011-05-01

    To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.

  7. Results from neutral kaon regeneration at high energies

    International Nuclear Information System (INIS)

    Hladky, J.

    1976-01-01

    Experimental neutral kaon regeneration results at Serpukhov energies up to 50 GeV are presented, including the coherent regeneration on hydrogen, deuterium and carbon regenerators and elastic regeneration on deuterium and carbon regenerators. (author)

  8. The role of laminins in cartilaginous tissues: from development to regeneration.

    Science.gov (United States)

    Sun, Y; Wang, T L; Toh, W S; Pei, M

    2017-07-21

    As a key molecule of the extracellular matrix, laminin provides a delicate microenvironment for cell functions. Recent findings suggest that laminins expressed by cartilage-forming cells (chondrocytes, progenitor cells and stem cells) could promote chondrogenesis. However, few papers outline the effect of laminins on providing a favorable matrix microenvironment for cartilage regeneration. In this review, we delineated the expression of laminins in hyaline cartilage, fibrocartilage and cartilage-like tissue (nucleus pulposus) throughout several developmental stages. We also examined the effect of laminins on the biological activities of chondrocytes, including adhesion, migration and survival. Furthermore, we scrutinized the potential influence of various laminin isoforms on cartilage-forming cells' proliferation and chondrogenic differentiation. With this information, we hope to facilitate the understanding of the spatial and temporal interactions between cartilage-forming cells and laminin microenvironment to eventually advance cell-based cartilage engineering and regeneration.

  9. Regeneration of desiccants with solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Butts, C.L.; Lown, J.B.

    1985-01-01

    Saturated silica gel was regenerated with solar energy. This paper describes the experimental set-up for silica gel regeneration and data collection. The regenerated silica gel can be used to dry high moisture in-shell pecans.

  10. A numerical analysis of a reciprocating Active Magnetic Regenerator with a parallel-plate regenerator geometry

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank; Pryds, Nini; Smith, Anders

    2007-01-01

    We have developed a two-dimensional model of a reciprocating Active Magnetic Regenerator(AMR) with a regenerator made of parallel plates arranged in a stack configuration. The time dependent,two-dimensional model solves the Navier-Stokes equations for the heat transfer fluid and the coupled heat...... transfer equations for the regenerator and the fluid. The model is implemented using the Finite Element Method. The model can be used to study both transient and steady-state phenomena in the AMR for any ratio of regenerator to fluid heat capacity. Results on the AMR performance for different design...

  11. Advances in biologic augmentation for rotator cuff repair

    Science.gov (United States)

    Patel, Sahishnu; Gualtieri, Anthony P.; Lu, Helen H.; Levine, William N.

    2016-01-01

    Rotator cuff tear is a very common shoulder injury that often necessitates surgical intervention for repair. Despite advances in surgical techniques for rotator cuff repair, there is a high incidence of failure after surgery because of poor healing capacity attributed to many factors. The complexity of tendon-to-bone integration inherently presents a challenge for repair because of a large biomechanical mismatch between the tendon and bone and insufficient regeneration of native tissue, leading to the formation of fibrovascular scar tissue. Therefore, various biological augmentation approaches have been investigated to improve rotator cuff repair healing. This review highlights recent advances in three fundamental approaches for biological augmentation for functional and integrative tendon–bone repair. First, the exploration, application, and delivery of growth factors to improve regeneration of native tissue is discussed. Second, applications of stem cell and other cell-based therapies to replenish damaged tissue for better healing is covered. Finally, this review will highlight the development and applications of compatible biomaterials to both better recapitulate the tendon–bone interface and improve delivery of biological factors for enhanced integrative repair. PMID:27750374

  12. Regeneration mechanisms in Syllidae (Annelida)

    Science.gov (United States)

    Ribeiro, Rannyele P.

    2018-01-01

    Abstract Syllidae is one of the most species‐rich groups within Annelida, with a wide variety of reproductive modes and different regenerative processes. Syllids have striking ability to regenerate their body anteriorly and posteriorly, which in many species is redeployed during sexual (schizogamy) and asexual (fission) reproduction. This review summarizes the available data on regeneration in syllids, covering descriptions of regenerative mechanisms in different species as well as regeneration in relation to reproductive modes. Our survey shows that posterior regeneration is widely distributed in syllids, whereas anterior regeneration is limited in most of the species, excepting those reproducing by fission. The latter reproductive mode is well known for a few species belonging to Autolytinae, Eusyllinae, and Syllinae. Patterns of fission areas have been studied in these animals. Deviations of the regular regeneration pattern or aberrant forms such as bifurcated animals or individuals with multiple heads have been reported for several species. Some of these aberrations show a deviation of the bilateral symmetry and antero‐posterior axis, which, interestingly, can also be observed in the regular branching body pattern of some species of syllids. PMID:29721325

  13. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  14. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  15. An ancient dental gene set governs development and continuous regeneration of teeth in sharks.

    Science.gov (United States)

    Rasch, Liam J; Martin, Kyle J; Cooper, Rory L; Metscher, Brian D; Underwood, Charlie J; Fraser, Gareth J

    2016-07-15

    The evolution of oral teeth is considered a major contributor to the overall success of jawed vertebrates. This is especially apparent in cartilaginous fishes including sharks and rays, which develop elaborate arrays of highly specialized teeth, organized in rows and retain the capacity for life-long regeneration. Perpetual regeneration of oral teeth has been either lost or highly reduced in many other lineages including important developmental model species, so cartilaginous fishes are uniquely suited for deep comparative analyses of tooth development and regeneration. Additionally, sharks and rays can offer crucial insights into the characters of the dentition in the ancestor of all jawed vertebrates. Despite this, tooth development and regeneration in chondrichthyans is poorly understood and remains virtually uncharacterized from a developmental genetic standpoint. Using the emerging chondrichthyan model, the catshark (Scyliorhinus spp.), we characterized the expression of genes homologous to those known to be expressed during stages of early dental competence, tooth initiation, morphogenesis, and regeneration in bony vertebrates. We have found that expression patterns of several genes from Hh, Wnt/β-catenin, Bmp and Fgf signalling pathways indicate deep conservation over ~450 million years of tooth development and regeneration. We describe how these genes participate in the initial emergence of the shark dentition and how they are redeployed during regeneration of successive tooth generations. We suggest that at the dawn of the vertebrate lineage, teeth (i) were most likely continuously regenerative structures, and (ii) utilised a core set of genes from members of key developmental signalling pathways that were instrumental in creating a dental legacy redeployed throughout vertebrate evolution. These data lay the foundation for further experimental investigations utilizing the unique regenerative capacity of chondrichthyan models to answer evolutionary

  16. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  17. Effect of the Characters of Chitosans Used and Regeneration Conditions on the Yield and Physicochemical Characteristics of Regenerated Products

    Directory of Open Access Journals (Sweden)

    Chu Hsi Hsu

    2015-04-01

    Full Text Available The objective of this study was to explore the effect of the character of chitosans used, and the regeneration conditions employed on, the yield and physicochemical characteristics of regenerated products. Different concentrations of acetic acid were used to dissolve chitosans of 61.7% and 94.9% degree of deacetylation (DD, and weight-average molecular weight (Mw of 176 and 97 kDa, respectively; they were then precipitated with an 8 N NaOH solution, followed by washing and neutral and freeze drying to get the regenerated products. Yields of regenerated products and their physicochemical properties, such as ash content, bulk density, Mw, polydispersity index (PDI, DD, and crystallinity were measured. A higher concentration of acetic acid used resulted in a higher yield. The purity of the regenerated product increased significantly, whereas the bulk density and crystallinity decreased significantly after regeneration. The regeneration process showed its merits of narrowing down the PDI of regenerated products. The DD and structure of chitosan was changed insignificantly after the regeneration process.

  18. New insight into regenerated air heat pump cycle

    International Nuclear Information System (INIS)

    Zhang, Chun-Lu; Yuan, Han; Cao, Xiang

    2015-01-01

    Regenerated air (reverse Brayton) cycle has unique potentials in heat pump applications compared to conventional vapor-compression cycles. To better understand the regenerated air heat pump cycle characteristics, a thermodynamic model with new equivalent parameters was developed in this paper. Equivalent temperature ratio and equivalent isentropic efficiency of expander were introduced to represent the effect of regenerator, which made the regenerated air cycle in the same mathematical expressions as the basic air cycle and created an easy way to prove some important features that regenerated air cycle inherits from the basic one. Moreover, we proved in theory that the regenerator does not always improve the air cycle efficiency. Larger temperature ratio and lower effectiveness of regenerator could make the regenerated air cycle even worse than the basic air cycle. Lastly, we found that only under certain conditions the cycle could get remarkable benefits from a well-sized regenerator. These results would enable further study of the regenerated air cycle from a different perspective. - Highlights: • A thermodynamic model for regenerated air heat pump cycle was developed. • Equivalent temperature ratio and equivalent expander efficiency were introduced. • We proved regenerated air cycle can make heating capacity in line with heating load. • We proved the regenerator does not always improve the air cycle efficiency.

  19. Thidiazuron enhanced regeneration and silymarin content in silybum marianum

    International Nuclear Information System (INIS)

    Khan, M.A.; Abbasi, B.H.; Shinwari, Z.K.

    2014-01-01

    Silybum marianum, of family Asteraceae is renowned for production of biologically important silymarin, which has shown multi-dimensional medicinal properties. It has a high protective role against jaundice and hepatitis C worldwide. We hereby established a feasible and efficient method for indirect regeneration of S. marianum for production of consistent plantlets. Calli were induced from leaf explants of seed-derived plantlets on Murashige and Skoog (MS) medium supplemented with several concentrations of different plant growth regulators (PGRs). Highest callogenic response (89%) was recorded for 4.4 meu M Thidiazuron (TDZ) in combination with 6.6 meu M Kinetin (Kn). Subsequent sub-culturing of callus after 4 weeks of culture, on medium with similar compositions of PGRs induced shoot organogenesis. Highest shoot induction frequency (86%) with maximum mean multiple shoots (26 shoots per explant) were recorded for 11meu M TDZ after 4 weeks of transfer. Longest shoots (4.1 cm) were recorded for MS medium augmented with 6.6 meu M TDZ and 4.4 meu M naphthalene acetic acid (NAA). Furthermore, rooted plantlets were developed on MS medium containing different concentrations of indole acetic acid (IAA). Silymarin was determined by High performance liquid chromatography (HPLC) and 8.47 mg/g DW silymarin was detected in the regenerated plantlets. This study contributes to a better understanding of the different mechanisms involved in morphogenesis and production of biologically active principle in Silybum marianum. (author)

  20. Semiconductor devices for all-optical regeneration

    DEFF Research Database (Denmark)

    Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne

    2003-01-01

    We review different implementations of semiconductor devices for all-optical regeneration. A general model will be presented for all-optical regeneration in fiber links, taking into consideration the trade-off between non-linearity and noise. Furthermore we discuss a novel regenerator type, based...

  1. Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Cristiana R.; López-Cebral, Rita; Silva-Correia, Joana; Silva, Joana M.; Mano, João F.; Silva, Tiago H. [3B' s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark – Parque de Ciência e Tecnologia, 4805-017, Barco, Guimarães (Portugal); ICVS/3B' s - PT Government Associate Laboratory, Braga, Guimarães (Portugal); Freier, Thomas [MEDOVENT GmbH, Friedrich-Koenig-Str. 3, D-55129 Mainz (Germany); Reis, Rui L. [3B' s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark – Parque de Ciência e Tecnologia, 4805-017, Barco, Guimarães (Portugal); ICVS/3B' s - PT Government Associate Laboratory, Braga, Guimarães (Portugal); Oliveira, Joaquim M., E-mail: miguel.oliveira@dep.uminho.pt [3B' s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark – Parque de Ciência e Tecnologia, 4805-017, Barco, Guimarães (Portugal); ICVS/3B' s - PT Government Associate Laboratory, Braga, Guimarães (Portugal)

    2017-02-01

    Peripheral nerve injuries have produced major concerns in regenerative medicine for several years, as the recovery of normal nerve function continues to be a significant clinical challenge. Chitosan (CHT), because of its good biocompatibility, biodegradability and physicochemical properties, has been widely used as a biomaterial in tissue engineering scaffolding. In this study, CHT membranes were produced with three different Degrees of Acetylation (DA), envisioning its application in peripheral nerve regeneration. The three CHT membranes (DA I: 1%, DA II: 2%, DA III: 5%) were extensively characterized and were found to have a smooth and flat surface, with DA III membrane having slightly higher roughness and surface energy. All the membranes presented suitable mechanical properties and did not show any signs of calcification after SBF test. Biodegradability was similar for all samples, and adequate to physically support neurite outgrowth. The in vitro cell culture results indicate selective cell adhesion. The CHT membranes favoured Schwann cells invasion and proliferation, with a display of appropriate cytoskeletal morphology. At the same time they presented low fibroblast infiltration. This fact may be greatly beneficial for the prevention of fibrotic tissue formation, a common phenomenon impairing peripheral nerve regeneration. The great deal of results obtained during this work permitted to select the formulation with the greatest potential for further biological tests. - Highlights: • Three chitosan membranes were produced with very specific degrees of acetylation (DA I: 1%, DA II: 2%, DA III: 5%). • Physicochemical characterization of the membranes showed their suitability for peripheral nerve regeneration purposes. • In vitro cellular tests confirmed the potential of the membranes as peripheral nerve regeneration systems. • The results indicated that DA III membrane should be the one considered for further peripheral nerve regeneration studies.

  2. Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration

    International Nuclear Information System (INIS)

    Carvalho, Cristiana R.; López-Cebral, Rita; Silva-Correia, Joana; Silva, Joana M.; Mano, João F.; Silva, Tiago H.; Freier, Thomas; Reis, Rui L.; Oliveira, Joaquim M.

    2017-01-01

    Peripheral nerve injuries have produced major concerns in regenerative medicine for several years, as the recovery of normal nerve function continues to be a significant clinical challenge. Chitosan (CHT), because of its good biocompatibility, biodegradability and physicochemical properties, has been widely used as a biomaterial in tissue engineering scaffolding. In this study, CHT membranes were produced with three different Degrees of Acetylation (DA), envisioning its application in peripheral nerve regeneration. The three CHT membranes (DA I: 1%, DA II: 2%, DA III: 5%) were extensively characterized and were found to have a smooth and flat surface, with DA III membrane having slightly higher roughness and surface energy. All the membranes presented suitable mechanical properties and did not show any signs of calcification after SBF test. Biodegradability was similar for all samples, and adequate to physically support neurite outgrowth. The in vitro cell culture results indicate selective cell adhesion. The CHT membranes favoured Schwann cells invasion and proliferation, with a display of appropriate cytoskeletal morphology. At the same time they presented low fibroblast infiltration. This fact may be greatly beneficial for the prevention of fibrotic tissue formation, a common phenomenon impairing peripheral nerve regeneration. The great deal of results obtained during this work permitted to select the formulation with the greatest potential for further biological tests. - Highlights: • Three chitosan membranes were produced with very specific degrees of acetylation (DA I: 1%, DA II: 2%, DA III: 5%). • Physicochemical characterization of the membranes showed their suitability for peripheral nerve regeneration purposes. • In vitro cellular tests confirmed the potential of the membranes as peripheral nerve regeneration systems. • The results indicated that DA III membrane should be the one considered for further peripheral nerve regeneration studies.

  3. Regeneration of red oak (Quercus rubra L.) using shelterwood systems: Ecophysiology, silviculture and management recommendations

    Science.gov (United States)

    Daniel C. Dey; William C. parker

    1996-01-01

    There is considerable interest in developing relaible methods for regenerating red oak (Quercus rubra) in Ontario. Traditional silviculture methods have not been successful in maintaining the curent levels of oak growing stock. In this paper, we review the ecology, physiology and reproductive biology of red oak. This discussion stresses the...

  4. Regeneration in natural and logged tropical rain forest : modelling seed dispersal and regeneration

    NARCIS (Netherlands)

    Ulft, Lambertus Henricus van

    2004-01-01

    Regeneration and disturbance are thought to play key roles in the maintenance of the high tree species diversity in tropical rain forests. Nevertheless, the earliest stages in the regeneration of tropical rain forest trees, from seed production to established seedlings, have received little

  5. Guide to Regeneration of Bottomland Hardwoods

    Science.gov (United States)

    Martha R. McKevlin

    1992-01-01

    This guide will help landowners, consulting foresters, and public service foresters regenerate bottomland hardwoods. It discusses (1) interpretation of site characteristics, (2) selection of species, and (3) selection of regeneration methods. A dichotomous key for selection of appropriate regeneration methods under various conditions is presented.

  6. Axonal regeneration in zebrafish spinal cord

    Science.gov (United States)

    Hui, Subhra Prakash

    2018-01-01

    Abstract In the present review we discuss two interrelated events—axonal damage and repair—known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals. PMID:29721326

  7. Hyperinnervation improves Xenopus laevis limb regeneration.

    Science.gov (United States)

    Mitogawa, Kazumasa; Makanae, Aki; Satoh, Akira

    2018-01-15

    Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Stem Cell Therapy in Wound Healing and Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2016-08-01

    a novel approach to many diseases. SUMMARY: Wound healing therapies continue to rapidly evolve, with advances in basic science and engineering research heralding the development of new therapies, as well as ways to modify existing treatments. Stem cell-based therapy is one of the most promising therapeutic concepts for wound healing. Advances in stem cell biology have enabled researchers and clinicians alike with access to cells capable of actively modulating the healing response.  KEYWORDS: wound healing, tissue regeneration, stem cells therapy

  9. Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2009-01-01

    Full Text Available Abstract Background Microarray analysis and 454 cDNA sequencing were used to investigate a centuries-old problem in regenerative biology: the basis of nerve-dependent limb regeneration in salamanders. Innervated (NR and denervated (DL forelimbs of Mexican axolotls were amputated and transcripts were sampled after 0, 5, and 14 days of regeneration. Results Considerable similarity was observed between NR and DL transcriptional programs at 5 and 14 days post amputation (dpa. Genes with extracellular functions that are critical to wound healing were upregulated while muscle-specific genes were downregulated. Thus, many processes that are regulated during early limb regeneration do not depend upon nerve-derived factors. The majority of the transcriptional differences between NR and DL limbs were correlated with blastema formation; cell numbers increased in NR limbs after 5 dpa and this yielded distinct transcriptional signatures of cell proliferation in NR limbs at 14 dpa. These transcriptional signatures were not observed in DL limbs. Instead, gene expression changes within DL limbs suggest more diverse and protracted wound-healing responses. 454 cDNA sequencing complemented the microarray analysis by providing deeper sampling of transcriptional programs and associated biological processes. Assembly of new 454 cDNA sequences with existing expressed sequence tag (EST contigs from the Ambystoma EST database more than doubled (3935 to 9411 the number of non-redundant human-A. mexicanum orthologous sequences. Conclusion Many new candidate gene sequences were discovered for the first time and these will greatly enable future studies of wound healing, epigenetics, genome stability, and nerve-dependent blastema formation and outgrowth using the axolotl model.

  10. [Natural regeneration of young Excentrodendron hsienmu in karst mountainous region in Southwest Guangxi, China].

    Science.gov (United States)

    Ou, Zhi-Yang; Su, Zhi-Yao; Peng, Yu-Hua; Hu, Qin-Fei; Huang, Xiao-Rong

    2013-09-01

    A field survey was conducted in the karst mountainous region in Pingguo County of Southwest Guangxi, China to explore the structural characteristics, spatial distribution pattern, and growth dynamics of young Excentrodendron hsienmu as well as the main environmental factors affecting the natural regeneration of the E. hsienmu population. In the study area, the population structure of the young E. hsienmu was stable, and exhibited a clumped spatial pattern for the seedlings and seedling sprouts. The ground diameter growth and height growth of the young E. hsienmu presented the same variation trend, i. e., the ground diameter increased with increasing height. The ground diameter growth and height growth of the E. hsienmu seedlings were limited by population density, i. e., decreased with increasing population density. The correlation analysis showed that the trees more than 2.5 m in height and the shrubs were the major stand factors affecting the natural regeneration of young E. hsienmu, while the herbs had no significant correlation with the regeneration. The percentage of covered rock also had no significant effects on the regeneration. Kruskal-Wallis ANOVA showed that there existed significant differences in the height and ground diameter of young E. hsienmu at different slope degrees and slope positions. The population density, height, and ground diameter had significant differences across slope aspects. The natural regeneration of young E. hsienmu was comprehensively affected by the species biological characteristics, intraspecific competition, interspecific competition, heterogeneous habitat, and anthropogenic disturbances.

  11. Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates.

    Science.gov (United States)

    Kondo, Shimpei; Muneta, Takeshi; Nakagawa, Yusuke; Koga, Hideyuki; Watanabe, Toshifumi; Tsuji, Kunikazu; Sotome, Shinichi; Okawa, Atsushi; Kiuchi, Shinji; Ono, Hideo; Mizuno, Mitsuru; Sekiya, Ichiro

    2017-06-01

    Transplantation of aggregates of synovial mesenchymal stem cells (MSCs) enhanced meniscus regeneration in rats. Anatomy and biological properties of the meniscus depend on animal species. To apply this technique clinically, it is valuable to investigate the use of animals genetically close to humans. We investigated whether transplantation of aggregates of autologous synovial MSCs promoted meniscal regeneration in aged primates. Chynomolgus primates between 12 and 13 years old were used. After the anterior halves of the medial menisci in both knees were removed, an average of 14 aggregates consisting of 250,000 synovial MSCs were transplanted onto the meniscus defect. No aggregates were transplanted to the opposite knee for the control. Meniscus and articular cartilage were analyzed macroscopically, histologically, and by MRI T1rho mapping at 8 (n = 3) and 16 weeks (n = 4). The medial meniscus was larger and the modified Pauli's histological score for the regenerated meniscus was better in the MSC group than in the control group in each primate at 8 and 16 weeks. Mankin's score for the medial femoral condyle cartilage was better in the MSC group than in the control group in all primates at 16 weeks. T1rho value for both the regenerated meniscus and adjacent articular cartilage in the MSC group was closer to the normal meniscus than in the control group in all primates at 16 weeks. Transplantation of aggregates of autologous synovial MSCs promoted meniscus regeneration and delayed progression of degeneration of articular cartilage in aged primates. This is the first report dealing with meniscus regeneration in primates. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1274-1282, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Bottlenecks in the generation and maintenance of morphogenic banana cell suspensions and plant regeneration via somatic embryogenesis therefrom

    Czech Academy of Sciences Publication Activity Database

    Schoofs, H.; Panis, B.; Strosse, H.; Mosqueda, A. M.; Torres, J. L.; Roux, N.; Doležel, Jaroslav; Swennen, R.

    2001-01-01

    Roč. 8, č. 2 (2001), s. 3-7 ISSN 0989-8972 R&D Projects: GA MŠk ME 376 Institutional research plan: CEZ:AV0Z5038910 Keywords : banana cell suspensions * plant regeneration Subject RIV: EA - Cell Biology

  13. Adipose stem cells for intervertebral disc regeneration: Current status and concepts for the future: Tissue Engineering Review Series

    NARCIS (Netherlands)

    Hoogendoorn, R.J.W.; Lu, Z.F.; Kroeze, R.J.; Bank, R.A.; Wuisman, P.I.; Helder, M.N.

    2008-01-01

    Introduction Degenerative disc disease and emerging biological treatment approaches Stem cell sources Integration of ASC-based regenerative medicine and surgery In vitro studies Animal models Cells in disc regeneration in vivo In vivo studies Perspective Conclusions Abstract New regenerative

  14. Perkembangan Terkini Membran Guided Tissue Regeneration/Guided Bone Regeneration sebagai Terapi Regenerasi Jaringan Periodontal

    Directory of Open Access Journals (Sweden)

    Cindy Cahaya

    2015-06-01

    kombinasi prosedur-prosedur di atas, termasuk prosedur bedah restoratif yang berhubungan dengan rehabilitasi oral dengan penempatan dental implan. Pada tingkat selular, regenerasi periodontal adalah proses kompleks yang membutuhkan proliferasi yang terorganisasi, differensiasi dan pengembangan berbagai tipe sel untuk membentuk perlekatan periodontal. Rasionalisasi penggunaan guided tissue regeneration sebagai membran pembatas adalah menahan epitel dan gingiva jaringan pendukung, sebagai barrier membrane mempertahankan ruang dan gigi serta menstabilkan bekuan darah. Pada makalah ini akan dibahas sekilas mengenai 1. Proses penyembuhan terapi periodontal meliputi regenerasi, repair ataupun pembentukan perlekatan baru. 2. Periodontal spesific tissue engineering. 3. Berbagai jenis membran/guided tissue regeneration yang beredar di pasaran dengan keuntungan dan kerugian sekaligus karakteristik masing-masing membran. 4. Perkembangan membran terbaru sebagai terapi regenerasi penyakit periodontal. Tujuan penulisan untuk memberi gambaran masa depan mengenai terapi regenerasi yang menjanjikan sebagai perkembangan terapi penyakit periodontal.   Latest Development of Guided Tissue Regeneration and Guided Bone Regeneration Membrane as Regenerative Therapy on Periodontal Tissue. Periodontitis is a patological state which influences the integrity of periodontal system that could lead to the destruction of the periodontal tissue and end up with tooth loss. Currently, there are so many researches and efforts to regenerate periodontal tissue, not only to stop the process of the disease but also to reconstruct the periodontal tissue. Periodontal regenerative therapy aims at directing the growth of new bone, cementum and periodontal ligament on the affected teeth. Regenerative procedures consist of soft tissue graft, bone graft, roots biomodification, guided tissue regeneration and combination of the procedures, including restorative surgical procedure that is

  15. Characteristic features of bone tissue regeneration in the vertebral bodies in the experiment with osteograft

    Science.gov (United States)

    Zaydman, A. M.; Predein, Yu. A.; Korel, A. V.; Shchelkunova, E. I.; Strokova, E. I.; Lastevskiy, A. D.; Rerikh, V. V.; Fomichev, N. G.; Falameeva, O. V.; Shevchenko, A. I.; Shevtcov, V. I.

    2017-09-01

    In the practice of orthopedic and trauma surgeons, there is a need to close bone tissue defects after removal of tumors or traumatic and dystrophic lesions. Currently, as cellular technologies are being developed, stem embryonic and pluripotent cells are widely introduced into practical medicine. The unpredictability of the spectrum of cell differentiations, up to oncogenesis, raised the question of creating biological structures committed toward osteogenic direction, capable of regenerating organo-specific graft at the optimal time. Such osteograft was created at the Novosibirsk Institute of Traumatology and Orthopaedics (patent RU 2574942). Its osteogenic orientation was confirmed by the morphological and immunohistochemical methods, and by the expression of bone genes. The regeneration potential of the osteograft was studied in the vertebral bodies of the mini piglet model. The study revealed that the regeneration of the vertebral body defect and the integration of the osteograft with the bed of the recipient proceeds according to the type of primary angiogenic osteogenesis within 30 days.

  16. The role of laminins in cartilaginous tissues: from development to regeneration

    Directory of Open Access Journals (Sweden)

    Y Sun

    2017-07-01

    Full Text Available As a key molecule of the extracellular matrix, laminin provides a delicate microenvironment for cell functions. Recent findings suggest that laminins expressed by cartilage-forming cells (chondrocytes, progenitor cells and stem cells could promote chondrogenesis. However, few papers outline the effect of laminins on providing a favorable matrix microenvironment for cartilage regeneration. In this review, we delineated the expression of laminins in hyaline cartilage, fibrocartilage and cartilage-like tissue (nucleus pulposus throughout several developmental stages. We also examined the effect of laminins on the biological activities of chondrocytes, including adhesion, migration and survival. Furthermore, we scrutinized the potential influence of various laminin isoforms on cartilage-forming cells’ proliferation and chondrogenic differentiation. With this information, we hope to facilitate the understanding of the spatial and temporal interactions between cartilage-forming cells and laminin microenvironment to eventually advance cell-based cartilage engineering and regeneration.

  17. Optical Regeneration and Noise in Semiconductor Devices

    DEFF Research Database (Denmark)

    Öhman, Filip

    2005-01-01

    In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R-regenerator......In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R...

  18. Animal models used for testing hydrogels in cartilage regeneration.

    Science.gov (United States)

    Zhu, Chuntie; Wu, Qiong; Zhang, Xu; Chen, Fubo; Liu, Xiyang; Yang, Qixiang; Zhu, Lei

    2018-05-14

    Focal cartilage or osteochondral lesions can be painful and detrimental. Besides pain and limited function of joints, cartilage defect is considered as one of the leading extrinsic risk factors for osteoarthritis (OA). Thus, clinicians and scientists have paid great attention to regenerative therapeutic methods for the early treatment of cartilaginous defects. Regenerative medicine, showing great hope for regenerating cartilage tissue, rely on the combination of biodegradable scaffolds and specific biological cues, such as growth factors, adhesive factors and genetic materials. Among all biomaterials, hydrogels have emerged as promising cartilage tissue engineering scaffolds for simultaneous cell growth and drug delivery. A wide range of animal models have been applied in testing repair with hydrogels in cartilage defects. This review summarized the current animal models used to test hydrogels technologies for the regeneration of cartilage. Advantages and disadvantages in the establishment of the cartilage defect animal models among different species were emphasized, as well as feasibility of replication of diseases in animals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Angiogenesis is inhibitory for mammalian digit regeneration

    Science.gov (United States)

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  20. Expression and localization of regenerating gene I in a rat liver regeneration model

    International Nuclear Information System (INIS)

    Wang Jingshu; Koyota, Souichi; Zhou, Xiaoping; Ueno, Yasuharu; Ma Li; Kawagoe, Masami; Koizumi, Yukio; Okamoto, Hiroshi; Sugiyama, Toshihiro

    2009-01-01

    Regenerating gene (Reg) I has been identified as a regenerative/proliferative factor for pancreatic islet cells. We examined Reg I expression in the regenerating liver of a rat model that had been administered 2-acetylaminofluorene and treated with 70% partial hepatectomy (2-AAF/PH model), where hepatocyte and cholangiocyte proliferation was suppressed and the hepatic stem cells and/or hepatic progenitor cells were activated. In a detailed time course study of activation of hepatic stem cells in the 2-AAF/PH model, utilizing immunofluorescence staining with antibodies of Reg I and other cell-type-specific markers, we found that Reg I-expressing cells are present in the bile ductules and increased during regeneration. Reg I-expressing cells were colocalized with CK19, OV6, and AFP. These results demonstrate that Reg I is significantly upregulated in the liver of the 2-AAF/PH rat model, accompanied by the formation of bile ductules during liver regeneration.

  1. Nitrogen uptake and regeneration in a frontal region of the Algerian current (western Mediterranean Sea): new evaluation of new production

    International Nuclear Information System (INIS)

    Gentilhomme, V.; Raimbault, P.

    1994-01-01

    The uptake and regeneration of four forms of nitrogen (NO 3 - , NO 2 - , NH 4 + and urea) have been studied, in the euphotic layer of a frontal area (Algerian current), in relation with hydrological, chemical and biological parameters. In this area vertical stratification is pronounced; a deep chlorophyll maximum at the bottom of the euphotic layer is present. Results show the importance of measuring urea uptake and regeneration in the study of nitrogen cycling, because this component can be regenerated as rapidly as ammonia, and is a source of nitrogen for phytoplankton. Other results show the oxidation of ammonia to nitrate in the euphotic layer, and particularly at the base of this layer. This nitrification is a source or in situ regenerated nitrate, and could lead to a wrong estimation of the new production estimation. In the deep chlorophyll maximum, there is a maximum of nitrogen primary production but not a maximum of new production. In fact, regenerated production is the most important process over the whole euphotic layer of the Algerian basin. (authors). 56 refs., 2 figs., 2 tabs

  2. Nanostructured Mesoporous Silicas for Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Isabel Izquierdo-Barba

    2008-01-01

    Full Text Available The research on the development of new biomaterials that promote bone tissue regeneration is receiving great interest by the biomedical scientific community. Recent advances in nanotechnology have allowed the design of materials with nanostructure similar to that of natural bone. These materials can promote new bone formation by inducing the formation of nanocrystalline apatites analogous to the mineral phase of natural bone onto their surfaces, i.e. they are bioactive. They also stimulate osteoblast proliferation and differentiation and, therefore, accelerate the healing processes. Silica-based ordered mesoporous materials are excellent candidates to be used as third generation bioceramics that enable the adsorption and local control release of biological active agents that promote bone regeneration. This local delivery capability together with the bioactive behavior of mesoporous silicas opens up promising expectations in the bioclinical field. In this review, the last advances in nanochemistry aimed at designing and tailoring the chemical and textural properties of mesoporous silicas for biomedical applications are described. The recent developed strategies to synthesize bioactive glasses with ordered mesopore arrangements are also summarized. Finally, a deep discussion about the influence of the textural parameters and organic modification of mesoporous silicas on molecules adsorption and controlled release is performed.

  3. Thidiazuron: A potent cytokinin for efficient plant regeneration in Himalayan poplar (Populus ciliata Wall. using leaf explants

    Directory of Open Access Journals (Sweden)

    Gaurav Aggarwal

    2012-11-01

    Full Text Available Populus species are important resource for certain branches of industry and have special roles for scientific study on biological and agricultural systems. The present investigation was undertaken with an objective of enhancing the frequency of plant regeneration in Himalayan poplar (Populus ciliata Wall.. The effect of Thiadizuron (TDZ alone and in combination with adenine and α-Naphthalene acetic acid (NAA were studied on the regeneration potential of leaf explants. A high efficiency of shoot regeneration was observed in leaf (80.00% explants on MS basal medium supplemented with 0.024 mg/l TDZ and 79.7 mg/l adenine. Elongation and multiplication of shoots were obtained on Murashige and Skoog (MS basal medium, containing 0.5 mg/l 6. Benzyl aminopurine (BAP + 0.2mg/l Indole 3-acetic acid (IAA + 0.3 mg/l Gibberellic acid (GA3. High frequency root regeneration from in vitro developed shoots was observed on MS basal medium supplemented with 0.10 mg/l Indole 3-butyric acid(IBA. Maximum of the in vitro rooted plantlets were well accomplished to the mixture of sand: soil (1:1 and exhibited similar morphology with the field plants. A high efficiency plant regeneration protocol has been developedfrom leaf explants in Himalayan poplar (Populus ciliata Wall..

  4. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.

    Science.gov (United States)

    Mahmoud, Ahmed I; O'Meara, Caitlin C; Gemberling, Matthew; Zhao, Long; Bryant, Donald M; Zheng, Ruimao; Gannon, Joseph B; Cai, Lei; Choi, Wen-Yee; Egnaczyk, Gregory F; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Poss, Kenneth D; Lee, Richard T

    2015-08-24

    Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Small Engine, Big Power: MicroRNAs as Regulators of Cardiac Diseases and Regeneration

    Directory of Open Access Journals (Sweden)

    Darukeshwara Joladarashi

    2014-09-01

    Full Text Available Cardiac diseases are the predominant cause of human mortality in the United States and around the world. MicroRNAs (miRNAs are small non-coding RNAs that have been shown to modulate a wide range of biological functions under various pathophysiological conditions. miRNAs alter target expression by post-transcriptional regulation of gene expression. Numerous studies have implicated specific miRNAs in cardiovascular development, pathology, regeneration and repair. These observations suggest that miRNAs are potential therapeutic targets to prevent or treat cardiovascular diseases. This review focuses on the emerging role of miRNAs in cardiac development, pathogenesis of cardiovascular diseases, cardiac regeneration and stem cell-mediated cardiac repair. We also discuss the novel diagnostic and therapeutic potential of these miRNAs and their targets in patients with cardiac diseases.

  6. Animal regeneration: ancestral character or evolutionary novelty?

    Science.gov (United States)

    Slack, Jonathan Mw

    2017-09-01

    An old question about regeneration is whether it is an ancestral character which is a general property of living matter, or whether it represents a set of specific adaptations to the different circumstances faced by different types of animal. In this review, some recent results on regeneration are assessed to see if they can throw any new light on this question. Evidence in favour of an ancestral character comes from the role of Wnt and bone morphogenetic protein signalling in controlling the pattern of whole-body regeneration in acoels, which are a basal group of bilaterian animals. On the other hand, there is some evidence for adaptive acquisition or maintenance of the regeneration of appendages based on the occurrence of severe non-lethal predation, the existence of some novel genes in regenerating organisms, and differences at the molecular level between apparently similar forms of regeneration. It is tentatively concluded that whole-body regeneration is an ancestral character although has been lost from most animal lineages. Appendage regeneration is more likely to represent a derived character resulting from many specific adaptations. © 2017 The Author.

  7. All optical regeneration using semiconductor devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Tromborg, Bjarne

    All-optical regeneration is a key functionality for implementing all-optical networks. We present a simple theory for the bit-error-rate in links employing all-optical regenerators, which elucidates the interplay between the noise and and nonlinearity of the regenerator. A novel device structure ...... is analyzed, emphasizing general aspects of active semiconductor waveguides....

  8. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  9. Optimization of chemical regeneration procedures of spent activated carbon

    Directory of Open Access Journals (Sweden)

    Naser Ghasemzadeh

    2017-01-01

    Full Text Available The chemical regeneration of granular activated carbon exhausted in a petrochemical wastewater unit was investigated. Gas chromatography and energy-dispersive X-ray spectroscopy demonstrated that spent activated carbon carries large types of organic and inorganic materials. Diverse chemical solvents were adopted in comparison with traditional chemical solvents and regeneration efficiency was investigated for each approach. The optimum procedure and optimum condition including temperature, concentration of solvent, and time were determined. The regenerated activated carbon was used in the adsorption of methylene blue (MB in order to find its regeneration efficiency. The regeneration efficiency can be identified by comparing of amount of MB absorbed by the fresh and regenerated activated carbon. The best acidic regenerator was hydrofluoric acid. The higher the temperature causes the faster desorption rate and consequently, the higher regeneration efficiency. The regeneration efficiency increased by means of an increase in the time of regeneration and solvent concentration, but there was an optimum time and solvent concentration for regeneration. The optimum temperature, solvent concentration and regeneration time obtained was 80 ⁰C, 3 molar and 3 hours, respectively.

  10. Infection and Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  11. The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods

    Science.gov (United States)

    McCusker, Catherine; Bryant, Susan V.

    2015-01-01

    Abstract The axolotl is one of the few tetrapods that are capable of regenerating complicated biological structures, such as complete limbs, throughout adulthood. Upon injury the axolotl generates a population of regeneration‐competent limb progenitor cells known as the blastema, which will grow, establish pattern, and differentiate into the missing limb structures. In this review we focus on the crucial early events that occur during wound healing, the neural−epithelial interactions that drive the formation of the early blastema, and how these mechanisms differ from those of other species that have restricted regenerative potential, such as humans. We also discuss how the presence of cells from the different axes of the limb is required for the continued growth and establishment of pattern in the blastema as described in the polar coordinate model, and how this positional information is reprogrammed in blastema cells during regeneration. Multiple cell types from the mature limb stump contribute to the blastema at different stages of regeneration, and we discuss the contribution of these types to the regenerate with reference to whether they are “pattern‐forming” or “pattern‐following” cells. Lastly, we explain how an engineering approach will help resolve unanswered questions in limb regeneration, with the goal of translating these concepts to developing better human regenerative therapies. PMID:27499868

  12. Modeling water and hydrogen networks with partitioning regeneration units

    Directory of Open Access Journals (Sweden)

    W.M. Shehata

    2015-03-01

    Full Text Available Strict environment regulations in chemical and refinery industries lead to minimize resource consumption by designing utility networks within industrial process plants. The present study proposed a superstructure based optimization model for the synthesis of water and hydrogen networks with partitioning regenerators without mixing the regenerated sources. This method determines the number of partitioning regenerators needed for the regeneration of the sources. The number of the regenerators is based on the number of sources required to be treated for recovery. Each source is regenerated in an individual partitioning regenerator. Multiple regeneration systems can be employed to achieve minimum flowrate and costs. The formulation is linear in the regenerator balance equations. The optimized model is applied for two systems, partitioning regeneration systems of the fixed outlet impurity concentration and partitioning regeneration systems of the fixed impurity load removal ratio (RR for water and hydrogen networks. Several case studies from the literature are solved to illustrate the ease and applicability of the proposed method.

  13. Biologic Agents for Periodontal Regeneration and Implant Site Development

    Directory of Open Access Journals (Sweden)

    Fernando Suárez-López del Amo

    2015-01-01

    Full Text Available The advancement of molecular mediators or biologic agents has increased tremendously during the last decade in periodontology and dental implantology. Implant site development and reconstruction of the lost periodontium represent main fields in which these molecular mediators have been employed and investigated. Different growth factors trigger different reactions in the tissues of the periodontium at various cellular levels. Proliferation, migration, and differentiation constitute the main target areas of these molecular mediators. It was the purpose of this comprehensive review to describe the origin and rationale, evidence, and the most current understanding of the following biologic agents: Recombinant Human Platelet-Derived Growth Factor-BB (rhPDGF-BB, Enamel Matrix Derivate (EMD, Platelet-Rich Plasma (PRP and Platelet-Rich Fibrin (PRF, Recombinant Human Fibroblast Growth Factor-2 (rhFGF-2, Bone Morphogenic Proteins (BMPs, BMP-2 and BMP-7, Teriparatide PTH, and Growth Differential Factor-5 (GDF-5.

  14. Lens regeneration in axolotl: new evidence of developmental plasticity

    Directory of Open Access Journals (Sweden)

    Suetsugu-Maki Rinako

    2012-12-01

    Full Text Available Abstract Background Among vertebrates lens regeneration is most pronounced in newts, which have the ability to regenerate the entire lens throughout their lives. Regeneration occurs from the dorsal iris by transdifferentiation of the pigment epithelial cells. Interestingly, the ventral iris never contributes to regeneration. Frogs have limited lens regeneration capacity elicited from the cornea during pre-metamorphic stages. The axolotl is another salamander which, like the newt, regenerates its limbs or its tail with the spinal cord, but up until now all reports have shown that it does not regenerate the lens. Results Here we present a detailed analysis during different stages of axolotl development, and we show that despite previous beliefs the axolotl does regenerate the lens, however, only during a limited time after hatching. We have found that starting at stage 44 (forelimb bud stage lens regeneration is possible for nearly two weeks. Regeneration occurs from the iris but, in contrast to the newt, regeneration can be elicited from either the dorsal or the ventral iris and, occasionally, even from both in the same eye. Similar studies in the zebra fish concluded that lens regeneration is not possible. Conclusions Regeneration of the lens is possible in the axolotl, but differs from both frogs and newts. Thus the axolotl iris provides a novel and more plastic strategy for lens regeneration.

  15. Understanding positional cues in salamander limb regeneration: implications for optimizing cell-based regenerative therapies

    Directory of Open Access Journals (Sweden)

    Catherine D. McCusker

    2014-06-01

    Full Text Available Regenerative medicine has reached the point where we are performing clinical trials with stem-cell-derived cell populations in an effort to treat numerous human pathologies. However, many of these efforts have been challenged by the inability of the engrafted populations to properly integrate into the host environment to make a functional biological unit. It is apparent that we must understand the basic biology of tissue integration in order to apply these principles to the development of regenerative therapies in humans. Studying tissue integration in model organisms, where the process of integration between the newly regenerated tissues and the ‘old’ existing structures can be observed and manipulated, can provide valuable insights. Embryonic and adult cells have a memory of their original position, and this positional information can modify surrounding tissues and drive the formation of new structures. In this Review, we discuss the positional interactions that control the ability of grafted cells to integrate into existing tissues during the process of salamander limb regeneration, and discuss how these insights could explain the integration defects observed in current cell-based regenerative therapies. Additionally, we describe potential molecular tools that can be used to manipulate the positional information in grafted cell populations, and to promote the communication of positional cues in the host environment to facilitate the integration of engrafted cells. Lastly, we explain how studying positional information in current cell-based therapies and in regenerating limbs could provide key insights to improve the integration of cell-based regenerative therapies in the future.

  16. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Somik [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yin, Hongshan [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei (China); Nam, Deokhwa [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Li, Yong [Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Ma, Ke, E-mail: kma@houstonmethodist.org [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States)

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  17. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    International Nuclear Information System (INIS)

    Chatterjee, Somik; Yin, Hongshan; Nam, Deokhwa; Li, Yong; Ma, Ke

    2015-01-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1 −/− mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation

  18. Neurotransmitter-Regulated Regeneration in the Zebrafish Retina

    Directory of Open Access Journals (Sweden)

    Mahesh B. Rao

    2017-04-01

    Full Text Available Summary: Current efforts to repair damaged or diseased mammalian retinas are inefficient and largely incapable of fully restoring vision. Conversely, the zebrafish retina is capable of spontaneous regeneration upon damage using Müller glia (MG-derived progenitors. Understanding how zebrafish MG initiate regeneration may help develop new treatments that prompt mammalian retinas to regenerate. We show that inhibition of γ-aminobutyric acid (GABA signaling facilitates initiation of MG proliferation. GABA levels decrease following damage, and MG are positioned to detect decreased ambient levels and undergo dedifferentiation. Using pharmacological and genetic approaches, we demonstrate that GABAA receptor inhibition stimulates regeneration in undamaged retinas while activation inhibits regeneration in damaged retinas. : Unlike mammals, zebrafish regenerate following retina damage from a resident adult stem cell (Müller glia. Dissecting the mechanisms that zebrafish use could lead to new therapeutic targets to treat retinal diseases. Patton and colleagues have discovered a mechanism by which decreased GABA levels are sensed by Müller glia to initiate a regenerative response. Keywords: zebrafish, retina, regeneration, Müller glia, GABA

  19. [Guided bone regeneration: general survey].

    Science.gov (United States)

    Cosyn, Jan; De Bruyn, Hugo

    2009-01-01

    The principle of 'guided bone regeneration' was first described in 1988 on the basis of animal-experimental data. Six weeks after transmandibular defects had been created and protected by non-resorbable teflonmembranes, complete bone regeneration was found. The technique was based on the selective repopulation of the wound: every infiltration of cells outside the neighbouring bone tissue was prevented by the application of the membrane. Additional animal experiments showed that guided bone regeneration was a viable treatment option for local bone defects surrounding dental implants. Clinical practice, however, showed that premature membrane exposure was a common complication, which was responsible for a tremendous reduction in regenerated bone volume. In addition, a second surgical intervention was always necessary to remove the membrane. As a result, resorbable alternatives were developed. Since these are less rigid, bone fillers are usually used simultaneously. These comprise autogenous bone chips and bone substitutes from allogenic or xenogenic origine. Also alloplastic materials could be used for this purpose. Based on their characteristics this article provides an overview of the biomaterials that could be considered for guided bone regeneration. Specific attention goes to their application in clinical practice.

  20. Peptide-Based Materials for Cartilage Tissue Regeneration.

    Science.gov (United States)

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  1. Histomorphological evaluation of Compound bone of Granulated Ricinus in bone regeneration in rabbits

    International Nuclear Information System (INIS)

    Mateus, Christiano Pavan; Chierice, Gilberto Orivaldo; Okamoto, Tetuo

    2011-01-01

    Histological evaluation is an effective method in the behavioral description of the qualitative and quantitative implanted materials. The research validated the performance of Compound bone of Granulated Ricinus on bone regeneration with the histomorphological analysis results. Were selected 30 rabbits, females, divided into 3 groups of 10 animals (G1, G2, G3) with a postoperative time of 45, 70 and 120 days respectively. Each animal is undergone 2 bone lesions in the ilium, one implemented in the material: Compound bone of Granulated Ricinus and the other for control. After the euthanasia, the iliac bone was removed, identified and subjected to histological procedure. The evaluation histological, histomorphological results were interpreted and described by quantitative and qualitative analysis based facts verified in the three experimental groups evaluating the rate of absorption of the material in the tissue regeneration, based on the neo-bone formation. The histomorphologic results classified as a material biocompatible and biologically active. Action in regeneration by bone resorption occurs slowly and gradually. Knowing the time and rate of absorption and neo-formation bone biomaterial, which can be determined in the bone segment applicable in the clinical surgical area.

  2. Regeneración biológica: Secretos de la naturaleza Biological regeneration: Secrets of nature

    Directory of Open Access Journals (Sweden)

    Porfirio Hernández Ramírez

    2006-12-01

    capacity, both in the field of botany and of zoology. Among the new methods to improve the characteristics and dissemination of plants we find the regeneration techniques of plants in vitro, including the organogenesis and the somatic embriogenesis that give the possibility to form the so-called “artificial seeds”. In zoology, it has been observed the regenerative capacity of some animals, such as planarians, hydras, starfish and crustacean. Many vertebrates have lost, at least in a significant way, the regenerative potentiality of most of their organs and tissues. However, some have retained a marked regenerative ability, among them, the Teleostei, the Urodela (salamanders and tritons and other types of amphibia. The Chelonia, crocodriles and snakes have lost in general the capacity to regenerate lost parts. Alligators have the possibility to regenerate their tails. Mammals have also limitations, since they cannot regenerate extremities, organs and tissues as some inferior animals do. There are exceptions, as those found in stags, dolphins and some type of mice as the MRL mice. The human being expresses only some physiological regenerative processes, or before some injuries that are mainly manifested in the epidermal cells of the oral mucosa and of the respiratory tract, the blood cells, the hair, the nails, the muscular tissue, the skin and the bone tissue. The new knowledge on the stem cell opens a new era that offers man the possibility to influence therapeutically on the regeneration of organs and tissues

  3. Brownfield regeneration: Towards strengthening social cohesion?

    Directory of Open Access Journals (Sweden)

    Minić Marta

    2016-01-01

    Full Text Available In broader terms, the paper refers to the topic of brownfield regeneration, as one of the most complex mechanisms for sustainable spatial development. In addition to the fact that brownfield regeneration demands a variety of instruments, such as: tax subsidies, the change of land use ownership, soil remediation, planning regulative amendments, etc., the complexity of brownfield regeneration is primarily seen in a number of stakeholders participating in such a process. Thus, the paper focuses on the social aspect of brownfield regeneration - precisely, on researching the community role and reviewing the possibilities for achieving the 'local' interests in complex developmental processes. The main research hypothesis is that brownfield regeneration positively affects the creation of and strengthening the social cohesion in the areas close to the brownfield site. More precisley, the paper presents the ways towards strenghtening social cohesion in the initial phase of the brownfield regeneration process, as well as the effects of such a process in its operationalisation phase on social cohesion. The thesis is examined by two main parameters: 1 participation of local community, and 2 social costs and benefits of brownfield regeneration versus greenfield investment. The research results are presented in the form of argumentative essay. In fact, the critical overview of arguments for and against the main research hypothesis is provided based on the review of interdisciplinary literature in the domain of brownfield regeneration. Such research organisation ensures the identification and description of the measures needed for strengthening social cohesion, as an utmost goal of this research. The final research contribution is about offering the guidelines for similar methodological approach in urban research.

  4. Hydroprocessing catalysts utilization and regeneration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off-site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed.

  5. Comparison contemporary methods of regeneration sodium-cationic filters

    Science.gov (United States)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.

    2017-11-01

    Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.

  6. Regeneration of limb joints in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Lee, Jangwoo; Gardiner, David M

    2012-01-01

    In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints.

  7. Regeneration of limb joints in the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Jangwoo Lee

    Full Text Available In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints.

  8. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene.

    Science.gov (United States)

    Yao, L; Daly, W; Newland, B; Yao, S; Wang, W; Chen, B K K; Madigan, N; Windebank, A; Pandit, A

    2013-12-01

    Functionalized biomaterial scaffolds targeted at improving axonal regeneration by enhancing guided axonal growth provide a promising approach for the repair of spinal cord injury. Collagen neural conduits provide structural guidance for neural tissue regeneration, and in this study it is shown that these conduits can also act as a reservoir for sustained gene delivery. Either a G-luciferase marker gene or a neurotrophin-3-encoding gene, complexed to a non-viral, cyclized, PEGylated transfection vector, was loaded within a multichannel collagen conduit. The complexed genes were then released in a controlled fashion using a dual release system both in vitro and in vivo. For evaluation of their biological performance, the loaded conduits were implanted into the completely transected rat thoracic spinal cord (T8-T10). Aligned axon regeneration through the channels of conduits was observed one month post-surgery. The conduits delivering neurotrophin-3 polyplexes resulted in significantly increased neurotrophin-3 levels in the surrounding tissue and a statistically higher number of regenerated axons versus the control conduits (P<0.05). This study suggests that collagen neural conduits delivering a highly effective non-viral therapeutic gene may hold promise for repair of the injured spinal cord.

  9. Composite Matrix Regenerator for Stirling Engines

    Science.gov (United States)

    Knowles, Timothy R.

    1997-01-01

    This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.

  10. Final cutting of shelterwood. Harvesting techniques and effects on the Picea abies regeneration

    International Nuclear Information System (INIS)

    Gloede, Dan

    2001-01-01

    During the last decade, environmental and biological aspects have grown increasingly important in forestry. At the same time conventional planting after clear-cutting has failed on many sites with a high ground water table, abundant competitive vegetation and frequent frosts. Therefore, on these sites the use of the shelterwood system for regeneration of Norway spruce (Picea abies [L.] Karst.) has increased in Sweden. The main objective of the thesis is to study if it is possible to final-cut shelterwoods at acceptable harvesting costs, logging damage and release effects in the regeneration. Final cutting of three shelterwoods (180-200 m 3 /ha) in Sweden were carried out with single- and double-grip harvester systems in 1-1.5 m high regeneration (6 400-26 700 seedlings/ha). In a fourth shelterwood (140-165 m 3 /ha), also situated in Sweden, conventional felling with a single-grip harvester was compared with a more concentrated felling according to a method named 'tossing the caber', where the trees were felled top-end first over the 1.2-1.3 m high regeneration (9 530-11 780 seedlings/ha) and into the striproad. No differences in productivity and cost between single- and double-grip harvesters in final cutting of shelterwood were found. Despite few stems/ha and extensive regeneration the harvesting cost was considered low (33.5 SEK/m 3 ). Approximately one third of the seedlings suffered mortal logging damage, which was considered acceptable. No differences between conventional felling and the tossing the caber method were found regarding productivity, cost and damage to the regeneration. However, tossing the caber may be a more productive alternative in final cutting of pine-dominated shelterwood or seed tree stands. Seedling growth and survival after shelterwood removal was not influenced by the choice of harvester system. Seedling height and vitality were found to be good estimators of post-release survival and growth which, in total, was found to be acceptable

  11. Limb Regeneration in Axolotl: Is It Superhealing?

    Directory of Open Access Journals (Sweden)

    Stéphane Roy

    2006-01-01

    Full Text Available The ability of axolotls to regenerate their limbs is almost legendary. In fact, urodeles such as the axolotl are the only vertebrates that can regenerate multiple structures like their limbs, jaws, tail, spinal cord, and skin (the list goes on throughout their lives. It is therefore surprising to realize, although we have known of their regenerative potential for over 200 years, how little we understand the mechanisms behind this achievement of adult tissue morphogenesis. Many observations can be drawn between regeneration and other disciplines such as development and wound healing. In this review, we present new developments in functional analysis that will help to address the role of specific genes during the process of regeneration. We also present an analysis of the resemblance between wound healing and regeneration, and discuss whether axolotls are superhealers. A better understanding of these animals' regenerative capacity could lead to major benefits by providing regenerative medicine with directions on how to develop therapeutic approaches leading to regeneration in humans.

  12. A linear-encoding model explains the variability of the target morphology in regeneration

    Science.gov (United States)

    Lobo, Daniel; Solano, Mauricio; Bubenik, George A.; Levin, Michael

    2014-01-01

    A fundamental assumption of today's molecular genetics paradigm is that complex morphology emerges from the combined activity of low-level processes involving proteins and nucleic acids. An inherent characteristic of such nonlinear encodings is the difficulty of creating the genetic and epigenetic information that will produce a given self-assembling complex morphology. This ‘inverse problem’ is vital not only for understanding the evolution, development and regeneration of bodyplans, but also for synthetic biology efforts that seek to engineer biological shapes. Importantly, the regenerative mechanisms in deer antlers, planarian worms and fiddler crabs can solve an inverse problem: their target morphology can be altered specifically and stably by injuries in particular locations. Here, we discuss the class of models that use pre-specified morphological goal states and propose the existence of a linear encoding of the target morphology, making the inverse problem easy for these organisms to solve. Indeed, many model organisms such as Drosophila, hydra and Xenopus also develop according to nonlinear encodings producing linear encodings of their final morphologies. We propose the development of testable models of regeneration regulation that combine emergence with a top-down specification of shape by linear encodings of target morphology, driving transformative applications in biomedicine and synthetic bioengineering. PMID:24402915

  13. Systems Biology of Glucocorticoids in Muscle Disease

    Science.gov (United States)

    2010-10-01

    Introduction Duchenne muscular dystrophy (DMD) is the most common and incurable muscular dystrophy of childhood. Muscle regeneration fails with...SUBJECT TERMS Duchenne Muscular dystrophy , Glucocorticoids, Systems biology, Drug mechanism 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION...better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant proposal is led by Dr. Eric Hoffman, and it

  14. Cancer-related aspects of regeneration research: a review

    International Nuclear Information System (INIS)

    Donaldson, D.J.; Mason, J.M.

    1975-01-01

    Tissue regeneration is simply the replacement of lost cells of a tissue by those remaining. Epimorphic regeneration involves dedifferentiation of many tissues and their organization into a blastema which eventually differentiates into the missing part, usually an appendage. A detailed comparison of the cell membrane changes occurring in epimorphic regeneration, tissue regeneration and cancer can contribute to greater understanding of the differences between normal and tumor cells. Further, there is evidence that epimorphic regeneration fields may in some instances suppress tumor induction and control existing tumors. This influence may be mediated by bioelectric fields, which are ubiquitous in nature and appear to control many cellular events. Disruption of these bioelectric fields suppresses epimorphic regeneration and may lead to cancer in mammals, while applied electric fields alter regenerative events and cause tumor regression. Studies on x-radioinduced regeneration suppression in relation to mutagenesis are also reviewed

  15. Irradiation inhibits the regeneration of aneurogenic limbs

    International Nuclear Information System (INIS)

    Wallace, H.; Maden, M.

    1976-01-01

    The developing arms of axolotl larvae from the 2-digit stage onward and the aneurogenic arms of surgically denervated larvae maintained in parabiosis are able to regenerate after amputation. Such regeneration is uniformly inhibited by local irradiation of the arm, whether innervated or not. This demonstration refutes a recent hypothesis that x-rays interfere with a special activity of nerves required for regeneration, and supports the earlier concept that x-rays act directly on those cells which must proliferate to form the regenerated tissues

  16. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  17. Adsorption, regeneration and reuse of activated carbon for elimination of COD from municipal waste water. Final report. Untersuchungen zur Aktivkohle-Adsorption, -Regeneration und Wiederverwendung beim Einsatz zur Elimination des CSB aus kommunalem Abwasser. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sekoulov, I.; Holst, H.J.

    1994-02-01

    One practicability to reduce COD-loadings of secondary effluents is the activated carbon fixed bed-process. In this project activated carbons (GAC) of different raw products (peat, wood, coal) were loaded with filtrated municipal waste water (mean COD-concentration: 60 mg CSB/L). After the break-through of adsorption-colums, the carbon was regenerated by means of superheated steam (optimal conditions: [theta]=300 C, pressure=2 bar, thermal energie=10 KW). Regeneration experiments demonstrated, that the results of steam-treatment of GAC is independent in respects to the preloading of activated carbons and the raw products. The mass of COD, detected in the condensed (liquid) steam-phase, always was in quantity about 10% of the further COD adsorbed to the GAC. Gaseous reaction products could not evaluated by means of the experimental design. But former perculation cycles of steam-treated carbons and measurments of the specific area (BET-method) indicated, that the adsorption-capacity of regenerated GAC seams to be in the same quantity, than unloaded carbons. Measurements (GC/MS) of single organic components showed, that humic-substances are catalysed at steam temperatures about 300 C. It seams, that chlorinated hydrocarbons could formed by means of this regeneration method. BOD experiments demonstrated, that substances of the steam-treatment could be biological degraded about 50% to 60%. (orig.)

  18. Internodal function in normal and regenerated mammalian axons

    DEFF Research Database (Denmark)

    Moldovan, M; Krarup, C

    2007-01-01

    AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found...... that regenerated internodes remain persistently short though this abnormality did not seem to influence recovery in conduction. It remains unclear to which extent abnormalities in axonal function itself may contribute to the poor outcome of nerve regeneration. METHODS: We review experimental evidence indicating...... that internodes play an active role in axonal function. RESULTS: By investigating internodal contribution to axonal excitability we have found evidence that axonal function may be permanently compromised in regenerated nerves. Furthermore, we illustrate that internodal function is also abnormal in regenerated...

  19. Autoradiographic analysis of protein regeneration in striated skeleton muscle

    International Nuclear Information System (INIS)

    Dadoune, J.P.

    1977-01-01

    An autoradiographic study was conducted of protein regeneration in striated muscles aimed at clarifying the contradictions in the literature: while some authors hold that the regeneration rate is identical for all types of myofibril proteins and the myofibril is thus regenerated as a whole, others claim that the regeneration rate differs depending on the type of the myofibril protein. Tritium-labelled leucine incorporation experiments showed the existence of at least 2 pools of newly formed proteins in striated muscles in both adult and young animals. One pool is regenerated in 1 to 2 weeks, the other roughly in a month. The regeneration of proteins is initially more significant in red fibres; thus the rate of myofibril protein regeneration is not uniform. In adult animals regeneration seems to be slower in filaments than in the sarcoplasm and in the mitochondria. (A.K.)

  20. Apparatus and methods for regeneration of precipitating solvent

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang; Bonsu, Alexander

    2015-08-25

    A regenerator that can handle rich loaded chemical solvent containing precipitated absorption reaction products is disclosed. The invention is particularly suitable for separating CO.sub.2 from large gas streams that are typical of power plant processes. The internally circulating liquid stream in the regenerator (ICLS regenerator) rapidly heats-up the in-coming rich solvent stream in a downcomer standpipe as well as decreases the overall concentration of CO.sub.2 in the mixed stream. Both these actions lead to dissolution of precipitates. Any remaining precipitate further dissolves as heat is transferred to the mixed solution with an inverted bayonet tube heat exchanger in the riser portion of the regenerator. The evolving CO.sub.2 bubbles in the riser portion of the regenerator lead to substantial gas hold-up and the large density difference between the solutions in the downcomer standpipe and riser portions promotes internal circulation of the liquid stream in the regenerator. As minor amounts of solvent components present in the exit gas stream are condensed and returned back to the regenerator, pure CO.sub.2 gas stream exits the disclosed regenerator and condenser system.

  1. FEATURES OF THE REGENERATION PROCESS OF THE FILTER

    Directory of Open Access Journals (Sweden)

    S. Yu. Panov

    2015-01-01

    Full Text Available The regeneration system exercises significant influence on the efficiency and reliability of the filters. During operation of the filter it continuously increases the hydraulic resistance and the gas permeability of the filter material decreases as the deposition of the disperse phase capturable on the filter element, and to maintain the bandwidth of the filter in the filter element within the set must be periodically changed or regenerated. Thus, regeneration of a process of removing part of the dust layer with the purpose of full or partial reduction of the initial filter partitioning properties. On the basis of theoretical synthesis, physico-chemical effects of dust in layers, analysis of energy effects, developed methods of intensification of the process of regeneration of particulate filters. Pneumopulse regeneration of bag filter has been investigated, and based on it a regression equation for regeneration efficiency has been derived. It has been shown that pulse pressure exerts the dominant influence on the regeneration efficiency. The obtained model was used for assessment and prediction of the efficiency of the pneumopulse system of regeneration of bag filters at a number of structural materials producing enterprises in the Voronezh region.

  2. Regeneration of spine disc and joint cartilages under temporal and space modulated laser radiation

    Science.gov (United States)

    Sobol, E.; Shekhter, A.; Baskov, A.; Baskov, V.; Baum, O.; Borchshenko, I.; Golubev, V.; Guller, A.; Kolyshev, I.; Omeltchenko, A.; Sviridov, A.; Zakharkina, O.

    2009-02-01

    The effect of laser radiation on the generation of hyaline cartilage in spine disc and joints has been demonstrated. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reconstruction of spine discs. Possible mechanisms of laser-induced regeneration include: (1) Space and temporary modulated laser beam induces nonhomogeneous and pulse repetitive thermal expansion and stress in the irradiated zone of cartilage. Mechanical effect due to controllable thermal expansion of the tissue and micro and nano gas bubbles formation in the course of the moderate (up to 45-50 oC) heating of the NP activate biological cells (chondrocytes) and promote cartilage regeneration. (2) Nondestructive laser radiation leads to the formation of nano and micro-pores in cartilage matrix. That promotes water permeability and increases the feeding of biological cells. Results provide the scientific and engineering basis for the novel low-invasive laser procedures to be used in orthopedics for the treatment cartilages of spine and joints. The technology and equipment for laser reconstruction of spine discs have been tested first on animals, and then in a clinical trial. Since 2001 the laser reconstruction of intervertebral discs have been performed for 340 patients with chronic symptoms of low back or neck pain who failed to improve with non-operative care. Substantial relief of back pain was obtained in 90% of patients treated who returned to their daily activities. The experiments on reparation of the defects in articular cartilage of the porcine joints under temporal and spase modulated laser radiation have shown promising results.

  3. Role of pore size and morphology in musculo-skeletal tissue regeneration

    International Nuclear Information System (INIS)

    Perez, Roman A.; Mestres, Gemma

    2016-01-01

    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. - Highlights: • Osteoconduction and osteoinduction of a biomaterial relies on its pattern of micro/macroporosity. • Size, morphology, distribution and interconnection of the pores influence both mechanical and biological properties. • Macroporosity (pores > 50 μm) determines cell colonization and therefore growth of vascular and bone tissue. • Micropores (< 50 μm) are crucial for proteins adsorption, which in turn can determine cell fate.

  4. Role of pore size and morphology in musculo-skeletal tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Roman A., E-mail: romanp@dankook.ac.kr [Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Mestres, Gemma [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden)

    2016-04-01

    Biomaterials in the form of scaffolds hold great promise in the regeneration of diseased tissues. The scaffolds stimulate cellular adhesion, proliferation and differentiation. While the scaffold composition will dictate their biocompatibility, their porosity plays a key role in allowing proper cell penetration, nutrient diffusion as well as bone ingrowth. Porous scaffolds are processed with the help of a wide variety of techniques. Designing scaffolds with the appropriate porosity is a complex issue since this may jeopardize other physico-chemical properties. From a macroscopic point of view, parameters such as the overall architecture, pore morphology, interconnectivity and pore size distribution, have unique roles in allowing bone ingrowth to take place. From a microscopic perspective, the adsorption and retention of proteins in the microporosities of the material will dictate the subsequent cell adhesion. Therefore, the microstructure of the substrate can determine cell proliferation as well as the expression of specific osteogenic genes. This review aims at discussing the effect of micro- and macroporosity on the physico-chemical and biological properties of scaffolds for musculo-skeletal tissue regeneration. - Highlights: • Osteoconduction and osteoinduction of a biomaterial relies on its pattern of micro/macroporosity. • Size, morphology, distribution and interconnection of the pores influence both mechanical and biological properties. • Macroporosity (pores > 50 μm) determines cell colonization and therefore growth of vascular and bone tissue. • Micropores (< 50 μm) are crucial for proteins adsorption, which in turn can determine cell fate.

  5. Retinal stem cells and regeneration of vision system.

    Science.gov (United States)

    Yip, Henry K

    2014-01-01

    The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina. Copyright © 2013 Wiley Periodicals, Inc.

  6. Application of Bladder Acellular Matrix in Urinary Bladder Regeneration: The State of the Art and Future Directions

    Directory of Open Access Journals (Sweden)

    Marta Pokrywczynska

    2015-01-01

    Full Text Available Construction of the urinary bladder de novo using tissue engineering technologies is the “holy grail” of reconstructive urology. The search for the ideal biomaterial for urinary bladder reconstruction has been ongoing for decades. One of the most promising biomaterials for this purpose seems to be bladder acellular matrix (BAM. In this review we determine the most important factors, which may affect biological and physical properties of BAM and its regeneration potential in tissue engineered urinary bladder. We also point out the directions in modification of BAM, which include incorporation of exogenous growth factors into the BAM structure. Finally, we discuss the results of the urinary bladder regeneration with cell seeded BAM.

  7. Applications of Metals for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Kristina Glenske

    2018-03-01

    Full Text Available The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP-based substitute materials based on natural (allo- and xenografts and synthetic origins (alloplastic materials are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.

  8. Biological Properties of Low-Toxic PLGA and PLGA/PHB Fibrous Nanocomposite Scaffolds for Osseous Tissue Regeneration. Evaluation of Potential Bioactivity

    Directory of Open Access Journals (Sweden)

    Boguslawa Żywicka

    2017-10-01

    Full Text Available Abstracts: The aim of the study was to evaluate the biocompatibility and bioactivity of two new prototype implants for bone tissue regeneration made from biodegradable fibrous materials. The first is a newly developed poly(l-lactide-co-glycolide, (PLGA, and the second is a blend of PLGA with synthetic poly([R,S]-3-hydroxybutyrate (PLGA/PHB. The implant prototypes comprise PLGA or PLGA/PHB nonwoven fabrics with designed pore structures to create the best conditions for cell proliferation. The bioactivity of the proposed implants was enhanced by introducing a hydroxyapatite material and a biologically active agent, namely, growth factor IGF1, encapsulated in calcium alginate microspheres. To assess the biocompatibility and bioactivity, allergenic tests and an assessment of the local reaction of bone tissue after implantation were performed. Comparative studies of local tissue response after implantation into trochanters for a period of 12 months were performed on New Zealand rabbits. Based on the results of the in vivo evaluation of the allergenic effects and the local tissue reaction 12 months after implantation, it was concluded that the two implant prototypes, PLGA + IGF1 and PLGA/PHB + IGF1, were characterized by high biocompatibility with the soft and bone tissues of the tested animals.

  9. Advances in regeneration of dental pulp--a literature review.

    Science.gov (United States)

    Ajay Sharma, Lavanya; Sharma, Ajay; Dias, George J

    2015-05-01

    This review summarizes the biological response of dentin-pulp complexes to a variety of stimuli and responses to current treatment therapies and reviews the role of tissue engineering and its application in regenerative endodontics. An electronic search was undertaken based on keywords using Medline/PubMed, Embase, Web of Science and Ovid database resources up to March 2012 to identify appropriate articles, supplemented by a manual search using reference lists from relevant articles. Inclusion criteria were mainly based on different combinations of keywords and restricted to articles published in English language only. Biological approaches based on tissue engineering principles were found to offer the possibility of restoring natural tooth vitality, with distinct evidence that regeneration of lost dental tissues is possible. Studies to formulate an ideal restorative material with regenerative properties, however, are still under way. Further research with supporting clinical studies is required to identify the most effective and safe treatment therapy. © 2013 Wiley Publishing Asia Pty Ltd.

  10. The influence of regeneration fellings on the development of artificially regenerated beech (Fagus sylvatica L.) plantations

    Czech Academy of Sciences Publication Activity Database

    Bednář, Pavel; Černý, J.

    2014-01-01

    Roč. 62, č. 5 (2014), s. 859-867 ISSN 1211-8516 Institutional support: RVO:67179843 Keywords : European beech * regeneration felling * artificial regeneration * height * DBH – the diameter at breast-height * quality * ISF – Indirect Site Factor Subject RIV: GK - Forestry

  11. Manipulations to regenerate aspen ecosystems

    Science.gov (United States)

    Wayne D. Shepperd

    2001-01-01

    Vegetative regeneration of aspen can be initiated through manipulations that provide hormonal stimulation, proper growth environment, and sucker protection - the three elements of the aspen regeneration triangle. The correct course of action depends upon a careful evaluation of the size, vigor, age, and successional status of the existing clone. Soils and site...

  12. Bioactive Sr(II/Chitosan/Poly(ε-caprolactone Scaffolds for Craniofacial Tissue Regeneration. In Vitro and In Vivo Behavior

    Directory of Open Access Journals (Sweden)

    Itzia Rodríguez-Méndez

    2018-03-01

    Full Text Available In craniofacial tissue regeneration, the current gold standard treatment is autologous bone grafting, however, it presents some disadvantages. Although new alternatives have emerged there is still an urgent demand of biodegradable scaffolds to act as extracellular matrix in the regeneration process. A potentially useful element in bone regeneration is strontium. It is known to promote stimulation of osteoblasts while inhibiting osteoclasts resorption, leading to neoformed bone. The present paper reports the preparation and characterization of strontium (Sr containing hybrid scaffolds formed by a matrix of ionically cross-linked chitosan and microparticles of poly(ε-caprolactone (PCL. These scaffolds of relatively facile fabrication were seeded with osteoblast-like cells (MG-63 and human bone marrow mesenchymal stem cells (hBMSCs for application in craniofacial tissue regeneration. Membrane scaffolds were prepared using chitosan:PCL ratios of 1:2 and 1:1 and 5 wt % Sr salts. Characterization was performed addressing physico-chemical properties, swelling behavior, in vitro biological performance and in vivo biocompatibility. Overall, the composition, microstructure and swelling degree (≈245% of scaffolds combine with the adequate dimensional stability, lack of toxicity, osteogenic activity in MG-63 cells and hBMSCs, along with the in vivo biocompatibility in rats allow considering this system as a promising biomaterial for the treatment of craniofacial tissue regeneration.

  13. Biological regeneration of ferric ("Fe3+") solution during desulphurisation of gaseous streams: effect of nutrients and support material

    CSIR Research Space (South Africa)

    Mulopo, J

    2015-03-01

    Full Text Available + are reduced to ferrous ions Fe2+. During the industrial regeneration of Fe3+, nutrients and trace minerals usually provided in a laboratory setup are not present and this depletion of nutrients may have a negative impact on the bacteria responsible for ferrous...

  14. Regenerating America: Meeting the Challenge of Building Local Economies.

    Science.gov (United States)

    Gabel, Medard; And Others

    The document includes five papers on the implications and applications of regeneration by the Regeneration Project, based in Emmaus, Pa. The first paper, "Regenerating America: Meeting the Challenge of Building Local Economies," (Medard Gabel) defines regeneration as economic recovery and growth, fostered by diversification within a…

  15. Differential responses to isoprenoid, N-6-substituted aromatic cytokinins and indole-3-butyric acid in direct plant regeneration of Eriocephalus africanus

    Czech Academy of Sciences Publication Activity Database

    Madzikane-Mlungwana, O.; Moyo, M.; Aremu, A.O.; Plíhalová, Lucie; Doležal, Karel; Van Staden, J.; Finnie, J.F.

    2017-01-01

    Roč. 82, č. 1 (2017), s. 103-110 ISSN 0167-6903 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : in-vitro cultures * auxin transport * meta-topolin * antioxidant activity * biological-activity * arabidopsis roots * phenolic-acids * l. asteraceae * south-africa * flavonoids * Auxins * Cytokinins * Flavonoids * Plant regeneration * Phenolics Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 2.646, year: 2016

  16. Regeneration of hair cells in the mammalian vestibular system.

    Science.gov (United States)

    Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei

    2016-06-01

    Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.

  17. In Vitro and In Vivo Study of a Novel Porcine Collagen Membrane for Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Eisner Salamanca

    2016-11-01

    Full Text Available For years, in order to improve bone regeneration and prevent the need of a second stage surgery to remove non-resorbable membranes, biological absorbable membranes have gradually been developed and applied in guided tissue regeneration (GTR. The present study’s main objective was to achieve space maintenance and bone regeneration using a new freeze-dried developed porcine collagen membrane, and compare it with an already commercial collagen membrane, when both were used with a bovine xenograft in prepared alveolar ridge bone defects. Prior to surgery, the membrane’s vitality analysis showed statistically significant higher cell proliferation in the test membrane over the commercial one. In six beagle dogs, commercial bone xenograft was packed in lateral ridge bone defects prepared in the left and right side and then covered with test porcine collagen membrane or commercial collagen membrane. Alveolar height changes were measured. Histomorphometric results, in vitro and in vivo properties indicated that the new porcine collagen membrane is biocompatible, enhances bone xenograft osteoconduction, and reduces the alveolar ridge height reabsorption rate.

  18. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.

    Science.gov (United States)

    Aurora, Amit; Roe, Janet L; Corona, Benjamin T; Walters, Thomas J

    2015-10-01

    Extracellular matrix (ECM) derived scaffolds continue to be investigated for the treatment of volumetric muscle loss (VML) injuries. Clinically, ECM scaffolds have been used for lower extremity VML repair; in particular, MatriStem™, a porcine urinary bladder matrix (UBM), has shown improved functional outcomes and vascularization, but limited myogenesis. However, efficacy of the scaffold for the repair of traumatic muscle injuries has not been examined systematically. In this study, we demonstrate that the porcine UBM scaffold when used to repair a rodent gastrocnemius musculotendinous junction (MTJ) and tibialis anterior (TA) VML injury does not support muscle tissue regeneration. In the MTJ model, the scaffold was completely resorbed without tissue remodeling, suggesting that the scaffold may not be suitable for the clinical repair of muscle-tendon injuries. In the TA VML injury, the scaffold remodeled into a fibrotic tissue and showed functional improvement, but not due to muscle fiber regeneration. The inclusion of physical rehabilitation also did not improve functional response or tissue remodeling. We conclude that the porcine UBM scaffold when used to treat VML injuries may hasten the functional recovery through the mechanism of scaffold mediated functional fibrosis. Thus for appreciable muscle regeneration, repair strategies that incorporate myogenic cells, vasculogenic accelerant and a myoconductive scaffold need to be developed. Published by Elsevier Ltd.

  19. Experiments and Analysis of DPF Loading and Regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Krishnan

    2000-08-20

    Particulate filter system consists of a filter and a regeneration strategy Commercial filters are very effective at removing PM, but regeneration is a challenge. In addition to removal of PM if is important to reduce other pollutants including NO, from diesel engine exhaust Particulate filter regeneration strategy can include catalysts, fuel additives, engine control, and fuel injection Regeneration 5M?-500 C without catalyst Near 350 C with fuel additive or catalyst coated DPF

  20. A novel osteogenesis technique: The expansible guided bone regeneration

    Directory of Open Access Journals (Sweden)

    Osama Zakaria

    2012-12-01

    Full Text Available Guided bone regeneration is a unique osteogenesis technique that requires a barrier membrane under periosteum to create space for bone regeneration. However, creating sizeable spaces is clinically not commonly feasible. A titanium plate and a thin silicone membrane were surgically layered on each calvaria of eight rabbits. Then, the periphery of the silicone membrane was fixed by a plastic ring to the underlying bone using titanium micro screws. After 1 week, a 5-mm-length titanium screw was used to elevate the titanium plate, which in turn elevated the silicone membrane together with overlying soft tissue in a rate of 1 mm/day for 5 days to create a secluded space. Animals were killed at 2 months (n = 4, group 1 and 4 months (n = 4, group 2 after the elevation. Histological and microradiographical analyses demonstrated creation of an amount of de novo bone formation (68.2 ± 22 mm3 in group 1 and 70.3 ± 14 mm3 in group 2 in the sizeable created spaces (207.1 ± 31 mm3 in group 1 and 202 ± 21 mm3 in group 2 without exposure of the device. This novel osteogenesis technique, “expansible guided bone regeneration,” created a substantial in vivo incubator without applying growth factors or osteoprogenitor cells. Creating a growing space over the secluded surface allowed the development of normal biological healing process occurring on the bone surface into a regenerative process, generating bone outside the genetically determined skeletal bone. This technique is a new tissue engineering approach stimulating endogenous tissue repair without applying cells or factors exogenously.

  1. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  2. Stem cells and related factors involved in facial nerve function regeneration

    Directory of Open Access Journals (Sweden)

    Kamil H. Nelke

    2015-09-01

    Full Text Available The facial nerve (VII is one of the most important cranial nerves for head and neck surgeons. Its function is closely related to facial expressions that are individual for every person. After its injury or palsy, its functions can be either impaired or absent. Because of the presence of motor, sensory and parasympathetic fibers, the biology of its repair and function restoration depends on many factors. In order to achieve good outcome, many different therapies can be performed in order to restore as much of the nerve function as possible. When rehabilitation and physiotherapy are not sufficient, additional surgical procedures and therapies are taken into serious consideration. The final outcome of many of them is discussable, depending on nerve damage etiology. Stem cells in facial nerve repair are used, but long-term outcomes and results are still not fully known. In order to understand this therapeutic approach, clinicians and surgeons should understand the immunobiology of nerve repair and regeneration. In this review, potential stem cell usage in facial nerve regeneration procedures is discussed.

  3. Zirconia changes after grinding and regeneration firing.

    Science.gov (United States)

    Hatanaka, Gabriel R; Polli, Gabriela S; Fais, Laiza M G; Reis, José Maurício Dos S N; Pinelli, Lígia A P

    2017-07-01

    Despite improvements in computer-aided design and computer-aided manufacturing (CAD-CAM) systems, grinding during either laboratory procedures or clinical adjustments is often needed to modify the shape of 3 mol(%) yttria-tetragonal zirconia polycrystal (3Y-TZP) restorations. However, the best way to achieve adjustment is unclear. The purpose of this in vitro study was to evaluate the microstructural and crystallographic phase changes, flexural strength, and Weibull modulus of a 3Y-TZP zirconia after grinding with or without water cooling and regeneration firing. Ninety-six bar-shaped specimens were obtained and divided as follows: as-sintered, control; as-sintered with regeneration firing; grinding without water cooling; grinding and regeneration firing with water cooling; and grinding and regeneration firing. Grinding (0.3 mm) was performed with a 150-μm diamond rotary instrument in a high-speed handpiece. For regeneration firing, the specimens were annealed at 1000°C for 30 minutes. The crystalline phases were evaluated by using x-ray powder diffraction. A 4-point bending test was conducted (10 kN; 0.5 mm/min). The Weibull modulus was used to analyze strength reliability. The microstructure was analyzed by scanning electron microscopy. Data from the flexural strength test were evaluated using the Kruskal-Wallis and Dunn tests (α=.05). Tetragonal-to-monoclinic phase transformation was identified in the ground specimens; R regeneration firing groups showed only the tetragonal phase. The median flexural strength of as-sintered specimens was 642.0; 699.3 MPa for as-sintered specimens with regeneration firing; 770.1 MPa for grinding and water-cooled specimens; 727.3 MPa for specimens produced using water-cooled grinding and regeneration firing; 859.9 MPa for those produced by grinding; and 764.6 for those produced by grinding and regeneration firing; with statistically higher values for the ground groups. The regenerative firing did not affect the flexural

  4. Finding Urban Identity through Culture-led Urban Regeneration

    Directory of Open Access Journals (Sweden)

    Kyu Hong Hwang

    Full Text Available ABSTRACT: A city experiencing a cycle from growth to decline cannot maintain sustainable development without the type of urban identity that could be consolidated by culture-led urban regeneration. A plan for urban regeneration in a declining urban area should be practiced partially or on the whole according to the characteristics of the community. By transforming a low-value and deteriorated area into a highly valued district, the local community can simultaneously restore its social pride, revive the local economy, and realize an urban identity.Firstly, this paper examines urban decline in order to better understand urban regeneration and the need for multidisciplinary management, and also, by considering the necessity for and universal types of urban regeneration, investigates the characteristics of culture-led urban regeneration as a tool for realizing socio-economic revival and urban identity. In particular, this study suggests the action techniques and benchmarking points for urban regeneration by analyzing cases of culture-led urban regeneration in Korea. Three subjects were considered as case studies in this paper: 1 Hanok village in Jeonju city, which changed from a twilight zone to a tourist attraction; 2 Changdong district in Changwon city, which recovered from an area of declining and dark alleyways that had been the hub for arts and culture in the 1970s to become a new artist village; and 3 Cheongju city, which is being transformed from an idle industrial facility into a cultural space. This thesis suggests the implementation process of culture-led urban regeneration to find an urban identity through analysis of the causes of urban decline, the methods of regeneration, and the results of urban regeneration in the three aforementioned cases. In the conclusion section of this paper, the implementation process for culture-led urban regeneration is summarized as consisting of 5 phases: Phase 1, the diagnosis of decline; Phase 2

  5. Hair cell regeneration in the avian auditory epithelium.

    Science.gov (United States)

    Stone, Jennifer S; Cotanche, Douglas A

    2007-01-01

    Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing

  6. Regeneration strategies of polymers employed in ex-situ remediation of contaminated soil: Bioregeneration versus solvent extraction.

    Science.gov (United States)

    Mosca Angelucci, Domenica; Tomei, M Concetta

    2015-08-15

    In this study we evaluated the feasibility of two regeneration strategies of contaminated polymers employed for ex-situ soil remediation in a two-step process. Soil decontamination is achieved by sorption of the pollutants on the polymer beads, which are regenerated in a subsequent step. Tested soil was contaminated with a mixture of 4-chlorophenol and pentachlorophenol, and a commercial polymer, Hytrel, has been employed for extraction. Removal efficiencies of the polymer-soil extraction are in the range of 51-97% for a contact time ≤ 24 h. Two polymer regeneration strategies, solvent extraction and biological regeneration (realized in a two-phase partitioning bioreactor), were tested and compared. Performance was assessed in terms of removal rates and efficiencies and an economic analysis based on the operating costs has been performed. Results demonstrated the feasibility of both regeneration strategies, but the bioregeneration was advantageous in that provided the biodegradation of the contaminants desorbed from the polymer. Practically complete removal for 4-chlorophenol and up to 85% biodegradation efficiency for pentachlorophenol were achieved. Instead, in the solvent extraction, a relevant production (184-831 L kg(pol)(-1)) of a highly polluted stream to be treated or disposed of is observed. The cost analysis of the two strategies showed that the bioregeneration is much more convenient with operating costs of ∼12 €/kg(pol) i.e. more than one order of magnitude lower in comparison to ∼233 €/kg(pol) of the solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Regeneration of neural crest derivatives in the Xenopus tadpole tail

    Directory of Open Access Journals (Sweden)

    Slack Jonathan MW

    2007-05-01

    Full Text Available Abstract Background After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper. Results Labelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration. There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation. The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them. Conclusion On regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue.

  8. Covalent binding of bone morphogenetic protein-2 and transforming growth factor-β3 to 3D plotted scaffolds for osteochondral tissue regeneration

    NARCIS (Netherlands)

    Di Luca, Andrea; Klein Gunnewiek, Michel; Vancso, Julius; van Blitterswijk, Clemens; Benetti, Edmondo Maria; Moroni, Lorenzo

    2017-01-01

    Engineering the osteochondral tissue presents some challenges mainly relying in its function of transition from the subchondral bone to articular cartilage and the gradual variation in several biological, mechanical, and structural features. A possible solution for osteochondral regeneration might

  9. Supercritical Regeneration of an Activated Carbon Fiber Exhausted with Phenol

    Directory of Open Access Journals (Sweden)

    M. Jesus Sanchez-Montero

    2018-01-01

    Full Text Available The properties of supercritical CO2 (SCCO2 and supercritical water (SCW turn them into fluids with a great ability to remove organic adsorbates retained on solids. These properties were used herein to regenerate an activated carbon fiber (ACF saturated with a pollutant usually contained in wastewater and drinking water, phenol. Severe regeneration conditions, up to 225 bar and 400 °C, had to be employed in SCCO2 regeneration to break the strong interaction established between phenol and the ACF. Under suitable conditions (regeneration temperature, time, and pressure, and flow of SCCO2 the adsorption capacity of the exhausted ACF was completely recovered, and even slightly increased. Most of the retained phenol was removed by thermal desorption, but the extra percentage removed by extraction allowed SCCO2 regeneration to be significantly more efficient than the classical thermal regeneration methods. SCCO2 regeneration and SCW regeneration were also compared for the first time. The use of SCW slightly improved regeneration, although SCW pressure was thrice SCCO2 pressure. The pathways that controlled SCW regeneration were also investigated.

  10. Inferring regulatory networks from experimental morphological phenotypes: a computational method reverse-engineers planarian regeneration.

    Directory of Open Access Journals (Sweden)

    Daniel Lobo

    2015-06-01

    Full Text Available Transformative applications in biomedicine require the discovery of complex regulatory networks that explain the development and regeneration of anatomical structures, and reveal what external signals will trigger desired changes of large-scale pattern. Despite recent advances in bioinformatics, extracting mechanistic pathway models from experimental morphological data is a key open challenge that has resisted automation. The fundamental difficulty of manually predicting emergent behavior of even simple networks has limited the models invented by human scientists to pathway diagrams that show necessary subunit interactions but do not reveal the dynamics that are sufficient for complex, self-regulating pattern to emerge. To finally bridge the gap between high-resolution genetic data and the ability to understand and control patterning, it is critical to develop computational tools to efficiently extract regulatory pathways from the resultant experimental shape phenotypes. For example, planarian regeneration has been studied for over a century, but despite increasing insight into the pathways that control its stem cells, no constructive, mechanistic model has yet been found by human scientists that explains more than one or two key features of its remarkable ability to regenerate its correct anatomical pattern after drastic perturbations. We present a method to infer the molecular products, topology, and spatial and temporal non-linear dynamics of regulatory networks recapitulating in silico the rich dataset of morphological phenotypes resulting from genetic, surgical, and pharmacological experiments. We demonstrated our approach by inferring complete regulatory networks explaining the outcomes of the main functional regeneration experiments in the planarian literature; By analyzing all the datasets together, our system inferred the first systems-biology comprehensive dynamical model explaining patterning in planarian regeneration. This method

  11. Thermal and Structural Analysis of Micro-Fabricated Involute Regenerators

    Science.gov (United States)

    Qiu, Songgang; Augenblick, Jack E.

    2005-02-01

    Long-life, high-efficiency power generators based on free-piston Stirling engines are an energy conversion solution for future space power generation and commercial applications. As part of the efforts to further improve Stirling engine efficiency and reliability, a micro-fabricated, involute regenerator structure is proposed by a Cleveland State University-led regenerator research team. This paper reports on thermal and structural analyses of the involute regenerator to demonstrate the feasibility of the proposed regenerator. The results indicate that the involute regenerator has extremely high axial stiffness to sustain reasonable axial compression forces with negligible lateral deformation. The relatively low radial stiffness may impose some challenges to the appropriate installation of the in-volute regenerators.

  12. Method for modifying trigger level for adsorber regeneration

    Science.gov (United States)

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  13. [Inhibitory proteins of neuritic regeneration in the extracellular matrix: structure, molecular interactions and their functions. Mechanisms of extracellular balance].

    Science.gov (United States)

    Vargas, Javier; Uribe-Escamilla, Rebeca; Alfaro-Rodríguez, Alfonso

    2013-01-01

    After injury of the central nervous system (CNS) in higher vertebrates, neurons neither grow nor reconnect with their targets because their axons or dendrites cannot regenerate within the injured site. In the CNS, the signal from the environment regulating neurite regeneration is not exclusively generated by one molecular group. This signal is generated by the interaction of various types of molecules such as extracellular matrix proteins, soluble factors and surface membrane molecules; all these elements interact with one another generating the matrix's biological state: the extracellular balance. Proteins in the balanced extracellular matrix, support and promote cellular physiological states, including neuritic regeneration. We have reviewed three types of proteins of the extracellular matrix possessing an inhibitory effect and that are determinant of neuritic regeneration failure in the CNS: chondroitin sulfate proteoglycans, keratan sulfate proteoglycans and tenascin. We also review some of the mechanisms involved in the balance of extracellular proteins such as isomerization, epimerization, sulfation and glycosylation as well as the assemblage of the extracellular matrix, the interaction between the matrix and soluble factors and its proteolytic degradation. In the final section, we have presented some examples of the matrix's role in development and in tumor propagation.

  14. Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-04-01

    Biotechnology holds promise for genetic improvement of important vegetable crops. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop of the family Brassicaceae. However, various biotic and abiotic stresses cause enormous crop yield losses during commercial cultivation of broccoli. Establishment of a reliable, reproducible and efficient in vitro plant regeneration system with cell and tissue culture is a vital prerequisite for biotechnological application of crop improvement programme. An in vitro plant regeneration technique refers to culturing, cell division, cell multiplication, de-differentiation and differentiation of cells, protoplasts, tissues and organs on defined liquid/solid medium under aseptic and controlled environment. Recent progress in the field of plant tissue culture has made this area one of the most dynamic and promising in experimental biology. There are many published reports on in vitro plant regeneration studies in broccoli including direct organogenesis, indirect organogenesis and somatic embryogenesis. This review summarizes those plant regeneration studies in broccoli that could be helpful in drawing the attention of the researchers and scientists to work on it to produce healthy, biotic and abiotic stress resistant plant material and to carry out genetic transformation studies for the production of transgenic plants.

  15. Quality assurance (QA) program in BNCT. RBE of 7 NCT beams for intestinal crypt regeneration in mice

    International Nuclear Information System (INIS)

    John, Gueulette; De Coster, Blanche-Marie; Wambersie, Andre; Gregoire, Vincent; Rasmussen, Finn S.; Auterinen, Iiro; Binns, Peter; Blaumann, Herman; Matsumura, Akira; Liu Hongming

    2006-01-01

    The epithermal neutron beams presently used for Neutron Capture Therapy (NCT) differ substantially in their composition (relative contribution of the different dose components to the total dose), in their dose rate (depending on the power of the reactor) as well as in their general feature (e.g. beam delivery system). Each of these elements might alter significantly the biological effectiveness of the beams. Therefore, the Relative Biological Effectiveness (RBE) of 7 NCT beams was intercompared, for a reference biological system (crypt regeneration in mice) and under well-defined irradiation conditions. This type of experiments - which should facilitate the exchange of radiobiological/clinical information - should take part of the Quality Assurance (QA) procedure of all NCT beams. (author)

  16. Theoretical study for solar air pretreatment collector/regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Peng Donggen; Zhang Xiaosong; Yin Yonggao [School of Energy and Environment, Southeast Univ., Nanjing (China)

    2008-07-01

    A new liquid regeneration equipment - solar air pretreatment collector/regenerator for liquid desiccant cooling system is put forward in this paper, which is preferable to solution regeneration in hot and moist climate in South China. The equipment can achieve liquid regeneration in lower temperature. When the solution and the air are in ''match'' state in collector/ regenerator, a match air to salt mass ratio ASMR* is found by theoretical study in which there is the largest theoretical storage capacity SC{sub max}. After two new concepts of the effective solution proportion (EPS) and the effective storage capacity (ESC) are defined, it is found by theoretical calculation that when ESP drops from 100% to 67%, ESC raises lowly, not drops and liquid outlet concentration C{sub str} {sub sol} increases from 40% to 49% in which its increment totals to 90%. All these data explain fully that air pretreatment liquid regeneration equipment enables to improve the performance of liquid desiccant cooling system. (orig.)

  17. Protein and Molecular Characterization of a Clinically Compliant Amniotic Fluid Stem Cell-Derived Extracellular Vesicle Fraction Capable of Accelerating Muscle Regeneration Through Enhancement of Angiogenesis.

    Science.gov (United States)

    Mellows, Ben; Mitchell, Robert; Antonioli, Manuela; Kretz, Oliver; Chambers, David; Zeuner, Marie-Theres; Denecke, Bernd; Musante, Luca; Ramachandra, Durrgah L; Debacq-Chainiaux, Florence; Holthofer, Harry; Joch, Barbara; Ray, Steve; Widera, Darius; David, Anna L; Huber, Tobias B; Dengjel, Joern; De Coppi, Paolo; Patel, Ketan

    2017-09-15

    The secretome of human amniotic fluid stem cells (AFSCs) has great potential as a therapeutic agent in regenerative medicine. However, it must be produced in a clinically compliant manner before it can be used in humans. In this study, we developed a means of producing a biologically active secretome from AFSCs that is free of all exogenous molecules. We demonstrate that the full secretome is capable of promoting stem cell proliferation, migration, and protection of cells against senescence. Furthermore, it has significant anti-inflammatory properties. Most importantly, we show that it promotes tissue regeneration in a model of muscle damage. We then demonstrate that the secretome contains extracellular vesicles (EVs) that harbor much, but not all, of the biological activity of the whole secretome. Proteomic characterization of the EV and free secretome fraction shows the presence of numerous molecules specific to each fraction that could be key regulators of tissue regeneration. Intriguingly, we show that the EVs only contain miRNA and not mRNA. This suggests that tissue regeneration in the host is mediated by the action of EVs modifying existing, rather than imposing new, signaling pathways. The EVs harbor significant anti-inflammatory activity as well as promote angiogenesis, the latter may be the mechanistic explanation for their ability to promote muscle regeneration after cardiotoxin injury.

  18. Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping.

    Science.gov (United States)

    Fradique, R; Correia, T R; Miguel, S P; de Sá, K D; Figueira, D R; Mendonça, A G; Correia, I J

    2016-04-01

    The incidence of bone disorders, whether due to trauma or pathology, has been trending upward with the aging of the worldwide population. The currently available treatments for bone injuries are rather limited, involving mainly bone grafts and implants. A particularly promising approach for bone regeneration uses rapid prototyping (RP) technologies to produce 3D scaffolds with highly controlled structure and orientation, based on computer-aided design models or medical data. Herein, tricalcium phosphate (TCP)/alginate scaffolds were produced using RP and subsequently their physicochemical, mechanical and biological properties were characterized. The results showed that 60/40 of TCP and alginate formulation was able to match the compression and present a similar Young modulus to that of trabecular bone while presenting an adequate biocompatibility. Moreover, the biomineralization ability, roughness and macro and microporosity of scaffolds allowed cell anchoring and proliferation at their surface, as well as cell migration to its interior, processes that are fundamental for osteointegration and bone regeneration.

  19. Regeneration of the coalfield areas. Anglo-German perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Critcher, C; Schubert, K; Waddington, D [eds.

    1996-12-31

    Papers are presented under 6 main parts: the context; industrial regeneration through innovation, conversion and diversification; industrial regeneration through new investment by public and private sector partnership; fostering entrepreneurship through economic and psychological incentives; environmental issues - land reclamation and local regeneration; and education and training - reskilling the workforce.

  20. Regeneration of the coalfield areas. Anglo-German perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Critcher, C.; Schubert, K.; Waddington, D. [eds.

    1995-12-31

    Papers are presented under 6 main parts: the context; industrial regeneration through innovation, conversion and diversification; industrial regeneration through new investment by public and private sector partnership; fostering entrepreneurship through economic and psychological incentives; environmental issues - land reclamation and local regeneration; and education and training - reskilling the workforce.

  1. Nerve Regeneration: Understanding Biology and Its Influence on Return of Function After Nerve Transfers.

    Science.gov (United States)

    Gordon, Tessa

    2016-05-01

    Poor functional outcomes are frequent after peripheral nerve injuries despite the regenerative support of Schwann cells. Motoneurons and, to a lesser extent, sensory neurons survive the injuries but outgrowth of axons across the injury site is slow. The neuronal regenerative capacity and the support of regenerating axons by the chronically denervated Schwann cells progressively declines with time and distance of the injury from the denervated targets. Strategies, including brief low-frequency electrical stimulation that accelerates target reinnervation and functional recovery, and the insertion of cross-bridges between a donor nerve and a recipient denervated nerve stump, are effective in promoting functional outcomes after complete and incomplete injuries. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Macrophages are necessary for epimorphic regeneration in African spiny mice.

    Science.gov (United States)

    Simkin, Jennifer; Gawriluk, Thomas R; Gensel, John C; Seifert, Ashley W

    2017-05-16

    How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration ( Acomys cahirinus ) and scarring ( Mus musculus ), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during regeneration. By depleting macrophages during injury, we demonstrate a functional requirement for these cells to stimulate regeneration. Importantly, the spatial distribution of activated macrophage subtypes was unique during regeneration with pro-inflammatory macrophages failing to infiltrate the regeneration blastema. Together, our results demonstrate an essential role for inflammatory cells to regulate a regenerative response.

  3. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.

    Science.gov (United States)

    Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G

    2017-12-01

    Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.

  4. Plant growth regulator interactions in physiological processes for controlling plant regeneration and in vitro development of Tulbaghia simmleri

    Czech Academy of Sciences Publication Activity Database

    Kumari, A.; Baskaran, P.; Plačková, Lenka; Omámiková, Hana; Nisler, Jaroslav; Doležal, Karel; Van Staden, J.

    2018-01-01

    Roč. 223, APR (2018), s. 65-71 ISSN 0176-1617 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Endogenous hormone * Exogenous hormone application * In vitro regeneration * Ornamental and medicinal plant * Physiological process * Tulbaghia simmleri Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.121, year: 2016

  5. Insight into Biological Apatite: Physiochemical Properties and Preparation Approaches

    Directory of Open Access Journals (Sweden)

    Quan Liu

    2013-01-01

    Full Text Available Biological apatite is an inorganic calcium phosphate salt in apatite form and nano size with a biological derivation. It is also the main inorganic component of biological hard tissues such as bones and teeth of vertebrates. Consequently, biological apatite has a wide application in dentistry and orthopedics by using as dental fillers and bone substitutes for bone reconstruction and regeneration. Given this, it is of great significance to obtain a comprehensive understanding of its physiochemical and biological properties. However, upon the previous studies, inconsistent and inadequate data of such basic properties as the morphology, crystal size, chemical compositions, and solubility of biological apatite were reported. This may be ascribed to the differences in the source of raw materials that biological apatite are made from, as well as the effect of the preparation approaches. Hence, this paper is to provide some insights rather than a thorough review of the physiochemical properties as well as the advantages and drawbacks of various preparation methods of biological apatite.

  6. Regenerator cross arm seal assembly

    Science.gov (United States)

    Jackman, Anthony V.

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  7. Urinary proteomic profiling reveals diclofenac-induced renal injury and hepatic regeneration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Swelm, Rachel P.L. van [Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Laarakkers, Coby M.M. [Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Pertijs, Jeanne C.L.M.; Verweij, Vivienne; Masereeuw, Rosalinde [Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Russel, Frans G.M., E-mail: F.Russel@pharmtox.umcn.nl [Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands)

    2013-06-01

    Diclofenac (DF) is a widely used non-steroidal anti-inflammatory drug for the treatment of rheumatic disorders, but is often associated with liver injury. We applied urinary proteomic profiling using MALDI-TOF MS to identify biomarkers for DF-induced hepatotoxicity in mice. Female CH3/HeOUJIco mice were treated with 75 mg/kg bw DF by oral gavage and 24 h urine was collected. Proteins identified in urine of DF-treated mice included epidermal growth factor, transthyretin, kallikrein, clusterin, fatty acid binding protein 1 and urokinase, which are related to liver regeneration but also to kidney injury. Both organs showed enhanced levels of oxidative stress (TBARS, p < 0.01). Kidney injury was confirmed by histology and increased Kim1 and Il-6 mRNA expression levels (p < 0.001 and p < 0.01). Liver histology and plasma ALT levels in DF-treated mice were not different from control, but mRNA expression of Stat3 (p < 0.001) and protein expression of PCNA (p < 0.05) were increased, indicating liver regeneration. In conclusion, urinary proteome analysis revealed that DF treatment in mice induced kidney and liver injury. Within 24 h, however, the liver was able to recover by activating tissue regeneration processes. Hence, the proteins found in urine of DF-treated mice represent kidney damage rather than hepatic injury. - Highlights: • The urinary proteome shows biological processes involved in adverse drug reactions. • Urine proteins of DF-treated mice relate to kidney injury rather than liver injury. • Liver regeneration, not liver injury, is apparent 24h after oral DF administration. • Pretreatment with LPS does not enhance DF-induced liver injury in mice.

  8. Biological waste by-production costs in forest management and possibilities for their reduction

    Directory of Open Access Journals (Sweden)

    Jiří Kadlec

    2004-01-01

    Full Text Available Biological wastes in forestry were observed from view of their by-production in silvicultural and logging operations. There were identified points where biological waste was produced in this paper, waste costs ratio for silvicultural and logging operations and were made suggestions for reduction of these costs. Biological waste costs give 34.4% of total costs of silvicultural operations and 30% of total costs of logging operations. Natural regeneration and minor forest produce operations are opportunities for reduction of these costs.

  9. CINRG: Systems Biology of Glucocorticoids in Muscle Disease

    Science.gov (United States)

    2013-10-01

    Contract W81XWH-09-1-0726 SYSTEMS BIOLOGY OF GLUCOCORTICOIDS IN MUSCLE DISEASE Introduction Duchenne muscular dystrophy (DMD) is the most... muscle and enable the development of better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant...common and incurable muscular dystrophy of childhood. Muscle regeneration fails with advancing age, leading to considerable fibrosis. Corticosteroid

  10. Thermodynamic analysis of a Stirling engine including regenerator dead volume

    Energy Technology Data Exchange (ETDEWEB)

    Puech, Pascal; Tishkova, Victoria [Universite de Toulouse, UPS, CNRS, CEMES, 29 rue Jeanne Marvig, F-31055 Toulouse (France)

    2011-02-15

    This paper provides a theoretical investigation on the thermodynamic analysis of a Stirling engine with linear and sinusoidal variations of the volume. The regenerator in a Stirling engine is an internal heat exchanger allowing to reach high efficiency. We used an isothermal model to analyse the net work and the heat stored in the regenerator during a complete cycle. We show that the engine efficiency with perfect regeneration doesn't depend on the regenerator dead volume but this dead volume strongly amplifies the imperfect regeneration effect. An analytical expression to estimate the improvement due to the regenerator has been proposed including the combined effects of dead volume and imperfect regeneration. This could be used at the very preliminary stage of the engine design process. (author)

  11. Biological regeneration of carrier material for the adsorption of halogen hydrocarbons in plants for cleaning up contaminated groundwater. Final report

    International Nuclear Information System (INIS)

    Ressel, K.

    1993-06-01

    Halogen hydrocarbons and above all chlorinated hydrocarbons are widespread harmful substances in soils and in groundwater. When cleaning up groundwater contamination, the contaminants are brought into the gas phase by strip processes. From the gas phase, the contaminants can be adsorbed on different carrier materials, mostly active carbon. One was searching for ways to regenerate this adsorption material. The mixed culture from a sea sediment most suitable for the decomposition of chlorinated hydrocarbons was optimized regarding its decomposition performance and was later used on the technical scale. In the decomposition experiments on the large technical scale, the cultures were lodged on filling bodies which has a much higher amount of gaps. In this case, an optimum supply of the micro-organisms with oxygen and methane is guaranteed, which is used as co-substrate. No intermediate product was found in a gas chromatography examination. The biologically occupied stage is situated between a desorption column and the active carbon filters, and reduces the load of harmful substances which can no longer be brought into the gas phase by stripping out. This has the advantage that it can be integrated in existing plants and can be adapted to any case of contamination by lodging adapted micro-organisms on it. The basis for each application must be separately researched. (orig.) [de

  12. Thinning in artificially regenerated young beech stands

    Directory of Open Access Journals (Sweden)

    Novák Jiří

    2015-12-01

    Full Text Available Although beech stands are usually regenerated naturally, an area of up to 5,000 ha year−1 is artificially regenerated by beech in the Czech Republic annually. Unfortunately, these stands often showed insufficient stand density and, consequently, lower quality of stems. Therefore, thinning methods developed for naturally regenerated beech stands are applicable with difficulties. The paper evaluates the data from two thinning experiments established in young artificially regenerated beech stands located in different growing conditions. In both experiments, thinning resulted in the lower amount of salvage cut in following years. Positive effect of thinning on periodic stand basal area increment and on periodic diameter increment of dominant trees was found in the beech stand located at middle elevations. On the other hand, thinning effects in mountain conditions were negligible. Thinning focusing on future stand quality cannot be commonly applied in artificially regenerated beech stands because of their worse initial quality and lower density. However, these stands show good growth and response to thinning, hence their management can be focused on maximising beech wood production.

  13. Performance analysis and experimental study of heat-source tower solution regeneration

    International Nuclear Information System (INIS)

    Liang, Caihua; Wen, Xiantai; Liu, Chengxing; Zhang, Xiaosong

    2014-01-01

    Highlights: • Theoretical analysis is performed on the characteristics of heat-source tower. • Experimental study is performed on various rules of the solution regeneration rate. • The characteristics of solution regeneration vary widely with different demands. • Results are useful for optimizing the process of solution regeneration. - Abstract: By analyzing similarities and difference between the solution regeneration of a heat-source tower and desiccant solution regeneration, this paper points out that solution regeneration of a heat-source tower has the characteristics of small demands and that a regeneration rate is susceptible to outdoor ambient environments. A theoretical analysis is performed on the characteristics of a heat-source tower solution in different outdoor environments and different regeneration modes, and an experimental study is performed on variation rules of the solution regeneration rate of a cross-flow heat-source tower under different inlet parameters and operating parameters. The experimental results show that: in the operating regeneration mode, as the air volume was increased from 123 m 3 h −1 to 550 m 3 h −1 , the system heat transfer amount increased from 0.42 kW to 0.78 kW, and the regeneration rate increased from 0.03 g s −1 to 0.19 g s −1 . Increasing the solution flow may increase the system heat transfer amount; however, the regeneration rate decreased to a certain extent. In the regeneration mode when the system is idle, as the air volume was increased from 136 m 3 h −1 to 541 m 3 h −1 , the regeneration rate increased from 0.03 g s −1 to 0.1 g s −1 . The regeneration rate almost remained unchanged around 0.07 g s −1 as the solution flow is increased. In the regeneration mode with auxiliary heat when the system is idle, increasing the air volume and increasing the solution flow required more auxiliary heat, thereby improving the solution regeneration rate. As the auxiliary heat was increased from 0.33 k

  14. Silymarin Accelerates Liver Regeneration after Partial Hepatectomy

    Directory of Open Access Journals (Sweden)

    Jia-Ping Wu

    2015-01-01

    Full Text Available Partial hepatectomy (PHx is a liver regeneration physiological response induced to maintain homeostasis. Liver regeneration evolved presumably to protect wild animals from catastrophic liver loss caused by toxins or tissue injury. Silymarin (Sm ability to stimulate liver regeneration has been an object of curiosity for many years. Silymarin has been investigated for use as an antioxidant and anticarcinogen. However, its use as a supportive treatment for liver damage is elusive. In this study, we fed silymarin (Sm, 25 mg/kg to male Sprague-Dawley rats for 7 weeks. Surgical 2/3 PHx was then conducted on the rats at 6 hrs, 24 hrs, and 72 hrs. Western blot and RT-PCR were conducted to detect the cell cycle activities and silymarin effects on hepatic regeneration. The results showed that silymarin enhanced liver regeneration by accelerating the cell cycle in PHx liver. Silymarin led to increased G1 phase (cyclin D1/pRb, S phase (cyclin E/E2F, G2 phase (cyclin B, and M phase (cyclin A protein and mRNA at 6 hrs, 24 hrs, and 72 hrs PHx. HGF, TGFα, and TGFβ1 growth factor expressions were also enhanced. We suggest that silymarin plays a crucial role in accelerated liver regeneration after PHx.

  15. Centroacinar cells: At the center of pancreas regeneration.

    Science.gov (United States)

    Beer, Rebecca L; Parsons, Michael J; Rovira, Meritxell

    2016-05-01

    The process of regeneration serves to heal injury by replacing missing cells. Understanding regeneration can help us replace cell populations lost during disease, such as the insulin-producing β cells lost in diabetic patients. Centroacinar cells (CACs) are a specialized ductal pancreatic cell type that act as progenitors to replace β cells in the zebrafish. However, whether CACs contribute to β-cell regeneration in adult mammals remains controversial. Here we review the current understanding of the role of CACs as endocrine progenitors during regeneration in zebrafish and mammals. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Plant Regeneration and Genetic Transformation in Eggplant ...

    African Journals Online (AJOL)

    Dr Harmander Gill

    2014-02-05

    Feb 5, 2014 ... Review. Plant regeneration in eggplant (Solanum melongena L.): A review ... and development of somatic hybrids, efficient plant regeneration ... was first reported in eggplant from immature seed embryos .... Hormone free MS.

  17. Periodontal regeneration around natural teeth.

    Science.gov (United States)

    Garrett, S

    1996-11-01

    1. Evidence is conclusive (Table 2) that periodontal regeneration in humans is possible following the use of bone grafts, guided tissue regeneration procedures, both without and in combination with bone grafts, and root demineralization procedures. 2. Clinically guided tissue regeneration procedures have demonstrated significant positive clinical change beyond that achieved with debridement alone in treating mandibular and maxillary (buccal only) Class II furcations. Similar data exist for intraosseous defects. Evidence suggests that the use of bone grafts or GTR procedures produce equal clinical benefit in treating intraosseous defects. Further research is necessary to evaluate GTR procedures compared to, or combined with, bone grafts in treating intraosseous defects. 3. Although there are some data suggesting hopeful results in Class II furcations, the clinical advantage of procedures combining present regenerative techniques remains to be demonstrated. Additional randomized controlled trials with sufficient power are needed to demonstrate the potential usefulness of these techniques. 4. Outcomes following regenerative attempts remain somewhat variable with differences in results between studies and individual subjects. Some of this variability is likely patient related in terms of compliance with plaque control and maintenance procedures, as well as personal habits; e.g., smoking. Variations in the defects selected for study may also affect predictability of outcomes along with other factors. 5. There is evidence to suggest that present regenerative techniques lead to significant amounts of regeneration at localized sites on specific teeth. However, if complete regeneration is to become a reality, additional stimuli to enhance the regenerative process are likely needed. Perhaps this will be accomplished in the future, with combined procedures that include appropriate polypeptide growth factors or tissue factors to provide additional stimulus.

  18. Axonal Regeneration in Mammals with Spinal Cord Injury

    Science.gov (United States)

    1983-09-14

    Cajal, S. 1905. Notas preventivas sobre la degeneracion y regeneracion las vias nerviosos centrales . Trab. Lab. Invest. Biol. Univ. Madrid, 4: 295-301...S. 1914. Degeneracion y Regeneration del Sistema Nervioso , Vol. 1, 2. (Nicolas Moya, Madrid), Ramon y Cajal, S. 1928. Degeneration and Regeneration...field of central nervous system (CNS) regeneration research. These developments have revealed important aspects regarding the histology and

  19. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    Science.gov (United States)

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  20. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.

    Science.gov (United States)

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  1. The regeneration of polluted active carbon by radiation techniques

    International Nuclear Information System (INIS)

    Bao Borong; Wu Minghong; Hu Longxin; Zhou Riumin; Zhu Jinliang

    1998-01-01

    In this paper, we investigated the regeneration of polluted active carbon from monosodium glutamate factory by combination of radiation and acid-alkali chemical techniques. The experimental results show that the polluted active carbon will be highly regenerated on the conditions of process concentration 3%, process time 0.5 hour and the adjustment process concentration 2%, time 0.5 hour, radiation dose 5kGy. As regeneration times increase, the regenerated active carbon behaves with good repetition and stable property

  2. Improved modelling of a parallel plate active magnetic regenerator

    International Nuclear Information System (INIS)

    Engelbrecht, K; Nielsen, K K; Bahl, C R H; Tušek, J; Kitanovski, A; Poredoš, A

    2013-01-01

    Much of the active magnetic regenerator (AMR) modelling presented in the literature considers only the solid and fluid domains of the regenerator and ignores other physical effects that have been shown to be important, such as demagnetizing fields in the regenerator, parasitic heat losses and fluid flow maldistribution in the regenerator. This paper studies the effects of these loss mechanisms and compares theoretical results with experimental results obtained on an experimental AMR device. Three parallel plate regenerators were tested, each having different demagnetizing field characteristics and fluid flow maldistributions. It was shown that when these loss mechanisms are ignored, the model significantly over predicts experimental results. Including the loss mechanisms can significantly change the model predictions, depending on the operating conditions and construction of the regenerator. The model is compared with experimental results for a range of fluid flow rates and cooling loads. (paper)

  3. Dietary antioxidant synergy in chemical and biological systems.

    Science.gov (United States)

    Wang, Sunan; Zhu, Fan

    2017-07-24

    Antioxidant (AOX) synergies have been much reported in chemical ("test-tube" based assays focusing on pure chemicals), biological (tissue culture, animal and clinical models), and food systems during the past decade. Tentative synergies differ from each other due to the composition of AOX and the quantification methods. Regeneration mechanism responsible for synergy in chemical systems has been discussed. Solvent effects could contribute to the artifacts of synergy observed in the chemical models. Synergy in chemical models may hardly be relevant to biological systems that have been much less studied. Apparent discrepancies exist in understanding the molecular mechanisms in both chemical and biological systems. This review discusses diverse variables associated with AOX synergy and molecular scenarios for explanation. Future research to better utilize the synergy is suggested.

  4. Castration-Resistant Lgr5+ Cells Are Long-Lived Stem Cells Required for Prostatic Regeneration

    Directory of Open Access Journals (Sweden)

    Bu-er Wang

    2015-05-01

    Full Text Available The adult prostate possesses a significant regenerative capacity that is of great interest for understanding adult stem cell biology. We demonstrate that leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5 is expressed in a rare population of prostate epithelial progenitor cells, and a castration-resistant Lgr5+ population exists in regressed prostate tissue. Genetic lineage tracing revealed that Lgr5+ cells and their progeny are primarily luminal. Lgr5+ castration-resistant cells are long lived and upon regeneration, both luminal Lgr5+ cells and basal Lgr5+ cells expand. Moreover, single Lgr5+ cells can generate multilineage prostatic structures in renal transplantation assays. Additionally, Lgr5+ cell depletion revealed that the regenerative potential of the castrated adult prostate depends on Lgr5+ cells. Together, these data reveal insights into the cellular hierarchy of castration-resistant Lgr5+ cells, indicate a requirement for Lgr5+ cells during prostatic regeneration, and identify an Lgr5+ adult stem cell population in the prostate.

  5. Exploring the efficiency potential for an active magnetic regenerator

    DEFF Research Database (Denmark)

    Eriksen, Dan; Engelbrecht, Kurt; Haffenden Bahl, Christian Robert

    2016-01-01

    A novel rotary state of the art active magnetic regenerator refrigeration prototype was used in an experimental investigation with special focus on efficiency. Based on an applied cooling load, measured shaft power, and pumping power applied to the active magnetic regenerator, a maximum second-la...... and replacing the packed spheres with a theoretical parallel plate regenerator. Furthermore, significant potential efficiency improvements through optimized regenerator geometries are estimated and discussed......., especially for the pressure drop, significant improvements can be made to the machine. However, a large part of the losses may be attributed to regenerator irreversibilities. Considering these unchanged, an estimated upper limit to the second-law efficiency of 30% is given by eliminating parasitic losses...

  6. Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation

    Directory of Open Access Journals (Sweden)

    Xiaoling Lu

    2016-01-01

    Full Text Available Hair cells (HCs are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.

  7. Mechanisms of lymphatic regeneration after tissue transfer.

    Directory of Open Access Journals (Sweden)

    Alan Yan

    2011-02-01

    Full Text Available Lymphedema is the chronic swelling of an extremity that occurs commonly after lymph node resection for cancer treatment. Recent studies have demonstrated that transfer of healthy tissues can be used as a means of bypassing damaged lymphatics and ameliorating lymphedema. The purpose of these studies was to investigate the mechanisms that regulate lymphatic regeneration after tissue transfer.Nude mice (recipients underwent 2-mm tail skin excisions that were either left open or repaired with full-thickness skin grafts harvested from donor transgenic mice that expressed green fluorescent protein in all tissues or from LYVE-1 knockout mice. Lymphatic regeneration, expression of VEGF-C, macrophage infiltration, and potential for skin grafting to bypass damaged lymphatics were assessed.Skin grafts healed rapidly and restored lymphatic flow. Lymphatic regeneration occurred beginning at the peripheral edges of the graft, primarily from ingrowth of new lymphatic vessels originating from the recipient mouse. In addition, donor lymphatic vessels appeared to spontaneously re-anastomose with recipient vessels. Patterns of VEGF-C expression and macrophage infiltration were temporally and spatially associated with lymphatic regeneration. When compared to mice treated with excision only, there was a 4-fold decrease in tail volumes, 2.5-fold increase in lymphatic transport by lymphoscintigraphy, 40% decrease in dermal thickness, and 54% decrease in scar index in skin-grafted animals, indicating that tissue transfer could bypass damaged lymphatics and promote rapid lymphatic regeneration.Our studies suggest that lymphatic regeneration after tissue transfer occurs by ingrowth of lymphatic vessels and spontaneous re-connection of existing lymphatics. This process is temporally and spatially associated with VEGF-C expression and macrophage infiltration. Finally, tissue transfer can be used to bypass damaged lymphatics and promote rapid lymphatic regeneration.

  8. Using Ambystoma mexicanum (Mexican axolotl) embryos, chemical genetics, and microarray analysis to identify signaling pathways associated with tissue regeneration.

    Science.gov (United States)

    Ponomareva, Larissa V; Athippozhy, Antony; Thorson, Jon S; Voss, S Randal

    2015-12-01

    Amphibian vertebrates are important models in regenerative biology because they present exceptional regenerative capabilities throughout life. However, it takes considerable effort to rear amphibians to juvenile and adult stages for regeneration studies, and the relatively large sizes that frogs and salamanders achieve during development make them difficult to use in chemical screens. Here, we introduce a new tail regeneration model using late stage Mexican axolotl embryos. We show that axolotl embryos completely regenerate amputated tails in 7days before they exhaust their yolk supply and begin to feed. Further, we show that axolotl embryos can be efficiently reared in microtiter plates to achieve moderate throughput screening of soluble chemicals to investigate toxicity and identify molecules that alter regenerative outcome. As proof of principle, we identified integration 1 / wingless (Wnt), transforming growth factor beta (Tgf-β), and fibroblast growth factor (Fgf) pathway antagonists that completely block tail regeneration and additional chemicals that significantly affected tail outgrowth. Furthermore, we used microarray analysis to show that inhibition of Wnt signaling broadly affects transcription of genes associated with Wnt, Fgf, Tgf-β, epidermal growth factor (Egf), Notch, nerve growth factor (Ngf), homeotic gene (Hox), rat sarcoma/mitogen-activated protein kinase (Ras/Mapk), myelocytomatosis viral oncogene (Myc), tumor protein 53 (p53), and retinoic acid (RA) pathways. Punctuated changes in the expression of genes known to regulate vertebrate development were observed; this suggests the tail regeneration transcriptional program is hierarchically structured and temporally ordered. Our study establishes the axolotl as a chemical screening model to investigate signaling pathways associated with tissue regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    Science.gov (United States)

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  10. Modelling and comparison studies of packed screen regenerators for active magnetocaloric refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, K. K.

    2011-01-01

    In active magnetic regeneration (AMR) systems, not only the magnetocaloric properties of materials, but also the regenerator geometry plays an important role in the system performance. Packed sphere regenerators are often employed in existing prototypes, however, the characteristics such as relat...... is improved and applied to simulate the regenerators. The performance of the new regenerators is studied and compared with that of the packed sphere regenerators. Possible fabrication methods of the packed screen regenerators are also discussed....

  11. Modelling and comparison studies of packed screen regenerators for active magnetocaloric refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein

    2014-01-01

    In active magnetic regeneration (AMR) systems, not only the magnetocaloric properties of materials, but also the regenerator geometry plays an important role in the system performance. Packed sphere regenerators are often employed in existing prototypes, however, the characteristics such as relat...... is improved and applied to simulate the regenerators. The performance of the new regenerators is studied and compared with that of the packed sphere regenerators. Possible fabrication methods of the packed screen regenerators are also discussed....

  12. Microwave regeneration of molecular sieves

    International Nuclear Information System (INIS)

    Singh, V.P.

    1984-05-01

    Molecular sieve driers have been included in the design of tritium handling systems for fusion reactors. In these systems there is a need to maintain extremely low exit dew points from the driers as well as a capability to rapidly reduce tritium concentrations following an accident. The required capacity of the driers is very high. The conventional method of regenerating these sieves after a water adsorption cycle is with hot air. However, because water is rapidly heated by microwave energy, this technology may be suitable for decreasing the bed regeneration time and hence may allow reduced capital and operating costs associated with a smaller bed. The present study was conducted to obtain preliminary information on the technical feasibility of regenerating molecular sieves with microwave energy. The study concentrated on Type 4A molecular sieve with a few tests on Type 13X sieve and also a silica gel adsorbent

  13. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole.

    Science.gov (United States)

    Taniguchi, Yuka; Watanabe, Kenji; Mochii, Makoto

    2014-06-18

    Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans.

  14. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation

    Science.gov (United States)

    Choi, Jae Won; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Yang, Sang Sik; Kim, Yeon Soo; Lee, Yun Sang; Lee, Yuijina; Kim, Chul-Ho

    2016-01-01

    Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials. Treatment with NTP in the defected muscle of a Sprague Dawley (SD) rat increased the number of proliferating muscle cells 7 days after plasma treatment (dapt) and rapidly induced formation of muscle tissue and muscle cell differentiation at 14 dapt. In addition, in vitro experiments also showed that NTP could induce muscle cell proliferation and differentiation of human muscle cells. Taken together, our results demonstrated that NTP promotes restoration of muscle defects through control of cell proliferation and differentiation without biological or structural supporters, suggesting that NTP has the potential for use in muscle tissue engineering and regenerative therapies. PMID:27349181

  15. Polymorphic regenerated silk fibers assembled through bioinspired spinning.

    Science.gov (United States)

    Ling, Shengjie; Qin, Zhao; Li, Chunmei; Huang, Wenwen; Kaplan, David L; Buehler, Markus J

    2017-11-09

    A variety of artificial spinning methods have been applied to produce regenerated silk fibers; however, how to spin regenerated silk fibers that retain the advantages of natural silks in terms of structural hierarchy and mechanical properties remains challenging. Here, we show a bioinspired approach to spin regenerated silk fibers. First, we develop a nematic silk microfibril solution, highly viscous and stable, by partially dissolving silk fibers into microfibrils. This solution maintains the hierarchical structures in natural silks and serves as spinning dope. It is then spun into regenerated silk fibers by direct extrusion in the air, offering a useful route to generate polymorphic and hierarchical regenerated silk fibers with physical properties beyond natural fiber construction. The materials maintain the structural hierarchy and mechanical properties of natural silks, including a modulus of 11 ± 4 GPa, even higher than natural spider silk. It can further be functionalized with a conductive silk/carbon nanotube coating, responsive to changes in humidity and temperature.

  16. Recloning of regenerated plantlets from elite oil palm ( Elaeis ...

    African Journals Online (AJOL)

    Plant regeneration in oil palm cv. Tenera via somatic embryogenesis was conducted using regenerated plantlets as an explant source. Explants from different positions – apex, middle and basal segments of regenerated plantlets – were cultured in N6 medium supplemented with 100, 120 and 140 mg/L 2 ...

  17. The effect of tapering on a magnetocaloric regenerator bed

    DEFF Research Database (Denmark)

    Dallolio, Stefano; Lei, Tian; Engelbrecht, Kurt

    2017-01-01

    . Therefore, this paper investigates the effect of the tapering of the regenerators, which exhibit better air-gap utilization. Several simulations using a 1D AMR model were run to study the performance of the tapered regenerator, and the results were compared to the case of the straight regenerator bed...

  18. My Regeneration:

    DEFF Research Database (Denmark)

    Carter, Dale

    2017-01-01

    and cultural referents shows that it offers an index to the album. Using its frontier setting and a variety of sacred and secular myths, symbols and icons, ‘Heroes and Villains,’ like Smile as a whole, offers historically-informed visions of national decline, crisis and regeneration that are at once critical...

  19. The role of neurotrophic factors in nerve regeneration.

    Science.gov (United States)

    Gordon, Tessa

    2009-02-01

    This review considers the 2 sources of neurotrophic factors in the peripheral nervous system (PNS), the neurons and the nonneuronal cells in the denervated distal nerve stumps, and their role in axon regeneration. Morphological assessment of regenerative success in response to administration of exogenous growth factors after nerve injury and repair has indicated a role of the endogenous neurotrophic factors from Schwann cells in the distal nerve stump. However, the increased number of axons may reflect more neurons regenerating their axons and/or increased numbers of axon sprouts from the same number of neurons. Using fluorescent dyes to count neurons that regenerated their axons across a suture site and into distal nerve stumps, brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) were found not to increase the number of neurons that regenerated their axons after immediate nerve repair. Nevertheless, the factors did reverse the deleterious effect of delayed nerve repair, indicating that the axons that regenerate into the distal nerve stump normally have access to sufficient levels of endogenous neurotrophic factors to sustain their regeneration, while neurons that do not have access to these factors require exogenous factors to sustain axon regeneration. Neurons upregulate neurotrophic factors after axotomy. The upregulation is normally slow, beginning after 7 days and occurring in association with a protracted period of axonal regeneration in which axons grow out from the proximal nerve stump across a suture site over a period of 1 month in rodents. This staggered axon regeneration across the suture site is accelerated by a 1-hour period of low-frequency electrical stimulation that simultaneously accelerates the expression of BDNF and its trkB receptor in the neurons. Elevation of the level of BDNF after 2 days to > 3 times that found in unstimulated neurons was accompanied by elevation of the level of cAMP and followed by

  20. About tendon tissue regeneration in experimental radiation disease

    Energy Technology Data Exchange (ETDEWEB)

    Popov, D; Trichkova, P

    1976-01-01

    Under the conditions of experimental acute radiation disease the authors study the tendon tissue regeneration after suture of the lateral part of the gastrocnemius muscle tendon. Tendon auto and alloplasty were applied. In four postoperative periods the histological features are described in details as well as the characteristic phenomena observed during the regeneration influenced to a considerable degree by the irradiation. Round cell infiltration, large necrotic zones, erythrocyte infiltrations as well as predominance of non-specific tendon regeneration long after the surgery characterize the recovery period of the traumatically damaged tendon, nevertheless that at the end there is real tendon regeneration even though in a longer period in comparison with the controls (non-irradiated animals).

  1. [Age factor in eye regeneration of the gastropod mollusk Achatina fulica].

    Science.gov (United States)

    Tartakovskaia, O S; Borisenko, S L; Zhukov, V V

    2003-01-01

    The dependence of the ability to regenerate the eye on the age of experimental animals was studied in the snail Achatina fulica. The degree of regeneration was estimated by light-microscopic and electrophysiological methods and by analyzing the motor response to visual stimuli. In older age groups, the number of regenerated eye-bearing tentacles decreased, whereas the period of regeneration increased. The regenerated eyes of the snails operated at the age of more than two months remained smaller than normal eyes even after six months. Regeneration of the distal part of the optic nerve was observed, and the regenerated eyes recovered the ability to respond to stimulation by light. In the electroretinogram, the responses of the regenerated eye, compared to the control, were characterised by a lower amplitude and longer repolarization and refractory periods. Manifestations of the motor response to visual stimuli in the young snails with regenerating eyes could be regarded as evidence for the recovery of connection between the organ of sight and the central ganglia.

  2. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections

    Directory of Open Access Journals (Sweden)

    Amadio Stefano

    2008-04-01

    Full Text Available Abstract Background Although many nerve prostheses have been proposed in recent years, in the case of consistent loss of nervous tissue peripheral nerve injury is still a traumatic pathology that may impair patient's movements by interrupting his motor-sensory pathways. In the last few decades tissue engineering has opened the door to new approaches;: however most of them make use of rigid channel guides that may cause cell loss due to the lack of physiological local stresses exerted over the nervous tissue during patient's movement. Electrospinning technique makes it possible to spin microfiber and nanofiber flexible tubular scaffolds composed of a number of natural and synthetic components, showing high porosity and remarkable surface/volume ratio. Results In this study we used electrospun tubes made of biodegradable polymers (a blend of PLGA/PCL to regenerate a 10-mm nerve gap in a rat sciatic nerve in vivo. Experimental groups comprise lesioned animals (control group and lesioned animals subjected to guide conduits implantated at the severed nerve stumps, where the tubular scaffolds are filled with saline solution. Four months after surgery, sciatic nerves failed to reconnect the two stumps of transected nerves in the control animal group. In most of the treated animals the electrospun tubes induced nervous regeneration and functional reconnection of the two severed sciatic nerve tracts. Myelination and collagen IV deposition have been detected in concurrence with regenerated fibers. No significant inflammatory response has been found. Neural tracers revealed the re-establishment of functional neuronal connections and evoked potential results showed the reinnervation of the target muscles in the majority of the treated animals. Conclusion Corroborating previous works, this study indicates that electrospun tubes, with no additional biological coating or drug loading treatment, are promising scaffolds for functional nervous regeneration. They

  3. Development of a Novel Degradation-Controlled Magnesium-Based Regeneration Membrane for Future Guided Bone Regeneration (GBR Therapy

    Directory of Open Access Journals (Sweden)

    Da-Jun Lin

    2017-11-01

    Full Text Available This study aimed to develop and evaluate the ECO-friendly Mg-5Zn-0.5Zr (ECO505 alloy for application in dental-guided bone regeneration (GBR. The microstructure and surface properties of biomedical Mg materials greatly influence anti-corrosion performance and biocompatibility. Accordingly, for the purpose of microstructure and surface modification, heat treatments and surface coatings were chosen to provide varied functional characteristics. We developed and integrated both an optimized solution heat-treatment condition and surface fluoride coating technique to fabricate a Mg-based regeneration membrane. The heat-treated Mg regeneration membrane (ARRm-H380 and duplex-treated regeneration membrane group (ARRm-H380-F24 h were thoroughly investigated to characterize the mechanical properties, as well as the in vitro corrosion and in vivo degradation behaviors. Significant enhancement in ductility and corrosion resistance for the ARRm-H380 was obtained through the optimized solid-solution heat treatment; meanwhile, the corrosion resistance of ARRm-H380-F24 h showed further improvement, resulting in superior substrate integrity. In addition, the ARRm-H380 provided the proper amount of Mg-ion concentration to accelerate bone growth in the early stage (more than 80% new bone formation. From a specific biomedical application point of view, these research results point out a successful manufacturing route and suggest that the heat treatment and duplex treatment could be employed to offer custom functional regeneration membranes for different clinical patients.

  4. Sensory hair cell death and regeneration in fishes

    Directory of Open Access Journals (Sweden)

    Jerry D. Monroe

    2015-04-01

    Full Text Available Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation versus direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies.

  5. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....

  6. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    Science.gov (United States)

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  7. Performance investigation on the ultrasonic atomization liquid desiccant regeneration system

    International Nuclear Information System (INIS)

    Yang, Zili; Zhang, Kaisheng; Hwang, Yunho; Lian, Zhiwei

    2016-01-01

    Highlights: • We applied ultrasonic atomization technology to boost liquid desiccant regeneration. • We established a novel UARS and made a thorough study on its performance. • We developed a performance prediction model for UARS and validated its accuracy. • The necessary regeneration temperature dropped significantly (4.4 °C) in UARS. • Energy consumption for regenerating desiccant was reduced greatly (60.4%) in UARS. - Abstract: Liquid desiccant dehumidification systems have accumulated considerable research interest in recent years for their great energy saving potential in buildings. Within the system, the regenerator recovering liquid desiccant plays a major role in its performance. When the ultrasonic atomization technology is applied to atomize the desiccant solution into numerous tiny droplets with diameters around 50 μm, the regeneration process could be greatly enhanced. To validate this approach, a novel ultrasonic atomization liquid desiccant regeneration system (UARS) was studied in this work. An Ideal Regeneration Model (IRM) was developed to predict the regeneration performance of the UARS. Additionally, thorough experiments were carried out to validate the model under different operating conditions of the desiccant solution and air stream. The model predicted values and the experimental results coincided, with the average deviation less than 7.9%. The performance of UARS was compared with other regeneration systems from the open literature, while a case study was conducted for the power consumption and energy saving potential of UARS. It was found that the ultrasonic atomization technology enabled utilization of lower-grade energy for desiccant regeneration with the regeneration temperature lowered as much as 4.4 °C. In addition, a considerable energy saving potential of up to 23.4% could be achieved by the UARS for regenerating per unit mass flow of desiccant solution, while the power consumption of the ultrasonic atomization system

  8. The head-regeneration transcriptome of the planarian Schmidtea mediterranea

    Science.gov (United States)

    2011-01-01

    Background Planarian flatworms can regenerate their head, including a functional brain, within less than a week. Despite the enormous potential of these animals for medical research and regenerative medicine, the mechanisms of regeneration and the molecules involved remain largely unknown. Results To identify genes that are differentially expressed during early stages of planarian head regeneration, we generated a de novo transcriptome assembly from more than 300 million paired-end reads from planarian fragments regenerating the head at 16 different time points. The assembly yielded 26,018 putative transcripts, including very long transcripts spanning multiple genomic supercontigs, and thousands of isoforms. Using short-read data from two platforms, we analyzed dynamic gene regulation during the first three days of head regeneration. We identified at least five different temporal synexpression classes, including genes specifically induced within a few hours after injury. Furthermore, we characterized the role of a conserved Runx transcription factor, smed-runt-like1. RNA interference (RNAi) knockdown and immunofluorescence analysis of the regenerating visual system indicated that smed-runt-like1 encodes a transcriptional regulator of eye morphology and photoreceptor patterning. Conclusions Transcriptome sequencing of short reads allowed for the simultaneous de novo assembly and differential expression analysis of transcripts, demonstrating highly dynamic regulation during head regeneration in planarians. PMID:21846378

  9. Multilayer Ceramic Regenerator Materials for 4 K Cooling

    International Nuclear Information System (INIS)

    Numazawa, T.; Kamiya, K.; Satoh, T.; Nozawa, H.; Yanagitani, T.

    2006-01-01

    The ceramics oxide magnetic materials have shown excellent properties for use as regenerator materials used in 4 K crycoolers. Currently four kinds of oxide magnetic materials GdVO4, GAP=GdAlO3, GOS=Gd2O2S and Tb2O2S are available for applications for regenerators or thermal anchors from 2 K to 8 K. This paper focused on controlling the heat capacity of the (GdxTb1-x)2O2S system to cover the refrigeration temperatures between 6 K and 8 K. A concept of multilayer regenerator material consisting of multicomponent magnetic materials has been proposed and investigated. Two-layer ceramic material including two kinds of magnetic materials (Gd0.1Tb0.9)2O2S+Tb2O2S was successfully fabricated in the form of regenerator particles with an average diameter of 0.25 mm. Measured heat capacity data showed that it had twin peaks relating to those of (Gd0.1Tb0.9)2O2S and Tb2O2S, and the entire curve became broader and wider. The mechanical properties of strength and hardness of the two-layer ceramic material were the same as other ceramic regenerator materials like GOS. Thus, it is concluded that the multilayer ceramic material is very useful to control the heat capacity of the regenerator particles. The cooling tests using the two-layer ceramic material with HoCu2 and GOS have been done to investigate the 2nd stage regenerator configuration

  10. Plant regeneration in wheat mature embryo culture

    African Journals Online (AJOL)

    Kamil Haliloğlu

    2011-11-09

    Nov 9, 2011 ... Success in genetic engineering of cereals depends on the callus formation and efficient plant regeneration system. Callus formation and plant regeneration of wheat mature embryos ... compiled by modification of methods previously mentioned in ..... of more and readily available nutrition than artificial cul-.

  11. Heat exchanger versus regenerator: A fundamental comparison

    NARCIS (Netherlands)

    Will, M.E.; Waele, de A.T.A.M.

    2005-01-01

    Irreversible processes in regenerators and heat exchangers limit the performance of cryocoolers. In this paper we compare the performance of cryocoolers, operating with regenerators and heat exchangers from a fundamental point of view. The losses in the two systems are calculated from the entropy

  12. Nutrients, Recycling, and Biological Populations in Upwelling Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Whitledge, T. E.

    1980-01-01

    Nutrient recycling has been studied in the upwelling areas of Baja California, Northwest Africa, and Peru. Regeneration by biological populations in these areas contributes significant quantities of recycled nitrogen which is utilized in productivity processes. Each area has a different combination of organisms which leads to differences in the relative contributions of zooplankton, nekton, or benthos to the nutrient cycles. Comparisons of ammonium regeneration rates of zooplankton and nekton-micronekton populations in the three upwelling areas show that zooplankton recycle relatively less nitrogen in the Baja California and Peru systems than nekton. In the Northwest Africa upwelling region, however, zooplankton, fish, and benthic inputs are all substantial. In recent years the Peruvian upwelling system has been altered with the decline of the anchoveta population and an increase in the importance of zooplankton in nutrient recycling. The distribution of recycled nitrogen (ammonium and urea) in transects across the shelf at 10°S and 15°S indicates that regeneration is relatively more important at 10°S in the region of the wide shelf. In both areas the distribution of ammonium and urea are not entirely coincident thereby indicating differences in their production and/or utilization.

  13. Aberrant regeneration of the third cranial nerve.

    Science.gov (United States)

    Shrestha, U D; Adhikari, S

    2012-01-01

    Aberrant regeneration of the third cranial nerve is most commonly due to its damage by trauma. A ten-month old child presented with the history of a fall from a four-storey building. She developed traumatic third nerve palsy and eventually the clinical features of aberrant regeneration of the third cranial nerve. The adduction of the eye improved over time. She was advised for patching for the strabismic amblyopia as well. Traumatic third nerve palsy may result in aberrant regeneration of the third cranial nerve. In younger patients, motility of the eye in different gazes may improve over time. © NEPjOPH.

  14. Public private co-operation in urban regeneration investment planning

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole; Larsen, Jacob Norvig

    development. However, we believe that municipalities can become much better at attracting private investors and developers, partly because there is knowledge about the motives and backgrounds for the developers' engagement in the urban regeneration. Based on data from a number of case studies and interviews......Increasing renovation costs and ever more limited public funding for urban regeneration in combination with a political desire to stimulate the development of a sense of ownership in urban regeneration neighbourhoods has brought about a growing interest in attracting private sector funding...... with developers we argue that developers own networks are more likely to lead them to the urban regeneration areas, than knowledge of the urban regeneration itself. Also, the study reveals a mutual knowledge-gap between the municipal planners and developers; planners have limited knowledge of developers...

  15. Macrophages are required to coordinate mouse digit tip regeneration.

    Science.gov (United States)

    Simkin, Jennifer; Sammarco, Mimi C; Marrero, Luis; Dawson, Lindsay A; Yan, Mingquan; Tucker, Catherine; Cammack, Alex; Muneoka, Ken

    2017-11-01

    In mammals, macrophages are known to play a major role in tissue regeneration. They contribute to inflammation, histolysis, re-epithelialization, revascularization and cell proliferation. Macrophages have been shown to be essential for regeneration in salamanders and fish, but their role has not been elucidated in mammalian epimorphic regeneration. Here, using the regenerating mouse digit tip as a mammalian model, we demonstrate that macrophages are essential for the regeneration process. Using cell-depletion strategies, we show that regeneration is completely inhibited; bone histolysis does not occur, wound re-epithelialization is inhibited and the blastema does not form. Although rescue of epidermal wound closure in the absence of macrophages promotes blastema accumulation, it does not rescue cell differentiation, indicating that macrophages play a key role in the redifferentiation of the blastema. We provide additional evidence that although bone degradation is a component, it is not essential to the overall regenerative process. These findings show that macrophages play an essential role in coordinating the epimorphic regenerative response in mammals. © 2017. Published by The Company of Biologists Ltd.

  16. Adaptation of regenerants of Vaccinium corymbosum L. and ...

    African Journals Online (AJOL)

    The benchmark analysis of the structured-functional particularities of regeneration ... the structured-functional organization regeneration (a mobile system) can be ... Key words: Aseptic culture, greenhouse, open ground, anatomical structure, ...

  17. Inhibition of H3K27me3 Histone Demethylase Activity Prevents the Proliferative Regeneration of Zebrafish Lateral Line Neuromasts

    Science.gov (United States)

    Bao, Beier; He, Yingzi; Tang, Dongmei; Li, Wenyan; Li, Huawei

    2017-01-01

    The H3K27 demethylases are involved in a variety of biological processes, including cell differentiation, proliferation, and cell death by regulating transcriptional activity. However, the function of H3K27 demethylation in the field of hearing research is poorly understood. Here, we investigated the role of H3K27me3 histone demethylase activity in hair cell regeneration using an in vivo animal model. Our data showed that pharmacologic inhibition of H3K27 demethylase activity with the specific small-molecule inhibitor GSK-J4 decreased the number of regenerated hair cells in response to neomycin damage. Furthermore, inhibition of H3K27me3 histone demethylase activity dramatically suppressed cell proliferation and activated caspase-3 levels in the regenerating neuromasts of the zebrafish lateral line. GSK-J4 administration also increased the expression of p21 and p27 in neuromast cells and inhibited the ERK signaling pathway. Collectively, our findings indicate that H3K27me3 demethylation is a key epigenetic regulator in the process of hair cell regeneration in zebrafish and suggest that H3K27me3 histone demethylase activity might be a novel therapeutic target for the treatment of hearing loss. PMID:28348517

  18. Regeneration characteristics of desiccant rotor with microwave and hot-air heating

    International Nuclear Information System (INIS)

    Kubota, Mitsuhiro; Hanada, Takuya; Yabe, Satoshi; Matsuda, Hitoki

    2013-01-01

    Microwave heating, because of its advantages of direct and rapid heating of materials, has the potential to be employed as a novel regeneration method of desiccant rotors in humidity conditioners. We proposed a combined regeneration process, which combines microwave heating and conventional hot-air heating. The system is expected to achieve high heating rate during an initial regeneration period by assisting water desorption using the additional energy of the microwave. In this study, the regeneration characteristics of a desiccant rotor were experimentally investigated under conditions of microwave heating, hot-air heating, and combined heating at various microwave powers and hot-air temperatures. The effectiveness of the combined regeneration was evaluated in terms of the regeneration ratio, the initial regeneration rate, the temperature distribution in the rotor, and finally in terms of the energy consumption. It was demonstrated that combined heating was effective at leveling non-uniform temperature distribution in the rotor. Combined heating achieved higher ratios and initial rates in regeneration compared to just microwave and hot-air heating. This result was obviously attributed to the additional input of microwave energy, resulting that average rotor temperature increased by microwave absorption of rotor. Moreover, it was also effective for enhancement of regeneration to level the temperature distribution in the rotor by combination of two heating methods with different heating mechanisms. Both the initial regeneration rate and the equilibrium regeneration ratio for combined heating were found to increase as the microwave power increased. A linear relationship was observed with respect to microwave power. From the viewpoint of energy consumption, it may be possible to apply combined and microwave heating to humidity control systems that switch between adsorption and regeneration in short cycle times, if the conversion and absorption efficiencies of the

  19. Adventitious shoots induction and plant regeneration from ...

    African Journals Online (AJOL)

    A highly efficient regeneration system is a prerequisite step for successful genetic transformation of watermelon cultivars (Citrullus lanatus L.). The objective of this study was to establish efficient in vitro plant regeneration for three watermelon cultivars. To achieve optimal conditions for adventitious shoot induction, the ...

  20. Regenerative patterning in Swarm Robots: mutual benefits of research in robotics and stem cell biology

    Science.gov (United States)

    RUBENSTEIN, MICHAEL; SAI, YING; CHUONG, CHENG-MING; SHEN, WEI-MIN

    2010-01-01

    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. “Self” here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering. PMID:19557691

  1. Regenerative patterning in Swarm Robots: mutual benefits of research in robotics and stem cell biology.

    Science.gov (United States)

    Rubenstein, Michael; Sai, Ying; Chuong, Cheng-Ming; Shen, Wei-Min

    2009-01-01

    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. Self here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering.

  2. Orthogonal muscle fibres have different instructive roles in planarian regeneration.

    Science.gov (United States)

    Scimone, M Lucila; Cote, Lauren E; Reddien, Peter W

    2017-11-30

    The ability to regenerate missing body parts exists throughout the animal kingdom. Positional information is crucial for regeneration, but how it is harboured and used by differentiated tissues is poorly understood. In planarians, positional information has been identified from study of phenotypes caused by RNA interference in which the wrong tissues are regenerated. For example, inhibition of the Wnt signalling pathway leads to regeneration of heads in place of tails. Characterization of these phenotypes has led to the identification of position control genes (PCGs)-genes that are expressed in a constitutive and regional manner and are associated with patterning. Most PCGs are expressed within planarian muscle; however, how muscle is specified and how different muscle subsets affect regeneration is unknown. Here we show that different muscle fibres have distinct regulatory roles during regeneration in the planarian Schmidtea mediterranea. myoD is required for formation of a specific muscle cell subset: the longitudinal fibres, oriented along the anterior-posterior axis. Loss of longitudinal fibres led to complete regeneration failure because of defects in regeneration initiation. A different transcription factor-encoding gene, nkx1-1, is required for the formation of circular fibres, oriented along the medial-lateral axis. Loss of circular fibres led to a bifurcated anterior-posterior axis with fused heads forming in single anterior blastemas. Whereas muscle is often viewed as a strictly contractile tissue, these findings reveal that different muscle types have distinct and specific regulatory roles in wound signalling and patterning to enable regeneration.

  3. Straight-Pore Microfilter with Efficient Regeneration

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.; McCallum. Thomas J.; Schmitt, Edwin W.

    2010-01-01

    A novel, high-efficiency gas particulate filter has precise particle size screening, low pressure drop, and a simple and fast regeneration process. The regeneration process, which requires minimal material and energy consumption, can be completely automated, and the filtration performance can be restored within a very short period of time. This filter is of a novel material composite that contains the support structure and a novel coating.

  4. Chronological protein synthesis in regenerating rat liver.

    Science.gov (United States)

    He, Jinjun; Hao, Shuai; Zhang, Hao; Guo, Fuzheng; Huang, Lingyun; Xiao, Xueyuan; He, Dacheng

    2015-07-01

    Liver regeneration has been studied for decades; however, its regulation remains unclear. In this study, we report a dynamic tracing of protein synthesis in rat regenerating liver with a new proteomic technique, (35) S in vivo labeling analysis for dynamic proteomics (SiLAD). Conventional proteomic techniques typically measure protein alteration in accumulated amounts. The SiLAD technique specifically detects protein synthesis velocity instead of accumulated amounts of protein through (35) S pulse labeling of newly synthesized proteins, providing a direct way for analyzing protein synthesis variations. Consequently, protein synthesis within short as 30 min was visualized and protein regulations in the first 8 h of regenerating liver were dynamically traced. Further, the 3.5-5 h post partial hepatectomy (PHx) was shown to be an important regulatory turning point by acute regulation of many proteins in the initiation of liver regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Müller stem cell dependent retinal regeneration.

    Science.gov (United States)

    Chohan, Annu; Singh, Usha; Kumar, Atul; Kaur, Jasbir

    2017-01-01

    Müller Stem cells to treat ocular diseases has triggered enthusiasm across all medical and scientific communities. Recent development in the field of stem cells has widened the prospects of applying cell based therapies to regenerate ocular tissues that have been irreversibly damaged by disease or injury. Ocular tissues such as the lens and the retina are now known to possess cell having remarkable regenerative abilities. Recent studies have shown that the Müller glia, a cell found in all vertebrate retinas, is the primary source of new neurons, and therefore are considered as the cellular basis for retinal regeneration in mammalian retinas. Here, we review the current status of retinal regeneration of the human eye by Müller stem cells. This review elucidates the current status of retinal regeneration by Müller stem cells, along with major retinal degenerative diseases where these stem cells play regenerative role in retinal repair and replacement. Copyright © 2016. Published by Elsevier B.V.

  6. Regeneration of used activated carbon by electron beam irradiation

    International Nuclear Information System (INIS)

    Arai, H.; Hosono, M.; Zhu, G.; Miyata, T.

    1992-01-01

    The adsorbing power of granular activated carbons which adsorbed sodium laurylsulfate were most effectively recovered by irradiation of high energy electron beams in nitrogen stream, and the carbon was hardly lost by irradiation. The regeneration was induced mainly by microscopic heating of adsorption sites. Regeneration was also confirmed by adsorption endotherms. Regeneration cost was tentatively evaluated. (author)

  7. Regeneration of nitrogen by zooplankton and fish in the Northwest Africa and Peru upwelling ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Whitledge, T E

    1976-01-01

    The availability of nutrients and light are the dominant controlling factors of the levels of primary production in the ocean. In the lower latitudes where most coastal upwelling areas are located, the amount of light is seldom below the critical level to inhibit productivity so nutrients are often the limiting factor in phytoplankton growth. Nutrients utilized in primary productivity are derived from two sources in upwelling areas. Nutrients are introduced to the euphotic zone from depth by the physical processes that create upwelling and nutrients are recycled by biological organisms that inhabit the area. Nitrate introduced into the euphotic zone by upwelling supports new productivity while ammonium and other excretory products regenerated by zooplankton and nekton supports regenerated productivity. Results are reported from studies off the coast of Northwest Africa and Peru using /sup 15/N as a tracer that showed that recycled ammonium may fulfill nearly half of the daily nitrogen requirement of phytoplankton and upwelled nitrate may provide the other half.

  8. Traffic engineering and regenerator placement in GMPLS networks with restoration

    Science.gov (United States)

    Yetginer, Emre; Karasan, Ezhan

    2002-07-01

    In this paper we study regenerator placement and traffic engineering of restorable paths in Generalized Multipro-tocol Label Switching (GMPLS) networks. Regenerators are necessary in optical networks due to transmission impairments. We study a network architecture where there are regenerators at selected nodes and we propose two heuristic algorithms for the regenerator placement problem. Performances of these algorithms in terms of required number of regenerators and computational complexity are evaluated. In this network architecture with sparse regeneration, offline computation of working and restoration paths is studied with bandwidth reservation and path rerouting as the restoration scheme. We study two approaches for selecting working and restoration paths from a set of candidate paths and formulate each method as an Integer Linear Programming (ILP) prob-lem. Traffic uncertainty model is developed in order to compare these methods based on their robustness with respect to changing traffic patterns. Traffic engineering methods are compared based on number of additional demands due to traffic uncertainty that can be carried. Regenerator placement algorithms are also evaluated from a traffic engineering point of view.

  9. Chitosan Based Regenerated Cellulose Fibers Functionalized with Plasma and Ultrasound

    Directory of Open Access Journals (Sweden)

    Urška Vrabič Brodnjak

    2018-04-01

    Full Text Available The great potential of regenerated cellulose fibers, which offer excellent possibilities as a matrix for the design of bioactive materials, was the lead for our research. We focused on the surface modification of fibers to improve the sorption properties of regenerated cellulose and biocomposite regenerated cellulose/chitosan fibers, which are on the market. The purpose of our investigation was also the modification of regenerated cellulose fibers with the functionalization by chitosan as a means of obtaining similar properties to biocomposite regenerated cellulose/chitosan fibers on the market. Argon gas plasma was used for fiber surface activation and chitosan adsorption. Ultrasound was also used as a treatment procedure for the surface activation of regenerated cellulose fibers and treatment with chitosan. Analyses have shown that ultrasonic energy or plasma change the accessibility of free functional groups, structure and reactivity, especially in regenerated cellulose fibers. Changes that occurred in the morphology and in the structure of fibers were also reflected in their physical and chemical properties. Consequently, moisture content, sorption properties and water retention improved.

  10. Zinc tolerance and accumulation in stable cell suspension cultures and in vitro regenerated plants of the emerging model plant Arabidopsis halleri (Brassicaceae).

    Science.gov (United States)

    Vera-Estrella, Rosario; Miranda-Vergara, Maria Cristina; Barkla, Bronwyn J

    2009-03-01

    Arabidopsis halleri is increasingly employed as a model plant for studying heavy metal hyperaccumulation. With the aim of providing valuable tools for studies on cellular physiology and molecular biology of metal tolerance and transport, this study reports the development of successful and highly efficient methods for the in vitro regeneration of A. halleri plants and production of stable cell suspension lines. Plants were regenerated from leaf explants of A. halleri via a three-step procedure: callus induction, somatic embryogenesis and shoot development. Efficiency of callus proliferation and regeneration depended on the initial callus induction media and was optimal in the presence of 1 mg L(-1) 2,4-dichlorophenoxyacetic acid, and 0.05 mg L(-1) benzylaminopurine. Subsequent shoot and root regeneration from callus initiated under these conditions reached levels of 100% efficiency. High friability of the callus supported the development of cell suspension cultures with minimal cellular aggregates. Characterization of regenerated plants and cell cultures determined that they maintained not only the zinc tolerance and requirement of the whole plant but also the ability to accumulate zinc; with plants accumulating up to 50.0 micromoles zinc g(-1) FW, and cell suspension cultures 30.9 micromoles zinc g(-1) DW. Together this work will provide the experimental basis for furthering our knowledge of A. halleri as a model heavy metal hyperaccumulating plant.

  11. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective.

    Science.gov (United States)

    Huang, George T-J; Al-Habib, Mey; Gauthier, Philippe

    2013-03-01

    There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic.

  12. Untersuchungen zur Regeneration des Hinterendes bei Anaitides mucosa (Polychaeta, Phyllodocidae)

    Science.gov (United States)

    Röhrkasten, A.

    1983-06-01

    Caudal regeneration was investigated in decerebrate Anaitides mucosa and in brain-intact individuals. Both groups show an identical capacity to regenerate lost caudal segments. Furthermore there is no difference in males and females. Low temperature (5 °C) inhibits the regeneration of caudal segments, but it is necessary for normal oogenesis. Under conditions of high temperature (15 °C), caudal regeneration is very extensive. At the same time degeneration of most oocytes occurs.

  13. Planning and Implementation of Urban Regeneration

    DEFF Research Database (Denmark)

    Aunsborg, Christian; Sørensen, Michael Tophøj

    2008-01-01

    new statutory tools to handle the spatial transformation of urban regeneration areas. The paper examines the subsequent development of Danish planning legislation with the purpose of determining whether the present 'statutory toolbox' can be considered sufficient compared to the problems...... the regeneration challenge became an issue in the professional debate. The urban, economic and spatial problematics rising from structural development trends of society were subject to a committee work from 1999 through 2001. The work resulted in a number of recommendations comprising i.a. suggestions concerning...... and challenges emerging in practice. To evaluate the adequacy of the toolbox the paper draws on case studies on urban regeneration projects in three major Danish cities. The conclusion is that the legislative developments during the last five years must be considered very relevant to problem solving in practice...

  14. Pancreatic islet regeneration: Therapeutic potential, unknowns and controversy

    Directory of Open Access Journals (Sweden)

    Ingrid L. Cockburn

    2015-07-01

    Full Text Available Glucose homeostasis in mammals is primarily maintained by the insulin-secreting β-cells contained within pancreas-resident islets of Langerhans. Gross disruption of this glucose regulation as a result of pancreatic dysfunction frequently results in diabetes, which is currently a major health concern in South Africa, as well as globally. For many years, researchers have realised that the pancreas, and specifically the islets of Langerhans, have a regenerative capacity, as islet mass has frequently been shown to increase following induced pancreatic injury. Given that gross β-cell loss contributes significantly to the pathogenesis of both type 1 and type 2 diabetes, endogenous pancreatic islet regeneration has been investigated extensively as a potential β-cell replacement therapy for diabetes. From the extensive research conducted on pancreatic regeneration, opposing findings and opinions have arisen as to how, and more recently even if, pancreatic regeneration occurs following induced injury. In this review, we outline and discuss the three primary mechanisms by which pancreatic regeneration is proposed to occur: neogenesis, β-cell replication and transdifferentiation. We further explain some of the advanced techniques used in pancreatic regeneration research, and conclude that despite the technologically advanced research tools available to researchers today, the mechanisms governing pancreatic regeneration may remain elusive until more powerful techniques are developed to allow for real-time, live-cell assessment of morphology and gene expression within the pancreas.

  15. Nucleated regeneration of semiarid sclerophyllous forests close to remnant vegetation

    NARCIS (Netherlands)

    Fuentes-Castillo, T.; Miranda, A.; Rivera-Hutinel, A.; Smith-Ramirez, C.; Holmgren, M.

    2012-01-01

    Natural regeneration of mediterranean plant communities has proved difficult in all continents. In this paper we assess whether regeneration of sclerophyllous forests shows nucleated patterns indicative of a positive effect of vegetation remnants at the landscape level and compare the regeneration

  16. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  17. Lyophilized platelet-rich fibrin (PRF) promotes craniofacial bone regeneration through Runx2.

    Science.gov (United States)

    Li, Qi; Reed, David A; Min, Liu; Gopinathan, Gokul; Li, Steve; Dangaria, Smit J; Li, Leo; Geng, Yajun; Galang, Maria-Therese; Gajendrareddy, Praveen; Zhou, Yanmin; Luan, Xianghong; Diekwisch, Thomas G H

    2014-05-14

    Freeze-drying is an effective means to control scaffold pore size and preserve its composition. The purpose of the present study was to determine the applicability of lyophilized Platelet-rich fibrin (LPRF) as a scaffold for craniofacial tissue regeneration and to compare its biological effects with commonly used fresh Platelet-rich fibrin (PRF). LPRF caused a 4.8-fold±0.4-fold elevation in Runt-related transcription factor 2 (Runx2) expression in alveolar bone cells, compared to a 3.6-fold±0.2-fold increase when using fresh PRF, and a more than 10-fold rise of alkaline phosphatase levels and mineralization markers. LPRF-induced Runx2 expression only occurred in alveolar bone and not in periodontal or dental follicle cells. LPRF also caused a 1.6-fold increase in osteoblast proliferation (pfibrin, and 16% without scaffold. Moreover, LPRF thickened the trabecular diameter by 25% when compared to fresh PRF and fibrin, and only LPRF and fresh PRF resulted in the formation of interconnected trabeculae across the defect. Together, these studies support the application of lyophilized PRF as a biomimetic scaffold for craniofacial bone regeneration and mineralized tissue engineering.

  18. Common environmental factors explain both ectomycorrhizal species diversity and pine regeneration variability in a post-fire Mediterranean forest.

    Science.gov (United States)

    Buscardo, Erika; Freitas, Helena; Pereira, João Santos; De Angelis, Paolo

    2011-08-01

    Natural seedling regeneration and establishment after stand replacing wildfires is influenced by a series of environmental and biological constraints. In this study, we characterized the diversity and structure of the ectomycorrhizal (ECM) fungal community associated with post-fire naturally regenerated maritime pine saplings, and individuate the environmental factors responsible for fungal species distribution. We also identify the main environmental factors responsible for maritime pine regeneration variability and assessed the relation between saplings performance and ECM fungal diversity indices. Fungal species were identified by direct sequencing of internal transcribed spacer regions. Five years after the disturbance event, a total of 30 taxa colonized the pine saplings. The ECM fungal community was dominated by ruderal species of the genus Rhizopogon (present in almost half of the samples). Almost one third of the identified ECM fungal species belonged to the family Thelephoraceae. Typical k-selected species like Amanita pantherina, Boletus aestivalis, Lactarius chrysorrheus, and Russula densifolia were found on pine saplings collected in proximity of unburnt pine trees, in correspondence with low erosion extents. Pine regeneration varied throughout the study areas and was enhanced at higher elevations, in correspondence with moderate slopes, shallower soils, and a reduced cover of ericaceous shrubs and bare ground. These conditions were found in close proximity to patches of pine trees that survived the disturbance event and were previously characterized by a higher pre-fire pine biomass. Even though no correlations were found between saplings performance and ECM fungal diversity indices, common environmental factors (i.e., ericaceous shrub cover, extent of erosion, slope, and soil depth) were responsible for shaping the ECM fungal distribution and for describing most of the explained regeneration variability.

  19. CO2 regeneration performance enhancement by nanoabsorbents for energy conversion application

    International Nuclear Information System (INIS)

    Lee, Jung Hun; Lee, Jae Won; Kang, Yong Tae

    2016-01-01

    Graphical abstract: (a) Optical profiling image of the surface of copper after regeneration process in nanoabsorbents, Al 2 O 3 (45 nm, 0.01 vol%). (b) The number of regeneration sites by the nanoabsorbents. - Highlights: • CO 2 regeneration performance is enhanced by using Al 2 O 3 nanoabsorbents. • CO 2 regeneration process on the heating surface is visualized in nanoabsorbents. • Surface modification by nanoabsorbents has a greater effect than the nanoparticle size. • The mechanism of surface effect is the most plausible to explain the regeneration performance enhancement. - Abstract: Due to the recent increase in the consumption of energy and the use of fossil fuels, global warming has become a serious issue. To address this problem, CO 2 gas, which is the major element of the greenhouse gases, should be captured, regenerated and converted to useful fuels. The Integrated Gasification Combined Cycle (IGCC) and cement process generate large amount of CO 2 , which are controlled through pre-combustion capture. However, this method has a disadvantage because the system temperature should be decreased to −20 °C or lower. Therefore, the development of new absorbent is required to reduce the energy consumed for refrigeration. There is a study that improved the CO 2 absorption performance by adding Al 2 O 3 nanoparticles to methanol. However, studies on the regeneration of CO 2 in nanofluid absorbents (nanoabsorbents) are insufficient. Therefore, in this study, the CO 2 regeneration performance in Al 2 O 3 nanoabsorbents is evaluated. It is found that the regeneration performance of CO 2 is improved by 16% by using nanoabsorbents compared to methanol. Furthermore, the CO 2 regeneration characteristics of nanoabsorbents are analyzed by considering the detachment time of CO 2 bubbles from the surface, the cross-sectional area of CO 2 bubble, and the number of regeneration sites through the CO 2 regeneration and bubble visualization experiments. It is concluded

  20. Factors influencing callus induction and plant regeneration of ...

    African Journals Online (AJOL)

    ajl yemi

    2012-01-12

    ). Effect of basal medium on callus induction and plant regeneration. Three different kinds of basal mediums (MS, N6 and SH) were used to investigate their effects on callus induction and regeneration. Significant differences ...

  1. Method of continuously regenerating decontaminating electrolytic solution

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Kobayashi, Toshio; Wada, Koichi.

    1985-01-01

    Purpose: To continuously recover radioactive metal ions from the electrolytic solution used for the electrolytic decontamination of radioactive equipment and increased with the radioactive dose, as well as regenerate the electrolytic solution to a high concentration acid. Method: A liquid in an auxiliary tank is recycled to a cathode chamber containing water of an electro depositing regeneration tank to render pH = 2 by way of a pH controller and a pH electrode. The electrolytic solution in an electrolytic decontaminating tank is introduced by way of an injection pump to an auxiliary tank and, interlocking therewith, a regenerating solution is introduced from a regenerating solution extracting pump by way of a extraction pipeway to an electrolytic decontaminating tank. Meanwhile, electric current is supplied to the electrode to deposit radioactive metal ions dissolved in the cathode chamber on the capturing electrode. While on the other hand, anions are transferred by way of a partition wall to an anode chamber to regenerate the electrolytic solution to high concentration acid solution. While on the other hand, water is supplied by way of an electromagnetic valve interlocking with the level meter to maintain the level meter constant. This can decrease the generation of the liquid wastes and also reduce the amount of the radioactive secondary wastes. (Horiuchi, T.)

  2. Impact of FCC regenerator design in the NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Hugo Borges; Sandes, Emanuel Freire; Gilbert, William Richard; Roncolatto, Rodolfo Eugenio; Gobbo, Rodrigo; Casavechia, Luiz Carlos; Candido, William Victor Carlos [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Bridi, Patricia Elaine [Possebon Engenharia, Sao Mateus do Sul, PR (Brazil)

    2012-07-01

    Fluid Catalytic Cracking (FCC) is the main point source of NOx in the refinery and it is responsible for at least 20% of the total NOx emissions from the refineries. The thermal NOx formation in the FCC regenerator is negligible. However, half of the feed nitrogen is converted to coke, and is burned in the regenerator. The majority of coke nitrogen is reduced to N2 and less than 10% is converted to NOx. This number may vary significantly with the oxygen excess in the flue gas and other operational conditions. With the purpose of evaluating the impact of different regenerator designs in NOx formation, several tests were carried out in the PETROBRAS FCC prototype unit. The test unit is equipped with adiabatic insulation and a CO boiler, allowing it to reproduce the heat balance of a commercial FCC and to operate either in full combustion or partial combustion. Two different designs of FCC regenerators were evaluated: single stage regenerator (the existing configuration) and two stage regenerator, with the catalyst bed divided into two sections by a structured packing baffle. It was observed in the tests that the combustion regime had a very strong effect on NOx formation. In full combustion, the effect of the FCC operating variables: excess oxygen, combustion promoter content in catalyst and regenerator design could be identified. The two stage configuration was capable of decreasing NOx emissions by 30%. In partial combustion, the effect of the CO-boiler variables on NOx emissions was overwhelming, but the use of the structured packing baffle was able to improve the catalyst regeneration.(author)

  3. PERFORMANCE ENHANCEMENT OF A MINIATURE STIRLING CRYOCOOLER WITH A MULTI MESH REGENERATOR DESIGN

    Directory of Open Access Journals (Sweden)

    KISHOR KUMAR V. V.

    2017-06-01

    Full Text Available A parametric study has been carried out using the software REGEN 3.3 to optimize the regenerator of a miniature Stirling cryocooler operating with a warm end temperature of 300 K and cold end temperature of 80 K. Regenerator designs which produce the maximum coefficient of performance (COP of the system is considered as an optimized regenerator. The length and diameter of the regenerator were fixed from the cooler system requirements. Single mesh regenerators made of 200, 250, 300, 400 and 450 Stainless Steel wire meshes were considered and the optimum phase angle and mesh size were obtained. A maximum COP of 0.1475 was obtained for 300 mesh regenerator at 70° phase angle. Then multi mesh regenerators were considered with finer mesh on the cold end and coarser mesh on the hot end. The optimum size and length of each mesh in the multi mesh regenerator and the optimum phase angle were calculated. The maximum COP of 0.156 was obtained for 200 300-400 multi mesh regenerator at 70° phase angle. The COP and net refrigeration obtained for an optimized multi mesh regenerator was found to be significantly higher than that of a single mesh regenerator. Thus a multi mesh regenerator design with a proper combination of regenerator mesh size and length can enhance the regenerator effectiveness.

  4. The role of long-term label-retaining cells in the regeneration of adult mouse kidney after ischemia/reperfusion injury.

    Science.gov (United States)

    Liu, Xiangchun; Liu, Haiying; Sun, Lina; Chen, Zhixin; Nie, Huibin; Sun, Aili; Liu, Gang; Guan, Guangju

    2016-04-30

    Label-retaining cells (LRCs) have been recognized as rare stem and progenitor-like cells, but their complex biological features in renal repair at the cellular level have never been reported. This study was conducted to evaluate whether LRCs in kidney are indeed renal stem/progenitor cells and to delineate their potential role in kidney regeneration. We utilized a long-term pulse chase of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in C57BL/6J mice to identify renal LRCs. We tracked the precise morphological characteristics and locations of BrdU(+)LRCs by both immunohistochemistry and immunofluorescence. To examine whether these BrdU(+)LRCs contribute to the repair of acute kidney injury, we analyzed biological characteristics of BrdU(+)LRCs in mice after ischemia/reperfusion (I/R) injury. The findings revealed that the nuclei of BrdU(+) LRCs exhibited different morphological characteristics in normal adult kidneys, including nuclei in pairs or scattered, fragmented or intact, strongly or weakly positive. Only 24.3 ± 1.5 % of BrdU(+) LRCs co-expressed with Ki67 and 9.1 ± 1.4 % of BrdU(+) LRCs were positive for TUNEL following renal I/R injury. Interestingly, we found that newly regenerated cells formed a niche-like structure and LRCs in pairs tended to locate in this structure, but the number of those LRCs was very low. We found a few scattered LRCs co-expressed Lotus tetragonolobus agglutinin (LTA) in the early phase of injury, suggesting differentiation of those LRCs in mouse kidney. Our findings suggest that LRCs are not a simple type of slow-cycling cells in adult kidneys, indicating a limited role of these cells in the regeneration of I/R injured kidney. Thus, LRCs cannot reliably be considered stem/progenitor cells in the regeneration of adult mouse kidney. When researchers use this technique to study the cellular basis of renal repair, these complex features of renal LRCs and the purity of real stem cells among renal LRCs should be considered.

  5. Dual-controlled release system of drugs for bone regeneration.

    Science.gov (United States)

    Kim, Yang-Hee; Tabata, Yasuhiko

    2015-11-01

    Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The influence of the solid thermal conductivity on active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Engelbrecht, Kurt

    2012-01-01

    The influence of the thermal conductivity of the regenerator solid on the performance of a flat plate active magnetic regenerator (AMR) is investigated using an established numerical AMR model. The cooling power at different (fixed) temperature spans is used as a measure of the performance...... for a range of thermal conductivities, operating frequencies, a long and short regenerator, and finally a regenerator with a low and a high number of transfer units (NTU) regenerator. In this way the performance is mapped out and the impact of the thermal conductivity of the solid is probed. Modeling shows...... that under certain operating conditions, the AMR cycle is sensitive to the solid conductivity. It is found that as the operating frequency is increased it is not only sufficient to have a high NTU regenerator but the regenerator performance will also benefit from increased thermal conductivity in the solid...

  7. Role of metallothioneins in peripheral nerve function and regeneration

    DEFF Research Database (Denmark)

    Ceballos, D; Lago, N; Verdú, E

    2003-01-01

    The physiological role of the metallothionein (MT) family of proteins during peripheral nerve injury and regeneration was examined in Mt1+ 2 and Mt3 knockout (KO) mice. To this end, the right sciatic nerve was crushed, and the regeneration distance was evaluated by the pinch test 2-7 days....... The improved regeneration observed with the Mt3 KO mice was confirmed by compound nerve action potentials that were recorded from digital nerves at 14 dpl only in this group. We conclude that Mt3 normally inhibits peripheral nerve regeneration........ Moreover, the number of regenerating axons in the distal tibial nerve was significantly higher in Mt3KO mice than in the other two strains at 14 dpl. Immunoreactive profiles to protein gene product 9.5 were present in the epidermis and the sweat glands of the plantar skin of the hindpaw of the Mt3 KO group...

  8. Enhanced plant regeneration in lemna minor by amino acids

    International Nuclear Information System (INIS)

    Yang, L.; Han, H.; Zhou, K.; Ren, C.; Zhu, Y.

    2014-01-01

    In present study we investigated the effects of different L-amino acids on the plant regeneration from callus of Lemna minor, and established an efficient protocol. Among the 20 L-amino acids, only L-Ser and L-Gly showed significant improving effect, with the optimal concentration being 1 mM and 1.5 mM, respectively. A regeneration frequency of 46% was observed when the callus transferred to the regeneration medium with addition of 1 mM L-Ser for 11 days. After 26 days of cultivation, the frond regeneration achieved 100% and 94% for 1 mM L-Ser and 1.5 mM L-Gly treatment, respectively. (author)

  9. Nanoparticles for tendon healing and regeneration: literature review.

    Directory of Open Access Journals (Sweden)

    Paolo Domenico Parchi

    2016-08-01

    Full Text Available Tendon injuries are commonly met in the emergency department. Unfortunately, tendon tissue has limited regeneration potential and usually the consequent formation of scar tissue causes inferior mechanical properties Nanoparticles could be used in different way to improve tendon healing and regeneration, ranging from scaffolds manufacturing (increasing the strength and endurance or anti-adhesions, anti-microbial and anti-inflammatory properties to gene therapy. This paper aims to summarize the most relevant studies showing the potential application of nanoparticles for tendon tissue regeneration

  10. Somatostatin-like peptide and regeneration capacities in planarians.

    Science.gov (United States)

    Bautz, A; Schilt, J

    1986-11-01

    The presence of a neuropeptide immunologically related to somatostatin (SRIF) has been investigated in the neurosecretory cells of two regenerating planarian species (Dugesia lugubris and Dendrocoelum lacteum). A correlation has been shown between the discharge of the SRIF-like-immunoreactive cells during the first hours after amputation and the capacity to regenerate, and between the persistence of numerous positive cells and the lack of regeneration. These results suggest that somatostatin might play a regulatory (inhibitory) role on the cellular proliferation which leads to the blastema edification.

  11. Atmospheric pressure plasma accelerates tail regeneration in tadpoles Xenopus laevis

    Science.gov (United States)

    Rivie, A.; Martus, K.; Menon, J.

    2017-08-01

    Atmospheric pressure plasma is a partially ionized gas composed of neutral and charged particles, including electrons and ions, as well as reactive oxygen species (ROS). Recently, it is utilized as possible therapy in oncology, sterilization, skin diseases, wound healing and tissue regeneration. In this study we focused on effect of plasma exposure on tail regeneration of tadpoles, Xenopus leavis with special emphasis on role of ROS, antioxidant defenses and morphological features of the regenerate. When amputated region of the tail was exposed to the helium plasma it resulted in a faster rate of growth, elevated ROS and increase in antioxidant enzymes in the regenerate compared to that of untreated control. An increase in nitric oxide (free radical) as well as activity of nitric oxide synthase(s) were observed once the cells of the regeneration blastema - a mass of proliferating cells are ready for differentiation. Microscopically the cells of the regenerate of plasma treated tadpoles show altered morphology and characteristics of cellular hypoxia and oxidative stress. We summarize that plasma exposure accelerates the dynamics of wound healing and tail regeneration through its effects on cell proliferation and differentiation as well as angiogenesis mediated through ROS signaling.

  12. Regeneration in an internal combustion engine: Thermal-hydraulic modeling and analysis

    International Nuclear Information System (INIS)

    Thyageswaran, Sridhar

    2016-01-01

    Highlights: • An arrangement is proposed for in-cylinder regeneration in a 4-stroke engine. • Thermodynamic models are formulated for overall cycle analysis. • A design procedure is outlined for micro-channel regenerators. • Partial differential equations are solved for flow inside the regenerator. • Regeneration with lean combustion decreases the idealized cycle efficiency. - Abstract: An arrangement is proposed for a four-stroke internal combustion engine to: (a) recover thermal energy from products of combustion during the exhaust stroke; (b) store that energy as sensible heat in a micro-channel regenerator matrix; and (c) transfer the stored heat to compressed fresh charge that flows through the regenerator during the succeeding mechanical cycle. An extra moveable piston that can be locked at preferred positions and a sequence of valve events enable the regenerator to lose heat to the working fluid during one interval of time but gain heat from the fluid during another interval of time. This paper examines whether or not this scheme for in-cylinder regeneration (ICR) improves the cycle thermal efficiency η I . Models for various thermodynamic processes in the cycle and treatments for unsteady compressible flow and heat transfer inside the regenerator are developed. Digital simulations of the cycle are made. Compared to an idealized engine cycle devoid of regeneration, provisions for ICR seem to deteriorate the thermal efficiency. In an 8:1 compression ratio octane engine simulated with an equivalence ratio of 0.75, η I  = 0.455 with regeneration and η I  = 0.491 without. This study shows that previous claims on efficiency gains via ICR, using highly-simplified models, may be misleading.

  13. Magnetotherapy: The quest for tendon regeneration.

    Science.gov (United States)

    Pesqueira, Tamagno; Costa-Almeida, Raquel; Gomes, Manuela E

    2018-05-09

    Tendons are mechanosensitive tissues that connect and transmit the forces generated by muscles to bones by allowing the conversion of mechanical input into biochemical signals. These physical forces perform the fundamental work of preserving tendon homeostasis assuring body movements. However, overloading causes tissue injuries, which leads us to the field of tendon regeneration. Recently published reviews have broadly shown the use of biomaterials and different strategies to attain tendon regeneration. In this review, our focus is the use of magnetic fields as an alternative therapy, which has demonstrated clinical relevance in tendon medicine because of their ability to modulate cell fate. Yet the underlying cellular and molecular mechanisms still need to be elucidated. While providing a brief outlook about specific signalling pathways and intracellular messengers as framework in play by tendon cells, application of magnetic fields as a subcategory of physical forces is explored, opening up a compelling avenue to enhance tendon regeneration. We outline here useful insights on the effects of magnetic fields both at in vitro and in vivo levels, particularly on the expression of tendon genes and inflammatory cytokines, ultimately involved in tendon regeneration. Subsequently, the potential of using magnetically responsive biomaterials in tendon tissue engineering is highlighted and future directions in magnetotherapy are discussed. © 2018 Wiley Periodicals, Inc.

  14. Superhydrophobicity and regeneration of PVDF/SiO2 composite films

    Science.gov (United States)

    Liu, Tao; Li, Xianfeng; Wang, Daohui; Huang, Qinglin; Liu, Zhen; Li, Nana; Xiao, Changfa

    2017-02-01

    Superhydrophobicity of polymers is easily destroyed by careless touching due to the softness of microstructures. In this study, based on a well-constructed polyvinylidene fluoride (PVDF) surface, a novel superhydrophobic PVDF/SiO2 composite film was fabricated by adding hydrophobic SiO2 nanoparticle and solvent into a coagulation bath. The water contact angle of the composite film reached 162.3° and the sliding angle was as low as 1.5°. More importantly, the composite film could be regenerated only through immersing the composite film in the designed regeneration agent. The composition of the designed regeneration agent ensured that SiO2 nanoparticles were firmly adhered on the film surface even under the ultrasonic cleaning. Hence, the superhydrophobicity and self-cleaing property could be regenerated and maintained effectively, and moreover, these propeties could resist a proper pressure. In addition, after many rubbing-regenerating cycles, the regeneration method was still valid.

  15. Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish.

    Science.gov (United States)

    González-Rosa, Juan Manuel; Sharpe, Michka; Field, Dorothy; Soonpaa, Mark H; Field, Loren J; Burns, Caroline E; Burns, C Geoffrey

    2018-02-26

    Correlative evidence suggests that polyploidization of heart muscle, which occurs naturally in post-natal mammals, creates a barrier to heart regeneration. Here, we move beyond a correlation by demonstrating that experimental polyploidization of zebrafish cardiomyocytes is sufficient to suppress their proliferative potential during regeneration. Initially, we determined that zebrafish myocardium becomes susceptible to polyploidization upon transient cytokinesis inhibition mediated by dominant-negative Ect2. Using a transgenic strategy, we generated adult animals containing mosaic hearts composed of differentially labeled diploid and polyploid-enriched cardiomyocyte populations. Diploid cardiomyocytes outcompeted their polyploid neighbors in producing regenerated heart muscle. Moreover, hearts composed of equivalent proportions of diploid and polyploid cardiomyocytes failed to regenerate altogether, demonstrating that a critical percentage of diploid cardiomyocytes is required to achieve heart regeneration. Our data identify cardiomyocyte polyploidization as a barrier to heart regeneration and suggest that mobilizing rare diploid cardiomyocytes in the human heart will improve its regenerative capacity. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Natural regeneration processes in big sagebrush (Artemisia tridentata)

    Science.gov (United States)

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2014-01-01

    Big sagebrush, Artemisia tridentata Nuttall (Asteraceae), is the dominant plant species of large portions of semiarid western North America. However, much of historical big sagebrush vegetation has been removed or modified. Thus, regeneration is recognized as an important component for land management. Limited knowledge about key regeneration processes, however, represents an obstacle to identifying successful management practices and to gaining greater insight into the consequences of increasing disturbance frequency and global change. Therefore, our objective is to synthesize knowledge about natural big sagebrush regeneration. We identified and characterized the controls of big sagebrush seed production, germination, and establishment. The largest knowledge gaps and associated research needs include quiescence and dormancy of embryos and seedlings; variation in seed production and germination percentages; wet-thermal time model of germination; responses to frost events (including freezing/thawing of soils), CO2 concentration, and nutrients in combination with water availability; suitability of microsite vs. site conditions; competitive ability as well as seedling growth responses; and differences among subspecies and ecoregions. Potential impacts of climate change on big sagebrush regeneration could include that temperature increases may not have a large direct influence on regeneration due to the broad temperature optimum for regeneration, whereas indirect effects could include selection for populations with less stringent seed dormancy. Drier conditions will have direct negative effects on germination and seedling survival and could also lead to lighter seeds, which lowers germination success further. The short seed dispersal distance of big sagebrush may limit its tracking of suitable climate; whereas, the low competitive ability of big sagebrush seedlings may limit successful competition with species that track climate. An improved understanding of the

  17. Capacity issues in local communities for integral urban regeneration

    Directory of Open Access Journals (Sweden)

    Mrđenović Tatjana

    2013-01-01

    Full Text Available The subject of the research in wider sense is organizational-communication capacity of local communities in Serbia in the frame of sustainable development. Along with this, the paper will explore potentialities of Faludi's model of multiplanning agencies as well as Healey's collaborative theory for better efficiency and effectiveness of planning in the process of urban regeneration. Specifically the paper will research relation between organizational structure of local communities in Serbia and their potentialities to provide adequate communication towards integral information for urban regeneration. Research is framed with a problem of efficiency and effectiveness in creating urban regeneration policies, strategies, designs, and technical solutions. The problem will be focused to Serbian context; characterized with inadequate, transitional, system of governance that is moving from centralistic towards decentralist model. This will be further explored through level and type of participation in the process of urban regeneration. The hypothesis of the research explores the nature of the relation between number and types of communication channels, provided by organizational structure of local communities that should enable effectiveness and efficiency of urban regeneration. In other words the hypothesis is: number and types of communication channels (variable A influences the effectiveness and efficiency of urban planning for sustainable urban regeneration (variable B. The aims of the paper are identification of the regulations between the variables. Expected result is establishing the model for measuring the capacity of local communities for integral urban regeneration.

  18. Post-irradiation thymocyte regeneration after bone marrow transplantation

    International Nuclear Information System (INIS)

    Boersma, W.; Betel, I.; Daculsi, R.; Westen, G. van der

    1981-01-01

    Growth kinetics of the donor-type thymus cell population after transplantation of bone marrow into irradiated syngeneic recipient mice is biphasic. During the first rapid phase of regeneration, lasting until day 19 after transplantation, the rate of development of the donor cells is independent of the number of bone marrow cells inoculated. The second slow phase is observed only when low numbers of bone marrow cells (2.5 x 10 4 ) are transplanted. The decrease in the rate of development is attributed to an efflux of donor cells from the thymus because, at the same time, the first immunologically competent cells are found in spleen. After bone marrow transplantation the regeneration of thymocyte progenitor cells in the marrow is delayed when compared to regeneration of CFUs. Therefore, regenerating marrow has a greatly reduced capacity to restore the thymus cell population. One week after transplantation of 3 x 10 6 cells, 1% of normal capacity of bone marrow is found. It is concluded that the regenerating thymus cells population after bone marrow transplantation is composed of the direct progeny of precursor cells in the inoculum. (author)

  19. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration

    Science.gov (United States)

    Hu, Yu; Wu, Yao; Gou, Zhiyuan; Tao, Jie; Zhang, Jiumeng; Liu, Qianqi; Kang, Tianyi; Jiang, Shu; Huang, Siqing; He, Jiankang; Chen, Shaochen; Du, Yanan; Gou, Maling

    2016-08-01

    Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed “lock and key” moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use.

  20. In vivo study of lens regeneration in Rana cyanophlyctis under ...

    African Journals Online (AJOL)

    SAM

    2014-03-12

    Mar 12, 2014 ... enhanced the percentage lens regeneration not only in young tadpoles but also in froglets. Lens regeneration ability ... Influence of vitamin A and ascorbic acid on lens regeneration in young, mature tadpoles and froglets of the frog Rana cyanophlyctis. Group .... ingested by macrophages. Dorsal iris cells ...

  1. Feathers and fins: non-mammalian models for hair cell regeneration.

    Science.gov (United States)

    Brignull, Heather R; Raible, David W; Stone, Jennifer S

    2009-06-24

    Death of mechanosensory cells in the inner ear results in two profound disabilities: hearing loss and balance disorders. Although mammals lack the capacity to regenerate hair cells, recent studies in mice and other rodents have offered valuable insight into strategies for stimulating hair cell regeneration in mammals. Investigations of model organisms that retain the ability to form new hair cells after embryogenesis, such as fish and birds, are equally important and have provided clues as to the cellular and molecular mechanisms that may block hair cell regeneration in mammals. Here, we summarize studies on hair cell regeneration in the chicken and the zebrafish, discuss specific advantages of each model, and propose future directions for the use of non-mammalian models in understanding hair cell regeneration.

  2. Structure and catalytic activity of regenerated spent hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Massoth, F.E.; Furimsky, E. (Utah University, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1992-11-01

    Two spent catalysts, obtained from different hydrodemetallation operations, were regenerated by two different treatments, viz. 2% (V/V) O[sub 2]/N[sub 2] and air. One spent catalyst (B), contained 3 wt% V and 15 wt% C, while the other (H) contained 10 wt% V, 14 wt% C and 8 wt% Fe. After regeneration in the O[sub 2]/N[sub 2] stream, catalyst B showed essentially complete recovery of its original surface area, whereas catalyst H showed only 70% recovery. Both catalysts showed substantial losses in surface area by the air treatment. Catalytic activity tests on the regenerated catalysts for hydrodesulfurization of thiophene and for hydrogenation of 1-hexene showed low recovery of activities, even for the regenerated catalyst in which the surface area had been completely recovered. X-ray diffraction analyses of the spent-regenerated catalysts revealed substantial changes in catalyst structure. Surface area and catalytic activity results were qualitatively explained by these catalyst structural changes. 17 refs., 1 fig., 3 tabs.

  3. Hard tissue regeneration using bone substitutes: an update on innovations in materials.

    Science.gov (United States)

    Sarkar, Swapan Kumar; Lee, Byong Taek

    2015-05-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.

  4. Regenerate augmentation with bone marrow concentrate after traumatic bone loss

    Directory of Open Access Journals (Sweden)

    Jan Gessmann

    2012-03-01

    Full Text Available Distraction osteogenesis after post-traumatic segmental bone loss of the tibia is a complex and time-consuming procedure that is often complicated due to prolonged consolidation or complete insufficiency of the regenerate. The aim of this feasibility study was to investigate the potential of bone marrow aspiration concentrate (BMAC for percutaneous regenerate augmentation to accelerate bony consolidation of the regenerate. Eight patients (age 22-64 with an average posttraumatic bone defect of 82.4 mm and concomitant risk factors (nicotine abuse, soft-tissue defects, obesity and/or circulatory disorders were treated with a modified Ilizarov external frame using an intramedullary cable transportation system. At the end of the distraction phase, each patient was treated with a percutaneously injection of autologous BMAC into the centre of the regenerate. The concentration factor was analysed using flow cytometry. The mean follow up after frame removal was 10 (4-15 months. With a mean healing index (HI of 36.9 d/cm, bony consolidation of the regenerate was achieved in all eight cases. The mean concentration factor of the bone marrow aspirate was 4.6 (SD 1.23. No further operations concerning the regenerate were needed and no adverse effects were observed with the BMAC procedure. This procedure can be used for augmentation of the regenerate in cases of segmental bone transport. Further studies with a larger number of patients and control groups are needed to evaluate a possible higher success rate and accelerating effects on regenerate healing.

  5. Regeneration of Full Scale Adsorptive Media Systems - Update

    Science.gov (United States)

    Presentation provides an update of the regeneration studies conducted at Twentynine Palms, CA. Following a short introduction, the presentation summarizes the results of the three regeneration tests conducted on the exhausted media of the arsenic removal system at Twentynine Pal...

  6. In vitro regeneration of selected commercial Tanzanian open ...

    African Journals Online (AJOL)

    Using this regeneration system Situka M-1, Staha and TMV-1 can now be improved against various production constraints through genetic engineering. Key words: 2, 4-dichlorophexyacetic acid, embryogenic callus, immature zygotic embryos, regeneration frequency, somatic embryos, Tanzanian open pollinated maize.

  7. Oak regeneration potential increased by shelterwood treatments

    Science.gov (United States)

    Richard C. Schlesinger; Ivan L. Sander; Kenneth R. Davidson

    1993-01-01

    In much of the Central Hardwood Forest Region, oak species are not regenerating well, even though large oak trees are common within the existing forests. The shelterwood method has been suggested as a potential tool for establishing and developing advanced regeneration where it is lacking. The 10-yr results from a study of several variants of the shelterwood method...

  8. A novel energy regeneration system for emulsion pump tests

    Energy Technology Data Exchange (ETDEWEB)

    Yilei, Li; Zhencai, Zhu; Guohua, Cao [China University of Mining and Technology, Xuzhou (China); Guoan, Chen [Command Academy of the Corps of Engineers, Xuzhou (China)

    2013-04-15

    A novel energy regeneration system based on cylinders and a rectifier valve for emulsion pump tests is presented and studied. The overall structure and working principles of this system are introduced. Both simulation and experiments are carried out to investigate the energy regeneration feasibility and capability of this novel system. The simulation and experimental results validate that this system is able to save energy and satisfy the test requirement. The energy recovery coefficient and overall energy regeneration coefficient of the test bench are 0.785 and 0.214, respectively. Measures to improve these two coefficients are also given accordingly after analysis of power loss. This novel system brings a new method of energy regeneration for emulsion pump tests.

  9. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    Science.gov (United States)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Qiu, Songgang

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM. During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90 percent random fiber currently used in small approx.100 W Stirling space-power convertors-in the Reynolds Number range of interest (50 to 100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6 to 9 percent; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C

  10. Reactivation of X-irradiated cell material during limb regeneration in Urodeles Amphibians

    International Nuclear Information System (INIS)

    Desselle, J.C.

    1979-10-01

    In amputated members irradiated with X-rays the regeneration power is inhibited. This power is restored by grafts of healthy tissue in the irradiated members. The origin of the cell material of the restored regeneration blastema has been studied by an original labelling technique. The different amounts of DNA in the graft cells and those of the stump mark the graft cells during the regeneration process. It was shown that the graft causes a reactivation of the inhibited stump cells and the reactivation stages are the same as the activation stages of the member regenerating normally. It was also established that during restored regeneration the cell material implanted in the irradiated members contributes, by the 160th day of regeneration, 4.5% of the cartilaginous regenerate cells and 12% of the muscle cells. All the other regenerate cells are supplied by the cells of the stump; these are reactivated and together with the activated graft cells lead to the restitution of the amputated member [fr

  11. Optogenetically enhanced axon regeneration: motor versus sensory neuron-specific stimulation.

    Science.gov (United States)

    Ward, Patricia J; Clanton, Scott L; English, Arthur W

    2018-02-01

    Brief neuronal activation in injured peripheral nerves is both necessary and sufficient to enhance motor axon regeneration, and this effect is specific to the activated motoneurons. It is less clear whether sensory neurons respond in a similar manner to neuronal activation following peripheral axotomy. Further, it is unknown to what extent enhancement of axon regeneration with increased neuronal activity relies on a reflexive interaction within the spinal circuitry. We used mouse genetics and optical tools to evaluate the precision and selectivity of system-specific neuronal activation to enhance axon regeneration in a mixed nerve. We evaluated sensory and motor axon regeneration in two different mouse models expressing the light-sensitive cation channel, channelrhodopsin (ChR2). We selectively activated either sensory or motor axons using light stimulation combined with transection and repair of the sciatic nerve. Regardless of genotype, the number of ChR2-positive neurons whose axons had regenerated successfully was greater following system-specific optical treatment, with no effect on the number of ChR2-negative neurons (whether motor or sensory neurons). We conclude that acute system-specific neuronal activation is sufficient to enhance both motor and sensory axon regeneration. This regeneration-enhancing effect is likely cell autonomous. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Regeneration and health: a structured, rapid literature review.

    Science.gov (United States)

    McCartney, G; Hearty, W; Taulbut, M; Mitchell, R; Dryden, R; Collins, C

    2017-07-01

    To identify and synthesise what is known about the impacts of regeneration on health, health inequalities and their socio-economic determinants. Rapid, structured literature review. A rapid, structured approach was undertaken to identifying relevant studies involving a search of peer-reviewed literature databases, an Internet search to identify relevant grey literature, and a review of articles citing two key systematic reviews. The identified citations were screened, critically appraised according to the research design and narratively synthesised. Of the 1382 identified citations, 46 were screened as relevant to the review and included in the synthesis. Fifteen citations were reviews but most of the evidence identified or included within the reviews was of medium or low quality due to a lack of longitudinal follow-up, low response rates or attrition. The evidence base on the impacts of regeneration is generally not of high quality and is prone to bias. However, it is theorised as being an important means of addressing the socio-economic determinants of health. Housing refurbishment (generally, and for specific improvements) seems likely to lead to small improvements in health, whereas rehousing and mixed-tenure approaches have less clear impacts on health and carry risks of disruption to social networks and higher rents. Changes in the social composition of communities (gentrification) is a common outcome of regeneration and some 'partnership' approaches to regeneration have been shown to have caused difficulties within communities. The evidence base for regeneration activities is limited but they have substantial potential to contribute to improving population health. Better quality evidence is available for there being positive health impacts from housing-led regeneration programmes involving refurbishment and specific housing improvements. There is also some evidence of the potential harms of regeneration activities, including social stratification

  13. Generating private co-investments in area-based urban regeneration: Lessons from Denmark

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole; Larsen, Jacob Norvig; Storgaard, Kresten

    a factor 5 times higher than the public investments in the areas, in terms of urban regeneration subsidies. Private investments, however, might cover different property investment strategies: ‘Passive management’, ‘active management’ and ‘development’. We suggest that for the urban regeneration areas......In recent years, public-private collaboration as well as private co-investments has been intensely promoted in Danish area-based urban regeneration policy and programmes. The paper will discuss to which extent these ambitions have been full-filled, and what has actually attracted private...... investments to the urban regeneration areas. The paper is based on evaluations of the Danish area-based regeneration programmes, as well as research on private investments in selected urban regeneration areas. Our research shows that area-based urban regeneration in average generates private investments...

  14. Plant Regeneration Through Tissue Culture Of Pear Millet ...

    African Journals Online (AJOL)

    1. 1. 2,5), MS(5) and N6(1.100.25) culture media, calli embryogenic potential and fertile plants regeneration were conserved for more than 12 months. Characteristics of regenerated plants were similar to control. It appears that dissected shoot ...

  15. Regeneration of baroafferents after implantation into different vessels

    NARCIS (Netherlands)

    Stevens, Markus F.; Hermanns, Henning; Freynhagen, Rainer; Novotny, Gerd E. K.; Lipfert, Peter

    2007-01-01

    Regeneration of peripheral nerves involves an essential contribution by surrounding tissues. This study focuses on the role of the target tissue on the regeneration of afferent peripheral nerves. We hypothesized that nerves implanted into the appropriate target tissue regain their function, whereas

  16. Analysis of conifer forest regeneration using Landsat Thematic Mapper data

    Science.gov (United States)

    Fiorella, Maria; Ripple, William J.

    1995-01-01

    Landsat Thematic Mapper (TM) data were used to evaluate young conifer stands in the western Cascade Mountains of Oregon. Regression and correlation analyses were used to describe the relationships between TM band values and age of young Douglas-fir stands (2 to 35 years old). Spectral data from well regenerated Douglas-fir stands were compared to those of poorly regenerated conifer stands. TM bands 1, 2, 3, 5, 6, and 7 were inversely correlated with the age (r greater than or equal to -0.80) of well regenerated Douglas-fir stands. Overall, the 'structural index' (TM 4/5 ratio) had the highest correlation to age of Douglas-fir stands (r = 0.96). Poorly regenerated stands were spectrally distinct from well regenerated Douglas-fir stands after the stands reached an age of approximately 15 years.

  17. The influence of pressure ratio on the regenerator performance

    Science.gov (United States)

    Lin, Y.; Zhu, S.

    2017-12-01

    For a multi-stage pulse tube refrigerator with displacer, improving the regenerator efficiency is important. A displacer can get higher operating pressure ratio compared with inertance tube. The pressure ratio and porosity influence on the regenerator performance with is discussed, and CFD simulation is done on a two-stage pulse tube refrigerator with displacer to show that mass flow rate and pressure wave relation in the regenerator can be realized by a step-displacer.

  18. Combined use of decellularized allogeneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats.

    Science.gov (United States)

    Sun, Fei; Zhou, Ke; Mi, Wen-juan; Qiu, Jian-hua

    2011-11-01

    Natural biological conduits containing seed cells have been widely used as an alternative strategy for nerve gap reconstruction to replace traditional nerve autograft techniques. The purpose of this study was to investigate the effects of a decellularized allogeneic artery conduit containing autologous transdifferentiated adipose-derived stem cells (dADSCs) on an 8-mm facial nerve branch lesion in a rat model. After 8 weeks, functional evaluation of vibrissae movements and electrophysiological assessment, retrograde labeling of facial motoneurons and morphological analysis of regenerated nerves were performed to assess nerve regeneration. The transected nerves reconstructed with dADSC-seeded artery conduits achieved satisfying regenerative outcomes associated with morphological and functional improvements which approached those achieved with Schwann cell (SC)-seeded artery conduits, and superior to those achieved with artery conduits alone or ADSC-seeded artery conduits, but inferior to those achieved with nerve autografts. Besides, numerous transplanted PKH26-labeled dADSCs maintained their acquired SC-phenotype and myelin sheath-forming capacity inside decellularized artery conduits and were involved in the process of axonal regeneration and remyelination. Collectively, our combined use of decellularized allogeneic artery conduits with autologous dADSCs certainly showed beneficial effects on nerve regeneration and functional restoration, and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Social Housing in Urban Regeneration. Regeneration Heritage Existing Building: Methods and Strategies

    Directory of Open Access Journals (Sweden)

    Maria Antonia Giannino

    2014-05-01

    Full Text Available The theme of urban regeneration has played a strategic role during the last two decades in European and national urban building policies. Current addresses, also defined in Leipzig Charter on Sustainable European Cities in 2007, indentify the necessity to invest in requalification of degraded residential assets and not in new developments, individuating in urban regeneration the main tool for development of contemporary city. Public neighborhoods have developed, historically, a wide set of common problems. They are not only due to wrong planning but also to the concept of “housing for masses”.  The original ambition of modern settlment, developed from GermanSiedlung, was to be an autonomous part, on the point of view of morphology, in urban expansion. Joined by new developments, a lot of neighborhoods became benchmarks for suburban areas and now we can define themas “new urban centralities”. So theirrole in urbandynamics has changed and they can be individuate dasprecious reserves of public spaces and potential incubators for regeneration of larger areas. Analyzing some Italian and European case studies, themostinnovative relate to the densification of open spaces, inserting new services in a general redesign of green areas; concentration of built surfaces, in order to reduce land consumption and introduction of different residential types in order to improve mischbebauung. The reasons for an active recovery are motivated by the criteria of environmental sustainability and saving land, have relaunched compact projects with medium to highdensity.

  20. Reversing a tree regeneration crisis in an endangered ecoregion.

    Science.gov (United States)

    Fischer, Joern; Stott, Jenny; Zerger, Andre; Warren, Garth; Sherren, Kate; Forrester, Robert I

    2009-06-23

    Global food demand is growing rapidly. Livestock grazing can provide a valuable source of protein, but conventional grazing is often unsustainable. We studied an 800,000-ha section of a threatened ecoregion in southeastern Australia. Conventional management in the region involves continuous livestock grazing with few rest periods and regular fertilizer application. By using remotely sensed data on tree cover and extensive field data on livestock grazing regimes, soil chemistry, tree diameters, and tree regeneration, we show that the region is facing a tree regeneration crisis. Under conventional management, across the region, millions of hectares of land currently supporting tens of millions of trees will be treeless within decades from now. This would have severe negative ramifications for biodiversity and key ecosystem services, including water infiltration and shade provision for livestock. However, we identified an unexpected win-win solution for tree regeneration and commercial grazing. A relatively new practice in the region is fast-rotational grazing, characterized by prolonged rest periods in between short, intensive grazing events. The probability of regeneration under fast-rotational grazing was up to 4-fold higher than under conventional grazing, and it did not differ significantly from the probability of regeneration in ungrazed areas. In addition, trees were more likely to regenerate where soil nutrient levels were low. These findings suggest that the tree regeneration crisis can be reversed by applying low-input, fast-rotational grazing. New policy settings supporting these practices could signal a turning point for the region, from ecological decline to ecological recovery.

  1. Enhanced bioactive scaffolds for bone tissue regeneration

    Science.gov (United States)

    Karnik, Sonali

    Bone injuries are commonly termed as fractures and they vary in their severity and causes. If the fracture is severe and there is loss of bone, implant surgery is prescribed. The response to the implant depends on the patient's physiology and implant material. Sometimes, the compromised physiology and undesired implant reactions lead to post-surgical complications. [4, 5, 20, 28] Efforts have been directed towards the development of efficient implant materials to tackle the problem of post-surgical implant failure. [ 15, 19, 24, 28, 32]. The field of tissue engineering and regenerative medicine involves the use of cells to form a new tissue on bio-absorbable or inert scaffolds. [2, 32] One of the applications of this field is to regenerate the damaged or lost bone by using stem cells or osteoprogenitor cells on scaffolds that can integrate in the host tissue without causing any harmful side effects. [2, 32] A variety of natural, synthetic materials and their combinations have been used to regenerate the damaged bone tissue. [2, 19, 30, 32, 43]. Growth factors have been supplied to progenitor cells to trigger a sequence of metabolic pathways leading to cellular proliferation, differentiation and to enhance their functionality. [56, 57] The challenge persists to supply these proteins, in the range of nano or even picograms, and in a sustained fashion over a period of time. A delivery system has yet to be developed that would mimic the body's inherent mechanism of delivering the growth factor molecules in the required amount to the target organ or tissue. Titanium is the most preferred metal for orthopedic and orthodontic implants. [28, 46, 48] Even though it has better osteogenic properties as compared to other metals and alloys, it still has drawbacks like poor integration into the surrounding host tissue leading to bone resorption and implant failure. [20, 28, 35] It also faces the problem of postsurgical infections that contributes to the implant failure. [26, 37

  2. Re-use of radio-thermoluminescent LiF without regeneration; Reemploi sans regeneration du LiF radiothermoluminescent

    Energy Technology Data Exchange (ETDEWEB)

    Portal, G; Francois, H; Blanchard, Ph [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    There is at the present time a rapid development of dosimetry techniques using thermoluminescence. Amongst the many substance actually in use, research laboratories generally employ lithium fluoride which is of particular interest for dosing {beta} radiation and low-energy X and {gamma} radiation. It might also be of use in radioprotection if its practical application were simpler. It has in effect unstable traps situated just below the surface which adversely affect the measurements if the material is not regenerated before each operation; this process considerably complicates the carrying out of measurements in the field of radioprotection. We have prepared a lithium fluoride giving unstable peaks which are less pronounced that those of the commercially available product and which can therefore be used without regeneration. In this report we compare the thermoluminescence curves for these two products. An analysis is given of the reasons for which this radio-thermoluminescent product has a stable luminescence curve and can be used almost one hundred times without being regenerated. We show that this quality can be retained when the LiF is used as a filler for teflon for applications in detectors. (authors) [French] On assiste a un developpement rapide des techniques de dosimetrie par thermoluminescence. Parmi les nombreux materiaux actuellement utilises, les laboratoires de recherche font generalement porter leur preference sur le fluorure de lithium qui est particulierement interessant pour la dosimetrie des rayonnements {beta} et des rayonnements X et {gamma} de faible energie. Ses qualites seraient egalement appreciees en radioprotection si sa mise en oeuvre etait plus simple. Il presente en effet des pieges instables situes a une faible profondeur qui alterent les mesures si l'on ne procede pas, avant chaque utilisation, a la regeneration du materiau, operation qui alourdit considerablement les mesures pratiquees en radioprotection. Nous avons prepare un

  3. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.

    Science.gov (United States)

    Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A; Megason, Sean G; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.

  4. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration

    Science.gov (United States)

    Tang, Yufei; Wu, Cong; Wu, Zixiang; Hu, Long; Zhang, Wei; Zhao, Kang

    2017-02-01

    The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO3) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d33 of HA/BaTiO3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO3 piezoelectric ceramics.

  5. Bone marrow-derived stromal cells are more beneficial cell sources for tooth regeneration compared with adipose-derived stromal cells.

    Science.gov (United States)

    Ye, Lanfeng; Chen, Lin; Feng, Fan; Cui, Junhui; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-10-01

    Tooth loss is presently a global epidemic and tooth regeneration is thought to be a feasible and ideal treatment approach. Choice of cell source is a primary concern in tooth regeneration. In this study, the odontogenic differentiation potential of two non-dental-derived stem cells, adipose-derived stromal cells (ADSCs) and bone marrow-derived stromal cells (BMSCs), were evaluated both in vitro and in vivo. ADSCs and BMSCs were induced in vitro in the presence of tooth germ cell-conditioned medium (TGC-CM) prior to implantation into the omentum majus of rats, in combination with inactivated dentin matrix (IDM). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of odontogenic-related genes. Immunofluorescence and immunohistochemical assays were used to detect the protein levels of odontogenic-specific genes, such as DSP and DMP-1 both in vitro and in vivo. The results suggest that both ADSCs and BMSCs have odontogenic differentiation potential. However, the odontogenic potential of BMSCs was greater compared with ADSCs, showing that BMSCs are a more appropriate cell source for tooth regeneration. © 2015 International Federation for Cell Biology.

  6. Biological regeneration of carrier material for the adsorption of halogen hydrocarbons in plants for cleaning up contaminated groundwater. Final report. Biologische Regeneration von Traegermaterial fuer die Adsorption von Halogenkohlenwasserstoffen in Anlagen zur Sanierung kontaminierten Grundwassers. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ressel, K

    1993-06-01

    Halogen hydrocarbons and above all chlorinated hydrocarbons are widespread harmful substances in soils and in groundwater. When cleaning up groundwater contamination, the contaminants are brought into the gas phase by strip processes. From the gas phase, the contaminants can be adsorbed on different carrier materials, mostly active carbon. One was searching for ways to regenerate this adsorption material. The mixed culture from a sea sediment most suitable for the decomposition of chlorinated hydrocarbons was optimized regarding its decomposition performance and was later used on the technical scale. In the decomposition experiments on the large technical scale, the cultures were lodged on filling bodies which has a much higher amount of gaps. In this case, an optimum supply of the micro-organisms with oxygen and methane is guaranteed, which is used as co-substrate. No intermediate product was found in a gas chromatography examination. The biologically occupied stage is situated between a desorption column and the active carbon filters, and reduces the load of harmful substances which can no longer be brought into the gas phase by stripping out. This has the advantage that it can be integrated in existing plants and can be adapted to any case of contamination by lodging adapted micro-organisms on it. The basis for each application must be separately researched. (orig.)

  7. All-Optical Regeneration System for Optical Wavelength Division Multiplexed Communication Systems

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to an all-optical regeneration system for regeneration of optical wavelength division multiplexed WDM data signals in an optical WDM communication system. The system comprises a WDM-to-Optical time domain multiplexing OTDM, WDM-to-OTDM, converter, capable of converting....... The system additionally comprises an OTDM-to-WDM converter for converting the output OTDM data signal to an output WDM data signal. An input of the all-optical regenerator unit is in optical communication with an output of the WDM-to-OTDM converter, and an output of the all-optical regenerator unit...... an input WDM data signal comprising multiple wavelength channels into an input OTDM data signal comprising multiple time multiplexed time channels. The system further comprises an all-optical regenerator unit being configured for regenerating the input OTDM data signal into an output OTDM data signal...

  8. Evaluation of somatic embryogenesis and plant regeneration in ...

    African Journals Online (AJOL)

    In an attempt to develop a successfully reproducible in vitro regeneration protocol for a group of diverse sorghum genotypes, 10 sorghum lines including locally adapted and commercially important elite genotypes were assessed for their regeneration potential on different culture media–containing adequate growth ...

  9. Regeneration of Optic Nerve

    Directory of Open Access Journals (Sweden)

    Kwok-Fai So

    2011-05-01

    Full Text Available The optic nerve is part of the central nervous system (CNS and has a structure similar to other CNS tracts. The axons that form the optic nerve originate in the ganglion cell layer of the retina and extend through the optic tract. As a tissue, the optic nerve has the same organization as the white matter of the brain in regard to its glia. There are three types of glial cells: Oligodendrocytes, astrocytes, and microglia. Little structural and functional regeneration of the CNS takes place spontaneously following injury in adult mammals. In contrast, the ability of the mammalian peripheral nervous system (PNS to regenerate axons after injury is well documented. A number of factors are involved in the lack of CNS regeneration, including: (i the response of neuronal cell bodies against the damage; (ii myelin-mediated inhibition by oligodendrocytes; (iii glial scarring, by astrocytes; (iv macrophage infiltration; and (v insufficient trophic factor support. The fundamental difference in the regenerative capacity between CNS and PNS neuronal cell bodies has been the subject of intensive research. In the CNS the target normally conveys a retrograde trophic signal to the cell body. CNS neurons die because of trophic deprivation. Damage to the optic nerve disconnects the neuronal cell body from its target-derived trophic peptides, leading to the death of retinal ganglion cells. Furthermore, the axontomized neurons become less responsive to the peptide trophic signals they do receive. On the other hand, adult PNS neurons are intrinsically responsive to neurotrophic factors and do not lose trophic responsiveness after axotomy. In this talk different strategies to promote optic-nerve regeneration in adult mammals are reviewed. Much work is still needed to resolve many issues. This is a very important area of neuroregeneration and neuroprotection, as currently there is no cure after traumatic optic nerve injury or retinal disease such as glaucoma, which

  10. Regenerating mixed oak stands in Pennsylvania: a quarter-century retrospective

    Science.gov (United States)

    P. J. Gould; K. C. Steiner; J. C. Finley; M. E. McDill

    2003-01-01

    The outcomes of regeneration treatments in 90 oak-dominated stands in Pennsylvania are examined 20 to 33 years after treatment. Approximately one-quarter of the stands failed to reach 50 percent stocking after at least 20 years, but most stands regenerated successfully. Red maple is the most frequently observed species in the regenerated stands, followed by oak species...

  11. Gene expression profiles of fin regeneration in loach (Paramisgurnus dabryanu).

    Science.gov (United States)

    Li, Li; He, Jingya; Wang, Linlin; Chen, Weihua; Chang, Zhongjie

    2017-11-01

    Teleost fins can regenerate accurate position-matched structure and function after amputation. However, we still lack systematic transcriptional profiling and methodologies to understand the molecular basis of fin regeneration. After histological analysis, we established a suppression subtraction hybridization library containing 418 distinct sequences expressed differentially during the process of blastema formation and differentiation in caudal fin regeneration. Genome ontology and comparative analysis of differential distribution of our data and the reference zebrafish genome showed notable subcategories, including multi-organism processes, response to stimuli, extracellular matrix, antioxidant activity, and cell junction function. KEGG pathway analysis allowed the effective identification of relevant genes in those pathways involved in tissue morphogenesis and regeneration, including tight junction, cell adhesion molecules, mTOR and Jak-STAT signaling pathway. From relevant function subcategories and signaling pathways, 78 clones were examined for further Southern-blot hybridization. Then, 17 genes were chosen and characterized using semi-quantitative PCR. Then 4 candidate genes were identified, including F11r, Mmp9, Agr2 and one without a match to any database. After real-time quantitative PCR, the results showed obvious expression changes in different periods of caudal fin regeneration. We can assume that the 4 candidates, likely valuable genes associated with fin regeneration, deserve additional attention. Thus, our study demonstrated how to investigate the transcript profiles with an emphasis on bioinformatics intervention and how to identify potential genes related to fin regeneration processes. The results also provide a foundation or knowledge for further research into genes and molecular mechanisms of fin regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Helping the Retina Regenerate

    Science.gov (United States)

    ... the retina News Brief 03/30/17 A new report gives recommendations for regenerating retinal ganglion cells (RGCs), crucial neurons in the back of the eye that carry visual information to the brain. Authored ...

  13. High-throughput and multiplexed regeneration buffer scouting for affinity-based interactions

    NARCIS (Netherlands)

    Geuijen, K.P.M.; Schasfoort, R.B.; Wijffels, R.H.; Eppink, M.H.M.

    2014-01-01

    Affinity-based analyses on biosensors depend partly on regeneration between measurements. Regeneration is performed with a buffer that efficiently breaks all interactions between ligand and analyte while maintaining the active binding site of the ligand. We demonstrated a regeneration buffer

  14. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  15. Localization of QTLs for in vitro plant regeneration in tomato.

    Science.gov (United States)

    Trujillo-Moya, Carlos; Gisbert, Carmina; Vilanova, Santiago; Nuez, Fernando

    2011-10-20

    Low regeneration ability limits biotechnological breeding approaches. The influence of genotype in the regeneration response is high in both tomato and other important crops. Despite the various studies that have been carried out on regeneration genetics, little is known about the key genes involved in this process. The aim of this study was to localize the genetic factors affecting regeneration in tomato. We developed two mapping populations (F2 and BC1) derived from a previously selected tomato cultivar (cv. Anl27) with low regeneration ability and a high regeneration accession of the wild species Solanum pennellii (PE-47). The phenotypic assay indicated dominance for bud induction and additive effects for both the percentage of explants with shoots and the number of regenerated shoots per explant. Two linkage maps were developed and six QTLs were identified on five chromosomes (1, 3, 4, 7 and 8) in the BC1 population by means of the Interval Mapping and restricted Multiple QTL Mapping methods. These QTLs came from S. pennellii, with the exception of the minor QTL located on chromosome 8, which was provided by cv. Anl27. The main QTLs correspond to those detected on chromosomes 1 and 7. In the F2 population, a QTL on chromosome 7 was identified on a similar region as that detected in the BC1 population. Marker segregation distortion was observed in this population in those areas where the QTLs of BC1 were detected. Furthermore, we located two tomato candidate genes using a marker linked to the high regeneration gene: Rg-2 (a putative allele of Rg-1) and LESK1, which encodes a serine/threonine kinase and was proposed as a marker for regeneration competence. As a result, we located a putative allele of Rg-2 in the QTL detected on chromosome 3 that we named Rg-3. LESK1, which is also situated on chromosome 3, is outside Rg-3. In a preliminary exploration of the detected QTL peaks, we found several genes that may be related to regeneration. In this study we have

  16. Localization of QTLs for in vitro plant regeneration in tomato

    Directory of Open Access Journals (Sweden)

    Nuez Fernando

    2011-10-01

    Full Text Available Abstract Background Low regeneration ability limits biotechnological breeding approaches. The influence of genotype in the regeneration response is high in both tomato and other important crops. Despite the various studies that have been carried out on regeneration genetics, little is known about the key genes involved in this process. The aim of this study was to localize the genetic factors affecting regeneration in tomato. Results We developed two mapping populations (F2 and BC1 derived from a previously selected tomato cultivar (cv. Anl27 with low regeneration ability and a high regeneration accession of the wild species Solanum pennellii (PE-47. The phenotypic assay indicated dominance for bud induction and additive effects for both the percentage of explants with shoots and the number of regenerated shoots per explant. Two linkage maps were developed and six QTLs were identified on five chromosomes (1, 3, 4, 7 and 8 in the BC1 population by means of the Interval Mapping and restricted Multiple QTL Mapping methods. These QTLs came from S. pennellii, with the exception of the minor QTL located on chromosome 8, which was provided by cv. Anl27. The main QTLs correspond to those detected on chromosomes 1 and 7. In the F2 population, a QTL on chromosome 7 was identified on a similar region as that detected in the BC1 population. Marker segregation distortion was observed in this population in those areas where the QTLs of BC1 were detected. Furthermore, we located two tomato candidate genes using a marker linked to the high regeneration gene: Rg-2 (a putative allele of Rg-1 and LESK1, which encodes a serine/threonine kinase and was proposed as a marker for regeneration competence. As a result, we located a putative allele of Rg-2 in the QTL detected on chromosome 3 that we named Rg-3. LESK1, which is also situated on chromosome 3, is outside Rg-3. In a preliminary exploration of the detected QTL peaks, we found several genes that may be related

  17. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls.

    Directory of Open Access Journals (Sweden)

    Mathieu Lévesque

    2007-11-01

    Full Text Available Axolotls (urodele amphibians have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-beta. In the present study, the full length sequence of the axolotl TGF-beta1 cDNA was isolated. The spatio-temporal expression pattern of TGF-beta1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-beta signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-beta type I receptor, SB-431542, we show that TGF-beta signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-beta signaling are down-regulated. These data directly implicate TGF

  18. MHD (Magnetohydrodynamics) recovery and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    McIlroy, R. A. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Probert, P. B. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lahoda, E. J. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Swift, W. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jackson, D. M. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Prasad, J. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Martin, J. [Hudson Engineering (United States); Rogers, C. [Hudson Engineering (United States); Ho, K. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Senary, M. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lee, S. [Univ. of Akron, OH (United States)

    1988-10-01

    A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.

  19. Regeneration of Algerian germplasm by stigma/style somatic ...

    African Journals Online (AJOL)

    ... days in most of the cultured genotypes. Formed embryos were cultured in a single tube before in vivo acclimatization. After sanitary assays, regenerated plants were shown to be free from the agents detected in the mother trees. Key words: Algeria, citrus germplasm, plant regeneration, sanitation, somatic embryogenesis.

  20. Dental Pulp Stem Cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues

    Directory of Open Access Journals (Sweden)

    Maitane eAurrekoetxea

    2015-10-01

    Full Text Available Dental pulp stem cells, or DPSC, are neural crest-derived cells with an outstanding capacity to differentiate along multiple cell lineages of interest for cell therapy. In particular, highly efficient osteo/dentinogenic differentiation of DPSC can be achieved using simple in vitro protocols, making these cells a very attractive and promising tool for the future treatment of dental and periodontal diseases. Among craniomaxillofacial organs, the tooth and salivary gland are two such cases in which complete regeneration by tissue engineering using DPSC appears to be possible, as research over the last decade has made substantial progress in experimental models of partial or total regeneration of both organs, by cell recombination technology. Moreover, DPSC seem to be a particularly good choice for the regeneration of nerve tissues, including injured or transected cranial nerves. In this context, the oral cavity appears to be an excellent testing ground for new regenerative therapies using DPSC. However, many issues and challenges need yet to be addressed before these cells can be employed in clinical therapy. In this review, we point out some important aspects on the biology of DPSC with regard to their use for the reconstruction of different craniomaxillofacial tissues and organs, with special emphasis on cranial bones, nerves, teeth, and salivary glands. We suggest new ideas and strategies to fully exploit the capacities of DPSC for bioengineering of the aforementioned tissues.

  1. Releasing 'brakes' to nerve regeneration: intrinsic molecular targets.

    Science.gov (United States)

    Krishnan, Anand; Duraikannu, Arul; Zochodne, Douglas W

    2016-02-01

    Restoring critical neuronal architecture after peripheral nerve injury is challenging. Although immediate regenerative responses to peripheral axon injury involve the synthesis of regeneration-associated proteins in neurons and Schwann cells, an unfavorable balance between growth facilitatory and growth inhibitory signaling impairs the growth continuum of injured peripheral nerves. Molecules involved with the signaling network of tumor suppressors play crucial roles in shifting the balance between growth and restraint during axon regeneration. An understanding of the molecular framework of tumor suppressor molecules in injured neurons and its impact on stage-specific regeneration events may expose therapeutic intervention points. In this review we discuss how signaling networks of the specific tumor suppressors PTEN, Rb1, p53, p27 and p21 are altered in injured peripheral nerves and how this impacts peripheral nerve regeneration. Insights into the roles and importance of these pathways may open new avenues for improving the neurological deficits associated with nerve injury. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Modifying Lipid Rafts Promotes Regeneration and Functional Recovery

    Directory of Open Access Journals (Sweden)

    Nardos G. Tassew

    2014-08-01

    Full Text Available Ideal strategies to ameliorate CNS damage should promote both neuronal survival and axon regeneration. The receptor Neogenin promotes neuronal apoptosis. Its ligand prevents death, but the resulting repulsive guidance molecule a (RGMa-Neogenin interaction also inhibits axonal growth, countering any prosurvival benefits. Here, we explore strategies to inhibit Neogenin, thus simultaneously enhancing survival and regeneration. We show that bone morphogenetic protein (BMP and RGMa-dependent recruitment of Neogenin into lipid rafts requires an interaction between RGMa and Neogenin subdomains. RGMa or Neogenin peptides that prevent this interaction, BMP inhibition by Noggin, or reduction of membrane cholesterol all block Neogenin raft localization, promote axon outgrowth, and prevent neuronal apoptosis. Blocking Neogenin raft association influences axonal pathfinding, enhances survival in the developing CNS, and promotes survival and regeneration in the injured adult optic nerve and spinal cord. Moreover, lowering cholesterol disrupts rafts and restores locomotor function after spinal cord injury. These data reveal a unified strategy to promote both survival and regeneration in the CNS.

  3. A biochemical basis for induction of retina regeneration by antioxidants.

    Science.gov (United States)

    Echeverri-Ruiz, Nancy; Haynes, Tracy; Landers, Joseph; Woods, Justin; Gemma, Michael J; Hughes, Michael; Del Rio-Tsonis, Katia

    2018-01-15

    The use of antioxidants in tissue regeneration has been studied, but their mechanism of action is not well understood. Here, we analyze the role of the antioxidant N-acetylcysteine (NAC) in retina regeneration. Embryonic chicks are able to regenerate their retina after its complete removal from retinal stem/progenitor cells present in the ciliary margin (CM) of the eye only if a source of exogenous factors, such as FGF2, is present. This study shows that NAC modifies the redox status of the CM, initiates self-renewal of the stem/progenitor cells, and induces regeneration in the absence of FGF2. NAC works as an antioxidant by scavenging free radicals either independently or through the synthesis of glutathione (GSH), and/or by reducing oxidized proteins through a thiol disulfide exchange activity. We dissected the mechanism used by NAC to induce regeneration through the use of inhibitors of GSH synthesis and the use of other antioxidants with different biochemical structures and modes of action, and found that NAC induces regeneration through its thiol disulfide exchange activity. Thus, our results provide, for the first time, a biochemical basis for induction of retina regeneration. Furthermore, NAC induction was independent of FGF receptor signaling, but dependent on the MAPK (pErk1/2) pathway. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Impaired Muscle Regeneration in Ob/ob and Db/db Mice

    Directory of Open Access Journals (Sweden)

    Mai-Huong Nguyen

    2011-01-01

    Full Text Available In obesity and type 2 diabetes, efficient skeletal muscle repair following injury may be required, not only for restoring muscle structure and function, but also for maintaining exercise capacity and insulin sensitivity. The hypothesis of this study was that muscle regeneration would be impaired in ob/ob and db/db mice, which are common mouse models of obesity and type 2 diabetes. Muscle injury was produced by cardiotoxin injection, and regeneration was assessed by morphological and immunostaining techniques. Muscle regeneration was delayed in ob/ob and db/db mice, but not in a less severe model of insulin resistance – feeding a high-fat diet to wild-type mice. Angiogenesis, cell proliferation, and myoblast accumulation were also impaired in ob/ob and db/db mice, but not the high-fat diet mice. The impairments in muscle regeneration were associated with impaired macrophage accumulation; macrophages have been shown previously to be required for efficient muscle regeneration. Impaired regeneration in ob/ob and db/db mice could be due partly to the lack of leptin signaling, since leptin is expressed both in damaged muscle and in cultured muscle cells. In summary, impaired muscle regeneration in ob/ob and db/db mice was associated with reduced macrophage accumulation, angiogenesis, and myoblast activity, and could have implications for insulin sensitivity in the skeletal muscle of obese and type 2 diabetic patients.

  5. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions

    Science.gov (United States)

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2014-01-01

    Ecosystems dominated by big sagebrush, Artemisia tridentata Nuttall (Asteraceae), which are the most widespread ecosystems in semiarid western North America, have been affected by land use practices and invasive species. Loss of big sagebrush and the decline of associated species, such as greater sage-grouse, are a concern to land managers and conservationists. However, big sagebrush regeneration remains difficult to achieve by restoration and reclamation efforts and there is no regeneration simulation model available. We present here the first process-based, daily time-step, simulation model to predict yearly big sagebrush regeneration including relevant germination and seedling responses to abiotic factors. We estimated values, uncertainty, and importance of 27 model parameters using a total of 1435 site-years of observation. Our model explained 74% of variability of number of years with successful regeneration at 46 sites. It also achieved 60% overall accuracy predicting yearly regeneration success/failure. Our results identify specific future research needed to improve our understanding of big sagebrush regeneration, including data at the subspecies level and improved parameter estimates for start of seed dispersal, modified wet thermal-time model of germination, and soil water potential influences. We found that relationships between big sagebrush regeneration and climate conditions were site specific, varying across the distribution of big sagebrush. This indicates that statistical models based on climate are unsuitable for understanding range-wide regeneration patterns or for assessing the potential consequences of changing climate on sagebrush regeneration and underscores the value of this process-based model. We used our model to predict potential regeneration across the range of sagebrush ecosystems in the western United States, which confirmed that seedling survival is a limiting factor, whereas germination is not. Our results also suggested that modeled

  6. Shining Light on Nanotechnology to Help Repair and Regeneration

    Science.gov (United States)

    Gupta, Asheesh; Avci, Pinar; Sadasivam, Magesh; Chandran, Rakkiyappan; Parizotto, Nivaldo; Vecchio, Daniela; Antunes-Melo, Wanessa C; Dai, Tianhong; Chiang, Long Y.; Hamblin, Michael R.

    2012-01-01

    Phototherapy can be used in two completely different but complementary therapeutic applications. While low level laser (or light) therapy (LLLT) uses red or near-infrared light alone to reduce inflammation, pain and stimulate tissue repair and regeneration, photodynamic therapy (PDT) uses the combination of light plus non-toxic dyes (called photosensitizers) to produce reactive oxygen species that can kill infectious microorganisms and cancer cells or destroy unwanted tissue (neo-vascularization in the choroid, atherosclerotic plaques in the arteries). The recent development of nanotechnology applied to medicine (nanomedicine) has opened a new front of advancement in the field of phototherapy and has provided hope for the development of nanoscale drug delivery platforms for effective killing of pathological cells and to promote repair and regeneration. Despite the well-known beneficial effects of phototherapy and nanomaterials in producing the killing of unwanted cells and promoting repair and regeneration, there are few reports that combine all three elements i.e. phototherapy, nanotechnology and, tissue repair and regeneration. However, these areas in all possible binary combinations have been addressed by many workers. The present review aims at highlighting the combined multi-model applications of phototherapy, nanotechnology and, reparative and regeneration medicine and outlines current strategies, future applications and limitations of nanoscale-assisted phototherapy for the management of cancers, microbial infections and other diseases, and to promote tissue repair and regeneration. PMID:22951919

  7. Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal.

    Science.gov (United States)

    Korak, Julie A; Huggins, Richard; Arias-Paic, Miguel

    2017-07-01

    Due to stricter regulations, some drinking water utilities must implement additional treatment processes to meet potable water standards for hexavalent chromium (Cr(VI)), such as the California limit of 10 μg/L. Strong base anion exchange is effective for Cr(VI) removal, but efficient resin regeneration and waste minimization are important for operational, economic and environmental considerations. This study compared multiple regeneration methods on pilot-scale columns on the basis of regeneration efficiency, waste production and salt usage. A conventional 1-Stage regeneration using 2 N sodium chloride (NaCl) was compared to 1) a 2-Stage process with 0.2 N NaCl followed by 2 N NaCl and 2) a mixed regenerant solution with 2 N NaCl and 0.2 N sodium bicarbonate. All methods eluted similar cumulative amounts of chromium with 2 N NaCl. The 2-Stage process eluted an additional 20-30% of chromium in the 0.2 N fraction, but total resin capacity is unaffected if this fraction is recycled to the ion exchange headworks. The 2-Stage approach selectively eluted bicarbonate and sulfate with 0.2 N NaCl before regeneration using 2 N NaCl. Regeneration approach impacted the elution efficiency of both uranium and vanadium. Regeneration without co-eluting sulfate and bicarbonate led to incomplete uranium elution and potential formation of insoluble uranium hydroxides that could lead to long-term resin fouling, decreased capacity and render the resin a low-level radioactive solid waste. Partial vanadium elution occurred during regeneration due to co-eluting sulfate suppressing vanadium release. Waste production and salt usage were comparable for the 1- and 2-Stage regeneration processes with similar operational setpoints with respect to chromium or nitrate elution. Published by Elsevier Ltd.

  8. DIAGNOSTICS AND REGENERATION OF COMMON RAIL INJECTORS

    Directory of Open Access Journals (Sweden)

    Łukasz KONIECZNY

    2015-03-01

    Full Text Available The article presents the methodology of Common Rail injector diagnostic, regeneration and regulation with use of professional test stands. The EPS 815 machine can be used to test and repair all BOSCH injectors fully satisfying the producer requirements and standards. The article describes an example injector diagnosis with use of such test stand and additionally presents appropriate injector regeneration and encoding techniques

  9. Improvement characteristics shown in holistic regeneration of Ballymun toward sustainable community

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeunsook; Lim, Soohyun; Kim, Gunhyoung [Department of Housing and Interior Design, Yonsei University, Seoul (Korea)

    2010-02-15

    Substantial numbers of urban and residential environments constructed in the 20th century are experiencing degeneration and the importance of challenging to revitalize community holistically is getting more seriously recognized. There, however, has been limitation in grasping the holistic regeneration information as urban regeneration usually goes through a long-term and complicated procedure. Yet, the urban and housing regeneration's direction is required to be holistic in the 21st Century. Any precedent case that had tried the holistic regeneration needs to be checked thoroughly and thereby the result needs to be applied to the future attempts as a reference and knowledge base. The purpose of this study was to delineate improvement characteristics that appeared during the course of holistic regeneration in Ballymun of Ireland. This research is an archival research in nature which also used content analysis technique since it deals with reports and newsletters as archival records that were accumulated on a regular base throughout the whole process. The leading projects continued over ten years of improvement were scrutinized in the perspective of physical, social, economic, cultural, and environmental dimensions of regeneration. The main results were, first, a series of improvement activities and projects to regenerate each of five dimensions were delineated for comprehensive understanding. Second, connected patterns for synergistic improvement were identified and patterns were described to show the detailed contents as examples. This study would provide communities that face holistic regeneration, an insight, planning skills, creative and realistic ideas for implementation, thereby empowers planning capability toward holistic regeneration. (author)

  10. A fundamental study of a regenerator for an Ericsson magnetic refrigerator

    International Nuclear Information System (INIS)

    Matsumoto, K.; Ito, T.; Numazawa, T.; Hashimoto, T.; Kuriyama, T.; Nakagome, H.

    1986-01-01

    The authors studied an Ericsson magnetic refrigerator above 20 K. The magnetic working material passes through the regenerator during internal heat transfer processes. In the temperature range above 20 K, a solid is indispensable for a regenerator in need of the large volumetric heat capacity. Therefore lead is used for the testing regenerator. As thermal conduction of gaseous helium is expected to be useful for the heat transfer between the regenerator and the working material, the authors have made the gap between them small in order to achieve good heat transfer. They investigated the heat transfer process between working material and regenerator experimentally in the temperature from 25 K to 55 K

  11. Comparative study of radiosensitivity of normal and regenerating tissues

    International Nuclear Information System (INIS)

    Samokhvalova, H.S.; Popova, M.F.

    1983-01-01

    A comparative study of radiosensitivity of cells of normal and regenerating tissues of bone marrow and spleen has demonstrated that single exposure to X-rays produces a lesser damaging effect on regenerating tissues than on normal ones. The data obtained indicate that the increase in radioresistance of the organism during active regeneration of the haemopoietic organs is due not merely to the increase in the dividing cell pool of these organs but also to qualitative changes in their functional state

  12. Developmental anatomy of blueberry (Vaccinium corymbosum L. ‘Aurora’) shoot regeneration

    Science.gov (United States)

    The culture of Vaccinium corymbosum L. ’Aurora’ leaves on regeneration medium results in the regeneration of adventitious shoots. We present anatomical evidence that these new shoot apices are directly regenerated from the cultured blades. Mounds of densely staining cells, which formed from epidermi...

  13. Static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon.

    Science.gov (United States)

    Nagasawa, Koji; Noguchi, Masahiko; Ikoma, Kazuya; Kubo, Toshikazu

    2008-07-01

    Since tendons show viscoelastic behavior, dynamic viscoelastic properties should be assessed in addition to static biomechanical properties. We evaluated differences between static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon following tenotomy. At 3, 6, or 12 weeks after right Achilles tenotomy, the right (regenerating) and left (control) tendons were collected with the calcaneus from 49 rabbits. A unidirectional failure test and a dynamic viscoelastic test were conducted. Tensile strength and Young's modulus (static biomechanical properties) in the regenerating group at Week 6 were significantly greater than at Week 3, while at Week 12, these were significantly greater than at Week 6. However, even at Week 12, both parameters were less than in the control group. The value of tan delta represents dynamic viscoelasticity, a smaller tan delta indicates greater elasticity. tan delta for the regenerating group was significantly greater than for the control group at Week 3, but regenerating and control groups did not significantly differ at Week 6. No marked change was seen from Weeks 6 to 12 in the regenerating group, and no significant difference in tan delta was evident between the regenerating and control groups at Week 12. Dynamic biomechanical properties of regenerating rabbit Achilles tendons may improve more rapidly than static biomechanical properties. Ability to tolerate dynamic movement in the healing Achilles tendon may improve more rapidly than ability to withstand static stresses.

  14. Down-regulate of Djrfc2 causes tissues hypertrophy during planarian regeneration.

    Science.gov (United States)

    Guo, Qi; Zhao, Guixia; Ni, Jiajia; Guo, Yanan; Zhang, Yizhe; Tian, Qingnan; Zhang, Shoutao

    2017-11-25

    Planarians are an ideal model organism for regeneration research due to their amazing ability to regenerate. DNA replication is crucial for genome stability. Replication factor C (RFC), which is a replication factor C-like complex and plays an important role during DNA replication in eukaryotes, has been reported as a wound response factor during planarian regeneration. However, how RFC controls regeneration in planarians by regulating DNA replication remains to be explained. Here, we used a two-dimensional electrophoresis (2-DE) proteomic approach to identify differentially expressed proteins in intact and regenerated planarians. Approximately 132 protein spots showed differences between intact and regenerative tissues. We selected 21 significantly expressed protein spots and processed them using TOF MS analysis. Finally, we cloned three of these candidate genes (Djhsp70, Djrfc2, Djfaim), focusing on the function of Djrfc2 during regeneration. We found that the distribution of Djrfc2 tends toward the wound site. RNA interference (RNAi) of Djrfc2 increases the number of dividing cells and the expression level of planarian neoblast marker genes, which may result in hyper-proliferation. Our studies use an available approach to directly study the regeneration dynamic at the protein level and provide further evidence to support a function of Djrfc2 in planarian regeneration. Copyright © 2017. Published by Elsevier Inc.

  15. Callus regeneration from stem explants of Pseudarthira viscida (L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... regeneration frequency have come from tissue culture work done in ... Table 1. In vitro responses from stem callus of Psudarthria viscida Wight & Arn. Growth .... plantlets regeneration from cotyledonary callus of Tomato.

  16. Development of an efficient plant regeneration protocol for sweet ...

    African Journals Online (AJOL)

    UKZN

    2012-10-18

    Oct 18, 2012 ... explants produced highly recalcitrant callus that did not regenerate into ... Key words: Tissue culture, regeneration, sweet potato, genetic transformation. .... sterilized in 5% (v/v) sodium hypochlorite solution for 20 min and.

  17. Effective regeneration of anode material recycled from scrapped Li-ion batteries

    Science.gov (United States)

    Zhang, Jin; Li, Xuelei; Song, Dawei; Miao, Yanli; Song, Jishun; Zhang, Lianqi

    2018-06-01

    Recycling high-valuable metal elements (such as Li, Ni, Co, Al and Cu elements) from scrapped lithium ion batteries can bring significant economic benefits. However, recycling and reusing anode material has not yet attracted wide attention up to now, due to the lower added-value than the above valuable metal materials and the difficulties in regenerating process. In this paper, a novel regeneration process with significant green advance is proposed to regenerate anode material recycled from scrapped Li-ion batteries for the first time. After regenerated, most acetylene black (AB) and all the styrene butadiene rubber (SBR), carboxymethylcellulose sodium (CMC) in recycled anode material are removed, and the surface of anode material is coated with pyrolytic carbon from phenolic resin again. Finally, the regenerated anode material (graphite with coating layer, residual AB and a little CMC pyrolysis product) is obtained. As expected, all the technical indexs of regenerated anode material exceed that of a midrange graphite with the same type, and partial technical indexs are even closed to that of the unused graphite. The results indicate the effective regeneration of anode material recycled from scrapped Li-ion batteries is really achieved.

  18. Influence of thermal treatment on OSL regeneration in potassium chloride

    International Nuclear Information System (INIS)

    Majgier, Renata; Biernacka, Magdalena; Mandowski, Arkadiusz

    2016-01-01

    Optically stimulated luminescence (OSL) of pure analytical potassium chloride (KCl) prepared in two different forms (crystals and pellets) was studied. The occurrence of regeneration effect (self-renewal of the OSL signal) in the material was examined. The experiments using the variable delay OSL (VD-OSL) method were carried out. Performed measurements allowed to determine time scale of the phenomenon, as well as quantitative changes of regeneration depending on thermal treatment before and after irradiation. Significant increase of the OSL regeneration was noticeable for pellets after the application of the annealing before irradiation, while for crystals a substantial decrease of regeneration was observed. Preheating applied after irradiation caused that self-renewal of OSL signal was drastically reduced or completely suppressed depending on the form of KCl samples. - Highlights: • Optically stimulated luminescence (OSL) of potassium chloride (KCl) was studied. • The measurements were performed using the variable delay OSL method (VD-OSL). • It was found that regeneration of OSL intensity in KCl could be as high as 2000%. • Annealing caused reduction of OSL renewal for crystals and its increase for pellets. • Preheating after irradiation removed or significantly reduced the OSL regeneration.

  19. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration.

    Science.gov (United States)

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  20. Delayed liver regeneration after partial hepatectomy in adiponectin knockout mice

    International Nuclear Information System (INIS)

    Ezaki, Hisao; Yoshida, Yuichi; Saji, Yukiko; Takemura, Takayo; Fukushima, Juichi; Matsumoto, Hitoshi; Kamada, Yoshihiro; Wada, Akira; Igura, Takumi; Kihara, Shinji; Funahashi, Tohru; Shimomura, Iichiro; Tamura, Shinji; Kiso, Shinichi; Hayashi, Norio

    2009-01-01

    We previously demonstrated that adiponectin has anti-fibrogenic and anti-inflammatory effects in the liver of mouse models of various liver diseases. However, its role in liver regeneration remains unclear. The aim of this study was to determine the role of adiponectin in liver regeneration. We assessed liver regeneration after partial hepatectomy in wild-type (WT) and adiponectin knockout (KO) mice. We analyzed DNA replication and various signaling pathways involved in cell proliferation and metabolism. Adiponectin KO mice exhibited delayed DNA replication and increased lipid accumulation in the regenerating liver. The expression levels of peroxisome proliferator-activated receptor (PPAR) α and carnitine palmitoyltransferase-1 (CPT-1), a key enzyme in mitochondrial fatty acid oxidation, were decreased in adiponectin KO mice, suggesting possible contribution of altered fat metabolism to these phenomena. Collectively, the present results highlight a new role for adiponectin in the process of liver regeneration.

  1. Serial analysis of gene expression (SAGE) in rat liver regeneration

    International Nuclear Information System (INIS)

    Cimica, Velasco; Batusic, Danko; Haralanova-Ilieva, Borislava; Chen, Yonglong; Hollemann, Thomas; Pieler, Tomas; Ramadori, Giuliano

    2007-01-01

    We have applied serial analysis of gene expression for studying the molecular mechanism of the rat liver regeneration in the model of 70% partial hepatectomy. We generated three SAGE libraries from a normal control liver (NL library: 52,343 tags), from a sham control operated liver (Sham library: 51,028 tags), and from a regenerating liver (PH library: 53,061 tags). By SAGE bioinformatics analysis we identified 40 induced genes and 20 repressed genes during the liver regeneration. We verified temporal expression of such genes by real time PCR during the regeneration process and we characterized 13 induced genes and 3 repressed genes. We found connective tissue growth factor transcript and protein induced very early at 4 h after PH operation before hepatocytes proliferation is triggered. Our study suggests CTGF as a growth factor signaling mediator that could be involved directly in the mechanism of liver regeneration induction

  2. Anastomotic stoma coated with chitosan film as a betamethasone dipropionate carrier for peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Ping Yao

    2018-01-01

    Full Text Available Scar hyperplasia at the suture site is an important reason for hindering the repair effect of peripheral nerve injury anastomosis. To address this issue, two repair methods are often used. Biological agents are used to block nerve sutures and the surrounding tissue to achieve physical anti-adhesion effects. Another agent is glucocorticosteroid, which can prevent scar growth by inhibiting inflammation. However, the overall effect of promoting regeneration of the injured nerve is not satisfactory. In this regard, we envision that these two methods can be combined and lead to shared understanding for achieving improved nerve repair. In this study, the right tibial nerve was transected 1 cm above the knee to establish a rat tibial nerve injury model. The incision was directly sutured after nerve transection. The anastomotic stoma was coated with 0.5 × 0.5 cm2 chitosan sheets with betamethasone dipropionate. At 12 weeks after injury, compared with the control and poly (D, L-lactic acid groups, chitosan-betamethasone dipropionate film slowly degraded with the shape of the membrane still intact. Further, scar hyperplasia and the degree of adhesion at anastomotic stoma were obviously reduced, while the regenerated nerve fiber structure was complete and arranged in a good order in model rats. Electrophysiological study showed enhanced compound muscle action potential. Our results confirm that chitosan-betamethasone dipropionate film can effectively prevent local scar hyperplasia after tibial nerve repair and promote nerve regeneration.

  3. Morphology and intrinsic excitability of regenerating sensory and motor neurons grown on a line micropattern.

    Directory of Open Access Journals (Sweden)

    Ouafa Benzina

    Full Text Available Axonal regeneration is one of the greatest challenges in severe injuries of peripheral nerve. To provide the bridge needed for regeneration, biological or synthetic tubular nerve constructs with aligned architecture have been developed. A key point for improving axonal regeneration is assessing the effects of substrate geometry on neuronal behavior. In the present study, we used an extracellular matrix-micropatterned substrate comprising 3 µm wide lines aimed to physically mimic the in vivo longitudinal axonal growth of mice peripheral sensory and motor neurons. Adult sensory neurons or embryonic motoneurons were seeded and processed for morphological and electrical activity analyses after two days in vitro. We show that micropattern-guided sensory neurons grow one or two axons without secondary branching. Motoneurons polarity was kept on micropattern with a long axon and small dendrites. The micro-patterned substrate maintains the growth promoting effects of conditioning injury and demonstrates, for the first time, that neurite initiation and extension could be differentially regulated by conditioning injury among DRG sensory neuron subpopulations. The micro-patterned substrate impacts the excitability of sensory neurons and promotes the apparition of firing action potentials characteristic for a subclass of mechanosensitive neurons. The line pattern is quite relevant for assessing the regenerative and developmental growth of sensory and motoneurons and offers a unique model for the analysis of the impact of geometry on the expression and the activity of mechanosensitive channels in DRG sensory neurons.

  4. Biological effects

    International Nuclear Information System (INIS)

    Trott, K.R.

    1973-01-01

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH) [de

  5. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes

    KAUST Repository

    Jiang, Caifu

    2011-07-28

    Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.

  6. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes

    KAUST Repository

    Jiang, Caifu; Mithani, Aziz; Gan, Xiangchao; Belfield, Eric J.; Klingler, John  P.; Zhu, Jian-Kang; Ragoussis, Jiannis; Mott, Richard; Harberd, Nicholas  P.

    2011-01-01

    Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.

  7. Eye Absence Does Not Regulate Planarian Stem Cells during Eye Regeneration.

    Science.gov (United States)

    LoCascio, Samuel A; Lapan, Sylvain W; Reddien, Peter W

    2017-02-27

    Dividing cells called neoblasts contain pluripotent stem cells and drive planarian flatworm regeneration from diverse injuries. A long-standing question is whether neoblasts directly sense and respond to the identity of missing tissues during regeneration. We used the eye to investigate this question. Surprisingly, eye removal was neither sufficient nor necessary for neoblasts to increase eye progenitor production. Neoblasts normally increase eye progenitor production following decapitation, facilitating regeneration. Eye removal alone, however, did not induce this response. Eye regeneration following eye-specific resection resulted from homeostatic rates of eye progenitor production and less cell death in the regenerating eye. Conversely, large head injuries that left eyes intact increased eye progenitor production. Large injuries also non-specifically increased progenitor production for multiple uninjured tissues. We propose a model for eye regeneration in which eye tissue production by planarian stem cells is not directly regulated by the absence of the eye itself. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine.

    Science.gov (United States)

    Gilgenkrantz, Hélène; Collin de l'Hortet, Alexandra

    2018-04-16

    Liver regeneration is a complex and unique process. When two-thirds of a mouse liver is removed, the remaining liver recovers its initial weight in approximately 10 days. The understanding of the mechanisms responsible for liver regeneration may help patients needing large liver resections or transplantation and may be applied to the field of regenerative medicine. All differentiated hepatocytes are capable of self-renewal, but different subpopulations of hepatocytes seem to have distinct proliferative abilities. In the setting of chronic liver diseases, a ductular reaction ensues in which liver progenitor cells (LPCs) proliferate in the periportal region. Although these LPCs have the capacity to differentiate into hepatocytes and biliary cells in vitro, their ability to participate in liver regeneration is far from clear. Their expansion has even been associated with increased fibrosis and poorer prognosis in chronic liver diseases. Controversies also remain on their origin: lineage studies in experimental mouse models of chronic injury have recently suggested that these LPCs originate from hepatocyte dedifferentiation, whereas in other situations, they seem to come from cholangiocytes. This review summarizes data published in the past 5 years in the liver regeneration field, discusses the mechanisms leading to regeneration disruption in chronic liver disorders, and addresses the potential use of novel approaches for regenerative medicine. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Bionanomaterials for skin regeneration

    CERN Document Server

    Leonida, Mihaela D

    2016-01-01

    This book gives a concise overview of bionanomaterials with applications for skin regeneration. The advantages and challenges of nanoscale materials are covered in detail, giving a basic view of the skin structure and conditions that require transdermal or topical applications. Medical applications, such as wound healing, care for burns, skin disease, and cosmetic care, such as aging of the skin and photodamage, and how they benefit from bionanomaterials, are described in detail. A final chapter is devoted to the ethical and social issues related to the use of bionanomaterials for skin regeneration. This is an ideal book for researchers in materials science, medical scientists specialized in dermatology, and cosmetic chemists working in formulations. It can also serve as a reference for nanotechnologists, dermatologists, microbiologists, engineers, and polymer chemists, as well as students studying in these fields.

  10. Bone regeneration: Biomaterials as local delivery systems with improved osteoinductive properties.

    Science.gov (United States)

    Martin, Victor; Bettencourt, Ana

    2018-01-01

    Bone is a mineralized conjunctive tissue, with a unique trauma healing capability. However, the replacement or regeneration of lost bone is not always successful and becomes more difficult the wider the bone defect. A significant growth in the demand for orthopedic and maxillofacial surgical procedures as a result of population aging and increase in chronic diseases as diabetes is a fact and successful approaches for bone regeneration are still needed. Until today, autogenous bone graft continues to be the best solution even with important limitations, as quantity and the requirement of a donator area. Alternatively, local delivery systems combining an osteoconductive biomaterial with osteoinductive compounds as hormones, growth factors or drugs is a popular approach aiming to replace the need for autogenous bone grafts. Nevertheless, in spite of the intense research in the area, presently there is no system that can mimic all the biological functions of the autogenous bone grafts. In this context, the present work provides an overview of the most recent advances in the field of synthetic bone grafts. The opportunities and limitations are detailed along with the remaining gaps in the research that are still preventing the successful translation of more products into the market able to be a valuable option in comparison to the autogenous bone grafts. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Stem Cell Extracellular Vesicles: Extended Messages of Regeneration

    Science.gov (United States)

    Riazifar, Milad; Pone, Egest J.; Lötvall, Jan; Zhao, Weian

    2017-01-01

    Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell–derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications. PMID:27814025

  12. Plantlet regeneration potential from seedling explants of vitegnus (Vitex agnus castus).

    Science.gov (United States)

    Chamandoosti, F

    2007-11-15

    In this research a simple and repeatable method for regeneration of a important medicinal plant (Vitex agnus castus) described. Different seedling explants such as hypocotyl, cotyledon, root and apical meristem were cultured in MS basal media with different kinds and concentrations of PGRs. Root and apical meristem explants were the only explants that have regeneration whole plantlets potential. It was interesting that regeneration whole plantlets from root and apical meristem explants have different developmental pathways. Whole plantlets from apical meristem explants regenerated by passing phase callusing whereas regeneration whole plantlets from root was direct and without phase callusing. This subject implies that we can have many manipulation possibilities in order to different objects of tissue culture by selecting different explants in vitegnus.

  13. Improvement of two-stage GM refrigerator performance using a hybrid regenerator

    International Nuclear Information System (INIS)

    Ke, G.; Makuuchi, H.; Hashimoto, T.; Onishi, A.; Li, R.; Satoh, T.; Kanazawa, Y.

    1994-01-01

    To improve the performance of two-stage GM refrigerators, a hybrid regenerator with magnetic materials of Er 3 Ni and ErNi 0.9 Co 0.1 was used in the 2nd stage regenerator because of its large heat exchange capacity. The largest refrigeration capacity achieved with the hybrid regenerator was 0.95W at helium liquefied temperature of 4.2K. This capacity is 15.9% greater than the 0.82W refrigerator with only Er 3 Ni as the 2nd regenerator material. Use of the hybrid regenerator not only increases the refrigeration capacity at 4.2K, but also allows the 4K GM refrigerator to be used with large 1st stage refrigeration capacity, thus making it more practical

  14. Regenerating reptile retinas: a comparative approach to restoring retinal ganglion cell function.

    Science.gov (United States)

    Williams, D L

    2017-02-01

    Transection or damage to the mammalian optic nerve generally results in loss of retinal ganglion cells by apoptosis. This cell death is seen less in fish or amphibians where retinal ganglion cell survival and axon regeneration leads to recovery of sight. Reptiles lie somewhere in the middle of this spectrum of nerve regeneration, and different species have been reported to have a significant variation in their retinal ganglion cell regenerative capacity. The ornate dragon lizard Ctenophoris ornatus exhibits a profound capacity for regeneration, whereas the Tenerife wall lizard Gallotia galloti has a more variable response to optic nerve damage. Some individuals regain visual activity such as the pupillomotor responses, whereas in others axons fail to regenerate sufficiently. Even in Ctenophoris, although the retinal ganglion cell axons regenerate adequately enough to synapse in the tectum, they do not make long-term topographic connections allowing recovery of complex visually motivated behaviour. The question then centres on where these intraspecies differences originate. Is it variation in the innate ability of retinal ganglion cells from different species to regenerate with functional validity? Or is it variances between different species in the substrate within which the nerves regenerate, the extracellular environment of the damaged nerve or the supporting cells surrounding the regenerating axons? Investigations of retinal ganglion cell regeneration between different species of lower vertebrates in vivo may shed light on these questions. Or perhaps more interesting are in vitro studies comparing axon regeneration of retinal ganglion cells from various species placed on differing substrates.

  15. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    Science.gov (United States)

    Green, David W.; Lee, Jung-Seok; Jung, Han-Sung

    2016-01-01

    The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a “water-tight” barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell–cell connections, cell–matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis. PMID:26903872

  16. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    Directory of Open Access Journals (Sweden)

    David William Green

    2016-02-01

    Full Text Available The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a water-tight barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachement complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement.. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organising cell-cell connections, cell-matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis.

  17. In vitro regeneration of selected commercial Tanzanian open ...

    African Journals Online (AJOL)

    Yomi

    2012-03-15

    Mar 15, 2012 ... regenerated in vitro using immature zygotic embryos as ex-plants. Callus induction .... Ears were harvested between 12 to 16 days post pollination depending on .... After 28 days of culture on CMM, a mass of dedifferentiated cells .... showed high regeneration ability compared to Situka M-1 that had good ...

  18. Effect of Picibanil (OK 432) on the Scavenging Effect of Free Radicals Produced during Liver Regeneration in the Rat

    OpenAIRE

    Okamoto, Ko; Hamazaki, Keisuke; Iwagaki, Hiromi; Orita, Kunzo; Mori, Akitane

    1995-01-01

    We administered a biological response modifier Picibanil (OK-432), attenuated Streptococcus pyogenes, via the dorsal vein of the penis after 70% hepatectomy in rats, and clarified the scavenging effect of Picibanil on free radicals generated in the regenerating liver. A group of 5 rats was intravenously administered with 25 KE/kg of OK-432 after hepatectomy, while the control group was given saline after hepatectomy. Serum levels of aspartate aminotransferase and alanine aminotransferase and ...

  19. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    Science.gov (United States)

    Qu, Guangzhou; Liang, Dongli; Qu, Dong; Huang, Yimei; Li, Jie

    2014-06-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration.

  20. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    International Nuclear Information System (INIS)

    Qu Guangzhou; Liang Dongli; Qu Dong; Huang Yimei; Li Jie

    2014-01-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O 3 ) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O 3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O 3 regeneration. O 3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O 3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O 3 regeneration has a lower weight loss than DBD plasma regeneration

  1. Sensory hair cell regeneration in the zebrafish lateral line.

    Science.gov (United States)

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  2. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    Science.gov (United States)

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  3. Are fingernails a key to unlocking the puzzle of mammalian limb regeneration?

    Science.gov (United States)

    Lehoczky, Jessica A

    2017-06-01

    Some mammalian digit tips, including those of mice and human children, can regenerate following amputation, whereas mammalian limb regeneration does not occur. One major difference between the digit tip and the rest of the limb is the presence of the nail, which is necessary for this type of regeneration. This couples well with the finding that canonical Wnt signalling and Lgr6, an agonist of Wnt signalling that marks nail stem cells, are necessary for digit tip regeneration. This viewpoint essay discusses the role of the nail in digit tip regeneration and explores whether nail stem cells and their presumptive niche can be solely accountable for why regeneration is possible in the digit tip, but not the rest of the limb. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration.

    Science.gov (United States)

    Farkas, Johanna E; Freitas, Polina D; Bryant, Donald M; Whited, Jessica L; Monaghan, James R

    2016-08-01

    The Mexican axolotl (Ambystoma mexicanum) is capable of fully regenerating amputated limbs, but denervation of the limb inhibits the formation of the post-injury proliferative mass called the blastema. The molecular basis behind this phenomenon remains poorly understood, but previous studies have suggested that nerves support regeneration via the secretion of essential growth-promoting factors. An essential nerve-derived factor must be found in the blastema, capable of rescuing regeneration in denervated limbs, and its inhibition must prevent regeneration. Here, we show that the neuronally secreted protein Neuregulin-1 (NRG1) fulfills all these criteria in the axolotl. Immunohistochemistry and in situ hybridization of NRG1 and its active receptor ErbB2 revealed that they are expressed in regenerating blastemas but lost upon denervation. NRG1 was localized to the wound epithelium prior to blastema formation and was later strongly expressed in proliferating blastemal cells. Supplementation by implantation of NRG1-soaked beads rescued regeneration to digits in denervated limbs, and pharmacological inhibition of NRG1 signaling reduced cell proliferation, blocked blastema formation and induced aberrant collagen deposition in fully innervated limbs. Taken together, our results show that nerve-dependent NRG1/ErbB2 signaling promotes blastemal proliferation in the regenerating limb and may play an essential role in blastema formation, thus providing insight into the longstanding question of why nerves are required for axolotl limb regeneration. © 2016. Published by The Company of Biologists Ltd.

  5. Bex1 knock out mice show altered skeletal muscle regeneration

    International Nuclear Information System (INIS)

    Koo, Jae Hyung; Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-01-01

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca 2+ /CaM may be involved in skeletal muscle regeneration

  6. Designing reliability into high-effectiveness industrial gas turbine regenerators

    International Nuclear Information System (INIS)

    Valentino, S.J.

    1979-01-01

    The paper addresses the measures necessary to achieve a reliable regenerator design that can withstand higher temperatures (1000-1200 F) and many start and stop cycles - conditions encountered in high-efficiency operation in pipeline applications. The discussion is limited to three major areas: (1) structural analysis of the heat exchanger core - the part of the regenerator that must withstand the higher temperatures and cyclic duty (2) materials data and material selection and (3) a comprehensive test program to demonstrate the reliability of the regenerator. This program includes life-cycle tests, pressure containment in fin panels, core-to-core joint structural test, bellows pressure containment test, sliding pad test, core gas-side passage flow distribution test, and production test. Today's regenerators must have high cyclic life capability, stainless steel construction, and long fault-free service life of 120,000 hr

  7. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Ribeiro-Resende Victor

    2012-07-01

    Full Text Available Abstract Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC, satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2 is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS. Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL region of the lumbar spinal cord (LSC in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.

  8. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    OpenAIRE

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental p...

  9. Collagen reconstitution is inversely correlated with induction of limb regeneration in Ambystoma mexicanum.

    Science.gov (United States)

    Satoh, Akira; Hirata, Ayako; Makanae, Aki

    2012-03-01

    Amphibians can regenerate missing body parts, including limbs. The regulation of collagen has been considered to be important in limb regeneration. Collagen deposition is suppressed during limb regeneration, so we investigated collagen deposition and apical epithelial cap (AEC) formation during axolotl limb regeneration. The accessory limb model (ALM) has been developed as an alternative model for studying limb regeneration. Using this model, we investigated the relationship between nerves, epidermis, and collagen deposition. We found that Sp-9, an AEC marker gene, was upregulated by direct interaction between nerves and epidermis. However, collagen deposition hindered this interaction, and resulted in the failure of limb regeneration. During wound healing, an increase in deposition of collagen caused a decrease in the blastema induction rate in ALM. Wound healing and limb regeneration are alternate processes.

  10. The effect of endodontic regeneration medicaments on mechanical properties of radicular dentin

    Science.gov (United States)

    Yassen, Ghaeth H.

    Endodontic regeneration treatment of necrotic immature teeth has gained popularity in recent years. The approach suggests a biological alternative to induce a continuous root development. In this project, three in vitro experiments were conducted to investigate the effect of three medicaments used in endodontic regeneration on mechanical properties and chemical structure of radicular dentin. In the first experiment, we investigated longitudinally the effect of medicaments on the indentation properties of the root canal surface of immature teeth using a novel BioDent reference point indenter. A significant difference in the majority of indentation parameters between all groups was found after one-week and one-month application of medicaments (p double antibiotic paste (DAP) > control > calcium hydroxide [Ca(OH)2]. The four-week exposure of dentin to TAP and DAP caused 43% and 31% increase in total indentation distance outcome, respectively. In the second experiment, we investigated longitudinally the effect of medicaments on the chemical structure of immature radicular dentin by measuring the phosphate/amide I ratios of dentin using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. Phosphate/amide I ratios were significantly different between the four groups after one week, two weeks and four week application of medicaments (p untreated dentin > DAP-treated dentin > TAP-treated dentin. In the third experiment, we investigated longitudinally the effect of medicaments on root fracture resistance and microhardness of radicular dentin. For the microhardness, the two-way interaction between group and time was significant (pmedicaments caused significant decrease in fracture resistance ranging between 19%-30% after three month application compared to one week application. The three medicaments used in endodontic regeneration caused significant change in the chemical integrity of the superficial radicular dentin and significantly affected the indentation

  11. Sustainable Regeneration of Nanoparticle Enhanced Activated Carbon in Water

    Science.gov (United States)

    The regeneration and reuse of exhausted granular activated carbon (GAC) is an appropriate method for lowering operational and environmental costs. Advanced oxidation is a promising environmental friendly technique for GAC regeneration. The main objective of this research was to ...

  12. Fenton-Driven Regeneration of MTBE-spent Granular Activated Carbon

    Science.gov (United States)

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto activated carbon and Fenton-driven oxidation regeneration of the spent-GAC...

  13. Solving local problems through local involvement? Experiences from Danish Urban Regeneration

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole

    -down approaches or massive public subsidies, the public regeneration schemes from the last decade have increasingly emphasized the need for involving local actors in the urban regeneration e.g. through partnerships, network building, involvement and participation of local actors and institutions, and financially...... agenda, and what can be learned from the development so far. Although ‘local involvement’ is a commonly used term in various urban regeneration programs, it can have many different meanings and implications. Therefore, the paper will discuss local involvement in the urban regeneration based on four...

  14. Plant regeneration protocol of Andrographis paniculata (Burm. f ...

    African Journals Online (AJOL)

    Plant regeneration protocol of Andrographis paniculata (Burm. f.) - an important medicinal plant. ... Inclusion of 1.0 mg/l 1-naphthalene acetic acid (NAA) in the culture medium along with BA + Ads promoted a higher rate of shoot bud regeneration. Maximum mean number of shoot bud per explant (28.6) was achieved on the ...

  15. Non-Uniform Heat Transfer in Thermal Regenerators

    DEFF Research Database (Denmark)

    Jensen, Jesper Buch

    , a numerical model, which simulates a single-blow operation in a parallel-plate regenerator, was developed and used to model the heat transfer under various conditions. In addition to the modeling of the heat transfer, a series of experiments on passive regenerators with non-uniform, but precisely controlled....... Additionally, the experiments gave real comparative results, whereas the model to a certain degree more served to provide insight to the heat transfer processes taking place inside the regenera- tors, something that would be - if not impossible - then highly impractical to do experimentally. It has been found......This thesis presents investigations on the heat transfer in complex heat ex- changers in general and in regenerative heat exchangers (regenerators) in par- ticular. The motivation for this work is a result of inconsistencies obeserved in the results from a series of experiments on active magnetic...

  16. Facilitating Oak and Hickory Regeneration in Mature Central Hardwood Forests

    Directory of Open Access Journals (Sweden)

    Eric J. Holzmueller

    2014-12-01

    Full Text Available Advanced oak and hickory regeneration is often absent in mature oak-hickory forests in the Central Hardwood Region of the United States. Prescribed fire and thinning, alone and combined, are commonly prescribed silvicultural treatments that are recommended to initiate the regeneration process. This study examined the regeneration response in three mature oak stands following four treatments: (1 thin, (2 burn, (3 thinning and burning, or (4 no treatment (control. Ten years after initial treatment, results indicate that oak and hickory seedlings had greater height and diameter in the thinning and burning treatment compared to the control and that this treatment may help facilitate desirable regeneration in mature oak-hickory forests.

  17. Increase of corneal epithelium cell radioresistance during regeneration

    International Nuclear Information System (INIS)

    Popova, M.F.; Bulyakova, N.V.; Azarova, V.S.

    1985-01-01

    A comparative study of the radiosensitivity of the normal and regenerating cornea epithelium of C 57 Bl mice was performed on the cellular level, the duration of the cell cycle being taken into account. Criteria of radiation injuries were the number of chromosome aberrations, mitotic index and duration of mitotic block. The anterior part of the head was irradiated singly with 1.75, 3.5 or 7.0 Gy and also repeatedly 3.5 + 3.5 at a 24-hours interval. The corneas were fixed 2, 4, 6, 12, 24, 48, 72 and 96 hours after irradiation. In all cases of irradiated mice the regenerating epithelium showed a shorter mitotic block and significantly lower cytogenetic injury as compared with the controls. Effects of fractionated irradiation were only shown in the regenerating epithelium. The results obtained indicate that regenerating epithelium cells of the cornea are significantly more radioresistant than normal epithelium due to activation of post-radiation recovery, and also, possibly, due to an increase in the content of endogenous radioprotectors. (author)

  18. Kaolinite adsorption-regeneration system for dyestuff treatment by Fenton based processes.

    Science.gov (United States)

    Rosales, Emilio; Anasie, Delia; Pazos, Marta; Lazar, Iuliana; Sanromán, M Angeles

    2018-05-01

    The regeneration and reuse of adsorbents is a subject of interest nowadays in order to reduce the pollution and the wastes generated in the adsorption wastewater treatment. In this work, the regeneration of the spent kaolinite by different advanced oxidation processes (Fenton, electro-Fenton and electrokinetic-Fenton) was evaluated. Initially, it was confirmed the ability of a low cost clayey material, kaolinite, for the adsorption of model dye such as Rhodamine B showing Freundlich isotherm fitting. Then, the regeneration and consequent degradation of the pollutant in the adsorbent by Fenton based processes was carried out. The role of different parameters affecting the regeneration process (H 2 O 2 :Fe 2+ ratio, liquid:solid ratio) were evaluated. Working at 100:1 H 2 O 2 :Fe 2+ ratio and 30min near complete dye removal (around 97%) from kaolinite was obtained by Fenton treatment. After that, a two-stage treatment for adsorption-regeneration was evaluated during five treatment cycles demonstrating its viability for regeneration of the adsorbent through dye degradation. Based on the successful application of Fenton technique, the improvement of the treatment by electro-Fenton and electrokinetic-Fenton were studied for different solid:liquid ratios achieving satisfactory regeneration values. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Spent oxide fuel regeneration by crystallization in molybdate melts

    International Nuclear Information System (INIS)

    Ustinov, O.A.; Sukhanov, L.P.; Yakunin, S.A.

    2006-01-01

    Paper describes a procedure to regenerate spent oxide fuel by its crystallization in molybdate melts. Paper presents the process procedures to regenerate spent fuel of both fast and thermal neutron reactors. One analyzes the advantages of the elaborated procedure [ru

  20. Advanced Scaffolds for Dental Pulp and Periodontal Regeneration.

    Science.gov (United States)

    Bottino, Marco C; Pankajakshan, Divya; Nör, Jacques E

    2017-10-01

    No current therapy promotes root canal disinfection and regeneration of the pulp-dentin complex in cases of pulp necrosis. Antibiotic pastes used to eradicate canal infection negatively affect stem cell survival. Three-dimensional easy-to-fit antibiotic-eluting nanofibers, combined with injectable scaffolds, enriched or not with stem cells and/or growth factors, may increase the likelihood of achieving predictable dental pulp regeneration. Periodontitis is an aggressive disease that impairs the integrity of tooth-supporting structures and may lead to tooth loss. The latest advances in membrane biomodification to endow needed functionalities and technologies to engineer patient-specific membranes/constructs to amplify periodontal regeneration are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Protoplast formation and regeneration in Lactobacillus delbrueckii

    OpenAIRE

    Singhvi, Mamta; Joshi, Dipti; Gaikaiwari, Shalaka; Gokhale, Digambar V.

    2010-01-01

    Method for production and regeneration of Lactobacillus delbrueckii protoplasts are described. The protoplasts were obtained by treatment with a mixture of lysozyme and mutanolysin in protoplast buffer at pH 6.5 with different osmotic stabilizers. The protoplasts were regenerated on deMan, Rogosa and Sharpe (MRS) with various osmotic stabilizers. Maximum protoplast formation was obtained in protoplast buffer with sucrose as an osmotic stabilizer using a combination of lysozyme (1 mg/ml) and m...

  2. Theoretical storage capacity for solar air pretreatment liquid collector/regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Donggen; Zhang, Xiaosong; Yin, Yonggao [School of Energy and Environment, Southeast University, Nanjing 210096 (China)

    2008-08-15

    A new liquid regeneration equipment - solar air pretreatment collector/regenerator for liquid desiccant cooling system is put forward in this paper, which is preferable to solution regeneration in hot and moist climate in South China. The equipment can achieve liquid regeneration in lower temperature. When the solution and the air are in ''match'' state in collector/regenerator, a match air to salt mass ratio ASMR* is found by theoretical study in which there is the largest theoretical storage capacity SC{sub max}. At T{sub r} = 60{sup o}C and X{sub in} 2.33 kg/kg, theoretical calculation discovers when Y{sub in} drops from 29 to 14 g/kg, the SC{sub max} increase 50% compared with ASMR{sup *} being around 26-27. After two new concepts of the effective solution proportion (EPS) and the effective storage capacity (ESC) are defined, it is found by theoretical calculation that when ESP drops from 100% to 67%, ESC raises lowly, not drops and liquid outlet concentration C{sub str.sol} increases from 40% to 49% in which its increment totals to 90%. All these data explain fully that air pretreatment liquid regeneration equipment enables to improve the performance of liquid desiccant cooling system. (author)

  3. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Lei Hu

    2017-01-01

    Full Text Available Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  4. Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Sung-Jun An

    2017-10-01

    Full Text Available Bacterial cellulose (BC is an excellent biomaterial with many medical applications. In this study, resorbable BC membranes were prepared for guided bone regeneration (GBR using an irradiation technique for applications in the dental field. Electron beam irradiation (EI increases biodegradation by severing the glucose bonds of BC. BC membranes irradiated at 100 kGy or 300 kGy were used to determine optimal electron beam doses. Electron beam irradiated BC membranes (EI-BCMs were evaluated by scanning electron microscopy (SEM, attenuated total reflectance-Fourier transform infrared (ATR-FTIR spectroscopy, thermal gravimetric analysis (TGA, and using wet tensile strength measurements. In addition, in vitro cell studies were conducted in order to confirm the cytocompatibility of EI-BCMs. Cell viabilities of NIH3T3 cells on 100k and 300k EI-BCMs (100 kGy and 300 kGy irradiated BC membranes were significantly greater than on NI-BCMs after 3 and 7 days (p < 0.05. Bone regeneration by EI-BCMs and their biodegradabilities were also evaluated using in vivo rat calvarial defect models for 4 and 8 weeks. Histometric results showed 100k EI-BCMs exhibited significantly larger new bone area (NBA; % than 300k EI-BCMs at 8 weeks after implantation (p < 0.05. Mechanical, chemical, and biological analyses showed EI-BCMs effectively interacted with cells and promoted bone regeneration.

  5. Role of annexin gene and its regulation during zebrafish caudal fin regeneration.

    Science.gov (United States)

    Saxena, Sandeep; Purushothaman, Sruthi; Meghah, Vuppalapaty; Bhatti, Bhawna; Poruri, Akhila; Meena Lakshmi, Mula G; Sarath Babu, Nukala; Narasimha Murthy, Ch Lakshmi; Mandal, Komal K; Kumar, Arvind; Idris, Mohammed M

    2016-05-01

    The molecular mechanism of epimorphic regeneration is elusive due to its complexity and limitation in mammals. Epigenetic regulatory mechanisms play a crucial role in development and regeneration. This investigation attempted to reveal the role of epigenetic regulatory mechanisms, such as histone H3 and H4 lysine acetylation and methylation during zebrafish caudal fin regeneration. It was intriguing to observe that H3K9,14 acetylation, H4K20 trimethylation, H3K4 trimethylation and H3K9 dimethylation along with their respective regulatory genes, such as GCN5, SETd8b, SETD7/9, and SUV39h1, were differentially regulated in the regenerating fin at various time points of post-amputation. Annexin genes have been associated with regeneration; this study reveals the significant up-regulation of ANXA2a and ANXA2b transcripts and their protein products during the regeneration process. Chromatin immunoprecipitation and PCR analysis of the regulatory regions of the ANXA2a and ANXA2b genes demonstrated the ability to repress two histone methylations, H3K27me3 and H4K20me3, in transcriptional regulation during regeneration. It is hypothesized that this novel insight into the diverse epigenetic mechanisms that play a critical role during the regeneration process may help to strategize the translational efforts, in addition to identifying the molecules involved in vertebrate regeneration. © 2016 by the Wound Healing Society.

  6. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2015-03-01

    Full Text Available The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs are ligands of farnesoid X receptor (FXR, a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration.

  7. Research Note Effects of previous cultivation on regeneration of ...

    African Journals Online (AJOL)

    We investigated the effects of previous cultivation on regeneration potential under miombo woodlands in a resettlement area, a spatial product of Zimbabwe's land reforms. We predicted that cultivation would affect population structure, regeneration, recruitment and potential grazing capacity of rangelands. Plant attributes ...

  8. PLETHORA genes control regeneration by a two-step mechanism

    NARCIS (Netherlands)

    Kareem, Abdul; Durgaprasad, Kavya; Sugimoto, Kaoru; Du, Yujuan; Pulianmackal, Ajai J.; Trivedi, Zankhana B.; Abhayadev, Pazhoor V.; Pinon, Violaine; Meyerowitz, Elliot M.; Scheres, Ben; Prasad, Kalika

    2015-01-01

    Summary Regeneration, a remarkable example of developmental plasticity displayed by both plants and animals, involves successive developmental events driven in response to environmental cues. Despite decades of study on the ability of the plant tissues to regenerate a complete fertile shoot

  9. Epimorphic regeneration approach to tissue replacement in adult mammals

    Science.gov (United States)

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor...

  10. Regenerable Carbon Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Regenerable Carbon Filter (RCF) is proposed for the removal of carbonaceous particulate matter produced in Environmental Control and Life Support (ECLS) processes....

  11. Light requirement for shoot regeneration in horseradish hairy roots.

    Science.gov (United States)

    Saitou, T; Kamada, H; Harada, H

    1992-08-01

    Hairy roots of horseradish (Armoracia rusticana) were induced by inoculation with Agrobacterium rhizogenes harboring Ri plasmid and cultured on phytohormone-free Murashige and Skoog medium after eliminating the bacteria. Hairy roots grew vigorously and sometimes formed yellowish calli under dark conditions. On the other hand, growth of hairy roots stopped after several weeks of culture with light, then shoots were regenerated. Frequency of shoot formation from hairy roots increased as the culture period in light lengthened and the light intensity increased. The shoot regeneration was induced by treatment with white or red light, but not with far-red light. Shoot regeneration by red light was inhibited by following treatment with far-red light. Red and far-red light reversibly affected shoot regeneration. Excised roots of nontransformed plants grew quite slowly on phytohormone-free Murashige and Skoog medium and occasionally formed shoots under white light conditions.

  12. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration.

    Science.gov (United States)

    Uzunalli, G; Soran, Z; Erkal, T S; Dagdas, Y S; Dinc, E; Hondur, A M; Bilgihan, K; Aydin, B; Guler, M O; Tekinay, A B

    2014-03-01

    Defects in the corneal stroma caused by trauma or diseases such as macular corneal dystrophy and keratoconus can be detrimental for vision. Development of therapeutic methods to enhance corneal regeneration is essential for treatment of these defects. This paper describes a bioactive peptide nanofiber scaffold system for corneal tissue regeneration. These nanofibers are formed by self-assembling peptide amphiphile molecules containing laminin and fibronectin inspired sequences. Human corneal keratocyte cells cultured on laminin-mimetic peptide nanofibers retained their characteristic morphology, and their proliferation was enhanced compared with cells cultured on fibronectin-mimetic nanofibers. When these nanofibers were used for damaged rabbit corneas, laminin-mimetic peptide nanofibers increased keratocyte migration and supported stroma regeneration. These results suggest that laminin-mimetic peptide nanofibers provide a promising injectable, synthetic scaffold system for cornea stroma regeneration. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2016-09-01

    biomaterials significantly improved cartilage regeneration by 15.6% compared to non-treated empty defect controls. The addition of biologics to biomaterials significantly improved cartilage regeneration by 7.6% compared to control biomaterials. No significant differences were found between biomaterials from natural or synthetic origin or between scaffolds, hydrogels and blends. No noticeable differences were found in outcome between animal models. The risk of bias assessment indicated poor reporting for the majority of studies, impeding an assessment of the actual risk of bias. In conclusion, implantation of biomaterials in osteochondral defects improves cartilage regeneration compared to natural healing, which is further improved by the incorporation of biologics.

  14. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    Science.gov (United States)

    Pot, Michiel W; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; van Kuppevelt, Toin H; de Vries, Rob B M; Daamen, Willeke F

    2016-01-01

    improved cartilage regeneration by 15.6% compared to non-treated empty defect controls. The addition of biologics to biomaterials significantly improved cartilage regeneration by 7.6% compared to control biomaterials. No significant differences were found between biomaterials from natural or synthetic origin or between scaffolds, hydrogels and blends. No noticeable differences were found in outcome between animal models. The risk of bias assessment indicated poor reporting for the majority of studies, impeding an assessment of the actual risk of bias. In conclusion, implantation of biomaterials in osteochondral defects improves cartilage regeneration compared to natural healing, which is further improved by the incorporation of biologics.

  15. Study on regeneration of activated carbon by means of electron radiation

    International Nuclear Information System (INIS)

    Zhu Guanghua; Arai, H.; Hosono, M.

    1991-01-01

    The results of regeneration of activated carbon adsorbing sodium lauryl sulfate (SLS) by 2 MeV electron radiation, and the dependence of the regeneration rate of activated carbon on the electron current intensity, the temperature of sample and the atmosphere were reported. It is shown that regeneration of activated carbon by electron radiation is full of promise

  16. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  17. Biological aspects of tissue-engineered cartilage.

    Science.gov (United States)

    Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko

    2018-04-01

    Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.

  18. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.

    Science.gov (United States)

    Guo, Xiaodong; Zheng, Qixin; Kulbatski, Iris; Yuan, Quan; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiao, Baojun; Pan, Zhengqi; Tang, Shuo

    2006-09-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous beta tricalcium phosphate (beta-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new b

  19. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous {beta}-TCP ceramic scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Kulbatski, Iris [Division of Cellular and Molecular Biology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario M5T 2S8 (Canada); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Wang Hong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Xiao Baojun [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China)

    2006-09-15

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous {beta} tricalcium phosphate ({beta}-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new

  20. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous β-TCP ceramic scaffolds

    International Nuclear Information System (INIS)

    Guo Xiaodong; Zheng Qixin; Kulbatski, Iris; Yuan Quan; Yang Shuhua; Shao Zengwu; Wang Hong; Xiao Baojun; Pan Zhengqi; Tang Shuo

    2006-01-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous β tricalcium phosphate (β-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new b

  1. Lens regeneration from the cornea requires suppression of Wnt/β-catenin signaling.

    Science.gov (United States)

    Hamilton, Paul W; Sun, Yu; Henry, Jonathan J

    2016-04-01

    The frog, Xenopus laevis, possesses a high capacity to regenerate various larval tissues, including the lens, which is capable of complete regeneration from the cornea epithelium. However, the molecular signaling mechanisms of cornea-lens regeneration are not fully understood. Previous work has implicated the involvement of the Wnt signaling pathway, but molecular studies have been very limited. Iris-derived lens regeneration in the newt (Wolffian lens regeneration) has shown a necessity for active Wnt signaling in order to regenerate a new lens. Here we provide evidence that the Wnt signaling pathway plays a different role in the context of cornea-lens regeneration in Xenopus. We examined the expression of frizzled receptors and wnt ligands in the frog cornea epithelium. Numerous frizzled receptors (fzd1, fzd2, fzd3, fzd4, fzd6, fzd7, fzd8, and fzd10) and wnt ligands (wnt2b.a, wnt3a, wnt4, wnt5a, wnt5b, wnt6, wnt7b, wnt10a, wnt11, and wnt11b) are expressed in the cornea epithelium, demonstrating that this tissue is transcribing many of the ligands and receptors of the Wnt signaling pathway. When compared to flank epithelium, which is lens regeneration incompetent, only wnt11 and wnt11b are different (present only in the cornea epithelium), identifying them as potential regulators of cornea-lens regeneration. To detect changes in canonical Wnt/β-catenin signaling occurring within the cornea epithelium, axin2 expression was measured over the course of regeneration. axin2 is a well-established reporter of active Wnt/β-catenin signaling, and its expression shows a significant decrease at 24 h post-lentectomy. This decrease recovers to normal endogenous levels by 48 h. To test whether this signaling decrease was necessary for lens regeneration to occur, regenerating eyes were treated with either 6-bromoindirubin-3'-oxime (BIO) or 1-azakenpaullone - both activators of Wnt signaling - resulting in a significant reduction in the percentage of cases with successful

  2. An evaluation of a new approach to the regeneration of Helichrysum italicum (Roth) G. Don, and the molecular characterization of the variation among sets of differently derived regenerants.

    Science.gov (United States)

    Perrini, Rosaria; Alba, Vittorio; Ruta, Claudia; Morone-Fortunato, Irene; Blanco, Antonio; Montemurro, Cinzia

    2009-01-01

    A protocol for the induction of regeneration from leaves of Helichrysum italicum was established. Calli were found to form on the basal medium only when it was supplemented with thidiazuron (TDZ) alone or in combination with naphthalene acetic acid (NAA), with a percentage ranking of at least 80%. The hormone-free medium showed the highest percentage of shoot regeneration (62%) even though no callus formed. AFLP markers were employed to verify tissue culture-induced variation in the regenerated plantlets obtained by direct shoot regeneration or the indirect shoot regeneration process (callus formation). Seven out of the eleven AFLP primer pairs yielded polymorphic patterns. The average number of fragments per primer pair was 64.1. Singletons were represented by 12 (2.7%) fragments. Student's T-test was performed both on the average number of shared fragments and on the nucleotide diversity, and no significant statistical difference was observed between the two regeneration treatments.

  3. A Review of Gene Delivery and Stem Cell Based Therapies for Regenerating Inner Ear Hair Cells

    Directory of Open Access Journals (Sweden)

    Michael S. Detamore

    2011-09-01

    Full Text Available Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.

  4. A review of gene delivery and stem cell based therapies for regenerating inner ear hair cells.

    Science.gov (United States)

    Devarajan, Keerthana; Staecker, Hinrich; Detamore, Michael S

    2011-09-13

    Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.

  5. Review: peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds.

    Science.gov (United States)

    Hashimoto, Tadashi; Suzuki, Yoshihisa; Suzuki, Kyoko; Nakashima, Toshihide; Tanihara, Masao; Ide, Chizuka

    2005-06-01

    We have developed a nerve regeneration material consisting of alginate gel crosslinked with covalent bonds. in the first part of this study, we attempted to analyze nerve regeneration through alginate gel in the early stages within 2 weeks. in the second part, we tried to regenerate cat peripheral nerve by using alginate tubular or non-tubular nerve regeneration devices, and compared their efficacies. Four days after surgery, regenerating axons grew without Schwann cell investment through the partially degraded alginate gel, being in direct contact with the alginate without a basal lamina covering. One to 2 weeks after surgery, regenerating axons were surrounded by common Schwann cells, forming small bundles, with some axons at the periphery being partly in direct contact with alginate. At the distal stump, numerous Schwann cells had migrated into the alginate 8-14 days after surgery. Remarkable restorations of the 50-mm gap in cat sciatic nerve were obtained after a long term by using tubular or non-tubular nerve regeneration material consisting mainly of alginate gel. However, there was no significant difference between both groups at electrophysiological and morphological evaluation. Although, nowadays, nerve regeneration materials being marketed mostly have a tubular structure, our results suggest that the tubular structure is not indispensable for peripheral nerve regeneration.

  6. Abiotic factors influencing tropical dry forests regeneration

    Directory of Open Access Journals (Sweden)

    Ceccon Eliane

    2006-01-01

    Full Text Available Tropical dry forests represent nearly half the tropical forests in the world and are the ecosystems registering the greatest deterioration from the anthropogenic exploitation of the land. This paper presents a review on the dynamics of tropical dry forests regeneration and the main abiotic factors influencing this regeneration, such as seasonal nature, soil fertility and humidity, and natural and anthropic disturbances. The main purpose is to clearly understand an important part of TDF succession dynamics.

  7. Concept development of exchange liquid regeneration

    International Nuclear Information System (INIS)

    Mader, D.L.

    1985-08-01

    Concepts are described for regeneration of the intermediate liquid used for isotope exchange in indirect laser isotope separation processes where the laser operates on a process gas distinct from the feed stream. The specific case of regeneration of an exchange liquid consisting of water, sodium hydroxide, and dimethyl sulfoxide for a process to separate deuterium from hydrogen using laser irradiation of trifluoromethane gas is developed. A water feed stream is converted to steam which rises in a chemical process column where it redeuterates a descending flow of exchange liquid without causing significant changes in its chemical composition

  8. Unbiased stereological methods used for the quantitative evaluation of guided bone regeneration

    DEFF Research Database (Denmark)

    Aaboe, Else Merete; Pinholt, E M; Schou, S

    1998-01-01

    The present study describes the use of unbiased stereological methods for the quantitative evaluation of the amount of regenerated bone. Using the principle of guided bone regeneration the amount of regenerated bone after placement of degradable or non-degradable membranes covering defects...

  9. Regeneration in Jatropha curcas: Factors affecting the efficiency of in vitro regeneration

    KAUST Repository

    Sharma, Sweta K.; Kumar, Nitish Chandramohana; Reddy, Muppala P.

    2011-01-01

    Factors influencing in vitro regeneration through direct shoot bud induction from hypocotyl explants of Jatropha curcas were studied in the present investigation. Regeneration in J. curcas was found to be genotype dependent and out of four toxic and one non-toxic genotype studied, non-toxic was least responsive. The best results irrespective of genotype were obtained on the medium containing 0.5mgL-1 TDZ (Thidiazuron) and in vitro hypocotyl explants were observed to have higher regeneration efficiency as compared to ex vitro explant in both toxic and non-toxic genotypes. Adventitious shoot buds could be induced from the distal end of explants in all the genotypes. The number of shoot buds formed and not the number of explants responding to TDZ treatment were significantly affected by the position of the explant on the seedling axis. Explants from younger seedlings (≤15 days) were still juvenile and formed callus easily, whereas the regeneration response declined with increase in age of seedlings after 30 days. Transient reduction of Ca2+ concentrations to 0.22gL-1 in the germination medium increased the number of responding explants.Induced shoot buds, upon transfer to MS medium containing 2mgL-1 Kn (Kinetin) and 1mgL-1 BAP (6-benzylamino purine) elongated. These elongated shoots were further proliferated on MS medium supplemented with 1.5mgL-1 IAA (indole-3-acetic acid) and 0.5mgL-1 BAP and 3.01-3.91cm elongation was achieved after 6 weeks. No genotype specific variance in shoot elongation was observed among the toxic genotypes except the CSMCRI-JC2, which showed reduced response. And for proliferation among the toxic genotypes, CSMCRI-JC4 showed highest number of shoots formed. Among the rest, no significant differences were observed. The elongated shoot could be rooted by pulse treatment on half-strength MS medium supplemented with 2% sucrose, 3mgL-1 IBA (indole-3-butyric acid), 1mgL-1 IAA, 1mgL-1 NAA (α-naphthalene acetic acid) and subsequent transfer on 0

  10. Regeneration in Jatropha curcas: Factors affecting the efficiency of in vitro regeneration

    KAUST Repository

    Sharma, Sweta K.

    2011-07-01

    Factors influencing in vitro regeneration through direct shoot bud induction from hypocotyl explants of Jatropha curcas were studied in the present investigation. Regeneration in J. curcas was found to be genotype dependent and out of four toxic and one non-toxic genotype studied, non-toxic was least responsive. The best results irrespective of genotype were obtained on the medium containing 0.5mgL-1 TDZ (Thidiazuron) and in vitro hypocotyl explants were observed to have higher regeneration efficiency as compared to ex vitro explant in both toxic and non-toxic genotypes. Adventitious shoot buds could be induced from the distal end of explants in all the genotypes. The number of shoot buds formed and not the number of explants responding to TDZ treatment were significantly affected by the position of the explant on the seedling axis. Explants from younger seedlings (≤15 days) were still juvenile and formed callus easily, whereas the regeneration response declined with increase in age of seedlings after 30 days. Transient reduction of Ca2+ concentrations to 0.22gL-1 in the germination medium increased the number of responding explants.Induced shoot buds, upon transfer to MS medium containing 2mgL-1 Kn (Kinetin) and 1mgL-1 BAP (6-benzylamino purine) elongated. These elongated shoots were further proliferated on MS medium supplemented with 1.5mgL-1 IAA (indole-3-acetic acid) and 0.5mgL-1 BAP and 3.01-3.91cm elongation was achieved after 6 weeks. No genotype specific variance in shoot elongation was observed among the toxic genotypes except the CSMCRI-JC2, which showed reduced response. And for proliferation among the toxic genotypes, CSMCRI-JC4 showed highest number of shoots formed. Among the rest, no significant differences were observed. The elongated shoot could be rooted by pulse treatment on half-strength MS medium supplemented with 2% sucrose, 3mgL-1 IBA (indole-3-butyric acid), 1mgL-1 IAA, 1mgL-1 NAA (α-naphthalene acetic acid) and subsequent transfer on 0

  11. Micromanaging cardiac regeneration : Targeted delivery of microRNAs for cardiac repair and regeneration

    NARCIS (Netherlands)

    Kamps, Jan A.A.M.; Krenning, Guido

    2016-01-01

    The loss of cardiomyocytes during injury and disease can result in heart failure and sudden death, while the adult heart has a limited capacity for endogenous regeneration and repair. Current stem cell-based regenerative medicine approaches modestly improve cardiomyocyte survival, but offer

  12. Regeneration of nitrobenzene-exhausted granular activated carbon by dielectric barrier discharge method

    International Nuclear Information System (INIS)

    Lan, Tian; Gao, Wenli; Li, Zhongjian; Lei, Lecheng

    2013-01-01

    A novel method for the regeneration of nitrobenzene-exhausted granular activated carbon using dielectric barrier discharge (DBD) was proposed in this study. The influence of several parameters including voltage, frequency, and plasma medium on the regeneration efficiency were studied. Under optimum conditions, regeneration efficiency can reach over 80% and remain nearly stable after 5 times of regeneration cycle. The texture characteristic and surface chemistry of Granular Activated Carbon (GAC) samples were also investigated. Analysis shows that the pore volume and specific surface area of regenerated GAC is strongly recovered compared to the exhausted GAC, but the discharge can cause some pores to diminish. Acidic functional groups on GAC's surface especially carboxylic groups had a growing tendency after DBD process. Experimental results show that the regeneration of GAC by DBD method mainly attributes to high active species and thermal effect, while O 3 has minor effect.

  13. In situ vascular regeneration using substance P-immobilised poly(L-lactide-co-ε-caprolactone scaffolds: stem cell recruitment, angiogenesis, and tissue regeneration

    Directory of Open Access Journals (Sweden)

    M Shafiq

    2011-11-01

    Full Text Available In situ tissue regeneration holds great promise for regenerative medicine and tissue engineering applications. However, to achieve control over long-term and localised presence of biomolecules, certain barriers must be overcome. The aim of this study was to develop electrospun scaffolds for the fabrication of artificial vascular grafts that can be remodelled within a host by endogenous cell recruitment. We fabricated scaffolds by mixing appropriate proportions of linear poly (l-lactide-co-ε-caprolactone (PLCL and substance P (SP-immobilised PLCL, using electrospinning to develop vascular grafts. Substance P was released in a sustained fashion from electrospun membranes for up to 30 d, as revealed by enzyme-linked immunosorbent assay. Immobilised SP remained bioactive and recruited human bone marrow-derived mesenchymal stem cells (hMSCs in an in vitro Trans-well migration assay. The biocompatibility and biological performance of the scaffolds were evaluated by in vivo experiments involving subcutaneous scaffold implantations in Sprague-Dawley rats for up to 28 d followed by histological and immunohistochemical studies. Histological analysis revealed a greater extent of accumulative host cell infiltration and collagen deposition in scaffolds containing higher contents of SP than observed in the control group at both time points. We also observed the presence of a large number of laminin-positive blood vessels and Von Willebrand factor (vWF+ cells in the explants containing SP. Additionally, scaffolds containing SP showed the existence of CD90+ and CD105+ MSCs. Collectively, these findings suggest that the methodology presented here may have broad applications in regenerative medicine, and the novel scaffolding materials can be used for in situ tissue regeneration of soft tissues.

  14. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease

    Directory of Open Access Journals (Sweden)

    Kenneth Maiese

    2015-01-01

    Full Text Available Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4 to foster control over stem cell proliferation, wound repair, cognitive decline,β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.

  15. EVALUATING THE CULTURE-LED REGENERATION

    Directory of Open Access Journals (Sweden)

    D'Angelo Francesca

    2010-12-01

    Full Text Available The aim of the paper is to propose a new approach to urban planning, evaluating the culture-led regeneration processes. In the last few years, the cultural turn in urban planning played a central role in the urban studies. In this way we try to elaborate a more robust perspective interpreting the complex phenomenology emerging from the culture-led regeneration processes. Within the concept of complexity we discuss about the metabolic process that are the processes necessary to transform energy, material and information in goods and service functional to the complex urban system life. The approach that will be employed is the MuSIASEM that is based on several novel concept and an innovative methods never applied in this research field.

  16. Regeneration complexities of Pinus gerardiana in dry temperate forests of Indian Himalaya.

    Science.gov (United States)

    Kumar, Raj; Shamet, G S; Mehta, Harsh; Alam, N M; Kaushal, Rajesh; Chaturvedi, O P; Sharma, Navneet; Khaki, B A; Gupta, Dinesh

    2016-04-01

    Pinus gerardiana is considered an important species in dry temperate forests of North-Western Indian Himalaya because of its influence on ecological processes and economic dependence of local people in the region. But, large numbers of biotic and abiotic factors have affected P. gerardiana in these forests; hence, there is a crucial need to understand the regeneration dynamics of this tree species. The present investigation was conducted in P. gerardiana forests to understand vegetation pattern and regeneration processes on different sites in the region. Statistical analysis was performed to know variability in growing stock and regeneration on sample plots, while correlation coefficients and regression models were developed to find the relationship between regeneration and site factors. The vegetation study showed dominance of P. gerardiana, which is followed by Cedrus deodara, Pinus wallichiana and Quercus ilex in the region. The growing stock of P. gerardiana showed steep increasing and then steadily declining trend from lower to higher diameter class. The distribution of seedling, sapling, pole and trees was not uniform at different sites and less number of plots in each site were observed to have effective conditions for continuous regeneration, but mostly showed extremely limited regeneration. Regeneration success ranging from 8.44 to 15.93 % was recorded in different sites of the region, which suggests that in different sites regeneration success is influenced by collection of cone for extracting seed, grazing/browsing and physico-chemical properties of soil. Regeneration success showed significant correlation and relationship with most of abiotic and biotic factors. The regeneration success is lower than the requirement of sustainable forest, but varies widely among sites in dry temperate forests of Himalaya. More forest surveys are required to understand the conditions necessary for greater success of P. gerardiana in the region.

  17. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  18. Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates.

    Science.gov (United States)

    Lee-Liu, Dasfne; Edwards-Faret, Gabriela; Tapia, Víctor S; Larraín, Juan

    2013-08-01

    Unlike mammals, regenerative model organisms such as amphibians and fish are capable of spinal cord regeneration after injury. Certain key differences between regenerative and nonregenerative organisms have been suggested as involved in promoting this process, such as the capacity for neurogenesis and axonal regeneration, which appear to be facilitated by favorable astroglial, inflammatory and immune responses. These traits provide a regenerative-permissive environment that the mammalian spinal cord appears to be lacking. Evidence for the regenerative nonpermissive environment in mammals is given by the fact that they possess neural stem/progenitor cells, which transplanted into permissive environments are able to give rise to new neurons, whereas in the nonpermissive spinal cord they are unable to do so. We discuss the traits that are favorable for regeneration, comparing what happens in mammals with each regenerative organism, aiming to describe and identify the key differences that allow regeneration. This comparison should lead us toward finding how to promote regeneration in organisms that are unable to do so. Copyright © 2013 Wiley Periodicals, Inc.

  19. Administration of RANKL boosts thymic regeneration upon bone marrow transplantation.

    Science.gov (United States)

    Lopes, Noella; Vachon, Hortense; Marie, Julien; Irla, Magali

    2017-06-01

    Cytoablative treatments lead to severe damages on thymic epithelial cells (TECs), which result in delayed de novo thymopoiesis and a prolonged period of T-cell immunodeficiency. Understanding the mechanisms that govern thymic regeneration is of paramount interest for the recovery of a functional immune system notably after bone marrow transplantation (BMT). Here, we show that RANK ligand (RANKL) is upregulated in CD4 + thymocytes and lymphoid tissue inducer (LTi) cells during the early phase of thymic regeneration. Importantly, whereas RANKL neutralization alters TEC recovery after irradiation, ex vivo RANKL administration during BMT boosts the regeneration of TEC subsets including thymic epithelial progenitor-enriched cells, thymus homing of lymphoid progenitors, and de novo thymopoiesis. RANKL increases specifically in LTi cells, lymphotoxin α, which is critical for thymic regeneration. RANKL treatment, dependent on lymphotoxin α, is beneficial upon BMT in young and aged individuals. This study thus indicates that RANKL may be clinically useful to improve T-cell function recovery after BMT by controlling multiple facets of thymic regeneration. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-01-01

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) and P3HT:indene-C 60 bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles