WorldWideScience

Sample records for regenerating mouse livers

  1. Proteomic analysis of regenerating mouse liver following 50% partial hepatectomy

    OpenAIRE

    Cao, Hongcui; Yu, Jiong; Xu, Wei; Jia, Xiaofei; Yang, Jinfeng; Pan, Qiaoling; Zhang, Qiyi; Sheng, Guoping; Li, Jun; Pan, Xiaoping; Wang, Yingjie; Li, Lanjuan

    2009-01-01

    Background Although 70% (or 2/3) partial hepatectomy (PH) is the most studied model for liver regeneration, the hepatic protein expression profile associated with lower volume liver resection (such as 50% PH) has not yet been reported. Therefore, the aim of this study was to determine the global protein expression profile of the regenerating mouse liver following 50% PH by differential proteomics, and thereby gaining some insights into the hepatic regeneration mechanism(s) under this milder b...

  2. Proteomic analysis of regenerating mouse liver following 50% partial hepatectomy

    Directory of Open Access Journals (Sweden)

    Pan Xiaoping

    2009-12-01

    Full Text Available Abstract Background Although 70% (or 2/3 partial hepatectomy (PH is the most studied model for liver regeneration, the hepatic protein expression profile associated with lower volume liver resection (such as 50% PH has not yet been reported. Therefore, the aim of this study was to determine the global protein expression profile of the regenerating mouse liver following 50% PH by differential proteomics, and thereby gaining some insights into the hepatic regeneration mechanism(s under this milder but clinically more relevant condition. Results Proteins from sham-operated mouse livers and livers regenerating for 24 h after 50% PH were separated by SDS-PAGE and analyzed by nanoUPLC-Q-Tof mass spectrometry. Compared to sham-operated group, there were totally 87 differentially expressed proteins (with 50 up-regulated and 37 down-regulated ones identified in the regenerating mouse livers, most of which have not been previously related to liver regeneration. Remarkably, over 25 differentially expressed proteins were located at mitochondria. Several of the mitochondria-resident proteins which play important roles in citric acid cycle, oxidative phosphorylation and ATP production were found to be down-regulated, consistent with the recently-proposed model in which the reduction of ATP content in the remnant liver gives rise to early stress signals that contribute to the onset of liver regeneration. Pathway analysis revealed a central role of c-Myc in the regulation of liver regeneration. Conclusions Our study provides novel evidence for mitochondria as a pivotal organelle that is connected to liver regeneration, and lays the foundation for further studies on key factors and pathways involved in liver regeneration following 50% PH, a condition frequently used for partial liver transplantation and conservative liver resection.

  3. [Cytoskeletal reorganization in hepatocytes of the regenerating mouse liver].

    Science.gov (United States)

    Gleĭberman, A S; Troianovskiĭ, S M; Bannikov, G A

    1984-12-01

    The intracellular pattern of prekeratin and actin filaments has been studied on sections of mouse livers regenerating after CCl4 injury. Monoclonal antibodies against one of liver prekeratins and monospecific polyclonal actin antibodies were used in the indirect immunofluorescent test. The presence of alpha-fetoprotein and bile canaliculi antigen was also monitored during regeneration. In control livers, prekeratin and actin filaments formed thick bundles adjacent to plasma membranes. The cytoplasmic prekeratin network was unmarked. In contrast to the latter, the bright well developed intracytoplasmic prekeratin network and intracytoplasmic actin fibers were identified in the perinecrotic hepatocytes by the 3d-4th day of regeneration. This rearrangement of the cytoskeleton coincided in time with the appearance of alpha-fetoprotein and the loss of the bile canaliculi antigen in the perinecrotic hepatocytes.

  4. Liver regeneration.

    Science.gov (United States)

    Mao, Shennen A; Glorioso, Jaime M; Nyberg, Scott L

    2014-04-01

    The liver is unique in its ability to regenerate in response to injury. A number of evolutionary safeguards have allowed the liver to continue to perform its complex functions despite significant injury. Increased understanding of the regenerative process has significant benefit in the treatment of liver failure. Furthermore, understanding of liver regeneration may shed light on the development of cancer within the cirrhotic liver. This review provides an overview of the models of study currently used in liver regeneration, the molecular basis of liver regeneration, and the role of liver progenitor cells in regeneration of the liver. Specific focus is placed on clinical applications of current knowledge in liver regeneration, including small-for-size liver transplant. Furthermore, cutting-edge topics in liver regeneration, including in vivo animal models for xenogeneic human hepatocyte expansion and the use of decellularized liver matrices as a 3-dimensional scaffold for liver repopulation, are proposed. Unfortunately, despite 50 years of intense study, many gaps remain in the scientific understanding of liver regeneration.

  5. Cloning and characterization of a mouse liver-specific gene mfrep-1, upregulated in liver regeneration

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Human fibrinogen-related protein-1/liver fibrinogen-related protein-1 (HFREP-1/LFIRE-1), a liver-specificprotein, is a member of fibrinogen superfamily that exerts various biological activities. However, the func-tion of HFREP-1/LFIRE-1 in liver remains unknown. Here we isolated its mouse ortholog gene-mousefibrinogen-related protein-1 (mfrep-1), which encoded 314 amino acids, exhibiting 80.4% similarity toHFREP-1/LFIRE-1. Northern blot analysis revealed that 1.2-kb mfrep-1 mRNA was detected selectivelyin mouse liver. To explore the function of MFREP-1, we examined the levels of mfrep-1 mRNA duringregeneration after 70% partial hepatectomy (PHx) in mice. mfrep-1 mRNA increased in the regeneratingliver and reached the first shoulder peak at 2-4 h after PHx. Cycloheximide pretreatment could suppress theinduction of mfrep-1, indicating the up-regulation of this gene need de novo protein synthesis. Its mRNAcontinued to elevate at 6 h thereafter and reached the second peak at 24 h. The enhanced expression ofmfrep-1 maintained high until 72 h and then declined slowly to the basal level. Immunohistochemistryassessment confirmed the up-regulated expression of MFREP-1 protein in parenchymal cells during liverregeneration. These data suggested that MFREP-1 might play an important role in liver regeneration andbe involved in the regulation of cell growth.

  6. Structural changes in the cytoskeleton in regenerating mouse liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Gleiberman, A.S.; Bannikov, G.A.; Troyanovskii, S.M.

    1985-05-01

    After CCl/sub 4/ poisoning induced in rats poisoning centrilobular necroses formed in the liver during the next 24 h. Single a-feto protein-containing cells appeared onnthe second day of regeneration. By the end of the 2nd day a perinecrotic layer of cells containing AFP was formed. There is a definite correlation between loss of biliary capillary antigen, the appearance of bundles of prekeratin and actin, and expression of AFP synthesis. It is possible to include all these features in a single marker ocmplex of ''embronalization'' of the hepatocyte.

  7. Zonal induction of mixed lineage kinase ZPK/DLK/MUK gene expression in regenerating mouse liver.

    Science.gov (United States)

    Douziech, M; Grondin, G; Loranger, A; Marceau, N; Blouin, R

    1998-08-28

    ZPK/DLK/MUK is a serine/theronine kinase believed to be involved in the regulation of cell growth and differentiation. To further explore the suggested participation of ZPK/DLK/MUK in this process, we examined the expression and cellular localization of ZPK/DLK/MUK mRNA in regenerating mouse liver following partial hepatectomy by ribonuclease protection assay and in situ hybridization. The steady-state level of APK/DLKMUK mRNA was very low in normal and sham-operated mouse livers, whereas a marked and transient increase was observed in the regenerating liver. While ZPK/DLK/MUK mRNAs were rarely detected in hepatocytes from all zones of the normal liver, hepatocytes of regenerating liver exhibit a gradient of expression ranging from low in the periportal zone, to intermediate in the mid-zone, to high in the pericentral zone. These findings demonstrate a transient stimulation of ZPK/DLK/MUK gene expression that correlates with the growth response of hepatocyte subpopulations in regenerating liver.

  8. Postponing the Hypoglycemic Response to Partial Hepatectomy Delays Mouse Liver Regeneration.

    Science.gov (United States)

    Huang, Jiansheng; Schriefer, Andrew E; Cliften, Paul F; Dietzen, Dennis; Kulkarni, Sakil; Sing, Sucha; Monga, Satdarshan P S; Rudnick, David A

    2016-03-01

    All serious liver injuries alter metabolism and initiate hepatic regeneration. Recent studies using partial hepatectomy (PH) and other experimental models of liver regeneration implicate the metabolic response to hepatic insufficiency as an important source of signals that promote regeneration. Based on these considerations, the analyses reported here were undertaken to assess the impact of interrupting the hypoglycemic response to PH on liver regeneration in mice. A regimen of parenteral dextrose infusion that delays PH-induced hypoglycemia for 14 hours after surgery was identified, and the hepatic regenerative response to PH was compared between dextrose-treated and control mice. The results showed that regenerative recovery of the liver was postponed in dextrose-infused mice (versus vehicle control) by an interval of time comparable to the delay in onset of PH-induced hypoglycemia. The regulation of specific liver regeneration-promoting signals, including hepatic induction of cyclin D1 and S-phase kinase-associated protein 2 expression and suppression of peroxisome proliferator-activated receptor γ and p27 expression, was also disrupted by dextrose infusion. These data support the hypothesis that alterations in metabolism that occur in response to hepatic insufficiency promote liver regeneration, and they define specific pro- and antiregenerative molecular targets whose regenerative regulation is postponed when PH-induced hypoglycemia is delayed.

  9. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration.

    Science.gov (United States)

    Malato, Yann; Naqvi, Syed; Schürmann, Nina; Ng, Raymond; Wang, Bruce; Zape, Joan; Kay, Mark A; Grimm, Dirk; Willenbring, Holger

    2011-12-01

    Recent evidence has contradicted the prevailing view that homeostasis and regeneration of the adult liver are mediated by self duplication of lineage-restricted hepatocytes and biliary epithelial cells. These new data suggest that liver progenitor cells do not function solely as a backup system in chronic liver injury; rather, they also produce hepatocytes after acute injury and are in fact the main source of new hepatocytes during normal hepatocyte turnover. In addition, other evidence suggests that hepatocytes are capable of lineage conversion, acting as precursors of biliary epithelial cells during biliary injury. To test these concepts, we generated a hepatocyte fate-tracing model based on timed and specific Cre recombinase expression and marker gene activation in all hepatocytes of adult Rosa26 reporter mice with an adenoassociated viral vector. We found that newly formed hepatocytes derived from preexisting hepatocytes in the normal liver and that liver progenitor cells contributed minimally to acute hepatocyte regeneration. Further, we found no evidence that biliary injury induced conversion of hepatocytes into biliary epithelial cells. These results therefore restore the previously prevailing paradigms of liver homeostasis and regeneration. In addition, our new vector system will be a valuable tool for timed, efficient, and specific loop out of floxed sequences in hepatocytes.

  10. Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration.

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    Full Text Available BACKGROUND: Inadequate liver regeneration (LR is still an unsolved problem in major liver resection and small-for-size syndrome post-living donor liver transplantation. A number of microRNAs have been shown to play important roles in cell proliferation. Herein, we investigated the role of miR-26a as a pivotal regulator of hepatocyte proliferation in LR. METHODOLOGY/PRINCIPAL FINDINGS: Adult male C57BL/6J mice, undergoing 70% partial hepatectomy (PH, were treated with Ad5-anti-miR-26a-LUC or Ad5-miR-26a-LUC or Ad5-LUC vector via portal vein. The animals were subjected to in vivo bioluminescence imaging. Serum and liver samples were collected to test liver function, calculate liver-to-body weight ratio (LBWR, document hepatocyte proliferation (Ki-67 staining, and investigate potential targeted gene expression of miR-26a by quantitative real-time PCR and Western blot. The miR-26a level declined during LR after 70% PH. Down-regulation of miR-26a by anti-miR-26a expression led to enhanced proliferation of hepatocytes, and both LBWR and hepatocyte proliferation (Ki-67(+ cells % showed an increased tendency, while liver damage, indicated by aspartate aminotransferase (AST, alanine aminotransferase (ALT and total bilirubin (T-Bil, was reduced. Furthermore, CCND2 and CCNE2, as possible targeted genes of miR-26a, were up-regulated. In addition, miR-26a over-expression showed converse results. CONCLUSIONS/SIGNIFICANCE: MiR-26a plays crucial role in regulating the proliferative phase of LR, probably by repressing expressions of cell cycle proteins CCND2 and CCNE2. The current study reveals a novel miRNA-mediated regulation pattern during the proliferative phase of LR.

  11. Microenvironment of liver regeneration in liver cancer.

    Science.gov (United States)

    Li, Han-Min; Ye, Zhi-Hua

    2017-07-01

    The occurrence and development of liver cancer are essentially the most serious outcomes of uncontrolled liver regeneration. The progression of liver cancer is inevitably related to the abnormal microenvironment of liver regeneration. The deterioration observed in the microenvironment of liver regeneration is a necessary condition for the occurrence, development and metastasis of cancer. Therefore, the use of a technique to prevent and treat liver cancer via changes in the microenvironment of liver regeneration is a novel strategy. This strategy would be an effective way to delay, prevent or even reverse cancer occurrence, development and metastasis through an improvement in the liver regeneration microenvironment along with the integrated regulation of multiple components, targets, levels, channels and time sequences. In addition, the treatment of "tonifying Shen (Kidney) to regulate liver regeneration and repair by affecting stem cells and their microenvironment" can regulate "the dynamic imbalance between the normal liver regeneration and the abnormal liver regeneration"; this would improve the microenvironment of liver regeneration, which is also a mechanism by which liver cancer may be prevented or treated.

  12. ZBTB20 is involved in liver regeneration after partial hepatectomy in mouse

    Institute of Scientific and Technical Information of China (English)

    Ming-Zhe Weng; Peng-Yuan Zhuang; Zhen-Yu Hei; Pei-Yi Lin; Zhi-Sheng Chen; Ying-Bin Liu; Zhi-Wei Quan and Zhao-Hui Tang

    2014-01-01

    BACKGROUND: A  better  understanding  of  the  molecular mechanisms in liver regeneration holds promise for exploring the new potential therapy for liver failure. The present study was to investigate the role of zinc ifnger and BTB domain-containing protein 20 (ZBTB20), a potential factor associated with liver regeneration, in a model of 70% hepatectomy in mice. METHODS: Parameters for liver proliferation such as liver/body ratio and BrdU positivity were obtained via direct measurement and  immunohistochemistry.  The  levels  of  zinc  ifngers  and homeoboxes 2 (ZHX2), ZBTB20, alpha-fetoprotein (AFP) and glypican 3 (GPC3) transcripts in the regenerating liver tissue of a 70% hepatectomy rodent model were monitored by real-time PCR analysis at different time points. Knockdown of ZBTB20 was performed to characterize its regulatory function. RESULTS: A negatively regulating relationship between ZHX2, ZBTB20 and AFP, GPC3 was revealed from 24 to 72 hours after 70% hepatectomy. ZBTB20 appears to negatively regulate AFP and GPC3 transcription since the knockdown of ZBTB20 promoted the proliferation of hepatocytes and the expression of AFP and GPC3. CONCLUSION: In addition to AFP, GPC3 and ZHX2, ZBTB20 is a new regulator in liver regeneration and the decrease of ZBTB20 expression following 70% hepatectomy promotes AFP and GPC3 expression.

  13. Enhancement of liver regeneration and liver surgery

    NARCIS (Netherlands)

    Olthof, P.B.

    2017-01-01

    Liver regeneration allows surgical resection of up to 75% of the liver and enables curative treatment potential for patients with primary or secondary hepatic malignancies. Liver surgery is associated with substantial risks, reflected by considerable morbidity and mortality rates. Optimization of

  14. A novel cell-free strategy for promoting mouse liver regeneration: utilization of a conditioned medium from adipose-derived stem cells.

    Science.gov (United States)

    Lee, Sang Kuon; Lee, Sang Chul; Kim, Say-June

    2015-04-01

    Although stem cells have beneficial effects, their clinical application faces many issues, including high cost and safety. Because stem cell plasty is largely based on their paracrine activity, this study aimed to test the hypothesis that utilization of the stem-cell secretome instead of actual cells would not only overcome these limitations, but also have similar effects as stem cell-based therapy. Partial hepatectomized mice were divided into four groups according to the material administered via the tail vein: normal saline (saline group); 1.0 × 10(6) human adipose tissue-derived stem cells (ASCs) in 0.1 mL saline (ASC group); 25-fold concentrated conditioned medium from ASCs (ASC-secretome group); and concentrated medium (media group). Specimens were obtained postoperatively. Liver regeneration was estimated by bromodeoxyuridine incorporation, Lgr5 RT-PCR, proliferating cell nuclear antigen western blot, and liver weights, and liver function was estimated by albumin immunohistochemistry and liver function tests. The liver regenerative capacities of the ASC and ASC-secretome groups were not statistically different from each other, but were higher than their respective control groups. Moreover, the ASC and ASC-secretome groups promoted the phosphorylation of Akt, STAT3, and Erk1/2, and expressed higher levels of mouse albumin in immunohistochemistry. ASCs and ASC-secretome infusions to the partially hepatectomized mice produced similar outcomes in terms of liver regeneration and mouse albumin expression. Therefore, cell-free therapy, which is based on the paracrine properties of stem cells, is expected to overcome the limitations of cell-based methods and to provide a novel treatment for liver diseases.

  15. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration

    DEFF Research Database (Denmark)

    Jelnes, Peter; Santoni-Rugiu, Eric; Rasmussen, Morten

    2007-01-01

    The experimental protocols used in the investigation of stem cell-mediated liver regeneration in rodents are characterized by activation of the hepatic stem cell compartment in the canals of Hering followed by transit amplification of oval cells and their subsequent differentiation along hepatic...... lineages. Although the protocols are numerous and often used interchangeably across species, a thorough comparative phenotypic analysis of oval cells in rats and mice using well-established and generally acknowledged molecular markers has not been provided. In the present study, we evaluated and compared...... the molecular phenotypes of oval cells in several of the most commonly used protocols of stem cell-mediated liver regeneration-namely, treatment with 2-acetylaminofluorene and partial (70%) hepatectomy (AAF/PHx); a choline-deficient, ethionine-supplemented (CDE) diet; a 3,5-diethoxycarbonyl-1,4-dihydro...

  16. Postnatal liver growth and regeneration are independent of c-myc in a mouse model of conditional hepatic c-myc deletion

    Directory of Open Access Journals (Sweden)

    Sanders Jennifer A

    2012-03-01

    Full Text Available Abstract Background The transcription factor c-myc regulates genes involved in hepatocyte growth, proliferation, metabolism, and differentiation. It has also been assigned roles in liver development and regeneration. In previous studies, we made the unexpected observation that c-Myc protein levels were similar in proliferating fetal liver and quiescent adult liver with c-Myc displaying nucleolar localization in the latter. In order to investigate the functional role of c-Myc in adult liver, we have developed a hepatocyte-specific c-myc knockout mouse, c-mycfl/fl;Alb-Cre. Results Liver weight to body weight ratios were similar in control and c-myc deficient mice. Liver architecture was unaffected. Conditional c-myc deletion did not result in compensatory induction of other myc family members or in c-Myc's binding partner Max. Floxed c-myc did have a negative effect on Alb-Cre expression at 4 weeks of age. To explore this relationship further, we used the Rosa26 reporter line to assay Cre activity in the c-myc floxed mice. No significant difference in Alb-Cre activity was found between control and c-mycfl/fl mice. c-myc deficient mice were studied in a nonproliferative model of liver growth, fasting for 48 hr followed by a 24 hr refeeding period. Fasting resulted in a decrease in liver mass and liver protein, both of which recovered upon 24 h of refeeding in the c-mycfl/fl;Alb-Cre animals. There was also no effect of reducing c-myc on recovery of liver mass following 2/3 partial hepatectomy. Conclusions c-Myc appears to be dispensable for normal liver growth during the postnatal period, restoration of liver mass following partial hepatectomy and recovery from fasting.

  17. Role of liver progenitors in liver regeneration.

    Science.gov (United States)

    Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A; Canbay, Ali

    2015-02-01

    During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.

  18. Liver Development, Regeneration, and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Janet W. C. Kung

    2010-01-01

    Full Text Available The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers.

  19. Glutathione transferases P1/P2 regulate the timing of signaling pathway activations and cell cycle progression during mouse liver regeneration.

    Science.gov (United States)

    Pajaud, J; Ribault, C; Ben Mosbah, I; Rauch, C; Henderson, C; Bellaud, P; Aninat, C; Loyer, P; Morel, F; Corlu, A

    2015-01-15

    Glutathione transferases (GST) are phase II enzymes catalyzing the detoxification of endogenous noxious compounds and xenobiotics. They also regulate phosphorylation activities of MAPKinases in a catalytic-independent manner. Previous studies have demonstrated the regulation of JNK-dependent pathway by GSTP1/2. Considering the crucial role of JNK in the early steps of the hepatocyte cell cycle, we sought to determine whether GSTP1/2 were essential for hepatocyte proliferation following partial hepatectomy (PH). Using a conventional double knockout mouse model for the Gstp1 and Gstp2 genes, we found that the lack of GSTP1/P2 reduced the rate of DNA replication and mitotic index during the first wave of hepatocyte proliferation. The lowered proliferation was associated with the decrease in TNFalpha and IL-6 plasma concentrations, reduced hepatic HGF expression and delayed and/or altered activation of STAT3, JNK and ERK1/2 signaling pathways. In addition, the expression and/or activation of cell cycle regulators such as Cyclin D1, CDK4, E2F1 and MCM7 was postponed demonstrating that the absence of GSTP1/2 delayed the entry into and progression through the G1 phase of the cell cycle and impaired the synchrony of proliferation in hepatocytes following PH. Furthermore, while JNK and its downstream targets c-Jun and ATF2 were activated during the early steps of the liver regeneration in wild-type animals, the constitutively active JNK found in the quiescent liver of Gstp1/2 knockout mice underwent a decrease in its activity after PH. Transient induction of antioxidant enzymes and nitric oxide synthase were also delayed or repressed during the regenerative response. Altogether our results demonstrate that GSTP1/2 are a critical regulators of hepatocyte proliferation in the initial phases of liver regeneration.

  20. Mechanisms of platelet-mediated liver regeneration.

    Science.gov (United States)

    Lisman, Ton; Porte, Robert J

    2016-08-04

    Platelets have multiple functions beyond their roles in thrombosis and hemostasis. Platelets support liver regeneration, which is required after partial hepatectomy and acute or chronic liver injury. Although it is widely assumed that platelets stimulate liver regeneration by local excretion of mitogens stored within platelet granules, definitive evidence for this is lacking, and alternative mechanisms deserve consideration. In-depth knowledge of mechanisms of platelet-mediated liver regeneration may lead to new therapeutic strategies to treat patients with failing regenerative responses.

  1. Calcium Signalling and Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Isabelle Garcin

    2012-01-01

    Full Text Available After partial hepatectomy (PH the initial mass of the organ is restored through a complex network of cellular interactions that orchestrate both proliferative and hepatoprotective signalling cascades. Among agonists involved in this network many of them drive Ca2+ movements. During liver regeneration in the rat, hepatocyte cytosolic Ca2+ signalling has been shown on the one hand to be deeply remodelled and on the other hand to enhance progression of hepatocytes through the cell cycle. Mechanisms through which cytosolic Ca2+ signals impact on hepatocyte cell cycle early after PH are not completely understood, but at least they include regulation of immediate early gene transcription and ERK and CREB phosphorylation. In addition to cytosolic Ca2+, there is also evidence that mitochondrial Ca2+ and also nuclear Ca2+ may be critical for the regulation of liver regeneration. Finally, Ca2+ movements in hepatocytes, and possibly in other liver cells, not only impact hepatocyte progression in the cell cycle but more generally may regulate cellular homeostasis after PH.

  2. Erythropoietin stimulates hepatocyte regeneration after liver resection

    OpenAIRE

    Schön, Michael R.; Hogrebe, Esther; Hengstler, Jan Georg; Donaubauer, Bernd; Faber, Sonya C.; Bauer, Alexander; Pietsch, Uta-Carolin; Jelkmann, Wolfgang; Thiery, Joachim; Hauss, Johann Peter; Tannapfel, Andrea

    2008-01-01

    The increased relevance of liver surgery and transplantation as a therapeutic modality over the last two decades mandates the development of novel strategies to improve liver regeneration. Here we studied whether erythropoietin (EPO) improves liver regeneration after hepatectomy in pigs. Eighteen female pigs underwent laparoscopic left lateral liver resection and were allocated randomly into three groups. No EPO was administered to the control group (group 1, n=6). Group 2 (...

  3. FAK deletion accelerates liver regeneration after two-thirds partial hepatectomy

    Science.gov (United States)

    Shang, Na; Arteaga, Maribel; Chitsike, Lennox; Wang, Fang; Viswakarma, Navin; Breslin, Peter; Qiu, Wei

    2016-01-01

    Understanding the molecular mechanisms of liver regeneration is essential to improve the survival rate of patients after surgical resection of large amounts of liver tissue. Focal adhesion kinase (FAK) regulates different cellular functions, including cell survival, proliferation and cell migration. The role of FAK in liver regeneration remains unknown. In this study, we found that Fak is activated and induced during liver regeneration after two-thirds partial hepatectomy (PHx). We used mice with liver-specific deletion of Fak and investigated the role of Fak in liver regeneration in 2/3 PHx model (removal of 2/3 of the liver). We found that specific deletion of Fak accelerates liver regeneration. Fak deletion enhances hepatocyte proliferation prior to day 3 post-PHx but attenuates hepatocyte proliferation 3 days after PHx. Moreover, we demonstrated that the deletion of Fak in liver transiently increases EGFR activation by regulating the TNFα/HB-EGF axis during liver regeneration. Furthermore, we found more apoptosis in Fak-deficient mouse livers compared to WT mouse livers after PHx. Conclusion: Our data suggest that Fak is involved in the process of liver regeneration, and inhibition of FAK may be a promising strategy to accelerate liver regeneration in recipients after liver transplantation. PMID:27677358

  4. Silymarin Accelerates Liver Regeneration after Partial Hepatectomy

    Directory of Open Access Journals (Sweden)

    Jia-Ping Wu

    2015-01-01

    Full Text Available Partial hepatectomy (PHx is a liver regeneration physiological response induced to maintain homeostasis. Liver regeneration evolved presumably to protect wild animals from catastrophic liver loss caused by toxins or tissue injury. Silymarin (Sm ability to stimulate liver regeneration has been an object of curiosity for many years. Silymarin has been investigated for use as an antioxidant and anticarcinogen. However, its use as a supportive treatment for liver damage is elusive. In this study, we fed silymarin (Sm, 25 mg/kg to male Sprague-Dawley rats for 7 weeks. Surgical 2/3 PHx was then conducted on the rats at 6 hrs, 24 hrs, and 72 hrs. Western blot and RT-PCR were conducted to detect the cell cycle activities and silymarin effects on hepatic regeneration. The results showed that silymarin enhanced liver regeneration by accelerating the cell cycle in PHx liver. Silymarin led to increased G1 phase (cyclin D1/pRb, S phase (cyclin E/E2F, G2 phase (cyclin B, and M phase (cyclin A protein and mRNA at 6 hrs, 24 hrs, and 72 hrs PHx. HGF, TGFα, and TGFβ1 growth factor expressions were also enhanced. We suggest that silymarin plays a crucial role in accelerated liver regeneration after PHx.

  5. Chronological protein synthesis in regenerating rat liver.

    Science.gov (United States)

    He, Jinjun; Hao, Shuai; Zhang, Hao; Guo, Fuzheng; Huang, Lingyun; Xiao, Xueyuan; He, Dacheng

    2015-07-01

    Liver regeneration has been studied for decades; however, its regulation remains unclear. In this study, we report a dynamic tracing of protein synthesis in rat regenerating liver with a new proteomic technique, (35) S in vivo labeling analysis for dynamic proteomics (SiLAD). Conventional proteomic techniques typically measure protein alteration in accumulated amounts. The SiLAD technique specifically detects protein synthesis velocity instead of accumulated amounts of protein through (35) S pulse labeling of newly synthesized proteins, providing a direct way for analyzing protein synthesis variations. Consequently, protein synthesis within short as 30 min was visualized and protein regulations in the first 8 h of regenerating liver were dynamically traced. Further, the 3.5-5 h post partial hepatectomy (PHx) was shown to be an important regulatory turning point by acute regulation of many proteins in the initiation of liver regeneration.

  6. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration.

    Science.gov (United States)

    Mukherjee, Sarmistha; Chellappa, Karthikeyani; Moffitt, Andrea; Ndungu, Joan; Dellinger, Ryan W; Davis, James G; Agarwal, Beamon; Baur, Joseph A

    2017-02-01

    The regenerative capacity of the liver is essential for recovery from surgical resection or injuries induced by trauma or toxins. During liver regeneration, the concentration of nicotinamide adenine dinucleotide (NAD) falls, at least in part due to metabolic competition for precursors. To test whether NAD availability restricts the rate of liver regeneration, we supplied nicotinamide riboside (NR), an NAD precursor, in the drinking water of mice subjected to partial hepatectomy. NR increased DNA synthesis, mitotic index, and mass restoration in the regenerating livers. Intriguingly, NR also ameliorated the steatosis that normally accompanies liver regeneration. To distinguish the role of hepatocyte NAD levels from any systemic effects of NR, we generated mice overexpressing nicotinamide phosphoribosyltransferase, a rate-limiting enzyme for NAD synthesis, specifically in the liver. Nicotinamide phosphoribosyltransferase overexpressing mice were mildly hyperglycemic at baseline and, similar to mice treated with NR, exhibited enhanced liver regeneration and reduced steatosis following partial hepatectomy. Conversely, mice lacking nicotinamide phosphoribosyltransferase in hepatocytes exhibited impaired regenerative capacity that was completely rescued by administering NR.

  7. Telocytes in liver regeneration: possible roles.

    Science.gov (United States)

    Wang, Fei; Song, Yang; Bei, Yihua; Zhao, Yingying; Xiao, Junjie; Yang, Changqing

    2014-09-01

    Telocytes (TCs) are a novel type of interstitial cells which are potentially involved in tissue regeneration and repair (www.telocytes.com). Previously, we documented the presence of TCs in liver. However, the possible roles of TCs in liver regeneration remain unknown. In this study, a murine model of partial hepatectomy (PH) was used to induce liver regeneration. The number of TCs detected by double labelling immunofluorescence methods (CD34/PDGFR-α, CD34/PDGFR-ß and CD34/Vimentin) was significantly increased when a high level of hepatic cell proliferation rate (almost doubled) as shown by 5-ethynyl-2'-deoxyuridine (EdU) immunostaining and Western Blot of Proliferating cell nuclear antigen (PCNA) was found at 48 and 72 hrs post-PH. Meanwhile, the number of CK-19 positive-hepatic stem cells peaked at 72 hrs post-PH, co-ordinating with the same time-point, when the number of TCs was most significantly increased. Taken together, the results indicate a close relationship between TCs and the cells essentially involved in liver regeneration: hepatocytes and stem cells. It remains to be determined how TCs affect hepatocytes proliferation and/or hepatic stem cell differentiation in liver regeneration. Besides intercellular junctions, we may speculate a paracrine effect via ectovesicles.

  8. Laminin and Fibronectin in Cell Adhesion: Enhanced Adhesion of Cells from Regenerating Liver to Laminin

    Science.gov (United States)

    Carlsson, Roland; Engvall, Eva; Freeman, Aaron; Ruoslahti, Erkki

    1981-04-01

    Laminin, a basement membrane glycoprotein isolated from cultures of mouse endodermal cells and rat yolk sac carcinoma cells, promoted the attachment of liver cells obtained from regenerating mouse liver. Cells from normal mouse liver attached readily to dishes coated with fibronectin but attached poorly to surfaces coated with laminin. Both proteins efficiently promoted the attachment of cells from livers undergoing regeneration. After regeneration, the attachment to laminin returned to the low levels found in animals not subjected to partial hepatectomy but attachment to fibronectin remained high. Immunofluorescent staining of sections of normal liver with antilaminin revealed the presence of laminin in or adjacent to the walls of the bile ducts and blood vessels. After induction of regeneration by partial hepatectomy, increased amounts of laminin appeared in the sinusoidal areas. After carbon tetrachloride poisoning, staining for laminin was especially pronounced in the necrotic and postnecrotic areas around the central veins. This additional expression of laminin was transient. It reached a maximum around 5-6 days after the injury and then gradually disappeared. These findings show that laminin is an adhesive protein. The increase of laminin in regenerating liver and the adhesiveness of cells from such livers to laminin suggest a role for laminin in the maintenance of a proper tissue organization during liver regeneration.

  9. Genetic tracing of hepatocytes in liver homeostasis, injury, and regeneration.

    Science.gov (United States)

    Wang, Yue; Huang, XiuZhen; He, Lingjuan; Pu, Wenjuan; Li, Yan; Liu, Qiaozhen; Li, Yi; Zhang, Libo; Yu, Wei; Zhao, Huan; Zhou, Yingqun; Zhou, Bin

    2017-05-26

    The liver possesses a remarkable capacity to regenerate after damage. There is a heated debate on the origin of new hepatocytes after injuries in adult liver. Hepatic stem/progenitor cells have been proposed to produce functional hepatocytes after injury. Recent studies have argued against this model and suggested that pre-existing hepatocytes, rather than stem cells, contribute new hepatocytes. This hepatocyte-to-hepatocyte model is mainly based on labeling of hepatocytes with Cre-recombinase delivered by the adeno-associated virus. However, the impact of virus infection on cell fate determination, consistency of infection efficiency, and duration of Cre-virus in hepatocytes remain confounding factors that interfere with the data interpretation. Here, we generated a new genetic tool Alb-DreER to label almost all hepatocytes (>99.5%) and track their contribution to different cell lineages in the liver. By "pulse-and-chase" strategy, we found that pre-existing hepatocytes labeled by Alb-DreER contribute to almost all hepatocytes during normal homeostasis and after liver injury. Virtually all hepatocytes in the injured liver are descendants of pre-existing hepatocytes through self-expansion. We concluded that stem cell differentiation is unlikely to be responsible for the generation of a substantial number of new hepatocytes in adult liver. Our study also provides a new mouse tool for more precise in vivo genetic study of hepatocytes in the field. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Role of microRNA in liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Peng-Sheng Yi; Ming Zhang; Ming-Qing Xu

    2016-01-01

    BACKGROUND: Liver regeneration is a complex process. mi-croRNAs (miRNAs) are short, single-stranded RNAs that mod-ify gene expression at the post-transcriptional level. Recent investigations have revealed that miRNAs are closely linked to liver regeneration. DATA SOURCES: All included studies were obtained from PubMed, Embase, the ScienceDirect databases and Web of Science, with no limitation on publication year. Only studies published in English were considered. RESULTS: We grouped studies that involved miRNA and liver regeneration into two groups: miRNAs as promoters and as inhibitors of liver regeneration. We summarized the relevant miRNAs separately from the related pathways. CONCLUSIONS: Blocking or stimulating the pathways of miRNAs in liver regeneration may be novel therapeutic strat-egies in future regeneration-related liver managements. We may discover additional chemotherapy targets of miRNA.

  11. Nitric oxide in liver inflammation and regeneration.

    Science.gov (United States)

    Martin-Sanz, Paloma; Hortelano, Sonsoles; Callejas, Nuria A; Goren, Nora; Casado, Marta; Zeini, Miriam; Boscá, Lisardo

    2002-12-01

    Hepatocytes express and release inflammatory mediators after challenge with bacterial cell wall molecules and proinflammatory cytokines. Nitric oxide synthase-2 (NOS-2) is expressed under these conditions and the high-output NO synthesis that follows contributes to the inflammatory response in this tissue and participates in the onset of several hepatopathies. However, in the course of liver regeneration, for example, after partial hepatectomy, NOS-2 is expressed at moderate levels and contributes to inhibit apoptosis and to favor progression in the cell cycle until the organ size and function are restored. The mechanisms involved in the regulation of NOS-2 expression under these conditions are revised.

  12. Signal molecule-mediated hepatic cell communication during liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Zhen-Yu Zheng; Shun-Yan Weng; Yan Yu

    2009-01-01

    Liver regeneration is a complex and well-orchestrated process, during which hepatic cells are activated to produce large signal molecules in response to liver injury or mass reduction. These signal molecules, in turn, set up the connections and cross-talk among liver cells to promote hepatic recovery. In this review, we endeavor to summarize the network of signal molecules that mediates hepatic cell communication in the regulation of liver regeneration.

  13. Liver regeneration microenvironment of hepatocellular carcinoma for prevention and therapy

    Science.gov (United States)

    Li, Hanmin; Zhang, Lisheng

    2017-01-01

    Research on liver cancer prevention and treatment has mainly focused on the liver cancer cells themselves. Currently, liver cancers are no longer viewed as only collections of genetically altered cells but as aberrant organs with a plastic stroma, matrix, and vasculature. Improving the microenvironment of the liver to promote liver regeneration and repair by affecting immune function, inflammation and vasculature can regulate the dynamic imbalance between normal liver regeneration and repair and abnormal liver regeneration, thus improving the microenvironment of liver regeneration for the prevention and treatment of liver cancer. This review addresses the basic theory of the liver regeneration microenvironment, including the latest findings on immunity, inflammation and vasculature. Attention is given to the potential design of molecular targets in the microenvironment of hepatocellular carcinoma (HCC). In an effort to improve the liver regeneration microenvironment of HCC, researchers have extensively utilized the enhancement of immunity, anti-inflammation and the vasculature niche, which are discussed in detail in this review. In addition, the authors summarize the latest pro-fibrotic transition characteristics of the vascular niche and review potential cell therapies for liver disease. PMID:27655683

  14. Beneficial effect of hyperbaric oxygenation on liver regeneration in cirrhosis.

    Science.gov (United States)

    Ozdogan, Mehmet; Ersoy, Eren; Dundar, Kadir; Albayrak, Levent; Devay, Seda; Gundogdu, Haldun

    2005-12-01

    Underlying hepatic injury and cirrhosis are leading factors that interfere with the post-operative liver regeneration and function. Hyperbaric oxygenation (HBO) has been reported to ameliorate the ischemia-reperfusion injury of the liver, to induce compensatory hypertrophy of the predicted remnant liver in rats after portal vein ligation and to augment liver regeneration after hepatectomy in non-cirrhotic rats. Our aim was to determine the effect of HBO treatment on liver regeneration after partial hepatectomy in normal and cirrhotic mice in this experimental study. The effect of HBO on liver regeneration was studied in a mice model combining carbon tetrachloride induced cirrhosis and partial hepatectomy. Mice were divided into four groups: Control, cirrhotic, non-cirrhotic HBO-treated, and cirrhotic HBO-treated. All animals underwent 40% hepatectomy. Liver regeneration was evaluated by the proliferating cell nuclear antigen-labeling index. Serum aspartate aminotransferase and alanine aminotransferase levels were measured to evaluate liver injury. Serum alanine aminotransferase and aspartate aminotransferase levels were significantly decreased in HBO-treated cirrhotic group compared to cirrhosis group after hepatectomy (P = 0.001 and P = 0.014, respectively). The proliferating cell nuclear antigen labeling index was significantly higher in HBO treated cirrhotic group than in cirrhotic group after hepatectomy (P = 0.022). Our results suggest that HBO treatment improves liver functions and augments hepatocyte regeneration in cirrhotic mice after hepatectomy. Post-operative HBO treatment may have a beneficial effect on post-operative liver function and regeneration in cirrhotic patients.

  15. Liver regeneration is dependent on the extent of hepatectomy

    DEFF Research Database (Denmark)

    Meier, Michelle; Knudsen, Anders Riegels; Andersen, Kasper Jarlhelt;

    of liver tissue and blood for liver specific serology. The change in liver weight after PH was evaluated as liver regeneration rate (RR). Histological analyses of liver cell proliferation and proteomic analyses are in progress. The gain in liver weight as well as RR increased significantly with the size......The upper limit for the size of hepatectomy is approximately 90% in rats. The present research project is designed to investigate the molecular pathways leading to either liver regeneration or liver failure after extended hepatectomy. In this first study we investigated the impact of different size...... of hepatectomy on liver regeneration in a rat model. Male Wistar rats were divided into four groups: 30% (n=24), 70% (n=24) and 90% (n=24) partial hepatectomy (PH) was performed together with a SHAM group (n=24). Euthanization took place at postoperative day (POD) 1 (n=8), 3 (n=8), and 5 (n=8) with harvesting...

  16. Human augmenter of liver regeneration: molecular cloning, biological activity and roles in liver regeneration

    Institute of Scientific and Technical Information of China (English)

    杨晓明; 谢玲; 邱兆华; 吴祖泽; 贺福初

    1997-01-01

    The complete amino acid sequence of human augmenter of liver regeneration (hALR) was reported by deduction from nucleotide sequence of its complementary DNA . The cDNA for hALR was isolated by screening a human fetal liver cDNA library and the sequencing of this insert revealed an open reading frame encoding a protein with 125aa and highly homologous (87% ) with rat ALR encoding sequence. The recombinant hALR expressed from its cDNA in transient expression experiments in cos-7 cells could stimulate DNA synthesis of HTC hepatoma cell in the dose-dependent and heat-resistant way. Northern blot analysis with rat ALR cDNA as probe confirmed that ALR mRNA was expressed in the normal rat liver at low level and that dramatically increased in the regenerating liver after partial hepatectomied rat. This size of hALR mRNA is 1.4 kb long and expressed in human fetal liver, kidney and testis. These findings indicated that liver itself may be the resource of ALR and suggested that ALR seems to be an im-portant parac

  17. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins.

    Science.gov (United States)

    Liu, Hua; Kim, Yonghak; Sharkis, Saul; Marchionni, Luigi; Jang, Yoon-Young

    2011-05-11

    Human induced pluripotent stem cells (iPSCs) are a potential source of hepatocytes for liver transplantation to treat end-stage liver disease. In vitro differentiation of human iPSCs into hepatic cells has been achieved using a multistage differentiation protocol, but whether these cells are functional and capable of engrafting and regenerating diseased liver tissue is not clear. We show that human iPSC-derived hepatic cells at various differentiation stages can engraft the liver in a mouse transplantation model. Using the same differentiation and transplantation protocols, we also assessed the ability of human iPSCs derived from each of the three developmental germ layer tissues (that is, ectoderm, mesoderm, and endoderm) to regenerate mouse liver. These iPSC lines, with similar but distinct global DNA methylation patterns, differentiated into multistage hepatic cells with an efficiency similar to that of human embryonic stem cells. Human hepatic cells at various differentiation stages derived from iPSC lines of different origins successfully repopulated the liver tissue of mice with liver cirrhosis. They also secreted human-specific liver proteins into mouse blood at concentrations comparable to that of proteins secreted by human primary hepatocytes. Our results demonstrate the engraftment and liver regenerative capabilities of human iPSC-derived multistage hepatic cells in vivo and suggest that human iPSCs of distinct origins and regardless of their parental epigenetic memory can efficiently differentiate along the hepatic lineage.

  18. Angiogenesis in the liver : molecular mechanisms and novel treatment strategies in liver regeneration and tumor metastasis

    NARCIS (Netherlands)

    Vogten, J.M.

    2004-01-01

    Angiogenesis in liver regeneration Liver regeneration involves the coordinated proliferation of all major hepatic cell types. There are many indirect but obvious indicators of the speculation that angiogenesis must play an important role in the regeneration process. In the first part of this thesis,

  19. Bile acid flux is necessary for normal liver regeneration.

    Directory of Open Access Journals (Sweden)

    Willscott E Naugler

    Full Text Available BACKGROUND & AIMS: Many signals governing liver regeneration (LR following 2/3 partial hepatectomy (PH are recognized, but the primary signal(s remains unknown. The aim of the study was to confirm that the remnant liver after PH lacks capacity to secrete the BA pool returning via the enterohepatic ciruculation (EHC, which may in turn stimulate LR. METHODS: After standard PH, BA flux was documented and BA signaling (Fgf15 and synthesis (Cyp7a determined by qPCR. Rat biliary fistula (BF and Asbt knockout mouse models interrupted the EHC prior to PH, and standard assays for LR employed along with complete RNA sequencing. CCl4 intoxication after BF tested the hypothesis in an alternate injury model. RESULTS: BA rise in systemic blood immediately following PH, confirming that the remnant liver cannot handle the BA returning via portal circulation. When the BA pool is drained prior to PH in the rat BF model, LR is markedly attenuated, a phenomenon reversed with duodenal BA replacement. Hepatocyte proliferation is similarly attenuated after PH in the Asbt knockout mouse as well as after CCl44 intoxication in rats with BF. Complete RNA sequencing in the rat PH model shows that early c-jun and AP-1 gene expression pathways are down regulated in the absence of BA, coincident with attenuated LR. CONCLUSIONS: Absent BA return to the liver after PH or CCl4 injury markedly attenuates LR, though hepatocyte proliferation still occurs, inferring that BA flux and signaling are not the sole signals governing LR. Transcriptional networks involving c-jun and AP-1 are involved in the BA-specific effects on hepatocyte proliferation.

  20. Nitric Oxide and Prostaglandins Potentiate the Liver Regeneration Cascade

    Directory of Open Access Journals (Sweden)

    Jodi M Schoen Smith

    2006-01-01

    Full Text Available The liver has the remarkable ability to regenerate following damage or surgical resection. Although this feature of the liver has been studied for over 100 years, the trigger of the liver regeneration cascade remains controversial. Recent experimental evidence supports the hypothesis that nitric oxide (NO and prostaglandins (PGs, released secondary to an increase in the blood flow-to-liver mass ratio following two-thirds partial hepatectomy (PHx, work synergistically to trigger liver regeneration. To extend this research, the hypothesis that NO and PGs are potential therapeutic targets to potentiate the liver regeneration cascade is tested. The NO donor s-nitroso-n-acetylpenicillamine, the phosphodiesterase V antagonist zaprinast (ZAP and PGI2 each potentiated c-fos messenger RNA expression, an index of initiation of the liver regeneration cascade, following PHx. Also, the triple combination of s-nitroso-n-acetylpenicillamine, ZAP and PGI2 potentiated c-fos messenger RNA expression. These results support the hypothesis that NO and PGs can potentiate initiation of the regeneration cascade. An additional index of liver weight restoration 48 h after PHx was also used to test the hypothesis, because this index encompasses the entire liver regeneration cascade. ZAP and 6-keto-PGF1α, a stable metabolite of PGI2, and the combination of ZAP and 6-keto-PGF1α, each potentiated liver weight restoration 48 h after PHx. These results also provide support for the hypothesis that NO and PGs are possible therapeutic targets to potentiate liver regeneration following surgical resection.

  1. The Involvement of Heat Shock Proteins in Murine Liver Regeneration

    Institute of Scientific and Technical Information of China (English)

    Qing Shi; Zhongjun Dong; Haiming Wei

    2007-01-01

    Partial hepatectomy (PHx) in mammals is a very common experimental model to investigate the process of liver regeneration. The surgery itself could give birth to a series of stresses, such as the temporary raise of body temperature and the ischaemia-reperfusion injury. Heat shock proteins (HSPs) were a family of stress-inducible proteins involved in maintaining cell homeostasis and regulating the immune system. In our study, we intended to investigate the expression and role of HSPs in liver regeneration. Using RT-PCR and Western blotting, we determined the expression in regenerating liver of HSP27, HSP60, HSP70 and HSP90 in mRNA level and protein level, respectively, with mice treated with sham operation as controls. We also used quercertin as an inhibitior of HSPs to explore their effects on liver regeneration. We found that hepatic expression of HSPs increased at the early phase of liver regeneration and declined to the constitutively low level later. Moreover, quercetin pretreatment delayed the progress of liver regeneration in mice via inhibition of HSPs. The results indicated that HSPs played an important role in liver regeneration.

  2. The genetic regulation of the terminating phase of liver regeneration

    DEFF Research Database (Denmark)

    Nygård, Ingvild E.; Mortensen, Kim E.; Hedegaard, Jakob;

    2012-01-01

    Background After partial hepatectomy (PHx), the liver regeneration process terminates when the normal liver-mass/body-weight ratio of 2.5% has been re-established. To investigate the genetic regulation of the terminating phase of liver regeneration, we performed a 60% PHx in a porcine model. Liver...... biopsies were taken at the time of resection, after three weeks and upon termination the sixth week. Gene expression profiles were obtained using porcine oligonucleotide microarrays. Our study reveals the interactions between genes regulating the cell cycle, apoptosis and angiogenesis, and the role...... of Transforming Growth Factor-β (TGF-β) signalling towards the end of liver regeneration. Results Microarray analysis revealed a dominance of genes regulating apoptosis towards the end of regeneration. Caspase Recruitment Domain-Containing Protein 11 (CARD11) was up-regulated six weeks after PHx, suggesting...

  3. Impaired lipid accumulation in the liver of Tsc2-heterozygous mice during liver regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Obayashi, Yoko, E-mail: youko_oobayashi@ajinomoto.com [Department of Pathology, University of Washington School of Medicine, Seattle, WA (United States); Campbell, Jean S.; Fausto, Nelson [Department of Pathology, University of Washington School of Medicine, Seattle, WA (United States); Yeung, Raymond S. [Department of Surgery, University of Washington School of Medicine, Seattle, WA (United States)

    2013-07-19

    Highlights: •Tuberin phosphorylation correlated with mTOR activation in early liver regeneration. •Liver regeneration in the Tsc2+/− mice was not enhanced. •The Tsc2+/− livers failed to accumulate lipid bodies during liver regeneration. •Mortality rate increased in Tsc2+/− mice after partial hepatectomy. •Tuberin plays a critical role in hepatic lipid accumulation to support regeneration. -- Abstract: Tuberin is a negative regulator of mTOR pathway. To investigate the function of tuberin during liver regeneration, we performed 70% hepatectomy on wild-type and Tsc2+/− mice. We found the tuberin phosphorylation correlated with mTOR activation during early liver regeneration in wild-type mice. However, liver regeneration in the Tsc2+/− mice was not enhanced. Instead, the Tsc2+/− livers failed to accumulate lipid bodies, and this was accompanied by increased mortality. These findings suggest that tuberin plays a critical role in liver energy balance by regulating hepatocellular lipid accumulation during early liver regeneration. These effects may influence the role of mTORC1 on cell growth and proliferation.

  4. Functional Relationships between Lipid Metabolism and Liver Regeneration

    Directory of Open Access Journals (Sweden)

    David A. Rudnick

    2012-01-01

    Full Text Available The regenerative capacity of the liver is well known, and the mechanisms that regulate this process have been extensively studied using experimental model systems including surgical resection and hepatotoxin exposure. The response to primary mitogens has also been used to investigate the regulation of hepatocellular proliferation. Such analyses have identified many specific cytokines and growth factors, intracellular signaling events, and transcription factors that are regulated during and necessary for normal liver regeneration. Nevertheless, the nature and identities of the most proximal events that initiate hepatic regeneration as well as those distal signals that terminate this process remain unknown. Here, we review the data implicating acute alterations in lipid metabolism as important determinants of experimental liver regeneration and propose a novel metabolic model of regeneration based on these data. We also discuss the association between chronic hepatic steatosis and impaired regeneration in animal models and humans and consider important areas for future research.

  5. An update on the mouse liver proteome

    Directory of Open Access Journals (Sweden)

    Borlak Jürgen

    2009-09-01

    Full Text Available Abstract Background Decoding of the liver proteome is subject of intense research, but hampered by methodological constraints. We recently developed an improved protocol for studying rat liver proteins based on 2-DE-MALDI-TOF-MS peptide mass finger printing. This methodology was now applied to develop a mouse liver protein database. Results Liver proteins were extracted by two different lysis buffers in sequence followed by a liquid-phase IEF pre-fractionation and separation of proteins by 2 DE at two different pH ranges, notably 5-8 and 7-10. Based on 9600 in gel digests a total of 643 mouse liver proteins with high sequence coverage (> 20 peptides per protein could be identified by MALDI-TOF-MS peptide mass finger printing. Notably, 255 proteins are novel and have not been reported so far by conventional two-dimensional electrophoresis proteome mapping. Additionally, the results of the present findings for mouse liver were compared to published data of the rat proteome to compile as many proteins as possible in a rodent liver database. Conclusion Based on 2-DE MALDI-TOF-MS a significantly improved proteome map of mouse liver was obtained. We discuss some prominent members of newly identified proteins for a better understanding of liver biology.

  6. Effect of Gomisin A (TJN-101) on liver regeneration.

    Science.gov (United States)

    Kubo, S; Ohkura, Y; Mizoguchi, Y; Matsui-Yuasa, I; Otani, S; Morisawa, S; Kinoshita, H; Takeda, S; Aburada, M; Hosoya, E

    1992-12-01

    We studied the effect of TJN-101, a lignan component of Schisandra fruits (Schisandrae fructus), on liver regeneration after partial hepatectomy. TJN-101 was given orally to male Wistar rats 30 min before partial hepatectomy. The mitotic index and the level of DNA synthesis increased after partial hepatectomy and their increase was significantly enhanced by TJN-101. Ornithine decarboxylase (ODC) activity increased in the early stages of liver regeneration and it was also significantly enhanced by TJN-101. Besides, TJN-101 enhanced the increase in hepatic putrescine. These results suggest that TJN-101 stimulates liver regeneration after partial hepatectomy by enhancing ODC activity, which is an important biochemical event in the early stages of liver regeneration.

  7. Stem cells in liver regeneration and their potential clinical applications.

    Science.gov (United States)

    Drosos, Ioannis; Kolios, George

    2013-10-01

    Stem cells constitute a population of "primitive cells" with the ability to divide indefinitely and give rise to specialized cells under special conditions. Because of these two characteristics they have received particular attention in recent decades. These cells are the primarily responsible factors for the regeneration of tissues and organs and for the healing of lesions, a feature that makes them a central key in the development of cell-based medicine, called Regenerative Medicine. The idea of wound and organ repair and body regeneration is as old as the mankind, reflecting the human desire for inhibiting aging and immortality and it is first described in the ancient Greek myth of Prometheus. It is of interest that the myth refers to liver, an organ with remarkable regenerative ability after loss of mass and function caused by liver injury or surgical resection. Over the last decade there has been an important progress in understanding liver physiology and the mechanisms underlying hepatic development and regeneration. As liver transplantation, despite its difficulties, remains the only effective therapy for advanced liver disease so far, scientific interest has nowadays been orientated towards Regenerative Medicine and the use of stem cells to repair damaged liver. This review is focused on the available literature concerning the role of stem cells in liver regeneration. It summarizes the results of studies concerning endogenous liver regeneration and stem cell experimental protocols. Moreover, this review discusses the clinical studies that have been conducted in humans so far.

  8. A critical role for matrix metal loproteinases in liver regeneration

    NARCIS (Netherlands)

    Alwayn, Ian P. J.; Verbesey, Jennifer E.; Kim, Sendia; Roy, Roopali; Arsenault, Danielle A.; Greene, Arin K.; Novak, Katherine; Laforme, Andrea; Lee, Sang; Moses, Marsha A.; Puder, Mark

    2008-01-01

    Background. Matrix metalloproteinases (MMPs), tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6) are mediators of liver regeneration. To determine whether MMPs are required for normal hepatic regeneration, we performed 67% hepatectomies on mice treated with a broad-spectrum MMP-inhibi

  9. Impact of future remnant liver volume on post-hepatectomy regeneration in non-cirrhotic livers

    Directory of Open Access Journals (Sweden)

    Duilio ePagano

    2014-04-01

    Full Text Available Objective: The purpose of the study is to detect if some parameters can be considered as predictors of liver regeneration in two different patient populations composed of in living donors for adult to adult living donor liver transplant and patients with hepatic malignancies within a single institution.Summary Background Data: Preoperative multi-detector computed tomography volumetry is an essential tool to assess the volume of the remnant liver. Methods: a retrospective analysis from an ongoing clinical study on 100 liver resections, between 2004 and 2010. 70 patients were right lobe living donors for liver transplantation and 30 patients were resected for treatment of tumors. Pre-surgical factors such as age, weight, height, body mass index (BMI, original liver volume, future remnant liver volume (FRLV, spleen volume, liver function tests, creatinine, platelet count, steatosis, portal vein embolization (PVE and number of resected segments were analyzed to evidence potential markers for liver regeneration. Results: Follow-up period did not influence the amount of liver regenerated: the linear regression evidenced that there is no correlation between percentage of liver regeneration and time of follow-up (p=0.88. The pre-surgical variables that resulted markers of liver regeneration include higher preoperative values of BMI (p=0.01, bilirubin(p=0.04, glucose (p=0.05 and GGT (p=0.014; the most important association was revealed regarding the lower FRLV (pConclusions: Liver regeneration follows similar pathway in living donor and in patients resected for cancer. Small FRLV tends to regenerate more and faster, confirming that a larger resections may lead to a greater promotion of liver regeneration in patients with optimal conditions in terms of body habitus, preoperative liver function tests and glucose level.

  10. Chronic stress does not impair liver regeneration in rats

    DEFF Research Database (Denmark)

    Andersen, Kasper J; Knudsen, Anders Riegels; Wiborg, Ove;

    2015-01-01

    a 70 % partial hepatectomy (PHx). The animals were evaluated on postoperative day 2 or 4. Blood samples were collected to examine circulating markers of inflammation and liver cell damage. Additionally, liver tissues were sampled to evaluate liver weight and regeneration rate. RESULTS: None......BACKGROUND: Although wound healing is a simple regenerative process that is critical after surgery, it has been shown to be impaired under psychological stress. The liver has a unique capacity to regenerate through highly complex mechanisms. The aim of this study was to investigate the effects...... of chronic stress, which may induce a depression-like state, on the complex process of liver regeneration in rats. METHODS: Twenty rats were included in this study. The animals received either a standard housing protocol or were subjected to a Chronic Mild Stress (CMS) stress paradigm. All rats underwent...

  11. Cellular Liver Regeneration after Extended Hepatic Resection in Pigs

    Directory of Open Access Journals (Sweden)

    Ruth Ladurner

    2009-01-01

    Full Text Available Background. The liver has an enormous capacity to regenerate itself. The aim of this study was to evaluate whether the regeneration is due to hypertrophy or hyperplasia of the remnant liver after extended resection and whether a portosystemic shunt is beneficial. Material and methods. An extended left hemihepatectomy was performed in 25 pigs, and in 14 after performing a portosystemic shunt. During follow up, liver regeneration was estimated by macroscopic markers such as liver volume and size of the portal fields [mm2] as well as the amount of hepatocytes per portal field and the amount of hepatocytes per mm2. Results. Regardless of the operation procedure, the volume of the remnant liver increased about 2.5 fold at the end of the first week after resection. The size of the portal fields increased significantly as well as the number of hepatocytes in the portal fields. Interestingly, the number of hepatocytes per mm2 remained the same. Conclusion. After extended resection, liver regeneration was achieved by an extensive and significant hyperplasia of hepatocytes within the preexisting portal fields and not by de novo synthesis of new portal fields. However, there was no difference in liver regeneration regarding the operation procedure performed with or without portosystemic shunt.

  12. Role of ischaemic preconditioning in liver regeneration following major liver resection and transplantation

    Institute of Scientific and Technical Information of China (English)

    D Gomez; S Homer-Vanniasinkam; AM Graham; KR Prasad

    2007-01-01

    Liver ischaemic preconditioning (IPC) is known to protect the liver from the detrimental effects of ischaemicreperfusion injury (IRI), which contributes significantly to the morbidity and mortality following major liver surgery.Recent studies have focused on the role of IPC in liver regeneration, the precise mechanism of which are not completely understood. This review discusses the current understanding of the mechanism of liver regeneration and the role of IPC in this setting. Relevant articles were reviewed from the published literature using the Medline database. The search was performed using the keywords "liver", "ischaemic reperfusion", "ischaemic preconditioning", "regeneration", "hepatectomy"and "transplantation". The underlying mechanism of liver regeneration is a complex process involving the interaction of cytokines, growth factors and the metabolic demand of the liver. IPC, through various mediators, promotes liver regeneration by up-regulating growthpromoting factors and suppresses growth-inhibiting factors as well as damaging stresses. The increased understanding of the cellular mechanisms involved in IPC will enable the development of alternative treatment modalities aimed at promoting liver regeneration following major liver resection and transplantation.

  13. Liver graft regeneration in right lobe adult living donor liver transplantation.

    Science.gov (United States)

    Cheng, Y-F; Huang, T-L; Chen, T-Y; Tsang, L L-C; Ou, H-Y; Yu, C-Y; Concejero, A; Wang, C-C; Wang, S-H; Lin, T-S; Liu, Y-W; Yang, C-H; Yong, C-C; Chiu, K-W; Jawan, B; Eng, H-L; Chen, C-L

    2009-06-01

    Optimal portal flow is one of the essentials in adequate liver function, graft regeneration and outcome of the graft after right lobe adult living donor liver transplantation (ALDLT). The relations among factors that cause sufficient liver graft regeneration are still unclear. The aim of this study is to evaluate the potential predisposing factors that encourage liver graft regeneration after ALDLT. The study population consisted of right lobe ALDLT recipients from Chang Gung Memorial Hospital-Kaohsiung Medical Center, Taiwan. The records, preoperative images, postoperative Doppler ultrasound evaluation and computed tomography studies performed 6 months after transplant were reviewed. The volume of the graft 6 months after transplant divided by the standard liver volume was calculated as the regeneration ratio. The predisposing risk factors were compiled from statistical analyses and included age, recipient body weight, native liver disease, spleen size before transplant, patency of the hepatic venous graft, graft weight-to-recipient weight ratio (GRWR), posttransplant portal flow, vascular and biliary complications and rejection. One hundred forty-five recipients were enrolled in this study. The liver graft regeneration ratio was 91.2 +/- 12.6% (range, 58-151). The size of the spleen (p = 0.00015), total portal flow and GRWR (p = 0.005) were linearly correlated with the regeneration rate. Patency of the hepatic venous tributary reconstructed was positively correlated to graft regeneration and was statistically significant (p = 0.017). Splenic artery ligation was advantageous to promote liver regeneration in specific cases but splenectomy did not show any positive advantage. Spleen size is a major factor contributing to portal flow and may directly trigger regeneration after transplant. Control of sufficient portal flow and adequate hepatic outflow are important factors in graft regeneration.

  14. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury.

    Science.gov (United States)

    Schaub, Johanna R; Malato, Yann; Gormond, Coralie; Willenbring, Holger

    2014-08-21

    Hepatocytes provide most liver functions, but they can also proliferate and regenerate the liver after injury. However, under some liver injury conditions, particularly chronic liver injury where hepatocyte proliferation is impaired, liver stem cells (LSCs) are thought to replenish lost hepatocytes. Conflicting results have been reported about the identity of LSCs and their contribution to liver regeneration. To address this uncertainty, we followed candidate LSC populations by genetic fate tracing in adult mice with chronic liver injury due to a choline-deficient, ethionine-supplemented diet. In contrast to previous studies, we failed to detect hepatocytes derived from biliary epithelial cells or mesenchymal liver cells beyond a negligible frequency. In fact, we failed to detect hepatocytes that were not derived from pre-existing hepatocytes. In conclusion, our findings argue against LSCs, or other nonhepatocyte cell types, providing a backup system for hepatocyte regeneration in this common mouse model of chronic liver injury.

  15. Evidence against a Stem Cell Origin of New Hepatocytes in a Common Mouse Model of Chronic Liver Injury

    Directory of Open Access Journals (Sweden)

    Johanna R. Schaub

    2014-08-01

    Full Text Available Hepatocytes provide most liver functions, but they can also proliferate and regenerate the liver after injury. However, under some liver injury conditions, particularly chronic liver injury where hepatocyte proliferation is impaired, liver stem cells (LSCs are thought to replenish lost hepatocytes. Conflicting results have been reported about the identity of LSCs and their contribution to liver regeneration. To address this uncertainty, we followed candidate LSC populations by genetic fate tracing in adult mice with chronic liver injury due to a choline-deficient, ethionine-supplemented diet. In contrast to previous studies, we failed to detect hepatocytes derived from biliary epithelial cells or mesenchymal liver cells beyond a negligible frequency. In fact, we failed to detect hepatocytes that were not derived from pre-existing hepatocytes. In conclusion, our findings argue against LSCs, or other nonhepatocyte cell types, providing a backup system for hepatocyte regeneration in this common mouse model of chronic liver injury.

  16. Expressed genes in regenerating rat liver after partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Cun-Shuan Xu; Salman Rahrnan; Jing-Bo Zhang; Cui-Fang Chang; Jin-Yun Yuan; Wen-Qiang Li; Hong-Peng Han; Ke-Jin Yang; Li-Feng Zhao; Yu-Chang Li; Hui-Yong Zhang

    2005-01-01

    AIM: To reveal the liver regeneration (LR) and its controlas well as the occurrence of liver disease and to study the gene expression profiles of 551 genes after partial hepatectomy (PH) in regenerating rat livers.METHODS: Five hundred and fifty-one expressed sequence tags screened by suppression subtractive hybridization were made into an in-house cDNA microarray, and the expressive genes and their expressive profiles in regenerating rat livers were analyzed by microarray and bioinformatics. RESULTS: Three hundred of the analyzed 551 genes were up- or downregulated more than twofolds at one or more time points during LR. Most of the genes were up- or downregulated 2-5 folds, but the highest reached 90 folds of the control. One hundred and thirty-nine of themshowed upregulation, 135 displayed downregulation, and up or down expression of 26 genes revealed a dependence on regenerating livers. The genes expressedin 24-h regenerating livers were much more than those in the others. Cluster analysis and generalization analysis showed that there were at least six distinct temporal patterns of gene expression in the regenerating livers, that is, genes were expressed in the immediate early phase, early phase, intermediate phase, early-late phase, late phase, terminal phase. CONCLUSION: In LR, the number of down-regulated genes was almost similar to that of the upregulated genes; the successively altered genes were more than the rapidly transient genes. The temporal patterns of gene expression were similar 2 and 4 h, 12 and 16 h, 48 and 96 h, 72 and 144 h after PH. Microarray combined with suppressive subtractive hybridization can effectively identify the genes related to LR.

  17. Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases

    Science.gov (United States)

    Yarygin, Konstantin N.

    2017-01-01

    The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable. PMID:28210629

  18. Signals and Cells Involved in Regulating Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Liang-I. Kang

    2012-12-01

    Full Text Available Liver regeneration is a complex phenomenon aimed at maintaining a constant liver mass in the event of injury resulting in loss of hepatic parenchyma. Partial hepatectomy is followed by a series of events involving multiple signaling pathways controlled by mitogenic growth factors (HGF, EGF and their receptors (MET and EGFR. In addition multiple cytokines and other signaling molecules contribute to the orchestration of a signal which drives hepatocytes into DNA synthesis. The other cell types of the liver receive and transmit to hepatocytes complex signals so that, in the end of the regenerative process, complete hepatic tissue is assembled and regeneration is terminated at the proper time and at the right liver size. If hepatocytes fail to participate in this process, the biliary compartment is mobilized to generate populations of progenitor cells which transdifferentiate into hepatocytes and restore liver size.

  19. Human Muse cells, non-tumorigenic pluripotent-like stem cells, have the capacity for liver regeneration by specific homing and replenishment of new hepatocytes in liver fibrosis mouse model.

    Science.gov (United States)

    Iseki, Masahiro; Kushida, Yoshihiro; Wakao, Shohei; Akimoto, Takahiro; Mizuma, Masamichi; Motoi, Fuyuhiko; Asada, Ryuta; Shimizu, Shinobu; Unno, Michiaki; Chazenbalk, Gregorio; Dezawa, Mari

    2016-11-02

    Muse cells, a novel type of non-tumorigenic pluripotent-like stem cells reside in the bone marrow, skin and adipose tissue, are collectable as cells positive for pluripotent surface marker SSEA-3. They are able to differentiate into cells representative of all three germ layers. The capacity of intravenously injected human bone marrow-Muse cells to repair the liver fibrosis model of immunodeficient mice was evaluated in this study. They exhibited the ability for differentiation spontaneously into hepatoblast/hepatocyte-lineage cells and high migration toward the serum and liver tissue of carbon tetrachloride-treated mice in vitro. In vivo, they specifically accumulated into the liver, but not into other organs except the lower rate in the lung at 2 weeks after intravenous injection into the liver fibrosis model. After homing, Muse cells spontaneously differentiated in vivo into HepPar-1 (71.1±15.2%), human albumin (54.3±8.2%) and anti-trypsin (47.9±4.6%)-positive cells without fusing with host hepatocytes, and expressed mature functional markers such as human-CYP1A2, and human-Glc-6-Pase, at 8 weeks. Recovery in serum total bilirubin and albumin, and significant attenuation of fibrosis were recognized with statistical differences between the Muse group and control groups which received the vehicle or the same number of non-Muse cells, namely cells other than Muse cells in bone marrow mesenchymal stem cells. Thus, unlike ES and iPS cells, Muse cells are unique in their efficient migration and integration into damaged liver only by intravenous injection, nontumorigenicity, and spontaneous differentiation into hepatocytes, rendering induction into hepatocytes prior to transplantation unnecessary. They are suggested to repair liver fibrosis in two simple steps; expansion after collection from the bone marrow and intravenous injection. Such feasible strategy might provide impressive regenerative performance to liver disease patients.

  20. Four waves of hepatocyte proliferation linked with three waves of hepatic fat accumulation during partial hepatectomy-induced liver regeneration.

    Directory of Open Access Journals (Sweden)

    Yuhong Zou

    Full Text Available Partial hepatectomy (PH triggers hepatocyte proliferation-mediated liver repair and is widely used to study the mechanisms governing liver regeneration in mice. However, the dynamics of the hepatocyte proliferative response to PH remain unclear. We found that PH-induced mouse liver regrowth was driven by four consecutive waves of hepatocyte replication. The first wave exhibited the highest magnitude followed by two moderate waves and one minor wave. Underlying this continuous hepatocyte replication was persistent activation of cell cycle components throughout the period of liver regeneration. Hepatocyte mitotic activity in the first three proliferative cycles showed a circadian rhythm manifested by three corresponding mitosis peaks, which were always observed at Zeitgeber time 0. The Bmal1-Clock/Wee1/Cdc2 pathway has been proposed by others to govern the circadian rhythm of hepatocyte mitosis during liver regeneration. However, we did not observe the correlations in the expression or phosphorylation of these proteins in regenerating livers. Notably, Bmal1 protein displayed frequent changes in hepatic distribution and cellular localization as the liver regrowth progressed. Further, three waves of hepatic fat accumulation occurred during hepatic regeneration. The first started before and lasted through the first round of hepatocyte proliferation, whereas the second and third occurred concomitantly with the second and third mitotic peaks, respectively.PH-induced liver regeneration consists of four continuous waves of hepatocyte proliferation coupled with three waves of hepatic fat accumulation. Bmal1, Wee1, and Cdc2 may not form a pathway regulating the circadian rhythm of hepatocyte mitosis during liver regeneration.

  1. Transcriptional profiling of regenerating embryonic mouse hearts

    OpenAIRE

    Manuela Magarin; Herbert Schulz; Ludwig Thierfelder; Jörg-Detlef Drenckhahn

    2016-01-01

    The postnatal mammalian heart is considered a terminally differentiated organ unable to efficiently regenerate after injury. In contrast, we have recently shown a remarkable regenerative capacity of the prenatal heart using myocardial tissue mosaicism for mitochondrial dysfunction in mice. This model is based on inactivation of the X-linked gene encoding holocytochrome c synthase (Hccs) specifically in the developing heart. Loss of HCCS activity results in respiratory chain dysfunction, distu...

  2. Transient von Willebrand factor-mediated platelet influx stimulates liver regeneration after partial hepatectomy in mice

    NARCIS (Netherlands)

    Kirschbaum, Marc; Jenne, Craig N; Veldhuis, Zwanida J; Sjollema, Klaas A; Lenting, Peter J; Giepmans, Ben N G; Porte, Robert J; Kubes, Paul; Denis, Cécile V; Lisman, Ton

    2017-01-01

    BACKGROUND & AIMS: In addition to their function in thrombosis and hemostasis, platelets play an important role in the stimulation of liver regeneration. It has been suggested that platelets deliver mitogenic cargo to the regenerating liver, and accumulation of platelets in the regenerating liver

  3. Transient von Willebrand factor-mediated platelet influx stimulates liver regeneration after partial hepatectomy in mice

    NARCIS (Netherlands)

    Kirschbaum, Marc; Jenne, Craig N; Veldhuis, Zwanida J; Sjollema, Klaas A; Lenting, Peter J; Giepmans, Ben N G; Porte, Robert J; Kubes, Paul; Denis, Cécile V; Lisman, Ton

    2017-01-01

    BACKGROUND & AIMS: In addition to their function in thrombosis and hemostasis, platelets play an important role in the stimulation of liver regeneration. It has been suggested that platelets deliver mitogenic cargo to the regenerating liver, and accumulation of platelets in the regenerating liver ha

  4. Hepatitis B virus HBx protein impairs liver regeneration through enhanced expression of IL-6 in transgenic mice.

    Science.gov (United States)

    Quétier, Ivan; Brezillon, Nicolas; Duriez, Marion; Massinet, Hélène; Giang, Eric; Ahodantin, James; Lamant, Céline; Brunelle, Marie-Noëlle; Soussan, Patrick; Kremsdorf, Dina

    2013-08-01

    Conflicting results have been reported regarding the impact of hepatitis B virus X protein (HBx) expression on liver regeneration triggered by partial hepatectomy (PH). In the present report we investigated the mechanisms by which HBx protein alters hepatocyte proliferation after PH. PH was performed on a transgenic mouse model in which HBx expression is under the control of viral regulatory elements and liver regeneration was monitored. LPS, IL-6 neutralizing antibody, and SB203580 were injected after PH to evaluate IL-6 participation during liver regeneration. Cell cycle progression of hepatocytes was delayed in HBx transgenic mice compared to WT animals. Moreover, HBx induced higher secretion of IL-6 soon after PH. Upregulation of IL-6 was associated with an elevation of STAT3 phosphorylation, SOCS3 transcript accumulation and a decrease in ERK1/2 phosphorylation in the livers of HBx transgenic mice. The involvement of IL-6 overexpression in cell cycle deregulation was confirmed by the inhibition of liver regeneration in control mice after the upregulation of IL-6 expression using LPS. In addition, IL-6 neutralization with antibodies was able to restore liver regeneration in HBx mice. Finally, the direct role of p38 in IL-6 secretion after PH was demonstrated using SB203580, a pharmacological inhibitor. HBx is able to induce delayed hepatocyte proliferation after PH, and HBx-induced IL-6 overexpression is involved in delayed liver regeneration. By modulating IL-6 expression during liver proliferation induced by stimulation of the cellular microenvironment, HBx may participate in cell cycle deregulation and progression of liver disease. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Whither prometheus' liver? Greek myth and the science of regeneration.

    Science.gov (United States)

    Power, Carl; Rasko, John E J

    2008-09-16

    Stem-cell biologists and those involved in regenerative medicine are fascinated by the story of Prometheus, the Greek god whose immortal liver was feasted on day after day by Zeus' eagle. This myth invariably provokes the question: Did the ancient Greeks know about the liver's amazing capacity for self-repair? The authors address this question by exploring the origins of Greek myth and medicine, adopting a 2-fold strategy. First, the authors consider what opportunities the ancient Greeks had to learn about the liver's structure and function. This involves a discussion of early battlefield surgery, the beginnings of anatomical research, and the ancient art of liver augury. In addition, the authors consider how the Greeks understood Prometheus' immortal liver. Not only do the authors examine the general theme of regeneration in Greek mythology, they survey several scholarly interpretations of Prometheus' torture.

  6. MORT1/FADD is involved in liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Marcus Schuchmann; Wolfgang Schreiber; Ansgar W Lohse; Peter R Galle; Felix Rückert; Jose F Garcia-Lazaro; Andrea Karg; Jürgen Burg; Natalia Knorr; Jürgen Siebler; Eugene E Varfolomeev; David Wallach

    2005-01-01

    AIM: To explore the role of the adaptor molecule in liver regeneration after partial hepatectomy (PH).METHODS: We used transgenic mice expressing an N-terminal truncated form of MORT1/FADD under the control of the albumin promoter. As previously shown,this transgenic protein abrogated CD95- and CD120a-mediated apoptosis in the liver. Cyclin A expression was detected using Western blotting. ELISA and RT-PCR were used to detect IL-6 and IL-6 mRNA, respectively. DNA synthesis in liver tissue was measured by BrdU staining.RESULTS: Resection of 70% of the liver was followed by a reduced early regenerative response in the transgenic group at 36 h. Accordingly, 36 h after hepatectomy, cyclin A expression was only detectable in wild-type animals. Consequently, the onset of liver mass restoration was retarded as measured by MRI volumetry and mortality was significantly higher in the transgenic group.CONCLUSION: Our data demonstrate for the first time an involvement of the death receptor molecule MORT1/FADD in liver regeneration, beyond its well described role as part of the intracellular death signaling pathway.

  7. Spallanzani's mouse: a model of restoration and regeneration.

    Science.gov (United States)

    Heber-Katz, E; Leferovich, J M; Bedelbaeva, K; Gourevitch, D

    2004-01-01

    The ability to regenerate is thought to be a lost phenotype in mammals, though there are certainly sporadic examples of mammalian regeneration. Our laboratory has identified a strain of mouse, the MRL mouse, which has a unique capacity to heal complex tissue in an epimorphic fashion, i.e., to restore a damaged limb or organ to its normal structure and function. Initial studies using through-and-through ear punches showed rapid full closure of the ear holes with cartilage growth, new hair follicles, and normal tissue architecture reminiscent of regeneration seen in amphibians as opposed to the scarring usually seen in mammals. Since the ear hole closure phenotype is a quantitative trait, this has been used to show-through extensive breeding and backcrossing--that the trait is heritable. Such analysis reveals that there is a complex genetic basis for this trait with multiple loci. One of the major phenotypes of the MRL mouse is a potent remodeling response with the absence or a reduced level of scarring. MRL healing is associated with the upregulation of the metalloproteinases MMP-2 and MMP-9 and the downregulation of their inhibitors TIMP-2 and TIMP-3, both present in inflammatory cells such as neutrophils and macrophages. This model has more recently been extended to the heart. In this case, a cryoinjury to the right ventricle leads to near complete scarless healing in the MRL mouse whereas scarring is seen in the control mouse. In the MRL heart, bromodeoxyuridine uptake by cardiomyocytes filling the wound site can be seen 60 days after injury. This does not occur in the control mouse. Function in the MRL heart, as measured by echocardiography, returns to normal.

  8. [Control of growth and expression of protooncogenes in regenerating liver].

    Science.gov (United States)

    Zou, Y; Gong, D Z; Cui, X Y; Mei, M H

    1996-01-01

    There are many humoral factors involved in the control of growth in regenerating liver. The complete hepatocyte mitogens such as hepatocyte growth factor (HGF), hepatic stimulator substance (HSS) can strongly stimulate hepatocyte DNA synthesis and mitosis. The hepatocyte growth inhibitors such as transforming growth factor beta 1 (TGF beta 1), however, do not stimulate DNA synthesis, but inhibit EGF mitogenesis. In addition, the comitogens such as norepinephrine and insulin are necessary to regulate the growth of regenerating liver. It has become clear that the hepatocyte proliferation and protooncogenes are linked closely. Some protooncogenes can express specifically as markers in the different phases of the cell cycle and in hepatocytes that enter the cell cycle (G0 to G1 transit) and continue to progress.

  9. LIVER AND BONE MARROW STEM/PROGENITOR CELLS AS REGULATORS OF REPARATIVE REGENERATION OF DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    А. V. Lundup

    2010-01-01

    Full Text Available In this review the modern information about effectiveness of liver insufficiency treatment by stem/ progenitor cells of liver (oval cells and bone marrow (hemopoietic cells and mesenchymal cells was presented. It is shown that medical action of these cells is referred on normalization of liver cell interaction and reorganization of processes of a reparative regeneration in damaged liver. It is believed that application of mesenchymal stromal cells from an autological bone marrow is the most perspective strategy. However, for definitive judgement about regenerative possibilities of the autological bone marrow cells it is necessary to carry out large-scale double blind clinical researches. 

  10. Signal Transduction of Platelet-Induced Liver Regeneration and Decrease of Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Soichiro Murata

    2014-03-01

    Full Text Available Platelets contain three types of granules: alpha granules, dense granules, and lysosomal granules. Each granule contains various growth factors, cytokines, and other physiological substances. Platelets trigger many kinds of biological responses, such as hemostasis, wound healing, and tissue regeneration. This review presents experimental evidence of platelets in accelerating liver regeneration and improving liver fibrosis. The regenerative effect of liver by platelets consists of three mechanisms; i.e., the direct effect on hepatocytes, the cooperative effect with liver sinusoidal endothelial cells, and the collaborative effect with Kupffer cells. Many signal transduction pathways are involved in hepatocyte proliferation. One is activation of Akt and extracellular signal-regulated kinase (ERK1/2, which are derived from direct stimulation from growth factors in platelets. The other is signal transducer and activator of transcription-3 (STAT3 activation by interleukin (IL-6 derived from liver sinusoidal endothelial cells and Kupffer cells, which are stimulated by contact with platelets during liver regeneration. Platelets also improve liver fibrosis in rodent models by inactivating hepatic stellate cells to decrease collagen production. The level of intracellular cyclic adenosine monophosphate (cyclic AMP is increased by adenosine through its receptors on hepatic stellate cells, resulting in inactivation of these cells. Adenosine is produced by the degradation of adenine nucleotides such as adenosine diphosphate (ADP and adenosine tri-phosphate (ATP, which are stored in abundance within the dense granules of platelets.

  11. Transcriptome atlas of eight liver cell types uncovers effects of histidine catabolites on rat liver regeneration

    Indian Academy of Sciences (India)

    C. F. Chang; J. Y. Fan; F. C. Zhang; J. Ma; C. S. Xu

    2010-12-01

    Eight liver cell types were isolated using the methods of Percoll density gradient centrifugation and immunomagnetic beads to explore effects of histidine catabolites on rat liver regeneration. Rat Genome 230 2.0 Array was used to detect the expression profiles of genes associated with metabolism of histidine and its catabolites for the above-mentioned eight liver cell types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression by autocrine and paracrine modes. Hepatocytes, biliary epithelia cells, oval cells and dendritic cells can convert histidine to histamine, which can promote sinusoidal endothelial cells proliferation by GsM pathway, and promote the proliferation of hepatocytes and biliary epithelia cells by GqM pathway.

  12. Transcriptome atlas of eight liver cell types uncovers effects of histidine catabolites on rat liver regeneration.

    Science.gov (United States)

    Chang, C F; Fan, J Y; Zhang, F C; Ma, J; Xu, C S

    2010-12-01

    Eight liver cell types were isolated using the methods of Percoll density gradient centrifugation and immunomagnetic beads to explore effects of histidine catabolites on rat liver regeneration. Rat Genome 230 2.0 Array was used to detect the expression profiles of genes associated with metabolism of histidine and its catabolites for the above-mentioned eight liver cell types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression by autocrine and paracrine modes. Hepatocytes, biliary epithelia cells, oval cells and dendritic cells can convert histidine to histamine, which can promote sinusoidal endothelial cells proliferation by GsM pathway, and promote the proliferation of hepatocytes and biliary epithelia cells by GqM pathway.

  13. Insights on augmenter of liver regeneration cloning and function

    Institute of Scientific and Technical Information of China (English)

    Elisavet Gatzidou; Gregory Kouraklis; Stamatios Theocharis

    2006-01-01

    Hepatic stimulator substance (HSS) has been referred to as a liver-specific but species non-specific growth factor. Gradient purification and sequence analysis of HSS protein indicated that it contained the augmenter of liver regeneration (ALR), also known as hepatopoietin (HPO).ALR, acting as a hepatotrophic growth factor, specifically stimulated proliferation of cultured hepatocytes as well as hepatoma cells in vitro, promoted liver regeneration and recovery of damaged hepatocytes and rescued acute hepatic failure in vivo. ALR belongs to the new Erv1/Alr protein family, members of which are found in lower and higher eukaryotes from yeast to man and even in some double-stranded DNA viruses. The present review article focuses on the molecular biology of ALR, examining the ALR gene and its expression from yeast to man and the biological function of ALR protein. ALR protein seems to be non-liver-specific as was previously believed, increasing the necessity to extend research on mammalian ALR protein in different tissues, organs and developmental stages in conditions of normal and abnormal cellular growth.

  14. SOCS2 Balances Metabolic and Restorative Requirements during Liver Regeneration.

    Science.gov (United States)

    Masuzaki, Ryota; Zhao, Sophia; Valerius, M Todd; Tsugawa, Daisuke; Oya, Yuki; Ray, Kevin C; Karp, Seth J

    2016-02-12

    After significant injury, the liver must maintain homeostasis during the regenerative process. We hypothesized the existence of mechanisms to limit hepatocyte proliferation after injury to maintain metabolic and synthetic function. A screen for candidates revealed suppressor of cytokine signaling 2 (SOCS2), an inhibitor of growth hormone (GH) signaling, was strongly induced after partial hepatectomy. Using genetic deletion and administration of various factors we investigated the role of SOCS2 during liver regeneration. SOCS2 preserves liver function by restraining the first round of hepatocyte proliferation after partial hepatectomy by preventing increases in growth hormone receptor (GHR) via ubiquitination, suppressing GH pathway activity. At later times, SOCS2 enhances hepatocyte proliferation by modulating a decrease in serum insulin-like growth factor 1 (IGF-1) that allows GH release from the pituitary. SOCS2, therefore, plays a dual role in modulating the rate of hepatocyte proliferation. In particular, this is the first demonstration of an endogenous mechanism to limit hepatocyte proliferation after injury.

  15. Portal vein arterialization increases hepatocellular apoptosis and inhibits liver regeneration.

    Science.gov (United States)

    Schleimer, Karina; Stippel, Dirk L; Kasper, Hans U; Prenzel, Klaus; Gaudig, Cindy; Tawadros, Samir; Hoelscher, Arnulf H; Beckurts, K Tobias E

    2008-10-01

    Portal vein arterialization is performed in particular situations to guarantee sufficient blood flow in the portal vein. In addition, some authors have postulated a proliferation-promoting influence of portal vein arterialization on the liver tissue. However, portal vein arterialization is an unphysiological procedure: It increases portal blood flow and blood pressure as well as oxygenation of the liver tissue. On the other hand, it reduces the influx of hepatotrophic factors from the portal venous blood. The aim of these experiments was to investigate apoptosis and proliferation of hepatocytes during various conditions of the portal perfusion. After 70% liver resection in Lewis rats, the following four experimental groups were formed differing in portal perfusion: (I) hyperperfused, nonarterialized; (II) flow-regulated, nonarterialized; (III) hyperperfused, arterialized; (IV) flow-regulated, arterialized. A warm ischemia of 30 min was kept in all groups. Portal vein arterialization of 70% reduced rat livers significantly reduced liver regeneration as shown by a significant reduction in liver weight, body weight, and liver function after 6 wk, in contrast to the group with 70% liver mass reduction and portal venous inflow of the portal vein. Furthermore, we found a significantly elevated number of apoptotic hepatocytes after portal vein arterialization. These results were independent from blood flow regulation of the arterialized portal vein, which caused no improvement of the results. Portal vein arterialization should be performed only temporarily and is clinically not recommended as a permanent option, because of the increased hepatocellular apoptosis and the very distinctive, negative long-term effects on liver weight.

  16. Effects of Neurolytic Celiac Plexus Block on Liver Regeneration in Rats with Partial Hepatectomy

    OpenAIRE

    Jun Li; Hong-Tao Yan; Jian-Xiang Che; Shu-Rong Bai; Qing-Ming Qiu; Ling Ren; Fan Pan; Xiao-Qin Sun; Fu-Zhou Tian; Dong-Xuan Li; Li-Jun Tang

    2013-01-01

    Liver regeneration is the basic physiological process after partial hepatectomy (PH), and is important for the functional rehabilitation of the liver after acute hepatic injury. This study was designed to explore the effects of neurolytic celiac plexus block (NCPB) on liver regeneration after PH. We established a model of PH in rats, assessing hepatic blood flow, liver function, and serum CRP, TNF-α, IL-1β and IL-6 concentrations of the residuary liver after PH. Additionally, histopathologica...

  17. Clustering nuclear receptors in liver regeneration identifies candidate modulators of hepatocyte proliferation and hepatocarcinoma.

    Directory of Open Access Journals (Sweden)

    Michele Vacca

    Full Text Available BACKGROUND & AIMS: Liver regeneration (LR is a valuable model for studying mechanisms modulating hepatocyte proliferation. Nuclear receptors (NRs are key players in the control of cellular functions, being ideal modulators of hepatic proliferation and carcinogenesis. METHODS & RESULTS: We used a previously validated RT-qPCR platform to profile modifications in the expression of all 49 members of the NR superfamily in mouse liver during LR. Twenty-nine NR transcripts were significantly modified in their expression during LR, including fatty acid (peroxisome proliferator-activated receptors, PPARs and oxysterol (liver X receptors, Lxrs sensors, circadian masters RevErbα and RevErbβ, glucocorticoid receptor (Gr and constitutive androxane receptor (Car. In order to detect the NRs that better characterize proliferative status vs. proliferating liver, we used the novel Random Forest (RF analysis to selected a trio of down-regulated NRs (thyroid receptor alpha, Trα; farsenoid X receptor beta, Fxrβ; Pparδ as best discriminators of the proliferating status. To validate our approach, we further studied PPARδ role in modulating hepatic proliferation. We first confirmed the suppression of PPARδ both in LR and human hepatocellular carcinoma at protein level, and then demonstrated that PPARδ agonist GW501516 reduces the proliferative potential of hepatoma cells. CONCLUSIONS: Our data suggest that NR transcriptome is modulated in proliferating liver and is a source of biomarkers and bona fide pharmacological targets for the management of liver disease affecting hepatocyte proliferation.

  18. Regulation of Signal Transduction and Role of Platelets in Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Takeshi Nowatari

    2012-01-01

    Full Text Available Among all organs, the liver has a unique regeneration capability after sustaining injury or the loss of tissue that occurs mainly due to mitosis in the hepatocytes that are quiescent under normal conditions. Liver regeneration is induced through a cascade of various cytokines and growth factors, such as, tumor necrosis factor alpha, interleukin-6, hepatocyte growth factor, and insulin-like growth factor, which activate nuclear factor κB, signal transducer and activator of transcription 3, and phosphatidyl inositol 3-kinase signaling pathways. We previously reported that platelets can play important roles in liver regeneration through a direct effect on hepatocytes and collaborative effects with the nonparenchymal cells of the liver, including Kupffer cells and liver sinusoidal endothelial cells, which participate in liver regeneration through the production of various growth factors and cytokines. In this paper, the roles of platelets and nonparenchymal cells in liver regeneration, including the associated cytokines, growth factors, and signaling pathways, are described.

  19. Hyperplasia vs hypertrophy in tissue regeneration after extensive liver resection.

    Science.gov (United States)

    Marongiu, Fabio; Marongiu, Michela; Contini, Antonella; Serra, Monica; Cadoni, Erika; Murgia, Riccardo; Laconi, Ezio

    2017-03-14

    To address to what extent hypertrophy and hyperplasia contribute to liver mass restoration after major tissue loss. The ability of the liver to regenerate is remarkable on both clinical and biological grounds. Basic mechanisms underlying this process have been intensively investigated. However, it is still debated to what extent hypertrophy and hyperplasia contribute to liver mass restoration after major tissue loss. We addressed this issue using a genetically tagged system. We were able to follow the fate of single transplanted hepatocytes during the regenerative response elicited by 2/3 partial surgical hepatectomy (PH) in rats. Clusters of transplanted cells were 3D reconstructed and their size distribution was evaluated over time after PH. Liver size and liver DNA content were largely recovered 10 d post-PH, as expected (e.g., total DNA/liver/100 g b.w. was 6.37 ± 0.21 before PH and returned to 6.10 ± 0.36 10 d after PH). Data indicated that about 2/3 of the original residual hepatocytes entered S-phase in response to PH. Analysis of cluster size distribution at 24, 48, 96 h and 10 d after PH revealed that about half of the remnant hepatocytes completed at least 2 cell cycles. Average size of hepatocytes increased at 24 h (248.50 μm(2) ± 7.82 μm(2), P = 0.0015), but returned to control values throughout the regenerative process (up to 10 d post-PH, 197.9 μm(2) ± 6.44 μm(2), P = 0.11). A sizeable fraction of the remnant hepatocyte population does not participate actively in tissue mass restoration. Hyperplasia stands as the major mechanism contributing to liver mass restoration after PH, with hypertrophy playing a transient role in the process.

  20. Inhibition of Glycogen Synthase Kinase 3 Accelerated Liver Regeneration after Acetaminophen-Induced Hepatotoxicity in Mice.

    Science.gov (United States)

    Bhushan, Bharat; Poudel, Samikshya; Manley, Michael W; Roy, Nairita; Apte, Udayan

    2017-03-01

    Overdose of acetaminophen (APAP) is the leading cause of acute liver failure (ALF) in the United States. Timely initiation of compensatory liver regeneration after APAP hepatotoxicity is critical for final recovery, but the mechanisms of liver regeneration after APAP-induced ALF have not been extensively explored yet. Previous studies from our laboratory have demonstrated that activation of β-catenin signaling after APAP overdose is associated with timely liver regeneration. Herein, we investigated the role of glycogen synthase kinase 3 (GSK3) in liver regeneration after APAP hepatotoxicity using a pharmacological inhibition strategy in mice. Treatment with specific GSK3 inhibitor (L803-mts), starting from 4 hours after 600 mg/kg dose of APAP, resulted in early initiation of liver regeneration in a dose-dependent manner, without modifying the peak regenerative response. Acceleration of liver regeneration was not secondary to alteration of APAP-induced hepatotoxicity, which remained unchanged after GSK3 inhibition. Early cell cycle initiation in hepatocytes after GSK3 inhibition was because of rapid induction of cyclin D1 and phosphorylation of retinoblastoma protein. This was associated with increased activation of β-catenin signaling after GSK3 inhibition. Taken together, our study has revealed a novel role of GSK3 in liver regeneration after APAP overdose and identified GSK3 as a potential therapeutic target to improve liver regeneration after APAP-induced ALF. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2015-03-01

    Full Text Available The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs are ligands of farnesoid X receptor (FXR, a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration.

  2. Gene expression profile analysis of type 2 diabetic mouse liver.

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    Full Text Available Liver plays a key role in glucose metabolism and homeostasis, and impaired hepatic glucose metabolism contributes to the development of type 2 diabetes. However, the precise gene expression profile of diabetic liver and its association with diabetes and related diseases are yet to be further elucidated. In this study, we detected the gene expression profile by high-throughput sequencing in 9-week-old normal and type 2 diabetic db/db mouse liver. Totally 12132 genes were detected, and 2627 genes were significantly changed in diabetic mouse liver. Biological process analysis showed that the upregulated genes in diabetic mouse liver were mainly enriched in metabolic processes. Surprisingly, the downregulated genes in diabetic mouse liver were mainly enriched in immune-related processes, although all the altered genes were still mainly enriched in metabolic processes. Similarly, KEGG pathway analysis showed that metabolic pathways were the major pathways altered in diabetic mouse liver, and downregulated genes were enriched in immune and cancer pathways. Analysis of the key enzyme genes in fatty acid and glucose metabolism showed that some key enzyme genes were significantly increased and none of the detected key enzyme genes were decreased. In addition, FunDo analysis showed that liver cancer and hepatitis were most likely to be associated with diabetes. Taken together, this study provides the digital gene expression profile of diabetic mouse liver, and demonstrates the main diabetes-associated hepatic biological processes, pathways, key enzyme genes in fatty acid and glucose metabolism and potential hepatic diseases.

  3. Akt-mediated foxo1 inhibition is required for liver regeneration.

    Science.gov (United States)

    Pauta, Montse; Rotllan, Noemi; Fernández-Hernando, Ana; Langhi, Cedric; Ribera, Jordi; Lu, Mingjian; Boix, Loreto; Bruix, Jordi; Jimenez, Wladimiro; Suárez, Yajaira; Ford, David A; Baldán, Angel; Birnbaum, Morris J; Morales-Ruiz, Manuel; Fernández-Hernando, Carlos

    2016-05-01

    Understanding the hepatic regenerative process has clinical interest as the effectiveness of many treatments for chronic liver diseases is conditioned by efficient liver regeneration. Experimental evidence points to the need for a temporal coordination between cytokines, growth factors, and metabolic signaling pathways to enable successful liver regeneration. One intracellular mediator that acts as a signal integration node for these processes is the serine-threonine kinase Akt/protein kinase B (Akt). To investigate the contribution of Akt during hepatic regeneration, we performed partial hepatectomy in mice lacking Akt1, Akt2, or both isoforms. We found that absence of Akt1 or Akt2 does not influence liver regeneration after partial hepatectomy. However, hepatic-specific Akt1 and Akt2 null mice show impaired liver regeneration and increased mortality. The major abnormal cellular events observed in total Akt-deficient livers were a marked reduction in cell proliferation, cell hypertrophy, glycogenesis, and lipid droplet formation. Most importantly, liver-specific deletion of FoxO1, a transcription factor regulated by Akt, rescued the hepatic regenerative capability in Akt1-deficient and Akt2-deficient mice and normalized the cellular events associated with liver regeneration. The Akt-FoxO1 signaling pathway plays an essential role during liver regeneration. © 2015 by the American Association for the Study of Liver Diseases.

  4. Anti-inflammatory liposomes have no impact on liver regeneration in rats

    DEFF Research Database (Denmark)

    Jepsen, Betina Norman; Andersen, Kasper Jarlhelt; Knudsen, Anders Riegels;

    2015-01-01

    ; liver tissue was sampled for analysis of regeneration rate and proliferation index. Results: The high dose dexamethasone group had significantly lower body and liver weight than the placebo and anti-CD163-dex groups. There were no differences in liver regeneration rates between groups. Hepatocyte......Introduction: Surgical resection is the gold standard in treatment of hepatic malignancies, giving the patient the best chance to be cured. The liver has a unique capacity to regenerate. However, an inflammatory response occurs during resection, in part mediated by Kupffer cells, that influences...... the speed of regeneration. The aim of this study was to investigate the effect of a Kupffer cell targeted anti-inflammatory treatment on liver regeneration in rats. Methods: Two sets of animals, each including four groups of eight rats, were included. Paired groups from each set received treatment...

  5. Fetal and adult liver stem cells for liver regeneration and tissue engineering.

    Science.gov (United States)

    Fiegel, H C; Lange, Claudia; Kneser, U; Lambrecht, W; Zander, A R; Rogiers, X; Kluth, D

    2006-01-01

    For the development of innovative cell-based liver directed therapies, e.g. liver tissue engineering, the use of stem cells might be very attractive to overcome the limitation of donor liver tissue. Liver specific differentiation of embryonic, fetal or adult stem cells is currently under investigation. Different types of fetal liver (stem) cells during development were identified, and their advantageous growth potential and bipotential differentiation capacity were shown. However, ethical and legal issues have to be addressed before using fetal cells. Use of adult stem cells is clinically established, e.g. transplantation of hematopoietic stem cells. Other bone marrow derived liver stem cells might be mesenchymal stem cells (MSC). However, the transdifferentiation potential is still in question due to the observation of cellular fusion in several in vivo experiments. In vitro experiments revealed a crucial role of the environment (e.g. growth factors and extracellular matrix) for specific differentiation of stem cells. Co-cultured liver cells also seemed to be important for hepatic gene expression of MSC. For successful liver cell transplantation, a novel approach of tissue engineering by orthotopic transplantation of gel-immobilized cells could be promising, providing optimal environment for the injected cells. Moreover, an orthotopic tissue engineering approach using bipotential stem cells could lead to a repopulation of the recipients liver with healthy liver and biliary cells, thus providing both hepatic functions and biliary excretion. Future studies have to investigate, which stem cell and environmental conditions would be most suitable for the use of stem cells for liver regeneration or tissue engineering approaches.

  6. Variables influencing DNA-binding in mouse liver.

    Science.gov (United States)

    Neumann, H G

    1987-01-01

    The suitability of certain mouse strains for carcinogenicity testing has been questioned. Some chemicals increase the incidence of liver tumors above a relatively high background, an effect not seen in rats. This raises the question whether species and tissue specific effects are involved which are reflected in the DNA binding of metabolites. DNA binding indices in mouse liver have been determined in only a few instances. They are comparable to those found for rat liver DNA with aniline, benzo(a)-pyrene, butadiene, dimethylnitrosamine, methylnitrosourea and they are lower in the mouse with aflatoxin B1, trans-4-acetylaminostilbene and 2-aminofluorene derivatives. The available data on DNA binding in mouse liver suggest that the same adducts are formed as in rats but that metabolism and repair are variables which can modify the extent of DNA damage. However, the extent of DNA binding does not always correlate with the susceptibility of this tissue to carcinogenesis. But mouse liver is no exception in this respect. It is concluded that the formation of mouse liver tumors in long term studies with genotoxic chemicals indicates tumor initiating potential. In contrast, there are other chemicals such as chlorinated hydrocarbon insecticides which do not bind to DNA to any extent and which are not genotoxic in common short term tests and yet give rise to liver tumors in mice but not in rats. Positive results in long term studies are suggested to indicate promoting properties of such compounds.

  7. TWEAK/Fn14 Signaling Is Required for Liver Regeneration after Partial Hepatectomy in Mice

    OpenAIRE

    Gamze Karaca; Marzena Swiderska-Syn; Guanhua Xie; Wing-Kin Syn; Leandi Krüger; Mariana Verdelho Machado; Katherine Garman; Choi, Steve S.; Michelotti, Gregory A.; Burkly, Linda C.; Begoña Ochoa; Anna Mae Diehl

    2014-01-01

    Background & Aims: Pro-inflammatory cytokines are important for liver regeneration after partial hepatectomy (PH). Expression of Fibroblast growth factor-inducible 14 (Fn14), the receptor for TNF-like weak inducer of apoptosis (TWEAK), is induced rapidly after PH and remains elevated throughout the period of peak hepatocyte replication. The role of Fn14 in post-PH liver regeneration is uncertain because Fn14 is expressed by liver progenitors and TWEAK-Fn14 interactions stimulate progenitor gr...

  8. Phenotypic changes of human cells in human-rat liver during partial hepatectomy-induced regeneration

    Institute of Scientific and Technical Information of China (English)

    Yan Sun; Dong Xiao; Hong-An Li; Jin-Fang Jiang; Qing Li; Ruo-Shuang Zhang; Xi-Gu Chen

    2009-01-01

    AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells during partial hepatectomy (PHx)-induced liver regeneration. METHODS: Human hepatic parenchymal and stromal components and phenotypic changes of human cells during liver regeneration were examined by flow cytometry, in situ hybridization and immunohistochemistry. RESULTS: ISH analysis demonstrated human Alupositive cells in hepatic parenchyma and stroma of recipient liver. Functional human hepatocytes generated in this model potentially constituted human hepatic functional units with the presence of donor-derived human endothelial and biliary duct cells in host liver. Alpha fetoprotein (AFP)+, CD34+ and CD45+ cells were observed in the chimeric liver on day 10 after PHxinduced liver regeneration and then disappeared in PHx group, but not in non-PHx group, suggesting that dynamic phenotypic changes of human cells expressing AFP, CD34 and CD45 cells may occur during the chimeric liver regeneration. Additionally, immunostaining for human proliferating cell nuclear antigen (PCNA) showed that the number of PCNA-positive cells in the chimeric liver of PHx group was markedly increased, as compared to that of control group, indicating that donor-derived human cells are actively proliferated during PHx-induced regeneration of HRC liver.

  9. Elevated liver regeneration in response to pharmacological reduction of elevated portal venous pressure by terlipressin after partial hepatectomy.

    OpenAIRE

    Fahrner, René; Patsenker, Eleanora; De Gottardi, Andrea; Stickel, Felix; Montani, Matteo; Keogh-Stroka, Deborah M.; CANDINAS, DANIEL; Beldi, Guido

    2014-01-01

    BACKGROUND Liver regeneration is of crucial importance for patients undergoing living liver transplantations or extended liver resections and can be associated with elevated portal venous pressure, impaired hepatic regeneration, and postoperative morbidity. The aim of this study was to assess whether reduction of portal venous pressure by terlipressin improves postoperative liver regeneration in normal and steatotic livers after partial hepatectomy in a rodent model. METHODS Porta...

  10. Structural and metabolic changes in Atp7b-/- mouse liver and potential for new interventions in Wilson's disease.

    Science.gov (United States)

    Huster, Dominik

    2014-05-01

    Wilson's disease (WD) is caused by ATP7B mutations and results in copper accumulation and toxicity in liver and brain tissues. The specific mechanisms underlying copper toxicity are still poorly understood. Mouse models have revealed new insights into pathomechanisms of hepatic WD. Mitochondrial damage is observed in livers of WD patients and in mouse models; copper induces fragmentation of mitochondrial membrane lipids, particularly cardiolipin, with deleterious effects on both mitochondrial integrity and function. Copper accumulation also induces chronic inflammation in WD livers, which is followed by regeneration in parts of the liver and occasionally neoplastic proliferation. Gene expression studies using microarrays have aided our understanding of the molecular basis of these changes. Copper overload alters cholesterol biosynthesis in hepatocytes resulting in reduced liver and serum cholesterol. Experiments are currently underway to elucidate the link between copper and cholesterol metabolism. These findings may facilitate the development of specific therapies to ameliorate WD progression.

  11. Expression patterns and action analysis of genes associated with blood coagulation responses during rat liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Li-Feng Zhao; Wei-Min Zhang; Cun-Shuan Xu

    2006-01-01

    AIM:To study the blood coagulation response after partial hepatectomy (PH) at transcriptional level.METHODS:After PH of rats, the associated genes with blood coagulation were obtained through reference to the databases, and the gene expression changes in rat regenerating liver were analyzed by the Rat Genome 230 2.0 array.RESULTS: It was found that 107 genes were associated with liver regeneration. The initially and totally expressing gene numbers occurring in initiation phase of liver regeneration (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) were 44, 11, 58, 7 and 44, 33,100, 71 respectively, showing that the associated genes were mainly triggered in the forepart and prophase, and worked at different phases. According to their expression similarity, these genes were classified into 5 groups:only up-, predominantly up-, only down-, predominantly down-, up- and down-regulation, involving 44, 8, 36,13 and 6 genes, respectively, and the total times of their up- and down-regulation expression were 342 and 253, respectively, demonstrating that the number of the up-regulated genes was more than that of the downregulated genes. Their time relevance was classified into 15 groups, showing that the cellular physiological and biochemical activities were staggered during liver regeneration. According to gene expression patterns,they were classified into 29 types, suggesting that their protein activities were diverse and complex during liver regeneration.CONCLUSION: The blood coagulation response is enhanced mainly in the forepart, prophase and anaphase of liver regeneration, in which the response in the forepart, prophase of liver regeneration can prevent the bleeding caused by partial hepatectomy, whereas that in the anaphase contributes to the structure-function reorganization of regenerating liver. In the process,107 genes associated with liver

  12. Ear wound regeneration in the African spiny mouse Acomys cahirinus

    OpenAIRE

    Matias Santos, Dino; Rita, Ana Martins; Casanellas, Ignasi; Brito Ova, Adélia; Araújo, Inês Maria; Power, Deborah; Tiscornia, Gustavo

    2016-01-01

    Abstract While regeneration occurs in a number of taxonomic groups across the Metazoa, there are very few reports of regeneration in mammals, which generally respond to wounding with fibrotic scarring rather than regeneration. A recent report described skin shedding, skin regeneration and extensive ear punch closure in two rodent species, Acomys kempi and Acomys percivali. We examined these striking results by testing the capacity for regeneration of a third species, Acomys cahirinus, and fou...

  13. The impact of hepatic steatosis on liver regeneration after partial hepatectomy

    NARCIS (Netherlands)

    Kele, Petra G.; van der Jagt, Eric J.; Gouw, Annette S. H.; Lisman, Ton; Porte, Robert J.; de Boer, Marieke T.

    2013-01-01

    Background & Aim Experimental studies in animals have suggested that liver regeneration is impaired in steatotic livers. However, few studies have focused on the impact of steatosis in patients undergoing partial hepatectomy (PH). This study aims to determine the role of steatosis on liver regenerat

  14. Pulpal regeneration following allogenic tooth transplantation into mouse maxilla.

    Science.gov (United States)

    Unno, Hideki; Suzuki, Hironobu; Nakakura-Ohshima, Kuniko; Jung, Han-Sung; Ohshima, Hayato

    2009-04-01

    Autogenic tooth transplantation is now a common procedure in dentistry for replacing a missing tooth. However, there are many difficulties in clinical application of allogenic tooth transplantation because of immunological rejection. This study aims to clarify pulpal regeneration following allogenic tooth transplantation into the mouse maxilla by immunohistochemistry for 5-bromo-2'-deoxyuridine (BrdU) and nestin, and by the histochemistry for tartrate-resistant acid phosphatase (TRAP). The upper right first molar (M1) of 2-week-old mice was extracted and allografted in the original socket in both the littermate and non-littermate after the extraction of M1. Tooth transplantation weakened the nestin-positive reactions in the pulp tissue that had shown immunoreactivity for nestin before operation. On postoperative Days 5-7, tertiary dentin formation commenced next to the preexisting dentin where nestin-positive odontoblast-like cells were arranged in all cases of the littermate group until Day 14, except for one case showing immunological rejection in the pulp chamber. In the non-littermate group, bone-like tissue formation occurred in the pulp chamber in addition to tertiary dentin formation until Day 14. The rate of tertiary dentin was 38%, and the rate of the mixed form of dentin and bone-like tissue formation was 23% (the remainder was immunological rejection). Interestingly, the periodontal tissue recovered even in the case of immunological rejection in which the pulp chamber was replaced by sparse connective tissue. These results suggest that the selection of littermate or non-littermate is decisive for the survival of odontoblast-lineage cells and that the immunological rejection does not influence the periodontal regeneration.

  15. Advances in Translational Medicine of Liver Regeneration-Associated Regulatory Factors

    Institute of Scientific and Technical Information of China (English)

    HAN Jin-bin; MA Cong; SHI Yan-qiong

    2016-01-01

    The liver is an important organ that has strong regeneration and defensive ability in human body. The cell types participating in liver regeneration have close association with the severity of liver injury. When the liver is in mild injury, it mainly repairs the injury through the cellular proliferation of liver parenchyma, whereas when the liver is in severe injury complicated with liver cell aplasia, the liver tissues will launch stem cell proliferative responses. Liver cells and stem cells have different responses to injury, so there may be specific regulation of signal routines and factors. Translational medicine mainly guides clinical practice through basic research, which not only promotes the development of modern medicine, but also is the strong impetus that promotes the development of modern medicine. The application of translational medicine has greatly improved the therapeutic efifcacy of liver surgery, liver cancer and liver transplantation around the world. This study mainly reviewed the advances in translational medicine of liver regeneration-associated regulatory factors, hoping to provide references for the clinical diagnosis and treatment of liver diseases.

  16. A20 modulates lipid metabolism and energy production to promote liver regeneration.

    Directory of Open Access Journals (Sweden)

    Scott M Damrauer

    Full Text Available BACKGROUND: Liver regeneration is clinically of major importance in the setting of liver injury, resection or transplantation. We have demonstrated that the NF-κB inhibitory protein A20 significantly improves recovery of liver function and mass following extended liver resection (LR in mice. In this study, we explored the Systems Biology modulated by A20 following extended LR in mice. METHODOLOGY AND PRINCIPAL FINDINGS: We performed transcriptional profiling using Affymetrix-Mouse 430.2 arrays on liver mRNA retrieved from recombinant adenovirus A20 (rAd.A20 and rAd.βgalactosidase treated livers, before and 24 hours after 78% LR. A20 overexpression impacted 1595 genes that were enriched for biological processes related to inflammatory and immune responses, cellular proliferation, energy production, oxidoreductase activity, and lipid and fatty acid metabolism. These pathways were modulated by A20 in a manner that favored decreased inflammation, heightened proliferation, and optimized metabolic control and energy production. Promoter analysis identified several transcriptional factors that implemented the effects of A20, including NF-κB, CEBPA, OCT-1, OCT-4 and EGR1. Interactive scale-free network analysis captured the key genes that delivered the specific functions of A20. Most of these genes were affected at basal level and after resection. We validated a number of A20's target genes by real-time PCR, including p21, the mitochondrial solute carriers SLC25a10 and SLC25a13, and the fatty acid metabolism regulator, peroxisome proliferator activated receptor alpha. This resulted in greater energy production in A20-expressing livers following LR, as demonstrated by increased enzymatic activity of cytochrome c oxidase, or mitochondrial complex IV. CONCLUSION: This Systems Biology-based analysis unravels novel mechanisms supporting the pro-regenerative function of A20 in the liver, by optimizing energy production through improved lipid/fatty acid

  17. Repair of liver mediated by adult mouse liver neuro-glia antigen 2-positive progenitor cell transplantation in a mouse model of cirrhosis

    Science.gov (United States)

    Zhang, Hongyu; Siegel, Christopher T.; Shuai, Ling; Lai, Jiejuan; Zeng, Linli; Zhang, Yujun; Lai, Xiangdong; Bie, Ping; Bai, Lianhua

    2016-01-01

    NG2-expressing cells are a population of periportal vascular stem/progenitors (MLpvNG2+ cells) that were isolated from healthy adult mouse liver by using a “Percoll-Plate-Wait” procedure. We demonstrated that isolated cells are able to restore liver function after transplantation into a cirrhotic liver, and co-localized with the pericyte marker (immunohistochemistry: PDGFR-β) and CK19. Cells were positive for: stem cell (Sca-1, CD133, Dlk) and liver stem cell markers (EpCAM, CD14, CD24, CD49f); and negative for: hematopoietic (CD34, CD45) and endothelial markers (CD31, vWf, von Willebrand factor). Cells were transplanted (1 × 106 cells) in mice with diethylnitrosamine-induced cirrhosis at week 6. Cells showed increased hepatic associated gene expression of alpha-fetoprotein (AFP), Albumin (Alb), Glucose-6-phosphatase (G6Pc), SRY (sex determining region Y)-box 9 (Sox9), hepatic nuclear factors (HNF1a, HNF1β, HNF3β, HNF4α, HNF6, Epithelial cell adhesion molecule (EpCAM), Leucine-rich repeated-containing G-protein coupled receptor 5-positive (Lgr5) and Tyrosine aminotransferase (TAT). Cells showed decreased fibrogenesis, hepatic stellate cell infiltration, Kupffer cells and inflammatory cytokines. Liver function markers improved. In a cirrhotic liver environment, cells could differentiate into hepatic lineages. In addition, grafted MLpvNG2+ cells could mobilize endogenous stem/progenitors to participate in liver repair. These results suggest that MLpvNG2+ cells may be novel adult liver progenitors that participate in liver regeneration. PMID:26905303

  18. Decorin accelerates the liver regeneration after partial hepatectomy in fibrotic mice

    Institute of Scientific and Technical Information of China (English)

    Ma Rui; Chen Jiang; Li Zheyong; Tang Jiacheng; Wang Yifan; Cai Xiujun

    2014-01-01

    Background Considering the existence of a large number of liver cell degeneration and necrosis in fibrotic liver,liver function was damaged severely and could not effectively regenerate after partial hepatectomy (PHx).The aim of this study was to investigate whether decorin (DCN) could promote the liver regeneration after PHx in fibrotic mice.Methods Forty mice (5-week-old,Balb/c) were injected with CCl4 intraperitoneally and liver fibrosis model was established after 5 weeks.The survival mice were randomly divided into two groups:control group and DCN group.Then,we performed 70% PHx on all these mice and injected DCN or phosphate-buffered saline plus normal saline (NS) to each group,respectively,after surgery.Liver body weight ratio (/BR),quantitative real-time polymerase chain reaction,and immunohistochemistry were used to analyze liver regeneration and fibrosis degree in both groups,and to find out whether exogenous protein DCN could promote the regeneration of fibrosis liver after PHx.Results Expressions of α-smooth muscle actin (SMA) mRNA and LBR had significant increases in the DCN group at postoperative Day 3 (POD 3,P<0.05).The protein expressions of CD31,α-SMA,and tumor necrosis factor (TNF)-α were higher in the DCN group than those in the control group by immunohistochemistry at POD 3 (P<0.05).Conclusion Exogenous protein DCN could promote liver regeneration after PHx in fibrotic mice.

  19. Cloning and sequence analysis of human genomic DNA of augmenter of liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Jun Cheng; Yan Wei Zhong; Yan Liu; Jing Dong; Ji Zhen Yang; Ju Mei Chen

    2000-01-01

    @@INTRODUCTION The liver is one of the organs, which have potential regenerative capability in mammalian animal[1].The study of the canine model indicated that the liver could regenerate to original size after 70% hepatectomy in only two weeks[2]. So it is a hot research topic for the cellular and molecular mechanism of liver regeneration. Accumulated results demonstrated that the hepatocyte growth factor (HGF)[3], insulin-like growth factor Ⅰ and Ⅱ (IGF-Ⅰ, Ⅱ )[4], epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha)[5] and insulin[6] are among the most important growth factors for liver regenerative regulation. In recent years, a heat-stable protein in the serum of the patients with various liver diseases has been noted for its potential stimulation effects on the liver regeneration, and this growth factor is called hepatocyte-stimulatory substance (HSS).

  20. Expression of isgylation related genes in regenerating rat liver

    Directory of Open Access Journals (Sweden)

    Kuklin A. V.

    2015-10-01

    Full Text Available Our recent studies have revealed the early up-regulated expression of interferon alpha (IFNα in the liver, induced by partial hepatectomy. The role of this cytokine of innate immune response in liver regeneration is still controversial. Aim. To analyze expression of canonical interferon-stimulated genes Ube1l, Ube2l6, Trim25, Usp18 and Isg15 during the liver transition from quiescence to proliferation induced by partial hepatectomy, and acute phase response induced by laparotomy. These genes are responsible for posttranslational modification of proteins by ISGylation. The expression of genes encoding TATA binding protein (TBP and 18S rRNA served as indirect general markers of transcriptional and translational activities. Methods. The abundance of investigated RNAs was assessed in total liver RNA by real time RT–qPCR. Results. Partial hepatecomy induced steady upregulation of the Tbp and 18S rRNA genes expression during 12 hours post-surgery and downregulation or no change in expression of ISGylation-related genes during the first 3 hours followed by slight upregulation at 12 hours. The level of Isg15 transcripts was permanently below that of the control during the prereplicative period. Laparotomy induced a continuous downregulation of Tbp and 18S rRNA expression and early (1–3h upregulation of ISGylation–related transcripts followed by a sharp drop at 6 hours and slight increase/decrease at 12 hours. The changes in the abundance of Ifnα and ISGylation-related mRNAs were oppositely directed at each stage of the response to partial hepatectomy and laparotomy. Conclusion. We suggest that the expression of ISGylation-related genes does not depend on the expression of Ifnα gene after both surgeries. The indirect indices of transcription and translation as well as the expression of ISGylation-relaled genes are principally different in response to partial hepatectomy and laparotomy and argue for the high specificity of innate immune response.

  1. Cellular Origins of Regenerating Nodules and Malignancy in the FAH Model of Liver Injury after Bone Marrow Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Pei-Rong Wang

    2016-01-01

    Full Text Available In previous reports, we and other groups have shown that proliferating hepatocytes are formed by the fusion of donor hematopoietic cells with host hepatocytes in the Fah−/− model. Thus, it would be interesting to determine whether cell fusion occurs during malignancy. However, it is difficult to demonstrate such processes using this model. Therefore, we established a new strain to study the processes of regenerating nodules and malignancy and their origins. The FAH−/− mouse model was crossed with the ROSAnZ strain and their offspring was genotyped for FAH−/− and ROSAnZ mutations to create a new strain (Fah−/−-ROSAnZ. Using this strain as recipients, we performed bone marrow transplantation experiments. As a result, we could not demonstrate the presence of any epithelial cells except hepatocytes that were of donor origin in regenerating tissue, and no evidence of cell fusion was found in tumors. The hepatic malignancy was of host origin in these mice. There was higher expression of extracellular matrix proteins and more inflammatory cells in liver tumor nodules than in regenerating normal liver nodules. Hepatocytes generated by fusion with bone marrow cells did not form malignant tumors. Extracellular matrix and inflammatory cells had significantly accumulated in liver tumors.

  2. Anti-inflammatory liposomes have no impact on liver regeneration in rats

    Directory of Open Access Journals (Sweden)

    Betina Norman Jepsen

    2015-12-01

    Conclusion: Low dose dexamethasone targeted to Kupffer cells does not affect histological liver cell regeneration after 70% hepatectomy in rats, but reduces the inflammatory response judged by circulating markers of inflammation.

  3. Effect of the aqueous extract of Sida cordifolia on liver regeneration after partial hepatectomy.

    Science.gov (United States)

    Silva, Renata Lemos; Melo, Gustavo Barreto de; Melo, Valdinaldo Aragão de; Antoniolli, Angelo Roberto; Michellone, Paulo Roberto Teixeira; Zucoloto, Sérgio; Picinato, Maria Aparecida Neves Cardoso; Franco, Clarice Fleury Fina; Mota, Gustavo de Assis; Silva, Orlando de Castro e

    2006-01-01

    The use of medicinal plants for the treatment of human diseases has increased worldwide. Many of them are used by oral administration and, after absorption, may affect many organs. Therefore, this study aimed at assessing the effects of the aqueous extract of Sida cordifolia leaves, popularly known in Brazil as "malva-branca", on liver regeneration. Twenty rats were divided into four groups: control, Sida100, Sida200 and Sida400 groups. All animals were submitted to oral administration of distilled water, 100, 200 and 400 mg/kg of the aqueous extract of Sida cordifolia, respectively. Immediately after this, they underwent 67% partial hepatectomy. Twenty four hours later, their livers were removed. Hepatic regeneration was assessed by immunohistochemical staining for proliferating cell nuclear antigen (PCNA) using the PC-10 monoclonal antibody. Sida100 and Sida200 groups disclosed higher liver regeneration indices than control group (pSida cordifolia stimulates liver regeneration after 67% partial hepatectomy in rats.

  4. Up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver

    OpenAIRE

    Shuai Zhang; Tao-Sheng Li; Akihiko Soyama; Takayuki Tanaka; Chen Yan; Yusuke Sakai; Masaaki Hidaka; Ayaka Kinoshita; Koji Natsuda; Mio Fujii; Tota Kugiyama; Zhassulan Baimakhanov; Tamotsu Kuroki; Weili Gu; Susumu Eguchi

    2016-01-01

    Although the healthy liver is known to have high regenerative potential, poor liver regeneration under pathological conditions remains a substantial problem. We investigated the key molecules that impair the regeneration of cholestatic liver. C57BL/6 mice were randomly subjected to partial hepatectomy and bile duct ligation (PH+BDL group, n = 16), partial hepatectomy only (PH group, n = 16), or sham operation (Sham group, n = 16). The liver sizes and histological findings were similar in the ...

  5. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  6. Liver transplantation in the mouse: Insights into liver immunobiology, tissue injury, and allograft tolerance.

    Science.gov (United States)

    Yokota, Shinichiro; Yoshida, Osamu; Ono, Yoshihiro; Geller, David A; Thomson, Angus W

    2016-04-01

    The surgically demanding mouse orthotopic liver transplant model was first described in 1991. It has proved to be a powerful research tool for the investigation of liver biology, tissue injury, the regulation of alloimmunity and tolerance induction, and the pathogenesis of specific liver diseases. Liver transplantation in mice has unique advantages over transplantation of the liver in larger species, such as the rat or pig, because the mouse genome is well characterized and there is much greater availability of both genetically modified animals and research reagents. Liver transplant experiments using various transgenic or gene knockout mice have provided valuable mechanistic insights into the immunobiology and pathobiology of the liver and the regulation of graft rejection and tolerance over the past 25 years. The molecular pathways identified in the regulation of tissue injury and promotion of liver transplant tolerance provide new potential targets for therapeutic intervention to control adverse inflammatory responses/immune-mediated events in the hepatic environment and systemically. In conclusion, orthotopic liver transplantation in the mouse is a valuable model for gaining improved insights into liver biology, immunopathology, and allograft tolerance that may result in therapeutic innovation in the liver and in the treatment of other diseases.

  7. Effect of 5-HT7 receptor blockade on liver regeneration after 60-70% partial hepatectomy

    OpenAIRE

    Tzirogiannis, Konstantinos N; Kourentzi, Kalliopi T; Zyga, Sofia; Papalimneou, Vassiliki; Tsironi, Maria; Grypioti, Agni D; Protopsaltis, Ioannis; Panidis, Dimitrios; Panoutsopoulos, Georgios I

    2014-01-01

    Background Serotonin exhibits a vast repertoire of actions including cell proliferation and differentiation. The effect of serotonin, as an incomplete mitogen, on liver regeneration has recently been unveiled and is mediated through 5-HT2 receptor. The aim of the present study was to investigate the effect of 5-HT7 receptor blockade on liver regeneration after partial hepatectomy. Methods Male Wistar rats were subjected to 60-70% partial hepatectomy. 5-HT7 receptor blockade was applied by int...

  8. [Regulation of autophagy on dendritic cells during rat liver regeneration by IPA].

    Science.gov (United States)

    Qiwen, Wang; Wei, Jin; Cuifang, Chang; Cunshuan, Xu

    2015-03-01

    To understand the mechanism underlying autophagy in regulating dendritic cells during rat liver regeneration, we used the method of percoll density gradient centrifugation combined with immunomagnetic bead to isolate dendritic cells, the Rat Genome 230 2.0 Array to determine the expression changes of autophagy-related genes, and Ingenuity Pathway Analysis 9.0 (IPA) to determine the autophagy activities. The results indicated that LC3, BECN1, ATG7 and SQSTM1 genes had significant expression changes during rat liver regeneration. There were 593 genes related to autophagy, among which 210 genes were identified as significant. We also showed that the activity of autophagy was enhanced in the priming phase and teminal phase of liver regeneration, weakened in the proliferative stage by comparative analysis method of IPA. The autophagy-related physiological activities mainly included RNA expression, RNA transcription, cell differentiation and proliferation, involving in PPARα/RXRα activation, acute phase response signaling, TREM1 signaling, IL-6 signaling, IL-8 signaling and IL-1 signaling, whose activities were increased or decreased in liver regeneration. Cluster analysis found that P53 and AMPK signaling participated in the regulation of dendritic cells autophagy, with AMPK signaling in the priming phase of liver regeneration, and both signaling pathways in the terminal phase. We conclude that dendritic cells autophagy played an important role in initiation of the immune response in priming phase and depletion of dendritic cells in late phase during rat liver regeneration.

  9. Consequences of TCDD treatment on intra-hepatic lymphocytes during liver regeneration.

    Science.gov (United States)

    Horras, Christopher J; Lamb, Cheri L; King, Allie L; Hanley, Jason R; Mitchell, Kristen A

    2012-01-01

    Increasing evidence demonstrates a physiological role for the aryl hydrocarbon receptor (AhR) in regulating hepatocyte cell cycle progression. Previous studies have used a murine model of liver regeneration to show that exposure to the potent exogenous AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), suppresses hepatocyte proliferation in vivo. Based on recent reports that natural killer (NK) cells negatively regulate liver regeneration, coupled with the well-established immunomodulatory effects of TCDD, it was hypothesized that alterations in lymphocyte activation contribute to the suppression of liver regeneration in TCDD-treated mice. To test this, mice were treated with TCDD (20 μg/kg) 1 day prior to 70% partial hepatectomy (PH), in which two-thirds of the liver was surgically resected. Lymphocytes were collected from the remnant liver and analyzed by flow cytometry. Whereas exposure to TCDD did not alter the number of NK cells or CD3(+) T-cells recovered from the regenerating liver, it reduced the percentage and number of intra-hepatic NKT cells 42 h after PH. With regard to lymphocyte activation, TCDD treatment transiently increased CD69 expression on NK and NKT cells 12 h after PH, but had no effect on intracellular levels of IFNγ in NK, NKT, or CD3(+) T-cells. To determine the relevance of NK cells to the suppression of liver regeneration by TCDD, mice were treated with anti-Asialo GM-1 (ASGM-1) antibody to deplete NK cells prior to TCDD treatment and PH, and hepatocyte proliferation was measured using bromodeoxyuridine incorporation. Exposure to TCDD was found to inhibit hepatocyte proliferation in the regenerating liver of NK cell-depleted mice and control mice to the same extent. Hence, it is unlikely that enhanced numbers or increased activation of NK cells contribute to the suppression of liver regeneration in TCDD-treated mice.

  10. Impairment of liver regeneration by the histone deacetylase inhibitor valproic acid in mice

    Institute of Scientific and Technical Information of China (English)

    Qi KE; Rui-na YANG; Feng YE; Yu-jia WANG; Qiong WU; Li LI; Hong BU

    2012-01-01

    Background and objective:Liver regeneration is a complex process regulated by a group of genetic and epigenetic factors.A variety of genetic factors have been reported,whereas few investigations have focused on epigenetic regulation during liver regeneration.In the present study,valproic acid (VPA),a histone deacetylase (HDAC)inhibitor,was used to investigate the effect of HDAC on liver regeneration.Methods:VPA was administered via intraperitoneal injection to 2/3 partially hepatectomized mice to detect hepatocyte proliferation during liver regeneration.The mice were sacrificed,and their liver tissues were harvested at sequential time points from 0 to 168 h after treatment.DNA synthesis was detected via a BrdU assay,and cell proliferation was tested using Ki-67.The expressions of cyclin D1,cyclin E,cyclin dependent kinase 2 (CDK2),and CDK4 were detected by Western blot analysis.Chromatin immunoprecipitation (ChIP) assay was used to examine the recruitment of HDACs to the target promoter regions and the expression of the target gene was detected by Western blot.Results:Immunohistochemical analysis showed that cells positive for BrdU and Ki-67 decreased,and the peak of BrdU was delayed in the VPA-administered mice.Consistently,cyclin D1 expression was also delayed.We identified B-myc as a target gene of HDACs by complementary DNA (cDNA) microarray.The expression of B-myc increased in the VPA-administered mice after hepatectomy (PH).The ChIP assay confirmed the presence of HDACs at the B-myc promoter.Conclusions:HDAC activities are essential for liver regeneration,inhibiting HDAC activities delays liver regeneration and induces liver cell cycle arrest,thereby causing an anti-proliferative effect on liver regeneration.

  11. Liver regeneration after living donor transplantation: adult-to-adult living donor liver transplantation cohort study.

    Science.gov (United States)

    Olthoff, Kim M; Emond, Jean C; Shearon, Tempie H; Everson, Greg; Baker, Talia B; Fisher, Robert A; Freise, Chris E; Gillespie, Brenda W; Everhart, James E

    2015-01-01

    of the rate of regeneration, and donor remnant fraction affects postresection function. Liver Transpl 21:79-88, 2015. © 2014 AASLD.

  12. Suppression of graft regeneration, not ischemia/reperfusion injury, is the primary cause of small-for-size syndrome after partial liver transplantation in mice.

    Directory of Open Access Journals (Sweden)

    Ning Pan

    Full Text Available BACKGROUND: Ischemia/reperfusion injury (IRI is commonly considered to play a crucial role in the pathogenesis of small-for-size syndrome (SFSS after liver transplantation. Rapid regeneration is also considered essential for the survival of SFS grafts. METHODS: Mouse models of full-size orthotopic liver transplantation, 50% partial liver transplantation and 30% partial liver transplantation were established. Survival rate and serum alanine aminotransferase were observed. IRI was assessed by hepatic pathologic alterations, apoptosis and necrosis. Regeneration response was detected by mitotic index, BrdU incorporation and PCNA, Cyclin D1 and Cyclin E expression. The expression of mTOR, AKT, ERK, JNK2 and p70S6K, also involved in regeneration signaling pathways, were analyzed as well. RESULTS: 30% partial liver graft resulted in a significantly low 7-day survival rate (P = 0.002 with no marked difference in tissue injury compared with the 50% partial graft group. Serum alanine aminotransferase levels were not significantly different between partial transplantation and full-size transplantation. Western blot analysis of caspase-3 and TUNEL staining also indicated no significant difference in apoptosis response between 30% partial transplantation and half-size or full-size transplantation (P = 0.436, P = 0.113, respectively. However, liver regeneration response indicators, mitotic index (P<0.0001 and BrdU (P = 0.0022, were markedly lower in 30% LTx compared with 50% LTx. Suppressed expression of PCNA, cyclin D1, cyclin E, mTOR, JNK2, AKT, ERK and p70S6K was also detected by western blot. CONCLUSIONS: Liver regeneration is markedly suppressed in SFSS, and is more likely the primary cause of SFSS, rather than ischemia/reperfusion injury. Therapy for recovering graft regeneration could be a potentially important strategy to reduce the incidence of SFSS.

  13. Expression of AFP and Rev-Erb A/Rev-Erb B and N-CoR in fetal rat liver, liver injury and liver regeneration

    OpenAIRE

    Meier, Volker; Tron, Kyrylo; Batusic, Danko; Elmaouhoub, Abderrahim; Ramadori, Giuliano

    2006-01-01

    Background Alpha-fetoprotein (AFP) expression can resume in the adult liver under pathophysiological conditions. Orphan nuclear receptors were supposed to regulate AFP gene expression, in vitro. We were interested to study the expression of AFP and orphan nuclear receptors, in vivo. Results The expression of AFP gene and orphan nuclear receptors in the liver was examined in different rat models: (a) fetal liver (b) liver regeneration [partial hepatectomy (PH) with and without 2-acetyl-aminofl...

  14. Effects of adenoviral-mediated hepatocyte growth factor on liver regeneration after massive hepatectomy in rats

    Directory of Open Access Journals (Sweden)

    Doihara,Hiroyoshi

    2007-04-01

    Full Text Available Resection is the only curative treatment for liver metastasis of colorectal cancers. Despite the supreme regenerative potential of the liver, major hepatectomy sometimes leads to liver failure, and the limitation of resectable liver volumes makes advanced tumors inoperable. This study was attempted to promote liver regeneration using hepatocyte growth factor (HGF gene transfection by venous-administered adenovirus and to improve the survival of rats after massive hepatectomy. The adenovirus that encodes HGF was administered to rats before 85%-hepatectomy. The administration of HGF gene improved the survival of rats after massive hepatectomy, while the administration of control adenovirus deteriorated their survival. Gene transfection of HGF showed up-regulation of serum HGF, stimulation of hepatocellular proliferation and rapid liver regeneration. Moreover, HGF administration reduced apoptosis of hepatocytes. The administration of HGF gene prevented liver dysfunction after major hepatectomy and may be a new assist for surgery.

  15. Adult liver stem cells in hepatic regeneration and cancer

    NARCIS (Netherlands)

    Nantasanti, Sathidpak

    2015-01-01

    An alternative source of livers for transplantation in patients with (genetic) liver diseases and liver failure is needed because liver donors are scarce. HPC-derived hepatocyte-like cells could be one of the options. Because dogs and humans share liver-pathologies and disease-pathways, the dog is c

  16. Regeneration and Cell Recruitment in an Improved Heterotopic Auxiliary Partial Liver Transplantation Model in the Rat.

    Science.gov (United States)

    Ono, Yoshihiro; Pérez-Gutiérrez, Angelica; Yovchev, Mladen I; Matsubara, Kentaro; Yokota, Shinichiro; Guzman-Lepe, Jorge; Handa, Kan; Collin de l'Hortet, Alexandra; Thomson, Angus W; Geller, David A; Yagi, Hiroshi; Oertel, Michael; Soto-Gutierrez, Alejandro

    2017-01-01

    Auxiliary partial liver transplantation (APLT) in humans is a therapeutic modality used especially to treat liver failure in children or congenital metabolic disease. Animal models of APLT have helped to explore therapeutic options. Though many groups have suggested improvements, standardizing the surgical procedure has been challenging. Additionally, the question of whether graft livers are reconstituted by recipient-derived cells after transplantation has been controversial. The aim of this study was to improve experimental APLT in rats and to assess cell recruitment in the liver grafts. To inhibit recipient liver regeneration and to promote graft regeneration, we treated recipients with retrorsine and added arterial anastomosis. Using green fluorescence protein transgenic rats as recipients, we examined liver resident cell recruitment within graft livers by immunofluorescence costaining. In the improved APLT model, we achieved well-regenerated grafts that could maintain regeneration for at least 4 weeks. Regarding the cell recruitment, there was no evidence of recipient-derived hepatocyte, cholangiocyte, or hepatic stellate cell recruitment into the graft. Macrophages/monocytes, however, were consistently recruited into the graft and increased over time, which might be related to inflammatory responses. Very few endothelial cells showed colocalization of markers. We have successfully established an improved rat APLT model with arterial anastomosis as a standard technique. Using this model, we have characterized cell recruitment into the regenerating grafts.

  17. Effect of the Human Amniotic Membrane on Liver Regeneration in Rats

    Science.gov (United States)

    Sipahi, Mesut; Şahin, Sevinç; Arslan, Ergin; Börekci, Hasan; Metin, Bayram; Cantürk, Nuh Zafer

    2015-01-01

    Introduction. Operations are performed for broader liver surgery indications for a better understanding of hepatic anatomy/physiology and developments in operation technology. Surgery can cure some patients with liver metastasis of some tumors. Nevertheless, postoperative liver failure is the most feared complication causing mortality in patients who have undergone excision of a large liver mass. The human amniotic membrane has regenerative effects. Thus, we investigated the effects of the human amniotic membrane on regeneration of the resected liver. Methods. Twenty female Wistar albino rats were divided into control and experimental groups and underwent a 70% hepatectomy. The human amniotic membrane was placed over the residual liver in the experimental group. Relative liver weight, histopathological features, and biochemical parameters were assessed on postoperative day 3. Results. Total protein and albumin levels were significantly lower in the experimental group than in the control group. No difference in relative liver weight was observed between the groups. Hepatocyte mitotic count was significantly higher in the experimental group than in the control group. Hepatic steatosis was detected in the experimental group. Conclusion. Applying the amniotic membrane to residual liver adversely affected liver regeneration. However, mesenchymal stem cell research has the potential to accelerate liver regeneration investigations. PMID:26457000

  18. Effect of the Human Amniotic Membrane on Liver Regeneration in Rats

    Directory of Open Access Journals (Sweden)

    Mesut Sipahi

    2015-01-01

    Full Text Available Introduction. Operations are performed for broader liver surgery indications for a better understanding of hepatic anatomy/physiology and developments in operation technology. Surgery can cure some patients with liver metastasis of some tumors. Nevertheless, postoperative liver failure is the most feared complication causing mortality in patients who have undergone excision of a large liver mass. The human amniotic membrane has regenerative effects. Thus, we investigated the effects of the human amniotic membrane on regeneration of the resected liver. Methods. Twenty female Wistar albino rats were divided into control and experimental groups and underwent a 70% hepatectomy. The human amniotic membrane was placed over the residual liver in the experimental group. Relative liver weight, histopathological features, and biochemical parameters were assessed on postoperative day 3. Results. Total protein and albumin levels were significantly lower in the experimental group than in the control group. No difference in relative liver weight was observed between the groups. Hepatocyte mitotic count was significantly higher in the experimental group than in the control group. Hepatic steatosis was detected in the experimental group. Conclusion. Applying the amniotic membrane to residual liver adversely affected liver regeneration. However, mesenchymal stem cell research has the potential to accelerate liver regeneration investigations.

  19. Conjecture: Can continuous regeneration lead to immortality? Studies in the MRL mouse.

    Science.gov (United States)

    Heber-Katz, Ellen; Leferovich, John; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise

    2006-01-01

    A particular mouse strain, the MRL mouse, has been shown to have unique healing properties that show normal replacement of tissue without scarring. The serendipitous discovery that the MRL mouse has a profound capacity for regeneration in some ways rivaling the classic newt and axolotl species raises the possibility that humans, too, may have an innate regenerative ability. We propose this mouse as a model for continuous regeneration with possible life-extending properties. We will use the classical "immortal" organism, the hydra, for comparison and examine those key phenotypes that contribute to their immortality as they are expressed in the MRL mouse versus control mouse strains. The phenotypes to be examined include the rate of proliferation and the rate of cell death, which leads to a continual turnover in cells without an increase in mass.

  20. A Transcriptomic Signature of Mouse Liver Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2016-01-01

    Full Text Available Liver progenitor cells (LPCs can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC, indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL, and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver.

  1. PPARβ Regulates Liver Regeneration by Modulating Akt and E2f Signaling.

    Directory of Open Access Journals (Sweden)

    Hui-Xin Liu

    Full Text Available The current study tests the hypothesis that peroxisome proliferator-activated receptor β (PPARβ has a role in liver regeneration due to its effect in regulating energy homeostasis and cell proliferation. The role of PPARβ in liver regeneration was studied using two-third partial hepatectomy (PH in Wild-type (WT and PPARβ-null (KO mice. In KO mice, liver regeneration was delayed and the number of Ki-67 positive cells reached the peak at 60 hr rather than at 36-48 hr after PH shown in WT mice. RNA-sequencing uncovered 1344 transcriptomes that were differentially expressed in regenerating WT and KO livers. About 70% of those differentially expressed genes involved in glycolysis and fatty acid synthesis pathways failed to induce during liver regeneration due to PPARβ deficiency. The delayed liver regeneration in KO mice was accompanied by lack of activation of phosphoinositide-dependent kinase 1 (PDK1/Akt. In addition, cell proliferation-associated increase of genes encoding E2f transcription factor (E2f 1-2 and E2f7-8 as well as their downstream target genes were not noted in KO livers 36-48 hr after PH. E2fs have dual roles in regulating metabolism and proliferation. Moreover, transient steatosis was only found in WT, but not in KO mice 36 hr after PH. These data suggested that PPARβ-regulated PDK1/Akt and E2f signaling that controls metabolism and proliferation is involved in the normal progression of liver regeneration.

  2. Transcriptomic profiling of trichloroethylene exposure in male mouse liver

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    2015-03-01

    Full Text Available Chronic Trichloroethylene (TCE exposure could induce hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE for 5 days. As a beginning step, we profiled gene expression alterations induced by the TCE in mouse livers. Here we describe in detail the experimental methods, quality controls, and other information associated with our data deposited into Gene Expression Omnibus (GEO under GSE58819. Our data provide useful information for gene expression responses to TCE in mouse liver.

  3. Effect of L-arginine supplement on liver regeneration after partial hepatectomy in rats

    Directory of Open Access Journals (Sweden)

    Kurokawa Tsuyoshi

    2012-05-01

    Full Text Available Abstract Background Nitric oxide (NO has been reported to be a key mediator in hepatocyte proliferation during liver regeneration. NO is the oxidative metabolite of L-arginine, and is produced by a family of enzymes, collective termed nitric oxide synthase (NOS. Thus, administration of L-arginine might enhance liver regeneration after a hepatectomy. Another amino acid, L-glutamine, which plays an important role in catabolic states and is a crucial factor in various cellular and organ functions, is widely known to enhance liver regeneration experimentally. Thus, the present study was undertaken to evaluate the effects of an L-arginine supplement on liver regeneration, and to compared this with supplementation with L-glutamine and L-alanine (the latter as a negative control, using a rat partial hepatectomy model. Methods Before and after a 70% hepatectomy, rats received one of three amino acid solutions (L-arginine, L-glutamine, or L-alanine. The effects on liver regeneration of the administered solutions were examined by assessment of restituted liver mass, staining for proliferating cell nuclear antigen (PCNA, and total RNA and DNA content 24 and 72 hours after the operation. Results At 72 hours after the hepatectomy, the restituted liver mass, the PCNA labeling index and the DNA quantity were all significantly higher in the L-arginine and L-glutamine groups than in the control. There were no significant differences in those parameters between the L-arginine and L-glutamine groups, nor were any significant differences found between the L-alanine group and the control. Conclusion Oral supplements of L-arginine and L-glutamine enhanced liver regeneration after hepatectomy in rats, suggesting that an oral arginine supplement can clinically improve recovery after a major liver resection.

  4. Towards a Humanized Mouse Model of Liver Stage Malaria Using Ectopic Artificial Livers

    Science.gov (United States)

    Ng, Shengyong; March, Sandra; Galstian, Ani; Gural, Nil; Stevens, Kelly R.; Mota, Maria M.; Bhatia, Sangeeta N.

    2017-01-01

    The malaria liver stage is an attractive target for antimalarial development, and preclinical malaria models are essential for testing such candidates. Given ethical concerns and costs associated with non‐human primate models, humanized mouse models containing chimeric human livers offer a valuable alternative as small animal models of liver stage human malaria. The best available human liver chimeric mice rely on cellular transplantation into mice with genetically engineered liver injury, but these systems involve a long and variable humanization process, are expensive, and require the use of breeding-challenged mouse strains which are not widely accessible. We previously incorporated primary human hepatocytes into engineered polyethylene glycol (PEG)-based nanoporous human ectopic artificial livers (HEALs), implanted them in mice without liver injury, and rapidly generated human liver chimeric mice in a reproducible and scalable fashion. By re-designing the PEG scaffold to be macroporous, we demonstrate the facile fabrication of implantable porous HEALs that support liver stage human malaria (P. falciparum) infection in vitro, and also after implantation in mice with normal liver function, 60% of the time. This proof-of-concept study demonstrates the feasibility of applying a tissue engineering strategy towards the development of scalable preclinical models of liver stage malaria infection for future applications. PMID:28361899

  5. Prediction of postoperative liver regeneration from clinical information using a data-led mathematical model

    Science.gov (United States)

    Yamamoto, Kimiyo N.; Ishii, Masatsugu; Inoue, Yoshihiro; Hirokawa, Fumitoshi; MacArthur, Ben D.; Nakamura, Akira; Haeno, Hiroshi; Uchiyama, Kazuhisa

    2016-10-01

    Although the capacity of the liver to recover its size after resection has enabled extensive liver resection, post-hepatectomy liver failure remains one of the most lethal complications of liver resection. Therefore, it is clinically important to discover reliable predictive factors after resection. In this study, we established a novel mathematical framework which described post-hepatectomy liver regeneration in each patient by incorporating quantitative clinical data. Using the model fitting to the liver volumes in series of computed tomography of 123 patients, we estimated liver regeneration rates. From the estimation, we found patients were divided into two groups: i) patients restored the liver to its original size (Group 1, n = 99) and ii) patients experienced a significant reduction in size (Group 2, n = 24). From discriminant analysis in 103 patients with full clinical variables, the prognosis of patients in terms of liver recovery was successfully predicted in 85–90% of patients. We further validated the accuracy of our model prediction using a validation cohort (prediction = 84–87%, n = 39). Our interdisciplinary approach provides qualitative and quantitative insights into the dynamics of liver regeneration. A key strength is to provide better prediction in patients who had been judged as acceptable for resection by current pragmatic criteria.

  6. Prediction of postoperative liver regeneration from clinical information using a data-led mathematical model

    Science.gov (United States)

    Yamamoto, Kimiyo N.; Ishii, Masatsugu; Inoue, Yoshihiro; Hirokawa, Fumitoshi; MacArthur, Ben D.; Nakamura, Akira; Haeno, Hiroshi; Uchiyama, Kazuhisa

    2016-01-01

    Although the capacity of the liver to recover its size after resection has enabled extensive liver resection, post-hepatectomy liver failure remains one of the most lethal complications of liver resection. Therefore, it is clinically important to discover reliable predictive factors after resection. In this study, we established a novel mathematical framework which described post-hepatectomy liver regeneration in each patient by incorporating quantitative clinical data. Using the model fitting to the liver volumes in series of computed tomography of 123 patients, we estimated liver regeneration rates. From the estimation, we found patients were divided into two groups: i) patients restored the liver to its original size (Group 1, n = 99); and ii) patients experienced a significant reduction in size (Group 2, n = 24). From discriminant analysis in 103 patients with full clinical variables, the prognosis of patients in terms of liver recovery was successfully predicted in 85–90% of patients. We further validated the accuracy of our model prediction using a validation cohort (prediction = 84–87%, n = 39). Our interdisciplinary approach provides qualitative and quantitative insights into the dynamics of liver regeneration. A key strength is to provide better prediction in patients who had been judged as acceptable for resection by current pragmatic criteria. PMID:27694914

  7. Liver graft hyperperfusion in the early postoperative period promotes hepatic regeneration 2 weeks after living donor liver transplantation

    Science.gov (United States)

    Byun, Sung Hye; Yang, Hae Soo; Kim, Jong Hae

    2016-01-01

    Abstract Hepatic regeneration is essential to meet the metabolic demands of partial liver grafts following living donor liver transplantation (LDLT). Hepatic regeneration is promoted by portal hyperperfusion of partial grafts, which produces shear stress on the sinusoidal endothelium. Hepatic regeneration is difficult to assess within the first 2 weeks after LDLT as the size of liver graft could be overestimated in the presence of postsurgical graft edema. In this study, we evaluated the effects of graft hyperperfusion on the rate of hepatic regeneration 2 weeks after LDLT by measuring hepatic hemodynamic parameters. Thirty-six patients undergoing LDLT were enrolled in this study. Hepatic hemodynamic parameters including peak portal venous flow velocity (PVV) were measured using spectral Doppler ultrasonography on postoperative day 1. Subsequently, we calculated the ratio of each velocity to 100 g of the initial graft weight (GW) obtained immediately after graft retrieval on the day of LDLT. Ratios of GW to recipient weight (GRWR) and to standard liver volume (GW/SLV) were also obtained. The hepatic regeneration rate was defined as the ratio of the regenerated volume measured using computed tomographic volumetry at postoperative week 2 to the initial GW. Correlations of the hemodynamic parameters, GRWR, and GW/SLV with the hepatic regeneration rate were assessed using a linear regression analysis. The liver grafts regenerated to approximately 1.7 times their initial GW (1.7 ± 0.3 [mean ± standard deviation]). PVV/100 g of GW (r2 = 0.224, β1 [slope coefficient] = 2.105, P = 0.004) and velocities of the hepatic artery and vein per 100 g of GW positively correlated with the hepatic regeneration rate, whereas GRWR (r2 = 0.407, β1 = –81.149, P < 0.001) and GW/SLV (r2 = 0.541, β1 = –2.184, P < 0.001) negatively correlated with the hepatic regeneration rate. Graft hyperperfusion demonstrated by increased hepatic

  8. Adiponectin fine-tuning of liver regeneration dynamics revealed through cellular network modeling.

    Science.gov (United States)

    Correnti, Jason M; Cook, Daniel; Aksamitiene, Edita; Swarup, Aditi; Ogunnaike, Babatunde; Vadigepalli, Rajanikanth; Hoek, Jan B

    2014-11-10

    Following partial hepatectomy, the liver initiates a regenerative program involving hepatocyte priming and replication driven by coordinated cytokine and growth factor actions. We investigated the mechanisms underlying Adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn-/- mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn-/- mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to IL-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver. This article is protected by copyright. All rights reserved.

  9. Adiponectin fine-tuning of liver regeneration dynamics revealed through cellular network modelling.

    Science.gov (United States)

    Correnti, Jason M; Cook, Daniel; Aksamitiene, Edita; Swarup, Aditi; Ogunnaike, Babatunde; Vadigepalli, Rajanikanth; Hoek, Jan B

    2015-01-15

    Following partial hepatectomy, the liver initiates a regenerative programme involving hepatocyte priming and replication driven by the coordinated actions of cytokine and growth factors. We investigated the mechanisms underlying adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn(-/-) mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn(-/-) mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to interleukin-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver.

  10. Inhibition of VEGF- and NO-dependent angiogenesis does not impair liver regeneration

    Science.gov (United States)

    Shergill, U.; Das, A.; Langer, D.; Adluri, RS.; Maulik, N.

    2010-01-01

    Angiogenesis occurs through a convergence of diverse signaling mechanisms with prominent pathways that include autocrine effects of endothelial nitric oxide (NO) synthase (eNOS)-derived NO and vascular endothelial growth factor (VEGF). However, the redundant and distinct roles of NO and VEGF in angiogenesis remain incompletely defined. Here, we use the partial hepatectomy model in mice genetically deficient in eNOS to ascertain the influence of eNOS-derived NO on the angiogenesis that accompanies liver regeneration. While sinusoidal endothelial cell (SEC) eNOS promotes angiogenesis in vitro, surprisingly the absence of eNOS did not influence the angiogenesis that occurs after partial hepatectomy in vivo. While this observation could not be attributed to induction of alternate NOS isoforms, it was associated with induction of VEGF signaling as evidenced by enhanced levels of VEGF ligand in regenerating livers from mice genetically deficient in eNOS. However, surprisingly, mice that were genetically heterozygous for deficiency in the VEGF receptor, fetal liver kinase-1, also maintained unimpaired capacity for liver regeneration. In summary, inhibition of VEGF- and NO-dependent angiogenesis does not impair liver regeneration, indicating signaling redundancies that allow liver regeneration to continue in the absence of this canonical vascular pathway. PMID:20421635

  11. Isolation and analysis of a novel gene over-expressed during liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Yu-Chang Li; Cun-Shuan Xu; Wu-Lin Zhu; wen-Qiang Li

    2003-01-01

    AIM: To isolate and analyze a novel gene over-expressed during liver regeneration. METHODS: Total RNA of regenerating liver was extracted from liver tissue after 0-4-36-36-36 hr short interval successive partial hepatectomy (SISPH). Reverse transcription-polymerase chain reaction was used to synthesize double strand cDNA, after the tissue was digested by proteinase K and Sfi A/B. The double-strand cDNA was ligated to λTriplEx2.λphage packaging reaction was performed and E. coli XL1-Blue was infected for titering and amplifying. One expressed sequence tag was probed by Dig and phagein situ hybridization was carried out to isolate positive clones. Positive recombinant λTriplEx2 was converted to the corresponding pTriplEx2, and bioinformatics was used to analyze full-length cDNA. RESULTS: We isolated a novel full-length cDNA during liver regeneration following SISPH.CONCLUSION: We have succeeded in cloning a novel gene,based on bioinformatics. We postulate that this gene may function in complicated network in liver regeneration. On the one hand, it may exert initiation of liver regeneration via regulating nitric oxide synthesis. On the other hand, it may protect damaged residue lobus following SISPH.

  12. The Roles of Innate Immune Cells in Liver Injury and Regeneration

    Institute of Scientific and Technical Information of China (English)

    Zhongjun Dong; Haiming Wei; Rui Sun; Zhigang Tian

    2007-01-01

    For predominant abundance with liver-specific Kupffer cells, natural killer (NK) cells, and natural killer T (NKT)cells and their rapid responses to several stimuli, the liver is considered as an organ with innate immune features.In contrast to their roles in the defense of many infectious agents like hepatitis viruses and parasites, hepatic innate immune cells are also involved in the immunopathogenesis of human clinical liver diseases and several murine hepatitis models such as concanavalin A (Con A), lipopolysaccharide (LPS), or polyinosinic-polycytidylic acid (Poly I:C)-induced liver injury. In this review, the destructive roles of NK cells, NKT cells and Kupffer cells in the processes of immune-mediated liver injury and regeneration will be discussed, and some putative mechanisms involving the impairment of liver regeneration caused by activated hepatic innate immune cells are also proposed.

  13. Expression patterns and action analysis of genes associated with inflammatory responses during rat liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Heng-Yi Shao; Li-Feng Zhao; Cun-Shuan Xu

    2007-01-01

    AIM: To study the relationship between inflammatory response and liver regeneration (LR) at transcriptional level.METHODS: After partial hepatectomy (PH) of rats,the genes associated with inflammatory response were obtained according to the databases, and the gene expression changes during LR were checked by the Rat Genome 230 2.0 array.RESULTS: Two hundred and thirty-nine genes were associated with liver regeneration. The initial and total expressing gene numbers found in initiation phase (0.5-4 h after PH), G0/G1 transition (4-6 h after PH),cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) of liver regeneration were 107, 34, 126, 6 and 107,92, 233, 145 respectively, showing that the associated genes were mainly triggered at the beginning of liver regeneration, and worked at different phases. According to their expression similarity, these genes were classified into 5 groups: only up-regulated, predominantly up-,only down-, predominantly down-, up- and down-,involving 92, 25, 77, 14 and 31 genes, respectively. The total times of their up- and down-regulated expression were 975 and 494, respectively, demonstrating that the expressions of the majority of genes were increased,and that of a few genes were decreased. Their time relevance was classified into 13 groups, showing that the cellular physiological and biochemical activities were staggered during liver regeneration. According to gene expression patterns, they were classified into 33 types,suggesting that the activities were diverse and complex during liver regeneration.CONCLUSION: Inflammatory response is closely associated with liver regeneration, in which 239 LRassociated genes play an important role.

  14. Progenitor cells in liver regeneration: molecular responses controlling their activation and expansion

    DEFF Research Database (Denmark)

    Santoni-Rugiu, Eric; Jelnes, Peter; Thorgeirsson, Snorri S

    2005-01-01

    Although normally quiescent, the adult mammalian liver possesses a great capacity to regenerate after different types of injuries in order to restore the lost liver mass and ensure maintenance of the multiple liver functions. Major players in the regeneration process are mature residual cells...... cells, and recruited inflammatory cells as well as the variety of growth-modulating molecules produced and/or harboured by these elements. The cellular and molecular responses to different regenerative stimuli seem to depend on the injury inflicted and consequently on the molecular microenvironment...... created in the liver by a certain insult. This review will focus on molecular responses controlling activation and expansion of the hepatic progenitor cell niche, emphasizing similarities and differences in the microenvironments orchestrating regeneration by recruitment of progenitor cell populations...

  15. WNT5A inhibits hepatocyte proliferation and concludes β-catenin signaling in liver regeneration.

    Science.gov (United States)

    Yang, Jing; Cusimano, Antonella; Monga, Jappmann K; Preziosi, Morgan E; Pullara, Filippo; Calero, Guillermo; Lang, Richard; Yamaguchi, Terry P; Nejak-Bowen, Kari N; Monga, Satdarshan P

    2015-08-01

    Activation of Wnt/β-catenin signaling during liver regeneration (LR) after partial hepatectomy (PH) is observed in several species. However, how this pathway is turned off when hepatocyte proliferation is no longer required is unknown. We assessed LR in liver-specific knockouts of Wntless (Wls-LKO), a protein required for Wnt secretion from a cell. When subjected to PH, Wls-LKO showed prolongation of hepatocyte proliferation for up to 4 days compared with littermate controls. This coincided with increased β-catenin-T-cell factor 4 interaction and cyclin-D1 expression. Wls-LKO showed decreased expression and secretion of inhibitory Wnt5a during LR. Wnt5a expression increased between 24 and 48 hours, and Frizzled-2 between 24 and 72 hours, after PH in normal mice. Treatment of primary mouse hepatocytes and liver tumor cells with Wnt5a led to a notable decrease in β-catenin-T-cell factor activity, cyclin-D1 expression, and cell proliferation. Intriguingly, Wnt5a-LKO did not display any prolongation of LR because of compensation by other cells. In addition, Wnt5a-LKO hepatocytes failed to respond to exogenous Wnt5a treatment in culture because of a compensatory decrease in Frizzled-2 expression. In conclusion, we demonstrate Wnt5a to be, by default, a negative regulator of β-catenin signaling and hepatocyte proliferation, both in vitro and in vivo. We also provide evidence that the Wnt5a/Frizzled-2 axis suppresses β-catenin signaling in hepatocytes in an autocrine manner, thereby contributing to timely conclusion of the LR process.

  16. The combined effect of erythropoietin and granulocyte macrophage colony stimulating factor on liver regeneration after major hepatectomy in rats

    OpenAIRE

    Frangou Matrona; Fragulidis George; Dafnios Nikolaos; Theodosopoulos Theodosios; Tympa Aliki; Nastos Constantinos; Lolis Evangelos; Vassiliou Ioannis; Kondi-Pafiti Agathi; Smyrniotis Vassilios

    2010-01-01

    Abstract Background The liver presents a remarkable capacity for regeneration after hepatectomy but the exact mechanisms and mediators involved are not yet fully clarified. Erythropoietin (EPO) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) have been shown to promote liver regeneration after major hepatectomy. Aim of this experimental study is to compare the impact of exogenous administration of EPO, GM-CSF, as well as their combination on the promotion of liver regeneration af...

  17. Mouse model of carbon tetrachloride induced liver fibrosis: Histopathological changes and expression of CD133 and epidermal growth factor

    Directory of Open Access Journals (Sweden)

    Goodwin Jonathan M

    2010-07-01

    Full Text Available Abstract Background In the setting of chronic liver injury in humans, epidermal growth factor (EGF and EGF receptor (EGFR are up-regulated and have been proposed to have vital roles in both liver regeneration and development of hepatocellular carcinoma (HCC. Chronic liver injury also leads to hepatic stellate cell (HSC differentiation and a novel subpopulation of HSCs which express CD133 and exhibit properties of progenitor cells has been described in rats. The carbon tetrachloride (CCl4-induced mouse model has been historically relied upon to study liver injury and regeneration. We exposed mice to CCl4 to assess whether EGF and CD133+ HSCs are up-regulated in chronically injured liver. Methods CCl4 in olive oil was administered to strain A/J mice three times per week by oral gavage. Results Multiple well-differentiated HCCs were found in all livers after 15 weeks of CCl4 treatment. Notably, HCCs developed within the setting of fibrosis and not cirrhosis. CD133 was dramatically up-regulated after CCl4 treatment, and increased expression of desmin and glial fibrillary acidic protein, representative markers of HSCs, was also observed. EGF expression significantly decreased, contrary to observations in humans, whereas the expression of amphiregulin, another EGFR ligand, was significantly increased. Conclusions Species-specific differences exist with respect to the histopathological and molecular pathogenesis of chronic liver disease. CCl4-induced chronic liver injury in A/J mice has important differences compared to human cirrhosis leading to HCC.

  18. Liver regeneration signature in hepatitis B virus (HBV-associated acute liver failure identified by gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Oriel Nissim

    Full Text Available INTRODUCTION: The liver has inherent regenerative capacity via mitotic division of mature hepatocytes or, when the hepatic loss is massive or hepatocyte proliferation is impaired, through activation of hepatic stem/progenitor cells (HSPC. The dramatic clinical course of acute liver failure (ALF has posed major limitations to investigating the molecular mechanisms of liver regeneration and the role of HSPC in this setting. We investigated the molecular mechanisms of liver regeneration in 4 patients who underwent liver transplantation for hepatitis B virus (HBV-associated ALF. METHODS AND FINDINGS: Gene expression profiling of 17 liver specimens from the 4 ALF cases and individual specimens from 10 liver donors documented a distinct gene signature for ALF. However, unsupervised multidimensional scaling and hierarchical clustering identified two clusters of ALF that segregated according to histopathological severity massive hepatic necrosis (MHN; 2 patients and submassive hepatic necrosis (SHN; 2 patients. We found that ALF is characterized by a strong HSPC gene signature, along with ductular reaction, both of which are more prominent in MHN. Interestingly, no evidence of further lineage differentiation was seen in MHN, whereas in SHN we detected cells with hepatocyte-like morphology. Strikingly, ALF was associated with a strong tumorigenesis gene signature. MHN had the greatest upregulation of stem cell genes (EpCAM, CK19, CK7, whereas the most up-regulated genes in SHN were related to cellular growth and proliferation. The extent of liver necrosis correlated with an overriding fibrogenesis gene signature, reflecting the wound-healing process. CONCLUSION: Our data provide evidence for a distinct gene signature in HBV-associated ALF whose intensity is directly correlated with the histopathological severity. HSPC activation and fibrogenesis positively correlated with the extent of liver necrosis. Moreover, we detected a tumorigenesis gene signature

  19. A new technique for accelerated liver regeneration: An experimental study in rats.

    Science.gov (United States)

    Andersen, Kasper Jarlhelt; Knudsen, Anders Riegels; Jepsen, Betina Norman; Meier, Michelle; Gunnarsson, Anders Patrik Alexander; Jensen, Uffe Birk; Nyengaard, Jens Randel; Hamilton-Dutoit, Stephen; Mortensen, Frank Viborg

    2017-08-01

    Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) is used to accelerate growth of the future liver remnant. We investigated alternative methods for increasing the future liver remnant. A total of 152 rats were randomized as follows: (1) sham; (2) portal vein ligation; (3) portal vein ligation/surgical split (ALPPS); (4) portal vein ligation/split of the liver with a radiofrequency ablation needle; (5) portal vein ligation/radiofrequency ablation of the deportalized liver (portal vein ligation/radiofrequency ablation necrosis in the deportalized liver); (6) portal vein ligation/radiofrequency ablation of the future liver remnant (portal vein ligation/radiofrequency ablation-future liver remnant); and (7) controls. Animals were evaluated on postoperative days 2 and 4. Bodyweight, liver parameters, hepatic regeneration rate, proinflammatory cytokines, hepatocyte proliferation, and gene expression were measured. Hepatic regeneration rate indicated a steady increase in all intervention groups compared with sham rats (P rats. On postoperative day 4, we found a significantly higher proliferation in groups 3, 4, 5, and 6 compared to portal vein ligation. Gene analysis revealed upregulation of genes involved in cellular proliferation and downregulation of genes involved in cellular homeostasis in all intervention groups. Between the intervention groups, gene expression was nearly identical. Biochemical markers and proinflammatory cytokines were comparable between groups. The surplus liver regeneration after ALPPS is probably mediated through parenchymal damage and subsequent release of growth stimulators, which again upregulates genes involved in cellular regeneration and downregulates genes involved in cellular homeostasis. We also demonstrate that growth of the future liver remnant, comparable to that seen after ALPPS, could be achieved by radiofrequency ablation treatment of the deportalized liver, that is, a procedure in which the

  20. Liver regeneration with l-glutamine supplemented diet: experimental study in rats

    Directory of Open Access Journals (Sweden)

    Cibelle Ribeiro Magalhães

    2014-04-01

    Full Text Available OBJECTIVE: To assess liver regeneration in rats after 60% hepatectomy with and without supplementation of L-glutamine through liver weight changes, laboratory parameters and histological study. METHODS: 36 male rats were divided into two groups: glutamine group and control group. Each group was subdivided into three subgroups, with death in 24h, 72h and seven days. The glutamine group received water and standard diet supplemented with L-glutamine, and the control recieved 0.9% saline. In all subgroups analysis of liver regeneration was made by the Kwon formula, study of liver function (AST, ALT, GGT, total bilirubin, indirect and indirect bilirubin and albumin and analysis of cell mitosis by hematoxylin-eosin. RESULTS: In both groups there was liver regeneration by weight gain. Gamma-GT increased significantly in the control group (p < 0.05; albumin increased in the glutamine group. The other indicators of liver function showed no significant differences. Histological analysis at 72h showed a higher number of mitoses in the glutamine group, with no differences in other subgroups. CONCLUSION: Diet supplementation with L glutamine is beneficial for liver regeneration.

  1. Up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver.

    Science.gov (United States)

    Zhang, Shuai; Li, Tao-Sheng; Soyama, Akihiko; Tanaka, Takayuki; Yan, Chen; Sakai, Yusuke; Hidaka, Masaaki; Kinoshita, Ayaka; Natsuda, Koji; Fujii, Mio; Kugiyama, Tota; Baimakhanov, Zhassulan; Kuroki, Tamotsu; Gu, Weili; Eguchi, Susumu

    2016-01-01

    Although the healthy liver is known to have high regenerative potential, poor liver regeneration under pathological conditions remains a substantial problem. We investigated the key molecules that impair the regeneration of cholestatic liver. C57BL/6 mice were randomly subjected to partial hepatectomy and bile duct ligation (PH+BDL group, n = 16), partial hepatectomy only (PH group, n = 16), or sham operation (Sham group, n = 16). The liver sizes and histological findings were similar in the PH and sham groups 14 days after operation. However, compared with those in the sham group, the livers in mice in the PH+BDL group had a smaller size, a lower cell proliferative activity, and more fibrotic tissue 14 days after the operation, suggesting the insufficient regeneration of the cholestatic liver. Pathway-focused array analysis showed that many genes were up- or down-regulated over 1.5-fold in both PH+BDL and PH groups at 1, 3, 7, and 14 days after treatment. Interestingly, more genes that were functionally related to the extracellular matrix and inflammatory chemokines were found in the PH+BDL group than in the PH group at 7 and 14 days after treatment. Our data suggest that up-regulated extracellular matrix components and inflammatory chemokines may impair the regeneration of cholestatic liver.

  2. Initiation of liver growth by tumor necrosis factor: Deficient liver regeneration in mice lacking type I tumor necrosis factor receptor

    OpenAIRE

    Yamada, Yasuhiro; Kirillova, Irina; Peschon, Jacques J.; Fausto, Nelson

    1997-01-01

    The mechanisms that initiate liver regeneration after resection of liver tissue are not known. To determine whether cytokines are involved in the initiation of liver growth, we studied the regeneration of the liver after partial hepatectomy (PH) in mice lacking type I tumor necrosis factor receptor (TNFR-I). DNA synthesis after PH was severely impaired in these animals, and the expected increases in the binding of the NF-κB and STAT3 transcription factors shortly after...

  3. Effects of Kupffer cell inactivation on graft survival and liver regeneration after partial liver transplantation in rats

    Institute of Scientific and Technical Information of China (English)

    Hang-Yu Luo; Shan-Fang Ma; Ji-Fu Qu; De-Hu Tian

    2015-01-01

    BACKGROUND: Gadolinium chloride (GdCl3) selectively in-activates Kupffer cells and protects against ischemia/reperfu-sion and endotoxin injury. However, the effect of Kupffer cell inactivation on liver regeneration after partial liver transplan-tation (PLTx) is not clear. This study was to investigate the role of GdCl3 pretreatment in graft function after PLTx, and to explore the potential mechanism involved in this process. METHODS: PLTx (30% partial liver transplantation) was per-formed using Kamada's cuff technique, without hepatic artery reconstruction. Rats were randomly divided into the control low-dose (5 mg/kg) and high-dose (10 mg/kg) GdCl3 groups. Liver injury was determined by the plasma levels of alanine aminotransferase and aspartate aminotransferase, liver regen-eration by PCNA staining and BrdU uptake, apoptosis by TU-NEL assay. IL-6 and p-STAT3 levels were measured by ELISA and Western blotting. RESULTS: GdCl3 depleted Kupffer cells and decreased animal survival rates, but did not significantly affect alanine amino-transferase and aspartate aminotransferase (P>0.05). GdCl3 pretreatment induced apoptosis and inhibited IL-6 overex-pression and STAT3 phosphorylation after PLTx in graft tissues. CONCLUSION: Kupffer cells may contribute to the liver re-generation after PLTx through inhibition of apoptosis and activation of the IL-6/p-STAT3 signal pathway.

  4. Regulation of microRNAs and their role in liver development, regeneration and disease.

    Science.gov (United States)

    Finch, Megan L; Marquardt, Jens U; Yeoh, George C; Callus, Bernard A

    2014-09-01

    Since their discovery more than a decade ago microRNAs have been demonstrated to have profound effects on almost every aspect of biology. Numerous studies in recent years have shown that microRNAs have important roles in development and in the etiology and progression of disease. This review is focused on microRNAs and the roles they play in liver development, regeneration and liver disease; particularly chronic liver diseases such as alcoholic liver disease, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, viral hepatitis and primary liver cancer. The key microRNAs identified in liver development and chronic liver disease will be discussed together with, where possible, the target messenger RNAs that these microRNAs regulate to profoundly alter these processes. This article is part of a Directed Issue entitled: The Non-coding RNA Revolution.

  5. Expression, purification and bioactivity of human augmenter of liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Yang-De Zhang; Jian Zhou; Jin-Feng Zhao; Jian Peng; Xiao-Dong Liu; Xin-Sheng Liu; Ze-Ming Jia

    2006-01-01

    AIM: To construct the expression vectors for prokaryotic and eukaryotic human augmenter of liver regeneration (hALR) and to study their biological activity.METHODS: hALRcDNA clone was obtained from plasmid pGEM-T-hALR, and cDNA was subcloned into the prokatyotic expression vector pGEX-4T-2.The recombinant vector and pGEX-4T-2hALR were identified by enzyme digestion and DNA sequencing and transformed into E coli JM109. The positively selected clone was induced by the expression of GST-hALR fusion protein with IPTG, then the fusion protein was purified by glutathine s-transferase (GST) sepharose 4B affinity chromatography, cleaved by thrombin and the hALR monomer was obtained and detected by measuring H thymidine incorporation.RESULTS: The product of PCR from plasmid pGEM-ThALR was examined by 1.5% sepharose electrophoresis.The specific strap was coincident with the theoretical one. The sequence was accurate and pGEX-4T-hALP digested by enzymes was coincident with the theoretical one. The sequence was accurate and the fragment was inserted in the positive direction. The recombinant vector was transformed into E coli JM109. SDS-PAGE proved that the induced expressive fusion protein showed a single band with a molecular weight of 41 kDa. The product was purified and cleaved. The molecular weights of GST and hALR were 26 kDa, 15 kDa respectively. The recombinant fusion protein accounted for 31% of the total soluble protein of bacterial lysate. HALR added to the culture medium of adult rat hepatocytes in primary culture and HepG2 cell line could significantly enhance the rate of DNA synthesis compared to the relevant control groups (P < 0.01).CONCLUSION: Purified hALR has the ability to stimulate DNA synthesis of adult rat hepatocytes in primary culture and HepG2 cells in vitro, and can provide evidence for its clinical application.

  6. Self-assembling functionalized nanopeptides for immediate hemostasis and accelerative liver tissue regeneration

    Science.gov (United States)

    Cheng, Tzu-Yun; Wu, Hsi-Chin; Huang, Ming-Yuan; Chang, Wen-Han; Lee, Chao-Hsiung; Wang, Tzu-Wei

    2013-03-01

    Traumatic injury or surgery may trigger extensive bleeding. However, conventional hemostatic methods have limited efficacy and may cause surrounding tissue damage. In this study, we use self-assembling peptides (SAPs) and specifically extend fragments of functional motifs derived from fibronectin and laminin to evaluate the capability of these functionalized SAPs in the effect of hemostasis and liver tissue regeneration. From the results, these peptides can self-assemble into nanofibrous network structure and gelate into hydrogel with pH adjustment. In animal studies, the efficacy of hemostasis is achieved immediately within seconds in a rat liver model. The histological analyses by hematoxylin-eosin stain and immunohistochemistry reveal that SAPs with these functionalized motifs significantly enhance liver tissue regeneration. In brief, these SAPs may have potential as pharmacological tools to extensively advance clinical therapeutic applications in hemostasis and tissue regeneration in the field of regenerative medicine.Traumatic injury or surgery may trigger extensive bleeding. However, conventional hemostatic methods have limited efficacy and may cause surrounding tissue damage. In this study, we use self-assembling peptides (SAPs) and specifically extend fragments of functional motifs derived from fibronectin and laminin to evaluate the capability of these functionalized SAPs in the effect of hemostasis and liver tissue regeneration. From the results, these peptides can self-assemble into nanofibrous network structure and gelate into hydrogel with pH adjustment. In animal studies, the efficacy of hemostasis is achieved immediately within seconds in a rat liver model. The histological analyses by hematoxylin-eosin stain and immunohistochemistry reveal that SAPs with these functionalized motifs significantly enhance liver tissue regeneration. In brief, these SAPs may have potential as pharmacological tools to extensively advance clinical therapeutic applications

  7. Mitochondrial DNA Unwinding Enzyme Required for Liver Regeneration | Center for Cancer Research

    Science.gov (United States)

    The liver has an exceptional capacity to proliferate. This ability allows the liver to regenerate its mass after partial surgical removal or injury and is the key to successful partial liver transplants. Liver cells, called hepatocytes, are packed with mitochondria, and regulating mitochondrial DNA (mtDNA) copy number is crucial to mitochondrial function, including energy production, during proliferation. Yves Pommier, M.D., Ph.D., of CCR’s Developmental Therapeutics Branch, and his colleagues recently showed that the vertebrate mitochondrial topoisomerase, Top1mt, was critical in maintaining mitochondrial function in the heart after doxorubicin-induced damage. The group wondered whether Top1mt might play a similar role in liver regeneration.

  8. Suppression of breast tumor growth by DNA vaccination against phosphatase of regenerating liver 3.

    Science.gov (United States)

    Lv, J; Liu, C; Huang, H; Meng, L; Jiang, B; Cao, Y; Zhou, Z; She, T; Qu, L; Wei Song, S; Shou, C

    2013-08-01

    Phosphatase of regenerating liver (PRL)-3 is highly expressed in multiple cancers and has important roles in cancer development. Some small-molecule inhibitors and antibodies targeting PRL-3 have been recently reported to inhibit tumor growth effectively. To determine whether PRL-3-targeted DNA vaccination can induce immune response to prevent or inhibit the tumor growth, we established mouse D2F2 breast cancer cells expressing PRL-3 (D2F2/PRL-3) and control cells (D2F2/NC) with lentivirus, and constructed pVAX1-Igκ-PRL-3 plasmid (named as K-P3) as DNA vaccine to immunize BALB/c mice. We found that the K-P3 vaccine delivered by gene gun significantly prevented the growth of D2F2/PRL-3 compared with pVAX1-vector (Padjuvants, such as Mycobacterium tuberculosis heat-shock protein, CTL antigen 4 and M. tuberculosis T-cell stimulatory epitope (MT), into K-P3 vaccine for expressing the fusion proteins. We found that these adjuvant molecules did not significantly improve the antitumor activity of PRL-3 vaccine, but enhanced the production of PRL-3 antibodies in immunized mice. Summarily, our findings demonstrate that PRL-3-targeted DNA vaccine can generate significantly preventive and therapeutic effects on the growth of breast cancer expressing PRL-3 through the induction of cellular immune responses to PRL-3.

  9. Liver immune-pathogenesis and therapy of human liver tropic virus infection in humanized mouse models.

    Science.gov (United States)

    Bility, Moses T; Li, Feng; Cheng, Liang; Su, Lishan

    2013-08-01

    Hepatitis B virus (HBV) and hepatitis C virus (HCV) infect and replicate primarily in human hepatocytes. Few reliable and easy accessible animal models are available for studying the immune system's contribution to the liver disease progression during hepatitis virus infection. Humanized mouse models reconstituted with human hematopoietic stem cells (HSCs) have been developed to study human immunology, human immunodeficiency virus 1 infection, and immunopathogenesis. However, a humanized mouse model engrafted with both human immune and human liver cells is needed to study infection and immunopathogenesis of HBV/HCV infection in vivo. We have recently developed the humanized mouse model with both human immune and human liver cells (AFC8-hu HSC/Hep) to study immunopathogenesis and therapy of HCV infection in vivo. In this review, we summarize the current models of HBV/HCV infection and their limitations in immunopathogenesis. We will then present our recent findings of HCV infection and immunopathogenesis in the AFC8-hu HSC/Hep mouse, which supports HCV infection, human T-cell response and associated liver pathogenesis. Inoculation of humanized mice with primary HCV isolates resulted in long-term HCV infection. HCV infection induced elevated infiltration of human immune cells in the livers of HCV-infected humanized mice. HCV infection also induced HCV-specific T-cell immune response in lymphoid tissues of humanized mice. Additionally, HCV infection induced liver fibrosis in humanized mice. Anti-human alpha smooth muscle actin (αSMA) staining showed elevated human hepatic stellate cell activation in HCV-infected humanized mice. We discuss the limitation and future improvements of the AFC8-hu HSC/Hep mouse model and its application in evaluating novel therapeutics, as well as studying both HCV and HBV infection, human immune responses, and associated human liver fibrosis and cancer.

  10. Psychosine-induced alterations in peroxisomes of Twitcher Mouse Liver

    Science.gov (United States)

    Contreras, Miguel Agustin; Haq, Ehtishamul; Uto, Takuhiro; Singh, Inderjit; Singh, Avtar Kaur

    2008-01-01

    Krabbe’s disease is a neuroinflammatory disorder in which galactosylsphingosine (psychosine) accumulates in nervous tissue. To gain insight into whether the psychosine-induced effects in nervous tissue extend to peripheral organs, we investigated the expression of cytokines and their effects on peroxisomal structure/function in twitcher mouse liver (animal model of Krabbe disease). Immunofluorescence analysis demonstrated TNF-α and IL-6 expression, which was confirmed by mRNAs quantitation. Despite the presence of TNF-α, lipidomic analysis did not indicate a significant decrease in sphingomyelin or an increase in ceramide fractions. Ultrastructural analysis of catalase-dependent staining of liver sections showed reduced reactivity without significant changes in peroxisomal contents. This observation was confirmed by assaying catalase activity and quantitation of its mRNA, both of which were found significantly decreased in twitcher mouse liver. Western blot analysis demonstrated a generalized reduction of peroxisomal matrix and membrane proteins. These observations indicate that twitcher mouse pathobiology extends to the liver, where the induction of TNF-α and IL-6 compromise peroxisomal structure and function. PMID:18602885

  11. CXC chemokines function as a rheostat for hepatocyte proliferation and liver regeneration.

    Directory of Open Access Journals (Sweden)

    Gregory C Wilson

    Full Text Available Our previous in vitro studies have demonstrated dose-dependent effects of CXCR2 ligands on hepatocyte cell death and proliferation. In the current study, we sought to determine if CXCR2 ligand concentration is responsible for the divergent effects of these mediators on liver regeneration after ischemia/reperfusion injury and partial hepatectomy.Murine models of partial ischemia/reperfusion injury and hepatectomy were used to study the effect of CXCR2 ligands on liver regeneration.We found that hepatic expression of the CXCR2 ligands, macrophage inflammatory protein-2 (MIP-2 and keratinocyte-derived chemokine (KC, was significantly increased after both I/R injury and partial hepatectomy. However, expression of these ligands after I/R injury was 30-100-fold greater than after hepatectomy. Interestingly, the same pattern of expression was found in ischemic versus non-ischemic liver lobes following I/R injury with expression significantly greater in the ischemic liver lobes. In both systems, lower ligand expression was associated with increased hepatocyte proliferation and liver regeneration in a CXCR2-dependent fashion. To confirm that these effects were related to ligand concentration, we administered exogenous MIP-2 and KC to mice undergoing partial hepatectomy. Mice received a "high" dose that replicated serum levels found after I/R injury and a "low" dose that was similar to that found after hepatectomy. Mice receiving the "high" dose had reduced levels of hepatocyte proliferation and regeneration whereas the "low" dose promoted hepatocyte proliferation and regeneration.Together, these data demonstrate that concentrations of CXC chemokines regulate the hepatic proliferative response and subsequent liver regeneration.

  12. Ear wound regeneration in the African spiny mouse Acomys cahirinus.

    Science.gov (United States)

    Matias Santos, Dino; Rita, Ana Martins; Casanellas, Ignasi; Brito Ova, Adélia; Araújo, Inês Maria; Power, Deborah; Tiscornia, Gustavo

    2016-02-01

    While regeneration occurs in a number of taxonomic groups across the Metazoa, there are very few reports of regeneration in mammals, which generally respond to wounding with fibrotic scarring rather than regeneration. A recent report described skin shedding, skin regeneration and extensive ear punch closure in two rodent species, Acomys kempi and Acomys percivali. We examined these striking results by testing the capacity for regeneration of a third species, Acomys cahirinus, and found a remarkable capacity to repair full thickness circular punches in the ear pinna. Four-millimeter-diameter wounds closed completely in 2 months in 100% of ear punches tested. Histology showed extensive formation of elastic cartilage, adipose tissue, dermis, epidermis and abundant hair follicles in the repaired region. Furthermore, we demonstrated abundant angiogenesis and unequivocal presence of both muscle and nerve fibers in the reconstituted region; in contrast, similar wounds in C57BL/6 mice simply healed the borders of the cut by fibrotic scarring. Our results confirm the regenerative capabilities of Acomys, and suggest this model merits further attention.

  13. Liver immune-pathogenesis and therapy of human liver tropic virus infection in humanized mouse models

    OpenAIRE

    Bility, Moses T.; Li, Feng; Cheng, Liang; Su, Lishan

    2013-01-01

    Hepatitis B virus (HBV) and hepatitis C virus (HCV) infect and replicate primarily in human hepatocytes. Few reliable and easy accessible animal models are available for studying the immune system’s contribution to the liver disease progression during hepatitis virus infection. Humanized mouse models reconstituted with human hematopoietic stem cells (HSCs) have been developed to study human immunology, human immunodeficiency virus 1 infection, and immunopathogenesis. However, a humanized mous...

  14. Influence of epidermal growth factor on liver regeneration after partial hepatectomy in rats

    DEFF Research Database (Denmark)

    Olsen, Peter Skov; Boesby, S.; Kirkegaard, P.;

    2013-01-01

    growth factor could be identified in portal venous blood after intestinal instillation of epidermal growth factor. Brunner's glands and the submandibular glands secrete epidermal growth factor. Extirpation of Brunner's glands decreased liver regeneration, whereas removal of the submandibular glands had......The role of epidermal growth factor on liver regeneration after partial hepatectomy in rats was investigated. After a 70% hepatectomy in rats, the concentration of epidermal growth factor in portal venous blood was unchanged compared with unoperated controls. However, small amounts of epidermal...

  15. Effect of Gadolinium Chloride on Liver Regeneration Following Thioacetamide-Induced Necrosis in Rats

    Directory of Open Access Journals (Sweden)

    María Isabel Sánchez-Reus

    2010-11-01

    Full Text Available Gadolinium chloride (GD attenuates drug-induced hepatotoxicity by selectively inactivating Kupffer cells. The effect of GD was studied in reference to postnecrotic liver regeneration induced in rats by thioacetamide (TA. Rats, intravenously pretreated with a single dose of GD (0.1 mmol/Kg, were intraperitoneally injected with TA (6.6 mmol/Kg. Hepatocytes were isolated from rats at 0, 12, 24, 48, 72 and 96 h following TA intoxication, and samples of blood and liver were obtained. Parameters related to liver damage were determined in blood. In order to evaluate the mechanisms involved in the post-necrotic regenerative state, the time course of DNA distribution and ploidy were assayed in isolated hepatocytes. The levels of circulating cytokine TNFα was assayed in serum samples. TNFα was also determined by RT-PCR in liver extracts. The results showed that GD significantly reduced the extent of necrosis. The effect of GD induced noticeable changes in the post-necrotic regeneration, causing an increased percentage of hepatocytes in S phase of the cell cycle. Hepatocytes increased their proliferation as a result of these changes. TNFα expression and serum level were diminished in rats pretreated with GD. Thus, GD pre-treatment reduced TA-induced liver injury and accelerated postnecrotic liver regeneration. No evidence of TNFα implication in this enhancement of hepatocyte proliferation and liver regeneration was found. These results demonstrate that Kupffer cells are involved in TA-induced liver damage, as well as and also in the postnecrotic proliferative liver states.

  16. Expression and localization of augmenter of liver regeneration in human muscle tissue.

    Science.gov (United States)

    Polimeno, Lorenzo; Pesetti, Barbara; Giorgio, Floriana; Moretti, Biagio; Resta, Leonardo; Rossi, Roberta; Annoscia, Emanuele; Patella, Vittorio; Notarnicola, Angela; Mallamaci, Rosanna; Francavilla, Antonio

    2009-08-01

    Mitochondrial DNA (mt-DNA) disorders and abnormal regulation of nuclear-derived proteins devoted to the cross-talk between the two cellular genomes have recently interested researchers in the field of neuromuscular diseases. We have identified, isolated and sequenced a new gene, augmenter of liver regeneration (ALR) that stimulates in vivo hepatocyte proliferation and up-regulates mt-DNA expression and ATP production. ALR protein (Alrp) is mainly located, in rat, in the mitochondrial inter-membrane space and its mRNA is particularly abundant in brain, muscle, testis and liver, tissues whose activity is mostly dependent on mitochondrial metabolism. Studies on rat Alrp sequence revealed the presence of homologous amino-acid sections into proteins derived from mouse, human, Drosophyla, plants and even DNA viruses. In this article, we evaluated ALR expression in normal human muscular tissues, both as protein and as mRNA. The data, obtained by molecular biology, immunohistochemistry and electron microscopy, demonstrated that: (i) Alrp and ALR mRNA are present in human muscular tissue; (ii) Alrp is particularly expressed in muscular fibres rich in mitochondria; (iii) Alrp is localized in the mitochondrial inter-membrane space or associated to mitochondrial cristae; and (iv) in subjects younger then 35 years of age, ALR mRNA expression is different between male and female subjects. In conclusion, the present data set Alrp, as a factor associated with mitochondria also in human tissue, call for future studies aimed at establishing Alrp as an important factor involved in the molecular events that trigger neuromuscular diseases.

  17. Expression patterns and action analysis of genes associated with drug-induced liver diseases during rat liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Qian-Ji Ning; Shao-Wei Qin; Cun-Shuan Xu

    2006-01-01

    AIM: To study the action of the genes associated with drug-induced liver diseases at the gene transcriptional level during liver regeneration (LR) in rats.METHODS: The genes associated with drug-induced liver diseases were obtained by collecting the data from databases and literature, and the gene expression changes in the regenerating liver were checked by the Rat Genome 230 2.0 array.RESULTS: The initial and total expression numbers of genes occurring in phases of 0.5-4 h after partial hepatectomy (PH), 4-6 h after PH (G0/G1 transition),6-66 h after PH (cell proliferation), 66-168 h after PH (cell differentiation and structure-function reconstruction) were 21, 3, 9, 2 and 21, 9, 19, 18, respectively. It is illustrated that the associated genes were mainly triggered at the initial stage of LR and worked at different phases. According to their expression similarity,these genes were classified into 5 types: only upregulated (12 genes), predominantly up-regulated (4genes), only down-regulated (11 genes), predominantly down-regulated (3 genes), and approximately up-/down-regulated (2 genes). The total times of their upand down-expression were 130 and 79, respectively,demonstrating that expression of most of the genes was increased during LR, while a few decreased. The cell physiological and biochemical activities during LR were staggered according to the time relevance and were diverse and complicated in gene expression patterns.CONCLUSION: Drug metabolic capacity in regenerating liver was enhanced. Thirty-two genes play important roles during liver regeneration in rats.

  18. Animal models for the study of liver regeneration: role of nitric oxide and prostaglandins.

    Science.gov (United States)

    Hortelano, Sonsoles; Zeini, Miriam; Casado, Marta; Martín-Sanz, Paloma; Boscá, Lisardo

    2007-01-01

    The mechanisms that permit adult tissues to regenerate are the object of intense study. Liver regeneration is a research area of considerable interest both from pathological and from physiological perspectives. One of the best models of the regenerative process is the two-thirds partial hepatectomy (PH). After PH, the remnant liver starts a series of timed responses that first favor cell growth and then halts hepatocyte proliferation once liver function is fully restored. The mechanisms regulating this process are complex and involve many cellular events. Initiation of liver regeneration requires the injury-related cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin 6 (IL-6), and involves the activation of cytokine-regulated transcription factors such as NF-kappaB and STAT3. An important event that takes place in the hours immediately after PH is the induction of nitric oxide synthase 2 (NOS-2) and cyclooxygenase 2 (COX-2), and the consequent release of nitric oxide (NO) and prostaglandins (PGs). NO is involved in the vascular readaptation after PH, favoring a general permeability to growth factors throughout the organ. This review examines the mechanisms that regulate NO release during liver regeneration and the animal models used to identify these pathways.

  19. Overexpression of NK2 inhibits liver regeneration after partial hepatectomy in mice

    Institute of Scientific and Technical Information of China (English)

    Toshiyuki Otsuka; Hitoshi Takagi; Glenn Merlino; Masatomo Mori; Norio Horiguchi; Daisuke Kanda; Takashi Kosone; Yuichi Yamazaki; Kazuhisa Yuasa; Naondo Sohara; Satoru Kakizaki; Ken Sato

    2005-01-01

    AIM: To investigate the in vivo effects of NK2 on liver regeneration after partial hepatectomy (PH). METHODS: Survival after PH was observed with 21 NK2 transgenic mice and 23 wild-type (WT) mice over 10 d. Liver regeneration was analyzed using histology and immunohistochemistry. Expressions of genes were analyzed using Northern blot analysis, immunoprecipitation and immunoblotting, and reverse transcriptase polymerase chain reaction assay. KaplanMeier method and the log-rank test were used for ahalyzing the survival after PH. Differences in the resultsof immunohistochemistry and percentage of liver regeneration was determined by the Student's t-test. RESULTS: More than half of NK2 transgenic mice died within 48 h after PH. After PH, increased deposition of small lipid droplets in hepatocytes was evident and hepatic proliferation was inhibited in NK2 transgenic mice. The hepatic expression and kinase activity of HGF receptor, c-Met, were unchanged among WT mice and NK2 transgenic mice after PH. The expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in liver tissues were prolonged in NK2 transgenic mice that died after PH.CONCLUSION: Our findings indicate that overexpression of NK2 inhibits liver regeneration after PH.

  20. Redirection of Human Cancer Cells upon the Interaction with the Regenerating Mouse Mammary Gland Microenvironment

    Directory of Open Access Journals (Sweden)

    Sonia M. Rosenfield

    2013-01-01

    Full Text Available Tumorigenesis is often described as a result of accumulated mutations that lead to growth advantage and clonal expansion of mutated cells. There is evidence in the literature that cancer cells are influenced by the microenvironment. Our previous studies demonstrated that the mouse mammary gland is capable of redirecting mouse cells of non-mammary origins as well as Mouse Mammary Tumor Virus (MMTV-neu transformed cells toward normal mammary epithelial cell fate during gland regeneration. Interestingly, the malignant phenotype of MMTV-neu transformed cells was suppressed during serial transplantation experiments. Here, we discuss our studies that demonstrated the potential of the regenerating mouse mammary gland to redirect cancer cells of different species into a functional tumor-free mammary epithelial cell progeny. Immunochemistry for human specific CD133, mitochondria, cytokeratins as well as milk proteins and FISH for human specific probe identified human epithelial cell progeny in ducts, lobules, and secretory acini. Fluorescent In Situ Hybridization (FISH for human centromeric DNA and FACS analysis of propidium iodine staining excluded the possibility of mouse-human cell fusion. To our knowledge this is the first evidence that human cancer cells of embryonic or somatic origins respond to developmental signals generated by the mouse mammary gland microenvironment during gland regeneration in vivo.

  1. Assessment of a dual regulatory role for NO in liver regeneration after partial hepatectomy: protection against apoptosis and retardation of hepatocyte proliferation.

    Science.gov (United States)

    Zeini, Miriam; Hortelano, Sonsoles; Través, Paqui G; Gómez-Valadés, Alicia G; Pujol, Anna; Perales, José C; Bartrons, Ramón; Boscá, Lisardo

    2005-06-01

    The role of hepatic nitric oxide (NO) in liver regeneration after partial hepatectomy (PH) was studied in animals carrying a nitric oxide synthase-2 transgene under the control of the phospho(enol)pyruvate carboxykinase promoter. These mice expressed NOS-2 in liver cells under fasting conditions. Liver mass recovery and molecular parameters related to cell proliferation were determined after PH. Preexisting hepatic NO synthesis, as well as NO delivery by NO-donors, impaired early signaling (for example, attenuated NF-kappaB activation and TNF-alpha and IL-6 release). The regenerative process was also impaired as a result of an insufficient proliferative response, but mouse survival after surgery was not compromised. However, NO exerted a protective role against apoptosis in transgenic hepatectomized mice. Local production of NO in liver cells, achieved by hydrodynamic-based transfection with a NOS-2-encoding plasmid, also resulted in delayed liver recovery after PH and also protected against Fas-mediated apoptosis. These data show that sustained presence of NO after PH exerts a dual role: attenuating liver regeneration while efficiently protecting against liver apoptosis.

  2. Function of GATA Factors in the Adult Mouse Liver

    Science.gov (United States)

    Zheng, Rena; Rebolledo-Jaramillo, Boris; Zong, Yiwei; Wang, Liqing; Russo, Pierre; Hancock, Wayne; Stanger, Ben Z.; Hardison, Ross C.; Blobel, Gerd A.

    2013-01-01

    GATA transcription factors and their Friend of Gata (FOG) cofactors control the development of diverse tissues. GATA4 and GATA6 are essential for the expansion of the embryonic liver bud, but their expression patterns and functions in the adult liver are unclear. We characterized the expression of GATA and FOG factors in whole mouse liver and purified hepatocytes. GATA4, GATA6, and FOG1 are the most prominently expressed family members in whole liver and hepatocytes. GATA4 chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) identified 4409 occupied sites, associated with genes enriched in ontologies related to liver function, including lipid and glucose metabolism. However, hepatocyte-specific excision of Gata4 had little impact on gross liver architecture and function, even under conditions of regenerative stress, and, despite the large number of GATA4 occupied genes, resulted in relatively few changes in gene expression. To address possible redundancy between GATA4 and GATA6, both factors were conditionally excised. Surprisingly, combined Gata4,6 loss did not exacerbate the phenotype resulting from Gata4 loss alone. This points to the presence of an unusually robust transcriptional network in adult hepatocytes that ensures the maintenance of liver function. PMID:24367609

  3. Gene and protein expressions of P28gank in rat with liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Jian-Min Qin; Xiao-Yong Fu; Shen-Jing Li; Shu-Qin Liu; Jin-Zhang Zeng; Xiu-Hua Qiu; Meng-Chao Wu; Hong-Yang Wang

    2003-01-01

    AIM: To observe the gene and protein expression changes of p28GANK in regenerating liver tissues, and to reveal the biological function of p28GANK on the regulation of liver regeneration.METHODS: One hundred and thirty two adult male Sprague-Dawley rats were selected, weighing 200-250 g,and divided randomly into sham operation (SO) group and partial hepatectomy (PH) group. Each group had eleven time points: 0, 2, 6, 12, 24, 30, 48, 72, 120, 168 and 240 h,six rats were in each time point. The rats were undergone 70 % PH under methoxyflurane anesthesia by resection of the anterior and left lateral lobes of the liver. SO was conducted by laparotomy plus slight mobilization of the liver without resection. Liver specimens were collected at the indicated time points after PH or SO. The expression level of p28GANK mRNA was determined by Northern blot as well as at protein level via immunohistochemical staining.The expressions of p28GANK mRNA in these tissues were analyzed by imaging analysis system of FLA-2000 FUJIFILM and one way analysis of variance. The protein expressions of p28GANK in these tissues were analyzed with Fromowitz'method and Rank sum test.RESULTS: The expression of p28GANK mRNA in bhe regenerating liver tissues possessed two transcripts, which were 1.5 kb and 1.0 kb. There was a significantly different expression patterns of p28GANK mRNA between SO and PH groups (P<0.01). The expression of p28GANK mRNA increased 2 h after PH, the peak time was 72 h (SO group: 163.83±1.4720; PH group: 510.5±17.0499, P<0.01). There was a significant difference in the 1.5 kb transcript, which decreased gradually after 72 hours. The protein expression of p28GANK was mainly in the cytoplasm of regenerating hepatocytes, and increased near the central region 24 h after PH, and became strongly positive at 48 h (+++, vs the other time points P<0.05),but decreased 72 h after PH.CONCLUSION: The expression of p28GANK mRNA increases in the early stage of rat liver regeneration, the

  4. DNMT1 is a Required Genomic Regulator for Murine Liver Histogenesis and Regeneration

    DEFF Research Database (Denmark)

    Kaji, Kosuke; Factor, Valentina M; Andersen, Jesper B

    2016-01-01

    conditional knockout mice (Dnmt1(Δalb) ) by crossing Dnmt1(fl/fl) with Albumin-Cre (Alb-Cre) transgenic mice. Serum, liver tissues and primary hepatocytes were collected from 1-20 week old mice. The Dnmt1(Δalb) phenotype was assessed by histology, confocal and electron microscopy, biochemistry as well...... hepatocytes caused global hypomethylation, enhanced DNA damage response and initiated a senescence state causing a progressive inability to maintain tissue homeostasis and proliferate in response to injury. The liver regenerated via activation and repopulation from progenitors due to lineage...... hepatocytes did not affect liver homeostasis. CONCLUSION: These results establish the indispensable role of DNMT1-mediated epigenetic regulation in postnatal liver growth and regeneration. The Dnmt1(Δalb) mice provide a unique experimental model to study the role of senescence and contribution of progenitor...

  5. A novel upregulation of glutathione peroxidase 1 by knockout of liver-regenerating protein Reg3β aggravates acetaminophen-induced hepatic protein nitration.

    Science.gov (United States)

    Yun, Jun-Won; Lum, Krystal; Lei, Xin Gen

    2013-12-01

    Murine regenerating islet-derived 3β (Reg3β) represents a homologue of human hepatocarcinoma-intestine-pancreas/pancreatic-associated protein and enhances mouse susceptibility to acetaminophen (APAP)-induced hepatotoxicity. Our objective was to determine if and how knockout of Reg3β (KO) affects APAP (300 mg/kg, ip)-mediated protein nitration in mouse liver. APAP injection produced greater levels of hepatic protein nitration in the KO than in the wild-type mice. Their elevated protein nitration was alleviated by a prior injection of recombinant mouse Reg3β protein and was associated with an accelerated depletion of the peroxynitrite (ONOO(-)) scavenger glutathione by an upregulated hepatic glutathione peroxidase-1 (GPX1) activity. The enhanced GPX1 production in the KO mice was mediated by an 85% rise (pnitration and a new biosynthesis control of GPX1 by a completely "unrelated" regenerating protein, Reg3β, via transcriptional activation of Scly in coping with hepatic protein nitration. Linking selenoproteins to tissue regeneration will have profound implications in understanding the mechanism of Se functions and physiological coordination of tissue regeneration with intracellular redox control. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Expression of tumor necrosis factor-alpha converting enzyme in liver regeneration after partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Xian-Ming Lin; Ying-Bin Liu; Fan Zhou; Yu-Lian Wu; Li Chen; He-Qing Fang

    2008-01-01

    AIM:To study the expression of tumor necrosis factor-alpha converting enzyme (TACE) and evaluate its significance in liver regeneration after partial hepatectomy in vivo.METHODS:Male SD rats underwent 70% partial hepatec-tomy.The remaining liver and spleen tissue samples were collected at indicated time points after hepatectomy.TACE expression was investigated by Western blotting,immunohistochemistry,and serial section immunostaining.RESULTS:Expression of TACE in liver and spleen tissues after partial hepatectomy was a time-dependent alteration,reaching a maximal level between 24 and 48 h and remaining elevated for more than 168 h.TACE protein was localized to mononuclear cells (MNC),which infiltrated the liver from the spleen after hepatectomy.The kinetics of TACE expression was in accordance with the number of TACE-staining MNCs and synchronized with those of transforming growth factor-α(TGFα).In addition,TACE-staining MNC partially overlapped with CD3+ T lymphocytes.CONCLUSION:TACE may be involved in liver regenera-tion by pathway mediated with TGFα-EGFR in the cell-cycle progressive phase in vivo.TACE production and effect by paracrine may be a pathway of involvement in liver regeneration for the activated CD3+ T lymphocytes.

  7. What is Known Regarding the Participation of Factor Nrf-2 in Liver Regeneration?

    Directory of Open Access Journals (Sweden)

    José A. Morales-González

    2015-05-01

    Full Text Available It has been known for years that, after chemical damage or surgical removal of its tissue, the liver initiates a series of changes that, taken together, are known as regeneration, which are focused on the recovery of lost or affected tissue in terms of the anatomical or functional aspect. The Nuclear factor-erythroid 2-related factor (Nrf-2 is a reduction-oxidation reaction (redox-sensitive transcriptional factor, with the basic leucine Zipper domain (bZIP motif, encoding the NFE2L2 gene. The Keap1-Nrf2-ARE pathway is transcendental in the regulation of various cellular processes, such as antioxidant defenses, redox equilibrium, the inflammatory process, the apoptotic processes, intermediate metabolism, detoxification, and cellular proliferation. Some reports have demonstrated the regulator role of Nrf-2 in the cellular cycle of the hepatocyte, as well as in the modulation of the antioxidant response and of apoptotic processes during liver regeneration. It has been reported that there is a delay in liver regeneration after Partial hepatectomy (PH in the absence of Nrf-2, and similarly as a regulator of hepatic cytoprotection due to diverse chemical or biological agents, and in diseases such as hepatitis, fibrosis, cirrhosis, and liver cancer. This regulator/protector capacity is due to the modulation of the Antioxidant response elements (ARE. It is postulated that oxidative stress (OS can participate in the initial stages of liver regeneration and that Nrf-2 can probably participate. Studies are lacking on the different initiation stages, maintenance, and the termination of liver regeneration alone or with ethanol.

  8. Angiotensin-converting enzyme inhibition by lisinopril enhances liver regeneration in rats

    Directory of Open Access Journals (Sweden)

    F.S. Ramalho

    2001-01-01

    Full Text Available Bradykinin has been reported to act as a growth factor for fibroblasts, mesangial cells and keratinocytes. Recently, we reported that bradykinin augments liver regeneration after partial hepatectomy in rats. Angiotensin-converting enzyme (ACE is also a powerful bradykinin-degrading enzyme. We have investigated the effect of ACE inhibition by lisinopril on liver regeneration after partial hepatectomy. Adult male Wistar rats underwent 70% partial hepatectomy (PH. The animals received lisinopril at a dose of 1 mg kg body weight-1 day-1, or saline solution, intraperitoneally, for 5 days before hepatectomy, and daily after surgery. Four to six animals from the lisinopril and saline groups were sacrificed at 12, 24, 36, 48, 72, and 120 h after PH. Liver regeneration was evaluated by immunohistochemical staining for proliferating cell nuclear antigen using the PC-10 monoclonal antibody. The value for the lisinopril-treated group was three-fold above the corresponding control at 12 h after PH (P<0.001, remaining elevated at approximately two-fold above control values at 24, 36, 48 (P<0.001, and at 72 h (P<0.01 after PH, but values did not reach statistical difference at 120 h after PH. Plasma ACE activity measured by radioenzymatic assay was significantly higher in the saline group than in the lisinopril-treated group (P<0.001, with 81% ACE inhibition. The present study shows that plasma ACE inhibition enhances liver regeneration after PH in rats. Since it was reported that bradykinin also augments liver regeneration after PH, this may explain the liver growth stimulating effect of ACE inhibitors.

  9. Mechanistic Investigation of Toxaphene Induced Mouse Liver Tumors.

    Science.gov (United States)

    Wang, Zemin; Neal, Barbara H; Lamb, James C; Klaunig, James E

    2015-10-01

    Chronic exposure to toxaphene resulted in an increase in liver tumors in B6C3F1 mice. This study was performed to investigate the mode of action of toxaphene induced mouse liver tumors. Following an initial 14 day dietary dose range-finding study in male mice, a mechanistic study (0, 3, 32, and 320 ppm toxaphene in diet for 7, 14, and 28 days of treatment) was performed to examine the potential mechanisms of toxaphene induced mouse liver tumors. Toxaphene induced a significant increase in expression of constitutive androstane receptor (CAR) target genes (Cyp2b10, Cyp3a11) at 32 and 320 ppm toxaphene. aryl hydrocarbon receptor (AhR) target genes (Cyp1a1 and Cyp1a2) were slightly increased in expression at the highest toxaphene dose (320 ppm). No increase in peroxisome proliferator-activated receptor alpha activity or related genes was seen following toxaphene treatment. Lipid peroxidation was seen following treatment with 320 ppm toxaphene. These changes correlated with increases in hepatic DNA synthesis. To confirm the role of CAR in this mode of action, CAR knockout mice (CAR(-/-)) treated with toxaphene confirmed that the induction of CAR responsive genes seen in wild-type mice was abolished following treatment with toxaphene for 14 days. These findings, taken together with previously reported studies, support the mode of action of toxaphene induced mouse liver tumors is through a nongenotoxic mechanism involving primarily a CAR-mediated processes that results in an increase in cell proliferation in the liver, promotes the clonal expansion of preneoplastic lesions leading to adenoma formation.

  10. Persistent scarring and dilated cardiomyopathy suggest incomplete regeneration of the apex resected neonatal mouse myocardium

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Jensen, Charlotte Harken; Baun, Christina

    2016-01-01

    capacity for cardiac regeneration as well. In contrast, using the same mouse model others have shown that the regeneration process is incomplete and that scarring still remains 21days after AR. The present study tested the hypothesis that like in zebrafish, fibrosis in neonatal mammals could......Heart damage in mammals is generally considered to result in scar formation, whereas zebrafish completely regenerate their hearts following an intermediate and reversible state of fibrosis after apex resection (AR). Recently, using the AR procedure, one-day-old mice were suggested to have full...... be an intermediate response before the onset of complete heart regeneration. Myocardial damage was performed by AR in postnatal day 1 C57BL/6 mice, and myocardial function and scarring assessed at day 180 using F-18-fluorodeoxyglucose positron emission tomography (FDG-PET) and histology, respectively. AR mice...

  11. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure.

    Science.gov (United States)

    Weng, Hong-Lei; Cai, Xiaobo; Yuan, Xiaodong; Liebe, Roman; Dooley, Steven; Li, Hai; Wang, Tai-Ling

    2015-01-01

    Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called "second pathway of liver regeneration." The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.

  12. Can hyperbaric oxygenation decrease doxorubicin hepatotoxicity and improve regeneration in the injured liver?

    Science.gov (United States)

    Firat, Ozgur; Kirdok, Ozgur; Makay, Ozer; Caliskan, Cemil; Yilmaz, Funda; Ilgezdi, Savas; Karabulut, Bulent; Coker, Ahmet; Zeytunlu, Murat

    2009-01-01

    Portal vein embolization is used in the treatment of hepatocellular cancer, with the purpose of enhancing resectability. However, regeneration is restricted due to hepatocellular injury following chemotherapeutics (e.g. doxorubicin). The aim of this study was to investigate whether hyperbaric oxygenation (HBO) can alleviate the hepatotoxicity of chemotherapy and improve regeneration in the injured liver. Rats were allocated to four experimental groups. Group I rats were subjected to right portal vein ligation (RPVL); rats in groups II and III were administered doxorubicin prior to RPVL, with group III rats being additionally exposed to HBO sessions postoperatively; group IV rats was sham-operated. All rats were sacrificed on postoperative day 7, and liver injury was assessed by measuring alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Protein synthetic ability was determined based albumin levels and liver regeneration by the mitotic index (MI). The AST and ALT values of group II rats were significantly higher than those of group I, but not those of group III. Rats treated with doxorubicin and HBO (groups II and III) showed slightly but not significant differences in albumin levels than those subjected to only RPVL or sham-operated. The MI was significantly increased in groups I, II, and III, with the MI of group III rats significantly higher than those of group I rats. Based on our results, we conclude that HBO treatment has the potential to diminish doxorubicin-related hepatotoxicity and improve regeneration in the injured liver.

  13. Purification and Characterization of Hepatocyte Regeneration Stimulatory Factor from Shark Liver

    Institute of Scientific and Technical Information of China (English)

    OUYu; LUZheng-bing; WUWu-tong; WANGQiu-juan

    2003-01-01

    Aim To purify hepatocyte regeneration stimulatory factor from shark liver and research its molecular feature and activity. Methods and Results Hepatocyte regeneration stimulatory factor (sHRSF) was isolated from healthy shark livers and separated by homogenization, freezing-melting, heat treating, centfifugation, and ultmfdwation. HRSF activity was found mainly in the subfraction of molecular weight less than 30 000 daltons. This crude ultrafihrate was further purified successively by DEAE-Sepharose fast flow chromatography, FPLC Resource 30Q, Resource Q and Mono Q chromatography.A single band was displayed on sodium dodecyl sulfate polyacrylamide gel electrophoresis, which corresponds to molecular weight of 14 600 daltons. The characteristic absorption was obtained at the wavelength 276 nm. The isoelectric point was about 5.1. It contained 18 amino acids and the 15 N-terminal amino acid residues were LVGPIGAVGPAGKDG. It had a significant activity in stimulating liver to regenerate. Condusion We obtained an unknown new active protein, that is hepatocyte regeneration stimulatory factor from shark liver ( sHRSF).

  14. Regeneration and outcome of dual grafts in living donor liver transplantation.

    Science.gov (United States)

    Lu, Chia-Hsun; Chen, Tai-Yi; Huang, Tung-Liang; Tsang, Leo Leung-Chit; Ou, Hsin-You; Yu, Chun-Yen; Chen, Chao-Long; Cheng, Yu-Fan

    2012-01-01

    In living donor liver transplantation (LDLT), the essential aims are to provide an adequate graft volume to the recipient and to keep a sufficient remnant liver volume in the donor. In some instances, these aims cannot be met by a single donor and LDLT using dual grafts from two donors is a good solution. From 2002 to 2009, five recipients in our hospital received dual graft LDLT. Two recipients received one right lobe and one left lobe grafts; the other three received two left lobe grafts. The mean final liver regeneration rate was 91.2%. Left lobe graft atrophy in the long term was observed in recipients who received a right and a left lobe grafts. The initial bigger volume graft in all recipients was noted to have better regeneration than the smaller volume grafts. Portal flow and bilateral grafts volume size discrepancy were considered as two major factors influencing graft regeneration in this study. We also noted that the initial graft volume correlated with portal flow in the separate grafts and finally contribute to individual graft regeneration. Because of compensatory hypertrophy of the other graft, recipients who experienced atrophy of one graft did not show signs of liver dysfunction.

  15. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    NARCIS (Netherlands)

    Xu, Cui-Ping; Ji, Wen-Min; van den Brink, Gijs R.; Peppelenbosch, Maikel P.

    2006-01-01

    AIM: To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells. METHODS: Fifty-four adult male Wistar rats we

  16. TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice.

    Directory of Open Access Journals (Sweden)

    Gamze Karaca

    Full Text Available BACKGROUND & AIMS: Pro-inflammatory cytokines are important for liver regeneration after partial hepatectomy (PH. Expression of Fibroblast growth factor-inducible 14 (Fn14, the receptor for TNF-like weak inducer of apoptosis (TWEAK, is induced rapidly after PH and remains elevated throughout the period of peak hepatocyte replication. The role of Fn14 in post-PH liver regeneration is uncertain because Fn14 is expressed by liver progenitors and TWEAK-Fn14 interactions stimulate progenitor growth, but replication of mature hepatocytes is thought to drive liver regeneration after PH. METHODS: To clarify the role of TWEAK-Fn14 after PH, we compared post-PH regenerative responses in wild type (WT mice, Fn14 knockout (KO mice, TWEAK KO mice, and WT mice treated with anti-TWEAK antibodies. RESULTS: In WT mice, rare Fn14(+ cells localized with other progenitor markers in peri-portal areas before PH. PH rapidly increased proliferation of Fn14(+ cells; hepatocytic cells that expressed Fn14 and other progenitor markers, such as Lgr5, progressively accumulated from 12-8 h post-PH and then declined to baseline by 96 h. When TWEAK/Fn14 signaling was disrupted, progenitor accumulation, induction of pro-regenerative cytokines, hepatocyte and cholangiocyte proliferation, and over-all survival were inhibited, while post-PH liver damage and bilirubin levels were increased. TWEAK stimulated proliferation and increased Lgr5 expression in cultured liver progenitors, but had no effect on either parameter in cultured primary hepatocytes. CONCLUSIONS: TWEAK-FN14 signaling is necessary for the healthy adult liver to regenerate normally after acute partial hepatectomy.

  17. MMP-10 is required for efficient muscle regeneration in mouse models of injury and muscular dystrophy.

    Science.gov (United States)

    Bobadilla, Míriam; Sáinz, Neira; Rodriguez, José Antonio; Abizanda, Gloria; Orbe, Josune; de Martino, Alba; García Verdugo, José Manuel; Páramo, José A; Prósper, Felipe; Pérez-Ruiz, Ana

    2014-02-01

    Matrix metalloproteinases (MMPs), a family of endopeptidases that are involved in the degradation of extracellular matrix components, have been implicated in skeletal muscle regeneration. Among the MMPs, MMP-2 and MMP-9 are upregulated in Duchenne muscular dystrophy (DMD), a fatal X-linked muscle disorder. However, inhibition or overexpression of specific MMPs in a mouse model of DMD (mdx) has yielded mixed results regarding disease progression, depending on the MMP studied. Here, we have examined the role of MMP-10 in muscle regeneration during injury and muscular dystrophy. We found that skeletal muscle increases MMP-10 protein expression in response to damage (notexin) or disease (mdx mice), suggesting its role in muscle regeneration. In addition, we found that MMP-10-deficient muscles displayed impaired recruitment of endothelial cells, reduced levels of extracellular matrix proteins, diminished collagen deposition, and decreased fiber size, which collectively contributed to delayed muscle regeneration after injury. Also, MMP-10 knockout in mdx mice led to a deteriorated dystrophic phenotype. Moreover, MMP-10 mRNA silencing in injured muscles (wild-type and mdx) reduced muscle regeneration, while addition of recombinant human MMP-10 accelerated muscle repair, suggesting that MMP-10 is required for efficient muscle regeneration. Furthermore, our data suggest that MMP-10-mediated muscle repair is associated with VEGF/Akt signaling. Thus, our findings indicate that MMP-10 is critical for skeletal muscle maintenance and regeneration during injury and disease.

  18. Erythropoietin Promotes Hepatic Regeneration After Extended Liver Resection in Rats

    OpenAIRE

    Ariyakhagorn, Veeravorn

    2010-01-01

    Erythropoietin (EPO) hat sich in verschiedensten Gewebetypen als potenter Organ- Protektor und Regenerations-Stimulator erwiesen. Bis heute sind jedoch keinerlei Daten bezüglich des Einflusses von EPO auf die Leberregeration verfügbar. Wir haben daher in einem Rattenmodell den Einfluß von EPO auf die Leberregeneration nach 70%-iger Leberteilresektion untersucht. Hierbei wurden drei Studiengruppen gebildet: Gruppe 1 erhielt eine intraportalvenöse EPO-Gabe 30 Minuten vor Resektion (4000 U...

  19. Loss and recovery of liver regeneration in rats with fulminant hepatic failure.

    Science.gov (United States)

    Eguchi, S; Lilja, H; Hewitt, W R; Middleton, Y; Demetriou, A A; Rozga, J

    1997-10-01

    We earlier described a model of fulminant hepatic failure (FHF) in the rat where partial hepatectomy is combined with induction of right liver lobes necrosis. After this procedure, lack of regenerative response in the residual viable liver tissue (omental lobes) was associated with elevated plasma hepatocyte growth factor (HGF) and transforming growth factor beta (TGF-beta1) levels and delayed expression of HGF and c-met mRNA in the remnant liver. Here, we investigated whether syngeneic isolated hepatocytes transplanted in the spleen will prolong survival and facilitate liver regeneration in FHF rats. Inbred male Lewis rats were used. Group I rats (n = 46) received intrasplenic injection of 2 x 10(7) hepatocytes and 2 days later FHF was induced. Group II FHF rats (n = 46) received intrasplenic injection of saline. Rats undergoing partial hepatectomy of 68% (PH; n = 30) and a sham operation (SO; n = 30) served as controls. In 20 FHF rats (10 rats/group), survival time was determined. The remaining 72 FHF rats (36 rats/group) were used for physiologic studies (liver function and regeneration and plasma growth factor levels). In Group I rats survival was longer than that of Group II controls (73 +/- 22 hr vs. 33 +/- 9 hr; P ammonia, lactate, total bilirubin, PT, and PTT values, lower activity of liver enzymes, and higher monoethylglycinexylidide (MEGX) production than Group II rats. In Group I rats, livers increased in weight at a rate similar to that seen in PH controls and showed distinct mitotic and DNA synthetic activity (incorporation of bromodeoxyuridine and proliferation cell nuclear antigen expression). Plasma HGF and TGF-beta1 levels in these rats decreased and followed the pattern seen in PH rats; additionally, c-met expression in the remnant liver was accelerated. Hepatocyte transplantation prolonged survival in FHF rats and facilitated liver regeneration. Even though the remnant liver increased in weight four times reaching 30% of the original liver mass

  20. Interleukin-1 receptor antagonist modulates the early phase of liver regeneration after partial hepatectomy in mice.

    Directory of Open Access Journals (Sweden)

    Antonino Sgroi

    Full Text Available BACKGROUND: Cytokine administration is a potential therapy for acute liver failure by reducing inflammatory responses and favour hepatocyte regeneration. The aim of this study was to evaluate the role of interleukin-1 receptor antagonist (IL-1ra during liver regeneration and to study the effect of a recombinant human IL-1ra on liver regeneration. METHODS: We performed 70%-hepatectomy in wild type (WT mice, IL-1ra knock-out (KO mice and in WT mice treated by anakinra. We analyzed liver regeneration at regular intervals by measuring the blood levels of cytokines, the hepatocyte proliferation by bromodeoxyuridin (BrdU incorporation, proliferating cell nuclear antigen (PCNA and Cyclin D1 expression. The effect of anakinra on hepatocyte proliferation was also tested in vitro using human hepatocytes. RESULTS: At 24h and at 48 h after hepatectomy, IL-1ra KO mice had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-1β and MCP-1 and a reduced and delayed hepatocyte proliferation measured by BrdU incorporation, PCNA and Cyclin D1 protein levels, when compared to WT mice. IGFBP-1 and C/EBPβ expression was significantly decreased in IL-1ra KO compared to WT mice. WT mice treated with anakinra showed significantly decreased levels of IL-6 and significantly higher hepatocyte proliferation at 24h compared to untreated WT mice. In vitro, primary human hepatocytes treated with anakinra showed significantly higher proliferation at 24h compared to hepatocytes without treatment. CONCLUSION: IL1ra modulates the early phase of liver regeneration by decreasing the inflammatory stress and accelerating the entry of hepatocytes in proliferation. IL1ra might be a therapeutic target to improve hepatocyte proliferation.

  1. Zonation of nitrogen and glucose metabolism gene expression upon acute liver damage in mouse.

    Directory of Open Access Journals (Sweden)

    Shahrouz Ghafoory

    Full Text Available Zonation of metabolic activities within specific structures and cell types is a phenomenon of liver organization and ensures complementarity of variant liver functions like protein production, glucose homeostasis and detoxification. To analyze damage and regeneration of liver tissue in response to a toxic agent, expression of liver specific enzymes was analyzed by in situ hybridization in mouse over a 6 days time course following carbon tetrachloride (CCl4 injection. CCl4 mixed with mineral oil was administered to BALB/c mice by intraperitoneal injection, and mice were sacrificed at different time points post injection. Changes in the expression of albumin (Alb, arginase (Arg1, glutaminase 2 (Gls2, Glutamine synthetase (Gs, glucose-6-phosphatase (G6pc, glycogen synthase 2 (Gys2, Glycerinaldehyd-3-phosphat-Dehydrogenase (Gapdh, Cytochrom p450 2E1 (Cyp2e1 and glucagon receptor (Gcgr genes in the liver were studied by in situ hybridization and qPCR. We observed significant changes in gene expression of enzymes involved in nitrogen and glucose metabolism and their local distribution following CCl4 injury. We also found that Cyp2e1, the primary metabolizing enzyme for CCl4, was strongly expressed in the pericentral zone during recovery. Furthermore, cells in the damaged area displayed distinct gene expression profiles during the analyzed time course and showed complete recovery with strong albumin production 6 days after CCl4 injection. Our results indicate that despite severe damage, liver cells in the damaged area do not simply die but instead display locally adjusted gene expression supporting damage response and recovery.

  2. Zonation of Nitrogen and Glucose Metabolism Gene Expression upon Acute Liver Damage in Mouse

    Science.gov (United States)

    Ghafoory, Shahrouz; Breitkopf-Heinlein, Katja; Li, Qi; Scholl, Catharina; Dooley, Steven; Wölfl, Stefan

    2013-01-01

    Zonation of metabolic activities within specific structures and cell types is a phenomenon of liver organization and ensures complementarity of variant liver functions like protein production, glucose homeostasis and detoxification. To analyze damage and regeneration of liver tissue in response to a toxic agent, expression of liver specific enzymes was analyzed by in situ hybridization in mouse over a 6 days time course following carbon tetrachloride (CCl4) injection. CCl4 mixed with mineral oil was administered to BALB/c mice by intraperitoneal injection, and mice were sacrificed at different time points post injection. Changes in the expression of albumin (Alb), arginase (Arg1), glutaminase 2 (Gls2), Glutamine synthetase (Gs), glucose-6-phosphatase (G6pc), glycogen synthase 2 (Gys2), Glycerinaldehyd-3-phosphat-Dehydrogenase (Gapdh), Cytochrom p450 2E1 (Cyp2e1) and glucagon receptor (Gcgr) genes in the liver were studied by in situ hybridization and qPCR. We observed significant changes in gene expression of enzymes involved in nitrogen and glucose metabolism and their local distribution following CCl4 injury. We also found that Cyp2e1, the primary metabolizing enzyme for CCl4, was strongly expressed in the pericentral zone during recovery. Furthermore, cells in the damaged area displayed distinct gene expression profiles during the analyzed time course and showed complete recovery with strong albumin production 6 days after CCl4 injection. Our results indicate that despite severe damage, liver cells in the damaged area do not simply die but instead display locally adjusted gene expression supporting damage response and recovery. PMID:24147127

  3. Omega-3 polyunsaturated fatty acids promote liver regeneration after 90% hepatectomy in rats

    Institute of Scientific and Technical Information of China (English)

    Yu-Dong Qiu; Sheng Wang; Yue Yang; Xiao-Peng Yan

    2012-01-01

    AIM:To evaluate the effectiveness of omega-3 polyunsaturated fatty acid (ω-3 PUFA) administration on liver regeneration after 90% partial hepatectomy (PH) in METHODS:ω-3 PUFAs were intravenously injected in the ω-3 PUFA group before PH surgery.PH,sparing only the caudate lobe,was performed in both the control and the ω-3 PUFA group.Survival rates,liver weight/body weight ratios,liver weights,HE staining,transmission electron microscope imaging,nuclearassociated antigen Ki-67,enzyme-linked immunosorbent assay and signal transduction were evaluated to analyze liver regeneration.RESULTS:All rats in the control group died within 30 h after hepatectomy.Survival rates in the ω-3 PUFA group were 20/20 at 30 h and 4/20 1 wk after PH.Liver weight/body weight ratios and liver weights increased significantly in the ω-3 PUFA group.The structure of sinusoidal endothelial cells and space of Disse was greatly restored in the ω-3 PUFA group compared to the control group after PH.In the ω-3 PUFA group,interleukin (IL)-4 and IL-10 levels were significantly increased whereas IL-6 and tumor necrosis factor-α levels were dramatically decreased.In addition,activation of protein kinase B (Akt) and of signal transducer and activator of transcription 3 signaling pathway were identified at an earlier time after PH in the ω-3 PUFA group.CONCLUSION:Omega-3 polyunsaturated fatty acids may prevent acute liver failure and promote liver regeneration after 90% hepatectomy in rats.

  4. Impaired liver regeneration in Ldlr-/- mice is associated with an altered hepatic profile of cytokines, growth factors, and lipids.

    Science.gov (United States)

    Pauta, Montse; Rotllan, Noemi; Vales, Frances; Fernandez-Hernando, Ana; Allen, Ryan M; Ford, David A; Marí, Montserrat; Jiménez, Wladimiro; Baldán, Angel; Morales-Ruiz, Manuel; Fernández-Hernando, Carlos

    2013-10-01

    It is widely recognized that in the early stages of liver regeneration after partial hepatectomy, the hepatocytes accumulate a significant amount of lipids. The functional meaning of this transient steatosis and its effect on hepatocellular proliferation are not well defined. In addition, the basic mechanisms of this lipid accumulation are not well understood although some studies suggest the participation of the Low Density Lipoprotein Receptor (Ldlr). To address these questions, we studied the process of liver regeneration in Ldlr null mice and wild type mice following partial hepatectomy. Ldlr deficiency was associated with a significant decrease in serum albumin concentration, during early stages of liver regeneration, and a delayed hepatic regeneration. Remnant livers of Ldlr(-)(/)(-) showed a time-shifted expression of interleukin-6 (IL6) and a defective activation of tumor necrosis factor-α (TNFα) and hepatocyte growth factor (HGF) expression in early phases of liver regeneration. Unexpectedly, Ldlr(-)(/)(-) showed no significant differences in the content of lipid droplets after partial hepatectomy compared to wild type mice. However, lipidomic analysis of the regenerating liver from Ldlr(-)(/)(-) revealed a lipid profile compatible with liver quiescence: high content of cholesterol esters and ceramide, and low levels of phosphatidylcholine. Ldlr deficiency is associated with significant changes in the hepatic lipidome that affect cytokine-growth factor signaling and impair liver regeneration. These results suggest that the analysis of the hepatic lipidome may help predict the success of liver regeneration in the clinical environment, specifically in the context of pre-existing liver steatosis. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Conditional genetic elimination of hepatocyte growth factor in mice compromises liver regeneration after partial hepatectomy.

    Directory of Open Access Journals (Sweden)

    Kari Nejak-Bowen

    Full Text Available Hepatocyte growth factor (HGF has been shown to be indispensable for liver regeneration because it serves as a main mitogenic stimulus driving hepatocytes toward proliferation. We hypothesized that ablating HGF in adult mice would have a negative effect on the ability of hepatocytes to regenerate. Deletion of the HGF gene was achieved by inducing systemic recombination in mice lacking exon 5 of HGF and carrying the Mx1-cre or Cre-ER(T transgene. Analysis of liver genomic DNA from animals 10 days after treatment showed that a majority (70-80% of alleles underwent cre-induced genetic recombination. Intriguingly, however, analysis by RT-PCR showed the continued presence of both unrecombined and recombined forms of HGF mRNA after treatment. Separation of liver cell populations into hepatocytes and non-parenchymal cells showed equal recombination of genomic HGF in both cell types. The presence of the unrecombined form of HGF mRNA persisted in the liver in significant amounts even after partial hepatectomy (PH, which correlated with insignificant changes in HGF protein and hepatocyte proliferation. The amount of HGF produced by stellate cells in culture was indirectly proportional to the concentration of HGF, suggesting that a decrease in HGF may induce de novo synthesis of HGF from cells with residual unrecombined alleles. Carbon tetrachloride (CCl4-induced regeneration resulted in a substantial decrease in preexisting HGF mRNA and protein, and subsequent PH led to a delayed regenerative response. Thus, HGF mRNA persists in the liver even after genetic recombination affecting most cells; however, PH subsequent to CCl4 treatment is associated with a decrease in both HGF mRNA and protein and results in compromised liver regeneration, validating an important role of this mitogen in hepatic growth.

  6. Bile acids are "homeotrophic" sensors of the functional hepatic capacity and regulate adaptive growth during liver regeneration.

    Science.gov (United States)

    Geier, Andreas; Trautwein, Christian

    2007-01-01

    Liver mass depends on one or more unidentified humoral signals that drive regeneration when liver functional capacity is diminished. Bile acids are important liver products, and their levels are tightly regulated. Here, we identify a role for nuclear receptor-dependent bile acid signaling in normal liver regeneration. Elevated bile acid levels accelerate regeneration, and decreased levels inhibit liver regrowth, as does the absence of the primary nuclear bile acid receptor FXR. We propose that FXR activation by increased bile acid flux is a signal of decreased functional capacity of the liver. FXR, and possibly other nuclear receptors, may promote homeostasis not only by regulating expression of appropriate metabolic target genes but also by driving homeotrophic liver growth.

  7. Liver BCATm transgenic mouse model reveals the important role of the liver in maintaining BCAA homeostasis.

    Science.gov (United States)

    Ananieva, Elitsa A; Van Horn, Cynthia G; Jones, Meghan R; Hutson, Susan M

    2017-02-01

    Unlike other amino acids, the branched-chain amino acids (BCAAs) largely bypass first-pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched-chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver-skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected, and no growth rate or body composition differences were observed in the transgenic animals as compared to wild-type mice. Feeding the transgenic animals a high-fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism, nor did the high-fat diet cause elevation in plasma BCAAs. However, the high-fat-diet-fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity.

  8. Recent Strategies Combining Biomaterials and Stem Cells for Bone, Liver and Skin Regeneration.

    Science.gov (United States)

    Morelli, Sabrina; Salerno, Simona; Ahmed, Haysam Mohamed Magdy; Piscioneri, Antonella; Bartolo, Loredana De

    2016-01-01

    This review is focused on the combination of biomaterials with stem cells as a promising strategy for bone, liver and skin regeneration. At first, we describe stem cell-based constructs for bone tissue engineering with special attention to recent advanced approaches based on the use of biomaterial scaffolds with renewable stem cells that have been used for bone regeneration. We illustrate the strategies to improve liver regeneration by using liver stem cells and biomaterials and/or devices as therapeutic approaches. In particular, examples of biomaterials in combination with other technologies are presented since they allow the differentiation of stem cells in hepatocytes. After a description of the role and the benefit of MSCs in wound repair and in skin substitutes we highlight the suitability of biomaterials in guiding stem cell differentiation for skin regeneration and cutaneous repair in both chronic and acute wounds. Finally, an overview of the types of bioreactors that have been developed for the differentiation of stem cells and are currently in use, is also provided. The examples of engineered microenvironments reported in this review indicate that a detailed understanding of the various factors and mechanisms that control the behavior of stem cells in vivo has provided useful information for the development of advanced bioartificial systems able to control cell fate.

  9. Metabolism of dictamnine in liver microsomes from mouse, rat, dog, monkey, and human.

    Science.gov (United States)

    Wang, Pei; Zhao, Yunli; Zhu, Yingdong; Sun, Jianbo; Yerke, Aaron; Sang, Shengmin; Yu, Zhiguo

    2016-02-05

    Dictamnine, a furoquinoline alkaloid isolated from the root bark of Dictamnus dasycarpus Turcz. (Rutaceae), is reported to have a wide range of pharmacological activities. In this study, the in vitro metabolic profiles of dictamnine in mouse, rat, dog, monkey, and human liver microsomes were investigated and compared. Dictamnine was incubated with liver microsomes in the presence of an NADPH-regenerating system, resulting in the formation of eight metabolites (M1-M8). M1 is an O-desmethyl metabolite. M5 and M6 are formed by a mono-hydroxylation of the benzene ring of dictamnine. M8 was tentatively identified as an N-oxide metabolite. The predominant metabolic pathway of dictamnine occurs through the epoxidation of the 2,3-olefinic to yield a 2,3-epoxide metabolite (M7), followed by the ring of the epoxide opening to give M4. Likewise, cleavage of the furan ring forms M2 and M3. Slight differences were observed in the in vitro metabolic profiles of dictamnine among the five species tested. A chemical inhibition study with a broad and five specific CYP450 inhibitors revealed that most of the dictamnine metabolites in liver microsomes are mediated by CYP450, with CYP3A4 as the predominant enzyme involved in the formation of M7, the major metabolite. These findings provide vital information to better understand the metabolic processes of dictamnine among various species.

  10. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    Science.gov (United States)

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  11. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    Science.gov (United States)

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  12. Nrf2 is involved in maintaining hepatocyte identity during liver regeneration.

    Directory of Open Access Journals (Sweden)

    Yuhong Zou

    Full Text Available Nrf2, a central regulator of the cellular defense against oxidative stress and inflammation, participates in modulating hepatocyte proliferation during liver regeneration. It is not clear, however, whether Nrf2 regulates hepatocyte growth, an important cellular mechanism to regain the lost liver mass after partial hepatectomy (PH. To determine this, various analyses were performed in wild-type and Nrf2-null mice following PH. We found that, at 60 h post-PH, the vast majority of hepatocytes lacking Nrf2 reduced their sizes, activated hepatic progenitor markers (CD133, TWEAK receptor, and trefoil factor family 3, depleted HNF4α protein, and downregulated the expression of a group of genes critical for their functions. Thus, the identity of hepatocytes deficient in Nrf2 was transiently but massively impaired in response to liver mass loss. This event was associated with the coupling of protein depletion of hepatic HNF4α, a master regulator of hepatocyte differentiation, and concomitant inactivation of hepatic Akt1 and p70S6K, critical hepatocyte growth signaling molecules. We conclude that Nrf2 participates in maintaining newly regenerated hepatocytes in a fully differentiated state by ensuring proper regulation of HNF4α, Akt1, and p70S6K during liver regeneration.

  13. Gene modulation associated with inhibition of liver regeneration in hepatitis B virus X transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Malgorzata Sidorkiewicz; Jean-Philippe Jais; Guilherme Tralhao; Serban Morosan; Carlo Giannini; Nicolas Brezillon; Patrick Soussan; Oona Delpuech; Dina Kremsdorf

    2008-01-01

    AIM: To analyze the modulation of gene expression profile associated with inhibition of liver regeneration in hepatitis B X (HBx)-expressing transgenic mice.METHODS: Microarray technology was performed on liver tissue obtained from 4 control (LacZ) and 4 transgenic mice (HBx-LacZ), 48 h after partial hepatectomy. The significance of the normalized log-ratios was assessed for each gene, using robust Mests under an empirical Bayes approach. Microarray hybridization data was verified on selected genes by quantitative PCR.RESULTS: The comparison of gene expression patterns showed a consistent modulation of the expression of 26 genes, most of which are implicated in liver regeneration. Up-regulated genes included DNA repair proteins (Rad-52, MSH6) and transmembrane proteins (syndecan 4, tetraspanin), while down-regulated genes were connected to the regulation of transcription (histone deacetylase, Zfp90, MyoDl) and were involved in the cholesterol metabolic pathway and isoprenoidbiosynthesis (farnesyl diphosphate synthase, Cyp7b1, geranylgeranyl diphosphate synthase, SAA3).CONCLUSION: Our results provide a novel insight into the biological activities of HBx, implicated in the inhibition of liver regeneration.

  14. Case Study: Polycystic Livers in a Transgenic Mouse Line

    Energy Technology Data Exchange (ETDEWEB)

    Lovaglio, Jamie A.; Artwohl, James E.; Ward, Christopher J.; Diekwisch, Thomas G. H.; Ito, Yoshihiro; Fortman, Jeffrey D.

    2014-04-01

    Three mice (2 male, 1 female; age, 5 to 16 mo) from a mouse line transgenic for keratin 14 (K14)-driven LacZ expression and on an outbred Crl:CD1(ICR) background, were identified as having distended abdomens and livers that were diffusely enlarged by numerous cysts (diameter, 0.1 to 2.0 cm). Histopathology revealed hepatic cysts lined by biliary type epithelium and mild chronic inflammation, and confirmed the absence of parasites. Among 21 related mice, 5 additional affected mice were identified via laparotomy. Breeding of these 5 mice (after 5 mo of age) did not result in any offspring; the K14 mice with olycystic livers failed to reproduce. Affected male mice had degenerative testicular lesions, and their sperm was immotile. Nonpolycystic K14 control male mice bred well, had no testicular lesions, and had appropriate sperm motility. Genetic analysis did not identify an association of this phenotype with the transgene or insertion site.

  15. Connective tissue fibroblast properties are position-dependent during mouse digit tip regeneration.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Wu

    Full Text Available A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3 leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2, fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3 and incompetent (P2 levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of

  16. Connective tissue fibroblast properties are position-dependent during mouse digit tip regeneration.

    Science.gov (United States)

    Wu, Yuanyuan; Wang, Karen; Karapetyan, Adrine; Fernando, Warnakulusuriya Akash; Simkin, Jennifer; Han, Manjong; Rugg, Elizabeth L; Muneoka, Ken

    2013-01-01

    A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3) leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2), fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3) and incompetent (P2) levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of connective tissue

  17. Extent of liver resection modulates the activation of transcription factors and the production of cytokines involved in liver regeneration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To investigate the molecular events involved in liver regeneration following subtotal hepatectomy (SH) as previous studies have largely focused on partial hepatectomy (PH).METHODS: Male Wistar rats were subjected to 70% PH or 90% SH, respectively, and sacrificed at different times after surgery. Untreated and sham-operated animals served as controls. Serum and liver samples were obtained to investigate liver function, apoptosis (TUNEL assay) and transcription factors (NF-κB, Stat3; ELISA) or cytokines (HGF, TNF-α, IL-6, TGF-α, TGF-β; quantitative RT-PCR) involved in liver regeneration. RESULTS: Serum levels of ALT and AST in animals with 70% PH differed significantly from sham-operated and control animals. We found that the peak concentration 12 h after surgery returned to control levels 7 d after surgery. LDH was increased only at 12 h after 70% PH compared to sham. Bilirubin showed no differences between the sham and 70% resection. After PH, early NF-κB activation was detected 12 h after surgery (313.21 ± 17.22 ng/mL), while there was no activation after SH (125.22 ± 44.36 ng/mL) compared to controls (111.43 ± 32.68 ng/mL) at this time point. In SH, however, NF-κB activation was delayed until 24 h (475.56 ± 144.29 ng/mL). Star3 activation was similar in both groups. These findings correlated with suppressed and delayed induction of regenerative genes after SH (i.e. TNF-α 24 h postoperatively: 2375 ± 1220 in 70% and 88±31 in 90%; IL-6 12 h postoperatively: 2547 ± 441 in 70% and 173 ± 82 in 90%). TUNEL staining revealed elevated apoptosis rates in SH (0.44% at 24 h; 0.63% at 7 d) compared to PH (0.27% at 24 h; 0.15% at 7 d). CONCLUSION: The molecular events involved in liver regeneration are significantly influenced by the extent of resection as SH leads to suppression and delay of liver regeneration compared to PH, which is associated with delayed activation of NF-κB and suppression of proregenerative cytokines.

  18. Participation of liver progenitor cells in liver regeneration: lack of evidence in the AAF/PH rat model.

    Science.gov (United States)

    Dusabineza, Ange-Clarisse; Van Hul, Noémi K; Abarca-Quinones, Jorge; Starkel, Peter; Najimi, Mustapha; Leclercq, Isabelle A

    2012-01-01

    When hepatocyte proliferation is impaired, liver progenitor cells (LPC) are activated to participate in liver regeneration. We used the 2-acetaminofluorene/partial hepatectomy (AAF/PH) model to evaluate the contribution of LPC to liver cell replacement and function restoration. Fischer rats subjected to AAF/PH (or PH alone) were investigated 7, 10 and 14 days post-hepatectomy. Liver mass recovery (LMR) was estimated, and the liver mass to body weight ratio calculated. We used serum albumin and bilirubin levels, and liver albumin mRNA levels to assess the liver function. LPC expansion was analyzed by cytokeratin 19 (CK19), glutathione S-transferase protein (GSTp) immunohistochemistry and by CK19, CD133, transforming growth factor-β1 and hepatocyte growth factor mRNA expression in livers. Cell proliferation was evaluated by Ki67 and BrdU immunostaining. Compared with PH alone where LMR was ∼100% 14 days post-PH, LMR was defective in AAF/PH rats (64.1±15.5%, P=0.0004). LPC expansion was scarce in PH livers (0.5±0.4% of CK19(+) area), but significant in AAF/PH livers (8.5±7.2% of CK19(+)), and inversely correlated to LMR (r(2)=0.63, PPH animals presented liver failure (low serum albumin and high serum bilirubin) 14 days post-PH. Compared with animals with preserved function, this was associated with a lower LMR (50±6.8 vs 74.6±9.4%, P=0.0005), a decreased liver to body weight ratio (2±0.3 vs 3.5±0.6%, P=0.001), and a larger LPC expansion such as proliferating Ki67(+) LPC covered 17.4±4.2% of the liver parenchyma vs 3.1±1.5%, (Plivers with preserved function. These observations suggest that, in this model, the efficient recovery of the liver function was ensured rather by the proliferation of mature hepatocytes than by the LPC expansion and differentiation into hepatocytes.

  19. Expression Profile Changes of Genes Involved in Lipid Metabolism Pathway During Liver Regeneration in Mice%小鼠肝再生过程中脂质代谢相关通路中基因的表达谱变化

    Institute of Scientific and Technical Information of China (English)

    袁运生; 张夕原; 严德珺; 杨婷旭; 郜尽; 俞雁

    2009-01-01

    [Objective] The aim of the research was to study the expression profile changes of genes involved in lipid metabolism pathway during liver regeneration in mice. [Method] The CCl4 induced mouse model of liver regeneration was established and the total RNA was isolated from liver tissue of mouse. Then the changes of genes involved in lipid metabolism pathway during different stages of liver regeneration were detected through micro-array chip gene technique and their specific functions were also analyzed. [Result] During the process of liver regeneration, the expression level of 98 genes involved in lipid metabolism pathway changed, which were divided into eight groups according to change trend. In the mass, the expression of genes was inhibited in the early stage and up-regulated in the late phase. And the gene expression associated with fatty acid synthesis pathway was mainly up-regulated while the catabolic pathway did not change significantly. Most of genes involved in bile acid synthesis pathway were suppressed before 4.5 d and up-regulated after 4.5 d or 7 d. [Conclusion] During the process of liver regeneration, the genes associated with lipid metabolism are expressed in different trends, and this data should provide a specific range of genes for further studying the regulation effect of lipid metabolism related pathway on liver regeneration.

  20. Differentiation of human embryonic stem cells along a hepatocyte lineage and its application in liver regeneration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hepatocyte transplantation and bioartificial liver(BAL)as alternatives to liver transplantation offer the possibility of effective treatment for many inherited and acquired hepatic disorders.Unfortunately,the limited availability of donated livers and the variability of their derived hepatocytes make it difficult to obtain enough viable human hepatocytes for the hepatocyte-based therapies.Embryonic stem cells (ESCs),which could be isolated directly from the blastocyst inner cell mass,have permanent self-renewal capability and developmental pluripotency and therefore might be an ideal cell source in the treatment of hepatic discords.However,differentiation of hESCS into hepatocytes with significant numbers remains a challenge.This review updates our current understanding of differentiation of ESCs into hepatic lineage cells,their future therapeutic uses and problems in liver regeneration.

  1. Liver regeneration - The best kept secret: A model of tissue injury response

    Directory of Open Access Journals (Sweden)

    Javier A. Cienfuegos

    2014-03-01

    Full Text Available Liver regeneration (LR is one of the most amazing tissue injury response. Given its therapeutic significance has been deeply studied in the last decades. LR is an extraordinary complex process, strictly regulated, which accomplishes the characteristics of the most evolutionary biologic systems (robustness and explains the difficulties of reshaping it with therapeutic goals. TH reproduces the physiological tissue damage response pattern, with a first phase of priming of the hepatocytes -cell-cycle transition G0-G1-, and a second phase of proliferation -cell-cycle S/M phases- which ends with the liver mass recovering. This process has been related with the tissue injury response regulators as: complement system, platelets, inflammatory cytokines (TNF-α, IL-1β, IL-6, growth factors (HGF, EGF, VGF and anti-inflammatory factors (IL-10, TGF-β. Given its complexity and strict regulation, illustrates the unique alternative to liver failure is liver transplantation. The recent induced pluripotential cells (iPS description and the mesenchymal stem cell (CD133+ plastic capability have aroused new prospects in the cellular therapy field. Those works have assured the cooperation between mesenchymal and epithelial cells. Herein, we review the physiologic mechanisms of liver regeneration.

  2. Cross effects of resveratrol and mesenchymal stem cells on liver regeneration and homing in partially hepatectomized rats.

    Science.gov (United States)

    Okay, Erdem; Simsek, Turgay; Subasi, Cansu; Gunes, Abdullah; Duruksu, Gokhan; Gurbuz, Yesim; Gacar, Gulcin; Karaoz, Erdal

    2015-04-01

    In this study, we examined the effect of preoperatively administered resveratrol (RV) and mesenchymal stem cells (MSCs) on regeneration of partially hepatectomized rat liver. We also evaluated the effect of RV on homing of MSCs. MSCs were isolated from bone marrow and cultured in vitro. Wistar albino rats were randomly divided into four groups. In groups, rats received (1) no treatment, (2) single dose RV, (3) MSCs and (4) RV plus MSCs before partial hepatectomy (PH). Injected MSCs were traced by labeling them with green fluorescent protein, and liver regeneration was determined by comparison of liver weight gain, histological examination and immunohistochemical staining with proliferating cell nuclear antigen (PCNA) for mitotic cells. The expression levels of tumor necrosis factor -alpha (TNF-α), interleukin-6 (IL-6) and hepatocyte growth factor (HGF) were also determined in the parafin sections of liver specimens with immunohistochemical staining. Administration of RV and MSCs separately or together enhanced liver regeneration despite decreasing the TNF-α and IL-6 expression. This positive contribution was probably due to direct raising effect on HGF for RV and HGF expression for MSCs that we demonstrated with immunohistochemical staining. Additionally, RV increased the homing of MSCs in liver probably related to life prolonging effect on MSCs. These results indicate that preoperative RV as well as MSCs application enhances liver regeneration after partial hepatectomy in rats. Paying attention to RV about the effect on liver regeneration and homing of MSCs might be the goal of further investigations.

  3. Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration.

    Science.gov (United States)

    Walters, Bradley J; Zuo, Jian

    2013-03-01

    The organ of Corti in the mammalian inner ear is comprised of mechanosensory hair cells (HCs) and nonsensory supporting cells (SCs), both of which are believed to be terminally post-mitotic beyond late embryonic ages. Consequently, regeneration of HCs and SCs does not occur naturally in the adult mammalian cochlea, though recent evidence suggests that these cells may not be completely or irreversibly quiescent at earlier postnatal ages. Furthermore, regenerative processes can be induced by genetic and pharmacological manipulations, but, more and more reports suggest that regenerative potential declines as the organ of Corti continues to age. In numerous mammalian systems, such effects of aging on regenerative potential are well established. However, in the cochlea, the problem of regeneration has not been traditionally viewed as one of aging. This is an important consideration as current models are unable to elicit widespread regeneration or full recovery of function at adult ages yet regenerative therapies will need to be developed specifically for adult populations. Still, the advent of gene targeting and other genetic manipulations has established mice as critically important models for the study of cochlear development and HC regeneration and suggests that auditory HC regeneration in adult mammals may indeed be possible. Thus, this review will focus on the pursuit of regeneration in the postnatal and adult mouse cochlea and highlight processes that occur during postnatal development, maturation, and aging that could contribute to an age-related decline in regenerative potential. Second, we will draw upon the wealth of knowledge pertaining to age related senescence in tissues outside of the ear to synthesize new insights and potentially guide future research aimed at promoting HC regeneration in the adult cochlea.

  4. Identification and Characterization of 177 Unreported Genes Associated with Liver Regeneration

    Institute of Scientific and Technical Information of China (English)

    Cunshuan Xu; Salman Rahman; Jingbo Zhang; Cuifang Chang; Jinyun Yuan; Hongpeng Han; Kejin Yang; Lifeng Zhao; Wenqiang Li; Yuchang Li; Huiyong Zhang

    2004-01-01

    The mammalian liver has a very strong regeneration capacity after partial hepatectomy (PH). To further learn the genes participating in the liver regeneration (LR), 551 cDNAs selected from subtracted cDNA libraries of the regenerating rat liver were screened by microarray, and their expression profiles were studied by cluster and generalization analyses. Among them, 177 genes were identified unreported and up- or down-regulated more than twofold at one or more time points after PH, of which 62 genes were down-regulated to less than 0.5; 99 genes were up-regulated to 2-10 folds, and 16 genes were either up- or down-regulated at different time points during LR. By using BLAST and GENSCAN, these genes were located on responsible chromosomes with 131 genes on the long arms of the chromosomes. The cluster and generalization analyses showed that the gene expression profiles are similar in 2 and 4, 12 and 16, 96 and 144 h respectively after PH,suggesting that the actions of the genes expressed in the same profiles are similar,and those expressed in different profiles have less similarity. However, the types,characteristics and functions of the 177 genes remain to be further studied.

  5. Integrative proteomic and microRNA analysis of the priming phase during rat liver regeneration.

    Science.gov (United States)

    Geng, Xiaofang; Chang, Cuifang; Zang, Xiayan; Sun, Jingyan; Li, Pengfei; Guo, Jianli; Xu, Cunshuan

    2016-01-10

    The partial hepatectomy (PH) model provides an effective medium for study of liver regeneration (LR). Considering that LR is regulated by microRNAs (miRNAs), investigation of the regulatory role of miRNAs is critical for revealing how regenerative processes are initiated and controlled. Using high-throughput sequencing technology, we examined miRNA expression profiles of the regenerating rat liver after PH, and found that 23 miRNAs were related to rat LR. Among them, several miRNAs were significantly altered at 2h and 6h after PH, corresponding to the priming phase of LR. Furthermore, we examined the protein profiles in the regenerating rat liver at 2h and 6h after PH by iTRAQ coupled with LC-MS/MS, and found that 278 proteins were significantly changed. Subsequently, an integrative proteomic and microRNA analysis by Ingenuity Pathway Analysis 9.0 (IPA) software showed that miR-125a, miR-143, miR-150, miR-181c, miR-182, miR-183, miR-199a, miR-429 regulated the priming phase of rat LR by modulating the expression of proteins involved in networks critical for cell apoptosis, cell survival, cell cycle, inflammatory response, metabolism, etc. Thus, our studies provide novel evidence for a functional molecular network populated by the down-regulated targets of the up-regulated miRNAs in the priming phase of rat LR.

  6. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    Institute of Scientific and Technical Information of China (English)

    Cui-Ping Xu; Wen-Min Ji; Gijs R van den Brink; Maikel P Peppelenbosch

    2006-01-01

    AIM: To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells.METHODS: Fifty-four adult male Wistar rats were randomly divided into three groups: A normal control (NC) group, a partial hepatectomized (PH) group and a sham operated (SO) group. To study the effect of liver regeneration on BMP-2 expression, rats were sacrificed before and at different time points after PH or the sham intervention (6, 12, 24 and 48 h). For each time point, six rats were used in parallel. Expression and distribution of BMP-2 protein were determined in regenerating liver tissue by Western blot analysis and immunohistochemistry. Effects of BMP-2 on cell proliferation of human Huh7 hepatoma cell line were assessed using an MTT assay.RESULTS: In the normal liver strong BMP-2 expression was observed around the central and portal veins. The expression of BMP-2 decreased rapidly as measured by both immunohistochemistry and Western blot analysis.This decrease was at a maximum of 3.22 fold after 12 h and returned to normal levels at 48 h after PH. No significant changes in BMP-2 immunoreactivity were observed in the SO group. BMP-2 inhibited serum induced Huh7 cell proliferation.CONCLUSION: BMP-2 is expressed in normal adult rat liver and negatively regulates hepatocyte proliferation.The observed down regulation of BMP-2 following partial hepatectomy suggests that such down regulation may be necessary for hepatocyte proliferation.

  7. Functional Characteristics of Reversibly Immortalized Hepatic Progenitor Cells Derived from Mouse Embryonic Liver

    Directory of Open Access Journals (Sweden)

    Yang Bi

    2014-10-01

    Full Text Available Background/Aims: Liver is a vital organ and retains its regeneration capability throughout adulthood, which requires contributions from different cell populations, including liver precursors and intrahepatic stem cells. To overcome the mortality of hepatic progenitors (iHPs in vitro, we aim to establish reversibly immortalized hepatic progenitor cells from mouse embryonic liver. Methods and Results: Using retroviral system to stably express SV40 T antigen flanked with Cre/LoxP sites, we establish a repertoire of iHP clones with varied differentiation potential. The iHP cells maintain long-term proliferative activity and express varied levels of progenitor markers (Pou5f1/Oct4 and Dlk and hepatocyte markers (AFP, Alb and ApoB. Five representative iHP clones express hepatic/pancreatic transcription factors HNF3α/Foxa1, HNF3β/Foxa2, and HNF4α/MODY1. Dexamethasone is shown to promote the expression of hepatocyte markers AFP and TAT, along with ICG-uptake and glycogen storage functions in the iHP clones. Cre-mediated removal of SV40 T antigen reverses the proliferative activity of iHP cells. When iHP cells are subcutaneously implanted in athymic nude mice, no tumor formation is observed for up to 8 weeks. Conclusions: We demonstrate that the established iHP cells are stable, reversible, and non-tumorigenic hepatic progenitor-like cells, which should be valuable for studying liver organogenesis, metabolic regulations, and hepatic lineage-specific differentiation.

  8. Human Adipose Tissue Derived Stem Cells Promote Liver Regeneration in a Rat Model of Toxic Injury

    Directory of Open Access Journals (Sweden)

    Eva Koellensperger

    2013-01-01

    Full Text Available In the light of the persisting lack of donor organs and the risks of allotransplantations, the possibility of liver regeneration with autologous stem cells from adipose tissue (ADSC is an intriguing alternative. Using a model of a toxic liver damage in Sprague Dawley rats, generated by repetitive intraperitoneal application of retrorsine and allyl alcohol, the ability of human ADSC to support the restoration of liver function was investigated. A two-thirds hepatectomy was performed, and human ADSC were injected into one remaining liver lobe in group 1 (n = 20. Injection of cell culture medium performed in group 2 (n = 20 served as control. Cyclosporine was applied to achieve immunotolerance. Blood samples were drawn weekly after surgery to determine liver-correlated blood values. Six and twelve weeks after surgery, animals were sacrificed and histological sections were analyzed. ADSC significantly raised postoperative albumin (P < 0.017, total protein (P < 0.031, glutamic oxaloacetic transaminase (P < 0.001, and lactate dehydrogenase (P < 0.04 levels compared to injection of cell culture medium alone. Transplanted cells could be found up to twelve weeks after surgery in histological sections. This study points towards ADSC being a promising alternative to hepatocyte or liver organ transplantation in patients with severe liver failure.

  9. The combined effect of erythropoietin and granulocyte macrophage colony stimulating factor on liver regeneration after major hepatectomy in rats

    Directory of Open Access Journals (Sweden)

    Frangou Matrona

    2010-07-01

    Full Text Available Abstract Background The liver presents a remarkable capacity for regeneration after hepatectomy but the exact mechanisms and mediators involved are not yet fully clarified. Erythropoietin (EPO and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF have been shown to promote liver regeneration after major hepatectomy. Aim of this experimental study is to compare the impact of exogenous administration of EPO, GM-CSF, as well as their combination on the promotion of liver regeneration after major hepatectomy. Methods Wistar rats were submitted to 70% major hepatectomy. The animals were assigned to 4 experimental groups: a control group (n = 21 that received normal saline, an EPO group (n = 21, that received EPO 500 IU/kg, a GM-CSF group (n = 21 that received 20 mcg/kg of GM-CSF and a EPO+GMCSF group (n = 21 which received a combination of the above. Seven animals of each group were killed on the 1st, 3rd and 7th postoperative day and their remnant liver was removed to evaluate liver regeneration by immunochemistry for PCNA and Ki 67. Results Our data suggest that EPO and GM-CSF increases liver regeneration following major hepatectomy when administered perioperatively. EPO has a more significant effect than GM-CSF (p Conclusion EPO, GM-CSF and their combination enhance liver regeneration after hepatectomy in rats when administered perioperatively. However their combination has a weaker effect on liver regeneration compared to EPO alone. Further investigation is needed to assess the exact mechanisms that mediate this finding.

  10. Injected matrix stimulates myogenesis and regeneration of mouse skeletal muscle after ischaemic injury

    Directory of Open Access Journals (Sweden)

    D Kuraitis

    2012-09-01

    Full Text Available Biomaterial-guided regeneration represents a novel approach for the treatment of myopathies. Revascularisation and the intramuscular extracellular matrix are important factors in stimulating myogenesis and regenerating muscle damaged by ischaemia. In this study, we used an injectable collagen matrix, enhanced with sialyl LewisX (sLeX, to guide skeletal muscle differentiation and regeneration. The elastic properties of collagen and sLeX-collagen matrices were similar to those of skeletal muscle, and culture of pluripotent mESCs on the matrices promoted their differentiation into myocyte-like cells expressing Pax3, MHC3, myogenin and Myf5. The regenerative properties of matrices were evaluated in ischaemic mouse hind-limbs. Treatment with the sLeX-matrix augmented the production of myogenic-mediated factors insulin-like growth factor (IGF-1, and IGF binding protein-2 and -5 after 3 days. This was followed by muscle regeneration, including a greater number of regenerating myofibres and increased transcription of Six1, M-cadherin, myogenin and Myf5 after 10 days. Simultaneously, the sLeX-matrix promoted increased mobilisation and engraftment of bone marrow-derived progenitor cells, the development of larger arterioles and the restoration of tissue perfusion. Both matrix treatments tended to reduce maximal forces of ischaemic solei muscles, but sLeX-matrix lessened this loss of force and also prevented muscle fatigue. Only sLeX-matrix treatment improved mobility of mice on a treadmill. Together, these results suggest a novel approach for regenerative myogenesis, whereby treatment only with a matrix, which possesses an inherent ability to guide myogenic differentiation of pluripotent stem cells, can enhance the endogenous vascular and myogenic regeneration of skeletal muscle, thus holding promise for future clinical use.

  11. Injected matrix stimulates myogenesis and regeneration of mouse skeletal muscle after ischaemic injury.

    Science.gov (United States)

    Kuraitis, D; Ebadi, D; Zhang, P; Rizzuto, E; Vulesevic, B; Padavan, D T; Al Madhoun, A; McEwan, K A; Sofrenovic, T; Nicholson, K; Whitman, S C; Mesana, T G; Skerjanc, I S; Musarò, A; Ruel, M; Suuronen, E J

    2012-09-12

    Biomaterial-guided regeneration represents a novel approach for the treatment of myopathies. Revascularisation and the intramuscular extracellular matrix are important factors in stimulating myogenesis and regenerating muscle damaged by ischaemia. In this study, we used an injectable collagen matrix, enhanced with sialyl LewisX (sLeX), to guide skeletal muscle differentiation and regeneration. The elastic properties of collagen and sLeX-collagen matrices were similar to those of skeletal muscle, and culture of pluripotent mESCs on the matrices promoted their differentiation into myocyte-like cells expressing Pax3, MHC3, myogenin and Myf5. The regenerative properties of matrices were evaluated in ischaemic mouse hind-limbs. Treatment with the sLeX-matrix augmented the production of myogenic-mediated factors insulin-like growth factor (IGF)-1, and IGF binding protein-2 and -5 after 3 days. This was followed by muscle regeneration, including a greater number of regenerating myofibres and increased transcription of Six1, M-cadherin, myogenin and Myf5 after 10 days. Simultaneously, the sLeX-matrix promoted increased mobilisation and engraftment of bone marrow-derived progenitor cells, the development of larger arterioles and the restoration of tissue perfusion. Both matrix treatments tended to reduce maximal forces of ischaemic solei muscles, but sLeX-matrix lessened this loss of force and also prevented muscle fatigue. Only sLeX-matrix treatment improved mobility of mice on a treadmill. Together, these results suggest a novel approach for regenerative myogenesis, whereby treatment only with a matrix, which possesses an inherent ability to guide myogenic differentiation of pluripotent stem cells, can enhance the endogenous vascular and myogenic regeneration of skeletal muscle, thus holding promise for future clinical use.

  12. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration.

    Science.gov (United States)

    Hu, Chenxia; Li, Lanjuan

    2015-08-01

    Various liver diseases result in terminal hepatic failure, and liver transplantation, cell transplantation and artificial liver support systems are emerging as effective therapies for severe hepatic disease. However, all of these treatments are limited by organ or cell resources, so developing a sufficient number of functional hepatocytes for liver regeneration is a priority. Liver regeneration is a complex process regulated by growth factors (GFs), cytokines, transcription factors (TFs), hormones, oxidative stress products, metabolic networks, and microRNA. It is well-known that the function of isolated primary hepatocytes is hard to maintain; when cultured in vitro, these cells readily undergo dedifferentiation, causing them to lose hepatocyte function. For this reason, most studies focus on inducing stem cells, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), hepatic progenitor cells (HPCs), and mesenchymal stem cells (MSCs), to differentiate into hepatocyte-like cells (HLCs) in vitro. In this review, we mainly focus on the nature of the liver regeneration process and discuss how to maintain and enhance in vitro hepatic function of isolated primary hepatocytes or stem cell-derived HLCs for liver regeneration. In this way, hepatocytes or HLCs may be applied for clinical use for the treatment of terminal liver diseases and may prolong the survival time of patients in the near future.

  13. Significance and mechanism of CYP7a1 gene regulation during the acute phase of liver regeneration.

    Science.gov (United States)

    Zhang, Lisheng; Huang, Xiongfei; Meng, Zhipeng; Dong, Bingning; Shiah, Steven; Moore, David D; Huang, Wendong

    2009-02-01

    Cholesterol 7alpha-hydroxylase (CYP7a1) is the rate-limiting enzyme in the classic pathway of bile acid synthesis. Expression of CYP7a1 is regulated by a negative feedback pathway of bile acid signaling. Previous studies have suggested that bile acid signaling is also required for normal liver regeneration, and CYP7a1 expression is strongly repressed after 70% partial hepatectomy (PH). Both the effect of CYP7a1 suppression on liver regrowth and the mechanism by which 70% PH suppresses CYP7a1 expression are unknown. Here we show that liver-specific overexpression of an exogenous CYP7a1 gene impaired liver regeneration after 70% PH, which was accompanied by increased hepatocyte apoptosis and liver injury. CYP7a1 expression was initially suppressed after 70% PH in an farnesoid X receptor/ small heterodimer partner-independent manner; however, both farnesoid X receptor and small heterodimer partner were required to regulate CYP7a1 expression at the later stage of liver regeneration. c-Jun N-terminus kinase and hepatocyte growth factor signaling pathways are activated during the acute phase of liver regeneration. We determined that hepatocyte growth factor and c-Jun N-terminus kinase pathways were involved in the suppressing of the CYP7a1 expression in the acute phase of live regeneration. Taken together, our results provide the significance that CYP7a1 suppression is required for liver protection after 70% PH and there are two distinct phases of CYP7a1 gene regulation during liver regeneration.

  14. MBSJ MCC Young Scientist Award 2012 Liver regeneration: a unique and flexible reaction depending on the type of injury.

    Science.gov (United States)

    Suzuki, Atsushi

    2015-02-01

    The liver can be thought of as a mysterious organ, because it has an elegant regenerative capability. This phenomenon has been well known since ancient times and is already applied to medical treatments for severe hepatic disorders by transplanting portions of liver received from living donors. However, it was not until quite recently that the mechanism underlying the principle of liver regeneration was investigated more deeply. Recent advances in the technologies for characterizing cell properties and examining the molecular nature of cells are enabling us to understand what occurs in the regenerating liver. After acute liver damage, hepatocytes actively proliferate in response to external stimulation by humoral factors. However, in the chronically injured liver, hepatocytes cannot proliferate well, but biliary cells appearing after chronic liver damage form primitive ductules around portal veins of the liver. These biliary cells may have a multiple origin, including hepatocytes, and contain progenitor cells giving rise to both hepatocytes and biliary cells, or represent cells that can be directly converted into hepatocytes. Although liver regeneration is more complicated than we had thought, unremitting efforts by researchers will certainly connect the numerous findings obtained in basic research with the development of new therapeutic strategies for liver diseases. © 2014 The Authors. Genes to Cells published by Wiley Publishing Asia Pty Ltd and the Molecular Biology Society of Japan.

  15. Comparative analysis of regulatory roles of P38 signaling pathway in 8 types liver cell during liver regeneration.

    Science.gov (United States)

    Yang, Xianguang; Zhu, Lin; Zhao, Weiming; Shi, Yaohuang; He, Chuncui; Xu, Cunshuan

    2016-12-05

    P38MAPK signaling pathway was closely related to cell proliferation, apoptosis, cell differentiation, cell survival, cell death, and so on. However, the regulatory mechanism of P38MAPK signaling pathway in liver regeneration (LR) was unclear. In order to further reveal the roles of P38MAPK signaling pathway in rat liver regeneration, Ingenuity Pathway Analysis (IPA) software and related data sites were used to construct P38MAPK signaling pathway, and the pathway was confirmed by relevant documents literature. The expression changes of P38MAPK signaling pathway-related gene in eight type cells were further analyzed by Rat Genome 230 2.0 Array, and the results showed that 95 genes in P38MAPK signaling pathway had significant changes. H-cluster analysis showed that hepatocyte cell (HC), pit cell (PC), oval cell (OC) and biliary epithelial cell (BEC) are clustered together; and the same as Kupffer cell (KC), sinusoidal endothelial cell (SEC), dendritic cell (DC) and hepatic stellate cell (HSC). IPA software and expression analysis systematic explorer (EASE) were applied to functional enrichment analysis, and the results showed that P38MAPK signaling pathway was mainly involved in apoptosis, cell death, cell proliferation, cell survival, cell viability, activation, cell cycle progression, necrosis, synthesis of DNA and other physical activity during LR. In conclusion, P38MAPK signaling pathway regulated various physiological activities of LR through multiple signaling pathways.

  16. Transcription Profiles of Marker Genes Predict The Transdifferentiation Relationship between Eight Types of Liver Cell during Rat Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Xiaguang Chen

    2015-07-01

    Full Text Available Objective: To investigate the transdifferentiation relationship between eight types of liver cell during rat liver regeneration (LR. Materials and Methods: 114 healthy Sprague-Dawley (SD rats were used in this experimental study. Eight types of liver cell were isolated and purified with percoll density gradient centrifugation and immunomagentic bead methods. Marker genes for eight types of cell were obtained by retrieving the relevant references and databases. Expression changes of markers for each cell of the eight cell types were measured using microarray. The relationships between the expression profiles of marker genes and transdifferentiation among liver cells were analyzed using bioinformatics. Liver cell transdifferentiation was predicted by comparing expression profiles of marker genes in different liver cells. Results: During LR hepatocytes (HCs not only express hepatic oval cells (HOC markers (including PROM1, KRT14 and LY6E, but also express biliary epithelial cell (BEC markers (including KRT7 and KRT19; BECs express both HOC markers (including GABRP, PCNA and THY1 and HC markers such as CPS1, TAT, KRT8 and KRT18; both HC markers (KRT18, KRT8 and WT1 and BEC markers (KRT7 and KRT19 were detected in HOCs. Additionally, some HC markers were also significantly upregulated in hepatic stellate cells ( HSCs, sinusoidal endothelial cells (SECs , Kupffer cells (KCs and dendritic cells (DCs, mainly at 6-72 hours post partial hepatectomy (PH. Conclusion: Our findings indicate that there is a mutual transdifferentiation relationship between HC, BEC and HOC during LR, and a tendency for HSCs, SECs, KCs and DCs to transdifferentiate into HCs.

  17. Clinical data and characterization of the liver conditional mouse model exclude neoplasia as a non-neurological manifestation associated with Friedreich’s ataxia

    Directory of Open Access Journals (Sweden)

    Alain Martelli

    2012-11-01

    Friedreich’s ataxia (FRDA is the most common hereditary ataxia in the caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia, hypertrophic cardiomyopathy and increased incidence of diabetes. FRDA is caused by impaired expression of the FXN gene coding for the mitochondrial protein frataxin. During the past ten years, the development of mouse models of FRDA has allowed better understanding of the pathophysiology of the disease. Among the mouse models of FRDA, the liver conditional mouse model pointed to a tumor suppressor activity of frataxin leading to the hypothesis that individuals with FRDA might be predisposed to cancer. In the present work, we investigated the presence and the incidence of neoplasia in the largest FRDA patient cohorts from the USA, Australia and Europe. As no predisposition to cancer could be observed in both cohorts, we revisited the phenotype of the liver conditional mouse model. Our results show that frataxin-deficient livers developed early mitochondriopathy, iron-sulfur cluster deficits and intramitochondrial dense deposits, classical hallmarks observed in frataxin-deficient tissues and cells. With age, a minority of mice developed structures similar to the ones previously associated with tumor formation. However, these peripheral structures contained dying, frataxin-deficient hepatocytes, whereas the inner liver structure was composed of a pool of frataxin-positive cells, due to inefficient Cre-mediated recombination of the Fxn gene, that contributed to regeneration of a functional liver. Together, our data demonstrate that frataxin deficiency and tumorigenesis are not associated.

  18. Acylcarnitine Profiles in Acetaminophen Toxicity in the Mouse: Comparison to Toxicity, Metabolism and Hepatocyte Regeneration

    Directory of Open Access Journals (Sweden)

    Jack Hinson

    2013-08-01

    Full Text Available High doses of acetaminophen (APAP result in hepatotoxicity that involves metabolic activation of the parent compound, covalent binding of the reactive intermediate N-acetyl-p-benzoquinone imine (NAPQI to liver proteins, and depletion of hepatic glutathione. Impaired fatty acid β-oxidation has been implicated in previous studies of APAP-induced hepatotoxicity. To better understand relationships between toxicity and fatty acid β-oxidation in the liver in APAP toxicity, metabolomic assays for long chain acylcarnitines were examined in relationship to established markers of liver toxicity, oxidative metabolism, and liver regeneration in a time course study in mice. Male B6C3F1 mice were treated with APAP (200 mg/kg IP or saline and sacrificed at 1, 2, 4, 8, 24 or 48 h after APAP. At 1 h, hepatic glutathione was depleted and APAP protein adducts were markedly increased. Alanine aminotransferase (ALT levels were elevated at 4 and 8 h, while proliferating cell nuclear antigen (PCNA expression, indicative of hepatocyte regeneration, was apparent at 24 h and 48 h. Elevations of palmitoyl, oleoyl and myristoyl carnitine were apparent by 2–4 h, concurrent with the onset of Oil Red O staining in liver sections. By 8 h, acylcarnitine levels were below baseline levels and remained low at 24 and 48 h. A partial least squares (PLS model suggested a direct association of acylcarnitine accumulation in serum to APAP protein adduct and hepatic glutathione levels in mice. Overall, the kinetics of serum acylcarnitines in APAP toxicity in mice followed a biphasic pattern involving early elevation after the metabolism phases of toxicity and later depletion of acylcarnitines.

  19. Hepatocyte-specific deletion of Cdc42 results in delayed liver regeneration after partial hepatectomy in mice

    DEFF Research Database (Denmark)

    Yuan, Haixin; Zhang, Hong; Wu, Xunwei

    2009-01-01

    . Consistent with this, expression of cyclins D1, A, and E was markedly delayed or reduced in Cdc42LK livers during regeneration. As a potential effector of Cdc42, Rac1 activation was dramatically attenuated in Cdc42LK livers after partial hepatectomy, suggesting it is regulated in a Cdc42-dependent manner....... Activation of certain proliferative signaling pathways, such as extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p70S6 kinase pathways, was delayed in Cdc42LK livers. In addition, dilated bile canaliculi and excessive lipid accumulation were observed in mutant livers during liver...

  20. [Isolation and purification of primary Kupffer cells from mouse liver].

    Science.gov (United States)

    Sun, Chao; Luo, Qingbo; Lu, Xiuxian; Zheng, Daofeng; He, Diao; Wu, Zhongjun

    2016-08-01

    Objective To isolate and purify Kupffer cells (KCs) from BALB/c mice by an efficient method of low-speed centrifugation and rapid adherence. Methods The mouse liver tissue was perfused in situ and digested with 0.5 g/L collagenase type IV in vitro by water bath. Then, through the low-speed centrifugation, KCs were separated from the mixed hepatocytes, and purified by rapid adherent characteristics. Finally, the production and activity of KCs obtained by this modified method were compared with those isolated by Percoll density gradient centrifugation. We used F4/80 antibody immunofluorescence technique to observe morphological features of KCs, flow cytometry (FCM) to detect the expression of F4/80 antibody and the ink uptake test to observe the phagocytic activity. Moreover, using FCM, we evaluated the expressions of molecules associated with antigen presentation, including major histocompatibility complex class II (MHC II), CD40, CD86 and CD68 on the surface of KCs subjected to hypoxia/reoxygenation (H/R) modeling. And, ELISA was conducted to measure tumor necrosis factor-α (TNF-α) production of the cultured KCs following H/R. Results The yield of KCs was (5.83±0.54)×10(6) per mouse liver and the survival rate of KCs was up to 92% by low-speed centrifugation and rapid adherent method. Compared with Percoll density gradient centrifugation [the yield of KCs was (2.19±0.43)×10(6) per liver], this new method significantly improved the yield of KCs. F4/80 immunofluorescence showed typical morphologic features of KCs such as spindle or polygon shapes and FCM identified nearly 90% F4/80 positive cells. The phagocytic assay showed that lots of ink particles were phagocytosed into the isolated cells. KC H/R models expressed more MHC II, CD40 and CD86 and produced more TNF-α participating in inflammation. Conclusion The efficient method to isolate and purify KCs from BALB /c mice has been successfully established.

  1. GH receptor plays a major role in liver regeneration through the control of EGFR and ERK1/2 activation.

    Science.gov (United States)

    Zerrad-Saadi, Amal; Lambert-Blot, Martine; Mitchell, Claudia; Bretes, Hugo; Collin de l'Hortet, Alexandra; Baud, Véronique; Chereau, Fanny; Sotiropoulos, Athanassia; Kopchick, John J; Liao, Lan; Xu, Jianming; Gilgenkrantz, Hélène; Guidotti, Jacques-Emmanuel

    2011-07-01

    GH is a pleiotropic hormone that plays a major role in proliferation, differentiation, and metabolism via its specific receptor. It has been previously suggested that GH signaling pathways are required for normal liver regeneration but the molecular mechanisms involved have yet to be determined. The aim of this study was to identify the mechanisms by which GH controls liver regeneration. We performed two thirds partial hepatectomies in GH receptor (GHR)-deficient mice and wild-type littermates and showed a blunted progression in the G(1)/S transition phase of the mutant hepatocytes. This impaired liver regeneration was not corrected by reestablishing IGF-1 expression. Although the initial response to partial hepatectomy at the priming phase appeared to be similar between mutant and wild-type mice, cell cycle progression was significantly blunted in mutant mice. The main defect in GHR-deficient mice was the deficiency of the epidermal growth factor receptor activation during the process of liver regeneration. Finally, among the pathways activated downstream of GHR during G(1) phase progression, namely Erk1/2, Akt, and signal transducer and activator of transcription 3, we only found a reduced Erk1/2 phosphorylation in mutant mice. In conclusion, our results demonstrate that GH signaling plays a major role in liver regeneration and strongly suggest that it acts through the activation of both epidermal growth factor receptor and Erk1/2 pathways.

  2. Expression of bcl-2 gene family during resection induced liver regeneration:Comparison between hepatectomized and sham groups

    Institute of Scientific and Technical Information of China (English)

    Kamil Can Akcali; Aydin Dalgic; Ahmet Ucar; Khemaeis Ben Haj; Dilek Guvenc

    2004-01-01

    AIM: During liver regeneration cellular proliferation and apoptosis result in tissue remodeling to restore normal hepatic mass and structure. Main regulators of the apoptotic machinery are the Bcl-2 family proteins but their roles are not well defined throughout the liver regeneration. We aimed to analyze the expression levels of bcl-2gene family members during resection induced liver regeneration.METHODS: We performed semi-quantitative RT-PCR to examine the expression level of bak, bax, bcl-2 and bcl-xL in 70% hepatectomized rat livers during the whole regeneration process and compared to that of the sham and normal groups.RESULTS: The expression of bakand baxwas decreased whereas that of bcl-2and bcl-XL was increased in hepatectomized animals compared to normal liver at most time points. We also reported for the first time that sham group of animals had statistically significant higher expression of bakand bax than hepatectomized animals. In addition, the area under the curve (AUC) values of these genes was larger in sham groups than the hepatectomized groups.CONCLUSION: The expression changes of bak, bax, bcl-2 and bcl-,XL genes are altered not only due to regeneration,but also due to effects of surgical operations.

  3. Expression patterns and action analysis of genes associated with hepatitis virus infection during rat liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Li-Juan Su; Guang-Wei Ding; Zhi-Li Yang; Shou-Bing Zhang; Yu-Xiu Yang; Cun-Shuan Xu

    2006-01-01

    AIM: To study the action of hepatitis virus infectionassociated genes at transcription level during liver regeneration (LR).METHODS: Hepatitis virus infection-associated genes were obtained by collecting the data from databases and retrieving the correlated articles, and their expression changes in the regenerating rat liver were detected with the rat genome 230 2.0 array.RESULTS: Eighty-eight genes were found to be associated with liver regeneration. The number of genes initially and totally expressed during initial LR [0.5-4 h after partial hepatectomy (PH)], transition from G0 to G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and reorganization of structure-function (66-168 h after PH) was 37, 8, 48, 3 and 37,26, 80, 57, respectively, indicating that the genes were mainly triggered at the early stage of LR (0.5-4 h after PH), and worked at different phases. These genes were classified into 5 types according to their expression similarity, namely 37 up-regulated, 9 predominantly up-regulated, 34 down-regulated, 6 predominantly down-regulated and 2 up/down-regulated genes. Their total up- and down-regulation frequencies were 359 and 149 during LR, indicating that the expression of most genes was enhanced, while the expression of a small number of genes was attenuated during LR. According to time relevance, they were classified into 12 groups (0.5 and 1h, 2 and 4h, 6h, 8 and 12h, 16 and 96h, 18 and 24 h, 30 and 42 h, 36 and 48 h, 54 and 60 h, 66 and 72 h, 120 and 144 h, 168 h), demonstrating that the cellular physiological and biochemical activities during LR were fluctuated. According to expression changes of the genes, their expression patterns were classified into 23 types, suggesting that the cellular physiological and biochemical activities during LR were diverse and complicated.CONCLUSION: The anti-virus infection capacity of regenerating liver can be enhanced and 88 genes play an important role in LR.

  4. Redox state and energy metabolism during liver regeneration: alterations produced by acute ethanol administration.

    Science.gov (United States)

    Gutiérrez-Salinas, J; Miranda-Garduño, L; Trejo-Izquierdo, E; Díaz-Muñoz, M; Vidrio, S; Morales-González, J A; Hernández-Muñoz, R

    1999-12-01

    Ethanol metabolism can induce modifications in liver metabolic pathways that are tightly regulated through the availability of cellular energy and through the redox state. Since partial hepatectomy (PH)-induced liver proliferation requires an oversupply of energy for enhanced syntheses of DNA and proteins, the present study was aimed at evaluating the effect of acute ethanol administration on the PH-induced changes in cellular redox and energy potentials. Ethanol (5 g/kg body weight) was administered to control rats and to two-thirds hepatectomized rats. Quantitation of the liver content of lactate, pyruvate, beta-hydroxybutyrate, acetoacetate, and adenine nucleotides led us to estimate the cytosolic and mitochondrial redox potentials and energy parameters. Specific activities in the liver of alcohol-metabolizing enzymes also were measured in these animals. Liver regeneration had no effect on cellular energy availability, but induced a more reduced cytosolic redox state accompanied by an oxidized mitochondrial redox state during the first 48 hr of treatment; the redox state normalized thereafter. Administration of ethanol did not modify energy parameters in PH rats, but this hepatotoxin readily blocked the PH-induced changes in the cellular redox state. In addition, proliferating liver promoted decreases in the activity of alcohol dehydrogenase (ADH) and of cytochrome P4502E1 (CYP2E1); ethanol treatment prevented the PH-induced diminution of ADH activity. In summary, our data suggest that ethanol could minimize the PH-promoted metabolic adjustments mediated by redox reactions, probably leading to an ineffective preparatory event that culminates in compensatory liver growth after PH in the rat.

  5. Function and expression study uncovered hepatocyte plasma membrane ecto-ATP synthase as a novel player in liver regeneration.

    Science.gov (United States)

    Taurino, Federica; Giannoccaro, Caterina; Sardanelli, Anna Maria; Cavallo, Alessandro; De Luca, Elisa; Santacroce, Salvatore; Papa, Sergio; Zanotti, Franco; Gnoni, Antonio

    2016-08-15

    ATP synthase, canonically mitochondrially located, is reported to be ectopically expressed on the plasma membrane outer face of several cell types. We analysed, for the first time, the expression and catalytic activities of the ecto- and mitochondrial ATP synthase during liver regeneration. Liver regeneration was induced in rats by two-thirds partial hepatectomy. The protein level and the ATP synthase and/or hydrolase activities of the hepatocyte ecto- and mitochondrial ATP synthase were analysed on freshly isolated hepatocytes and mitochondria from control, sham-operated and partial hepatectomized rats. During the priming phase of liver regeneration, 3 h after partial hepatectomy, liver mitochondria showed a marked lowering of the ATP synthase protein level that was reflected in the impairment of both ATP synthesis and hydrolysis. The ecto-ATP synthase level, in 3 h partial hepatectomized hepatocytes, was decreased similarly to the level of the mitochondrial ATP synthase, associated with a lowering of the ecto-ATP hydrolase activity coupled to proton influx. Noteworthily, the ecto-ATP synthase activity coupled to proton efflux was completely inhibited in 3 h partial hepatectomized hepatocytes, even in the presence of a marked intracellular acidification that would sustain it as in control and sham-operated hepatocytes. At the end of the liver regeneration, 7 days after partial hepatectomy, the level and the catalytic activities of the ecto- and mitochondrial ATP synthase reached the control and sham-operated values. The specific modulation of hepatocyte ecto-ATP synthase catalytic activities during liver regeneration priming phase may modulate the extracellular ADP/ATP levels and/or proton influx/efflux trafficking, making hepatocyte ecto-ATP synthase a candidate for a novel player in the liver regeneration process. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  6. TRANEXAMIC ACID ACTION ON LIVER REGENERATION AFTER PARTIAL HEPATECTOMY: EXPERIMENTAL MODEL IN RATS.

    Science.gov (United States)

    Sobral, Felipe Antonio; Daga, Henrique; Rasera, Henrique Nogueira; Pinheiro, Matheus da Rocha; Cella, Igor Furlan; Morais, Igor Henrique; Marques, Luciana de Oliveira; Collaço, Luiz Martins

    2016-01-01

    Different lesions may affect the liver resulting in harmful stimuli. Some therapeutic procedures to treat those injuries depend on liver regeneration to increase functional capacity of this organ. Evaluate the effects of tranexamic acid on liver regeneration after partial hepatectomy in rats. 40 rats (Rattus norvegicus albinus, Rodentia mammalia) of Wistar-UP lineage were randomly divided into two groups named control (CT) and tranexamic acid (ATX), with 20 rats in each. Both groups were subdivided, according to liver regeneration time of 32 h or seven days after the rats had been operated. The organ regeneration was evaluated through weight and histology, stained with HE and PCNA. The average animal weight of ATX and CT 7 days groups before surgery were 411.2 g and 432.7 g, and 371.3 g and 392.9 g after the regeneration time, respectively. The average number of mitotic cells stained with HE for the ATX and CT 7 days groups were 33.7 and 32.6 mitosis, and 14.5 and 14.9 for the ATX and CT 32 h groups, respectively. When stained with proliferating cell nuclear antigen, the numbers of mitotic cells counted were 849.7 for the ATX 7 days, 301.8 for the CT 7 days groups, 814.2 for the ATX 32 hand 848.1 for the CT 32 h groups. Tranexamic acid was effective in liver regeneration, but in longer period after partial hepatectomy. Muitas são as injúrias que acometem o fígado e levam a estímulo lesivo. Alguns procedimentos terapêuticos para tratamento dessas lesões dependem da regeneração hepática para aumentar a sua capacidade funcional. Avaliar o efeito do ácido tranexâmico na regeneração hepática após hepatectomia parcial em ratos. Foram utilizados 40 ratos (Rattus norvegicus albinus, Rodentia mammalia) convencionais da linhagem Wistar-UP. Foram divididos aleatoriamente em dois grupos de 20: grupo controle (CT) e grupo ácido tranexâmico (ATX). Cada um deles foi divido em dois subgrupos para avaliar a regeneração hepática no tempo de 32 h e 7 dias do p

  7. The mitochondrial import gene tomm22 is specifically required for hepatocyte survival and provides a liver regeneration model

    Science.gov (United States)

    Curado, Silvia; Ober, Elke A.; Walsh, Susan; Cortes-Hernandez, Paulina; Verkade, Heather; Koehler, Carla M.; Stainier, Didier Y. R.

    2010-01-01

    SUMMARY Understanding liver development should lead to greater insights into liver diseases and improve therapeutic strategies. In a forward genetic screen for genes regulating liver development in zebrafish, we identified a mutant – oliver – that exhibits liver-specific defects. In oliver mutants, the liver is specified, bile ducts form and hepatocytes differentiate. However, the hepatocytes die shortly after their differentiation, and thus the resulting mutant liver consists mainly of biliary tissue. We identified a mutation in the gene encoding translocase of the outer mitochondrial membrane 22 (Tomm22) as responsible for this phenotype. Mutations in tomm genes have been associated with mitochondrial dysfunction, but most studies on the effect of defective mitochondrial protein translocation have been carried out in cultured cells or unicellular organisms. Therefore, the tomm22 mutant represents an important vertebrate genetic model to study mitochondrial biology and hepatic mitochondrial diseases. We further found that the temporary knockdown of Tomm22 levels by morpholino antisense oligonucleotides causes a specific hepatocyte degeneration phenotype that is reversible: new hepatocytes repopulate the liver as Tomm22 recovers to wild-type levels. The specificity and reversibility of hepatocyte ablation after temporary knockdown of Tomm22 provides an additional model to study liver regeneration, under conditions where most hepatocytes have died. We used this regeneration model to analyze the signaling commonalities between hepatocyte development and regeneration. PMID:20483998

  8. A systematic analysis of neonatal mouse heart regeneration after apical resection.

    Science.gov (United States)

    Bryant, Donald Marion; O'Meara, Caitlin Claire; Ho, Nhi Ngoc; Gannon, Joseph; Cai, Lei; Lee, Richard Theodore

    2015-02-01

    The finding that neonatal mice are able to regenerate myocardium after apical resection has recently been questioned. We determined if heart regeneration is influenced by the size of cardiac resection and whether surgical retraction of the ventricular apex results in an increase in cardiomyocyte cell cycle activity. We performed moderate or large apical ventricular resections on neonatal mice and quantified scar infiltration into the left ventricular wall at 21 days post-surgery. Moderately resected hearts had 15±2% of the wall infiltrated by a collagen scar; significantly greater scar infiltration (23±4%) was observed in hearts with large resections. Resected hearts had higher levels of cardiomyocyte cell cycle activity relative to sham hearts. Surgically retracting the ventricle often resulted in fibrosis and induced cardiomyocyte cell cycle activity that were comparable to that of resected hearts. We conclude that apical resection in neonatal mice induces cardiomyocyte cell cycle activity and neomyogenesis, although scarring can occur. Surgical technique and definition of approach to assessing the extent of regeneration are both critical when using the neonatal mouse apical resection model.

  9. Study of MicroRNAs Related to the Liver Regeneration of the Whitespotted Bamboo Shark, Chiloscyllium plagiosum

    Directory of Open Access Journals (Sweden)

    Conger Lu

    2013-01-01

    Full Text Available To understand the mechanisms of liver regeneration better to promote research examining liver diseases and marine biology, normal and regenerative liver tissues of Chiloscyllium plagiosum were harvested 0 h and 24 h after partial hepatectomy (PH and used to isolate small RNAs for miRNA sequencing. In total, 91 known miRNAs and 166 putative candidate (PC miRNAs were identified for the first time in Chiloscyllium plagiosum. Through target prediction and GO analysis, 46 of 91 known miRNAs were screened specially for cellular proliferation and growth. Differential expression levels of three miRNAs (xtr-miR-125b, fru-miR-204, and hsa-miR-142-3p_R-1 related to cellular proliferation and apoptosis were measured in normal and regenerating liver tissues at 0 h, 6 h, 12 h, and 24 h using real-time PCR. The expression of these miRNAs showed a rising trend in regenerative liver tissues at 6 h and 12 h but exhibited a downward trend compared to normal levels at 24 h. Differentially expressed genes were screened in normal and regenerating liver tissues at 24 h by DDRT-PCR, and ten sequences were identified. This study provided information regarding the function of genes related to liver regeneration, deepened the understanding of mechanisms of liver regeneration, and resulted in the addition of a significant number of novel miRNAs sequences to GenBank.

  10. Down-regulation of MiR-127 facilitates hepatocyte proliferation during rat liver regeneration.

    Directory of Open Access Journals (Sweden)

    Chuanyong Pan

    Full Text Available Liver regeneration (LR after partial hepatectomy (PH involves the proliferation and apoptosis of hepatocytes, and microRNAs have been shown to post-transcriptionally regulate genes involved in the regulation of these processes. To explore the role of miR-127 during LR, the expression patterns of miR-127 and its related proteins were investigated. MiR-127 was introduced into a rat liver cell line to examine its effects on the potential target genes Bcl6 and Setd8, and functional studies were undertaken. We discovered that miR-127 was down-regulated and inversely correlated with the expression of Bcl6 and Setd8 at 24 hours after PH, a time at which hypermethylation of the promoter region of the miR-127 gene was detected. Furthermore, in BRL-3A rat liver cells, we observed that overexpression of miR-127 significantly suppressed cell growth and directly inhibited the expression of Bcl6 and Setd8. The results suggest that down-regulation of miR-127 may be due to the rapid methylation of its promoter during the first 24 h after PH, and this event facilitates hepatocyte proliferation by releasing Bcl6 and Setd8. These findings support a miRNA-mediated negative regulation pattern in LR and implicate an anti-proliferative role for miR-127 in liver cells.

  11. A microRNA signature for tumorigenic conazoles in mouse liver.

    Science.gov (United States)

    Triadimefon, propiconazole and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants o...

  12. Altered microRNA expression induced by tumorigenic conazoles in mouse liver.

    Science.gov (United States)

    Triadimefon, propiconazole, and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants ...

  13. A potential microRNA signature for tumorigenic conazoles in mouse liver

    Science.gov (United States)

    Triadimefon, propiconazole and myclobutanil are conazoles, an important class of agricultural fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants of conazole tumor...

  14. Human Bone Marrow Mesenchymal Stem Cell-Derived Hepatocytes Improve the Mouse Liver after Acute Acetaminophen Intoxication by Preventing Progress of Injury

    Directory of Open Access Journals (Sweden)

    Peggy Stock

    2014-04-01

    Full Text Available Mesenchymal stem cells from human bone marrow (hMSC have the potential to differentiate into hepatocyte-like cells in vitro and continue to maintain important hepatocyte functions in vivo after transplantation into host mouse livers. Here, hMSC were differentiated into hepatocyte-like cells in vitro (hMSC-HC and transplanted into livers of immunodeficient Pfp/Rag2−/− mice treated with a sublethal dose of acetaminophen (APAP to induce acute liver injury. APAP induced a time- and dose-dependent damage of perivenous areas of the liver lobule. Serum levels of aspartate aminotransferase (AST increased to similar levels irrespective of hMSC-HC transplantation. Yet, hMSC-HC resided in the damaged perivenous areas of the liver lobules short-term preventing apoptosis and thus progress of organ destruction. Disturbance of metabolic protein expression was lower in the livers receiving hMSC-HC. Seven weeks after APAP treatment, hepatic injury had completely recovered in groups both with and without hMSC-HC. Clusters of transplanted cells appeared predominantly in the periportal portion of the liver lobule and secreted human albumin featuring a prominent quality of differentiated hepatocytes. Thus, hMSC-HC attenuated the inflammatory response and supported liver regeneration after acute injury induced by acetaminophen. They hence may serve as a novel source of hepatocyte-like cells suitable for cell therapy of acute liver diseases.

  15. Perivascular Stem Cells at the Tip of Mouse Incisors Regulate Tissue Regeneration.

    Science.gov (United States)

    Pang, Yvonne Wy; Feng, Jifan; Daltoe, Felipe; Fatscher, Robert; Gentleman, Eileen; Gentleman, Molly M; Sharpe, Paul T

    2016-03-01

    Cells with in vitro properties similar to those of bone marrow stromal stem cells are present in tooth pulp as quiescent cells that are mobilized by damage. These dental pulp stem cells (DPSCs) respond to damage by stimulating proliferation and differentiation into odontoblast-like cells that form dentine to repair the damage. In continuously growing mouse incisors, tissue at the incisor tips is continuously being damaged by the shearing action between the upper and lower teeth acting to self-sharpen the tips. We investigated mouse incisor tips as a model for the role of DPSCs in a continuous natural repair/regeneration process. We show that the pulp at the incisor tip is composed of a disorganized mass of mineralized tissue produced by odontoblast-like cells. These cells become embedded into the mineralized tissue that is rapidly formed and then lost during feeding. Tetracycline labeling not only revealed the expected incorporation into newly synthesized dentine formation of the incisor but also a zone covering the pulp cavity at the tips of the incisors that is mineralized very rapidly. This tissue was dentine-like but had a significantly lower mineral content than dentine as determined by Raman spectroscopy. The mineral was more crystalline than dentine, indicative of small, defect-free mineral particles. To identify the origin of cells responsible for deposition of this mineralized tissue, we genetically labeled perivascular cells by crossing NG2(ERT2) Cre and Nestin Cre mice with reporter mice. A large number of pericyte-derived cells were visible in the pulp of incisor tips with some having elongated, odontoblast-like shapes. These results show that in mouse incisors, rapid, continuous mineralization occurs at the tip to seal off the pulp tissue from the external environment. The mineral is formed by perivascular-derived cells that differentiate into cells expressing dentin sialo-phosphoprotein (DSPP) and produce a dentine-like material in a process that

  16. Exploring pathway interactions in insulin resistant mouse liver

    Directory of Open Access Journals (Sweden)

    Kelder Thomas

    2011-08-01

    Full Text Available Abstract Background Complex phenotypes such as insulin resistance involve different biological pathways that may interact and influence each other. Interpretation of related experimental data would be facilitated by identifying relevant pathway interactions in the context of the dataset. Results We developed an analysis approach to study interactions between pathways by integrating gene and protein interaction networks, biological pathway information and high-throughput data. This approach was applied to a transcriptomics dataset to investigate pathway interactions in insulin resistant mouse liver in response to a glucose challenge. We identified regulated pathway interactions at different time points following the glucose challenge and also studied the underlying protein interactions to find possible mechanisms and key proteins involved in pathway cross-talk. A large number of pathway interactions were found for the comparison between the two diet groups at t = 0. The initial response to the glucose challenge (t = 0.6 was typed by an acute stress response and pathway interactions showed large overlap between the two diet groups, while the pathway interaction networks for the late response were more dissimilar. Conclusions Studying pathway interactions provides a new perspective on the data that complements established pathway analysis methods such as enrichment analysis. This study provided new insights in how interactions between pathways may be affected by insulin resistance. In addition, the analysis approach described here can be generally applied to different types of high-throughput data and will therefore be useful for analysis of other complex datasets as well.

  17. The effect of Prometheus device on laboratory markers of inflammation and tissue regeneration in acute liver failure management.

    Science.gov (United States)

    Rocen, M; Kieslichova, E; Merta, D; Uchytilova, E; Pavlova, Y; Cap, J; Trunecka, P

    2010-11-01

    Prometheus, based on modified fractionated plasma separation and adsorption (FPSA) method, is used in the therapy of acute liver failure as a bridge to liver transplantation. As the therapeutic effect of Prometheus is caused not only by the elimination of terminal metabolites, the aim of the study was to identify the effect of FPSA on the levels of cytokines and markers of inflammation and liver regeneration. Previous studies assessing cytokine levels involved mostly acute-on-chronic liver failure patients. Data concerning markers of inflammation and liver regeneration are not published yet. Eleven patients (three males, eight females) with acute liver failure were investigated. These patients underwent 37 therapeutic sessions on Prometheus device. Before and after each treatment, the plasma levels of selected cytokines, tumor necrosis factor alpha (TNFα), C-reactive protein (CRP), procalcitonin (PCT), hepatocyte growth factor (HGF), and α(1) fetoprotein, were measured, and the kinetics of their plasma concentrations was evaluated. Before the therapy, elevated levels of interleukin (IL)-6, IL-8, IL-10, TNFα, CRP, and PCT were detected. The level of TNFα, CRP, PCT, and α(1) fetoprotein decreased significantly during the therapy. In contrast, an increase of HGF was detected. The decline of IL-6, IL-8, and IL-10 concentrations was not significant. Our results show that Prometheus is highly effective in clearing inflammatory mediators responsible for systemic inflammatory response syndrome and affects the serum levels of inflammatory and regeneration markers important for management of acute liver failure.

  18. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Science.gov (United States)

    Ishida, Tokiko; Kotani, Hirokazu; Miyao, Masashi; Kawai, Chihiro; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-01-01

    The pathogenesis of renal impairment in chronic liver diseases (CLDs) has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy), autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the pathophysiological mechanisms of

  19. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  20. Alleviation of Ischemia-Reperfusion Injury in Liver Steatosis by Augmenter of Liver Regeneration Is Attributed to Antioxidation and Preservation of Mitochondria.

    Science.gov (United States)

    Weng, Junhua; Li, Wen; Jia, Xiaowei; An, Wei

    2017-10-01

    Fatty liver is one of the major impediments to liver surgery and liver transplantation because steatotic hepatocytes are more susceptible to ischemia-reperfusion injury (IRI). In this study, the effects of augmenter of liver regeneration (ALR) on hepatic IRI in steatotic mice were investigated. In vivo, liver steatosis of mice was induced by feeding a methionine-choline-deficient diet for 2 weeks. Three days before hepatic partial warm IRI, mice were transfected with the ALR-containing adenovirus. In an in vitro study, the protective effect of ALR on steatotic HepG2 cells was analyzed after hypoxia/reoxygenation (HR) treatment. The transfection of the ALR gene into steatotic mice attenuated liver injury, inhibiting hepatic oxidative stress, increasing antioxidation capacities, promoting liver regeneration, and consequently suppressing cell apoptosis/death. Furthermore, resistance to HR injury was notably increased in ALR-transfected cells compared with the vector-transfected cells. The HR-induced rise in the mitochondrial reactive oxygen species was reduced, and cellular antioxidant activities were enhanced. The ALR transfection prevented cells from apoptosis, which can be attributed to the preservation of the mitochondrial membrane potential, enhancement of oxygen consumption rate and production of adenosine triphosphate. ALR protects steatotic hepatocytes from IRI by attenuating oxidative stress and mitochondrial dysfunction, as well as improving antioxidant effect. ALR may be used as a potential therapeutic agent when performing surgery and transplantation of steatotic liver.

  1. Effect of liver regeneration after partial hepatectomy and ischemia-reperfusion on expression of growth factor receptors

    Institute of Scientific and Technical Information of China (English)

    P Baier; G Wolf-Vorbeck; S Hempel; UT Hopt; E von Dobschuetz

    2006-01-01

    AIM: To investigate the effects of experimental partial hepatectomy and normothermic ischemia-reperfusion damage on the time course of the expression of four different growth factor receptors in liver regeneration.This is relevant due to the potential therapeutic use of growth factors in stimulating liver regeneration.METHODS: For partial hepatectomy (PH) 80% of the liver mass was resected in Sprague Dawley rats.Ischemia and reperfusion (I/R) were induced by occlusion of the portal vein and the hepatic artery for 15 min. The epidermal growth factor receptor, hepatic growth factor receptor, fibroblast growth factor receptor and tumour necrosis factor receptor-1 were analysed by immunohistochemistry up to 72 h after injury.Quantitative RT-PCR was performed at the time point of minimal receptor expression (24 h).RESULTS: In immunohistochemistry, EGFR, HGFR,FGFR and TNFR1 showed biphasic kinetics after partial hepatectomy with a peak up to 12 h, a nadir after 24 h and another weak increase up to 72 h. During liver regeneration, after ischemia and reperfusion, the receptor expression was lower; the nadir at 24 h after reperfusion was the same. To evaluate whether this nadir was caused by a lack of mRNA transcription, or due to a posttranslational regulation, RT-PCR was performed at 24 h and compared to resting liver. In every probe there was specific mRNA for the receptors. EGFR, FGFR and TNFR1 mRNA expression was equal or lower than in resting liver, HGFR expression after I/R was stronger than in the control.CONCLUSION: At least partially due to a post-transcriptional process, there is a nadir in the expression of the analysed receptors 24 h after liver injury. Therefore,a therapeutic use of growth factors to stimulate liver regeneration 24 h after the damage might be not successful.

  2. Low-dose steroid pretreatment ameliorates the transient impairment of liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Toshihito Shibata; Toru Mizuguchi; Yukio Nakamura; Masaki Kawamoto; Makoto Meguro; Shigenori Ota; Koichi Hirata; Hidekazu Ooe; Toshihiro Mitaka

    2012-01-01

    AIM:To determine if liver regeneration (LR) could be disturbed following radiofrequency (RF) ablation and whether modification of LR by steroid administration occurs.METHOIDS:Sham operation,partial hepatectomy (PH),and partial hepatectomy with radiofrequency ablation (PHA) were performed on adult Fisher 344 rats.We investigated the recovery of liver volume,DNA synthetic activities,serum cytokine/chemokine levels and signal transducers and activators of transcription 3 DNA-binding activities in the nucleus after the operations.Additionally,the effects of steroid (dexamethasone) pretreatment in the PH group (S-PH) and the PHA group (S-PHA) were compared.RESULTS:The LR after PHA was impaired,with high serum cytokine/chemokine induction compared to PH,although the ratio of the residual liver weight to body weight was not significantly different.Steroid pretreatment disturbed LR in the S-PH group.On the other hand,low-dose steroid pretreatment improved LR and suppressed tumor necrosis factor (TNF)-α elevation in the S-PHA group,with recovery of STAT3 DNA-binding activity.On the other hand,low-dose steroid pretreatment improved LR and suppressed TNF-α elevation in the S-PHA group,with recovery of STAT3 DNA-binding activity.CONCLUSION:LR is disturbed after RF ablation,with high serum cytokine/chemokine induction.Low-dose steroid administration can improve LR after RF ablation with TNF-α suppression.

  3. Hepatic non-parenchymal cells and extracellular matrix participate in oval cell-mediated liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Xiao-Ping Chen; Wan-Guang Zhang; Feng Zhang; Shuai Xiang; Han-Hua Dong; Lei Zhang

    2009-01-01

    AIM: To elucidate the interaction between nonparenchymal cells, extracellular matrix and oval cells during the restituting process of liver injury induced by partial hepatectomy (PH). METHODS: We examined the localization of oval cells, non-parenchymal cells, and the extracellular matrix components using immunohistochemical and double immunofluorescent analysis during the proliferation and differentiation of oval cells in N-2-acetylaminofluorene (2-AAF)/PH rat model. RESULTS: By day 2 after PH, small oval cells began to proliferate around the portal area. Most of stellate cells and laminin were present along the hepatic sinusoids in the periportal area. Kupffer cells and fibronectin markedly increased in the whole hepatic lobule. From day 4 to 9, oval cells spread further into hepatic parenchyma, closely associated with stellate cells, fibronectin and laminin. Kupffer cells admixed with oval cells by day 6 and then decreased in the periportal zone. From day 12 to 15, most of hepatic stellate cells (HSCs), laminin and fibronectin located around the small hepatocyte nodus, and minority of them appeared in the nodus. Kupffer cells were mainly limited in the pericentral sinusoids. After day 18, the normal liver lobule structures began to recover.CONCLUSION: Local hepatic microenvironment may participate in the oval cell-mediated liver regeneration through the cell-cell and cell-matrix interactions.

  4. Liver remnant regeneration in donors after living donor liver transplantation. Long-term follow-up using CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Klink, T. [INSELSPITAL - Bern University Hospital (Switzerland). Diagnostic, Interventional, and Pediatric Radiology; University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Diagnostic and Interventional Radiology; Simon, P. [Merciful Brethren Hospital, Trier (Germany). Dept. of Radiology, Neuroradiology, Sonography and Nuclearmedicine; University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Diagnostic and Interventional Radiology; Knopp, C.; Ittrich, H.; Adam, G.; Koops, A. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Diagnostic and Interventional Radiology; Fischer, L. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Hepatobiliary Surgery and Transplant Surgery

    2014-06-15

    Purpose: To assess liver remnant volume regeneration and maintenance, and complications in the long-time follow-up of donors after living donor liver transplantation using CT and MRI. Materials and Methods: 47 donors with a mean age of 33.5 years who donated liver tissue for transplantation and who were available for follow-up imaging were included in this retrospective study. Contrast-enhanced CT and MR studies were acquired for routine follow-up. Two observers evaluated pre- and postoperative images regarding anatomy and pathological findings. Volumes were manually measured on contrast-enhanced images in the portal venous phase, and potential postoperative complications were documented. Pre- and postoperative liver volumes were compared for evaluating liver remnant regeneration. Results: 47 preoperative and 89 follow-up studies covered a period of 22.4 months (range: 1 - 84). After right liver lobe (RLL) donation, the mean liver remnant volume was 522.0 ml (± 144.0; 36.1%; n = 18), after left lateral section (LLS) donation 1,121.7 ml (± 212.8; 79.9%; n = 24), and after left liver lobe (LLL) donation 1,181.5 ml (± 279.5; 72.0%; n = 5). Twelve months after donation, the liver remnant volume were 87.3% (RLL; ± 11.8; n = 11), 95.0% (LS; ± 11.6; n = 18), and 80.1% (LLL; ± 2.0; n = 2 LLL) of the preoperative total liver volume. Rapid initial regeneration and maintenance at 80% of the preoperative liver volume were observed over the total follow-up period. Minor postoperative complications were found early in 4 patients. No severe or late complications or mortality occurred. Conclusion: Rapid regeneration of liver remnant volumes in all donors and volume maintenance over the long-term follow-up period of up to 84 months without severe or late complications are important observations for assessing the safety of LDLT donors. (orig.)

  5. Wnt/β-Catenin Signaling Triggers Neuron Reprogramming and Regeneration in the Mouse Retina

    Directory of Open Access Journals (Sweden)

    Daniela Sanges

    2013-07-01

    Full Text Available Cell-fusion-mediated somatic-cell reprogramming can be induced in culture; however, whether this process occurs in mammalian tissues remains enigmatic. Here, we show that upon activation of Wnt/β-catenin signaling, mouse retinal neurons can be transiently reprogrammed in vivo back to a precursor stage. This occurs after their spontaneous fusion with transplanted hematopoietic stem and progenitor cells (HSPCs. Moreover, we demonstrate that retinal damage is essential for cell-hybrid formation in vivo. Newly formed hybrids can proliferate, commit to differentiation toward a neuroectodermal lineage, and finally develop into terminally differentiated neurons. This results in partial regeneration of the damaged retinal tissue, with functional rescue. Following retinal damage and induction of Wnt/β-catenin signaling, cell-fusion-mediated reprogramming also occurs after endogenous recruitment of bone-marrow-derived cells in the eyes. Our data demonstrate that in vivo reprogramming of terminally differentiated retinal neurons after their fusion with HSPCs is a potential mechanism for tissue regeneration.

  6. Activation of farnesoid X receptor induces RECK expression in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xiaomin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Wu, Weibin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Zhu, Bo; Sun, Zhichao; Ji, Lingling; Ruan, Yuanyuan [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Zhou, Lei, E-mail: yhchloech@gmail.com [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found that FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver.

  7. Cloning and prokaryotic expression of rat homolog of Serpina3n and its expression change during liver regeneration.

    Science.gov (United States)

    Wang, G P; Zhang, X S; Li, Y H; Zheng, J L; Tang, C Z; Zhang, W X

    2012-09-03

    A strikingly upregulated expressed sequence tag was screened from regenerating rat liver at 8 h in a 0-4-8-12 h short-interval successive partial hepatectomy model from a previous study. In the present study, a full-length open reading frame (ORF) corresponding to this expressed sequence tag was predicted through electronic cloning and was subsequently cloned from an 8-h rat regenerating liver and deposited in GenBank (accession No. HM448398). Sequence analysis of HM448398 and the predicted ORF revealed that the two ORFs may be different transcripts of a gene. The sequence of HM448398 was highly homologous to that of rat Serpina3n, suggesting that it may be a homolog of Serpina3n. The pGEX-2TK prokaryotic expression vector for this ORF was constructed, and the result of sodium dodecyl sulfate polyacrylamide gel electrophoresis manifested that the recombinant expression vector could express the glutathione-S-transferase-fused rat homolog of Serpina3n in an insoluble form in BL21. The target fusion protein was purified with affinity chromatography and was used as antigen to immunize rabbits for the production of polyclonal antibodies. Immunohistochemistry and real-time reverse transcription polymerase chain reaction analysis revealed that the gene was highly expressed in the priming and termination phases of liver regeneration. These findings lay a solid foundation for further study of roles of HM448398 using knock-in and RNA interference methods during liver regeneration.

  8. Gene Expression Profiles in Living Donors Immediately After Partial Hepatectomy—The Initial Response of Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Cheng-Maw Ho

    2007-01-01

    Conclusion: Gene expression profiles immediately after partial hepatectomy were reported first in humans with the techniques of oligo DNA microarray, which were compatible with the initial gene expression patterns of liver regeneration in rats. [J Formos Med Assoc 2007;106(4:288-294

  9. Kupffer cell depletion by CI2MDP-liposomes alters hepatic cytokine expression and delays liver regeneration after partial hepatectomy.

    Science.gov (United States)

    Meijer, C; Wiezer, M J; Diehl, A M; Schouten, H J; Schouten, H J; Meijer, S; van Rooijen, N; van Lambalgen, A A; Dijkstra, C D; van Leeuwen, P A

    2000-02-01

    Although Kupffer cells (KCs) are capable of producing important growth-stimulating cytokines, their role in liver regeneration following partial hepatectomy (PH) remains poorly understood. In the present study liver regeneration was studied after KC-depletion by intravenous administration of liposome-encapsulated dichloromethylene-diphosphonate (C12MDP), a method known to physically eliminate KCs. Furthermore, splenectomy was performed one week prior to PH to exclude the effect of C12MDP-liposomes on macrophage populations in the spleen. KC-depletion was confirmed in cryostat liver sections stained with the monoclonal antibody ED2, a marker for resident tissue macrophages. Forty-eight hours after PH, the cumulative hepatocyte DNA synthesis, as determined in liver sections by the hepatocyte bromodeoxyuridine labeling index, was significantly decreased in KC-depleted rats when compared to control-rats. The weight of the remnant liver, expressed as a percentage of the initial liver weight, was significantly less at 96 h after PH in KC-depleted rats. KC-depletion abolished the hepatic interleukin-6 (IL-6) and interleukin-10 (IL-10) mRNA synthesis and decreased hepatic expression of tumor necrosis factor-alpha (TNF-alpha), hepatocyte growth factor (HGF) and transforming growth factor-beta1(TGF-beta1) mRNA after PH, as was assessed by reverse-transcriptase polymerase chain reaction (RT-PCR). Moreover, at 4 h after PH the systemic release of IL-6 was significantly decreased in KC-depleted rats. We conclude that KCs are important for hepatocyte regeneration after PH. Delayed liver regeneration in KC-depleted rats can be explained, at least in part, by an imbalanced hepatic cytokine expression, thereby suppressing important growth-stimulating cytokines.

  10. CLONING AND ANALYSIS OF THE GENOMIC DNA SEQUENCE OF AUGMENTER OF LIVER REGENERATION FROM RAT

    Institute of Scientific and Technical Information of China (English)

    董菁; 成军; 王勤环; 施双双; 王刚; 斯崇文

    2002-01-01

    Objective.To search for genomic DNA sequence of the augmenter of liver regeneration (ALR) of rat.Methods.Polymerase chain reaction (PCR) with specific primers was used to amplify the sequence from the rat genome.Results.A piece of genomic DNA sequence and a piece of pseudogene of rat ALR were identified.The lengths of the gene and pseudogene are 1508 bp and 442 bp,respectively.The ALR gene of rat includes 3 exons and 2 introns.The 442 bp DNA sequence may represent a pseudogene or a ALR related peptide.Predicted amino acid sequence analysis showed that there were 14 different amino acid residues between the gene and pseudogene.ALR related peptide is 84 amino acid residues in length and relates closely to ALR protein.Conclusion.There might be a multigene family of ALR in rat.

  11. Kinetics of Phosphatase of Regenerating Liver-3 (PRL-3) Inhibition by Small-molecular Inhibitors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Phosphatase of Regenerating Liver-3 (PRL-3) is a newly identified colorectal cancer metastasis-related protein,which isa 22 kDa non-classical protein tyrosine phosphatase with a C-terminal prenylation motif. In this study, the inhibition kinetics of protein tyrosine phosphatases (PTPs) by a fluorescent substrate, 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) was evaluated. PRL-3 exhibits classical Michaelis-Menten kinetics with a vmax value of the inhibitor magnolol can cause Km to increase, but does not alter the vmax value, which suggests the competitive inhibition of PRL-3. At the same time, it was found that DiFMUP is a more sensitive substrate for PRL-3 than para-nitrophenyl phosphate(pNPP) that is more frequently used at present. Furthermore, the method of screening for PTPs by the use of DiFMUP was developed, which studied the acceptance of DiFMUP by other PTPs.

  12. Multiple Doses of Erythropoietin Impair Liver Regeneration by Increasing TNF-α, the Bax to Bcl-xL Ratio and Apoptotic Cell Death

    OpenAIRE

    Katja Klemm; Christian Eipel; Daniel Cantré; Kerstin Abshagen; Menger, Michael D.; Brigitte Vollmar

    2008-01-01

    BACKGROUND: Liver resection and the use of small-for-size grafts are restricted by the necessity to provide a sufficient amount of functional liver mass. Only few promising strategies to maximize liver regeneration are available. Apart from its erythropoiesis-stimulating effect, erythropoietin (EPO) has meanwhile been recognized as mitogenic, tissue-protective, and anti-apoptotic pleiotropic cytokine. Thus, EPO may support regeneration of hepatic tissue. METHODOLOGY: Rats undergoing 68% hepat...

  13. Gene expression differences of regenerating rat liver in a short interval successive partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Cun-Shuan Xu; Hui-Yong Zhang; Salman Rahman; Jing-Bo Zhang; An-Shi Zhang; Hong-Peng Han; Jin-Yun Yuan; Cui-Fang Chang; Wen-Qiang Li; Ke-Jin Yang; Li-Feng Zhao; Yu-Chang Li

    2004-01-01

    AIM: To identify the genes expressed differentially in the regenerating rat liver in a short interval successive partial hepatectomy (SISPH), and to analyze their expression profiles. METHODS: Five hundred and fifty-one elements selected from subtractive cDNA libraries were conformed to a cDNAmicroarray (cDNA chip). An extensive gene expressionanalysis following 0-36-72-96-144 h SISPH was performed by microarray.RESETS: Two hundred and sixteen elements were identified either up- or down-regulated more than 2-fold at one or more time points of SISPH. By cluster analysis and generalization analysis, 8 kinds of ramose gene expression clusters were generated in the SISPH. Of the 216 elements, 111 were up-regulated and 105 down-regulated. Except 99 unreported genes, 117 reported genes were categorized into 22 groups based on their biological functions. Comparison of the gene expression in SISPH with that after partial hepatectomy (PH) disclosed that 56 genes were specially altered in SISPH, and 160 genes were simultaneously up regulated or down-regulated in SISPH and after PH, but in various amount and at different time points.CONCLUSION: Genes expressed consistently are far less than that intermittently; the genes strikingly increased are much less than that increased only 2-5 fold; the expression trends of most genes in SISPH and in PH are similar, but the expression of 56 genes is specifically altered in SISPH.Microarray combined with suppressive subtractive hybridization can in a large scale effectively identify the genes related to liver regeneration.

  14. Temporal mapping of CEBPA and CEBPB binding during liver regeneration reveals dynamic occupancy and specific regulatory codes for homeostatic and cell cycle gene batteries

    DEFF Research Database (Denmark)

    Jakobsen, Janus Schou; Waage, Johannes; Rapin, Nicolas

    2013-01-01

    quantified the genome-wide binding patterns of two key hepatocyte transcription factors, CEBPA and CEBPB (also known as C/EBPalpha and C/EBPbeta), at multiple time points during the highly dynamic process of liver regeneration elicited by partial hepatectomy in mouse. Combining these profiles with RNA...... polymerase II binding data, we find three temporal classes of transcription factor binding to be associated with distinct sets of regulated genes involved in the acute phase response, metabolic/homeostatic functions, or cell cycle progression. Moreover, we demonstrate a previously unrecognized early phase......-renewal of differentiated cells. Taken together, our work emphasizes the power of global temporal analyses of transcription factor occupancy to elucidate mechanisms regulating dynamic biological processes in complex higher organisms....

  15. Expression pattern and action analysis of genes associated with the responses to chemical stimuli during rat liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Shao-Wei Qin; Li-Feng Zhao; Xiao-Guang Chen; Cun-Shuan Xu

    2006-01-01

    AIM: To study the genes associated with the responses to chemokines, nutrients, inorganic substances, organic substances and xenobiotics after rat partial hepatectomy (PH) at transcriptional level.METHODS: The associated genes involved in the five kinds of responses were obtained from database and literature, and the gene expression changes during liver regeneration in rats were checked by the Rat Genome 230 2.0 array.RESULTS: It was found that 60, 10, 9, 6, 26 genes respectively participating in the above five kinds of responses were associated with liver regeneration. The numbers of initially and totally expressed genes occurring in the initial phase of liver regeneration (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-functional reconstruction (66-168 h after PH) were 51,19, 52, 6 and 51, 43, 98, 68 respectively, illustrating that the associated genes were mainly triggered in the initiation and transition stages, and functioned at different phases. According to their expression similarity,these genes were classified into 5 groups: only upregulated (47), predominantly up-regulated (18), only down-regulated (24), predominantly down-regulated (10), and up- and down-regulated (8). The total times of their up-regulated and down-regulated expression were 441 and 221, demonstrating that the number of up-regulated genes is more than that of the down-regulated genes. Their time relevance and gene expression patterns were classified into 14 and 26 groups, showing that the cell physiological and biochemical activities were staggered, diversified and complicated during liver regeneration in rats.CONCLUSION: The chemotaxis was enhanced mainly in the forepart and metaphase of LR. The response of regenerating liver to nutrients and chemical substances was increased, whereas that to xenobiotics was not strong. One hundred and seven genes associated with LR play important roles in the responses to

  16. Impact of allyl disulfide on oxidative damage and liver regeneration in an experimental hepatectomy model.

    Science.gov (United States)

    Battal, M; Kartal, A; Citgez, B; Yilmaz, B; Akcakaya, A; Karatepe, O

    2015-01-01

    We investigated the effects of allyl disulfide (agarlic extract) on tissue damage, regeneration, proliferation and oxidative damage in an experimental liver resection model. In the study, 24 female Wistar albinorats weighing approximately 200-250 g were used. Group 1:The rats in the experimental group all received a 70%hepatectomy and were fed an Allyl disulfide (30 μg kg day,Allyl disulfide, Sigma-Aldrich, formula: C6H10S2, CASNumber: 2179-57-9, formula weight: 146.27 g mol) in supplement to a regular diet for 1 week both preoperatively and postoperatively. Group 2: The rats in the control group also underwent a 70% hepatectomy and were given regular food and water for 1 week both preop and postop. Group 3: In the sham group, all rats were sacrificed 7 days after surgery. Forbiochemical evaluation, SGOT, SGPT, bilirubin, CRP and MDA were studied. In a histopathological examination, the fattening of the liver tissue, existence of (macro-micro vesicular),fibrosis, pleomorphism at hepatocyte nuclei, portal inflammation, existence of intralobular inflammatory cells,dilation at sinusoids, congestion, congestion at the central vein, regeneration, existence of Kupffer cells in the sinu soidallumen and ki-67 proliferation index at hepatocytes were examined. A significant difference between group 1 and group2 was observed regarding the existence of regeneration,(p:0.06), the occurrence of nuclear pleomorphisms (p:0,001)and the fibroblast activity status (p:0.001). Significant differences were found between the experimental groups in regard to Kupffer cell increase and dilation and the hyperemiastatus in the sinusoid lumens (p:0.013 and p:0.001,respectively). In the Allyl disulfide group, the proliferation index was significantly higher than that of the other groups(p:0,001), while the average plasma MDA value was lower than that of the other groups (p: 0,042). No significant differences were found among the groups with respect to tissue MDA values (p:0,720). No

  17. Establishment and primary clinical application of competitive inhibition for measurement of augmenter of liver regeneration.

    Science.gov (United States)

    Wang, Na; Sun, Hang; Tang, Lin; Deng, Jianchuan; Luo, Ya; Guo, Hui; Liu, Qi

    2014-01-01

    The aim of the present study was to establish a quantitative method for the measurement of serum human augmenter of liver regeneration (hALR) using competitive inhibition that is applicable in the clinic. A monoclonal antibody to hALR was used as the primary antibody and the pure hALR protein was used as a standard for competition with Eu(3+)-labeled hALR (Eu(3+)-hALR) to plot a standard curve. Serum samples from 90 patients with various liver diseases due to hepatitis B virus (HBV) infection were used for a competitive reaction with Eu(3+)-hALR. A regression analysis of the results was performed using the standard curve to calculate the serum concentration of hALR. The minimum detectable value using direct competitive measurement established by Eu(3+)-hALR was 1 ng/ml, with a positive linear correlation within the range of 200 ng/ml. In the sera of the 90 patients, the hALR level in the severe hepatitis group was the highest, followed by that in the acute hepatitis group. The serum hALR levels in the cirrhosis and chronic hepatitis groups were significantly higher compared with those in the normal control groups (Pcompetitive measurement method of serum hALR established in the present study has high sensitivity, specificity, stability and reliability, meets clinical requirements and may be used as potential index in clinical tests.

  18. Effects of augmentation of liver regeneration recombinant plasmid on rat hepatic fibrosis

    Institute of Scientific and Technical Information of China (English)

    Qing Li; Dian-Wu Liu; Li-Mei Zhang; Bing Zhu; Yu-Tong He; Yong-Hong Xiao

    2005-01-01

    AIM: To investigate the effects of eukaryotic expression of plasmid on augmentation of liver regeneration (ALR) in rat hepatic fibrosis and to explore their mechanisms. METHODS: Ten rats were randomly selected from 50Wistar rats as normal control group. The rest were administered intraperitoneally with porcine serum twice weekly. After 8 wk, they were randomly divided into:model control group, colchicine group (Col), first ALR group (ALR1), second ALR group (ALR2). Then colchicine ALR recombinant plasmid were used to treat them respectively. At the end of the 4th wk, rats were killed.Serum indicators were detected and histopathological changes were graded. Expression of type Ⅰ, Ⅲ, collagen and TIMP-1 were detected by immunohisto-chemistry and expression of TIMP-1 mRNA was detected by semiquantified RT-PCR.RESULTS: The histologic examination showed that the degree of the rat hepatic fibrosis in two ALR groups was lower than those in model control group. Compared with model group, ALR significantly reduced the serum levels of ALT,AST, HA, LN, PCⅢ and Ⅳ (P<0.05). Immunohistochemical staining showed that expression of type Ⅰ, Ⅲ, collagen and TIMP-1 in two ALR groups was ameliorated dramatically compared with model group (Ⅰ collagen: 6.94±1.42, 5.80±1.66and 10.83±3.58 in ALR1, ALR2 and model groups, respectively;Ⅲ collagen: 7.18±1.95, 4.50±1.67 and 10.25±2.61,respectively; TIMP-1: 0.39±0.05, 0.20±0.06 and 0.53±0.12,respectively, P<0.05 or P<0.01). The expression level of TIMP-1 mRNA in the liver tissues was markedly decreased in two ALR groups compared with model group (TIMP-1mRNA/β-actin: 0.89±0.08, 0.65±0.11 and 1.36±0.11 in ALR1, ALR2 and model groups respectively, P<0.01).CONCLUSION: ALR recombinant plasmid has beneficial effects on rat hepatic fibrosis by enhancing regeneration of injured liver cells and inhibiting TIMP-1 expressions.

  19. Liver growth factor treatment reverses emphysema previously established in a cigarette smoke exposure mouse model.

    Science.gov (United States)

    Pérez-Rial, Sandra; Del Puerto-Nevado, Laura; Girón-Martínez, Alvaro; Terrón-Expósito, Raúl; Díaz-Gil, Juan J; González-Mangado, Nicolás; Peces-Barba, Germán

    2014-11-01

    Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease largely associated with cigarette smoke exposure (CSE) and characterized by pulmonary and extrapulmonary manifestations, including systemic inflammation. Liver growth factor (LGF) is an albumin-bilirubin complex with demonstrated antifibrotic, antioxidant, and antihypertensive actions even at extrahepatic sites. We aimed to determine whether short LGF treatment (1.7 μg/mouse ip; 2 times, 2 wk), once the lung damage was established through the chronic CSE, contributes to improvement of the regeneration of damaged lung tissue, reducing systemic inflammation. We studied AKR/J mice, divided into three groups: control (air-exposed), CSE (chronic CSE), and CSE + LGF (LGF-treated CSE mice). We assessed pulmonary function, morphometric data, and levels of various systemic inflammatory markers to test the LGF regenerative capacity in this system. Our results revealed that the lungs of the CSE animals showed pulmonary emphysema and inflammation, characterized by increased lung compliance, enlargement of alveolar airspaces, systemic inflammation (circulating leukocytes and serum TNF-α level), and in vivo lung matrix metalloproteinase activity. LGF treatment was able to reverse all these parameters, decreasing total cell count in bronchoalveolar lavage fluid and T-lymphocyte infiltration in peripheral blood observed in emphysematous mice and reversing the decrease in monocytes observed in chronic CSE mice, and tends to reduce the neutrophil population and serum TNF-α level. In conclusion, LGF treatment normalizes the physiological and morphological parameters and levels of various systemic inflammatory biomarkers in a chronic CSE AKR/J model, which may have important pathophysiological and therapeutic implications for subjects with stable COPD.

  20. Impaired liver regeneration in Ldlr−/− mice is associated with an altered hepatic profile of cytokines, growth factors and lipids

    Science.gov (United States)

    Pauta, Montse; Rotllan, Noemi; Vales, Frances; Allen, Ryan M.; Ford, David A.; Marí, Montserrat; Jiménez, Wladimiro; Baldán, Ángel

    2014-01-01

    Background & Aims It is widely recognized that in the early stages of liver regeneration after partial hepatectomy the hepatocytes accumulate a significant amount of lipids. The functional meaning of this transient steatosis and its effect on hepatocellular proliferation are not well defined. In addition, the basic mechanisms of this lipid accumulation are not well understood although some studies suggest the participation of the Low Density Lipoprotein Receptor (Ldlr). Methods To address these questions we studied the process of liver regeneration in Ldlr null mice and wild-type mice following 75% partial hepatectomy. Results Ldlr deficiency was associated with a significant decrease in serum albumin concentration, during early stages of liver regeneration, and a delayed hepatic regeneration. Remnant livers of Ldlr−/− showed a time-shifted expression of interleukin-6 (IL-6) and a defective activation of tumor necrosis factor-α (TNFα) and hepatocyte growth factor (HGF) expression in early phases of liver regeneration. Unexpectedly, Ldlr−/− showed no significant differences in the content of lipid droplets after partial hepatectomy compared to wild-type mice. However, lipidomic analysis of the regenerating liver from Ldlr−/− revealed a lipid profile compatible with liver quiescence: high content of cholesterol esters and ceramide, and low levels of phosphatidylcholine. Conclusion Ldlr deficiency is associated with significant changes in the hepatic lipidome that affect cytokine-growth factor signaling and impair liver regeneration. These results suggest that the analysis of the hepatic lipidome may help to predict the success of liver regeneration in the clinical environment, specifically in the context of pre-existing liver steatosis. PMID:23712050

  1. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Hadi, Mackenzie; Laarakkers, Coby M. M.; Masereeuw, Rosalinde; Groothuis, Geny M. M.; Russel, Frans G. M.

    2014-01-01

    Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker ide

  2. Survival Motor Neuron (SMN) protein is required for normal mouse liver development

    Science.gov (United States)

    Szunyogova, Eva; Zhou, Haiyan; Maxwell, Gillian K.; Powis, Rachael A.; Francesco, Muntoni; Gillingwater, Thomas H.; Parson, Simon H.

    2016-01-01

    Spinal Muscular Atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Decreased levels of, cell-ubiquitous, SMN protein is associated with a range of systemic pathologies reported in severe patients. Despite high levels of SMN protein in normal liver, there is no comprehensive study of liver pathology in SMA. We describe failed liver development in response to reduced SMN levels, in a mouse model of severe SMA. The SMA liver is dark red, small and has: iron deposition; immature sinusoids congested with blood; persistent erythropoietic elements and increased immature red blood cells; increased and persistent megakaryocytes which release high levels of platelets found as clot-like accumulations in the heart. Myelopoiesis in contrast, was unaffected. Further analysis revealed significant molecular changes in SMA liver, consistent with the morphological findings. Antisense treatment from birth with PMO25, increased lifespan and ameliorated all morphological defects in liver by postnatal day 21. Defects in the liver are evident at birth, prior to motor system pathology, and impair essential liver function in SMA. Liver is a key recipient of SMA therapies, and systemically delivered antisense treatment, completely rescued liver pathology. Liver therefore, represents an important therapeutic target in SMA. PMID:27698380

  3. Mouse models in liver cancer research: A review of current literature

    Institute of Scientific and Technical Information of China (English)

    Martijn WH Leenders; Maarten W Nijkamp; Inne HM Borel Rinkes

    2008-01-01

    Primary liver cancer remains one of the most lethal malignancies worldwide. Due to differences in prevalence of etiological factors the incidence of primary liver cancer varies among the world, with a peak in EasL-Asia. As this disease is still lethal in most of the cases, research has to be done to improve our understanding of the disease, offering insights for possible treatment options. For this purpose, animal models are widely used,especially mouse models. In this review, we describe the different types of mouse models used in liver cancer research, with emphasis on genetically engineered mice used in this field. We focus on hepatocellular carcinoma (HCC), as this is by far the most common Lype of primary liver cancer, accounting for 70%-85% of cases.

  4. Histological changes in mouse liver and spleen caused by different Coxiella burnetii antigenic preparations.

    Science.gov (United States)

    Kokorin, I N; Pushkareva, V I; Kazár, J; Schramek, S

    1985-09-01

    The effect was examined on mouse liver and spleen (inbred line A) of intraperitoneal (i.p.) inoculation of phase I Coxiella burnetii (C.b.) cells either untreated or treated with chloroform-methanol (CM) mixture in comparison to the trichloracetic acid extract (TCAE) from phase I C.b.) cells. The phase I C.b. cells were highly toxic as manifested by marked hepatosplenomegaly accompanied with hyperplastic, degenerative and necrotic changes in the liver. By contrast, phase I CM--treated C.b. cells and TCAE were nontoxic as evidenced by the absence of any distinct pathological changes in mouse viscera.

  5. Human recombinant vascular endothelial growth factor reduces necrosis and enhances hepatocyte regeneration in a mouse model of acetaminophen toxicity.

    Science.gov (United States)

    Donahower, Brian C; McCullough, Sandra S; Hennings, Leah; Simpson, Pippa M; Stowe, Cindy D; Saad, Ali G; Kurten, Richard C; Hinson, Jack A; James, Laura P

    2010-07-01

    We reported previously that vascular endothelial growth factor (VEGF) was increased in acetaminophen (APAP) toxicity in mice and treatment with a VEGF receptor inhibitor reduced hepatocyte regeneration. The effect of human recombinant VEGF (hrVEGF) on APAP toxicity in the mouse was examined. In early toxicity studies, B6C3F1 mice received hrVEGF (50 microg s.c.) or vehicle 30 min before receiving APAP (200 mg/kg i.p.) and were sacrificed at 2, 4, and 8 h. Toxicity was comparable at 2 and 4 h, but reduced in the APAP/hrVEGF mice at 8 h (p toxicity and increased hepatocyte regeneration in APAP toxicity in the mouse. Attenuation of sinusoidal cell endothelial dysfunction and changes in neutrophil dynamics may be operant mechanisms in the hepatoprotection mediated by hrVEGF in APAP toxicity.

  6. Interleukin-1 regulates hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    OpenAIRE

    Orelio, Claudia; Peeters, Marian; Haak, Esther; van der Horn, Karin; Dzierzak, Elaine

    2009-01-01

    Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are found in the fetal liver. The fetal liver is a potent hematopoietic site, playing an important role in the expansion and differentiation of hematopoietic progenitors and hematopoietic stem cells. However, little is know...

  7. Cellular events during scar-free skin regeneration in the spiny mouse, Acomys.

    Science.gov (United States)

    Brant, Jason O; Yoon, Jung H; Polvadore, Trey; Barbazuk, William Brad; Maden, Malcolm

    2016-01-01

    In contrast to the lab mouse, Mus musculus, several species of spiny mouse, Acomys, can regenerate epidermis, dermis, hairs, sebaceous glands with smooth muscle erector pili muscles and skeletal muscle of the panniculus carnonsus after full thickness skin wounding. Here, we have compared the responses of these scarring and nonscarring organisms concentrating on the immune cells and wound cytokines, cell proliferation, and the collagenous components of the wound bed and scar. The blood of Acomys is very neutropenic but there are greater numbers of mast cells in the Acomys wound than the Mus wound. Most importantly there are no F4/80 macrophages in the Acomys wound and many proinflammatory cytokines are either absent or in very low levels which we suggest may be primarily responsible for the excellent regenerative properties of the skin of this species. There is little difference in cell proliferation in the two species either in the epidermis or mesenchymal tissues but the cell density and matrix composition of the wound is very different. In Mus there are 8 collagens which are up-regulated at least 5-fold in the wound creating a strongly trichrome-positive matrix whereas in Acomys there are very few collagens present and the matrix shows only light trichrome staining. The major component of the Mus matrix is collagen XII which is up-regulated between 10 and 30-fold after wounding. These results suggest that in the Acomys wound the absence of many cytokines resulting in the lack of macrophages is responsible for the failure to up-regulate fibrotic collagens, a situation which permits a regenerative response within the skin rather than the generation of a scar.

  8. Liver regeneration after partial hepatectomy in rat is more impaired in a steatotic liver induced by dietary fructose compared to dietary fat

    Energy Technology Data Exchange (ETDEWEB)

    Tanoue, Shirou [Department of Digestive and Lifestyle-Related Diseases, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Uto, Hirofumi, E-mail: hirouto@m2.kufm.kagoshima-u.ac.jp [Department of Digestive and Lifestyle-Related Diseases, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kumamoto, Ryo; Arima, Shiho; Hashimoto, Shinichi; Nasu, Yuichiro; Takami, Yoichiro; Moriuchi, Akihiro; Sakiyama, Toshio; Oketani, Makoto; Ido, Akio; Tsubouchi, Hirohito [Department of Digestive and Lifestyle-Related Diseases, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2011-04-01

    Highlights: {yields} Hepatic steatosis in rats fed a high fructose diet was less severe than that in rats fed a high fat diet. {yields} Liver regeneration was more impaired in rats fed a high fructose diet than in rats fed a high fat diet. {yields} Dysregulation of genes associated with metabolism may contribute to impairment of liver regeneration. {yields} Regulation of the TGF-{beta}1 level after partial hepatectomy may be impaired in rats fed a high fructose diet. -- Abstract: Hepatic steatosis (HS) has a negative effect on liver regeneration, but different pathophysiologies of HS may lead to different outcomes. Male Sprague-Dawley rats were fed a high fructose (66% fructose; H-fruc), high fat (54% fat; H-fat), or control chow diet for 4 weeks. Based on hepatic triglyceride content and oil red O staining, HS developed in the H-fruc group, but was less severe compared to the H-fat group. Hepatic mRNA expression levels of fatty acid synthase and fructokinase were increased and those of carnitine palmitoyltransferase-1 and peroxisome proliferator-activated receptor-{alpha} were decreased in the H-fruc group compared to the H-fat group. Liver regeneration after 70% partial hepatectomy (PHx) was evaluated by measuring the increase in postoperative liver mass and PCNA-positive hepatocytes, and was impaired in the H-fruc group compared to the H-fat and control groups on days 3 and 7. Serum levels of tumor necrosis factor-{alpha}, interleukin-6 and hepatocyte growth factor did not change significantly after PHx. In contrast, serum TGF-{beta}1 levels were slightly but significantly lower in the control group on day 1 and in the H-fat group on day 3 compared to the level in each group on day 0, and then gradually increased. However, the serum TGF-{beta}1 level did not change after PHx in the H-fruc group. These results indicate that impairment of liver regeneration after PHx in HS is related to the cause, rather than the degree, of steatosis. This difference may result

  9. Metabolism, Genomics, and DNA Repair in the Mouse Aging Liver

    Directory of Open Access Journals (Sweden)

    Michel Lebel

    2011-01-01

    Full Text Available The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some of the DNA repair pathways affecting liver homeostasis with age using rodents as model systems.

  10. Systemically Transplanted Bone Marrow-derived Cells Contribute to Dental Pulp Regeneration in a Chimeric Mouse Model.

    Science.gov (United States)

    Xu, Wenan; Jiang, Shan; Chen, Qiuyue; Ye, Yanyan; Chen, Jiajing; Heng, Boon Chin; Jiang, Qianli; Wu, Buling; Ding, Zihai; Zhang, Chengfei

    2016-02-01

    Migratory cells via blood circulation or cells adjacent to the root apex may potentially participate in dental pulp tissue regeneration or renewal. This study investigated whether systemically transplanted bone marrow cells can contribute to pulp regeneration in a chimeric mouse model. A chimeric mouse model was created through the injection of bone marrow cells from green fluorescent protein (GFP) transgenic C57BL/6 mice into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 8.5 Gy from a high-frequency linear accelerator. These mice were subjected to pulpectomy and pulp revascularization. At 1, 4, and 8 weeks after surgery, in vivo animal imaging and histologic analyses were conducted. In vivo animal imaging showed that the green biofluorescence signal from the transplanted GFP+ cells increased significantly and was maintained at a high level during the first 4 weeks after surgery. Immunofluorescence analyses of tooth specimens collected at 8 weeks postsurgery showed the presence of nestin+/GFP+, α smooth muscle actin (α-SMA)/GFP+, and NeuN/GFP+ cells within the regenerated pulplike tissue. These data confirm that transplanted bone marrow-derived cells can contribute to dental pulp regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Human augmenter of liver regeneration: probing the catalytic mechanism of a flavin-dependent sulfhydryl oxidase.

    Science.gov (United States)

    Schaefer-Ramadan, Stephanie; Gannon, Shawn A; Thorpe, Colin

    2013-11-19

    Augmenter of liver regeneration is a member of the ERV family of small flavin-dependent sulfhydryl oxidases that contain a redox-active CxxC disulfide bond in redox communication with the isoalloxazine ring of bound FAD. These enzymes catalyze the oxidation of thiol substrates with the reduction of molecular oxygen to hydrogen peroxide. This work studies the catalytic mechanism of the short, cytokine form of augmenter of liver regeneration (sfALR) using model thiol substrates of the enzyme. The redox potential of the proximal disulfide in sfALR was found to be approximately 57 mV more reducing than the flavin chromophore, in agreement with titration experiments. Rapid reaction studies show that dithiothreitol (DTT) generates a transient mixed disulfide intermediate with sfALR signaled by a weak charge-transfer interaction between the thiolate of C145 and the oxidized flavin. The subsequent transfer of reducing equivalents to the flavin ring is relatively slow, with a limiting apparent rate constant of 12.4 s(-1). However, reoxidation of the reduced flavin by molecular oxygen is even slower (2.3 s(-1) at air saturation) and thus largely limits turnover at 5 mM DTT. The nature of the charge-transfer complexes observed with DTT was explored using a range of simple monothiols to mimic the initial nucleophilic attack on the proximal disulfide. While β-mercaptoethanol is a very poor substrate of sfALR (∼0.3 min(-1) at 100 mM thiol), it rapidly generates a mixed disulfide intermediate allowing the thiolate of C145 to form a strong charge-transfer complex with the flavin. Unlike the other monothiols tested, glutathione is unable to form charge-transfer complexes and is an undetectable substrate of the oxidase. These data are rationalized on the basis of the stringent steric requirements for thiol-disulfide exchange reactions. The inability of the relatively bulky glutathione to attain the in-line geometry required for efficient disulfide exchange in sfALR may be

  12. Effect of exercise on mouse liver and brain bioenergetic infrastructures.

    Science.gov (United States)

    E, Lezi; Lu, Jianghua; Burns, Jeffrey M; Swerdlow, Russell H

    2013-01-01

    To assess the effects of exercise on liver and brain bioenergetic infrastructures, we exposed C57BL/6 mice to 6 weeks of moderate-intensity treadmill exercise. During the training period, fasting blood glucose was lower in exercised mice than in sedentary mice, but serum insulin levels were not reduced. At week 6, trained mice showed a paradoxical decrease in plasma lactate during exercise, which was accompanied by an increase in the liver monocarboxylate transporter 2 protein level (∼30%, P Exercise increased liver peroxisomal proliferator-activated receptor-γ coactivator 1α expression (approximately twofold, P brain-derived neurotrophic factor expression (∼40%, P brain parameter observed was a reduction in tumour necrosis factor α expression (∼35%, P exercising muscle modifies the liver bioenergetic infrastructure, and enhanced liver uptake may in turn limit the ability of exercise-generated lactate to modify brain bioenergetics. Also, it appears that, at least in the liver, a dissociated mitochondrial biogenesis, in which some components are strategically enhanced while others are minimized, can occur.

  13. A novel glucagon-like peptide 1/glucagon receptor dual agonist improves steatohepatitis and liver regeneration in mice.

    Science.gov (United States)

    Valdecantos, M Pilar; Pardo, Virginia; Ruiz, Laura; Castro-Sánchez, Luis; Lanzón, Borja; Fernández-Millán, Elisa; García-Monzón, Carmelo; Arroba, Ana I; González-Rodríguez, Águeda; Escrivá, Fernando; Álvarez, Carmen; Rupérez, Francisco J; Barbas, Coral; Konkar, Anish; Naylor, Jacqui; Hornigold, David; Santos, Ana Dos; Bednarek, Maria; Grimsby, Joseph; Rondinone, Cristina M; Valverde, Ángela M

    2017-03-01

    Because nonalcoholic steatohepatitis (NASH) is associated with impaired liver regeneration, we investigated the effects of G49, a dual glucagon-like peptide-1/glucagon receptor agonist, on NASH and hepatic regeneration. C57Bl/6 mice fed chow or a methionine and choline-deficient (MCD) diet for 1 week were divided into 4 groups: control (chow diet), MCD diet, chow diet plus G49, and M+G49 (MCD diet plus G49). Mice fed a high-fat diet (HFD) for 10 weeks were divided into groups: HFD and H+G49 (HFD plus G49). Following 2 (MCD groups) or 3 (HFD groups) weeks of treatment with G49, partial hepatectomy (PH) was performed, and all mice were maintained on the same treatment schedule for 2 additional weeks. Analysis of liver function, hepatic regeneration, and comprehensive genomic and metabolic profiling were conducted. NASH was ameliorated in the M+G49 group, manifested by reduced inflammation, steatosis, oxidative stress, and apoptosis and increased mitochondrial biogenesis. G49 treatment was also associated with replenishment of intrahepatic glucose due to enhanced gluconeogenesis and reduced glucose use through the pentose phosphate cycle and oxidative metabolism. Following PH, G49 treatment increased survival, restored the cytokine-mediated priming phase, and enhanced the proliferative capacity and hepatic regeneration ratio in mice on the MCD diet. NASH markers remained decreased in M+G49 mice after PH, and glucose use was shifted to the pentose phosphate cycle and oxidative metabolism. G49 administered immediately after PH was also effective at alleviating the pathological changes induced by the MCD diet. Benefits in terms of liver regeneration were also found in mice fed HFD and treated with G49.

  14. Significance and Mechanism of CYP7a1 Gene Regulation during the Acute Phase of Liver Regeneration

    OpenAIRE

    Zhang, Lisheng; Huang, Xiongfei; Meng, Zhipeng; Dong, Bingning; Shiah, Steven; Moore, David D.; Huang, Wendong

    2008-01-01

    Cholesterol 7α-hydroxylase (CYP7a1) is the rate-limiting enzyme in the classic pathway of bile acid synthesis. Expression of CYP7a1 is regulated by a negative feedback pathway of bile acid signaling. Previous studies have suggested that bile acid signaling is also required for normal liver regeneration, and CYP7a1 expression is strongly repressed after 70% partial hepatectomy (PH). Both the effect of CYP7a1 suppression on liver regrowth and the mechanism by which 70% PH suppresses CYP7a1 expr...

  15. Effects of platelet-rich plasma on liver regeneration in CCl4-induced hepatotoxicity model.

    Science.gov (United States)

    Mafi, Afsaneh; Dehghani, Farzaneh; Moghadam, Abbas; Noorafshan, Ali; Vojdani, Zahra; Talaei-Khozani, Tahereh

    2016-12-01

    Numerous bioactive growth factors and cytokines in platelet-rich plasma (PRP) have recently made it an attractive biomaterial for therapeutic purposes. These growth factors have the potential to regenerate the injured tissues. The aim of this study was to investigate the therapeutic effects of PRP in hepatotoxic animal model. Hepatotoxicity was induced in rats by oral administration of 4 mL/kg/week of CCl4 diluted 1:1 in corn oil for 10 weeks. To confirm the hepatotoxicity, 24 h after the last CCl4 administration, blood samples were collected via cardiac puncture to assess the serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, albumin, total protein, and total bilirubin. Twenty-four hours after blood collection, the experimental animals received a single injection of PRP (1 mL) via the anterior mesenteric vein. One week later, all biochemical tests were performed again, and the rats were scarified and their livers were removed, prepared histologically, and stained. The stereological analyses were performed to evaluate the effects of PRP on histopathological features of CCl4-treated livers. The results were compared statistically with the corresponding control and CCl4+normal saline (NS)-treated animals. A significant decrease in the number and volume of hepatocytes (p = 0.01), and also a reduction in the volume of sinusoids (p = 0.001) and connective tissue (p = 0.04), were observed in the PRP-treated animals compared with the CCl4+NS-treated ones. Our findings demonstrated that application of PRP had beneficial effects on CCl4-induced fibrosis; however, it had detrimental effects on the total number of hepatocytes and the volume of hepatocytes and sinusoidal spaces.

  16. Inhibiting effect of a hepatoma extract on the mitotic rate of regenerating liver.

    Science.gov (United States)

    Echave Llanos, J M; Badrán, A F; Moreno, F R

    1986-01-01

    Aqueous tumor extracts were prepared by the homogenization of a fast-growing, undifferentiated, transplantable malignant murine hepatoma in distilled water. After centrifugation, an aliquot of 0.01 ml of the supernatant g body weight was injected intraperitoneally into partially hepatectomized mice. Control animals were injected with saline. Groups of mice were killed at various times in relation to the hepatectomy. Four h before killing the animals were given Colcemid (1 microgram/g body weight). The number of Colcemid-arrested mitoses in the hepatocytes and in the littoral cells, respectively, were counted in 140 microscopic fields. The extract significantly inhibited the mitotic rate in hepatocytes when the injection was given between 22 h before, and up to 26 h after hepatectomy. In the littoral cells, a slight initial stimulation was followed by a slight but significant inhibition which occurred when the injection was given at hepatectomy or until 18 h after hepatectomy. The effect was not modified by exposing the extracts to temperatures of 47 degrees C for 30 min or 22 degrees C for 24 h, but 10 min of boiling destroyed their inhibitory effect. Lyophilization and storing at -18 degrees C for up to 4 weeks did not modify the effect. The mitosis-inhibiting effect was also measurable when the extract was injected subcutaneously. There was an almost linear dose-response curve. The results are discussed in relation to circadian rhythms, the pattern of liver cell proliferation after hepatectomy, and recent similar reports from the literature. The conclusion is drawn that extracts of a hepatoma contain one or more growth-inhibitory factors significantly active on regenerating liver cells, and less significantly on littoral cells.

  17. Autologous adipose tissue-derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy

    OpenAIRE

    Liu, Tao; MU, HONG; Shen, Zhongyang; SONG, ZHUOLUN; Chen, Xiaobo; Wang, Yuliang

    2016-01-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) have been considered to be attractive and readily available adult mesenchymal stem cells, and they are becoming increasingly popular for use in regenerative cell therapy, as they are readily accessible through minimally invasive techniques. The present study investigated whether autologous ADSC transplantation promoted liver regeneration following a repeat partial hepatectomy in rats. The rats were divided into three groups as follows: 70%...

  18. HDL activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) promotes regeneration and suppresses fibrosis in the liver

    DEFF Research Database (Denmark)

    Ding, Bi-Sen; Liu, Catherine H; Sun, Yue

    2016-01-01

    Regeneration of hepatic sinusoidal vasculature is essential for non-fibrotic liver regrowth and restoration of its metabolic capacity. However, little is known about how this specialized vascular niche is regenerated. Here we show that activation of endothelial sphingosine-1-phosphate receptor-1 ...

  19. Epiregulin is critical for the acinar cell regeneration of the submandibular gland in a mouse duct ligation model.

    Science.gov (United States)

    Nagai, Koichi; Arai, Hideo; Okudera, Michisato; Yamamura, Takashi; Oki, Hidero; Komiyama, Kazuo

    2014-05-01

    Acinar cell regeneration from tubular structures has been reported to occur in duct-deligated salivary glands. However, the detailed process of acinar cell regeneration has not been clarified. We have developed a mouse duct ligation model to clarify the mechanisms underlying acinar cell regeneration, and we analyzed the epidermal growth factor receptor (EGFR) and epidermal growth factor (EGF) ligands using the model. We studied these ligands expressions in the course of acinar cell regeneration using immunohistochemistry and RT-PCR methods. In the duct-ligated portion of the submandibular gland (SMG) that underwent atrophy, newly formed acinar cells were observed arising from the tubular structures after the release of the duct obstruction. The constitutive expression of EGFR was observed by immunohistochemistry in both the duct-ligated and duct-deligated animals as well as in normal controls. The EGFR phosphorylation detected on the tubular structures after duct ligation paralleled the acinar cell regeneration. RT-PCR showed an increase in the epiregulin and heparin-binding EGF levels from day 0 to day 3 after the release of the duct obstruction. The EGF level was increased only after day 7. In vitro, cultured cells isolated from ligated SMGs proliferated and produced EGF ligands following the addition of epiregulin to the culture medium. These findings suggest that the tubular structures localized in an atrophic gland are the source of acinar cell regeneration of the salivary gland. The induction of EGF ligands, in particular epiregulin, may play an important role in acinar cell regeneration in this model.

  20. Large scale of identification of differentially expressed genes in the regenerating rat liver after SISPH

    Institute of Scientific and Technical Information of China (English)

    XU Cunshuan; RAHMAN Salman; YUAN Jinyun; HAN Hongpeng; CHANG Cuifang; LI Wenqiang; YANG Kejin; ZHAO Lifeng; LI Yuchang; ZHANG Huiyong

    2005-01-01

    Extensive gene expression analysis was carried out after a 0, 4, 36, 72, 96 h short interval successive partial hepatectomy (SISPH) was performed. A total of 185 elements were identified as differing by more than two-fold in their expression levels at one or more time points. Of these 185 elements, 103 were up-regulated, 82 were down-regulated and 86 elements were unreported genes. Quite a few genes were previously unknown to be involved in liver regeneration (LR). Using cluster and general analysis, we found that the genes at five time points of the SISPH share eight different types of different expression profiles and eight distinct temporal induction or suppression patterns. A comparison of the gene expression in SISPH with that after PH found that 41 genes were specifically altered in SISPH, and 144 genes were simultaneously up-regulated or down-regulated in SISPH and after PH, but they were present in different amounts at the different time points. The conclusions are that (i) microarrays combined with suppressive subtractive hybridization (SSH) can effectively identify genes involved in LR on a large scale; (ii) more genes were up-regulated than down-regulated; (iii) there are fewer abundantly expressed genes than those with increased levels of 2-5 fold.

  1. Expression and clinical role of protein of regenerating liver (PRL) phosphatases in ovarian carcinoma.

    Science.gov (United States)

    Reich, Reuven; Hadar, Shany; Davidson, Ben

    2011-02-11

    The present study analyzed the expression and clinical role of the protein of regenerating liver (PRL) phosphatase family in ovarian carcinoma. PRL1-3 mRNA expression was studied in 184 tumors (100 effusions, 57 primary carcinomas, 27 solid metastases) using RT-PCR. PRL-3 protein expression was analyzed in 157 tumors by Western blotting. PRL-1 mRNA levels were significantly higher in effusions compared to solid tumors (p PRL-1 and PRL-2 were overexpressed in pleural compared to peritoneal effusions (p = 0.001). PRL-3 protein expression was significantly higher in primary diagnosis pre-chemotherapy compared to post-chemotherapy disease recurrence effusions (p = 0.003). PRL-1 mRNA expression in effusions correlated with longer overall survival (p = 0.032), and higher levels of both PRL-1 and PRL-2 mRNA correlated with longer overall survival for patients with pre-chemotherapy effusions (p = 0.022 and p = 0.02, respectively). Analysis of the effect of laminin on PRL-3 expression in ovarian carcinoma cells in vitro showed dose-dependent PRL-3 expression in response to exogenous laminin, mediated by Phospholipase D. In contrast to previous studies associating PRL-3 with poor outcome, our data show that PRL-3 expression has no clinical role in ovarian carcinoma, whereas PRL-1 and PRL-2 expression is associated with longer survival, suggesting that PRL phosphatases may be markers of improved outcome in this cancer.

  2. Partial hepatectomy induces delayed hepatocyte proliferation and normal liver regeneration in ovariectomized mice

    Directory of Open Access Journals (Sweden)

    Umeda M

    2015-07-01

    Full Text Available Makoto Umeda,1 Masaki Hiramoto,1,2 Takeshi Imai1 1Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; 2Department of Biochemistry, Tokyo Medical University, Tokyo, Japan Abstract: Estrogens play central roles in sexual development, reproduction, and hepatocyte proliferation. The ovaries are one of the main organs for estradiol (E2 production. Ovariectomies (OVXs were performed on the female mice, and hepatocyte proliferation was analyzed. The ovariectomized mice exhibited delayed hepatocyte proliferation after partial hepatectomy (PH and also exhibited delayed and reduced E2 induction. Both E2 administration and PH induced the gene expression of estrogen receptor α (ERα. The transcripts of ERα were detected specifically in periportal hepatocytes after E2 administration and PH. Moreover, the E2 concentrations and hepatocyte proliferation rates were highest in the proestrus period of the estrous cycle. Taken together, these findings indicate that E2 accelerated ERα expression in periportal hepatocytes and hepatocyte proliferation in the female mice.Keywords: estrogen, ER, estrous cycle, hepatocyte proliferation, liver regeneration

  3. Regenerating the liver: not so simple after all? [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Malcolm R. Alison

    2016-07-01

    Full Text Available Under normal homeostatic conditions, hepatocyte renewal is a slow process and complete turnover likely takes at least a year. Studies of hepatocyte regeneration after a two-thirds partial hepatectomy (2/3 PH have strongly suggested that periportal hepatocytes are the driving force behind regenerative re-population, but recent murine studies have brought greater complexity to the issue. Although periportal hepatocytes are still considered pre-eminent in the response to 2/3 PH, new studies suggest that normal homeostatic renewal is driven by pericentral hepatocytes under the control of Wnts, while pericentral injury provokes the clonal expansion of a subpopulation of periportal hepatocytes expressing low levels of biliary duct genes such as Sox9 and osteopontin. Furthermore, some clarity has been given to the debate on the ability of biliary-derived hepatic progenitor cells to generate physiologically meaningful numbers of hepatocytes in injury models, demonstrating that under appropriate circumstances these cells can re-populate the whole liver.

  4. Protracted elimination of gold nanoparticles from mouse liver

    DEFF Research Database (Denmark)

    Sadauskas, Evaldas; Wallin, Håkan; Stoltenberg, Meredin

    2009-01-01

    The present study aims at revealing the fate of 40-nm gold nanoparticles after intravenous injections. The gold nanoparticles were traced histochemically with light and transmission electron microscopy using autometallographic (AMG) staining, and the gold content in the liver was determined...... with inductively coupled plasma mass spectrometry (ICP-MS). Gold nanoparticles were identified in almost all Kupffer cells one day after the injection, but the fraction of gold-loaded cells gradually decreased to about one fifth after 6 months. Transmission electron microscopic analysis showed that the gold......% fall in the gold content over the observed 6 months, the AMG finding of a significant reduction in the stained area of the liver sections and number of macrophages loaded with gold nanoparticles reveals that over time an increasing part of the total amount of gold nanoparticles in the liver...

  5. Metabolism, genomics, and DNA repair in the mouse aging liver

    DEFF Research Database (Denmark)

    Lebel, Michel; de Souza-Pinto, Nadja C; Bohr, Vilhelm A

    2011-01-01

    The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many...... hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions......, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some...

  6. Ectopic expression of the calcium-binding protein parvalbumin in mouse liver endothelial cells

    DEFF Research Database (Denmark)

    Castillo, M B; Berchtold, M W; Rülicke, T;

    1997-01-01

    vasoconstriction via calcium signalling, were investigated in the mouse liver perfused in situ. Vasoconstriction, thought to be mediated by the Ito cell, was not affected in the transgenic animals, whereas microvascular exchange, probed with the multiple indicator dilution technique, was markedly decreased...

  7. Maternal western diet primes non-alcoholic fatty liver disease in adult mouse offspring

    NARCIS (Netherlands)

    Pruis, M. G. M.; Lendvai, A.; Bloks, V. W.; Zwier, M. V.; Baller, J. F. W.; de Bruin, A.; Groen, A. K.; Plosch, T.

    AimMetabolic programming via components of the maternal diet during gestation may play a role in the development of different aspects of the metabolic syndrome. Using a mouse model, we aimed to characterize the role of maternal western-type diet in the development of non-alcoholic fatty liver

  8. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver

    DEFF Research Database (Denmark)

    van Hengel, Jolanda; D'Hooge, Petra; Hooghe, Bart

    2008-01-01

    BACKGROUND & AIMS: The Rho small guanosine triphosphatase Cdc42 is critical for diverse cellular functions, including regulation of actin organization, cell polarity, intracellular membrane trafficking, transcription, cell-cycle progression, and cell transformation. This implies that Cdc42 might ....... CONCLUSIONS: We describe a mouse model in which chronic liver disease leads to hepatocarcinogenesis....

  9. Human umbilical cord mesenchymal stem cells and derived hepatocyte-like cells exhibit similar therapeutic effects on an acute liver failure mouse model.

    Directory of Open Access Journals (Sweden)

    Ruiping Zhou

    Full Text Available Mesenchymal stem cells (MSCs have exhibited therapeutic effects in multiple animal models so that are promising liver substitute for transplantation treatment of end-stage liver diseases. However, it has been shown that over-manipulation of these cells increased their tumorigenic potential, and that reducing the in vitro culture time could minimize the risk. In this study, we used a D-galactosamine plus lipopolysaccharide (Gal/LPS-induced acute liver failure mouse model, which caused death of about 50% of the mice with necrosis of more than 50% hepatocytes, to compare the therapeutic effects of human umbilical cord MSCs (hUCMSCs before and after induction of differentiation into hepatocyte (i-Heps. Induction of hUCMSCs to become i-Heps was achieved by treatment of the cells with a group of growth factors within 4 weeks. The resulted i-Heps exhibited a panel of human hepatocyte biomarkers including cytokeratin (hCK-18, α-fetoprotein (hAFP, albumin (hALB, and hepatocyte-specific functions glycogen storage and urea metabolism. We demonstrated that transplantation of both cell types through tail vein injection rescued almost all of the Gal/LPS-intoxicated mice. Although both cell types exhibited similar ability in homing at the mouse livers, the populations of the hUCMSCs-derived cells, as judged by expressing hAFP, hCK-18 and human hepatocyte growth factor (hHGF, were small. These observations let us to conclude that the hUCMSCs was as effective as the i-Heps in treatment of the mouse acute liver failure, and that the therapeutic effects of hUCMSCs were mediated largely via stimulation of host hepatocyte regeneration, and that delivery of the cells through intravenous injection was effective.

  10. Genetic variation in the metabolism of coumarin in mouse liver

    NARCIS (Netherlands)

    Lovell, D.P.; Iersel, van M.P.L.S.; Walters, D.G.; Price, R.J.; Lake, B.G.

    1999-01-01

    The metabolism of 50 μM [3-14C] coumarin to polar products separated by high performance liquid chromatography (HPLC) and covalently bound metabolites in liver microsomes was compared in a series of inbred strains of mice. Coumarin metabolism to total polar products was higher in female than male mi

  11. Mapping of a liver phosphorylase kinase [alpha]-subunit gene on the mouse x chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yan; Derry, J.M.J.; Barnard, P.J. (MRC Molecular Neurobiology Unit, Cambridge (United Kingdom)); Hendrickx, J.; Coucke, P.; Willems, P.R. (Univ. of Antwerp (Belgium))

    1993-01-01

    Phosphorylase kinase (PHK) is a regulatory enzyme of the glycogenolytic pathway composed of a complex of four subunits. We recently mapped the muscle [alpha]-subunit gene (Phka) to the mouse X chromosome in a region syntenic with the proximal long arm of the human X chromosome and containing the human homologue of this gene, PHKA. We now report the mapping of the liver [alpha]-subunit gene to the telomeric end of the mouse X chromosome. This mapping position would suggest a location for the human liver [alpha]-subunit gene on the proximal short arm of the X chromosome, a region recently implicated in X-linked liver glycogenosis (XLG). 20 refs., 2 figs.

  12. Vitamin K2-enhanced liver regeneration is associated with oval cell expansion and up-regulation of matrilin-2 expression in 2-AAF/PH rat model.

    Science.gov (United States)

    Lin, M; Sun, P; Zhang, G; Xu, X; Liu, G; Miao, H; Yang, Y; Xu, H; Zhang, L; Wu, P; Li, M

    2014-03-01

    Normal liver has a great potential of regenerative capacity after partial hepatectomy. In clinic, however, most patients receiving partial hepatectomy are usually suffering from chronic liver diseases with severely damaged hepatocyte population. Under these conditions, activation of hepatic progenitor cell (oval cell in rodents) population might be considered as an alternative mean to enhance liver functional recovery. Vitamin K2 has been shown to promote liver functional recovery in patients with liver cirrhosis. In this study, we explored the possibility of vitamin K2 treatment in activating hepatic oval cell for liver regeneration with the classic 2-acetamido-fluorene/partial hepatectomy (2-AAF/PH) model in Sprague-Dawley rats. In 2-AAF/PH animals, vitamin K2 treatment induced a dose-dependent increase of liver regeneration as assessed by the weight ratio of remnant liver versus whole body and by measuring serum albumin level. In parallel, a drastic expansion of oval cell population as assessed by anti-OV6 and anti-CK19 immunostaining was noticed in the periportal zone of the remnant liver. Since matrilin-2 was linked to oval cell proliferation and liver regeneration after partial hepatectomy, we assessed its expression at both the mRNA and protein levels. The results revealed a significant increase after vitamin K2 treatment in parallel with the expansion of oval cell population. Consistently, knocking down matrilin-2 expression in vivo largely reduced vitamin K2-induced liver regeneration and oval cell proliferation in 2-AAF/PH animals. In conclusion, these data suggest that vitamin K2 treatment enhances liver regeneration after partial hepatectomy, which is associated with oval cell expansion and matrilin-2 up-regulation.

  13. 血流力学信号与肝再生的研究进展%Research progress of hemodynamic signal and liver regeneration

    Institute of Scientific and Technical Information of China (English)

    马心逸; 刘巧云; 喻智勇

    2014-01-01

    肝脏再生能力强,外科手术预后与肝再生能力密切相关.肝再生的机制主要包括生化学说和流体力学学说.适度门静脉血流高压灌注是启动肝再生的必要因素.肝动脉缓冲反应、流体切应力的变化、气体信号分子均在肝再生过程中起着重要作用.研究肝再生的血流力学信号机制对肝脏疾病的治疗具有重要意义.%Liver has great ability in regeneration,and liver regeneration is closely related to the prognosis of patients who received liver surgeries.The mechanisms of liver regeneration include biochemical theory and hemodynamic theory.Portal perfusion with moderate pressure is an important factor for starting liver regeneration.Hepatic artery buffer response,fluid shear stress and gasotransmitter play important roles in the liver regeneration.Learning the mechanisms of hemodynamic signal is of great importance for the treatment of liver diseases.

  14. Methods of Liver Stem Cell Therapy in Rodents as Models of Human Liver Regeneration in Hepatic Failure.

    Science.gov (United States)

    Hashemi Goradel, Nasser; Darabi, Masoud; Shamsasenjan, Karim; Ejtehadifar, Mostafa; Zahedi, Sarah

    2015-09-01

    Cell therapy is a promising intervention for treating liver diseases and liver failure. Different animal models of human liver cell therapy have been developed in recent years. Rats and mice are the most commonly used liver failure models. In fact, rodent models of hepatic failure have shown significant improvement in liver function after cell infusion. With the advent of stem-cell technologies, it is now possible to re-programme adult somatic cells such as skin or hair-follicle cells from individual patients to stem-like cells and differentiate them into liver cells. Such regenerative stem cells are highly promising in the personalization of cell therapy. The present review article will summarize current approaches to liver stem cell therapy with rodent models. In addition, we discuss common cell tracking techniques and how tracking data help to direct liver cell therapy research in animal models of hepatic failure.

  15. Eight paths of ERK1/2 signalling pathway regulating hepatocyte proliferation in rat liver regeneration

    Indian Academy of Sciences (India)

    J. W. Li; G. P. Wang; J. Y. Fan; C. F. Chang; C. S. Xu

    2011-12-01

    Although it is known that hormones, growth factors and integrin promote hepatocyte proliferation in liver regeneration (LR) through ERK1/2 signalling pathway, reports about regulating processes of its intracellular paths in hepatocytes of LR are limited. This study aims at exploring which paths of ERK1/2 signalling pathway participate in the regulation of rat LR, especially in hepatocyte proliferation, and how they do so. In all, 14 paths and 165 genes are known to be involved in ERK1/2 signalling pathway. Of them, 161 genes are included in Rat Genome 230 2.0 Array. This array was used to detect expression changes of genes related to ERK1/2 signalling pathway in isolated hepatocytes of rat LR, showing that 60 genes were related to hepatocytes of LR. In addition, bioinformatics and systems biology methods were used to analyse the roles of 14 above paths in regenerating hepatocytes. We found that three paths, RTK → SHC → GRB2/SOS → RAS → RAF, Integrin → FAK → RAC → PAK → RAF and G → PI3K → RAC → PAK → RAF, promoted the G1 phase progression of hepatocytes by activating ERK1/2. A further four paths, Gq → PLC → PKC → SRC/PYK2 → GRB2/SOS → RAS → RAF, RTK → PLC → PKC → SRC/PYK2 → GRB2/SOS → RAS → RAF, Integrin → FAK/SRC → GRB2/SOS → RAS → RAF and Integrin → FAK → RAC → PAK → RAF, advanced the cell progression of S phase and G2/M checkpoint by activating ERK1/2, and so did PP1/2 → Mek1/2 by decreasing the negative influence on ERK1/2. At the late phase of LR, Gs → AC → EPAC → Rap1 → Raf blocked hepatocyte proliferation by decreasing the activity of ERK1/2 and so did PP1/2 → Mek1/2. In summary, 60 genes and 8 paths of ERK1/2 signalling pathway regulated hepatocyte proliferation in rat LR.

  16. Mechanism of ethylbenzene-induced mouse-specific lung tumor: metabolism of ethylbenzene by rat, mouse, and human liver and lung microsomes.

    Science.gov (United States)

    Saghir, Shakil A; Rick, David L; McClymont, E L; Zhang, Fagen; Bartels, Michael J; Bus, James S

    2009-02-01

    This study was conducted to determine species differences in the metabolism of ethylbenzene (EB) in liver and lung. EB (0.22-7.0mM) was incubated with mouse, rat and human liver and lung microsomes and the formation of 1-phenylethanol (1PE), acetophenone (AcPh), 2-ethylphenol (2EP), 4-ethylphenol (4EP), 2,5-ethylquinone, and 3,4-ethylquinone were measured. Reactive metabolites (2,5-dihydroxyethylbenzene-GSH [2EP-GSH] and 3,4-dihydroxyethylbenzene-GSH [4EP-GSH]) were monitored via glutathione (GSH) trapping technique. None of the metabolites were formed at detectable levels in incubations with human lung microsomes. Percent conversion of EB to 1PE ranged from 1% (rat lung; 7.0mM EB) to 58% (mouse lung; 0.22 mM EB). More 1PE was formed in mouse lung than in mouse liver microsomes, although formation of 1PE by rat liver and lung microsomes was similar. Metabolism of EB to 1PE was in the order of mouse > rat > human. Formation of AcPh was roughly an order of magnitude lower than 1PE. Conversion of EB to ring-hydroxylated metabolites was much lower (0.0001% [4EP-GSH; rat lung] to 0.6% [2EP-GSH; mouse lung]); 2EP-GSH was typically 10-fold higher than 4EP-GSH. Formation of 2EP-GSH was higher by lung (highest by mouse lung) than liver microsomes and the formation of 2EP-GSH by mouse liver microsomes was higher than rat and human liver microsomes. Increasing concentrations of EB did lead to a decrease in amount of some formed metabolites. This may indicate some level of substrate- or metabolite-mediated inhibition. High concentrations of 2EP and 4EP were incubated with microsomes to further investigate their oxidation to ethylcatechol (ECat) and ethylhydroquinone (EHQ). Conversion of 2EP to EHQ ranged from 6% to 9% by liver (mouse > human > rat) and from 0.1% to 18% by lung microsomes (mouse > rat > human). Conversion of 4EP to ECat ranged from 2% to 4% by liver (mouse > human approximately rat) and from 0.3% to 7% by lung microsomes (mouse > rat > human). Although ring

  17. Protective effect of some vitamins against the toxic action of ethanol on liver regeneration induced by partial hepatectomy in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM:To investigate the effects of vitamins(A,C and F)on liver injury induced by ethanol administration during liver regeneration in rats.METHODS:Male Wistar rats subjected to 70% partial hepatectomy were divided into five groups (groups 1-5).During the experiment,animals of Group 1 drank only water.The other four groups(2-5)drank 30 mL of ethanol/L of water.Group 3 additionally received vitamin A,those of group 4 vitamin C and those of group 5 received vitamin E.Subsequently serum alanine aminotTansferase (ALT),aspartate aminotransferase (AST),albumin and bilirubin were measured colorimetrically.Lipid peroxidation (thiobarbituric-acid reactive substances,TBARS) both in plasma and liver was measured,as well as liver mass gain assessment and total DNA.RESULTS;Compared with sham group,serum AST and ALT increased significantly under ethanol treatment (43% and 93%,respectively,with P<0.05).Vitamin C and vitamin E treatment attenuated the ethanol-induced increases in ALT and AST activity.Ethanol treatment also decreased serum albumin concentration compared to sham group (3.1 ± 0.4 g/dL vs 4.5 ± 0.2 g/dL;P < 0.05).During liver regeneration vitamins C and E significantly ameliorated liver injury for ethanol administration in hepatic lipid peroxidation (4.92 nmol/mg and 4.25 nmol/mg vs 14.78 nmol/mg,respectively,with P < 0.05).In association with hepatic injury,ethanol administration caused a significant increase in both hepatic and plasma lipid peroxidation.Vitamins (C and E) treatment attenuated hepatic and plasma lipid peroxidation.CONCLUSION:Vitamins C and E protect against liver injury and dysfunction,attenuate lipid peroxidation,and thus appear to be significantly more effective than vitamin A against ethanol-mediated toxic effects during liver regeneration.

  18. Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome.

    Directory of Open Access Journals (Sweden)

    Sumedha S Gunewardena

    Full Text Available During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth to maturity (60-days after birth. Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2 RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome.

  19. Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome

    Science.gov (United States)

    Gunewardena, Sumedha S.; Yoo, Byunggil; Peng, Lai; Lu, Hong; Zhong, Xiaobo; Klaassen, Curtis D.; Cui, Julia Yue

    2015-01-01

    During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome. PMID:26496202

  20. The antineoplastic antibiotic taurolidine promotes lung and liver metastasis in two syngeneic osteosarcoma mouse models and exhibits severe liver toxicity.

    Science.gov (United States)

    Arlt, Matthias J E; Walters, Denise K; Banke, Ingo J; Steinmann, Patrick; Puskas, Gabor J; Bertz, Josefine; Rentsch, Katharina M; Ehrensperger, Felix; Born, Walter; Fuchs, Bruno

    2012-09-01

    Osteosarcoma (OS) is the most frequent primary bone tumor. Despite multiagent neoadjuvant chemotherapy, patients with metastatic disease have a poor prognosis. Moreover, currently used chemotherapeutics have severe toxic side effects. Thus, novel agents with improved antimetastatic activity and reduced toxicity are needed. Taurolidine, a broad-spectrum antimicrobial, has recently been shown to have antineoplastic properties against a variety of tumors and low systemic toxicity. Consequently, we investigated in our study the antineoplastic potential of taurolidine against OS in two different mouse models. Although both OS cell lines, K7M2 and LM8, were sensitive for the compound in vitro, intraperitoneal application of taurolidine failed to inhibit primary tumor growth. Moreover, it enhanced the metastatic load in both models 1.7- to 20-fold and caused severe liver deformations and up to 40% mortality. Thus, systemic toxicity was further investigated in tumor-free mice histologically, by electron microscopy and by measurements of representative liver enzymes. Taurolidine dose-dependent fibrous thickening of the liver capsule and adhesions and atrophies of the liver lobes were comparable in healthy and tumor-bearing mice. Liver toxicity was further indicated by up to eightfold elevated levels of the liver enzymes alanine transaminase, aspartate transaminase and GLDH in the circulation. Ultrastructural analysis of affected liver tissue showed swollen mitochondria with cristolysis and numerous lipid vacuoles in the cytoplasm of hepatocytes. The findings of our study question the applicability of taurolidine for OS treatment and may suggest the need for caution regarding the widespread clinical use of taurolidine as an antineoplastic agent.

  1. Transformation and action of extracellular NAD+ in perfused rat and mouse livers

    Institute of Scientific and Technical Information of China (English)

    Ana Carla BROETTO-BLAZON; Fabricio BRACHT; Livia BRACHT; Ana Maria KELMER-BRACHT; Adelar BRACHT

    2009-01-01

    Aim: Transformation and possible metabolic effects of extracellular NAD+ were investigated in the livers of mice (Mus mus-culus; Swiss strain) and rats (Rattus novergicus; Holtzman and Wistar strains). Methods: The livers were perfused in an open system using oxygen-saturated Krebs/Henseleit-bicarbonate buffer (pH 7.4) as the perfusion fluid. The transformation of NAD+ was monitored using high-performance liquid chromatography. Results: In the mouse liver, the single-pass metabolism of 100 μmol/L NAD+ was almost complete; ADP-ribose and nicoti-namide were the main products in the outflowing perfusate. In the livers of both Holtzman and Wistar rats, the main trans-formation products were ADP-ribose, uric acid and nicotinamide; significant amounts of inosine and AMP were also iden-tified. On a weight basis, the transformation of NAD+ was more efficient in the mouse liver. In the rat liver, 100 μmol/L NAD+ transiently inhibited gluconeogenesis and oxygen uptake. Inhibition was followed by a transient stimulation. Inhibi-tion was more pronounced in the Wistar strain and stimulation was more pronounced in the Holtzman strain. In the mouse liver, no clear effects on gluconeogenesis and oxygen uptake were found even at 500 μmol/L NAD+. Conclusion: It can be concluded that the functions of extracellular NAD+ are species-dependent and that observations in one species are strictly valid for that species. Interspecies extrapolations should thus be made very carefully. Actually, even variants of the same species can demonstrate considerably different responses.

  2. Sandwich-type PLLA-nanosheets loaded with BMP-2 induce bone regeneration in critical-sized mouse calvarial defects.

    Science.gov (United States)

    Huang, Kuo-Chin; Yano, Fumiko; Murahashi, Yasutaka; Takano, Shuta; Kitaura, Yoshiaki; Chang, Song Ho; Soma, Kazuhito; Ueng, Steve W N; Tanaka, Sakae; Ishihara, Kazuhiko; Okamura, Yosuke; Moro, Toru; Saito, Taku

    2017-09-01

    To overcome serious clinical problems caused by large bone defects, various approaches to bone regeneration have been researched, including tissue engineering, biomaterials, stem cells and drug screening. Previously, we developed a free-standing biodegradable polymer nanosheet composed of poly(L-lactic acid) (PLLA) using a simple fabrication process consisting of spin-coating and peeling techniques. Here, we loaded recombinant human bone morphogenetic protein-2 (rhBMP-2) between two 60-nm-thick PLLA nanosheets, and investigated these sandwich-type nanosheets in bone regeneration applications. The PLLA nanosheets displayed constant and sustained release of the loaded rhBMP-2 for over 2months in vitro. Moreover, we implanted the sandwich-type nanosheets with or without rhBMP-2 into critical-sized defects in mouse calvariae. Bone regeneration was evident 4weeks after implantation, and the size and robustness of the regenerated bone had increased by 8weeks after implantation in mice implanted with the rhBMP-2-loaded nanosheets, whereas no significant bone formation occurred over a period of 20weeks in mice implanted with blank nanosheets. The PLLA nanosheets loaded with rhBMP-2 may be useful in bone regenerative medicine; furthermore, the sandwich-type PLLA nanosheet structure may potentially be applied as a potent prolonged sustained-release carrier of other molecules or drugs. Here we describe sandwich-type poly(L-lactic acid) (PLLA) nanosheets loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a novel method for bone regeneration. Biodegradable 60-nm-thick PLLA nanosheets display strong adhesion without any adhesive agent. The sandwich-type PLLA nanosheets displayed constant and sustained release of the loaded rhBMP-2 for over 2months in vitro. The nanosheets with rhBMP-2 markedly enhanced bone regeneration when they were implanted into critical-sized defects in mouse calvariae. In addition to their application for bone regeneration, PLLA

  3. Innate immune responses involving natural killer and natural killer T cells promote liver regeneration after partial hepatectomy in mice.

    Science.gov (United States)

    Hosoya, Satoko; Ikejima, Kenichi; Takeda, Kazuyoshi; Arai, Kumiko; Ishikawa, Sachiko; Yamagata, Hisafumi; Aoyama, Tomonori; Kon, Kazuyoshi; Yamashina, Shunhei; Watanabe, Sumio

    2013-02-01

    To clarify the roles of innate immune cells in liver regeneration, here, we investigated the alteration in regenerative responses after partial hepatectomy (PH) under selective depletion of natural killer (NK) and/or NKT cells. Male, wild-type (WT; C57Bl/6), and CD1d-knockout (KO) mice were injected with anti-NK1.1 or anti-asialo ganglio-N-tetraosylceramide (GM1) antibody and then underwent the 70% PH. Regenerative responses after PH were evaluated, and hepatic expression levels of cytokines and growth factors were measured by real-time RT-PCR and ELISA. Phosphorylation of STAT3 was detected by Western blotting. Depletion of both NK and NKT cells with an anti-NK1.1 antibody in WT mice caused drastic decreases in bromodeoxyuridine uptake, expression of proliferating cell nuclear antigen, and cyclin D1, 48 h after PH. In mice given NK1.1 antibody, increases in hepatic TNF-α, IL-6/phospho-STAT3, and hepatocyte growth factor (HGF) levels following PH were also blunted significantly, whereas IFN-γ mRNA levels were not different. CD1d-KO mice per se showed normal liver regeneration; however, pretreatment with an antiasialo GM1 antibody to CD1d-KO mice, resulting in depletion of both NK and NKT cells, also blunted regenerative responses. Collectively, these observations clearly indicated that depletion of both NK and NKT cells by two different ways results in impaired liver regeneration. NK and NKT cells most likely upregulate TNF-α, IL-6/STAT3, and HGF in a coordinate fashion, thus promoting normal regenerative responses in the liver.

  4. Expression of phosphatase of regenerating liver-3 is associated with prognosis of Wilms’ tumor

    Directory of Open Access Journals (Sweden)

    Sun F

    2017-01-01

    Full Text Available Fengyin Sun,1 Wenyi Li,2,3 Lie Wang,2 Changfeng Jiao3 1Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 2Department of General Surgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou, Fujian Province, 3Department of Vascular Surgery, Xinzhou City People’s Hospital, Xinzhou, Shanxi Province, People’s Republic of China Objective: The current study was undertaken to explore the clinical and prognostic value of phosphatase of regenerating liver-3 (PRL-3 expression in Wilms’ tumor. Methods: Seventy-six patients with Wilms’ tumor in Qilu Hospital from January 2003 to July 2009 were enrolled in the study. Protein expression level of PRL-3 was examined by immunohistochemical staining, and the correlation between PRL-3 expression and histopathological parameters, clinical variables, and outcome of patients with Wilms’ tumor were analyzed. Results: We found that 19% of patients with unfavorable histology had tumor recurrence and 16% of patients died following the operation. PRL-3 was expressed in 15 out of 76 tumors (19% and expressed highly in unfavorable histology Wilms’ tumor (P=0.04. PRL-3 protein expression level was correlated to 2.5-fold increase in recurrence rate of Wilms’ tumor (P=0.06 without any statistically significant difference. However, in favorable histology Wilms’ tumor, PRL-3 expression was correlated to an increase of 3.4-fold in recurrence rate (P=0.03. Conclusion: The expression of PRL-3 protein was correlated with an increased recurrence rate of favorable histology Wilms’ tumor. PRL-3 may serve as a promising biomarker for predicting patients with high risk of Wilms’ tumor. Further investigations are warranted to investigate the clinical function of PRL-3 in Wilms’ tumor. Keywords: Wilms’ tumor, prognosis, tumorigenesis, recurrence

  5. Procyanidins Negatively Affect the Activity of the Phosphatases of Regenerating Liver.

    Directory of Open Access Journals (Sweden)

    Sven Stadlbauer

    Full Text Available Natural polyphenols like oligomeric catechins (procyanidins derived from green tea and herbal medicines are interesting compounds for pharmaceutical research due to their ability to protect against carcinogenesis in animal models. It is nevertheless still unclear how intracellular pathways are modulated by polyphenols. Monomeric polyphenols were shown to affect the activity of some protein phosphatases (PPs. The three phosphatases of regenerating liver (PRLs are close relatives and promising therapeutic targets in cancer. In the present study we show that several procyanidins inhibit the activity of all three members of the PRL family in the low micromolar range, whereas monomeric epicatechins show weak inhibitory activity. Increasing the number of catechin units in procyanidins to more than three does not further enhance the potency. Remarkably, the tested procyanidins showed selectivity in vitro when compared to other PPs, and over 10-fold selectivity toward PRL-1 over PRL-2 and PRL-3. As PRL overexpression induces cell migration compared to control cells, the effect of procyanidins on this phenotype was studied. Treatment with procyanidin C2 led to a decrease in cell migration of PRL-1- and PRL-3-overexpressing cells, suggesting the compound-dependent inhibition of PRL-promoted cell migration. Treatment with procyanidin B3 led to selective suppression of PRL-1 overexpressing cells, thereby corroborating the selectivity toward PRL-1- over PRL-3 in vitro. Together, our results show that procyanidins negatively affect PRL activity, suggesting that PRLs could be targets in the polypharmacology of natural polyphenols. Furthermore, they are interesting candidates for the development of PRL-1 inhibitors due to their low cellular toxicity and the selectivity within the PRL family.

  6. Transcriptome atlas of aromatic amino acid family metabolism-related genes in eight liver cell types uncovers the corresponding metabolic pathways in rat liver regeneration.

    Science.gov (United States)

    Chang, Cuifang; Xu, CunShuan

    2010-10-01

    To explore gene expression of aromatic amino acid family metabolism and their metabolic pathways of eight liver cell types in rat liver regeneration, eight kinds of rat regenerating liver cells were isolated by using the combination of percoll density gradient centrifugation and immunomagnetic bead methods. Rat Genome 230 2.0 Array was used to detect the expression changes of genes associated with aromatic amino acid family metabolism. The transcriptome atlas showed that the metabolic pathway of phenylalanine was mainly catalyzed into tyrosine in hepatic stellate cells in the initiation stage, tyrosine was oxidized into dopa and norepinephrine in biliary epithelia cells and dendritic cells, and norepinephrine was finally catalyzed into adrenaline in biliary epithelia cells and pit cells in the progress stage. Thyroid hormone of tyrosine catabolites was synthesized from tyrosine in almost all cells in different stage of LR, among which genes of T3 biosynthesis were increased in HCs, BECs, SECs and DCs in the progress stage. Tryptophan was decarboxylated to 5-hydroxytryptamine in dendritic cells in the progress stage. Based on the results as above, we concluded that phenylalanine is the major source of tyrosine, proliferation of biliary epithelia cells and dendritic cells maybe promote by tyrosine catabolites-dopa and norepinephrine, biliary epithelia cells and pit cells maybe promote by adrenaline. T3 maybe play a major role on proliferation of HCs, BECs, SECs and DCs in the progress stage. The proliferation of dendritic cells maybe promote by tryptophan catabolites-5-hydroxytryptamine. Copyright 2010. Published by Elsevier Ltd.

  7. Acute digoxin loading reduces ABCA8A mRNA expression in the mouse liver.

    Science.gov (United States)

    Wakaumi, Michi; Ishibashi, Kenichi; Ando, Hitoshi; Kasanuki, Hiroshi; Tsuruoka, Shuichi

    2005-12-01

    Human ABCA8, a new member of the ATP binding cassette (ABC) transporter family, transports certain lipophilic drugs, such as digoxin. To investigate the roles of this transporter, we cloned a mouse homologue of ABCA8, from a mouse heart cDNA library, named ABCA8a. The deduced mouse ABCA8a protein is 66% identical with that of human ABCA8 and possesses features common to the ABC superfamily. It was found that ABCA8a was mainly expressed in the liver and heart, similar to human ABCA8. We further evaluated the effect of acute digoxin (a substrate for ABCA8) intoxication on the mRNA expression of ABCA8 using northern blotting with a 3' non-coding region as a probe to avoid cross-hybridization with other ABCA genes. Following acute digoxin infusion, the mRNA expression of ABCA8 was significantly reduced in the liver 12-24 h after injection (14.7% of vehicle treatment), but not in the heart and kidney. Real-time quantitative polymerase chain reaction analysis confirmed the reduction in ABCA8a mRNA. Similar reductions in ABCA5, ABCA7, ABCA8b and ABCA9 mRNA were also observed. A comparable amount of digitoxin did not affect ABCA8a mRNA expression in the liver. The results suggest that ABCA8 may play a role in digoxin metabolism in the liver.

  8. Targeted induction of interferon-λ in humanized chimeric mouse liver abrogates hepatotropic virus infection.

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Nakagawa

    Full Text Available BACKGROUND & AIMS: The interferon (IFN system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV and hepatitis B virus (HBV. METHODS: This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC. Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs in the livers and sera of these humanized chimeric mice. RESULTS: Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1, suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. CONCLUSIONS: These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

  9. Expression of tissue inhibitor of matrix metalloproteinase-1 in aging of transgenic mouse liver

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is related to the aging of many organs, but few data are available on the change of TIMP-1 in liver aging. The purpose of this study was to investigate the expression and role of TIMP-1, matrix metalloproteinase-2 (MMP-2) and MMP-9 in the process of natural aging in the livers of normal and transgenic mice, and to detect the effects of TIMP-1 on oxidative level and anti-oxidative ability of the livers of transgenic young mice.Methods Normal and transgenic mice were divided into 3 groups according to their age: 3-month-old group (n=5), 12-month-old group (n=5) and 24-month-old group (n=5). Histopathological changes of the liver were observed after HE and Masson staining. The messenger RNA (mRNA) levels of TIMP-1, MMP-2 and MMP-9 were determined by semi-quantitative reverse transcriptional polymerase chain reaction; protein expression was measured by Western blot in the livers of normal and transgenic mice of various ages. Changes in levels of superoxide dismutase (SOD), monoamine oxidase (MAO), malondialdehyde (MDA) as well as oxidative and anti-oxidative ability were measured.Results Histologically, more fatty degeneration and collagen deposition were found in the aging livers of transgenic mice than in those of the normal mice as their age of months increased. The mRNA and protein expressions of TIMP-1 were significantly high in the oldest animals. The histopathological changes, mRNA and protein expressions of TIMP-1 increased significantly in the liver of transgenic mice as compared with normal mice. The expression of MMP-2 and MMP-9 showed a minor change in the process of aging. Liver change and collagen deposition were not observed in young mice, but the activity of SOD decreased (P<0.05), and the activity of MAO (P<0.01) and the content of MDA increased in the liver of transgenic mice (P<0.01).Conclusions The expression of TIMP-1 is significantly high in the liver of transgenic mouse in the

  10. Mutagenic activation reduces carcinogenic activity of ortho-aminoazotoluene for mouse liver.

    Science.gov (United States)

    Ovchinnikova, L P; Bogdanova, L A; Kaledin, V I

    2013-03-01

    Pentachlorophenol (aromatic amine and azo stain metabolic stimulation inhibitor) reduced the hepatocarcinogenic activity of 4-aminoazobenzene and reduced that of ortho-aminoazotoluene in suckling mice. Both 4-aminoazobenzene and ortho-aminoazotoluene exhibited mutagenic activity in Ames' test in vitro on S. typhimurium TA 98 strain with activation with liver enzymes; this mutagenic activity was similarly suppressed by adding pentachlorophenol into activation medium. Induction of xenobiotic metabolism enzymes, stimulating the mutagenic activity of ortho-aminoazotoluene, suppressed its carcinogenic effect on mouse liver. Hence, ortho-aminotoluene (the initial compound), but not its mutagenic metabolites, was the direct active hepatocarcinogen for mice.

  11. Interleukin-1 regulates hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    Science.gov (United States)

    Orelio, Claudia; Peeters, Marian; Haak, Esther; van der Horn, Karin; Dzierzak, Elaine

    2009-01-01

    Background Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are found in the fetal liver. The fetal liver is a potent hematopoietic site, playing an important role in the expansion and differentiation of hematopoietic progenitors and hematopoietic stem cells. However, little is known concerning the regulation of fetal liver hematopoietic stem cells. In particular, the role of cytokines such as interleukin-1 in the regulation of hematopoietic stem cells in the embryo has been largely unexplored. Recently, we observed that the adult pro-inflammatory cytokine interleukin-1 is involved in regulating aorta-gonad-mesonephros hematopoietic progenitor and hematopoietic stem cell activity. Therefore, we set out to investigate whether interleukin-1 also plays a role in regulating fetal liver progenitor cells and hematopoietic stem cells. Design and Methods We examined the interleukin-1 ligand and receptor expression pattern in the fetal liver. The effects of interleukin-1 on hematopoietic progenitor cells and hematopoietic stem cells were studied by FACS and transplantation analyses of fetal liver explants, and in vivo effects on hematopoietic stem cell and progenitors were studied in Il1r1−/− embryos. Results We show that fetal liver hematopoietic progenitor cells express the IL-1RI and that interleukin-1 increases fetal liver hematopoiesis, progenitor cell activity and promotes hematopoietic cell survival. Moreover, we show that in Il1r1−/− embryos, hematopoietic stem cell activity is impaired and myeloid progenitor activity is increased. Conclusions The IL-1 ligand and receptor are expressed in the midgestation liver and act in the physiological regulation of fetal liver hematopoietic progenitor cells and hematopoietic stem cells. PMID

  12. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis.

    Science.gov (United States)

    Gilbert, Kathleen M; Reisfeld, Brad; Zurlinden, Todd J; Kreps, Meagan N; Erickson, Stephen W; Blossom, Sarah J

    2014-09-15

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL+/+mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL+/+mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation.

  13. [Histopathology of strobilocercosis found in the livers of white mouse.].

    Science.gov (United States)

    Aydin, Nasuhi Engin; Miman, Ozlem; Gül, Mehmet; Daldal, Nilgün

    2010-01-01

    The adult form of Taenia taeniaeformis is found in the intestine of the cat and cheetah. The larva form is called Strobilocercus fasciolaris and is found in rodents such as mice and rats. Our objective was to draw attention to that rare zoonosis, since it has already been reported in the literature as strobilocercosis in humans. During an experimental animal study conducted at Inonu University, some unexpected cystic formations were found in the livers of nine 6-8-month-old healthy white mice, which affected the conducted study negatively. These cystic formations were examined histopathologically. Prepared sections were stained with haemotoxylin eosin, periodic acid-Schiff and Masson trichrome stains, and examined by light microscopy. Strobilocercus fasciolaris larvae that curled towards cyst cavity and their hooks were seen. Plasma cells, macrophage, focus of eosinophilic infiltration and fibroblastic connective tissue were simultaneous found. In this paper, histopathological changes in intermediate hosts caused by Strobilocercus fasciolaris and other cestod larvae have been discussed.

  14. Differential expression of genes involved in the degeneration and regeneration pathways in mouse models for muscular dystrophies.

    Science.gov (United States)

    Onofre-Oliveira, P C G; Santos, A L F; Martins, P M; Ayub-Guerrieri, D; Vainzof, M

    2012-03-01

    The genetically determined muscular dystrophies are caused by mutations in genes coding for muscle proteins. Differences in the phenotypes are mainly the age of onset and velocity of progression. Muscle weakness is the consequence of myofiber degeneration due to an imbalance between successive cycles of degeneration/regeneration. While muscle fibers are lost, a replacement of the degraded muscle fibers by adipose and connective tissues occurs. Major investigation points are to elicit the involved pathophysiological mechanisms to elucidate how each mutation can lead to a specific degenerative process and how the regeneration is stimulated in each case. To answer these questions, we used four mouse models with different mutations causing muscular dystrophies, Dmd (mdx), SJL/J, Large (myd) and Lama2 (dy2J) /J, and compared the histological changes of regeneration and fibrosis to the expression of genes involved in those processes. For regeneration, the MyoD, Myf5 and myogenin genes related to the proliferation and differentiation of satellite cells were studied, while for degeneration, the TGF-β1 and Pro-collagen 1α2 genes, involved in the fibrotic cascade, were analyzed. The result suggests that TGF-β1 gene is activated in the dystrophic process in all the stages of degeneration, while the activation of the expression of the pro-collagen gene possibly occurs in mildest stages of this process. We also observed that each pathophysiological mechanism acted differently in the activation of regeneration, with distinctions in the induction of proliferation of satellite cells, but with no alterations in stimulation to differentiation. Dysfunction of satellite cells can, therefore, be an important additional mechanism of pathogenesis in the dystrophic muscle.

  15. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    Science.gov (United States)

    Zaccagnini, Germana; Palmisano, Anna; Canu, Tamara; Maimone, Biagina; Lo Russo, Francesco M; Ambrogi, Federico; Gaetano, Carlo; De Cobelli, Francesco; Del Maschio, Alessandro; Esposito, Antonio; Martelli, Fabio

    2015-01-01

    Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  16. Establishment of mouse Mac-2 binding protein enzyme-linked immunosorbent assay and its application for mouse chronic liver disease models.

    Science.gov (United States)

    Iwata, Ayumi; Kamada, Yoshihiro; Ebisutani, Yusuke; Yamamoto, Akiko; Ueda, Yui; Arai, Hitomi; Fujii, Hironobu; Takamatsu, Shinji; Maruyama, Nobuhiro; Maeda, Masahiro; Takehara, Tetsuo; Miyoshi, Eiji

    2017-08-01

    We identified Mac-2 (galectin-3) binding protein (Mac-2bp) as a novel diagnostic and liver fibrosis predicting biomarker for nonalcoholic steatohepatitis in humans. In mouse models, there are no serum biomarkers predicting liver disease severity. In this study, we developed a mouse Mac-2bp enzyme-linked immunosorbent assay (ELISA) system and determined its efficacy for predicting the severity of liver disease in mouse models, especially in non-alcoholic fatty liver disease (NAFLD) models. We established several rat monoclonal antibodies against mouse Mac-2bp, selected two clones for the ELISA, and checked the accuracy and reproducibility of the ELISA, especially for NAFLD models and liver fibrosis models. We also investigated the relationships between serum levels and hepatic gene expression of Mac-2bp in mouse models. Our ELISA system had high accuracy and reproducibility (R(2)  = 0.999). The intra-assay and inter-assay results for the coefficient of variation were 2.0-3.7% and 1.7-6.9%, respectively. The levels of bilirubin, hemoglobin, and chyle did not affect the Mac-2bp serum levels detected by our ELISA kit. In the mouse models, serum Mac-2bp levels increased with liver disease progression (F0/F1/F2/F3, 239.1 ± 36.7 / 259.1 ± 43.0 / 457.5 ± 162.0 / 643.7 ± 116.0 ng/mL; P Mac-2bp (R = 0.42, P Mac-2bp ELISA system effectively predicts severity of NAFLD and liver fibrosis in mouse models. © 2016 The Japan Society of Hepatology.

  17. Effects of Zuogui Wan on neurocyte apoptosis and down-regulation of TGF-β1 expression in nuclei of arcuate hypothalamus of monosodium glutamate -liver regeneration rats

    Institute of Scientific and Technical Information of China (English)

    Han-Min Li; Xiang Gao; Mu-Lan Yang; Jia-Jun Mei; Liu-Tong Zhang; Xing-Fan Qiu

    2004-01-01

    AIM: To inquire into the effects and mechanism of Zuogui Wan (Pills for Kidney Yin) on neurocyte apoptosis in nuclei of arcuate hypothalamus (ARN) of monosodium glutamate(MSG)-liver regeneration rats, and the mechanism of liver regeneration by using optic microscope, electron microscope and in situ end labeling technology to adjust nerve-endocrineimmunity network.METHODS: Neurocyte apoptosis in ARN of the experiment rats was observed by using optic microscope, electron microscope andin situ end labeling technology. Expression of TGF-β1 in ARN was observed by using immunohistochemistry method.RESULTS: The expression of TGF-β1 in rats of model group was increased with the increase of ARN neurocyte apoptosis index (AI) (t = 8.3097, 12.9884, P<0.01). As compared with the rats of model group, the expression of TGF-β1 in rats of Zuogui Wan treatment group was decreased with the significant decrease of ARN neurocyte apoptosis (t = 4.5624,11.1420, P<0.01).CONCLUSION: Brain neurocyte calcium ion overexertion and TGF-β1 protein participate in the adjustment and control of ARN neurocyte apoptosis in MSG-liver regeneration-rats. Zuogui Wan can prevent ARN neurocyte apoptosis of MSG-liver regeneration in rats by downregulating the expression of TGF-β1, and influence liver regeneration through adjusting nerve-endocrine-immune network.

  18. Cumene hydroperoxide-supported denitrification of 2-nitropropane in uninduced mouse liver microsomes.

    Science.gov (United States)

    Marker, E K; Kulkarni, A P

    1986-01-01

    Cumene hydroperoxide supported oxidative denitrification of 2-nitropropane was investigated in uninduced mouse liver microsomes. The cytochrome P-450 peroxygenase catalyzed reaction resulted in the production of nitrite and acetone. Several lines of evidence suggested the involvement of multiple forms of cytochrome P-450. Acetone production was at least two times greater than nitrite release possibly due to sequestration of nitrite in the reaction mixtures.

  19. Functional Integrity of the Chimeric (Humanized) Mouse Liver: Enzyme Zonation, Physiologic Spaces, and Hepatic Enzymes and Transporters.

    Science.gov (United States)

    Chow, Edwin C Y; Wang, Jason Z Ya; Quach, Holly P; Tang, Hui; Evans, David C; Li, Albert P; Silva, Jose; Pang, K Sandy

    2016-09-01

    Chimeric mouse liver models are useful in vivo tools for human drug metabolism studies; however, liver integrity and the microcirculation remain largely uninvestigated. Hence, we conducted liver perfusion studies to examine these attributes in FRGN [Fah(-/-), Rag2(-/-), and Il2rg(-/-), NOD strain] livers (control) and chimeric livers repopulated with mouse (mFRGN) or human (hFRGN) hepatocytes. In single-pass perfusion studies (2.5 ml/min), outflow dilution profiles of noneliminated reference indicators ((51)Cr-RBC, (125)I-albumin, (14)C-sucrose, and (3)H-water) revealed preservation of flow-limited distribution and reduced water and albumin spaces in hFRGN livers compared with FRGN livers, a view supported microscopically by tightly packed sinusoids. With prograde and retrograde perfusion of harmol (50 µM) in FRGN livers, an anterior sulfation (Sult1a1) over the posterior distribution of glucuronidation (Ugt1a1) activity was preserved, evidenced by the 42% lower sulfation-to-glucuronidation ratio (HS/HG) and 14% higher harmol extraction ratio (E) upon switching from prograde to retrograde flow. By contrast, zonation was lost in mFRGN and hFRGN livers, with HS/HG and E for both flows remaining unchanged. Remnant mouse genes persisted in hFRGN livers (10%-300% those of FRGN). When hFRGN livers were compared with human liver tissue, higher UGT1A1 and MRP2, lower MRP3, and unchanged SULT1A1 and MRP4 mRNA expression were observed. Total Sult1a1/SULT1A1 protein expression in hFRGN livers was higher than that of FRGN livers, consistent with higher harmol sulfate formation. The composite data on humanized livers suggest a loss of zonation, lack of complete liver humanization, and persistence of murine hepatocyte activities leading to higher sulfation.

  20. Study of in vivo exposure of single-walled carbon nanotubes in mouse liver

    Science.gov (United States)

    Lyons, Lyndon L.

    Currently, few studies are available that have explored the role of carbon nanoparticles in liver toxicity. The susceptibility of the liver to nanoparticles rises from the inhalation exposure route often encountered during manufacturing and occupational exposure. Persons occupying these types of environmental setting are exposed to airborne nanoparticles less than 100nm, which have unobstructed access to most area of the lungs due to their size. Several reports have shown that single walled carbon nanotubes (SWCNTs) induce oxidative stress and pose the greatest cytotoxicity potential do to their size. Also, studies in mice indicate nanoparticles tend to accumulate in organs such as the spleen, kidney and liver, which is a major concern due to a lack of knowledge as to their fate. Single Wall Carbon Nanotubes (SWCNT's) are able to more easily penetrate through the cell membrane and display higher cell toxicity than Multi walled carbon nanotubes (MWCTs), opening the possibility for crossing various biological barriers within the body. Therefore effective occupational and environmental health risk assessments are significant in controlling the manufacture process of carbon nanotubes (CNTs). The present study was undertaken to determine the toxicity exhibited by SWCNT in mouse liver tissue as a model system. Mouse exposure during inhalation with and without SWCNT and reactive oxygen species (ROS) products were measured by change in fluorescence using dichloro fluorescein (DCF). The result showed no increase ROS on exposure of SWCNT in a dose and time dependent manner. Also, there is no reduction levels of glutathione (GSH) and super oxide dismutase (SOD), the antioxidant protective mechanism present in mouse liver cells upon SWCNT exposure. Lipid Peroxidation (LPO) and Lactate Dehydrogenase (LDH) assays indicated no tissue or protein damage. Additionally, Caspases --8 and --3 assays were conducted in order to understand the apoptotic signaling pathways initiated by

  1. Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 2: species differences in response.

    Science.gov (United States)

    Green, Trevor; Toghill, Alison; Lee, Robert; Waechter, Felix; Weber, Edgar; Peffer, Richard; Noakes, James; Robinson, Mervyn

    2005-07-01

    Thiamethoxam is a neonicotinoid insecticide that is not a mutagen, but it did cause a significant increase in liver cancer in mice, but not rats, in chronic dietary feeding studies. Previous studies in mice have characterized a carcinogenicity mode of action that involved depletion of plasma cholesterol, cell death, both as single cell necrosis and as apoptosis, and sustained increases in cell replication rates. In a study reported in this article, female rats have been exposed to thiamethoxam in their diet at concentrations of 0, 1000, and 3000 ppm for 50 weeks, a study design directly comparable to the mouse study in which the mode of action changes were characterized. In rats, thiamethoxam had no adverse effects on either the biochemistry or histopathology of the liver at any time point during the study. Cell replication rates were not increased, in fact they were significantly decreased at several time points. The lack of effect on the rat liver is entirely consistent with the lack of liver tumor formation in the two-year cancer bioassay. Comparisons of the metabolism of thiamethoxam in rats and mice have shown that concentrations of the parent chemical were either similar or higher in rat blood than in mouse blood in both single dose and the dietary studies strongly indicating that thiamethoxam itself is unlikely to play a role in the development of liver tumors. In contrast, the concentrations of the two metabolites, CGA265307 and CGA330050, shown to play a role in the development of liver damage in the mouse, were 140- (CGA265307) and 15- (CGA330050) fold lower in rats than in mice following either a single oral dose, or dietary administration of thiamethoxam for up to 50 weeks. Comparisons of the major metabolic pathways of thiamethoxam in vitro using mouse, rat, and human liver fractions have shown that metabolic rates in humans are lower than those in the rat suggesting that thiamethoxam is unlikely to pose a hazard to humans exposed to this chemical at

  2. Effects of social isolation stress on immune response and survival time of mouse with liver cancer

    Institute of Scientific and Technical Information of China (English)

    Hui Liu; Zhun Wang

    2005-01-01

    AIM: To investigate the effects of isolation stress on mouse with liver cancer and possible associated mechanisms.METHODS: Transplantable murine hepatoma22 (H22) model was used to evaluate the effects of social isolation stress on murine liver cancer. Mice were immunized with sheep red blood cell (SRBC) and intraperitoneally inoculated with H22 cell, then divided into two groups, one reared individually as group (Ⅰ) and the other reared in groups as group (G). Titer of antibody to SRBC and interleukin 2 (IL-2) in serum was monitored. The survival time of mouse with liver cancer was observed.RESULTS: The titer of antibody to SRBC in group (G) was 1:24.5 and that in group (Ⅰ) was 1:11.2. There was a significant difference between these two groups (t = 2.60,P = 0.02). A significant difference in IL-2 concentration was observed between group (G) (39.6 ng/L) and group (Ⅰ) (47.1 ng/L, t= 2.14, P = 0.046). The survival time in group (G) (16.5 d) was markedly longer than that in group (Ⅰ) (13.2 d, t = 3.46, P = 0.002).CONCLUSION: Our study suggests that survival time of the mouse bearing H22 tumor is affected by the social isolation stress and the associated mechanism may be the immunological changes under the social isolation stress.

  3. Liver fibrosis and regeneration in dogs and cats: An immunohistochemical approach

    NARCIS (Netherlands)

    IJzer, J.

    2008-01-01

    In this thesis we focus on liver tissue repair processes in canine and feline hepatitis, on formalin fixed paraffin embedded archival liver specimens. Hepatitis was diagnosed using histological standard criteria, and always includes hepatocellular cell death and an inflammatory infiltrate.

  4. Adult Mouse Liver Contains Two Distinct Populations of Cholangiocytes

    Directory of Open Access Journals (Sweden)

    Bin Li

    2017-08-01

    Full Text Available The biliary system plays an important role in several acquired and genetic disorders of the liver. We have previously shown that biliary duct epithelium contains cells giving rise to proliferative Lgr5+ organoids in vitro. However, it remained unknown whether all biliary cells or only a specific subset had this clonogenic activity. The cell surface protease ST14 was identified as a positive marker for the clonogenic subset of cholangiocytes and was used to separate clonogenic and non-clonogenic duct cells by fluorescence-activated cell sorting. Only ST14hi duct cells had the ability to generate organoids that could be serially passaged. The gene expression profiles of clonogenic and non-clonogenic duct cells were similar, but several hundred genes were differentially expressed. RNA fluorescence in situ hybridization showed that clonogenic duct cells are interspersed among regular biliary epithelium at a ∼1:3 ratio. We conclude that adult murine cholangiocytes can be subdivided into two populations differing in their proliferative capacity.

  5. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Kathleen M., E-mail: gilbertkathleenm@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Reisfeld, Brad, E-mail: brad.reisfeld@colostate.edu [Colorado State University, Fort Collins, CO (United States); Zurlinden, Todd J., E-mail: tjzurlin@rams.colostate.edu [Colorado State University, Fort Collins, CO (United States); Kreps, Meagan N., E-mail: MNKreps@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Erickson, Stephen W., E-mail: serickson@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Blossom, Sarah J., E-mail: blossomsarah@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States)

    2014-09-15

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL +/+ mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL +/+ mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation. - Highlights: • We developed a toxicodynamic model to study effects of trichloroethylene on liver. • We examined protective as well as pro-inflammatory events in the liver. • Trichloroethylene inhibits IL-6 production by macrophages. • Trichloroethylene

  6. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis

    Science.gov (United States)

    Fransén-Pettersson, Nina; Duarte, Nadia; Nilsson, Julia; Lundholm, Marie; Mayans, Sofia; Larefalk, Åsa; Hannibal, Tine D.; Hansen, Lisbeth; Schmidt-Christensen, Anja; Ivars, Fredrik; Cardell, Susanna; Palmqvist, Richard; Rozell, Björn

    2016-01-01

    Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders. PMID:27441847

  7. [Profiles of cell proliferation and apoptosis in the mouse epithelial regeneration model K6b-E6/E7].

    Science.gov (United States)

    Bonilla-Delgado, José; Rodríguez-Uribe, Genaro; Cortés-Malagón, Enoc Mariano; Sierra Martínez, Mónica; Acosta-Altamirano, Gustavo; Gariglio-Vidal, Patricio

    2012-01-01

    Mammals have limited epithelial regeneration capacity. The K6b-E6/E7 mice model has been described as useful for the study of epithelial regeneration. The objective of this study is to compare the expression of E6/E7 oncogenes with those of cell proliferation and apoptosis during epithelization. The hypothesis of this study is that alterations in cell proliferation and apoptosis in K6b-E6/E7 mice will only occur during epithelization. Deep 2 mm punches were performed in the middle of transgenic and control mice's ears. A biopsy was collected from the epithelization zone 72 hours and 2 weeks post-injury. Assays for cell proliferation and apoptosis were carried out by immunohistochemistry and TUNEL techniques, respectively. RT-PCR in situ was performed to compare E6/E7 expressions in the areas studied. Transgenic strain K6b-E6/E7 presented more proliferative cells and less apoptotic cells in epithelizated zones. This effect was limited to suprabasal stratum only, and correlates with E6/E7 oncogenes expression. Two weeks post-injury, cell proliferation and apoptosis were similar in both samples as the E6/E7 expression went down. K6b-E6/E7 mouse model is useful for epithelial regeneration. Its mechanisms should be considered for the treatment of deep wounds.

  8. Comparison of clenbuterol and salbutamol accumulation in the liver of two different mouse strains.

    Science.gov (United States)

    Vulić, Ana; Pleadin, Jelka; Durgo, Ksenija; Scortichini, Giampiero; Stojković, Ranko

    2014-06-01

    In the European Union, β(2)-adrenergic agonists like clenbuterol and salbutamol are banned from use as growth promoters. Although clenbuterol and salbutamol both accumulate in the liver, differences in the accumulation rate can be seen among animal species due to different β(2)-adrenoreceptor distributions. The aim of this study was to compare the accumulation of the two in the liver tissue of two different mouse strains. The study included 200 8-week-old BALB/c and C57/BL/6 mice. One group of BALB/c (40) and one group of C57/BL/6 (40) mice were treated with 2.5 mg/kg body mass clenbuterol per os for 28 days. The remaining two animal groups were treated with salbutamol in the same manner. The animals were then randomly sacrificed on day 1, 15 and 30 post treatments. Despite of the same treatment dose, the results revealed clenbuterol to persist in the liver tissue longer than salbutamol. On post treatment day 30, the concentration of clenbuterol residue in C57/BL/6 and BALB/c mice liver tissue were 0.23 ± 0.02 and 0.21 ± 0.03 ng/g, respectively, while residues of salbutamol were not detected. When comparing the accumulation of both compounds between the two mouse strains, it becomes apparent that no significant difference (P > 0.05) in the accumulation rate can be found.

  9. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangkyu, E-mail: 49park@cku.ac.kr [Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangneung 210-701 (Korea, Republic of); Lee, Yoo Jeong [Division of Metabolic Disease, Center for Biomedical Sciences, National Institute of Health Korea, Osong 361-709 (Korea, Republic of); Ko, Eun Hee [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jae-woo [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.

  10. Loss of α1,6-fucosyltransferase suppressed liver regeneration: implication of core fucose in the regulation of growth factor receptor-mediated cellular signaling.

    Science.gov (United States)

    Wang, Yuqin; Fukuda, Tomohiko; Isaji, Tomoya; Lu, Jishun; Gu, Wei; Lee, Ho-Hsun; Ohkubo, Yasuhito; Kamada, Yoshihiro; Taniguchi, Naoyuki; Miyoshi, Eiji; Gu, Jianguo

    2015-02-05

    Core fucosylation is an important post-translational modification, which is catalyzed by α1,6-fucosyltransferase (Fut8). Increased expression of Fut8 has been shown in diverse carcinomas including hepatocarcinoma. In this study, we investigated the role of Fut8 expression in liver regeneration by using the 70% partial hepatectomy (PH) model, and found that Fut8 is also critical for the regeneration of liver. Interestingly, we show that the Fut8 activities were significantly increased in the beginning of PH (~4d), but returned to the basal level in the late stage of PH. Lacking Fut8 led to delayed liver recovery in mice. This retardation mainly resulted from suppressed hepatocyte proliferation, as supported not only by a decreased phosphorylation level of epidermal growth factor (EGF) receptor and hepatocyte growth factor (HGF) receptor in the liver of Fut8(-/-) mice in vivo, but by the reduced response to exogenous EGF and HGF of the primary hepatocytes isolated from the Fut8(-/-) mice. Furthermore, an administration of L-fucose, which can increase GDP-fucose synthesis through a salvage pathway, significantly rescued the delayed liver regeneration of Fut8(+/-) mice. Overall, our study provides the first direct evidence for the involvement of Fut8 in liver regeneration.

  11. Hormonal regulation of Cyp4a isoforms in mouse liver and kidney.

    Science.gov (United States)

    Zhang, Youcai; Klaassen, Curtis D

    2013-12-01

    Mouse Cyp4a subfamily, including Cyp4a10, Cyp4a12a, Cyp4a12b and Cyp4a14, demonstrate a gender- and strain-specific expression in liver and kidney. In C57BL/6 mouse liver and kidney, Cyp4a12a and 4a12b are male-predominant, whereas Cyp4a14 is female-predominant. Cyp4a10 is female-predominant in liver, but shows no gender difference in kidney. The present study was aimed to determine whether sex hormones and/or growth hormone (GH) secretion patterns are responsible for the gender-specific Cyp4a expression in C57BL/6 mice. Gonadectomized mice, GH-releasing hormone receptor-deficient little (lit/lit) mice and hypophysectomized mice were used with replacement of sex hormones or GH in male or female secretion patterns. Both androgens and male-pattern GH regulated the gender-divergent Cyp4a10, 4a12a and 4a12b in liver, whereas androgens played an exclusive role in regulating Cyp4a10 and 4a12a in kidney. In contrast, Cyp4a12b was increased by male-pattern GH but not androgens in kidney. The female-predominant Cyp4a14 in liver and kidney was due to a combined effect of male-pattern GH and androgens. In addition, estrogens played a minor role in regulation of Cyp4a isoforms through an indirect pathway. In conclusion, gender-divergent Cyp4a mRNA expression in liver is caused by male-pattern GH secretion pattern and androgens, whereas in kidney, Cyp4a mRNA expression is primarily regulated by androgens.

  12. Effect of chronic intermittent hypoxia on theophylline metabolism in mouse liver

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-yang; ZENG Yi-ming; ZHANG Yi-xiang; WANG Wan-yu; WU Run-hua

    2013-01-01

    Background Chronic intermittent hypoxia (CIH) has been associated with abnormalities in the liver,which is the most important organ for drug metabolism.This study aimed to investigate the effect of CIH on theophylline metabolism in mouse liver.Methods Eight C57BL/6J mice were exposed to CIH for 12 weeks.Eight C57BL/6J mice were exposed to room air as a control group.Serum levels of alanine aminotransferase and aspartate aminotransferase were measured.Liver histology was observed by light and electron microscopy.Total hepatic cytochrome P450 concentration was measured.Hepatocytes were isolated and incubated with 15 mg/ml theophylline for four hours.After incubation,the theophylline concentration in the supernatant was measured and the theophylline metabolism rate was calculated.Results CIH did not affect the serum transaminase levels.Livers from mice exposed to CIH showed hepatocellular edema,and liver cells had fuzzy rough endoplasmic reticulum under the electron microscope.The theophylline metabolism rate was significantly inhibited by CIH compared with controls; (16.60±2.43)% vs.(21.58±4.52)% (P=0.02).The total liver cytochrome P450 concentration in the CIH group was significantly lower than in the control group;(0.83±0.08) vs.(1.13±0.21) mol/mg microsomal protein (P=0.004).Conclusion CIH decreases theophylline metabolism by mouse hepatocytes,which may correlate with the downregulation of cytochrome P450 expression by CIH.

  13. Role of farnesoid X receptor in establishment of ontogeny of phase-I drug metabolizing enzyme genes in mouse liver

    OpenAIRE

    Lai Peng; Stephanie Piekos; Guo, Grace L.; Xiao-bo Zhong

    2016-01-01

    The expression of phase-I drug metabolizing enzymes in liver changes dramatically during postnatal liver maturation. Farnesoid X receptor (FXR) is critical for bile acid and lipid homeostasis in liver. However, the role of FXR in regulating ontogeny of phase-I drug metabolizing genes is not clear. Hence, we applied RNA-sequencing to quantify the developmental expression of phase-I genes in both Fxr-null and control (C57BL/6) mouse livers during development. Liver samples of male C57BL/6 and F...

  14. Identification of expressed genes in regenerating rat liver in 0-4-8-12 h short interval successive partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Cun-Shuan Xu; Salman Rahman; Jing-Bo Zhang; Jin-Yun Yuan; Wen-Qiang Li; Hong-Peng Han; Ke-Jin Yang; Cui-Fang Chang; Li-Feng Zhao; Yu-Chang Li; Hui-Yong Zhang

    2005-01-01

    AIM: To identify the genes differentially expressed in the regenerating rat liver of 0-4-8-12 h short interval successive partial hepatectomy (SISPH) and to analyze their expression profiles.METHODS: Five hundred and fifty-one elements screened from subtractive cDNA libraries were made into a cDNA microarray (cDNA chip). Extensive gene expression analysis following 0-4-8-12 h SISPH was conducted by microarray.RESULTS: One hundred and eighty-three elements were selected, which were either up- or down-regulated more than 2-fold at one or more time points after SISPH. Cluster analysis and generalization analysis showed that there were five distinct temporal patterns of gene expression.Eighty-six genes were unreported, associated with liver regeneration (LR).CONCLUSION: Microarray analysis shows that the down regulated genes are much more than the up-regulated ones in SISPH; the numbers of genes expressed consistently are fewer than that expressed immediately; the genes expressed in high abundance are much fewer than that increased 2-5-fold. The comparison of SISPH with partial hepatectomy (PH) shows that the expression trends of most genes in SISPH and in PH are similar,but the expression of 43 genes is specifically altered in SISPH.

  15. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury

    OpenAIRE

    Jieshi Xie; Le Yang; Lei Tian; Weiyang Li; Lin Yang; Liying Li

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver an...

  16. Toxaphene-induced mouse liver tumorigenesis is mediated by the constitutive androstane receptor.

    Science.gov (United States)

    Wang, Zemin; Li, Xilin; Wu, Qiangen; Lamb, James C; Klaunig, James E

    2017-02-20

    Toxaphene was shown to increase liver tumor incidence in B6C3F1 mice following chronic dietary exposure. Preliminary evidence supported a role for the constitutive androstane receptor (CAR) in the mode of action of toxaphene-induced mouse liver tumors. However, these results could not rule out a role for the pregnane X receptor (PXR) in liver tumor formation. To define further the nuclear receptors involved in this study, we utilized CAR, PXR and PXR/CAR knockout mice (CAR(-/-) , PXR(-/-) and PXR(-/-) /CAR(-/-) ) along with the wild-type C57BL/6. In this study CAR-responsive genes Cyp3a11 and Cyp2b10 were induced in the liver of C57BL/6 (wild-type) mice by toxaphene (30-570-fold) (at the carcinogenic dose 320 ppm) and phenobarbital (positive control) (16-420-fold) following 14 days' dietary treatment. In contrast, in CAR(-/-) mice, no induction of these genes was seen following treatment with either chemical. Cyp3a11 and Cyp2b10 were also induced in PXR(-/-) mice with toxaphene and phenobarbital but were not changed in treated PXR(-/-) /CAR(-/-) mice. Similarly, induction of liver pentoxyresorufin-O-deethylase (CAR activation) activity by toxaphene and phenobarbital was absent in CAR(-/-) and PXR(-/-) /CAR(-/-) mice treated with phenobarbital or toxaphene. Ethoxyresorufin-O-deethylase (EROD, represents aryl hydrocarbon receptor activation) activity in CAR(-/-) mice treated with toxaphene or phenobarbital was increased compared with untreated control, but lower overall in activity in comparison to the wild-type mouse. Liver EROD activity was also induced by both phenobarbital and toxaphene in the PXR(-/-) mice but not in the PXR(-/-) /CAR(-/-) mice. Toxaphene treatment increased 7-benzyloxyquinoline activity (a marker for PXR activation) in a similar pattern to that seen with pentoxyresorufin-O-deethylase. These observations indicate that EROD and PXR activation are evidence, as expected, of secondary overlap to primary CAR receptor activation. Together, these

  17. Anandamide drives cell cycle progression through CB1 receptors in a rat model of synchronized liver regeneration.

    Science.gov (United States)

    Pisanti, Simona; Picardi, Paola; Pallottini, Valentina; Martini, Chiara; Petrosino, Stefania; Proto, Maria Chiara; Vitale, Mario; Laezza, Chiara; Gazzerro, Patrizia; Di Marzo, Vincenzo; Bifulco, Maurizio

    2015-12-01

    The endocannabinoid system, through cannabinoid receptor signaling by endocannabinoids, is involved in a wide range of functions and physiopathological conditions. To date, very little is known concerning the role of the endocannabinoids in the control and regulation of cell proliferation. An anti-proliferative action of CB1 signaling blockade in neurogenesis and angiogenesis argues in favor of proliferation-promoting functions of endocannabinoids through CB1 receptors when pro-growth signals are present. Furthermore, liver regeneration, a useful in vivo model of synchronized cell proliferation, is characterized by a peak of anandamide that elicits through CB1 receptor, the expression of critical mitosis genes. The aim of this study was to focus on the timing of endocannabinoid signaling changes during the different phases of the cell cycle, exploiting the rat liver regeneration model following partial hepatectomy, the most useful to study synchronized cell cycle in vivo. Hepatic regeneration led to increased levels of anandamide and endocannabinoid-like molecules oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the G1 phase of the cell cycle, with a concomitant increase in CB1 mRNA levels, whose protein expression peaked later during the S phase. Blocking of CB1 receptor with a low dose of the selective antagonist/inverse agonist SR141716 (0.7 mg/kg/dose) affected cell cycle progression reducing the expression of PCNA, and through the inhibition of pERK and pSTAT3 pathways. These results support the notion that the signaling mediated by anandamide through CB1 receptor may be important for the entry and progression of cells into the cell cycle and hence for their proliferation under mitogenic signals.

  18. Reduction in Bile Acid Pool Causes Delayed Liver Regeneration Accompanied by Down-regulated Expression of FXR and C-Jun mRNA in Rats

    Institute of Scientific and Technical Information of China (English)

    董秀山; 赵浩亮; 马晓明; 王世明

    2010-01-01

    The present study attempted to examine the effects of bile acid pool size on liver regeneration after hepatectomy.The rats were fed on 0.2% cholic acid(CA)or 2% cholestyramine for 7 days to induce a change in the bile acid size,and then a partial hepatectomy(PH)was performed.Rats fed on the normal diet served as the controls.Measurements were made on the rate of liver regeneration,the labeling indices of PCNA,the plasma total bile acids(TBA),and the mRNA expression of cholesterol 7alpha-hydroxylase(CYP7A1),...

  19. Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose.

    Science.gov (United States)

    Zhang, Zi-feng; Fan, Shao-hua; Zheng, Yuan-lin; Lu, Jun; Wu, Dong-mei; Shan, Qun; Hu, Bin

    2009-09-01

    Troxerutin, a trihydroxyethylated derivative of rutin, has been well-demonstrated to exert hepatoprotective properties. In the present study, we attempted to explore whether the antioxidant and anti-inflammatory mechanisms were involved in troxerutin-mediated protection from D-gal-induced liver injury. The effects of troxerutin on liver lipid peroxidation, antioxidant enzymatic activities, and the expression of inflammatory mediator were investigated in D-gal-treated mice. The results showed that troxerutin largely attenuated the D-gal-induced TBARS content increase and also markedly renewed the activities of Cu, Zn-SOD, CAT, and GPx in the livers of D-gal-treated mice. Furthermore, troxerutin inhibited the upregulation of the expression of NF-kappaB p65, iNOS, and COX-2 induced by D-gal. D-Gal-induced tissue architecture changes and serum ALT and AST increases were effectively suppressed by troxerutin. In conclusion, these results suggested that troxerutin could protect the mouse liver from D-gal-induced injury by attenuating lipid peroxidation, renewing the activities of antioxidant enzymes and suppressing inflammatory response. This study provided novel insights into the mechanisms of troxerutin in the protection of the liver.

  20. Transplantation of Porcine Hepatocytes Cultured with Polylactic Acid-O-Carboxymethylated Chitosan Nanoparticles Promotes Liver Regeneration in Acute Liver Failure Rats

    Directory of Open Access Journals (Sweden)

    Zhong Chen

    2011-01-01

    Full Text Available In this study, free porcine hepatocytes suspension (Group A, porcine hepatocytes embedded in collagen gel (Group B, porcine hepatocytes cultured with PLA-O-CMC nanoparticles and embedded in collagen gel (Group C, and PLA-O-CMC nanoparticles alone (Group D were transplanted into peritoneal cavity of ALF rats, respectively. The result showed that plasma HGF levels were elevated post-transplantation with a peak at 12 hr. The rats in Group C showed highest plasma HGF levels at 2, 6, 12, 24 and 36 hr post-transplantation and lowest HGF level at 48 hr. Plasma VEGF levels were elevated at 48 hr post-transplantation with a peak at 72 hr. The rats in Group C showed highest plasma HGF levels at 48, 72, and 96 hr post-transplantation. The liver functions in Group C were recovered most rapidly. Compared with Group B, Group C had significant high liver Kiel 67 antigen labeling index (Ki-67 LI at day 1 post-HTx (P<.05. Ki-67 LI in groups B and C was higher than that in groups A and D at days 5 and 7 post-HTx. In conclusion, intraperitoneal transplantation of porcine hepatocytes cultured with PLA-O-CMC nanoparticles and embedded in collagen gel can promote significantly liver regeneration in ALF rats.

  1. Evaluation of immunological escape mechanisms in a mouse model of colorectal liver metastases

    Directory of Open Access Journals (Sweden)

    Meyer Detlef

    2010-03-01

    Full Text Available Abstract Background The local and systemic activation and regulation of the immune system by malignant cells during carcinogenesis is highly complex with involvement of the innate and acquired immune system. Despite the fact that malignant cells do have antigenic properties their immunogenic effects are minor suggesting tumor induced mechanisms to circumvent cancer immunosurveillance. The aim of this study is the analysis of tumor immune escape mechanisms in a colorectal liver metastases mouse model at different points in time during tumor growth. Methods CT26.WT murine colon carcinoma cells were injected intraportally in Balb/c mice after median laparotomy using a standardized injection technique. Metastatic tumor growth in the liver was examined by standard histological procedures at defined points in time during metastatic growth. Liver tissue with metastases was additionally analyzed for cytokines, T cell markers and Fas/Fas-L expression using immunohistochemistry, immunofluorescence and RT-PCR. Comparisons were performed by analysis of variance or paired and unpaired t test when appropriate. Results Intraportal injection of colon carcinoma cells resulted in a gradual and time dependent metastatic growth. T cells of regulatory phenotype (CD4+CD25+Foxp3+ which might play a role in protumoral immune response were found to infiltrate peritumoral tissue increasingly during carcinogenesis. Expression of cytokines IL-10, TGF-β and TNF-α were increased during tumor growth whereas IFN-γ showed a decrease of the expression from day 10 on following an initial increase. Moreover, liver metastases of murine colon carcinoma show an up-regulation of FAS-L on tumor cell surface with a decreased expression of FAS from day 10 on. CD8+ T cells express FAS and show an increased rate of apoptosis at perimetastatic location. Conclusions This study describes cellular and macromolecular changes contributing to immunological escape mechanisms during metastatic

  2. Comparison Analysis of Dysregulated LncRNA Profile in Mouse Plasma and Liver after Hepatic Ischemia/Reperfusion Injury.

    Science.gov (United States)

    Chen, Zhenzhen; Luo, Yanjin; Yang, Weili; Ding, Liwei; Wang, Junpei; Tu, Jian; Geng, Bin; Cui, Qinghua; Yang, Jichun

    2015-01-01

    Long noncoding RNAs (LncRNAs) have been believed to be the major transcripts in various tissues and organs, and may play important roles in regulation of many biological processes. The current study determined the LncRNA profile in mouse plasma after liver ischemia/reperfusion injury (IRI) using microarray technology. Microarray assays revealed that 64 LncRNAs were upregulated, and 244 LncRNAs were downregulated in the plasma of liver IRI mouse. Among these dysregulated plasma LncRNAs, 59-61% were intergenic, 22-25% were antisense overlap, 8-12% were sense overlap and 6-7% were bidirectional. Ten dysregulated plasma LncRNAs were validated by quantitative PCR assays, confirming the accuracy of microarray analysis result. Comparison analysis between dysregulated plasma and liver LncRNA profile after liver IRI revealed that among the 308 dysregulated plasma LncRNAs, 245 LncRNAs were present in the liver, but remained unchanged. In contrast, among the 98 dysregulated liver LncRNAs after IRI, only 19 were present in the plasma, but remained unchanged. LncRNA AK139328 had been previously reported to be upregulated in the liver after IRI, and silencing of hepatic AK139328 ameliorated liver IRI. Both microarray and RT-PCR analyses failed to detect the presence of AK139328 in mouse plasma. In summary, the current study compared the difference between dysregulated LncRNA profile in mouse plasma and liver after liver IRI, and suggested that a group of dysregulated plasma LncRNAs have the potential of becoming novel biomarkers for evaluation of ischemic liver injury.

  3. Temporospatial tissue interactions regulating the regeneration of the enamel knot in the developing mouse tooth.

    Science.gov (United States)

    Cho, Sung-Won; Kim, Jae-Young; Cai, Jinglei; Lee, Jong-Min; Kim, Eun-Jung; Lee, Hyun-A; Yamamoto, Hitoshi; Jung, Han-Sung

    2007-02-01

    The enamel knot (EK), which is a transient signaling center in the tooth germ, regulates both the differential growth of the dental epithelium and the tooth shape. In this study, the regeneration of the EK was evaluated. The EK regions were removed from the E14 and E16 dental epithelia, and the remaining epithelia were recombined with their original dental mesenchymes. All these tooth germs could develop into calcified teeth after being transplanted into the kidney capsule for 3 weeks. One primary EK was regenerated earlier, and two or three secondary EKs were regenerated later in culture. When simply recombined without removing the EK, the tooth germ, which had four secondary EKs and four cuspal areas of the dental papilla, generated one primary EK first and subsequent secondary EKs. These results indicate that the patterning of the EK in all tooth germs always starts from a primary EK independent of the direct epithelial or mesenchymal control. This suggests that neither the dental epithelium nor the dental mesenchyme can dictate the pattern or number of the EK formation, but the interaction between the dental epithelium and the dental mesenchyme is essential for the regeneration and patterning of the EKs.

  4. Embryonic mouse STO cell-derived xenografts express hepatocytic functions in the livers of nonimmunosuppressed adult rats.

    Science.gov (United States)

    Zhang, Mingjun; Joseph, Brigid; Gupta, Sanjeev; Guest, I; Xu, Meng; Sell, Stewart; Son, Kyung-Hwa; Koch, Katherine S; Leffert, Hyam L

    2005-02-01

    Cells derived from embryonic mouse STO cell lines differentiate into hepatocytes when transplanted into the livers of nonimmunosuppressed dipeptidylpeptidase IV (DPPIV)-negative F344 rats. Within 1 day after intrasplenic injection, donor cells moved rapidly into the liver and were found in intravascular and perivascular sites; by 1 month, they were intrasinusoidal and also integrated into hepatic plates with approximately 2% efficiency and formed conjoint bile canaliculi. Neither donor cell proliferation nor host inflammatory responses were observed during this time. Detection of intrahepatic mouse COX1 mitochondrial DNA and mouse albumin mRNA in recipient rats indicated survival and differentiation of donor cells for at least 3 months. Mouse COX1 targets were also detected intrahepatically 4-9 weeks after STO cell injection into nonimmunosuppressed wild-type rats. In contrast to STO-transplanted rats, mouse DNA or RNA was not detectable in untreated or mock-transplanted rats or in rats injected with donor cell DNA. In cultured STO donor cells, DPPIV and glucose-6-phosphatase activities were observed in small clusters; in contrast, mouse major histocompatibility complex class I H-2Kq, H-2Dq, and H-2Lq and class II I-Aq markers were undetectable in vitro before or after interferon gamma treatment. Together with H-2K allele typing, which confirmed the Swiss mouse origin of the donor cells, these observations indicate that mouse-derived STO cell lines can differentiate along hepatocytic lineage and engraft into rat liver across major histocompatibility barriers.

  5. Expression profiles of the genes associated with metabolism and transport of amino acids and their derivatives in rat liver regeneration.

    Science.gov (United States)

    Xu, C S; Chang, C F

    2008-01-01

    Amino acids (AA) are components of protein and precursors of many important biological molecules. To address effects of the genes associated with metabolism and transport of AA and their derivatives during rat liver regeneration (LR), we firstly obtained the above genes by collecting databases data and retrieving related thesis, and then analyzed their expression profiles during LR using Rat Genome 230 2.0 array. The LR-associated genes were identified by comparing the gene expression difference between partial hepatectomy (PH) and sham-operation (SO) rat livers. It was approved that 134 genes associated with metabolism of AA and their derivatives and 26 genes involved in transport of them were LR-associated. The initially and totally expressing number of these genes occurring in initial phase of LR (0.5-4 h after PH), G0/G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction of liver tissue (72-168 h after PH) were respectively 76, 17, 79, 5 and 162, 89, 564, 195, illustrating that these LR-associated genes were initially expressed mainly in initial stage, and functioned in different phases. Frequencies of up-regulation and down-regulation of them being separately 564 and 357 demonstrated that genes up-regulated outnumbered those down-regulated. Categorization of their expression patterns into 22 types implied the diversity of cell physiological and biochemical activities. According to expression changes and patterns of the above-mentioned genes in LR, it was presumed that histidine biosynthesis in the metaphase and anaphase, valine metabolism in the anaphase, and metabolism of glutamate, glutamine, asparate, asparagine, methionine, alanine, leucine and aromatic amino acid almost were enhanced in the whole LR; as for amino acid derivatives, transport of neutral amino acids, urea, gamma-aminobutyric acid, betaine and taurine, metabolism of dopamine, heme, S-adenosylmethionine, thyroxine, and

  6. Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis

    National Research Council Canada - National Science Library

    Truong, Nhung Hai; Nguyen, Nam Hai; Le, Trinh Van; Vu, Ngoc Bich; Huynh, Nghia; Nguyen, Thanh Van; Le, Huy Minh; Phan, Ngoc Kim; Pham, Phuc Van

    2016-01-01

    ...) on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation...

  7. Transplantation of mouse fetal liver cells for analyzing the function of hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Gudmundsson, Kristbjorn Orri; Stull, Steven W; Keller, Jonathan R

    2012-01-01

    Hematopoietic stem cells are defined by their ability to self-renew and differentiate through progenitor cell stages into all types of mature blood cells. Gene-targeting studies in mice have demonstrated that many genes are essential for the generation and function of hematopoietic stem and progenitor cells. For definitively analyzing the function of these cells, transplantation studies have to be performed. In this chapter, we describe methods to isolate and transplant fetal liver cells as well as how to analyze donor cell reconstitution. This protocol is tailored toward mouse models where embryonic lethality precludes analysis of adult hematopoiesis or where it is suspected that the function of fetal liver hematopoietic stem and progenitor cells is compromised.

  8. IDH1 deficiency attenuates gluconeogenesis in mouse liver by impairing amino acid utilization

    Science.gov (United States)

    Ye, Jing; Gu, Yu; Zhang, Feng; Zhao, Yuanlin; Yuan, Yuan; Hao, Zhenyue; Sheng, Yi; Li, Wanda Y.; Wakeham, Andrew; Cairns, Rob A.; Mak, Tak W.

    2017-01-01

    Although the enzymatic activity of isocitrate dehydrogenase 1 (IDH1) was defined decades ago, its functions in vivo are not yet fully understood. Cytosolic IDH1 converts isocitrate to α-ketoglutarate (α-KG), a key metabolite regulating nitrogen homeostasis in catabolic pathways. It was thought that IDH1 might enhance lipid biosynthesis in liver or adipose tissue by generating NADPH, but we show here that lipid contents are relatively unchanged in both IDH1-null mouse liver and IDH1-deficient HepG2 cells generated using the CRISPR-Cas9 system. Instead, we found that IDH1 is critical for liver amino acid (AA) utilization. Body weights of IDH1-null mice fed a high-protein diet (HPD) were abnormally low. After prolonged fasting, IDH1-null mice exhibited decreased blood glucose but elevated blood alanine and glycine compared with wild-type (WT) controls. Similarly, in IDH1-deficient HepG2 cells, glucose consumption was increased, but alanine utilization and levels of intracellular α-KG and glutamate were reduced. In IDH1-deficient primary hepatocytes, gluconeogenesis as well as production of ammonia and urea were decreased. In IDH1-deficient whole livers, expression levels of genes involved in AA metabolism were reduced, whereas those involved in gluconeogenesis were up-regulated. Thus, IDH1 is critical for AA utilization in vivo and its deficiency attenuates gluconeogenesis primarily by impairing α-KG–dependent transamination of glucogenic AAs such as alanine. PMID:28011762

  9. Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver.

    Science.gov (United States)

    Airanthi, M K Widjaja-Adhi; Sasaki, Naoya; Iwasaki, Sayaka; Baba, Nobuko; Abe, Masayuki; Hosokawa, Masashi; Miyashita, Kazuo

    2011-04-27

    Brown seaweed lipids from Undaria pinnatifida (Wakame), Sargassum horneri (Akamoku), and Cystoseira hakodatensis (Uganomoku) contained several bioactive compounds, namely, fucoxanthin, polyphenols, and omega-3 polyunsaturated fatty acids (PUFA). Fucoxanthin and polyphenol contents of Akamoku and Uganomoku lipids were higher than those of Wakame lipids, while Wakame lipids showed higher total omega-3 PUFA content than Akamoku and Uganomoku lipids. The levels of docosahexaenoic acid (DHA) and arachidonic acid (AA) in liver lipids of KK-A(y) mouse significantly increased by Akamoku and Uganomoku lipid feeding as compared with the control, but not by Wakame lipid feeding. Fucoxanthin has been reported to accelerate the bioconversion of omega-3 PUFA and omega-6 PUFA to DHA and AA, respectively. The higher hepatic DHA and AA level of mice fed Akamoku and Uganomoku lipids would be attributed to the higher content of fucoxanthin of Akamoku and Uganomoku lipids. The lipid hydroperoxide levels of the liver of mice fed brown seaweed lipids were significantly lower than those of control mice, even though total PUFA content was higher in the liver of mice fed brown seaweed lipids. This would be, at least in part, due to the antioxidant activity of fucoxanthin metabolites in the liver.

  10. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart.

    Science.gov (United States)

    Malliaras, Konstantinos; Zhang, Yiqiang; Seinfeld, Jeffrey; Galang, Giselle; Tseliou, Eleni; Cheng, Ke; Sun, Baiming; Aminzadeh, Mohammad; Marbán, Eduardo

    2013-02-01

    Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-term BrdU pulsing, we investigated the origins of postnatal cardiomyogenesis in the normal, infarcted and cell-treated adult mammalian heart. In the normal mouse heart, cardiomyocyte turnover occurs predominantly through proliferation of resident cardiomyocytes at a rate of ∼1.3-4%/year. After MI, new cardiomyocytes arise from both progenitors as well as pre-existing cardiomyocytes. Transplantation of CDCs upregulates host cardiomyocyte cycling and recruitment of endogenous progenitors, while boosting heart function and increasing viable myocardium. The observed phenomena cannot be explained by cardiomyocyte polyploidization, bi/multinucleation, cell fusion or DNA repair. Thus, CDCs induce myocardial regeneration by differentially upregulating two mechanisms of endogenous cell proliferation.

  11. The effects of silibin administration for different time periods on mouse liver with Ehrlich ascites carcinoma.

    Science.gov (United States)

    Beydogan, Alisa Bahar; Bolkent, Sema

    2016-06-01

    Ehrlich ascites carcinoma is the one of the animal cancer models having high malignancy and rapid growth resistance. Silibin has reported to be an antioxidant in previous studies. We aimed to investigate the effects of silibin on mouse liver with Ehrlich ascites tumor (EAT) cells in different time periods. Balb/c mice were divided into five groups. Group I (Control): The saline buffer (sb) was injected intraperitoneally (ip) to the mice for 15 days. Group II (Silibin): 150mg/kg silibin was injected ip for 15 days. Group III (Ehrlich): 2×10(5) cells were transferred from the donor mouse to healthy mice on first day. Group IV (Ehrlich+Silibin): Silibin was given between 5th and 15th days to mice inoculated with EAT. Group V (Silibin+Ehrlich): Silibin was injected for 15 days after EAT cells. The liver sections were stained with matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9), caspase 3, caspase 8, and proliferating cell nuclear antigen (PCNA) antibodies by the streptavidin-biotin-peroxidase technique. Biochemical analysis and Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) method were performed in the liver. Superoxide dismutase levels of liver increased in Ehrlich+Silibin group compared with Ehrlich group. Malondialdehyde levels significantly decreased in Silibin+Ehrlich group compared with Ehrlich+Silibin. MMP-2 and MMP-9 immunopositive cells increased in Silibin+Ehrlich compared with Ehrlich group. Caspase 3 and TUNEL signals significantly increased in Silibin+Ehrlich group compared with Ehrlich group. PCNA positive signals significantly increased in Ehrlich+Silibin group compared with Ehrlich group. According to our findings, we suggest that silibin treatment after EAT cells inoculation has more effective than concurrently EAT and silibin treatment. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. Construction of High Expression Plasmid of Human Augmenter of Liver Regeneration( hALR), Expression and Purification of hALR

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Experimental evidence has been presented to suggest that the human augmenter of liver regeneration (hALR)serves as a hepatotrophic growth factor during liver regeneration and as a generalized growth factor during pancreas transplant/regeneration. A prokaryotic expression plasmid, pRSET/6his-c-myc-hALR was constructed, by cloning synthesized hALR cDNA into pRSET/6his-c-myc that was improved on the basis of pRSET B by the group. As a result, the protein was highly expressed in E. coli BL21. The recombinant hALR was over 60% of the total protein in E. coli. Its validity was confirmed by meansof Western Blotting. The protein was purified by Ni-NTA affinity chromatography and this FAD-dependent sulfhydryl oxidase activity was measured.

  13. HEDGEHOG SIGNALING IS CRITICAL FOR NORMAL LIVER REGENERATION AFTER PARTIAL HEPATECTOMY IN MICE

    OpenAIRE

    Ochoa, Begoña; Syn, Wing-Kin; Delgado, Igotz; Karaca, Gamze F.; Jung, Youngmi; Wang, Jiangbo; Zubiaga, Ana M.; Fresnedo, Olatz; Omenetti, Alessia; Zdanowicz, Marzena; Choi, Steve S.; Diehl, Anna Mae

    2010-01-01

    Distinct mechanisms are believed to regulate growth of the liver during fetal development and after injury in adults because the former relies on progenitors while the latter generally involves replication of mature hepatocytes. However, chronic liver injury in adults increases production of Hedgehog (Hh) ligands, developmental morphogens that control progenitor cell fate and orchestrate various aspects of tissue construction during embryogenesis. This raises the possibility that similar Hh-d...

  14. Dicer-dependent production of microRNA221 in hepatocytes inhibits p27 and is required for liver regeneration in mice.

    Science.gov (United States)

    Oya, Yuki; Masuzaki, Ryota; Tsugawa, Daisuke; Ray, Kevin C; Dou, Yongchao; Karp, Seth J

    2017-05-01

    Dicer processes microRNAs (miRs) into active forms in a wide variety of tissues, including the liver. To determine the role of Dicer in liver regeneration, we performed a series of in vivo and in vitro studies in a murine 2/3 hepatectomy model. Dicer was downregulated after 2/3 hepatectomy, and loss of Dicer inhibited liver regeneration associated with decreased cyclin A2 and miR-221, as well as increased levels of the cell cycle inhibitor p27. In vitro, miR-221 inhibited p27 production in primary hepatocytes and increased hepatocyte proliferation. Specific reconstitution of miR-221 in hepatocyte-specific Dicer-null mice inhibited p27 and restored liver regeneration. In wild type mice, targeted inhibition of miR-221 using a cholesterol-conjugated miR-221 inhibited hepatocyte proliferation after 2/3 hepatectomy. These results identify Dicer production of miR-221 as an essential component of a miRNA-dependent mechanism for suppression of p27 that controls the rate of hepatocyte proliferation after partial hepatectomy.NEW & NOTEWORTHY Our findings demonstrate a direct role for microRNAs in controlling the rate of liver regeneration after injury. By deleting Dicer, an enzyme responsible for processing microRNAs into mature forms, we determined miR-221 is a critical microRNA in the physiological process of restoration of liver mass after injury. miR-221 suppresses p27, releasing its inhibitory effects on hepatocyte proliferation. Pharmaceuticals based on miR-221 may be useful to modulate hepatocyte proliferation in the setting of liver injury. Copyright © 2017 the American Physiological Society.

  15. Multiple doses of erythropoietin impair liver regeneration by increasing TNF-alpha, the Bax to Bcl-xL ratio and apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Katja Klemm

    Full Text Available BACKGROUND: Liver resection and the use of small-for-size grafts are restricted by the necessity to provide a sufficient amount of functional liver mass. Only few promising strategies to maximize liver regeneration are available. Apart from its erythropoiesis-stimulating effect, erythropoietin (EPO has meanwhile been recognized as mitogenic, tissue-protective, and anti-apoptotic pleiotropic cytokine. Thus, EPO may support regeneration of hepatic tissue. METHODOLOGY: Rats undergoing 68% hepatectomy received daily either high dose (5000 IU/kg bw i.v. or low dose (500 IU/kg bw i.v. recombinant human EPO or equal amounts of physiologic saline. Parameters of liver regeneration and hepatocellular apoptosis were assessed at 24 h, 48 h and 5 d after resection. In addition, red blood cell count, hematocrit and serum EPO levels as well as plasma concentrations of TNF-alpha and IL-6 were evaluated. Further, hepatic Bcl-x(L and Bax protein expression were analyzed by Western blot. PRINCIPAL FINDINGS: Administration of EPO significantly reduced the expression of PCNA at 24 h followed by a significant decrease in restitution of liver mass at day 5 after partial hepatectomy. EPO increased TNF-alpha levels and shifted the Bcl-x(L to Bax ratio towards the pro-apoptotic Bax resulting in significantly increased hepatocellular apoptosis. CONCLUSIONS: Multiple doses of EPO after partial hepatectomy increase hepatocellular apoptosis and impair liver regeneration in rats. Thus, careful consideration should be made in pre- and post-operative recombinant human EPO administration in the setting of liver resection and transplantation.

  16. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Phan, Anne Q; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V; Gardiner, David M

    2015-08-01

    Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain-of-function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position-specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position-specific, developmental-stage-specific, and heparan sulfate-dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals.

  17. Integrative and comparative genomics analysis of early hepatocellular carcinoma differentiated from liver regeneration in young and old

    Directory of Open Access Journals (Sweden)

    Ozand Pinar T

    2010-06-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is the third-leading cause of cancer-related deaths worldwide. It is often diagnosed at an advanced stage, and hence typically has a poor prognosis. To identify distinct molecular mechanisms for early HCC we developed a rat model of liver regeneration post-hepatectomy, as well as liver cells undergoing malignant transformation and compared them to normal liver using a microarray approach. Subsequently, we performed cross-species comparative analysis coupled with copy number alterations (CNA of independent early human HCC microarray studies to facilitate the identification of critical regulatory modules conserved across species. Results We identified 35 signature genes conserved across species, and shared among different types of early human HCCs. Over 70% of signature genes were cancer-related, and more than 50% of the conserved genes were mapped to human genomic CNA regions. Functional annotation revealed genes already implicated in HCC, as well as novel genes which were not previously reported in liver tumors. A subset of differentially expressed genes was validated using quantitative RT-PCR. Concordance was also confirmed for a significant number of genes and pathways in five independent validation microarray datasets. Our results indicated alterations in a number of cancer related pathways, including p53, p38 MAPK, ERK/MAPK, PI3K/AKT, and TGF-β signaling pathways, and potential critical regulatory role of MYC, ERBB2, HNF4A, and SMAD3 for early HCC transformation. Conclusions The integrative analysis of transcriptional deregulation, genomic CNA and comparative cross species analysis brings new insights into the molecular profile of early hepatoma formation. This approach may lead to robust biomarkers for the detection of early human HCC.

  18. TISSUE REGENERATION. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration.

    Science.gov (United States)

    Zhang, Yongyou; Desai, Amar; Yang, Sung Yeun; Bae, Ki Beom; Antczak, Monika I; Fink, Stephen P; Tiwari, Shruti; Willis, Joseph E; Williams, Noelle S; Dawson, Dawn M; Wald, David; Chen, Wei-Dong; Wang, Zhenghe; Kasturi, Lakshmi; Larusch, Gretchen A; He, Lucy; Cominelli, Fabio; Di Martino, Luca; Djuric, Zora; Milne, Ginger L; Chance, Mark; Sanabria, Juan; Dealwis, Chris; Mikkola, Debra; Naidoo, Jacinth; Wei, Shuguang; Tai, Hsin-Hsiung; Gerson, Stanton L; Ready, Joseph M; Posner, Bruce; Willson, James K V; Markowitz, Sanford D

    2015-06-12

    Agents that promote tissue regeneration could be beneficial in a variety of clinical settings, such as stimulating recovery of the hematopoietic system after bone marrow transplantation. Prostaglandin PGE2, a lipid signaling molecule that supports expansion of several types of tissue stem cells, is a candidate therapeutic target for promoting tissue regeneration in vivo. Here, we show that inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a prostaglandin-degrading enzyme, potentiates tissue regeneration in multiple organs in mice. In a chemical screen, we identify a small-molecule inhibitor of 15-PGDH (SW033291) that increases prostaglandin PGE2 levels in bone marrow and other tissues. SW033291 accelerates hematopoietic recovery in mice receiving a bone marrow transplant. The same compound also promotes tissue regeneration in mouse models of colon and liver injury. Tissues from 15-PGDH knockout mice demonstrate similar increased regenerative capacity. Thus, 15-PGDH inhibition may be a valuable therapeutic strategy for tissue regeneration in diverse clinical contexts.

  19. Gene Expression Profile Change and Associated Physiological and Pathological Effects in Mouse Liver Induced by Fasting and Refeeding

    Science.gov (United States)

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes. PMID:22096593

  20. [Krezatsin--a stimulant of the activity of regenerating liver cells].

    Science.gov (United States)

    Rasulov, M M; Kuznetsov, I G; Belousov, A A; Zabozlaev, A G; Khvylia, S I; Voronkov, M G

    1993-01-01

    In experiments with partial hepatectomy in rats, the application of cresacin was shown to potentiate processes of hepatocyte regeneration, to increase high-energy compounds therein, and to accelerate some phases of mitotic cycle. These processes occur along with an inhibition of lipid peroxidation in hepatocytes, a decrease in the rate of transmembrane oxygen transport in mitochondria, and a reduction of cytochrome oxidase amount. It was concluded that cresacin directly stimulates diverse links of metabolic pathway.

  1. Expression patterns and action analysis of genes associated with physiological responses during rat liver regeneration: Innate immune response

    Institute of Scientific and Technical Information of China (English)

    Guang-Wen Chen; Ming-Zhen Zhang; Li-Feng Zhao; Cun-Shuan Xu

    2006-01-01

    AIM: To study the relationship between innate immune response and liver regeneration (LR) at transcriptional level.METHODS: Genes associated with innate immunity response were obtained by collecting the data from databases and retrieving articles. Gene expression changes in rat regenerating liver were detected by rat genome 230 2.0 array.RESULTS: A total of 85 genes were found to be associated with LR. The initially and totally expressed number of genes at the phases of initiation [0.5-4 h after partial hepatectomy (PH)], transition from Go to G1 (4-6 h after PH), cell proliferation (6-66 h after PH),cell differentiation and structure-function reconstruction (66-168 h after PH) was 36, 9, 47, 4 and 36, 26, 78,50, respectively, illustrating that the associated genes were mainly triggered at the initial phase of LR and worked at different phases. According to their expression similarity, these genes were classified into 5 types: 41 up-regulated, 4 predominantly up-regulated, 26 downregulated, 6 predominantly down-regulated, and 8 approximately up/down-regulated genes, respectively.The expression of these genes was up-regulated 350 times and down-regulated 129 times respectively,demonstrating that the expression of most genes was enhanced while the expression of a small number of genes was decreased during LR. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities during LR were staggered. According to the gene expression patterns,they were classified into 28 types, indicating that the cellular physiological and biochemical activities were diverse and complicated during LR.CONCLUSION: Congenital cellular immunity is enhanced mainly in the forepart, prophase and anaphase of LR while congenital molecular immunity is increased dominantly in the forepart and anaphase of LR. A total of 85 genes associated with LR play an important role in innate immunity.

  2. Hyperbaric oxygenation after portal vein emobilization for regeneration of the predicted remnant liver.

    Science.gov (United States)

    Uwagawa, T; Unemura, Y; Yamazaki, Y

    2001-09-01

    Liver failure often develops after extensive liver resection. Preoperative portal vein embolization to induce compensatory hypertrophy in the predicted remnant liver decreases clinical complications after hepatectomy. The aim of this study was to examine whether hyperbaric oxygenation (HBO) after portal vein embolization increases compensatory hypertrophy of the predicted liver remnant. We performed portal vein ligation and HBO in rats to investigate whether HBO after portal vein embolization increases compensatory hypertrophy of the predicted remnant liver. Rats were divided into four groups that underwent (1) laparotomy only (control group); (2) right portal vein ligation (RPL group); (3) RPL followed by HBO at 2 atm (HBO-2 atm group; 1 h/day, 5 days/week for 2 weeks); or (4) RPL followed by HBO at 3 atm (HBO-3 atm group). Laparotomy was repeated after 2 weeks in each group; serum levels of albumin and hepatocyte growth factor (HGF) were measured, and the ratio of the weights of nonligated to ligated hepatic segments and the percentage of hepatocytes expressing proliferating cell nuclear antigen (PCNA) in ligated hepatic segments were determined. In rats that had received HBO after RPL, serum levels of HGF, weight ratios of nonligated to ligated hepatic segments, and the percentage of PCNA-positive hepatocytes in nonligated liver were significantly higher than those in the control group. Furthermore, rats that had undergone 3-atm HBO after RPL had significantly higher serum levels of HGF and percentages of PCNA-positive hepatocytes in nonligated hepatic segments. Preoperative HBO after portal vein embolization may be useful for inducing compensatory hypertrophy of the predicted remnant liver. Copyright 2001 Academic Press.

  3. The NF-κB subunit RelA/p65 is dispensable for successful liver regeneration after partial hepatectomy in mice.

    Directory of Open Access Journals (Sweden)

    Marc Ringelhan

    Full Text Available BACKGROUND: The transcription factor NF-κB consisting of the subunits RelA/p65 and p50 is known to be quickly activated after partial hepatectomy (PH, the functional relevance of which is still a matter of debate. Current concepts suggest that activation of NF-κB is especially critical in non-parenchymal cells to produce cytokines (TNF, IL-6 to adequately prime hepatocytes to proliferate after PH, while NF-κB within hepatocytes mainly bears cytoprotective functions. METHODS: To study the role of the NF-κB pathway in different liver cell compartments, we generated conditional knockout mice in which the transactivating NF-κB subunit RelA/p65 can be inactivated specifically in hepatocytes (Rela(F/FAlbCre or both in hepatocytes plus non-parenchymal cells including Kupffer cells (Rela(F/FMxCre. 2/3 and 80% PH were performed in controls (Rela(F/F and conditional knockout mice (Rela(F/FAlbCre and Rela(F/FMxCre and analyzed for regeneration. RESULTS: Hepatocyte-specific deletion of RelA/p65 in Rela(F/FAlbCre mice resulted in an accelerated cell cycle progression without altering liver mass regeneration after 2/3 PH. Surprisingly, hepatocyte apoptosis or liver damage were not enhanced in Rela(F/FAlbCre mice, even when performing 80% PH. The additional inactivation of RelA/p65 in non-parenchymal cells in Rela(F/FMxCre mice reversed the small proliferative advantage observed after hepatocyte-specific deletion of RelA/p65 so that Rela(F/FMxCre mice displayed normal cell cycle progression, DNA-synthesis and liver mass regeneration. CONCLUSION: The NF-κB subunit RelA/p65 fulfills opposite functions in different liver cell compartments in liver regeneration after PH. However, the effects observed after conditional deletion of RelA/p65 are small and do not alter liver mass regeneration after PH. We therefore do not consider RelA/p65-containing canonical NF-κB signalling to be essential for successful liver regeneration after PH.

  4. The Herbal Compound “Diwu Yanggan” Modulates Liver Regeneration by Affecting the Hepatic Stem Cell Microenvironment in 2-Acetylaminofluorene/Partial Hepatectomy Rats

    Directory of Open Access Journals (Sweden)

    Bin-Bin Zhao

    2015-01-01

    Full Text Available Ethnopharmacological Relevance. “Diwu Yanggan” (DWYG has been reported to regulate liver regeneration, modulate the immune response, ameliorate liver injury, kill virus, ameliorate liver fibrosis, and suppress hepatic cancer. However, its mechanisms are still unknown. Objectives. To investigate the effects of DWYG on oval cell proliferation in 2-AAF/PH rats and determine its mechanism. Methods. Wistar rats were randomly distributed into normal group, sham group, vehicle group, and DWYG group. Hepatic pathological changes were examined by H&E staining. The oval cell markers CD34, AFP, CK-19 and hematopoietic cell markers CD45, Thy1.1, and hepatocyte marker ALB were examined with immunohistochemistry. The percentage of CD34/CD45 double-positive cells in bone marrow was detected by flow cytometry. Cytokine levels were measured with the Bio-plex suspension array system. Results. DWYG significantly increased the survival rates of 2-AAF/PH rats and promoted liver regeneration. Furthermore, DWYG increased the ratio of CD34/CD45 double-positive cells on days 10 and 14. In addition, DWYG gradually restored IL-1, GRO/KC, and VEGF levels to those of the normal group. Conclusions. DWYG increases 2-AAF/PH rat survival rates, suppresses hepatic precarcinoma changes, and restores hepatic tissue structure and function. DWYG may act by modulating the hepatic microenvironment to support liver regeneration.

  5. The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar

    Directory of Open Access Journals (Sweden)

    Craig Dorrell

    2014-09-01

    Full Text Available Pancreatic Lgr5 expression has been associated with organoid-forming epithelial progenitor populations but the identity of the organoid-initiating epithelial cell subpopulation has remained elusive. Injury causes the emergence of an Lgr5+ organoid-forming epithelial progenitor population in the adult mouse liver and pancreas. Here, we define the origin of organoid-initiating cells from mouse pancreas and liver prior to Lgr5 activation. This clonogenic population was defined as MIC1-1C3+/CD133+/CD26− in both tissues and the frequency of organoid initiation within this population was approximately 5% in each case. The transcriptomes of these populations overlapped extensively and showed enrichment of epithelial progenitor-associated regulatory genes such as Sox9 and FoxJ1. Surprisingly, pancreatic organoid cells also had the capacity to generate hepatocyte-like cells upon transplantation to Fah−/− mice, indicating a differentiation capacity similar to hepatic organoids. Although spontaneous endocrine differentiation of pancreatic progenitors was not observed in culture, adenoviral delivery of fate-specifying factors Pdx1, Neurog3 and MafA induced insulin expression without glucagon or somatostatin. Pancreatic organoid cultures therefore preserve many key attributes of progenitor cells while allowing unlimited expansion, facilitating the study of fate determination.

  6. Measurement of mouse liver glutathione S-transferase activity by the integrated method

    Institute of Scientific and Technical Information of China (English)

    廖飞; 李甲初; 康格非; 曾昭淳; 左渝萍

    2003-01-01

    Objective: The integrated method was investigated to measure Vm/Km of mouse liver glutathione S-transferase (GST) activity on GSH and 7-Cl-4-nitrobenzofurazozan. Methods: Presetting concentration of one substrate twenty-fold above the others and taking maximum product absorbance Am as parameter while Km as constant, Vm/Km was obtained by nonlinear fitting of GST reaction curve to the integrated Michaelis-Menten equation ln [Am/(Am-Ai)]+Ai/(ε×Km)=(Vm/Km)×ti (1). Results: Vm/Km for GST showed slight dependence on initial substrate concentration and data range, but it was resistant to background absorbance, error in reaction origin and small deviation in presetting Km. Vm/Km was proportional to the amount of GST with upper limit higher than that by initial rate. There was close correlation between Vm/Km and initial rate of the same GST. Consistent results were obtained by this integrated method and classical initial rate method for the measurement of mouse liver GST. Conclusion: With the concentration of one substrate twenty-fold above the others, this integrated method was reliable to measure the activity of enzyme on two substrates, and substrate concentration of the lower one close to its apparent Km was able to be used.

  7. CRISPR-mediated direct mutation of cancer genes in the mouse liver

    Science.gov (United States)

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S.; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G.; Zhang, Feng; Anderson, Daniel G.; Sharp, Phillip A.; Jacks, Tyler

    2014-01-01

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem (ES) cells1. Here we describe a new method of cancer model generation using the CRISPR/Cas system in vivo in wild-type mice. We have used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs)2–4 to the liver and directly target the tumor suppressor genes Pten5 and p536, alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology7, 8. Simultaneous targeting of Pten and p53 induced liver tumors that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumor tissue revealed insertion or deletion (indel) mutations of the tumor suppressor genes, including bi-allelic mutations of both Pten and p53 in tumors. Furthermore, co-injection of Cas9 plasmids harboring sgRNAs targeting the β-Catenin gene (Ctnnb1) and a single-stranded DNA (ssDNA) oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-Catenin. This study demonstrates the feasibility of direct mutation of tumor suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics. PMID:25119044

  8. CRISPR-mediated direct mutation of cancer genes in the mouse liver.

    Science.gov (United States)

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G; Zhang, Feng; Anderson, Daniel G; Sharp, Phillip A; Jacks, Tyler

    2014-10-16

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation using the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system in vivo in wild-type mice. We used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs) to the liver that directly target the tumour suppressor genes Pten (ref. 5) and p53 (also known as TP53 and Trp53) (ref. 6), alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology. Simultaneous targeting of Pten and p53 induced liver tumours that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumour tissue revealed insertion or deletion mutations of the tumour suppressor genes, including bi-allelic mutations of both Pten and p53 in tumours. Furthermore, co-injection of Cas9 plasmids harbouring sgRNAs targeting the β-catenin gene and a single-stranded DNA oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-catenin. This study demonstrates the feasibility of direct mutation of tumour suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics.

  9. Autophagy in anti-apoptotic effect of augmenter of liver regeneration in HepG2 cells.

    Science.gov (United States)

    Shi, Hong-Bo; Sun, Hai-Qing; Shi, Hong-Lin; Ren, Feng; Chen, Yu; Chen, De-Xi; Lou, Jin-Li; Duan, Zhong-Ping

    2015-05-07

    To investigate the role of autophagy in the anti-apoptotic effect of augmenter of liver regeneration (ALR). Autophagy was induced through serum deprivation. An ALR-expressing plasmid was transfected into HepG2 cells, and autophagic flux was determined using fluorescence microscopy, electron microscopy, Western blot and quantitative polymerase chain reaction (qPCR) assays. After ALR-expressing plasmid transfection, an autophagy inhibitor [3-methyladenine (3-MA)] was added to HepG2 cells, and apoptosis was observed using fluorescence microscopy and flow cytometry. Autophagy was activated in HepG2 cells, peaking at 24 h after serum deprivation. Microtubule-associated protein light chain three-II levels were higher in HepG2 cells treated with ALR than in control cells, fluorescence microscopy, electron microscopy and qPCR studies showed the similar trend, and p62 levels showed the opposite trend, which indicated that ALR may play an important role in increasing autophagy flux. The numbers of apoptotic cells were substantially higher in HepG2 cells treated with both ALR and 3-MA than in cells treated with ALR alone. Therefore, the protective effect of ALR was significantly attenuated or abolished when autophagy was inhibited, indicating that the anti-apoptotic effect of ALR may be related to autophagy. ALR protects cells from apoptosis partly through increased autophagy in HepG2 cells and may be valuable as a new therapeutic treatment for liver disease.

  10. Specific microbiome changes in a mouse model of parenteral nutrition associated liver injury and intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    J Kirk Harris

    Full Text Available Parenteral nutrition (PN has been a life-saving treatment in infants intolerant of enteral feedings. However, PN is associated with liver injury (PN Associated Liver Injury: PNALI in a significant number of PN-dependent infants. We have previously reported a novel PNALI mouse model in which PN infusion combined with intestinal injury results in liver injury. In this model, lipopolysaccharide activation of toll-like receptor 4 signaling, soy oil-derived plant sterols, and pro-inflammatory activation of Kupffer cells (KCs played key roles. The objective of this study was to explore changes in the intestinal microbiome associated with PNALI.Microbiome analysis in the PNALI mouse identified specific alterations within colonic microbiota associated with PNALI and further association of these communities with the lipid composition of the PN solution. Intestinal inflammation or soy oil-based PN infusion alone (in the absence of enteral feeds caused shifts within the gut microbiota. However, the combination resulted in accumulation of a specific taxon, Erysipelotrichaceae (23.8% vs. 1.7% in saline infused controls, in PNALI mice. Moreover, PNALI was markedly attenuated by enteral antibiotic treatment, which also was associated with significant reduction of Erysipelotrichaceae (0.6% and a Gram-negative constituent, the S24-7 lineage of Bacteroidetes (53.5% in PNALI vs. 0.8%. Importantly, removal of soy oil based-lipid emulsion from the PN solution resulted in significant reduction of Erysipelotrichaceae as well as attenuation of PNALI. Finally, addition of soy-derived plant sterol (stigmasterol to fish oil-based PN restored Erysipelotrichaceae abundance and PNALI.Soy oil-derived plant sterols and the associated specific bacterial groups in the colonic microbiota are associated with PNALI. Products from these bacteria may directly trigger activation of KCs and promote PNALI. Furthermore, the results indicate that lipid modification of PN solutions may

  11. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis.

    Directory of Open Access Journals (Sweden)

    Nina Fransén-Pettersson

    Full Text Available Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.

  12. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver

    Directory of Open Access Journals (Sweden)

    Bourdon Julie A

    2012-02-01

    Full Text Available Abstract Background Widespread occupational exposure to carbon black nanoparticles (CBNPs raises concerns over their safety. CBNPs are genotoxic in vitro but less is known about their genotoxicity in various organs in vivo. Methods We investigated inflammatory and acute phase responses, DNA strand breaks (SB and oxidatively damaged DNA in C57BL/6 mice 1, 3 and 28 days after a single instillation of 0.018, 0.054 or 0.162 mg Printex 90 CBNPs, alongside sham controls. Bronchoalveolar lavage (BAL fluid was analyzed for cellular composition. SB in BAL cells, whole lung and liver were assessed using the alkaline comet assay. Formamidopyrimidine DNA glycosylase (FPG sensitive sites were assessed as an indicator of oxidatively damaged DNA. Pulmonary and hepatic acute phase response was evaluated by Saa3 mRNA real-time quantitative PCR. Results Inflammation was strongest 1 and 3 days post-exposure, and remained elevated for the two highest doses (i.e., 0.054 and 0.162 mg 28 days post-exposure (P Saa3 mRNA in lung tissue on day 1 (all doses, 3 (all doses and 28 (0.054 and 0.162 mg, but not in liver. Conclusions Deposition of CBNPs in lung induces inflammatory and genotoxic effects in mouse lung that persist considerably after the initial exposure. Our results demonstrate that CBNPs may cause genotoxicity both in the primary exposed tissue, lung and BAL cells, and in a secondary tissue, the liver.

  13. Binding of Cimetidine to Balb/C Mouse Liver Catalase; Kinetics and Conformational Studies.

    Science.gov (United States)

    Jahangirvand, Mahboubeh; Minai-Tehrani, Dariush; Yazdi, Fatemeh; Minai-Tehrani, Arash; Razmi, Nematollah

    2016-01-01

    Catalase is responsible for converting hydrogen peroxide (H2O2) into water and oxygen in cells. This enzyme has high affinity for hydrogen peroxide and can protect the cells from oxidative stress damage. Catalase is a tetramer protein and each monomer contains a heme group. Cimetidine is a histamine H2 receptor blocker which inhibits acid release from stomach and is used for gasterointestinal diseases. In this research, effect of cimetidine on the activity of liver catalase was studied and the kinetic parameters of this enzyme and its conformational changes were investigated. Cell free extract of mouse liver was used for the catalase assay. The activity of the catalase was detected in the absence and presence of cimetidine by monitoring hydrogen peroxide reduction absorbance at 240 nm. The purified enzyme was used for conformational studies by Fluorescence spectrophotometry. The data showed that cimetidine could inhibit the enzyme in a non-competitive manner. Ki and IC50 values of the drug were determined to be about 0.75 and 0.85 uM, respectively. The Arrhenius plot showed that activation energy was 6.68 and 4.77 kJ/mol in the presence and absence of the drug, respectively. Fluorescence spectrophotometry revealed that the binding of cimetidine to the purified enzyme induced hyperchromicity and red shift which determined the conformational change on the enzyme. Cimetidine could non-competitively inhibit the liver catalase with high affinity. Binding of cimetidine to the enzyme induced conformational alteration in the enzyme.

  14. Genetically modified mouse models for the study of nonalcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Perumal Nagarajan; M Jerald Mahesh Kumar; Ramasamy Venkatesan; Subeer S Majundar; Ramesh C Juyal

    2012-01-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with obesity,insulin resistance,and type 2 diabetes.NAFLD represents a large spectrum of diseases ranging from (1) fatty liver (hepatic steatosis); (2) steatosis with inflammation and necrosis; to (3) cirrhosis.The animal models to study NAFLD/nonalcoholic steatohepatitis (NASH) are extremely useful,as there are still many events to be elucidated in the pathology of NASH.The study of the established animal models has provided many clues in the pathogenesis of steatosis and steatohepatitis,but these remain incompletely understood.The different mouse models can be classified in two large groups.The first one includes genetically modified (transgenic or knockout) mice that spontaneously develop liver disease,and the second one includes mice that acquire the disease after dietary or pharmacological manipulation.Although the molecular mechanism leading to the development of hepatic steatosis in the pathogenesis of NAFLD is complex,genetically modified animal models may be a key for the treatment of NAFLD.Ideal animal models for NASH should closely resemble the pathological characteristics observed in humans.To date,no single animal model has encompassed the full spectrum of human disease progression,but they can imitate particular characteristics of human disease.Therefore,it is important that the researchers choose the appropriate animal model.This review discusses various genetically modified animal models developed and used in research on NAFLD.

  15. Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration.

    NARCIS (Netherlands)

    Matondo, R.B.; Punt, C.; Homberg, J.R.; Toussaint, M.J.; Kisjes, R.; Korporaal, S.J.; Akkerman, J.W.; Cuppen, E.; Bruin, A. de

    2009-01-01

    The serotonin transporter is implicated in the uptake of the vasoconstrictor serotonin from the circulation into the platelets, where 95% of all blood serotonin is stored and released in response to vascular injury. In vivo studies indicated that platelet-derived serotonin mediates liver regeneratio

  16. Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration

    NARCIS (Netherlands)

    Matondo, R.B.; Punt, C.; Homberg, J.R.; Toussaint, M.J.; Kisjes, R.; Korporaal, S.J.; Akkerman, J.W.; Cuppen, E.; de Bruin, A.

    2009-01-01

    The serotonin transporter is implicated in the uptake of the vasoconstrictor serotonin from the circulation into the platelets, where 95% of all blood serotonin is stored and released in response to vascular injury. In vivo studies indicated that platelet-derived serotonin mediates liver regeneratio

  17. Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration.

    NARCIS (Netherlands)

    Matondo, R.B.; Punt, C.; Homberg, J.R.; Toussaint, M.J.; Kisjes, R.; Korporaal, S.J.; Akkerman, J.W.; Cuppen, E.; Bruin, A. de

    2009-01-01

    The serotonin transporter is implicated in the uptake of the vasoconstrictor serotonin from the circulation into the platelets, where 95% of all blood serotonin is stored and released in response to vascular injury. In vivo studies indicated that platelet-derived serotonin mediates liver regeneratio

  18. Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors.

    Science.gov (United States)

    Luisier, Raphaëlle; Lempiäinen, Harri; Scherbichler, Nina; Braeuning, Albert; Geissler, Miriam; Dubost, Valerie; Müller, Arne; Scheer, Nico; Chibout, Salah-Dine; Hara, Hisanori; Picard, Frank; Theil, Diethilde; Couttet, Philippe; Vitobello, Antonio; Grenet, Olivier; Grasl-Kraupp, Bettina; Ellinger-Ziegelbauer, Heidrun; Thomson, John P; Meehan, Richard R; Elcombe, Clifford R; Henderson, Colin J; Wolf, C Roland; Schwarz, Michael; Moulin, Pierre; Terranova, Rémi; Moggs, Jonathan G

    2014-06-01

    The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.

  19. UDP-Glucuronosyltransferase Expression in Mouse Liver Is Increased in Obesity- and Fasting-Induced Steatosis

    Science.gov (United States)

    Xu, Jialin; Kulkarni, Supriya R.; Li, Liya

    2012-01-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lepob/ob (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance. PMID:22031624

  20. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis.

    Science.gov (United States)

    Xu, Jialin; Kulkarni, Supriya R; Li, Liya; Slitt, Angela L

    2012-02-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lep(ob/ob) (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance.

  1. Application of quantitative targeted absolute proteomics to profile protein expression changes of hepatic transporters and metabolizing enzymes during cholic acid-promoted liver regeneration.

    Science.gov (United States)

    Miura, Takayuki; Tachikawa, Masanori; Ohtsuka, Hideo; Fukase, Koji; Nakayama, Shun; Sakata, Naoaki; Motoi, Fuyuhiko; Naitoh, Takeshi; Katayose, Yu; Uchida, Yasuo; Ohtsuki, Sumio; Terasaki, Tetsuya; Unno, Michiaki

    2017-02-26

    Preoperative administration of cholic acid (CA) may be an option to increase the liver volume before elective liver resection surgery, so it is important to understand its effects on liver functionality for drug transport and metabolism. The purpose of this study was to clarify the absolute protein expression dynamics of transporters and metabolizing enzymes in the liver of mice fed CA-containing diet for 5 days (CA1) and mice fed CA-containing diet for 5 days followed by diet without CA for 7 days (CA2), in comparison with non CA-fed control mice. The CA1 group showed the increased liver weight, cell proliferation index, and oxidative stress, but no increase of apoptosis. Quantitative targeted absolute proteomics revealed (i) decreases in basolateral bile acid transporters ntcp, oatp1a1, oatp1b2, bile acid synthesis-related enzymes cyp7a1 and cyp8b1, and drug transporters bcrp, mrp6, ent1, oatp2b1, and (ii) increases in glutathione biosynthetic enzymes and drug-metabolizing enzyme cyp3a11. Liver concentrations of reduced and oxidized glutathione were both increased. In the CA2 group, the increased liver weight was maintained, while the biochemical features and protein profiles were restored to the non-CA-fed control levels. These findings suggest that CA administration alters liver functionality per body during liver regeneration and restoration.

  2. Development of Short-term Molecular Thresholds to Predict Long-term Mouse Liver Tumor Outcomes: Phthalate Case Study

    Science.gov (United States)

    Short-term molecular profiles are a central component of strategies to model health effects of environmental chemicals. In this study, a 7 day mouse assay was used to evaluate transcriptomic and proliferative responses in the liver for a hepatocarcinogenic phthalate, di (2-ethylh...

  3. Electrochemical Detection of Alkaline Phosphatase in BALB/c Mouse Fetal Liver Stromal Cells with Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Xue Mei SUN; Dong LI; Zeng Liang BAI; Wen Rui JIN

    2004-01-01

    A method for determination of alkaline phosphatase (ALP) in BALB/c mouse fetal liver stromal cells has been described based on the catalytic reaction. After the cell extract is incubated with the substrate disodium phenyl phosphate, the reaction product phenol generated by ALP is determined by capillary electrophoresis with electrochemical detection.

  4. Dataset from proteomic analysis of rat, mouse, and human liver microsomes and S9 fractions

    Directory of Open Access Journals (Sweden)

    Makan Golizeh

    2015-06-01

    Full Text Available Rat, mouse and human liver microsomes and S9 fractions were analyzed using an optimized method combining ion exchange fractionation of digested peptides, and ultra-high performance liquid chromatography (UHPLC coupled to high resolution tandem mass spectrometry (HR-MS/MS. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org via the PRIDE partner repository (Vizcaíno et al., 2013 [1] with the dataset identifiers PXD000717, PXD000720, PXD000721, PXD000731, PXD000733 and PXD000734. Data related to the peptides (trypsin digests only were also uploaded to Peptide Atlas (Farrah et al., 2013 [2] and are available with the dataset identifiers PASS00407, PASS00409, PASS00411, PASS00412, PASS00413 and PASS00414. The present dataset is associated with a research article published in EuPA Open Proteomics [3].

  5. Comparative metabolism of cinobufagin in liver microsomes from mouse, rat, dog, minipig, monkey, and human.

    Science.gov (United States)

    Ma, Xiao-Chi; Ning, Jing; Ge, Guang-Bo; Liang, Si-Cheng; Wang, Xiu-Li; Zhang, Bao-Jing; Huang, Shan-Shan; Li, Jing-Kui; Yang, Ling

    2011-04-01

    Cinobufagin (CB), a major bioactive component of the traditional Chinese medicine Chansu, has been reported to have potent antitumor activity. In this study, in vitro metabolism of CB among species was compared with respect to metabolic profiles, enzymes involved, and catalytic efficiency by using liver microsomes from human (HLM), mouse (MLM), rat (RLM), dog (DLM), minipig (PLM), and monkey (CyLM). Significant species differences in CB metabolism were revealed. In particular, species-specific deacetylation and epimerization combined with hydroxylation existed in RLM, whereas hydroxylation was a major pathway in HLM, MLM, DLM, PLM, and CyLM. Two monohydroxylated metabolites of CB in human and animal species were identified as 1α-hydroxylcinobufagin and 5β-hydroxylcinobufagin by using liquid chromatography-mass spectrometry and two-dimensional NMR techniques. CYP3A4 was identified as the main isoform involved in CB hydroxylation in HLM on the basis of the chemical inhibition studies and screen assays with recombinant human cytochrome P450s. Furthermore, ketoconazole, a specific inhibitor of CYP3A, strongly inhibited CB hydroxylation in MLM, DLM, PLM, and CyLM, indicating that CYP3A was responsible for CB hydroxylation in these animal species. The apparent substrate affinity and catalytic efficiency for 1α- and 5β-hydroxylation of CB in liver microsomes from various species were also determined. PLM appears to have K(m) and total intrinsic clearance value (V(max)/K(m)) similar to those for HLM, and the total microsomal intrinsic clearance values for CB obeyed the following order: mouse > dog > monkey > human > minipig. These findings provide vital information to better understand the metabolic behaviors of CB among various species.

  6. Regeneration of spermatogenesis in a mouse model of azoospermia by follicle-stimulating hormone and oestradiol.

    Science.gov (United States)

    Jafarian, A; Sadeghi, M R; Pejhan, N; Salehkhou, S; Lakpour, N; Akhondi, M M

    2014-12-01

    Busulfan is a chemotherapeutic drug that induces sterility, azoospermia and testicular atrophy. To induce degeneration of spermatogenesis, we used different amounts of busulfan. Adult male C57Bl/6 mice were treated with 15, 30 and 45 mg kg(-1) of busulfan. After 5 weeks, animals had daily injections of 7.5 IU human follicle-stimulating hormone (hFSH) and 12.5 μg kg(-1) oestradiol benzoate (EB), separately or simultaneously. After this time, the animals were killed and blood samples were taken through cardiac puncture. Testes were used for histopathology experiments, DNA flow cytometry and RNA extraction for expression of c-kit and cyclin B1 genes. EB unlike FSH has induced stimulatory effects on spermatogenesis, increased the level of serum testosterone 2-fold and caused a 2-fold increase in the number of haploid cells. The result showed that hFSH with EB multiplied EB stimulatory effects on spermatogenesis up to four times. Expression of c-kit and cyclin B1 genes increased in EB and hFSH+EB groups. These findings suggest that EB regulates spermatogonial stem cells via hFSH. hFSH with EB had synergistic effect on regeneration of spermatogenesis.

  7. Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles

    Science.gov (United States)

    Wu, Jingfang; Li, Wenyan; Lin, Chen; Chen, Yan; Cheng, Cheng; Sun, Shan; Tang, Mingliang; Chai, Renjie; Li, Huawei

    2016-01-01

    This work sought to determine the crosstalk between the Notch and Wnt signaling pathways in regulating supporting cell (SC) proliferation and hair cell (HC) regeneration in mouse utricles. We cultured postnatal day (P)3 and P60 mouse utricles, damaged the HCs with gentamicin, and treated the utricles with the γ-secretase inhibitor DAPT to inhibit the Notch pathway and with the Wnt agonist QS11 to active the Wnt pathway. We also used Sox2-CreER, Notch1-flox (exon 1), and Catnb-flox (exon 3) transgenic mice to knock out the Notch pathway and activate the Wnt pathway in Sox2+ SCs. Notch inhibition alone increased SC proliferation and HC number in both undamaged and damaged utricles. Wnt activation alone promoted SC proliferation, but the HC number was not significantly increased. Here we demonstrated the cumulative effects of Notch inhibition and Wnt activation in regulating SC proliferation and HC regeneration. Simultaneously inhibiting Notch and overexpressing Wnt led to significantly greater SC proliferation and greater numbers of HCs than manipulating either pathway alone. Similar results were observed in the transgenic mice. This study suggests that the combination of Notch inhibition and Wnt activation can significantly promote SC proliferation and increase the number of regenerated HCs in mouse utricle. PMID:27435629

  8. The satellite cell in male and female, developing and adult mouse muscle: distinct stem cells for growth and regeneration.

    Directory of Open Access Journals (Sweden)

    Alice Neal

    Full Text Available Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration.

  9. Concurrent Deletion of Cyclin E1 and Cyclin-Dependent Kinase 2 in Hepatocytes Inhibits DNA Replication and Liver Regeneration in Mice

    OpenAIRE

    Hu W; Nevzorova YA; Haas U; Moro N.; Sicinski P; Geng Y; Barbacid M; Trautwein C; Liedtke C.

    2014-01-01

    The liver has a strong regenerative capacity. After injury, quiescent hepatocytes can reenter the mitotic cell cycle to restore tissue homeostasis. This G0/G1-S cell-cycle transition of primed hepatocytes is regulated by complexes of cyclin-dependent kinase 2 (Cdk2) with E-type cyclins (CcnE1 or CcnE2). However, single genetic ablation of either E-cyclin or Cdk2 does not affect overall liver regeneration. Here, we systematically investigated the contribution of CcnE1, CcnE2, and Cdk2 for live...

  10. Imaging gold nanoparticles in mouse liver by laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Li, Qing; Wang, Zheng; Mo, Jiamei; Zhang, Guoxia; Chen, Yirui; Huang, Chuchu

    2017-06-07

    Imaging the size distribution of metal nanoparticles (NPs) in a tissue has important implications in terms of evaluating NP toxicity. Microscopy techniques used to image tissue NPs are limited by complicated sample preparation or poor resolution. In this study, we developed a laser ablation (LA) system coupled to single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) for quantitative imaging of gold (G)NPs in tissue samples. In this system, GNPs were ablated but did not disintegrate and integrate under optimised operation conditions, which were verified by characterising LA particles by scanning electron microscopy. The feasibility of imaging size distributions in tissue was validated using reference GNPs 60 and 80 nm in size on matrix-matched kidney. A transport efficiency of 6.07% was obtained by LA-SP-ICP-MS under optimal conditions. We used this system to image 80-nm GNPs in mouse liver and the size distribution thus obtained was in accordance with that determined by nebuliser SP-ICP-MS. The images revealed that 80-nm GNPs mainly accumulate in the liver and did not obviously aggregate. Our results demonstrate that LA-SP-ICP-MS is an effective tool for evaluating the size distribution of metal NPs in tissue.

  11. Beneficial effects of splenectomy on liver regeneration in a rat model of massive hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Yan-Shun Ren; Nian-Song Qian; Yu Tang; Yong-Hui Liao; Wei-Hui Liu; Vikram Raut; Kai-Shan Tao; Ke-Feng Dou

    2012-01-01

    BACKGROUND: Small-for-size syndrome is a widely recognized clinical  complication  after  living  donor  liver  transplantation or  extended  hepatectomy  due  to  inadequate  liver  mass.  The purpose of this study was to investigate the role of splenectomy in rats after massive hepatectomy, a surrogate model of small-for-size graft. METHODS: Rats  were  divided  into  eight  groups, each with 20  animals:  50% hepatectomy (50% Hx), 50% hepatectomy+splenectomy (50% Hx+Sp), 60% Hx, 60% Hx+Sp, 70% Hx, 70% Hx+Sp,  90%  Hx  and  90%  Hx+Sp.  The  following  parameters were evaluated: liver function tests (ALT, AST and TBIL), liver regeneration  ratio,  DNA  synthesis,  proliferation  cell  nuclear antigen,  hepatic  oxygen  delivery  (HDO2)  and  hepatic  oxygen consumption (HVO2). RESULTS: The  liver  regeneration  ratio  was  enhanced  in  the Hx+Sp  groups  (P CONCLUSIONS: Splenectomy  significantly  improved  liver function,  and  enhanced  DNA  synthesis  and  proliferation cell  nuclear  antigen  after  massive  hepatectomy  in  rats.  This operation  could  be  mediated  through  increased  HDO2  and HVO2, which facilitate liver regeneration.

  12. Downregulation of IL6 Targeted MiR-376b May Contribute to a Positive IL6 Feedback Loop During Early Liver Regeneration in Mice

    Directory of Open Access Journals (Sweden)

    Shan Lu

    2015-08-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs are a group of endogenous, small, noncoding RNAs implicated in a variety of biological processes, including cell proliferation, apoptosis, differentiation and metabolism. The present study aims to explore the potential role and molecular mechanism of miR-376b during the early phase of liver regeneration. Methods: MiRNA profiling microarrays were used to assess the changes in miRNA expression. For functional analysis, cell proliferation, apoptosis assays, real time quantitative PCR and westernblot analysis were performed. Results: The comprehensive miRNA expression profiling assays on regenerating liver tissues 4 h after partial hepatectomy (PH showed that three miRNAs (miR-127, miR-376b and miR-494 located in the Dlk1-Gtl2 miRNA cluster were significantly downregulated. In vitro functional studies demonstrated that high-level interleukin 6 (IL6 inhibited the expression of miR-376b, and miR-376b mimics treatment decreased cell proliferation and increased apoptosis. Further target analysis showed that miR-376b reduced the mRNA and protein expression levels of NF-kappa-B inhibitor zeta (NFKBIZ and signal transducers and transcription activators 3 (STAT3. Additionally, IL6-induced miR-376b downregulation would, in turn, increase the expression of IL-6 possibly via a feedback loop involving NFKBIZ or/and STAT3. Conclusion: During the early phase of liver regeneration, miR-376b expression was significantly decreased. Our findings reveal that a regulatory circuitry between miR-376b and IL-6 may exist, which trigger the initiation of liver regeneration.

  13. Differences in Liver Injury and Trophoblastic Mitochondrial Damage in Different Preeclampsia-like Mouse Models

    Institute of Scientific and Technical Information of China (English)

    Yi-Wei Han; Zi Yang; Xiao-Yan Ding; Huan Yu

    2015-01-01

    Background:Preeclampsia is a multifactorial disease during pregnancy.Dysregulated lipid metabolism may be related to some preeclampsia.We investigated the relationship between triglycerides (TGs) and liver injury in different preeclampsia-like mouse models and their potential common pathways.Methods:Preeclampsia-like models (Nw-nitro-L-arginine-methyl ester [L-NAME],lipopolysaccharide [LPS],apolipoprotein C-Ⅲ [Apo] transgnic mice + L-NAME,β2 glycoprotein Ⅰ [βGPI]) were used in four experimental groups:L-NAME (LN),LPS,Apo-LN and βGPI,respectively,and controls received saline (LN-C,LPS-C,Apo-C,βGPI-C).The first three models were established in preimplantation (PI),early-,mid-and late-gestation (EG,MG and LG).βGPI and controls were injected before implantation.Mean arterial pressure (MAP),24-hour urine protein,placental and fetal weight,serum TGs,total cholesterol (TC) and pathologic liver and trophocyte changes were assessed.Results:MAP and proteinuria were significantly increased in the experimental groups.Placenta and fetal weight in PI,EP and MP subgroups were significantly lower than LP.Serum TGs significantly increased in most groups but controls.TC was not different between experimental and control groups.Spotty hepatic cell necrosis was observed in PI,EG,MG in LN,Apo-LN and βGPI,but no morphologic changes were observed in the LPS group.Similar trophoblastic mitochondrial damage was observed in every experimental group.Conclusions:Earlier preeclampsia onset causes a higher MAP and urine protein level,and more severe placental and fetal damage.Preeclampsia-like models generated by varied means lead to different changes in lipid metabolism and associated with liver injury.Trophoblastic mitochondrial damage may be the common terminal pathway in different preeclampsia-like models.

  14. RDX induces aberrant expression of microRNAs in mouse brain and liver.

    Science.gov (United States)

    Zhang, Baohong; Pan, Xiaoping

    2009-02-01

    Although microRNAs (miRNAs) have been found to play an important role in many biological and metabolic processes, their functions in animal response to environmental toxicant exposure are largely unknown. We used hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a common environmental contaminant, as a toxicant stressor to investigate toxicant-induced changes in miRNA expression in B6C3F1 mice and the potential mechanism of RDX-induced toxic action. B6C3F1 mice were fed diets with or without 5 mg/kg RDX for 28 days. After the feeding trials, we isolated RNAs from both brain and liver tissues and analyzed the expression profiles of 567 known mouse miRNAs using microarray and quantitative real-time polymerase chain reaction technologies. RDX exposure induced significant changes in miRNA expression profiles. A total of 113 miRNAs, belonging to 75 families, showed significantly altered expression patterns after RDX exposure. Of the 113 miRNAs, 10 were significantly up-regulated and 3 were significantly down-regulated (p RDX exposure. Specifically, expression of seven miRNAs was up-regulated in the brain but down-regulated in the liver or up-regulated in the liver but down-regulated in the brain (p < 0.01). Many aberrantly expressed miRNAs were related to various cancers, toxicant-metabolizing enzymes, and neurotoxicity. We found a significant up-regulation of oncogenic miRNAs and a significant down-regulation of tumor-suppressing miRNAs, which included let-7, miR-17-92, miR-10b, miR-15, miR-16, miR-26, and miR-181. Environmental toxicant exposure alters the expression of a suite of miRNAs.

  15. Tyrosine kinase inhibitor BIBF1120 ameliorates inflammation, angiogenesis and fibrosis in CCl4-induced liver fibrogenesis mouse model

    Science.gov (United States)

    Öztürk Akcora, Büsra; Storm, Gert; Prakash, Jai; Bansal, Ruchi

    2017-01-01

    Hepatic fibrosis, a progressive chronic disease mainly caused by hepatitis viral infections, alcohol abuse or metabolic syndrome leading to liver dysfunction and is the growing cause of mortality worldwide. Tyrosine kinase inhibitor BIBF1120 (Nintedanib) has been evaluated in clinical trials for idiopathic pulmonary fibrosis and advanced Hepatocellular carcinoma, but has not been explored for liver fibrosis yet. In this study, we aimed to investigate the therapeutic effects and mechanism of BIBF1120 in liver fibrogenesis. The effects of BIBF1120 were evaluated in TGFβ-activated mouse 3T3 fibroblasts, LX2 cells, primary human hepatic stellate cells (HSCs) and CCl4-induced liver fibrogenesis mouse model. Fibroblasts-conditioned medium studies were performed to assess the paracrine effects on macrophages and endothelial cells. In-vitro in TGFβ-activated fibroblasts, BIBF1120 significantly inhibited expression of major fibrotic parameters, wound-healing and contractility. In vivo in CCl4-induced acute liver injury model, post-disease BIBF1120 administration significantly attenuated collagen accumulation and HSC activation. Interestingly, BIBF1120 drastically inhibited intrahepatic inflammation and angiogenesis. To further elucidate the mechanism of action, 3T3-conditioned medium studies demonstrated increased 3T3-mediated macrophage chemotaxis and endothelial cells tube formation and activation, which was significantly decreased by BIBF1120. These results suggests that BIBF1120 can be a potential therapeutic approach for the treatment of liver fibrosis. PMID:28291245

  16. Site-specific insertion of selenium into the redox-active disulfide of the flavoprotein augmenter of liver regeneration.

    Science.gov (United States)

    Schaefer-Ramadan, Stephanie; Thorpe, Colin; Rozovsky, Sharon

    2014-04-15

    Augmenter of liver regeneration (sfALR) is a small disulfide-bridged homodimeric flavoprotein with sulfhydryl oxidase activity. Here, we investigate the catalytic and spectroscopic consequences of selectively replacing C145 by a selenocysteine to complement earlier studies in which random substitution of ∼90% of the 6 cysteine residues per sfALR monomer was achieved growing Escherichia coli on selenite. A selenocysteine insertion sequence (SECIS) element was installed within the gene for human sfALR. SecALR2 showed a spectrum comparable to that of wild-type sfALR. The catalytic efficiency of SecALR2 towards dithiothreitol was 6.8-fold lower than a corresponding construct in which position 145 was returned to a cysteine residue while retaining the additional mutations introduced with the SECIS element. This all-cysteine control enzyme formed a mixed disulfide between C142 and β-mercaptoethanol releasing C145 to form a thiolate-flavin charge transfer absorbance band at ∼530nm. In contrast, SecALR2 showed a prominent long-wavelength absorbance at 585 nm consistent with the expectation that a selenolate would be a better charge-transfer donor to the isoalloxazine ring. These data show the robustness of the ALR protein fold towards the multiple mutations required to insert the SECIS element and provide the first example of a selenolate to flavin charge-transfer complex. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Phosphatase of regenerating liver-3 directly interacts with integrin β1 and regulates its phosphorylation at tyrosine 783

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2012-10-01

    Full Text Available Abstract Background Phosphatase of regenerating liver-3 (PRL-3 or PTP4A3 has been implicated in controlling cancer cell proliferation, motility, metastasis, and angiogenesis. Deregulated expression of PRL-3 is highly correlated with cancer progression and predicts poor survival. Although PRL-3 was categorized as a tyrosine phosphatase, its cellular substrates remain largely unknown. Results We demonstrated that PRL-3 interacts with integrin β1 in cancer cells. Recombinant PRL-3 associates with the intracellular domain of integrin β1 in vitro. Silencing of integrin α1 enhances PRL-3-integrin β1 interaction. Furthermore, PRL-3 diminishes tyrosine phosphorylation of integrin β1 in vitro and in vivo. With site-specific anti-phosphotyrosine antibodies against residues in the intracellular domain of integrin β1, tyrosine-783, but not tyrosine-795, is shown to be dephosphorylated by PRL-3 in a catalytic activity-dependant manner. Phosphorylation of Y783 is potentiated by ablation of PRL-3 or by treatment with a chemical inhibitor of PRL-3. Conversely, depletion of integrin α1 decreases the phosphorylation of this site. Conclusions Our results revealed a direct interaction between PRL-3 and integrin β1 and characterized Y783 of integrin β1 as a bona fide substrate of PRL-3, which is negatively regulated by integrin α1.

  18. Determination of the distance between the two neutral flavin radicals in augmenter of liver regeneration by pulsed ELDOR.

    Science.gov (United States)

    Kay, Christopher W M; Elsässer, Celine; Bittl, Robert; Farrell, Scott R; Thorpe, Colin

    2006-01-11

    Pulsed electron-electron double resonance (ELDOR) has been used to obtain structural information from a FAD-dependent sulfhydryl oxidase, Augmenter of Liver Regeneration (ALR). ALR is a homodimer with each subunit containing a noncovalently bound FAD cofactor. Both FADs may be converted into the blue neutral radical form by aerobic treatment with DTT. From three-pulse and four-pulse ELDOR experiments, a distance of 26.1 +/- 0.8 A could be determined between the FAD cofactors in human ALR. Taking into account the electron spin density distribution in a neutral flavin radical obtained from density functional theory calculations, a distance of 26.9 A could be estimated for the separation of the spin centers in the X-ray structure of rat ALR. The good agreement confirms that rat ALR may be used as a model for mechanistic discussions of human ALR. The experiments also demonstrate that neutral flavin radicals have the appropriate properties to be used as intrinsic spin labels for distance determinations in proteins.

  19. The essential role of FKBP38 in regulating phosphatase of regenerating liver 3 (PRL-3) protein stability.

    Science.gov (United States)

    Choi, Myung-Suk; Min, Sang-Hyun; Jung, Haiyoung; Lee, Ju Dong; Lee, Tae Ho; Lee, Heung Kyu; Yoo, Ook-Joon

    2011-03-11

    The phosphatase of regenerating liver-3 (PRL-3) is a member of protein tyrosine phosphatases and whose deregulation is implicated in tumorigenesis and metastasis of many cancers. However, the underlying mechanism by which PRL-3 is regulated is not known. In this study, we identified the peptidyl prolyl cis/trans isomerase FK506-binding protein 38 (FKBP38) as an interacting protein of PRL-3 using a yeast two-hybrid system. FKBP38 specifically binds to PRL-3 in vivo, and that the N-terminal region of FKBP38 is crucial for binding with PRL-3. FKBP38 overexpression reduces endogenous PRL-3 expression levels, whereas the depletion of FKBP38 by siRNA increases the level of PRL-3 protein. Moreover, FKBP38 promotes degradation of endogenous PRL-3 protein via protein-proteasome pathway. Furthermore, FKBP38 suppresses PRL-3-mediated p53 activity and cell proliferation. These results demonstrate that FKBP38 is a novel regulator of the oncogenic protein PRL-3 abundance and that alteration in the stability of PRL-3 can have a dramatic impact on cell proliferation. Thus, FKBP38 may play a critical role in tumorigenesis.

  20. Radiofrequency Ablation: Inflammatory Changes in the Periablative Zone Can Induce Global Organ Effects, including Liver Regeneration.

    Science.gov (United States)

    Rozenblum, Nir; Zeira, Evelyne; Bulvik, Baruch; Gourevitch, Svetlana; Yotvat, Hagit; Galun, Eithan; Goldberg, S Nahum

    2015-08-01

    To determine the kinetics of innate immune and hepatic response to the coagulation necrosis area that remains in situ after radiofrequency (RF) ablation, the cytokine profile of this response, and its local and global effect on the whole organ in a small-animal model. A standardized RF ablation dose (70°C for 5 minutes) was used to ablate more than 7% of the liver in 91 C57BL6 mice (wild type) according to a protocol approved by the animal care committee. The dynamic cellular response in the border zone surrounding ablation-induced coagulation and in the ablated lobe and an untreated lobe were characterized with immunohistochemistry 24 hours, 72 hours, 7 days, and 14 days after ablation (the time points at which cells migrate to necrotic tissues). After characterization of the cellular populations that reacted to the RF treatment, cytokines secreted by these cells were blocked, either by using interleukin-6 knockout mice (n = 24) or c-met inhibitor PHA 665752 (n = 15), to elucidate the key factors facilitating the wound healing response to RF ablation. Statistical significance was assessed with nonparametric analysis of variance. RF ablation induces a strong time-dependent immunologic response at the perimeter of the necrotic zone. This includes massive accumulation of neutrophils, activated myofibroblasts, and macrophages peaking at 24 hours, 7 days, and 14 days after ablation, respectively. In correlation with myofibroblast accumulation, RF ablation induced hepatocyte proliferation in both the ablated lobe and an untreated lobe (mean, 165.15 and 230.4 cyclin-dependent kinase 47-positive cells per ×20 field, respectively, at day 7; P RF ablation induces not only a local periablational inflammatory zone but also more global proliferative effects on the liver. These IL-6- and/or c-met-mediated changes could potentially account for some of the local and distant tumor recurrence observed after treatment. © RSNA, 2015 Online supplemental material is available for

  1. Usage of adenovirus expressing thymidine kinase mediated hepatocellular damage for enabling mouse liver repopulation with allogenic or xenogenic hepatocytes.

    Directory of Open Access Journals (Sweden)

    Daniel Moreno

    Full Text Available It has been shown that the liver of immunodeficient mice can be efficiently repopulated with human hepatocytes when subjected to chronic hepatocellular damage. Mice with such chimeric livers represent useful reagents for medical and clinical studies. However all previously reported models of humanized livers are difficult to implement as they involve cross-breeding of immunodeficient mice with mice exhibiting genetic alterations causing sustained hepatic injury. In this paper we attempted to create chimeric livers by inducing persistent hepatocellular damage in immunodeficient Rag2(-/- γc(-/- mice using an adenovirus encoding herpes virus thymidine kinase (AdTk and two consecutive doses of ganciclovir (GCV. We found that this treatment resulted in hepatocellular damage persisting for at least 10 weeks and enabled efficient engraftment and proliferation within the liver of either human or allogenic hepatocytes. Interestingly, while the nodules generated from the transplanted mouse hepatocytes were well vascularized, the human hepatocytes experienced progressive depolarization and exhibited reduced numbers of murine endothelial cells inside the nodules. In conclusion, AdTk/GCV-induced liver damage licenses the liver of immunodeficient mice for allogenic and xenogenic hepatocyte repopulation. This approach represents a simple alternative strategy for chimeric liver generation using immunodeficient mice without additional genetic manipulation of the germ line.

  2. Cellular distribution of {sup 111}In-LDTPA galactose BSA in normal and asialoglycoprotein receptor-deficient mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Deal, Kim A.; Cristel, Michael E.; Welch, Michael J

    1998-05-01

    {sup 111}In-LDTPA galactose BSA (bovine serum albumin) was used to evaluate the asialoglycoprotein receptor (ASGPR) system in both normal and ASGPR-deficient mice. The radiolabeled glycoprotein had complete liver uptake in both normal and ASGPR-deficient mice. Metabolism and hepatic cell-type distribution studies were performed. The normal mouse excreted greater than 60% of the hepatic activity, while the ASGPR-deficient mouse excreted less than 40% of the hepatic activity. {sup 111}In-LDTPA galactose BSA was metabolized to {sup 111}In-LDTPA-L-lysine in both mouse types. Normal mice showed 70% of the radioactivity in the hepatocyte, whereas the homozygous ASGPR-deficient mouse had equal activity in the hepatocyte and the hepatic endothelial cell.

  3. The effects of protaglandin E sub 2 and cyclooxygenase inhibition on ornithine decarboxylase activation and DNA synthesis during carbon tetrachloride-induced liver regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Shilstone, J.J.

    1989-01-01

    Increases in prostaglandin E{sub 2} (PGE{sub 2}) and ornithine decarboxylase (ODC) activity are necessary for liver regeneration following surgical partial hepatectomy (SPH). The purpose of this study was to examine liver regeneration induced by carbon tetrachloride (CCl{sub 4}) to determine whether DNA synthesis initiation mechanisms involving PGE{sub 2} and ODC operated in a similar manner to that seen in SPH. The rat chemical partial hepatectomy (CPH) model was established in our laboratory as a method to examine regenerative processes. A characteristic time course of {sup 3}H thymidine incorporation into DNA was demonstrated which peaked 48 hours following CPH. Increases in liver specific serum sorbitol dehydrogenase (sSDH) and glutamate-pyruvate transaminase (sGPT) indicated that significant necrotic damage had occurred in the liver as a result of CCl{sub 4} toxicity. Increased DNA synthesis and necrotic damage in the liver satisfied criteria for use of this procedure as a model of regeneration. Hepatic PGE{sub 2} synthesis was measured using radioimmunoassay (RIA) during the 12 hr period following CPH. Increases in PGE{sub 2} concentration were seen at 2, 4, 6, and 8 hrs. Indomethacin (50 mg/kg) administered intraperitoneally 90 minutes prior to CPH inhibited increases in PGE{sub 2}. Therefore, increased PGE{sub 2} seen during this time is due to cyclooxygenase. Indomethacin administration did not inhibit DNA synthesis measured by {sup 3}H thymidine incorporation into DNA at 24, 48, 72, and 96 hrs. Thus the increased PGE{sub 2} concentrations seen in the period immediately following CPH are not required for DNA synthesis. Therefore, different mechanisms of DNA synthesis initiation are operative in CPH and SPH.

  4. Four and a Half LIM Domains 1b (Fhl1b) Is Essential for Regulating the Liver versus Pancreas Fate Decision and for β-Cell Regeneration

    Science.gov (United States)

    Xu, Jin; Cui, Jiaxi; Del Campo, Aranzazu; Shin, Chong Hyun

    2016-01-01

    The liver and pancreas originate from overlapping embryonic regions, and single-cell lineage tracing in zebrafish has shown that Bone morphogenetic protein 2b (Bmp2b) signaling is essential for determining the fate of bipotential hepatopancreatic progenitors towards the liver or pancreas. Despite its pivotal role, the gene regulatory networks functioning downstream of Bmp2b signaling in this process are poorly understood. We have identified four and a half LIM domains 1b (fhl1b), which is primarily expressed in the prospective liver anlage, as a novel target of Bmp2b signaling. fhl1b depletion compromised liver specification and enhanced induction of pancreatic cells from endodermal progenitors. Conversely, overexpression of fhl1b favored liver specification and inhibited induction of pancreatic cells. By single-cell lineage tracing, we showed that fhl1b depletion led lateral endodermal cells, destined to become liver cells, to become pancreatic cells. Reversely, when fhl1b was overexpressed, medially located endodermal cells, fated to differentiate into pancreatic and intestinal cells, contributed to the liver by directly or indirectly modulating the discrete levels of pdx1 expression in endodermal progenitors. Moreover, loss of fhl1b increased the regenerative capacity of β-cells by increasing pdx1 and neurod expression in the hepatopancreatic ductal system. Altogether, these data reveal novel and critical functions of Fhl1b in the hepatic versus pancreatic fate decision and in β-cell regeneration. PMID:26845333

  5. Four and a Half LIM Domains 1b (Fhl1b Is Essential for Regulating the Liver versus Pancreas Fate Decision and for β-Cell Regeneration.

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2016-02-01

    Full Text Available The liver and pancreas originate from overlapping embryonic regions, and single-cell lineage tracing in zebrafish has shown that Bone morphogenetic protein 2b (Bmp2b signaling is essential for determining the fate of bipotential hepatopancreatic progenitors towards the liver or pancreas. Despite its pivotal role, the gene regulatory networks functioning downstream of Bmp2b signaling in this process are poorly understood. We have identified four and a half LIM domains 1b (fhl1b, which is primarily expressed in the prospective liver anlage, as a novel target of Bmp2b signaling. fhl1b depletion compromised liver specification and enhanced induction of pancreatic cells from endodermal progenitors. Conversely, overexpression of fhl1b favored liver specification and inhibited induction of pancreatic cells. By single-cell lineage tracing, we showed that fhl1b depletion led lateral endodermal cells, destined to become liver cells, to become pancreatic cells. Reversely, when fhl1b was overexpressed, medially located endodermal cells, fated to differentiate into pancreatic and intestinal cells, contributed to the liver by directly or indirectly modulating the discrete levels of pdx1 expression in endodermal progenitors. Moreover, loss of fhl1b increased the regenerative capacity of β-cells by increasing pdx1 and neurod expression in the hepatopancreatic ductal system. Altogether, these data reveal novel and critical functions of Fhl1b in the hepatic versus pancreatic fate decision and in β-cell regeneration.

  6. Manifestation of Non-Alcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis in Different Dietary Mouse Models

    Directory of Open Access Journals (Sweden)

    Vera HI Fengler

    2016-05-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD and non-alcoholic steatohepatitis (NASH, which are usually associated with obesity and metabolic syndrome, are considerable health and economic issues due to the rapid increase of their prevalence in Western society. Histologically, the diseases are characterised by steatosis, hepatic inflammation, and if further progressed, fibrosis. Dietary-induced mouse models are widely used in investigations of the development and progression of NAFLD and NASH; these models attempt to mimic the histological and metabolic features of the human diseases. However, the majority of dietary mouse models fail to reflect the whole pathophysiological spectrum of NAFLD and NASH. Some models exhibit histological features similar to those seen in humans while lacking the metabolic context, while others resemble the metabolic conditions leading to NAFLD in humans but fail to mimic the whole histological spectrum, including progression from steatosis to liver fibrosis, and thus fail to mimic NASH. This review summarises the advantages and disadvantages of the different dietary-induced mouse models of NAFLD and NASH, with a focus on the genetic background of several commonly used wild-type mouse strains as well as gender and age, which influence the development and progression of these liver diseases.

  7. Metabolism of aildenafil in vivo in rats and in vitro in mouse, rat, dog, and human liver microsomes.

    Science.gov (United States)

    Li, Yan; Wu, Linan; Gu, Yuan; Si, Duanyun; Liu, Changxiao

    2014-06-01

    Aildenafil, 1-{[3-(6, 7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo [4, 3-d] primidin-5-yl)-4-ethoxyphenyl] sulfonyl}-cis-3, 5-dimethylpiperazine, a phosphodiesterase type V enzyme inhibitor (PDE5I), is under development for treatment of erectile dysfunction (ED). The purpose of this study was to elucidate metabolism of aildenafil in vivo in rats and in vitro in mouse, rat, dog, and human liver microsomes. Thirty-one phase I metabolites have been found by LTQ/Orbitrap hybrid mass spectrometry in rat urine, faeces, and bile after oral administration. Major biotransformation pathways of aildenafil included N-dealkylation of the piperazine ring, hydroxylation and dehydrogenation, aliphatic hydroxylation and loss of alkyl group of piperazine ring. Minor pathways involved hydroxylation on the phenyl ring, pyrazole N-demethylation, O-deethylation, loss of piperazine ring (cleavage of N-S bond) and dehydrogenation on the piperazine ring. Similar metabolic pathways of aildenafil were observed in the incubations of liver microsomes from mouse, rat, and dog as well as from human. The depletion rate of parent drug in mouse and rat liver microsomes was significantly different from that in human liver microsomes. The cytochrome P450 reaction phenotyping analysis was conducted using isozyme-specific inhibitors. The results indicated that CYP3A was the main isoenzyme involved in oxidative metabolism of aildenafil. Overall, these in vitro and in vivo findings should provide valuable information on possible metabolic behaviours of aildenafil in humans.

  8. Cellular aspects of liver regeneration Aspectos celulares da regeneração hepática

    Directory of Open Access Journals (Sweden)

    Marissa Rabelo Tarlá

    2006-01-01

    Full Text Available This paper has the objective to analyze the cellular aspects of liver regeneration (LR. Upon damage in this organ, the regenerative capacity of hepatocyte is sufficiently able to reestablish the parenchyma as a whole. Taking into account the regenerative capacity of hepatocyte, the need of a progenitor or a liver trunk cell was not obvious. Nowadays it is well-established that precursor cells take part in the liver regenerative process. The liver trunk cell, oval cell, acts as a bypotential precursor, contributing for the liver restoration, mainly when the hepatocytes are unable to proliferate. Another precursor, trunk cell of hematopoetic origin (HSC, takes part in the regenerative process, originating cells of the hepatocitic lineage and colangiocytes, as well as the oval cell. The way the trans-differentiation takes place is not established yet. A number of studies must be undertaken in order to clarify questions, such as the possible occurrence of cellular fusion process between the HSC and the hepatic cells and the possibility of application as a new therapeutic procedure in the treatment of diseases associated with insufficiency of this noble organ.Este artigo tem como objetivo analisar aspectos da regeneração hepática (RH sob a óptica celular. Em vigência de uma lesão neste órgão a capacidade regenerativa do hepatócito é suficientemente capaz de restabelecer o parênquima como um todo. Levando em conta a elevada capacidade regenerativa do hepatócito, a necessidade de um progenitor ou uma célula tronco hepática não era óbvia. Hoje esta bem estabelecido que células precursoras participam do processo regenerativo hepático. A célula tronco hepática, célula oval, atua como um precursor bipotencial, contribuindo para o restauro do fígado principalmente quando os hepatócitos se encontram impossibilitados de proliferar. Um outro precursor, a célula tronco de origem hematopoética (HSC, participa do processo regenerativo

  9. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: liver effects.

    Science.gov (United States)

    Yoo, Hong Sik; Bradford, Blair U; Kosyk, Oksana; Shymonyak, Svitlana; Uehara, Takeki; Collins, Leonard B; Bodnar, Wanda M; Ball, Louise M; Gold, Avram; Rusyn, Ivan

    2015-01-01

    Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of interindividual variability in TCE metabolism and toxicity, especially in the liver. A hypothesis was tested that amounts of oxidative metabolites of TCE in mouse liver are associated with hepatic-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various hepatic toxicity phenotypes. In subacute study, interstrain variability in TCE metabolite amounts was observed in serum and liver. No marked induction of Cyp2e1 protein levels in liver was detected. Serum and hepatic levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1 but not with degree of induction in hepatocellular proliferation. In subchronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Hepatic protein levels of CYP2E1, ADH, and ALDH2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE.

  10. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy

    Science.gov (United States)

    Kristiansen, Maria Nicoline Baandrup; Veidal, Sanne Skovgård; Rigbolt, Kristoffer Tobias Gustav; Tølbøl, Kirstine Sloth; Roth, Jonathan David; Jelsing, Jacob; Vrang, Niels; Feigh, Michael

    2016-01-01

    AIM: To characterize development of diet-induced nonalcoholic steatohepatitis (NASH) by performing liver biopsy in wild-type and genetically obese mice. METHODS: Male wild-type C57BL/6J (C57) mice (DIO-NASH) and male Lepob/Lepob (ob/ob) mice (ob/ob-NASH) were maintained on a diet high in trans-fat (40%), fructose (22%) and cholesterol (2%) for 26 and 12 wk, respectively. A normal chow diet served as control in C57 mice (lean chow) and ob/ob mice (ob/ob chow). After the diet-induction period, mice were liver biopsied and a blinded histological assessment of steatosis and fibrosis was conducted. Mice were then stratified into groups counterbalanced for steatosis score and fibrosis stage and continued on diet and to receive daily PO dosing of vehicle for 8 wk. Global gene expression in liver tissue was assessed by RNA sequencing and bioinformatics. Metabolic parameters, plasma liver enzymes and lipids (total cholesterol, triglycerides) as well as hepatic lipids and collagen content were measured by biochemical analysis. Non-alcoholic fatty liver disease activity score (NAS) (steatosis/inflammation/ballooning degeneration) and fibrosis were scored. Steatosis and fibrosis were also quantified using percent fractional area. RESULTS: Diet-induction for 26 and 12 wk in DIO-NASH and ob/ob-NASH mice, respectively, elicited progressive metabolic perturbations characterized by increased adiposity, total cholesterol and elevated plasma liver enzymes. The diet also induced clear histological features of NASH including hepatosteatosis and fibrosis. Overall, the metabolic NASH phenotype was more pronounced in ob/ob-NASH vs DIO-NASH mice. During the eight week repeated vehicle dosing period, the metabolic phenotype was sustained in DIO-NASH and ob/ob-NASH mice in conjunction with hepatomegaly and increased hepatic lipids and collagen accumulation. Histopathological scoring demonstrated significantly increased NAS of DIO-NASH mice (0 vs 4.7 ± 0.4, P < 0.001 compared to lean chow

  11. Non-alcoholic fatty liver disease (NAFLD) potentiates autoimmune hepatitis in the CYP2D6 mouse model.

    Science.gov (United States)

    Müller, Peter; Messmer, Marie; Bayer, Monika; Pfeilschifter, Josef M; Hintermann, Edith; Christen, Urs

    2016-05-01

    Non-alcoholic fatty liver disease (NAFLD) and its more severe development non-alcoholic steatohepatitis (NASH) are increasing worldwide. In particular NASH, which is characterized by an active hepatic inflammation, has often severe consequences including progressive fibrosis, cirrhosis, and eventually hepatocellular carcinoma (HCC). Here we investigated how metabolic liver injury is influencing the pathogenesis of autoimmune hepatitis (AIH). We used the CYP2D6 mouse model in which wild type C57BL/6 mice are infected with an Adenovirus expressing the major liver autoantigen cytochrome P450 2D6 (CYP2D6). Such mice display several features of human AIH, including interface hepatitis, formation of LKM-1 antibodies and CYP2D6-specific T cells, as well as hepatic fibrosis. NAFLD was induced with a high-fat diet (HFD). We found that pre-existing NAFLD potentiates the severity of AIH. Mice fed for 12 weeks with a HFD displayed increased cellular infiltration of the liver, enhanced hepatic fibrosis and elevated numbers of liver autoantigen-specific T cells. Our data suggest that a pre-existing metabolic liver injury constitutes an additional risk for the severity of an autoimmune condition of the liver, such as AIH.

  12. Multidimensional LC–MS/MS analysis of liver proteins in rat, mouse and human microsomal and S9 fractions

    Directory of Open Access Journals (Sweden)

    Makan Golizeh

    2015-03-01

    Full Text Available Liver plays a key role in metabolism and detoxification, therefore analysis of its proteome is relevant for toxicology and drug discovery studies. To optimize for high proteome coverage, protein and peptide-level ion exchange fractionation were assessed using rat liver microsomes and S9 fractions. 2D-(SCX-RP-LC–MS/MS analysis with peptide fractionation was subsequently employed for rat, mouse and human samples, yielding between 1400 and 1939 identified proteins, 58% of which were shared between species, and with relatively high sequence coverage. This rich dataset is specifically interesting for the toxicology community, and could serve as an excellent source for targeted assay development.

  13. Overexpression of Hepatitis B Virus-binding Protein, Squamous Cell Carcinoma Antigen 1, Extends Retention of Hepatitis B Virus in Mouse Liver

    Institute of Scientific and Technical Information of China (English)

    Hong-Bin XIA; Xi-Gu CHEN

    2006-01-01

    How receptors mediate the entry of hepatitis B virus (HBV) into the target liver cells is poorly understood. Recently, human squamous cell carcinoma antigen 1 (SCCA1) has been found to mediate binding and internalization of HBV to liver-derived cell lines in vitro. In this report, we investigate if SCCA1 is able to function as an HBV receptor and mediate HBV entry into mouse liver. SCCA1 transgene under the control of Rous sarcoma virus promoter was constructed in a minicircle DNA vector that was delivered to NOD/SCID mouse liver using the hydrodynamic technique. Subsequently, HBV-positive human serum was injected intravenously. We demonstrated that approximately 30% of the mouse liver cells expressed a high level of recombined SCCA1 protein for at least 37 d. The HBV surface antigen was found to persist in mouse liver for up to 17 d. Furthermore, HBV genome also persisted in mouse liver, as determined by polymerase chain reaction, for up to 17 d, and in mouse circulation for 7 d. These results suggest that SCAA1 might serve as an HBV receptor or co-receptor and play an important role in mediating HBV entry into hepatocytes, although its role in human HBV infection remains to be determined.

  14. Triton X-114 phase separation in the isolation and purification of mouse liver microsomal membrane proteins.

    Science.gov (United States)

    Mathias, Rommel A; Chen, Yuan-Shou; Kapp, Eugene A; Greening, David W; Mathivanan, Suresh; Simpson, Richard J

    2011-08-01

    Integral membrane proteins (IMPs) mediate several cellular functions including cell adhesion, ion and nutrient transport, and cell signalling. IMPs are typically hard to isolate and purify due to their hydrophobic nature and low cellular abundance, however, microsomes are small lipid vesicles rich in IMPs, which form spontaneously when cells are mechanically disrupted. In this study, we have employed mouse liver microsomes as a model for optimising a method for IMP isolation and characterisation. Microsomes were collected by differential centrifugation, purified with sodium carbonate, and subjected to GeLC-MS/MS analysis. A total of 1124 proteins were identified in the microsome fraction, with 47% (524/1124) predicted by TMHMM to contain at least one transmembrane domain (TMD). The ability of phase partitioning using the detergent Triton X-114 (TX-114) to further enrich for membrane proteins was evaluated. Microsomes were subjected to successive rounds of solubility-based phase separation, with proteins partitioning into the aqueous phase, detergent phase, or TX-114-insoluble pellet fraction. GeLC-MS/MS analysis of the three TX-114 fractions identified 1212 proteins, of which 146 were not detected in the un-fractionated microsome sample. Conspicuously, IMPs partitioned to the detergent phase, with 56% (435/770) of proteins identified in that fraction containing at least one TMD. GO Slim characterisation of the microsome proteome revealed enrichment of proteins from the endoplasmic reticulum, mitochondria, Golgi apparatus, endosome, and cytoplasm. Further, enzymes including monooxygenases were well represented with 35 cytochrome P450 identifications (CYPs 1A2, 2A5, 2A12, 2B10, 2C29, 2C37, 2C39, 2C44, 2C50, 2C54. 2C67, 2C68, 2C70, 2D10, 2D11, 2D22, 2D26, 2D9, 2E1, 2F2, 2J5, 2U1, 3A11, 3A13, 3A25, 4A10, 4A12A, 4A12B, 4F13, 4F14, 4F15, 4V3, 51,7B1, and 8B1). Evaluation of biological processes showed enrichment of proteins involved in fatty acid biosynthesis and

  15. A balanced diet is necessary for proper entrainment signals of the mouse liver clock.

    Directory of Open Access Journals (Sweden)

    Akiko Hirao

    Full Text Available BACKGROUND: The peripheral circadian clock in mice is entrained not only by light-dark cycles but also by daily restricted feeding schedules. Behavioral and cell culture experiments suggest an increase in glucose level as a factor in such feeding-induced entrainment. For application of feeding-induced entrainment in humans, nutrient content and dietary variations should be considered. PRINCIPAL FINDING: To elucidate the food composition necessary for dietary entrainment, we examined whether complete or partial substitution of dietary nutrients affected phase shifts in liver clocks of mice. Compared with fasting mice or ad libitum fed mice, the liver bioluminescence rhythm advanced by 3-4 h on the middle day in Per2::luciferase knock-in mice that were administered a standard mouse diet, i.e. AIN-93M formula [0.6-0.85 g/10 g mouse BW] (composition: 14% casein, 47% cornstarch, 15% gelatinized cornstarch, 10% sugar, 4% soybean oil, and 10% other [fiber, vitamins, minerals, etc.], for 2 days. When each nutrient was tested alone (100% nutrient, an insignificant weak phase advance was found to be induced by cornstarch and soybean oil, but almost no phase advance was induced by gelatinized cornstarch, high-amylose cornstarch, glucose, sucrose, or casein. A combination of glucose and casein without oil, vitamin, or fiber caused a significant phase advance. When cornstarch in AIN-93M was substituted with glucose, sucrose, fructose, polydextrose, high-amylose cornstarch, or gelatinized cornstarch, the amplitude of phase advance paralleled the increase in blood glucose concentration. CONCLUSIONS: Our results strongly suggest the following: (1 balanced diets containing carbohydrates/sugars and proteins are good for restricted feeding-induced entrainment of the peripheral circadian clock and (2 a balanced diet that increases blood glucose, but not by sugar alone, is suitable for entrainment. These findings may assist in the development of dietary

  16. UPTAKE OF [3H]-COLCHICINE INTO BRAIN AND LIVER OF MOUSE, RAT, AND CHICK

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Edward L.; Alberti, Marie Hebert; Flood, James F.

    1980-07-01

    The uptake of [ring A-4-{sup 3}H] colchicine and [ring C-methoxy-{sup 3}H]colchicine has been compared in mice from 1 to 24 hr after administration. Less radioactivity was found in brain after administration of ring-labeled colchicine than after administration of the methoxy-labeled colchicine. Three hr after administration of ring-labeled colchicine, 5% of the label was in liver and about 0.01% of the label was present in brain. Forty percent of the brain radioactivity was bound to tubulin as determined by vinblastine precipitation. After 3 hr, an average of 8% of the radioactivity from methoxy-labeled colchicine was found in the liver and 0.16% in brain. However, less than 5% of the activity in brain was precipitated by vinblastine, and the colchicine equivalent was comparable to that found after administration of the ring-labeled colchicine. The amount of colchicine entering mouse brain after subcutaneous injection is comparable to the minimum behaviorally effective dose when administered to the caudate. The metabolism of [ring C-methoxy-{sup 3}H] and [ring A-{sup 3}H]colchicine was also studied in rats. the general pattern was similar to mice; less radioactivity was found in brain after administration of the ring-labeled alkoloid than after administration of methoxy-labeled colchicine. Again, 40-50% of ring-labeled colchicine was precipitated by vinblastine. A much smaller percentage of the methoxy-labeled drug was precipitated by vinblastine than of the ring A-labeled colchicine. These experiments, together with behavioral experiments [7], support the hypotheses that structural alteration in synapses by recently synthesized proteins which are transported down the axons and dendrites may be an essential process for long-term memory formation.

  17. Expression patterns and action analysis of genes associated with physiological responses during rat liver regeneration: Cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Lian-Xing Zhang; Li-Feng Zhao; An-Shi Zhang; Xiao-Guang Chen; Cun-Shuan Xu

    2006-01-01

    AIM: To study the cellular immune response during rat liver regeneration (LR) at a transcriptional level.METHODS: Genes associated with the cellular immune response were obtained by collecting the data from databases and retrieving articles. Gene expression changes during LR were detected by rat genome 230 2.0 array.RESULTS: A total of 127 genes were found to be associated with LR. The number of initially and totally expressing genes in the initial phase of LR [0.5-4 h after partial hepatectomy (PH)], transition from G0-G1(4-6 h after PH), cell proliferation (6-66 h after PH),cell differentiation and structure-function reconstruction (66-168 h after PH) was 54, 11, 34, 3 and 54, 49, 70, 49 respectively, illustrating that the associated genes were mainly triggered at the initiation of LR, and worked at different phases. According to their expression similarity,these genes were classified into 41 up-regulated, 21 predominantly up-regulated, 41 down-regulated, 14 predominantly down-regulated, 10 similarly up-regulated and down-regulated genes, respectively. The total upand down-regulated expression times were 419 and 274,respectively, demonstrating that the expression of most genes was increased while the expression of a small number of genes was decreased. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities were staggered during LR. According to the gene expression patterns,they were classified into 21 types, showing the activities were diverse and complicated during LR.CONCLUSION: Antigen processing and presentation are enhanced mainly in the forepart, prophase and anaphase of LR. T-cell activation and antigen elimination are enhanced mainly in the forepart and prophase of LR. A total of 127 genes associated with LR play an important role in cellular immunity.

  18. Effects of Melatonin on Differentiation Potential of Ito Cells in Mice with Induced Fibrosis of the Liver.

    Science.gov (United States)

    Nalobin, D S; Suprunenko, E A; Golichenkov, V A

    2016-10-01

    We studied the effects of melatonin on differentiation potential of Ito cells during atypical regeneration of mouse liver under conditions of CCl4-induced fibrosis. The dynamics of fibrosis was traced at the histological level and the effects of melatonin on the differentiation potential of mouse Ito cells were evaluated. Melatonin alleviated fibrotic changes in the liver tissue and reduced differentiation of Ito cells into myofibroblasts under conditions of atypical regeneration of the liver in induced fibrosis. The hepatoprotective role of melatonin was shown.

  19. Differential patterns in the periodicity and dynamics of clock gene expression in mouse liver and stomach.

    Science.gov (United States)

    Mazzoccoli, Gianluigi; Francavilla, Massimo; Pazienza, Valerio; Benegiamo, Giorgia; Piepoli, Ada; Vinciguerra, Manlio; Giuliani, Francesco; Yamamoto, Takuro; Takumi, Toru

    2012-12-01

    The rhythmic recurrence of biological processes is driven by the functioning of cellular circadian clocks, operated by a set of genes and proteins that generate self-sustaining transcriptional-translational feedback loops with a free-running period of about 24 h. In the gastrointestinal apparatus, the functioning of the biological clocks shows distinct patterns in the different organs. The aim of this study was to evaluate the time-related variation of clock gene expression in mouse liver and stomach, two components of the digestive system sharing vascular and autonomic supply, but performing completely different functions. The authors analyzed the periodicity by cosinor analysis and the dynamics of variation by computing the fractional variation to assess the rate of change in gene expression. Five-week-old male Balb/c mice were exposed to 2 wks of 12-h light/12-h dark cycles, then kept in complete darkness for 3 d as a continuation of the dark span of the last light-dark cycle. The authors evaluated the expression of Bmal1, Clock, Cry1, Cry2, Per1, Per2, Per3, Rev-erbα, Rev-erbβ, Npas2, Timeless, Dbp, Csnk1d, and Csnk1e by using real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) in mouse liver and stomach. A significant 24-h rhythmic component was found for 10 genes in the liver (Bmal1, Clock, Cry1, Per1, Per2, Per3, Rev-erbα, Rev-erbβ, Npas2, and Dbp), and for 9 genes in the stomach (Bmal1, Cry1, Per1, Per2, Per3, Rev-erbα, Rev-erbβ, Npas2, and Dbp). In particular, Clock showed marked rhythm differences between liver and stomach, putatively due to some compensation by Npas2. The acrophase of the original values of Bmal1, Per2, Per3, Rev-erbα, Rev-erbβ, Npas2, and Dbp expression was delayed in the stomach, and the average delay expressed as mean ± SD was 14.30 ± 7.94 degrees (57.20 ± 31.78 minutes). A statistically significant difference was found in the acrophases of Bmal1 (p = .015) and Npas2 (p

  20. Synchronisation strategies in T2-weighted MR imaging for detection of liver lesions: Application on a nude mouse model

    OpenAIRE

    Baboi, L; Milot, L; Lartizien, C; Roche, C; Scoazec, J-Y; Pilleul, F; Beuf, O

    2007-01-01

    Aim: The objective of this work was to propose original synchronisation strategies based on T2-weighted sequence performed on a small animal MRI spectrometer in order to improve the image contrast and detect mouse liver lesions at high magnetic field. Materials and Methods: The experiments were performed in vivo at 7T using a 32 mm inner diameter cylindrical volumetric coil for both RF emission and reception. A sensitive pressure sensor was used to detect external movements due to both respir...

  1. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy

    Institute of Scientific and Technical Information of China (English)

    Maria; Nicoline; Baandrup; Kristiansen; Sanne; Skovg?rd; Veidal; Kristoffer; Tobias; Gustav; Rigbolt; Kirstine; Sloth; T?lb?l; Jonathan; David; Roth; Jacob; Jelsing; Niels; Vrang; Michael; Feigh

    2016-01-01

    AIM:To characterize development of diet-induced nonalcoholic steatohepatitis(NASH)by performing live biopsy in wild-type and genetically obese mice.METHODS:Male wild-type C57BL/6J(C57)mice(DIO NASH)and male Lep ob/Lep ob(ob/ob)mice(ob/ob-NASH were maintained on a diet high in trans-fat(40%)fructose(22%)and cholesterol(2%)for 26 and 12 wk respectively.A normal chow diet served as control in C57 mice(lean chow)and ob/ob mice(ob/ob chow)After the diet-induction period,mice were liver biopsied and a blinded histological assessment of steatosis and fibrosis was conducted.Mice were then stratified into groups counterbalanced for steatosis score and fibrosi stage and continued on diet and to receive daily PO dosing of vehicle for 8 wk.Global gene expression in liver tissue was assessed by RNA sequencing and bioin formatics.Metabolic parameters,plasma liver enzyme and lipids(total cholesterol,triglycerides)as well a hepatic lipids and collagen content were measured b biochemical analysis.Non-alcoholic fatty liver disease activity score(NAS)(steatosis/inflammation/ballooningdegeneration)and fibrosis were scored.Steatosis and fibrosis were also quantified using percent fractional area.RESULTS:Diet-induction for 26 and 12 wk in DIONASH and ob/ob-NASH mice,respectively,elicited progressive metabolic perturbations characterized by increased adiposity,total cholesterol and elevated plasma liver enzymes.The diet also induced clear histological features of NASH including hepatosteatosis and fibrosis.Overall,the metabolic NASH phenotype was more pronounced in ob/ob-NASH vs DIO-NASH mice.During the eight week repeated vehicle dosing period,the metabolic phenotype was sustained in DIO-NASH and ob/ob-NASH mice in conjunction with hepatomegaly and increased hepatic lipids and collagen accumulation.Histopathological scoring demonstrated significantly increased NAS of DIO-NASH mice(0 vs4.7±0.4,P<0.001 compared to lean chow)and ob/ob-NASH mice(2.4±0.3 vs 6.3±0.2,P<0.001compared to ob

  2. Butachlor, a suspected carcinogen, alters growth and transformation characteristics of mouse liver cells.

    Science.gov (United States)

    Ou, Y H; Chung, P C; Chang, Y C; Ngo, F Q; Hsu, K Y; Chen, F D

    2000-12-01

    Butachlor is a widely used herbicide in Asia and South America. Previous investigations have indicated that it is a suspected carcinogen. To understand more about the biological effects of butachlor on cultured cells and the mechanism(s) of its carcinogenicity, we studied the alteration of the growth characteristics that was induced by butachlor in normal mouse liver cells (BNL CL2). This study demonstrates that butachlor decreases the population-doubling time of BNL CL2 cells, suggesting that it stimulates cell proliferation. To support this finding, a thymidine incorporation assay was conducted and a similar result that butachlor stimulates cell proliferation was elucidated. In addition, we show that butachlor increases the saturation density of the BNL CL2 cells. When combined with the tumor initiator N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), butachlor transforms cells efficiently, as demonstrated by loss of contact inhibition. These findings indicate that butachlor alters the growth characteristics of BNL CL2 cells and suggest that butachlor may induce malignant transformation through stimulation of cell proliferation, alteration of cell cycle regulation, and suppression of cell density-dependent inhibition of proliferation.

  3. Binding of erythropoietin to CFU-E derived from fetal mouse liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Fukamachi, H.; Saito, T.; Tojo, A.; Kitamura, T.; Urabe, A.; Takaku, F.

    1987-09-01

    The binding of recombinant erythropoietin (EPO) to fetal mouse liver cells (FMLC) was investigated using a radioiodinated derivative which retained full biological activity. FMLC were fractionated using a preformed Percoll density gradient. Using the fractionated FMLC, the ability to form CFU-E colonies in a semisolid culture was examined, and the binding of (/sup 125/I)EPO was measured. The highest specific binding of (/sup 125/I)EPO was observed in a fraction with a density between 1.062 and 1.076 g/ml. The same fraction showed the highest ability to form CFU-E-derived colonies. After suspension culture of FMLC with EPO for 2 days, differentiated erythroid cells with higher density markedly increased. The specific binding of (/sup 125/I)EPO to these cells almost disappeared with differentiation. Scatchard analysis with cells of the CFU-E-enriched fraction showed a nonlinear curve, suggesting the existence of two classes of binding sites. One binding site was high-affinity (Kd1 = 0.41 nM), and the other low-affinity (Kd2 = 3.13 nM). These results suggest that the expression of EPO receptors on the erythroid cells is highest in CFU-E.

  4. Trihalomethanes in liver pathology: Mitochondrial dysfunction and oxidative stress in the mouse.

    Science.gov (United States)

    Faustino-Rocha, Ana I; Rodrigues, D; da Costa, R Gil; Diniz, C; Aragão, S; Talhada, D; Botelho, M; Colaço, A; Pires, M J; Peixoto, F; Oliveira, P A

    2016-08-01

    Trihalomethanes (THMs) are disinfection byproducts found in chlorinated water, and are associated with several different kinds of cancer in human populations and experimental animal models. Metabolism of THMs proceeds through enzymes such as GSTT1 and CYP2E1 and gives rise to reactive intermediates, which form the basis for their toxic activities. The aim of this study was to assess the mitochondrial dysfunction caused by THMs at low levels, and the resulting hepatic histological and biochemical changes in the mouse. Male ICR mice were administered with two THMs: dibromochloromethane (DBCM) and bromodichloromethane (BDCM); once daily, by gavage, to a total of four administrations. Animals were sacrificed four weeks after DBCM and BDCM administrations. Blood biochemistry was performed for alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TB), albumin (Alb), total protein (TP), creatinine, and urea. Animals exposed to DBCM and BDCM showed elevated ALT and TB levels (p stress (glutathione S-transferase (GST)) in hepatic tissues (p stress in liver toxicity caused by DBCM and BDCM. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1009-1016, 2016.

  5. Development of S/MAR minicircles for enhanced and persistent transgene expression in the mouse liver.

    Science.gov (United States)

    Argyros, Orestis; Wong, Suet Ping; Fedonidis, Constantinos; Tolmachov, Oleg; Waddington, Simon N; Howe, Steven J; Niceta, Marcello; Coutelle, Charles; Harbottle, Richard P

    2011-05-01

    We have previously described the development of a scaffold/matrix attachment region (S/MAR) episomal vector system for in vivo application and demonstrated its utility to sustain transgene expression in the mouse liver for at least 6 months following a single administration. Subsequently, we observed that transgene expression is sustained for the lifetime of the animal. The level of expression, however, does drop appreciably over time. We hypothesised that by eliminating the bacterial components in our vectors, we could improve their performance since bacterial sequences have been shown to be responsible for the immunotoxicity of the vector and the silencing of its expression when applied in vivo. We describe here the development of a minimally sized S/MAR vector, which is devoid of extraneous bacterial sequences. This minicircle vector comprises an expression cassette and an S/MAR moiety, providing higher and more sustained transgene expression for several months in the absence of selection, both in vitro and in vivo. In contrast to the expression of our original S/MAR plasmid vector, the novel S/MAR minicircle vectors mediate increased transgene expression, which becomes sustained at about twice the levels observed immediately after administration. These promising results demonstrate the utility of minimally sized S/MAR vectors for persistent, atoxic gene expression.

  6. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A. [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Novosibirsk State University, Novosibirsk, Pirogova str., 2, 630090 (Russian Federation)

    2013-09-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  7. Therapeutic efficacy of tumor-targeting Salmonella typhimurium A1-R on human colorectal cancer liver metastasis in orthotopic nude-mouse models.

    Science.gov (United States)

    Murakami, Takashi; Hiroshima, Yukihiko; Zhao, Ming; Zhang, Yong; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2015-10-13

    Liver metastasis is the most frequent cause of death from colon and other cancers. Generally, liver metastasis is recalcitrant to treatment. The aim of this study is to determine the efficacy of tumor-targeting Salmonella typhimurium A1-R on liver metastasis in orthotopic mouse models. HT-29 human colon cancer cells expressing red fluorescent protein (RFP) were used in the present study. S. typhimurium A1-R infected HT-29 cells in a time-dependent manner, inhibiting cancer-cell proliferation in vitro. S. typhimurium A1-R promoted tumor necrosis and inhibited tumor growth in a subcutaneous tumor mouse model of HT-29-RFP. In orthotopic mouse models, S. typhimurium A1-R targeted liver metastases and significantly reduced their growth. The results of this study demonstrate the future clinical potential of S. typhimurium A1-R targeting of liver metastasis.

  8. In vitro metabolism studies of {sup 18}F-labeled 1-phenylpiperazine using mouse liver S9 fraction

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Eun Kyoung [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Choe, Yearn Seong [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of)]. E-mail: ysnm.choe@samsung.com; Kim, Dong Hyun [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Ko, Bong-Ho [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Choi, Yong [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Lee, Kyung-Han [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kim, Byung-Tae [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of)

    2006-02-15

    The in vitro metabolism of 1-(4-[{sup 18}F]fluoromethylbenzyl)-4-phenylpiperazine ([{sup 18}F]1) and 1-(4-[{sup 18}F]fluorobenzyl)-4-phenylpiperazine ([{sup 18}F]2) was investigated using mouse liver S9 fraction. Results were compared to those of in vivo metabolism using mouse blood and bone and to in vitro metabolism using mouse liver microsomes. Defluorination was the main metabolic pathway for [{sup 18}F]1 in vitro and in vivo. Based on TLC, HPLC and LC-MS data, [{sup 18}F]fluoride ion and less polar radioactive metabolites derived from aromatic ring oxidation were detected in vitro, and the latter metabolites were rapidly converted into the former with time, whereas only the [{sup 18}F]fluoride ion was detected in vivo. Similarly, the in vitro metabolism of [{sup 18}F]2 using either S9 fraction or microsomes showed the same pattern as the in vivo method using blood; however, the radioactive metabolites derived from aromatic ring oxidation were not detected in vivo. These results demonstrate that liver S9 fraction can be widely used to investigate the intermediate radioactive metabolites and to predict the in vivo metabolism of radiotracers.

  9. Quantification of Hepatic Vascular and Parenchymal Regeneration in Mice

    Science.gov (United States)

    Xie, Chichi; Schwen, Lars Ole; Wei, Weiwei; Schenk, Andrea; Zafarnia, Sara; Gremse, Felix; Dahmen, Uta

    2016-01-01

    the quantitative analysis of the vascular systems of regenerating mouse livers. We applied this technique for assessing the hepatic growth pattern. Prospectively, this approach can be used to investigate hepatic vascular regeneration under different conditions. PMID:27494255

  10. Progressive developmental restriction, acquisition of left-right identity and cell growth behavior during lobe formation in mouse liver development.

    Science.gov (United States)

    Weiss, Mary C; Le Garrec, Jean-Francois; Coqueran, Sabrina; Strick-Marchand, Helene; Buckingham, Margaret

    2016-04-01

    To identify cell-based decisions implicated in morphogenesis of the mammalian liver, we performed clonal analysis of hepatocytes/hepatoblasts in mouse liver development, using a knock-in allele of Hnf4a/laacZ This transgene randomly undergoes a low frequency of recombination that generates a functional lacZ gene that produces β-galactosidase in tissues in which Hnf4a is expressed. Two types of β-galactosidase-positive clones were found. Most have undergone three to eight cell divisions and result from independent events (Luria-Delbrück fluctuation test); we calculate that they arose between E8.5 and E13.5. A second class was mega-clones derived from early endoderm progenitors, generating many descendants. Some originated from multi-potential founder cells, with labeled cells in the liver, pancreas and/or intestine. A few mega-clones populate only one side of the liver, indicating hepatic cell chirality. The patterns of labeled cells indicate cohesive and often oriented growth, notably in broad radial stripes, potentially implicated in the formation of liver lobes. This retrospective clonal analysis gives novel insights into clonal origins, cell behavior of progenitors and distinct properties of endoderm cells that underlie the formation and morphogenesis of the liver.

  11. Effects of Liver Fibrosis Progression on Tissue Relaxation Times in Different Mouse Models Assessed by Ultrahigh Field Magnetic Resonance Imaging.

    Science.gov (United States)

    Müller, Andreas; Hochrath, Katrin; Stroeder, Jonas; Hittatiya, Kanishka; Schneider, Günther; Lammert, Frank; Buecker, Arno; Fries, Peter

    2017-01-01

    Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2(⁎) may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2(⁎) in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2(⁎). Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks) in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 (-/-)) mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2(⁎) correlate differently to disease severity and etiology of liver fibrosis. T2(⁎) shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 (-/-) mice. Measurements of T1 and T2(⁎) may therefore facilitate discrimination between different stages and causes of liver fibrosis.

  12. Effects of Liver Fibrosis Progression on Tissue Relaxation Times in Different Mouse Models Assessed by Ultrahigh Field Magnetic Resonance Imaging

    Science.gov (United States)

    Müller, Andreas; Hochrath, Katrin; Stroeder, Jonas; Hittatiya, Kanishka; Schneider, Günther; Lammert, Frank; Buecker, Arno

    2017-01-01

    Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks) in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 −/−) mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 −/− mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis. PMID:28194423

  13. Differential migration of passenger leukocytes and rapid deletion of naive alloreactive CD8 T cells after mouse liver transplantation.

    Science.gov (United States)

    Tay, Szun S; Lu, Bo; Sierro, Fred; Benseler, Volker; McGuffog, Claire M; Bishop, G Alex; Cowan, Peter J; McCaughan, Geoffrey W; Dwyer, Karen M; Bowen, David G; Bertolino, Patrick

    2013-11-01

    Donor passenger leukocytes (PLs) from transplanted livers migrate to recipient lymphoid tissues, where they are thought to induce the deletion of donor-specific T cells and tolerance. Difficulties in tracking alloreactive T cells and PLs in rats and in performing this complex surgery in mice have limited progress in identifying the contribution of PL subsets and sites and the kinetics of T cell deletion. Here we developed a mouse liver transplant model in which PLs, recipient cells, and a reporter population of transgenic CD8 T cells specific for the graft could be easily distinguished and quantified in allografts and recipient organs by flow cytometry. All PL subsets circulated rapidly via the blood as soon as 1.5 hours after transplantation. By 24 hours, PLs were distributed differently in the lymph nodes and spleen, whereas donor natural killer and natural killer T cells remained in the liver and blood. Reporter T cells were activated in both liver and lymphoid tissues, but their numbers dramatically decreased within the first 48 hours. These results provide the first unequivocal demonstration of the differential recirculation of liver PL subsets after transplantation, and show that alloreactive CD8 T cells are deleted more rapidly than initially reported. This model will be useful for dissecting early events leading to the spontaneous acceptance of liver transplants.

  14. Effects of Liver Fibrosis Progression on Tissue Relaxation Times in Different Mouse Models Assessed by Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Andreas Müller

    2017-01-01

    Full Text Available Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 -/- mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 -/- mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis.

  15. Bromopropylate: induction of hepatic cytochromes P450 and absence of covalent binding to DNA in mouse liver.

    Science.gov (United States)

    Thomas, H; Sagelsdorff, P; Molitor, E; Skripsky, T; Waechter, F

    1994-11-01

    Oral administration of benzilic acid ester-based acaricide bromopropylate at daily doses of 3, 15, 100, and 300 mg/kg body wt to young adult male Tif:MAGf mice for 14 days caused slightly increased liver weights in the high-dose group. A dose-dependent increase of the microsomal cytochrome P450 content was accompanied by elevated ethoxycoumarin O-deethylase, ethoxyresorufin O-deethylase, pentoxyresorufin O-depentylase, and total testosterone hydroxylase activities. When compared with mice treated in parallel with the model compounds for hepatic xenobiotic metabolizing enzyme induction, phenobarbitone, and 3-methylcholanthrene, the enzyme activity changes observed with bromopropylate largely equalled those expressed in phenobarbitone-treated mice. Immunochemical studies with monoclonal antibodies against rat liver cytochrome P450 isoenzymes of the gene families 1A, 2B, 3A, and 4A confirmed that bromopropylate is a phenobarbitone-type inducer in the mouse liver. Titration of liver microsomal suspensions with bromopropylate yielded Type I substrate binding spectra. The specific amplitude was increased 1.5-fold when microsomes from bromopropylate-treated mice (300 mg/kg body wt) were used instead of control microsomes, indicating the induction of cytochromes P450 catalyzing the oxidative metabolism of the test compound. Single oral administration of 300 mg/kg body wt [14C]bromopropylate to male mice, without or following pretreatment for 14 days with 300 mg/kg body wt unlabeled bromopropylate, gave no indication for DNA binding of the test compound in the liver. This excludes a genotoxic potential via covalent DNA modification. The results suggest that, in analogy to phenobarbitone, bromopropylate acts as a tumor promotor rather than a tumor initiator in the mouse liver.

  16. Completion of hepatitis C virus replication cycle in heterokaryons excludes dominant restrictions in human non-liver and mouse liver cell lines.

    Directory of Open Access Journals (Sweden)

    Anne Frentzen

    2011-04-01

    Full Text Available Hepatitis C virus (HCV is hepatotropic and only infects humans and chimpanzees. Consequently, an immunocompetent small animal model is lacking. The restricted tropism of HCV likely reflects specific host factor requirements. We investigated if dominant restriction factors expressed in non-liver or non-human cell lines inhibit HCV propagation thus rendering these cells non-permissive. To this end we explored if HCV completes its replication cycle in heterokaryons between human liver cell lines and non-permissive cell lines from human non-liver or mouse liver origin. Despite functional viral pattern recognition pathways and responsiveness to interferon, virus production was observed in all fused cells and was only ablated when cells were treated with exogenous interferon. These results exclude that constitutive or virus-induced expression of dominant restriction factors prevents propagation of HCV in these cell types, which has important implications for HCV tissue and species tropism. In turn, these data strongly advocate transgenic approaches of crucial human HCV cofactors to establish an immunocompetent small animal model.

  17. Toxicogenomic Dissection of the Perfluorooctanoic Acid Transcript Profile in Mouse Liver: Evidence for Involvement of the Nuclear Receptors PPARα and CAR

    Science.gov (United States)

    A number of perfluorinated alkyl acids including perfluorooctanoic acid (PFOA) elicit effects similar to peroxisome proliferator chemicals (PPC) in mouse and rat liver. There is strong evidence that PPC cause many of their effects related to liver carcinogenesis through the nucle...