WorldWideScience

Sample records for refueling water systems

  1. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    Science.gov (United States)

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  2. Development of refueling support system

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi; Hayashi, Shoichi; Sano, Kazuya; Hochin, Koji; Iguchi, Yukihiro

    1992-01-01

    The refueling of Fugen Nuclear Power Station requires correct management of fuels, etc. And empirical knowledge is necessary for efficient planning and refueling. Fugen developed refueling support system and put it into practical operation. The system features a network of refueling equipment and AI rules aquired from operators knowledge. The system helps make an optimized plan, displays step-by-step guidance and prints out lists of fuel locations and movements. The system reduced the labor of the operators, optimized the management and improved the reliability of the refueling. (author)

  3. Analysis on engineering application of CNP1000 in-containment refueling water storage tank

    International Nuclear Information System (INIS)

    Wang Bin; Wang Yong; Qiu Jian; Weng Minghui

    2005-01-01

    Based on the basic design of CNP1000 (three loops), which is self-reliance designed by China National Nuclear Cooperation, and investigation results from abroad advanced nuclear power plant design of In-containment Refueling Water Storage tank, this paper describe the system flowsheet, functional requirements, structural design and piping arrangement about In-containment Refueling Water Storage Tank. The design takes the lower structural space as the IRWST. Four areas are configured to meet the diverse functional requirements, including depressurization area, water collection area, safety injection and/or containment spray suction area, TSP storage area / reactor cavity flooding holdup tank. Also the paper depict the corresponding analysis and demonstration, such as In-containment Refueling Water Storage Tank pressure transient on depressurization area of IRWST, suction and internal flow stream of IRWST, configuration of strains, the addition method and amount of chemical addition, design and engineering applicant of Reactor Cavity Flooding System. All the analysis results show the basic design of IRWST meeting with the Utility Requirement Document's requirements on performance of safety function, setting of overfill passage, overpressure protection, related interference, etc., and show the reliability of Engineering Safety Features being improved for CNP1000 (three loops). Meanwhile, it is demonstrated that the design of In-containment Refueling Water Storage Tank can apply on the future nuclear power plant project in China. (authors)

  4. Hydrant refueling system as an optimisation of aircraft refuelling

    Directory of Open Access Journals (Sweden)

    Martin HROMÁDKA

    2015-09-01

    Full Text Available At large international airports, aircraft can be refuelled either by fuel trucks or using dedicated underground pipeline systems. The latter, hydrant refuelling, is considered to be an optimal fuelling method as it increases safety, shortens the aircraft turnaround time and cuts the overall costs. However, at smaller airports, implementation of this system can lead to high investment costs. Thus, the paper discusses the airport size from which this system may be efficient to implement. Various definitions of term “airport size” are assessed. Based on data collection, the hydrant system model is created within the paper. As a result, methodology for assessing the suitability of hydrant system implementation is set. This methodology can be used at every airport using three simple inputs.

  5. On Power Refueling Management of HTR-PM

    International Nuclear Information System (INIS)

    Sun Furui; Luo Yong; Gao Qiang

    2014-01-01

    The refueling management is an important work of nuclear power plant , directly affecting its safety and economy. At present, the ordinary commercial pressurized water reactor (PWR) nuclear power plant has developed more mature in the refueling management, and formed a set of relatively complete system and methods.The High Temperature Gas-cooled Reactor Pebble-modules Demonstration Project(HTR-PM) has significant differences with the ordinary PWR nuclear power plant in the fuel morphology and the refueling mode. It adopts the spherical fuel element and the on-power refueling. Therefore, the HTR-PM refueling management has its own unique characteristics, but currently there is no mature experience to use for reference across the world. This paper gives a brief introduction to the HTR-PM on power refueling management, including the refueling management system construction, the refueling strategy, the fuel element internal transportation,charging and discharging, etc. It aims at finding the befitting HTR-PM refueling management methods in view of its own unique characteristics in order to ensure the orderly development of the refueling management and the refueling safety. (author)

  6. Safety approach to the selection of design criteria for the CRBRP reactor refueling system

    International Nuclear Information System (INIS)

    Meisl, C.J.; Berg, G.E.; Sharkey, N.F.

    1979-01-01

    The selection of safety design criteria for Liquid Metal Fast Breeder Reactor (LMFBR) refueling systems required the extrapolation of regulations and guidelines intended for Light Water Reactor refueling systems and was encumbered by the lack of benefit from a commercially licensed predecessor other than Fermi. The overall approach and underlying logic are described for developing safety design criteria for the reactor refueling system (RRS) of the Clinch River Breeder Reactor Plant (CRBRP). The complete selection process used to establish the criteria is presented, from the definition of safety functions to the finalization of safety design criteria in the appropriate documents. The process steps are illustrated by examples

  7. Automated refueling inventory control system at FFTF

    International Nuclear Information System (INIS)

    Ordonez, C.R.

    1983-10-01

    The Refueling Inventory Control System (RICS) at the Fast Flux Test Facility (FFTF) keeps track of all assemblies that reside in the various refueling facilities. The automated RICS allows the user to obtain information regarding any assembly under its control by displaying the data on a screen. It also provides a simulation mode which allows assembly moves on a duplicated data base. This simulation is used to verify the refueling documentation before it is issued

  8. Computer simulation for risk management: Hydrogen refueling stations and water supply of a large region

    DEFF Research Database (Denmark)

    Markert, Frank; Kozine, Igor

    2012-01-01

    in applying DES models to the analysis of large infrastructures for refueling stations and water supply. Two case studies are described which are concerned with the inherently safer supply and storage of hydrogen at refueling stations and an established drinking water supply system of a large metropolitan...... area, respectively. For both, the simulation aims at identifying points of potential improvement from the reliability point of view. This allows setting up a list of activities and safety measures to reduce risk and possible losses and mitigate the consequences of accidents. Based on the cases...

  9. Refueling system for the gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Hawke, B.C.

    1980-05-01

    Criteria specifically related to the handling of Gas-Cooled Fast Breeder Reactor (GCFR) fuel are briefly reviewed, and the most significant requirements with which the refueling system must comply are discussed. Each component of the refueling system is identified, and a functional description of the fuel handling machine is presented. An illustrated operating sequence describing the various functions involved in a typical refueling cycle is presented. The design status of components and subsystems selected for conceptual development is reviewed, and anticipated refueling time frames are given

  10. Design tool for offgrid hydrogen refuelling systems for aerospace applications

    International Nuclear Information System (INIS)

    Troncoso, E.; Lapeña-Rey, N.; Gonzalez, M.

    2016-01-01

    Highlights: • A simulation tool for offgrid CPV-based hydrogen refuelling systems is presented. • Simulations of system configurations with specific UAS hydrogen demand scenarios. • Regarding system size & reliability the most critical components are the CPV array and batteries. • In terms of energy efficiency the most critical component is the electrolyser. - Abstract: To develop an environmentally acceptable refuelling solution for fuel cell-powered unmanned aerial systems (UASs) to operate in remote areas, hydrogen fuel must be produced on-site from renewable energy sources. This paper describes a Matlab-based simulation tool specifically developed to pre-design offgrid hydrogen refuelling systems for UAS applications. The refuelling system comprises a high concentrated PV array (CPV), an electrolyser, a hydrogen buffer tank and a diaphragm hydrogen compressor. Small composite tanks are also included for fast refuelling of the UAV platforms at any time during the year. The novel approach of selecting a CPV power source is justified on the basis of minimizing the system footprint (versus flat plat or low concentration PV), aiming for a containerized remotely deployable UAS offgrid refuelling solution. To validate the simulation tool a number of simulations were performed using experimental data from a prototype offgrid hydrogen refuelling station for UAVs developed by Boeing Research & Technology Europe. Solar irradiation data for a selected location and daily UAS hydrogen demands of between 2.8 and 15.8 Nm"3 were employed as the primary inputs, in order to calculate a recommended system sizing solution and assess the expected operation of the refuelling system across a given year. The specific energy consumption of the refuelling system obtained from the simulations is between 5.6 and 8.9 kW h_e per kg of hydrogen delivered to the UAVs, being lower for larger daily hydrogen demands. Increasing the CPV area and electrolyser size in order to supply higher

  11. Design study for KALIMER upper internal structure and reactor refueling system

    International Nuclear Information System (INIS)

    Park, Jin Ho

    1996-09-01

    The design study for the KALIMER upper internal structure (UIS) and reactor refueling system has been described. Two distinct features are plug-in UIS and extended refueling outage. For the UIS system, the functional, structural and material requirements have been determined and the accommodation approaches to meet these functional requirements described. For the refueling system, the functional, structural, process and I and C (Instrument and Control) requirements have been established and the accommodation approaches for the functional and process requirements described. The impact on plant availability due to extension of the refueling outage has also been investigated. The accommodation approaches for UIS system show that the design concept of the system will satisfy the functional requirements with a few design issues to be resolved, such as UIS plug in/out handling system and cask design. It is also shown that the functional and process requirements of the refueling system are achievable with the design of the IVTM cask and related transfer system and the extended refueling outage has little effect (within 1%) on the plant availability if extra refueling time do not exceed 1 week. 1 refs. (Author)

  12. Design study for KALIMER upper internal structure and reactor refueling system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-09-01

    The design study for the KALIMER upper internal structure (UIS) and reactor refueling system has been described. Two distinct features are plug-in UIS and extended refueling outage. For the UIS system, the functional, structural and material requirements have been determined and the accommodation approaches to meet these functional requirements described. For the refueling system, the functional, structural, process and I and C (Instrument and Control) requirements have been established and the accommodation approaches for the functional and process requirements described. The impact on plant availability due to extension of the refueling outage has also been investigated. The accommodation approaches for UIS system show that the design concept of the system will satisfy the functional requirements with a few design issues to be resolved, such as UIS plug in/out handling system and cask design. It is also shown that the functional and process requirements of the refueling system are achievable with the design of the IVTM cask and related transfer system and the extended refueling outage has little effect (within 1%) on the plant availability if extra refueling time do not exceed 1 week. 1 refs. (Author).

  13. The application of AI-based refueling control system to the Fugen NPP

    International Nuclear Information System (INIS)

    Maeda, Koichi; Nakamura, Shinji; Kawasaki, Noboru; Nanko, Takashi; Nishimura, Hiroshi; Tanaka, Koichi

    1996-01-01

    In a refueling operation of the Advanced Thermal Reactor Fugen, it is essential to precisely handle fuel assemblies to guarantee quality and from the standpoint of safety guard. In order to plan and execute efficient operations, knowledge of experienced operators based on experiences is required. Therefore, an automatic control system based on the Artificial Intelligence (AI) technology has been developed, and has been put into operation in actual refueling operations. This system prepares an optimum refueling plan, controls the fuel handling facilities by that plan, displays and prints out the history of transfer and storage of items by automatically sampled data on a work station, a network to express fuel handling facilities and operational rules acquired through operating experiences. The development of this system has made it possible to optimize refueling schedule, save control labor of items and improve reliability of refueling. Firstly the development started the off-line system that prepares optimum refueling plan and gives to the operator step by step instructions for operation, secondly developed the on-line system that automatically controls facilities by that plan. The development of this system started in 1989, the off-line system has been put into practical operation in the 17th refueling in 1991, the 22nd (12th annual inspection) refueling in 1995 has been done by using the on-line system automatically

  14. Engineering study of frequent refueling for improved uranium utilization in pressurized water reactors

    International Nuclear Information System (INIS)

    Bernstein, I.

    1981-05-01

    The most practical alternative to annual refueling appeared to be semiannual refueling, with a short midyear refueling-only outage scheduled during minimum power demand and an annual outage during which maintenance outage tasks would be performed. A method for economic evaluation of frequent refueling was developed using fuel loading requirements, refueling frequency, replacement power costs and the price of uranium oxide as parameters and the economics evaluated with the costs anticipated for the year 1995. It was determined that to obtain breakeven energy costs, the extra semiannual refueling outage would have to be accomplished in six to nine days for most plants. Although it could not practicably be reduced to that level, proposed changes to arrangement, procedures and equipment indicated that an outage of from eleven to thirteen days was possible. Total cost of implementing these changes is estimated at less than 4% of the overall physical plant cost. This cost can be justified based on the time saved during refueling outages over the reactor lifetime. These changes were generally defined while a detailed design review was made of a fuel-handling system which utilizes two cantilever-supported refueling machines and two transfer systems, allowing independent and simultaneous handling of two fuel assemblies during the refueling sequence. A review of the critical path annual maintenance items indicated that these items would probably control the length of the annual refueling outage

  15. AHTR Refueling Systems and Process Description

    Energy Technology Data Exchange (ETDEWEB)

    Varma, V.K.; Holcomb, D.E.; Bradley, E.C.; Zaharia, N.M.; Cooper, E.J.

    2012-07-15

    The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt–cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy’s Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published [1], and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the

  16. AHTR Refueling Systems and Process Description

    Energy Technology Data Exchange (ETDEWEB)

    Varma, Venugopal Koikal [ORNL; Holcomb, David Eugene [ORNL; Bradley, Eric Craig [ORNL; Zaharia, Nathaniel M [ORNL; Cooper, Eliott J [ORNL

    2012-07-01

    The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the

  17. Enhanced methods for operating refueling station tube-trailers to reduce refueling cost

    Science.gov (United States)

    Elgowainy, Amgad; Reddi, Krishna

    2017-08-22

    A method and apparatus are provided for operating a refueling station including source tube-trailers and at least one compressor to reduce refueling cost. The refueling station includes a gaseous fuel supply source including a plurality of tanks on a tube trailer coupled to a first control unit, and high pressure buffer storage having predefined capacity coupled to a second control unit and the first tanks by a pressure control valve and the first control unit, and at least one compressor. The refueling station is operated at different modes depending on a state of the refueling station at the beginning of each operational mode. The refueling system is assessed at the end of each operational mode to identify the state of the system and select a next mode of operation. The operational modes include consolidating hydrogen, or any gaseous fuel, within the tubes mounted on the trailer.

  18. Refueling system for a nuclear reactor

    International Nuclear Information System (INIS)

    Koschkin, J.N.; Ordynskij, G.V.; Schchijan, C.G.; Schapkin, A.F.; Fadeev, A.I.; Laptev, F.V.; Batjukov, V.I.; Korolkov, K.I.; Borodin, I.V.; Tschernomordik, E.N.

    1979-01-01

    With the refueling system fuel elements are transferred from the intermediate distributing chamber within the fast breeder reactor vessel to the storage tanks for new and irradiated fuel elements outside of the reactor vessel and vice versa. It consists of a hermetic chamber, filled with inert gas, within which the refueling machine, having got a vertical swing pipe, is placed. On the swing pipe there is mounted by means of a bracket a hanging support tube for a tube manipulator that can be moved over the openings to the fuel elements. At the end of the tube manipulator there is a gripping device whose drive mechanism is arranged within the support tube. The swing pipe is moved by means of a drive mechanism outside of the chamber. (DG) [de

  19. The development of AI-based refueling control system to the FUGEN NPP

    International Nuclear Information System (INIS)

    Nanko, Takashi; Tanaka, Koichi.

    1996-01-01

    Since even skilled workers spent a considerable time to perform the refueling work previously, an automatic control system was developed by using φNET, an AI tool and its application to refueling works was started in practice. In this system, the optimum plan for the refueling work was constructed using a network which allows to present the equipments to handle the fuel, as well as the operational roles obtained from the worker's experiences. Based on the plan, the instruments concerned were automatically operated to collect the data on the actual operation, the expression and/or printing was made on the movement histories of the articles and the status of their storages. By the development of the system, optimization of refueling works, rationalization of the management and the improvement of reliability for the works became possible. The development was performed in the following two steps; the first was development of an off-line system providing an operational guidance ot the operator according to the optimum operation plan and the second was development of an on-line system which allows to automatically control the instruments according to the operational plan. The off-line system has been put into practice since 1991 and the automatic operation of refueling has been started with the on-line system from 1995. (M.N.)

  20. Refuelling nuclear reactors

    International Nuclear Information System (INIS)

    Stacey, J.; Webb, J.; White, W.P.; McLaren, N.H.

    1981-01-01

    An improved nuclear reactor refuelling machine is described which can be left in the reactor vault to reduce the off-load refuelling time for the reactor. The system comprises a gripper device rangeable within a tubular chute, the gripper device being movable by a pantograph. (U.K.)

  1. Automated procedure for selection of optimal refueling policies for light water reactors

    International Nuclear Information System (INIS)

    Lin, B.I.; Zolotar, B.; Weisman, J.

    1979-01-01

    An automated procedure determining a minimum cost refueling policy has been developed for light water reactors. The procedure is an extension of the equilibrium core approach previously devised for pressurized water reactors (PWRs). Use of 1 1/2-group theory has improved the accuracy of the nuclear model and eliminated tedious fitting of albedos. A simple heuristic algorithm for locating a good starting policy has materially reduced PWR computing time. Inclusion of void effects and use of the Haling principle for axial flux calculations extended the nuclear model to boiling water reactors (BWRs). A good initial estimate of the refueling policy is obtained by recognizing that a nearly uniform distribution of reactivity provides low-power peaking. The initial estimate is improved upon by interchanging groups of four assemblies and is subsequently refined by interchanging individual assemblies. The method yields very favorable results, is simpler than previously proposed BWR fuel optimization schemes, and retains power cost as the objective function

  2. Development and implementation of full-automatic supervision and control programme for CEFR refueling control system

    International Nuclear Information System (INIS)

    Zhu Hao; Dong Shengguo; Ma Hongsheng; Zhao Lixia

    2011-01-01

    In order to make the process of CEFR refueling more convenient and reliable, the computer supervision and control system was designed according to the CEFR refueling technology. Meanwhile, the supervision and control function and database function were developed on the basis of KingView and SQL Server2000. The fuel of reactor core was fully loaded by the system, and full-automation of CEFR refueling process was implemented. (authors)

  3. Experiences with the upgraded SKP system during refuelling Paks nuclear power plant

    International Nuclear Information System (INIS)

    Baranyai, A.; Hetzmann, A.

    1997-01-01

    In order to control the neutron flux during the refueling period, new measuring chains were developed and put into operation by the experts of KFKI-RegTron Co., Ltd. and the Paks Nuclear Power Plant with the purpose of partially substituting the original Refuelling Neutron Monitoring system (SKP) of WWER-440 reactor units. The modified monitoring system processes the signals of detectors located in channels outside the core. The outputs of measurement amplifiers equipped with up-to-date electronics fit in the original system perfectly. Use of the out-of-core measuring technique confirmed the preliminary expectations: interference sensitivity has decreased, the neutron/gamma ration increased and refueling time has become shorter by one to one-and-a-half day. The paper details the reasons for upgrading, the essence of utilized solutions and the operational experience. (author)

  4. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  5. Nuclear reactor with makeup water assist from residual heat removal system

    International Nuclear Information System (INIS)

    Corletti, M.M.; Schulz, T.L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures

  6. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  7. Refueling of nuclear reactor

    International Nuclear Information System (INIS)

    Kaufmann, J.W.; Swidwa, K.J.; Hornak, L.P.

    1989-01-01

    This patent describes an apparatus for refueling a nuclear reactor, the reactor being disposed for refueling under water in a pit in a containment, the apparatus including a bridge to be mounted moveably over the pit on the containment, first means connected to the bridge, for moving the bridge forward and backward on the containment over the pit along a first path, a first pulse generator, connected to the moving means, responsive to the movement of the bridge, for producing pulses, means, connected to the generator,for counting the pulses, the count of the pulses being dependent on the distance of the movement of the bridge

  8. Refueling emissions from cars in Japan: Compositions, temperature dependence and effect of vapor liquefied collection system

    Science.gov (United States)

    Yamada, Hiroyuki; Inomata, Satoshi; Tanimoto, Hiroshi

    2015-11-01

    Refueling emissions from cars available on the Japanese market, which were not equipped with specific controlling devices, were investigated. For the composition analysis, a proton transfer reaction plus switchable reagent ion mass spectrometry (PTR + SRI-MS), which is capable of real-time measurement, was used. In addition, the performance of a vapor liquefied collection system (VLCS), which is a recently developed controlling device, was evaluated and compared with an onboard refueling vapor recovery (ORVR) system. The refueling emission factor of uncontrolled vehicles at 20 °C was 1.02 ± 0.40 g/L in the case dispensing 20 L of fuel. The results of composition analysis indicated that the maximum incremental reactivity (MIR) of refueling emissions in Japan was 3.49 ± 0.83. The emissions consist of 80% alkanes and 20% alkenes, and aromatics and di-enes were negligible. C4 alkene had the highest impact on the MIR of refueling emissions. The amounts of refueling emissions were well reproduced by a function developed by MOVE2010 in the temperature range of 5-35 °C. The compositions of the refueling emissions varied in this temperature range, but the change in MIR was negligible. The trapping efficiency of VLCS was the same level as that of the ORVR (over 95%). The MIRs of refueling and evaporative emissions were strongly affected by that of the test fuel. This study and our previous study indicated that MIRbreakthrough ≈ MIRrefueling ≈ MIRfuel + 0.5 and MIRpermeation ≈ MIRfuel. The real-world estimated average MIRfuel in Japan was about 3.0.

  9. Refueling machine for a nuclear reactor

    International Nuclear Information System (INIS)

    Kowalski, E.F.; Hornak, L.P.; Swidwa, K.J.

    1981-01-01

    An improved refuelling machine for inserting and removing fuel assemblies from a nuclear reactor is described which has been designed to increase the reliability of such machines. The system incorporates features which enable the refuelling operation to be performed more efficiently and economically. (U.K.)

  10. Optimal Refueling Pattern Search for a CANDU Reactor Using a Genetic Algorithm

    International Nuclear Information System (INIS)

    Quang Binh, DO; Gyuhong, ROH; Hangbok, CHOI

    2006-01-01

    This paper presents the results from the application of genetic algorithms to a refueling optimization of a Canada deuterium uranium (CANDU) reactor. This work aims at making a mathematical model of the refueling optimization problem including the objective function and constraints and developing a method based on genetic algorithms to solve the problem. The model of the optimization problem and the proposed method comply with the key features of the refueling strategy of the CANDU reactor which adopts an on-power refueling operation. In this study, a genetic algorithm combined with an elitism strategy was used to automatically search for the refueling patterns. The objective of the optimization was to maximize the discharge burn-up of the refueling bundles, minimize the maximum channel power, or minimize the maximum change in the zone controller unit (ZCU) water levels. A combination of these objectives was also investigated. The constraints include the discharge burn-up, maximum channel power, maximum bundle power, channel power peaking factor and the ZCU water level. A refueling pattern that represents the refueling rate and channels was coded by a one-dimensional binary chromosome, which is a string of binary numbers 0 and 1. A computer program was developed in FORTRAN 90 running on an HP 9000 workstation to conduct the search for the optimal refueling patterns for a CANDU reactor at the equilibrium state. The results showed that it was possible to apply genetic algorithms to automatically search for the refueling channels of the CANDU reactor. The optimal refueling patterns were compared with the solutions obtained from the AUTOREFUEL program and the results were consistent with each other. (authors)

  11. Optimization of hydrogen vehicle refueling via dynamic simulation

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard; Mérida, W.; Rokni, Masoud

    2013-01-01

    loss in the vehicle's storage system is one of the main factors determining the mass flow and peak cooling requirements of the refueling process. The design of the refueling station does not influence the refueling of the vehicle when the requirements of the technical information report J2601 from...... Society of Automotive Engineers are met. However, by using multiple pressure stages in the tanks at the refueling station (instead of a single high-pressure tank), the total energy demand for cooling can be reduced by 12%, and the compressor power consumption can be reduced by 17%. The time between...

  12. Nuclear reactor with makeup water assist from residual heat removal system

    International Nuclear Information System (INIS)

    Schulz, T.L.; Corletti, M.M.

    1994-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit by pumping water from an in-containment refueling water storage tank during staged depressurization of the coolant circuit, the final stage including passive emergency cooling by gravity feed from the refueling water storage tank to the coolant circuit and to flood the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and avoids the final stage of depressurization with its flooding of the containment when such action is not necessary, but does not prevent the final stage when it is necessary. A high pressure makeup water storage tank coupled to the reactor coolant circuit holds makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal system can also be coupled in a loop with the refueling water supply tanks for cooling the tank. (Author)

  13. A Comparative Study on the Refueling Simulation Method for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Do, Quang Binh; Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The Canada deuterium uranium (CANDU) reactor calculation is typically performed by the RFSP code to obtain the power distribution upon a refueling. In order to assess the equilibrium behavior of the CANDU reactor, a few methods were suggested for a selection of the refueling channel. For example, an automatic refueling channel selection method (AUTOREFUEL) and a deterministic method (GENOVA) were developed, which were based on a reactor's operation experience and the generalized perturbation theory, respectively. Both programs were designed to keep the zone controller unit (ZCU) water level within a reasonable range during a continuous refueling simulation. However, a global optimization of the refueling simulation, that includes constraints on the discharge burn-up, maximum channel power (MCP), maximum bundle power (MBP), channel power peaking factor (CPPF) and the ZCU water level, was not achieved. In this study, an evolutionary algorithm, which is indeed a hybrid method based on the genetic algorithm, the elitism strategy and the heuristic rules for a multi-cycle and multi-objective optimization of the refueling simulation has been developed for the CANDU reactor. This paper presents the optimization model of the genetic algorithm and compares the results with those obtained by other simulation methods.

  14. Refuelling: Swiss station will be semi-automated

    International Nuclear Information System (INIS)

    Fontaine, B.; Ribaux, P.

    1981-01-01

    The first semi-automated LWR refuelling machine in Europe has been supplied to the Leibstadt General Electric BWR in Switzerland. The system relieves operators of the boring and repetitive job of moving and accurately positioning the refuelling machine during fuelling operations and will thus contribute to plant safety. The machine and its mode of operation are described. (author)

  15. Reactor refueling machine simulator

    International Nuclear Information System (INIS)

    Rohosky, T.L.; Swidwa, K.J.

    1987-01-01

    This patent describes in combination: a nuclear reactor; a refueling machine having a bridge, trolley and hoist each driven by a separate motor having feedback means for generating a feedback signal indicative of movement thereof. The motors are operable to position the refueling machine over the nuclear reactor for refueling the same. The refueling machine also has a removable control console including means for selectively generating separate motor signals for operating the bridge, trolley and hoist motors and for processing the feedback signals to generate an indication of the positions thereof, separate output leads connecting each of the motor signals to the respective refueling machine motor, and separate input leads for connecting each of the feedback means to the console; and a portable simulator unit comprising: a single simulator motor; a single simulator feedback signal generator connected to the simulator motor for generating a simulator feedback signal in response to operation of the simulator motor; means for selectively connecting the output leads of the console to the simulator unit in place of the refueling machine motors, and for connecting the console input leads to the simulator unit in place of the refueling machine motor feedback means; and means for driving the single simulator motor in response to any of the bridge, trolley or hoist motor signals generated by the console and means for applying the simulator feedback signal to the console input lead associated with the motor signal being generated by the control console

  16. Extension of the time-average model to Candu refueling schemes involving reshuffling

    International Nuclear Information System (INIS)

    Rouben, Benjamin; Nichita, Eleodor

    2008-01-01

    Candu reactors consist of a horizontal non-pressurized heavy-water-filled vessel penetrated axially by fuel channels, each containing twelve 50-cm-long fuel bundles cooled by pressurized heavy water. Candu reactors are refueled on-line and, as a consequence, the core flux and power distributions change continuously. For design purposes, a 'time-average' model was developed in the 1970's to calculate the average over time of the flux and power distribution and to study the effects of different refueling schemes. The original time-average model only allows treatment of simple push-through refueling schemes whereby fresh fuel is inserted at one end of the channel and irradiated fuel is removed from the other end. With the advent of advanced fuel cycles and new Candu designs, novel refueling schemes may be considered, such as reshuffling discharged fuel from some channels into other channels, to achieve better overall discharge burnup. Such reshuffling schemes cannot be handled by the original time-average model. This paper presents an extension of the time-average model to allow for the treatment of refueling schemes with reshuffling. Equations for the extended model are presented, together with sample results for a simple demonstration case. (authors)

  17. Nuclear reactor machine refuelling system

    International Nuclear Information System (INIS)

    Cashen, W.S.; Erwin, D.

    1977-01-01

    Part of an on-line fuelling machine for a CANDU pressure-tube reactor is described. The present invention provides a refuelling machine wherein the fuelling components, including the fuel carrier and the closure adapter, are positively positioned and retained within the machine magazine or positively secured to the machine charge tube head, and cannot be accidentally disengaged as in former practice. The positive positioning devices include an arcuate keeper plate. Simplified hooked fingers are used. (NDH)

  18. Control Room Tasks During Refueling in Ringhals 1 Nuclear Power Plant - Operator performance during refuelling outages

    International Nuclear Information System (INIS)

    Stroebeck, Einar; Olausson, Jesper; Van Gemst, Paul

    1998-01-01

    This paper discusses the performance and tasks of the operators in the control room during refuelling outages. Analyses of such events have, during the last years, shown that the risk for nuclear accidents is not negligible compared with the risk at higher reactor power levels. Some experts have the opinion that, due to mistakes during an outage, the risk for such accidents during the outage and other accidents later on during power operation is higher than in other plant situations. The high risk level is mainly a result of errors at maintenance actions and supervision of lining up of safety systems. Most of the control rooms in existing NPPs were designed more than 10 years ago. At that time the activities and the tasks for the operators were not very well understood. Procedures for refuelling and other activities during the outages were not described very well. Often the utility organisation for refuelling outages was not established at the start of the control room design. Experience from operation during many years has shown that the performance of operators can be improved in existing plant, and thus risks be reduced, by upgrading the control room. These issues have been studied as a part of the modernisation project for Ringhals 1, an ABB Atom BWR owned by Vattenfall AB in Sweden. The paper will describe the working model for upgrading the control room and important issues to take care of with respect to refuelling outages. The identified issues will be used as the input for improving control room philosophy and the individual technical systems. (authors)

  19. Moved range monitor of a refueling machine

    International Nuclear Information System (INIS)

    Nakajima, Masaaki; Sakanaka, Tadao; Kayano, Hiroyuki.

    1976-01-01

    Purpose: To incorporate light receiving and emitting elements in a face monitor to thereby increase accuracy and reliability to facilitate handling in the refueling of a BWR power plant. Constitution: In the present invention, a refueling machine and a face monitoring light receiving and emitting elements are analogously coupled whereby the face monitoring light receiving and emitting elements may be moved so as to be analogous to a route along which the refueling machine has moved. A shielding plate is positioned in the middle of the light receiving and emitting elements, and the shielding plate is machined so as to be outside of action. The range of action of the refueling machine may be monitored depending on the light receiving state of the light receiving element. Since the present invention utilizes the permeating light as described above, it is possible to detect positions more accurately than the mechanical switch. In addition, the detection section is of the non-contact system and the light receiving element comprises a hot cell, and therefore the service life is extended and the reliability is high. (Nakamura, S.)

  20. Anti-disturbance rapid vibration suppression of the flexible aerial refueling hose

    Science.gov (United States)

    Su, Zikang; Wang, Honglun; Li, Na

    2018-05-01

    As an extremely dangerous phenomenon in autonomous aerial refueling (AAR), the flexible refueling hose vibration caused by the receiver aircraft's excessive closure speed should be suppressed once it appears. This paper proposed a permanent magnet synchronous motor (PMSM) based refueling hose servo take-up system for the vibration suppression of the flexible refueling hose. A rapid back-stepping based anti-disturbance nonsingular fast terminal sliding mode (NFTSM) control scheme with a specially established finite-time convergence NFTSM observer is proposed for the PMSM based hose servo take-up system under uncertainties and disturbances. The unmeasured load torque and other disturbances in the PMSM system are reconstituted by the NFTSM observer and to be compensated during the controller design. Then, with the back-stepping technique, a rapid anti-disturbance NFTSM controller is proposed for the PMSM angular tracking to improve the tracking error convergence speed and tracking precision. The proposed vibration suppression scheme is then applied to PMSM based hose servo take-up system for the refueling hose vibration suppression in AAR. Simulation results show the proposed scheme can suppress the hose vibration rapidly and accurately even the system is exposed to strong uncertainties and probe position disturbances, it is more competitive in tracking accuracy, tracking error convergence speed and robustness.

  1. A Distance-Adaptive Refueling Recommendation Algorithm for Self-Driving Travel

    Directory of Open Access Journals (Sweden)

    Quanli Xu

    2018-03-01

    Full Text Available Taking the maximum vehicle driving distance, the distances from gas stations, the route length, and the number of refueling gas stations as the decision conditions, recommendation rules and an early refueling service warning mechanism for gas stations along a self-driving travel route were constructed by using the algorithm presented in this research, based on the spatial clustering characteristics of gas stations and the urgency of refueling. Meanwhile, by combining ArcEngine and Matlab capabilities, a scenario simulation system of refueling for self-driving travel was developed by using c#.net in order to validate and test the accuracy and applicability of the algorithm. A total of nine testing schemes with four simulation scenarios were designed and executed using this algorithm, and all of the simulation results were consistent with expectations. The refueling recommendation algorithm proposed in this study can automatically adapt to changes in the route length of self-driving travel, the maximum driving distance of the vehicle, and the distance from gas stations, which could provide variable refueling recommendation strategies according to differing gas station layouts along the route. Therefore, the results of this study could provide a scientific reference for the reasonable planning and timely supply of vehicle refueling during self-driving travel.

  2. Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen

    International Nuclear Information System (INIS)

    Melaina, Marc W.

    2007-01-01

    During the first decades of the 20th century, a variety of gasoline refueling methods supported early US gasoline vehicles and successfully alleviated consumer concerns over refueling availability. The refueling methods employed included cans, barrels, home refueling outfits, parking garage refueling facilities, mobile stations, hand carts and curb pumps. Only after robust markets for gasoline vehicles had been firmly established did the gasoline service station become the dominant refueling method. The present study reviews this history and draws analogies with current and future efforts to introduce hydrogen as a fuel for vehicles. These comparisons hold no predictive power; however, there is heuristic value in an historical review of the first successful and large-scale introduction of a vehicle fuel. From an energy policy perspective, these comparisons reinforce the importance of a long-term and portfolio approach to support for technology development and innovation

  3. Automated Aerial Refueling Hitches a Ride on AFF

    Science.gov (United States)

    Hansen, Jennifer L.; Murray, James E.; Bever, Glenn; Campos, Norma V.; Schkolnik, Gerard

    2007-01-01

    The recent introduction of uninhabited aerial vehicles [UAVs (basically, remotely piloted or autonomous aircraft)] has spawned new developments in autonomous operation and posed new challenges. Automated aerial refueling (AAR) is a capability that will enable UAVs to travel greater distances and loiter longer over targets. NASA Dryden Flight Research Center, in cooperation with the Defense Advanced Research Projects Agency (DARPA), the Naval Air Systems Command (NAVAIR), the Naval Air Force Pacific Fleet, and the Air Force Research Laboratory, rapidly conceived and accomplished an AAR flight research project focused on collecting a unique, high-quality database on the dynamics of the hose and drogue of an aerial refueling system. This flight-derived database would be used to validate mathematical models of the dynamics in support of design and analysis of AAR systems for future UAVs. The project involved the use of two Dryden F/A-18 airplanes and an S-3 hose-drogue refueling store on loan from the Navy. In this year-long project, which was started on October 1, 2002, 583 research maneuvers were completed during 23 flights.

  4. Robotic refueling machine

    International Nuclear Information System (INIS)

    Challberg, R.C.; Jones, C.R.

    1996-01-01

    One of the longest critical path operations performed during the outage is removing and replacing the fuel. A design is currently under development for a refueling machine which would allow faster, fully automated operation and would also allow the handling of two fuel assemblies at the same time. This design is different from current designs, (a) because of its lighter weight, making increased acceleration and speed possible, (b) because of its control system which makes locating the fuel assembly more dependable and faster, and (c) because of its dual handling system allowing simultaneous fuel movements. The new design uses two robotic arms to span a designated area of the vessel and the fuel storage area. Attached to the end of each robotic arm is a lightweight telescoping mast with a pendant attached to the end of each mast. The pendant acts as the base unit, allowing attachment of any number of end effectors depending on the servicing or inspection operation. Housed within the pendant are two television cameras used for the positioning control system. The control system is adapted from the robotics field using the technology known as machine vision, which provides both object and character recognition techniques to enable relative position control rather than absolute position control as in past designs. The pendant also contains thrusters that are used for fast, short distance, precise positioning. The new refueling machine system design is capable of a complete off load and reload of an 872 element core in about 5.3 days compared to 13 days for a conventional system

  5. Potential risk of a criticality event during refuelling

    Energy Technology Data Exchange (ETDEWEB)

    Laurioux, V.; Deschamps, P

    2003-01-01

    Following a core unloading due to an unscheduled shutdown during the cycle of Dampierre unit 4, the plant operator had to operate the refuelling in its previous configuration. During this operation, the fuel assembly concerned by loading step no. 25 was left in the fuel building and the assembly for the following step, no. 26, was placed in the reactor vessel instead of the previous one, causing an irregularity in core pattern only detected at step no. 139. At that point, the refuelling machine operator realized that he was handling an assembly equipped with its rod cluster, whereas according to his handling sheet, the assembly should not be equipped with. Thanks to the favourable conditions (primary system boron concentration = 2345 ppm and cycle burn-up = 2 GWj/tU), the core remained subcritical. However, the incident analysis revealed a potential criticality risk under less favourable circumstances, i.e. refuelling with fresh 1. cycle fuel assemblies and a primary system boron concentration at the lower limit of the range allowed by the Technical Operating Specifications (2000 ppm). Moreover, further studies have shown that the two neutron source range channels (SRC) are able to provide a count rate (reflecting neutron flux) but would not detect a local increase in reactivity under refuelling conditions (normal or defective), unless a reactive pattern was formed in the immediate vicinity of one of the two channels. However, if the criticality is reached, the SRCs are able to diagnose the critical state from the significant power level of 0.1% rated power. The human error that had led to the administrative validation of a fuel handling step that had not been physically carried out highlighted both the fragility of organizational lines of defence and the inadequacy of I and C systems with regard to technical in-depth defence lines. Following these observations, and beyond the preventive measures supposed to limit the occurrence of a divergence during refuelling

  6. 1200 FPD refuelling simulation of RUFIC fuel in a CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon Young; Jeong, Chang Joon; Min, Byung Joo; Suk, Ho Chun

    2001-07-01

    The refuelling strategy of RUFIC (Recovered Uranium Fuel in CANDU) fuel as a high-burnup fuel for a CANDU 6 reactor is studied to determine the achievable operation characteristics of the fuel and reactor. In this study, three refuelling schemes of 4-, 2-, and 3-bundle shift for 0.92 w/o RUFIC fuel in an CANDU 6 reactor were individually evaluated through 1200 FPD(Full Power Day)refuelling simulaltions where the 0.92 w/o RUFIC is equivalent to CANFLEX 0.9 w/o SEU(Slightly Enriched Uranium) in reactivity and burnup respects. The computer code system used for this study is WIMS-AECL/DRAGON/RFSP. The results simulated for the case of 4-bundle shift refueling scheme shows that the peak maximum channel power and peak maximum CPPF(Channel Power Peaking Factor)of 7228 kW and 1.175, respectively, seems too high to maintain the available operating margins, because some data of the maximum channel power exceed the operating limit(7070 kW based on the Technical Specifications of Wolsong 3 and 4 Units). Whereas, the results simulated for the case of 2-bundle shift refuelling scheme shows that sufficient operating margin could be secured where the peak maximum channel power and peak maximum CPPF were 6889 kW and 1.094, respectively. However, the channel refuelling rate (channels/day) of the 2-bundle shift refuelling scheme is twice that of the 4-bundle shift refuelling scheme, and hence the 2-bundle shift refuelling would not be an economical refuelling scheme for the RUFIC fuel bundles. Therefore, a 3-bundle shift refuelling scheme for the RUFIC fuel in CANDU 6 reactor was also studied by the 1200 FPD refuelling simulation. As a result, it is found that all the operating parameters in the 3-bundle shift case are achivable for the CANDU 6 reactor operation, and the channel refuelling rate of 2.88 channels/day seems to be attractive compared to the refuelling rate of 4.32 channels/day in the 2-bundle shift case.

  7. Natural circulation analysis for the advanced neutron source reactor refueling process 11

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, R.F.; Dasardhi, S.; Elkassabgi, Y. [Texas A& M Univ., Kingsville, TX (United States); Yoder, G.L. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    During the refueling process of the Advanced Neutron Source Reactor (ANSR), the spent fuel elements must be moved from the primary coolant loop (containing D{sub 2}O), through a heavy water pool, and finally into a light water spent fuel storage area. The present refueling scheme utilizes remote refueling equipment to move the spent fuel elements through a D{sub 2}O filled stack and tunnel into a temporary storage canal. A transfer lock is used to move the spent fuel elements from the D{sub 2}O-filled interim storage canal to a light water pool. Each spent fuel element must be cooled during this process, using either natural circulation or forced convection. This paper presents a summary of the numerical techniques used to analyze natural circulation cooling of the ANSR fuel elements as well as selected results of the calculations. Details of the analysis indicate that coolant velocities below 10 cm/s exist in the coolant channels under single phase natural circulation conditions. Also, boiling does not occur within the channels if power levels are below a few hundred kW when the core transitions to natural circulation conditions.

  8. Unmanned Carrier-Based Aircraft System: Debate over Systems Role Led to Focus on Aerial Refueling

    Science.gov (United States)

    2016-03-24

    Unmanned Carrier-Based Aircraft System: Debate over System’s Role Led to Focus on Aerial Refueling Prior to February 2016, the Navy had planned to...Background In a May 2015 report, we found that the intended mission and required capabilities of UCLASS were under review as there was debate ...environments, or largely strike with limited surveillance capability operating in highly contested environments.2 This debate delayed the expected

  9. Detailed description of an SSAC at the facility level for light water moderated (off-load refueled) power reactor facilities

    International Nuclear Information System (INIS)

    Jones, R.J.

    1985-03-01

    This report is intended to provide the technical details of an effective State Systems of Accounting for and Control of Nuclear Material (SSAC) which Member States may use, if they wish, to establish and maintain their SSACs. It is expected that systems designed along the lines described would be effective in meeting the objectives of both national and international systems for nuclear material accounting and control. This document accordingly provides a detailed description of a system for the accounting for and control of nuclear material in an off-load refueled light water moderated power reactor facility which can be used by a facility operator to establish his own system to comply with a national system for nuclear material accounting and control and to facilitate application of IAEA safeguards. The scope of this document is limited to descriptions of the following elements: (1) Nuclear Material Measurements; (2) Measurement Quality; (3) Records and Reports; (4) Physical Inventory Taking; (5) Material Balance Closing

  10. Understanding the design and economics of distributed tri-generation systems for home and neighborhood refueling - Part I: Single family residence case studies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuping; Ogden, Joan M. [University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States)

    2011-02-15

    The potential benefits of hydrogen as a transportation fuel will not be achieved until hydrogen vehicles capture a substantial market share. However, although hydrogen fuel cell vehicle (FCV) technology has been making rapid progress, the lack of a hydrogen infrastructure remains a major barrier for FCV adoption and commercialization. The high cost of building an extensive hydrogen station network and the foreseeable low utilization in the near term discourages private investment. Based on the past experience of fuel infrastructure development for motor vehicles, innovative, distributed, small-volume hydrogen refueling methods may be required to refuel FCVs in the near term. Among small-volume refueling methods, home and neighborhood tri-generation systems (systems that produce electricity and heat for buildings, as well as hydrogen for vehicles) stand out because the technology is available and has potential to alleviate consumer's fuel availability concerns. In addition, it has features attractive to consumers such as convenience and security to refuel at home or in their neighborhood. The objective of this paper is to provide analytical tools for various stakeholders such as policy makers, manufacturers and consumers, to evaluate the design and the technical, economic, and environmental performances of tri-generation systems for home and neighborhood refueling. An interdisciplinary framework and an engineering/economic model is developed and applied to assess home tri-generation systems for single family residences (case studies on neighborhood systems will be provided in a later paper). Major tasks include modeling yearly system operation, exploring the optimal size of a system, estimating the cost of electricity, heat and hydrogen, and system CO{sub 2} emissions, and comparing the results to alternatives. Sensitivity analysis is conducted, and the potential impacts of uncertainties in energy prices, capital cost reduction (or increase), government

  11. Understanding the design and economics of distributed tri-generation systems for home and neighborhood refueling - Part I: Single family residence case studies

    International Nuclear Information System (INIS)

    Li, Xuping; Ogden, Joan M.

    2011-01-01

    The potential benefits of hydrogen as a transportation fuel will not be achieved until hydrogen vehicles capture a substantial market share. However, although hydrogen fuel cell vehicle (FCV) technology has been making rapid progress, the lack of a hydrogen infrastructure remains a major barrier for FCV adoption and commercialization. The high cost of building an extensive hydrogen station network and the foreseeable low utilization in the near term discourages private investment. Based on the past experience of fuel infrastructure development for motor vehicles, innovative, distributed, small-volume hydrogen refueling methods may be required to refuel FCVs in the near term. Among small-volume refueling methods, home and neighborhood tri-generation systems (systems that produce electricity and heat for buildings, as well as hydrogen for vehicles) stand out because the technology is available and has potential to alleviate consumer's fuel availability concerns. In addition, it has features attractive to consumers such as convenience and security to refuel at home or in their neighborhood. The objective of this paper is to provide analytical tools for various stakeholders such as policy makers, manufacturers and consumers, to evaluate the design and the technical, economic, and environmental performances of tri-generation systems for home and neighborhood refueling. An interdisciplinary framework and an engineering/economic model is developed and applied to assess home tri-generation systems for single family residences (case studies on neighborhood systems will be provided in a later paper). Major tasks include modeling yearly system operation, exploring the optimal size of a system, estimating the cost of electricity, heat and hydrogen, and system CO 2 emissions, and comparing the results to alternatives. Sensitivity analysis is conducted, and the potential impacts of uncertainties in energy prices, capital cost reduction (or increase), government incentives and

  12. A contribution to severe accident monitoring: Level measurement of the Incontainment Refueling Water Storage Tank (IRWST), design and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Schumilov, A.; Weber, P.; Esteves, S.

    2012-07-01

    A level measurement sensor for monitoring the water level in the in-containment refueling water storage tank (IRWST) of the EPRTM (generation 3+ pressurized water reactor) during leakage and severe accidents has been developed by AREVA. The development has been accompanied by many functional and material analyses as well as tests to assure the resistivity under extreme conditions, such as high irradiation dose of 5 MGy, increased temperature up to 160 degree centigrade in conjunction with saturated steam conditions. Moreover, the sensor has been designed and experimentally verified to resist the impact of seismic events and airplane crashes as well.

  13. Preliminary design considerations for automatic refueling at N Reactor

    International Nuclear Information System (INIS)

    Quapp, W.J.; Yount, J.A.

    1985-01-01

    The Refueling Enhancement Program is an effort to upgrade and improve the N Reactor refueling operation. Primary goals of this effort are to reduce personnel exposure, reduce effluents to the environment, and, where possible, increase the refueling rate. Recent advances in available commercial robotics systems have prompted a look at automating the Charge/Discharge (C/D) operations. Current efforts will culminate in a conceptual design report (CDR) and accompanying economic and risk analysis in January 1986. Based on the results in that report, DOE will review the viability of the approach as a future capital project. Implementation of automation in existing plants raises questions regarding both the programmatic (how does one implement such an effort) and technical (what equipment is available; how will it be applied) concerns. This paper addresses both aspects

  14. Current status of the development of the refuelable aluminum-air battery

    Science.gov (United States)

    Cooper, J. F.; Kraftick, K. A.; McKinley, B. J.

    1983-05-01

    The technical status of a refuelable aluminum air battery using flowing caustic aluminate electrolyte at 50 to 700 C is reviewed. Four distinct designs for rapidly refuelable cells were evaluated in single or multicell modules on an engineering scale (167 to 1000 cm(2)/cell). Consideration is given to cells of the wedge configuration, which allow partial recharge, high anode utilization, and rapid refueling. Kinetic models developed for aluminum trihydroxide precipitation are used to predict the behavior of integrated cell/crystallizer systems. Drive cycle life and polarization data are reviewed for air electrodes under simulated vehicle operating conditions. Problems in the development of cost effective anode alloys are described. These results are interpreted from the perspective of the potential of an aluminum air battery to provide an electric vehicle with the range, acceleration and rapid refueling capabilities of common automobiles.

  15. General empirical model for 60Co generation in pressurized water reactors with continuous refueling

    International Nuclear Information System (INIS)

    Urrutia, G.A.; Blesa, M.A.; Fernandez-Prini, R.; Maroto, A.J.G.

    1984-01-01

    A simplified model is presented that permits one to calculate the average activity on the fuel elements of a reactor that operates under continuous refueling, based on the assumption of crud interchange between fuel element surface and coolant in the form of particulate material only and using the crud specific activity as an empirical parameter determined in plant. The net activity flux from core to out-of-core components is then calculated in the form of parametric curves depending on crud specific activity and rate of particulate release from fuel surface. In pressure vessel reactors, contribution to out-ofcore radionuclide inventory arising in the release of activated materials from core components must be taken into account. The contribution from in situ activation of core components is calculated from the rates of release and the specific activities corresponding to the exposed surface of the component (calculated in a straightforward way on the basis of core geometry and neutron fluxes). The rates of release can be taken from the literature, or in the case of cobalt-rich alloys, can be calculated from experimentally determined cobalt contents of structural components and crud. For pressure vessel reactors operating under continuous refueling, activation of deposited crud and release of activated materials are compared; the latter, in certain cases, may represent a sizable (and even the largest) fraction of the total cobalt activity. It is proposed that the ratio of activities of 59 Fe to 54 Mn may be used as a diagnostic tool for in situ activation of structural materials; available data indicate ratios close to unity for pressure tube heavy water reactors (no in situ activation) and ratios around 4 to 10 for pressure vessel, heavy water reactors

  16. Use of an advanced document system in post-refuelling updating of nuclear power plant documentation

    International Nuclear Information System (INIS)

    Puech Suanzes, P.; Cortes Soler, M.

    1993-01-01

    This paper discusses the results of the extensive use of an advanced document system to update documentation prepared by traditional methods and affected by changes in the period between two plant refuellings. The implementation of a system for the capture, retrieval and storage of drawings using optical discs is part of a plan to modernize production and management tools and to thus achieve better control of document configuration. These processes are consequently optimized in that: 1. The deterioration of drawings is detained with the help of an identical, updated, legible, reliable support for all users. 2. The time required to update documentation is reduced. Given the large number of drawings, the implementation method should effectively combine costs and time. The document management tools ensure optical disc storage control so that from the moment a drawing resides in the system, any modification to it is made through the system utilities, thus ensuring quality and reducing schedules. The system described was used to update the electrical drawings of Almaraz Nuclear Power Plant. Changes made during the eighth refuelling of Unit I were incorporated and the time needed to issue the updated drawings was reduced by one month. (author)

  17. Television alignment of mast assembly in refueling of nuclear reactor

    International Nuclear Information System (INIS)

    Kaufmann, J.W.; Swidwa, K.J.; Hornak, L.P.

    1990-01-01

    This patent describes the refueling of a nuclear reactor having component assemblies of at least one type and being disposed in a pit in a containment under water, the refueling being carried out with a mast movable axially and circumferentially for raising and lowering the component assemblies, a mechanism, connected to an end of the mast, cooperative with the mast, for engaging a component assembly to be raised by the mast, a television camera, and a television monitor having an image-reference indication, the mechanism being connected to the mast movable with the mast; the method of positioning the mechanism to engage the component assembly appropriately for raising and lowering. It comprises: mounting the camera on the mechanism movable therewith, suspending the mast in the water of the pit with the mechanism extending from the end of the mast in the pit in position to engage the component assembly

  18. Diablo Canyon refueling outage program

    International Nuclear Information System (INIS)

    McLane, W.B.; Irving, T.L.

    1991-01-01

    Management of outages has become one of the most talked about subjects in the nuclear power industry in the past several years. Many utilities do not perform refueling outages very well or in the past have had some outages that they would not like to repeat and in some cases do not even like to think about. With the growing cost of energy and the demands placed on utilities to improve capacity factors, it is very easy for management to focus on shortening refueling outage durations as a prime objective in improving overall corporate performance. So it is with Pacific Gas and Electric Company and the Diablo Canyon power plant. A review of their refueling outage performance reflects a utility that is responding to the nuclear industry's call for improved outage performance

  19. A simplified burnup calculation strategy with refueling in static molten salt reactor

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Gupta, Anurag; Krishnani, P.D.

    2015-01-01

    Molten Salt Reactors, by nature can be refuelled and reprocessed online. Thus, a simulation methodology has to be developed which can consider online refueling and reprocessing aspect of the reactor. To cater such needs a simplified burnup calculation strategy to account for refueling and removal of molten salt fuel at any desired burnup has been identified in static molten salt reactor in batch mode as a first step of way forward. The features of in-house code ITRAN has been explored for such calculations. The code also enables us to estimate the reactivity introduced in the system due to removal of any number of considered nuclides at any burnup. The effect of refueling fresh fuel and removal of burned fuel has been studied in batch mode with in-house code ITRAN. The effect of refueling and burnup on change in reactivity per day has been analyzed. The analysis of removal of 233 Pa at a particular burnup has been carried out. The similar analysis has been performed for some other nuclides also. (author)

  20. Aerial Refueling Boom/Receptacle Guide

    Science.gov (United States)

    2017-07-28

    Collision Beacon 22 9.6.2 Tanker Identity Platform Illumination 22 9.6.3 Formation Lights 22 9.6.4 Tanker/Receiver Aircraft...unlatch the receptacle door lock system, mechanical, electrical or hydraulic. Some airplanes will have a master refuel switch which energizes the...some receiver aircraft, pulling the manual door control handle to the detented “DOOR OPEN” position will release the receptacle door lock and

  1. A TRIGA refueling exercise

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, Michael J [Kansas State University (United States)

    1974-07-01

    In June 1973 the U.S. Atomic Energy Commission offered to assist the Department of Nuclear Engineering staff in refueling the KSU TRIGA Mkll - Nuclear Reactor. The replacement fuel was made available free of charge and a contract was negotiated between the Department of Nuclear Engineering and the A.E.C. to provide for costs incurred during the refueling operation. In addition, the A.E.C. aided in the fuel transfers by providing the names of contacts at the different laboratories and agencies concerned with fuel transfers. Data and numbers relevant to the entire reloading will be available in the short summary. (author)

  2. Research on constellation refueling based on formation flying

    Science.gov (United States)

    Bo, Xu; Feng, Quansheng

    2011-06-01

    A new scheme for refueling satellite constellation is proposed in this paper. Compared with the traditional research, where the satellite refueling is implemented through spacecraft rendezvous and docking, the new pattern studied here is based on formation flying, and it is more feasible, safer and more reliable. On the grounds of the proposed pattern, two refueling strategies are studied. The first is called single supplier refueling (SSR) based on formation flying. In this scenario, one fuel-sufficient satellite called a supplier, departs from its parking orbit, and after a series of orbit maneuvers, arrives at the target constellation that consists of multiple fuel-deficient satellites called workers. It then transfers equal fuel to each worker within the prescribed mission time. The second strategy is called double suppliers refueling (DSR) based on formation flying. This time two suppliers take charge of refueling half of the workers respectively in the same way as SSR. Using a genetic algorithm, the orbit of a supplier with a minimum consumption of fuel can be obtained once the mission time is fixed. Simulation results indicate that DSR is superior to SSR and that this dominance will be more distinct as the number of workers increases and the mission time decreases.

  3. Refueling machine with relative positioning capability

    International Nuclear Information System (INIS)

    Challberg, R.C.; Jones, C.R.

    1998-01-01

    A refueling machine is disclosed having relative positioning capability for refueling a nuclear reactor. The refueling machine includes a pair of articulated arms mounted on a refueling bridge. Each arm supports a respective telescoping mast. Each telescoping mast is designed to flex laterally in response to application of a lateral thrust on the end of the mast. A pendant mounted on the end of the mast carries an air-actuated grapple, television cameras, ultrasonic transducers and waterjet thrusters. The ultrasonic transducers are used to detect the gross position of the grapple relative to the bail of a nuclear fuel assembly in the fuel core. The television cameras acquire an image of the bail which is compared to a pre-stored image in computer memory. The pendant can be rotated until the television image and the pre-stored image match within a predetermined tolerance. Similarly, the waterjet thrusters can be used to apply lateral thrust to the end of the flexible mast to place the grapple in a fine position relative to the bail as a function of the discrepancy between the television and pre-stored images. 11 figs

  4. Refueling machine with relative positioning capability

    Science.gov (United States)

    Challberg, R.C.; Jones, C.R.

    1998-12-15

    A refueling machine is disclosed having relative positioning capability for refueling a nuclear reactor. The refueling machine includes a pair of articulated arms mounted on a refueling bridge. Each arm supports a respective telescoping mast. Each telescoping mast is designed to flex laterally in response to application of a lateral thrust on the end of the mast. A pendant mounted on the end of the mast carries an air-actuated grapple, television cameras, ultrasonic transducers and waterjet thrusters. The ultrasonic transducers are used to detect the gross position of the grapple relative to the bail of a nuclear fuel assembly in the fuel core. The television cameras acquire an image of the bail which is compared to a pre-stored image in computer memory. The pendant can be rotated until the television image and the pre-stored image match within a predetermined tolerance. Similarly, the waterjet thrusters can be used to apply lateral thrust to the end of the flexible mast to place the grapple in a fine position relative to the bail as a function of the discrepancy between the television and pre-stored images. 11 figs.

  5. Tracking of fission products release during refueling operations

    International Nuclear Information System (INIS)

    Agarwal, Sharad; Prajapat, M.K.; Vyas, Shyam; Hussain, S.A.

    2001-01-01

    It has been always observed that the release of fission products increase during refueling operations. At RAPP-3 and 4 an attempt has been made to follow-up the change in fission products activity release at each stage of refueling operation and quantification of concentrations of various radionuclides. This exercise was also extended to refueling operation of the channels containing suspected failed fuel. A level of FPNG ( 133 Xe) was observed to increase by a factor of about 10-40 during refueling of failed channel as compared to healthy channel. It can be concluded that by monitoring FPNG levels in exhaust status of the healthiness of spent fuel can be found out. This report discusses in detail the experiment conducted for this purpose. (author)

  6. Customer exposure to gasoline vapors during refueling at service stations.

    Science.gov (United States)

    Hakkola, M A; Saarinen, L H

    2000-09-01

    Gasoline is a volatile complex mixture of hydrocarbon compounds that is easily vaporized during handling under normal conditions. Modern reformulated gasoline also contains oxygenates to enhance octane number and reduce ambient pollution. This study measured the difference in the exposure of customers to gasoline and oxygenate vapors during refueling in service stations with and without vapor recovery systems. Field measurements were carried out at two self-service stations. One was equipped with Stage I and the other with Stage II vapor recovery systems. At Stage I stations there is vapor recovery only during delivery from road tanker, and at Stage II stations additional vapor recovery during refueling. The exposure of 20 customers was measured at both stations by collecting air samples from their breathing zone into charcoal tubes during refueling with 95-octane reformulated gasoline. Each sample represented two consecutive refuelings. The samples were analyzed in the laboratory by gas chromatography using mass-selective detection for vapor components. The Raid vapor pressure of gasoline was 70 kPa and an oxygen content 2 wt%. Oxygenated gasoline contained 7 percent methyl tert-butyl ether (MtBE) and 5 percent methyl tert-amyl ether (MtAE). The geometric mean concentrations of hydrocarbons (C3-C11) in the customers' breathing zone was 85 mg/m3 (range 2.5-531 mg/m3) at the Stage I service station and 18 mg/m3 (range service station. The geometric mean of the exposure of customers to MtBE during refueling at the Stage I service station was 15.3 mg/m3 (range 1.8-74 mg/m3), and at the Stage II service station 3.4 mg/m3 (range 0.2-16 mg/m3). The differences in exposure were statistically significant (p station. The measurements were done on consecutive days at the various service stations. The temperature ranged from 10 to 17 degrees C, and wind velocity was 2-4 m/s. The climatic conditions were very similar on the measurement days. Based on this study it was found

  7. Method for refuelling a nuclear reactor core

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This invention relates to an improved method for refuelling a nuclear reactor core inside a reactor vessel. The technique allows a substantial reduction in the refuelling time as compared with previously known methods and permits fewer out of core operations and smaller temporary storage space. (U.K.)

  8. Scaling and Parametric Studies of Condensation Oscillation in an In-Containment Refueling Water Storage Tank

    International Nuclear Information System (INIS)

    Lee, Jun Hyung; No, Hee Cheon

    2003-01-01

    The purpose of this paper is to study the condensation oscillation phenomena by steam-jetting into subcooled water through a multihole sparger, implementing a scaling methodology and the similarity correlation between the test facility and model prototype. To corroborate the scaling methodology, various experimental tests were conducted. The thickness of the boundary layer that encloses the steam cavity was found to be equal to the maximum length of the steam cavity formed. Three key scaling parameters were identified and correlated with the maximum amplitude of pressure oscillation: flow restriction coefficient, area ratio of discharge hole to steam cavity, and density ratio of water to steam. Variations of the oscillation amplitude were small when steam-jetting directions were altered. The concept of a reduction factor was introduced for estimating the oscillation amplitude of the multihole sparger with test data from a single-hole sparger. The results of this study can provide suitable guidelines for sparger design utilized in the in-containment refueling water storage tank for the Advanced Power Reactor 1400

  9. Advanced CANDU reactors fuel analysis through optimal fuel management at approach to refuelling equilibrium

    International Nuclear Information System (INIS)

    Tingle, C.P.; Bonin, H.W.

    1999-01-01

    The analysis of alternate CANDU fuels along with natural uranium-based fuel was carried out from the view point of optimal in-core fuel management at approach to refuelling equilibrium. The alternate fuels considered in the present work include thorium containing oxide mixtures (MOX), plutonium-based MOX, and Pressurised Water Reactor (PWR) spent fuel recycled in CANDU reactors (Direct Use of spent PWR fuel in CANDU (DUPIC)); these are compared with the usual natural UO 2 fuel. The focus of the study is on the 'Approach to Refuelling Equilibrium' period which immediately follows the initial commissioning of the reactor. The in-core fuel management problem for this period is treated as an optimization problem in which the objective function is the refuelling frequency to be minimized by adjusting the following decision variables: the channel to be refuelled next, the time of the refuelling and the number of fresh fuel bundles to be inserted in the channel. Several constraints are also included in the optimisation problem which is solved using Perturbation Theory. Both the present 37-rod CANDU fuel bundle and the proposed CANFLEX bundle designs are part of this study. The results include the time to reach refuelling equilibrium from initial start-up of the reactor, the average discharge burnup, the average refuelling frequency and the average channel and bundle powers relative to natural UO 2 . The model was initially tested and the average discharge burnup for natural UO 2 came within 2% of the industry accepted 199 MWh/kgHE. For this type of fuel, the optimization exercise predicted the savings of 43 bundles per full power year. In addition to producing average discharge burnups and other parameters for the advanced fuels investigated, the optimisation model also evidenced some problem areas like high power densities for fuels such as the DUPIC. Perturbation Theory has proven itself to be an accurate and valuable optimization tool in predicting the time between

  10. Refueling and control of RFP burns

    International Nuclear Information System (INIS)

    Nebel, R.; Miley, G.H.

    1978-01-01

    An earlier study of the stability of a fusion burn in a Reversed Field Pinch (RFP) has been extended to include cold particle refueling. This refueling, coupled with anomalous transport, makes possible quasi-steady state operation which both flattens the wall-loading temporal dependence and significantly increases energy gain factors. This paper discusses results of these burn simulations along with parametric studies aimed at determining associated reactor scaling problems

  11. Development and operating performance of the refuelling machine of the Fugen

    International Nuclear Information System (INIS)

    Kaneko, Jun; Kasai, Yoshimitsu; Takeshita, Norito; Ohta, Takeo

    1985-01-01

    In the advanced thermal reactor ''Fugen'' power station, with the refuelling machine the fuel replacement during operation is made through the reactor bottom. Its design was started in 1967 and up to 1975 various tests were conducted. Fugen's refuelling machine has thus been used from the initial fuel loading in 1978 and handled so far about 1300 fuel assemblies in seven times of the refuelling. In the stage of Fugen operation there occurred failure of the grab drive due to crud, etc. At present, with such troubles all eliminated, the refuelling machine is in steady operation with proper maintenance. The results with Fugen's refuelling machine are reflected in the development of the refuelling machine for the demonstration ATR. (Mori, K.)

  12. Study of Arkansas Nuclear One-1 13th refueling outage

    International Nuclear Information System (INIS)

    Hashiba, Takashi

    1997-01-01

    Recently performance of nuclear power plants in the USA has improved remarkably. Their average automatic shutdown rate has been sharply dropping, although it is still higher than that in Japan, and their average capacity factor has become higher than that in Japan in recent years. One of the main contributors is an extension of the operational period, and another is a shortening of refueling-outage time. It is considerably difficult to have accomplished both the improvement of plant reliability and shortening of refueling-outage time because their refueling outage corresponds to our periodical inspection which is central to maintenance activities in Japanese plants. In order to learn how they have been achieved, a visit to Arkansas Nuclear One-1 (ANO-1) which obtained the top-class result of SALP (Systematic Assessment of Licensee Performance) performed by the Nuclear Regulatory Commission was planned and study of their 13th refueling outage was carried out. Their achievements result from performance-base maintenance and on-line maintenance, based on a proper preventive maintenance program, and untiring efforts of efficiency improvement, represented by the introduction of several on-line systems. And the reason behind this is severe competition concerning power generation cost reduction. (author)

  13. Study of Arkansas Nuclear One-1 13th refueling outage

    Energy Technology Data Exchange (ETDEWEB)

    Hashiba, Takashi [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    1997-09-01

    Recently performance of nuclear power plants in the USA has improved remarkably. Their average automatic shutdown rate has been sharply dropping, although it is still higher than that in Japan, and their average capacity factor has become higher than that in Japan in recent years. One of the main contributors is an extension of the operational period, and another is a shortening of refueling-outage time. It is considerably difficult to have accomplished both the improvement of plant reliability and shortening of refueling-outage time because their refueling outage corresponds to our periodical inspection which is central to maintenance activities in Japanese plants. In order to learn how they have been achieved, a visit to Arkansas Nuclear One-1 (ANO-1) which obtained the top-class result of SALP (Systematic Assessment of Licensee Performance) performed by the Nuclear Regulatory Commission was planned and study of their 13th refueling outage was carried out. Their achievements result from performance-base maintenance and on-line maintenance, based on a proper preventive maintenance program, and untiring efforts of efficiency improvement, represented by the introduction of several on-line systems. And the reason behind this is severe competition concerning power generation cost reduction. (author)

  14. [CFD numerical simulation onto the gas-liquid two-phase flow behavior during vehicle refueling process].

    Science.gov (United States)

    Chen, Jia-Qing; Zhang, Nan; Wang, Jin-Hui; Zhu, Ling; Shang, Chao

    2011-12-01

    With the gradual improvement of environmental regulations, more and more attentions are attracted to the vapor emissions during the process of vehicle refueling. Research onto the vehicle refueling process by means of numerical simulation has been executed abroad since 1990s, while as it has never been involved so far domestically. Through reasonable simplification about the physical system of "Nozzle + filler pipe + gasoline storage tank + vent pipe" for vehicle refueling, and by means of volume of fluid (VOF) model for gas-liquid two-phase flow and Re-Normalization Group kappa-epsilon turbulence flow model provided in commercial computational fluid dynamics (CFD) software Fluent, this paper determined the proper mesh discretization scheme and applied the proper boundary conditions based on the Gambit software, then established the reasonable numerical simulation model for the gas-liquid two-phase flow during the refueling process. Through discussing the influence of refueling velocity on the static pressure of vent space in gasoline tank, the back-flowing phenomenon has been revealed in this paper. It has been demonstrated that, the more the flow rate and the refueling velocity of refueling nozzle is, the higher the gross static pressure in the vent space of gasoline tank. In the meanwhile, the variation of static pressure in the vent space of gasoline tank can be categorized into three obvious stages. When the refueling flow rate becomes higher, the back-flowing phenomenon of liquid gasoline can sometimes be induced in the head section of filler pipe, thus making the gasoline nozzle pre-shut-off. Totally speaking, the theoretical work accomplished in this paper laid some solid foundation for self-researching and self-developing the technology and apparatus for the vehicle refueling and refueling emissions control domestically.

  15. RFSP simulations of Darlington FINCH refuelling transient

    International Nuclear Information System (INIS)

    Carruthers, E.V.; Chow, H.C.

    1997-01-01

    Immediately after refuelling of a channel, the fresh bundles are free of fission products. Xenon-135, the most notable of the saturating fission products, builds up to an equilibrium level in about 30 h. The channel power of the refuelled channel would therefore initially peak and then drop to a steady-state level. The RFSP code can track saturating-fission-product transients and power transients. The Fully INstrumented CHannels (FINCHs) in Darlington NGS provides channel power data on the refuelling power transients. In this paper, such data has been used to identify the physical evidence of the fission-product transient effect on channel power, and to validate RFSP fission-product-driver calculation results. (author)

  16. Optimal refueling principle of research and test reactors and its application

    International Nuclear Information System (INIS)

    Peng Feng; Sun Shouhua; Bu Yongxi

    1993-01-01

    Based on basic formula for core refueling, the optimal refueling principle for cores with fuel assemblies of different burnup are suggested. Some conclusions derived from this principle are given. Calculation formula for different refueling scheme and computation programme are derived and used for the HFETR typical core loading with different refueling scheme. With the suggested core fuel consuming index, core fuel managements of 24 cycles in 10 years operation of HFETR were analyzed. Results show that the application of optimal refueling principle can greatly save the fuel consuming. Direction of HFETR core fuel management research was also di cussed

  17. Gear failure of a PHWR refuelling machine

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1986-01-01

    After ten year service in Atucha Nuclear Station a gear belonging to a pressurized heavy water reactor refuelling machine, failed. The gear box was used to transmit motion to the inlet-outlet heavy-water valve of that machine. Visual examination of the gear device revealed an absence of lubricant and several gear teeth were broken off at the root. The gear motion was transmitted from a speed-reducing device with controlled adjustable times in order to produce a right fitness of the valve closure. The main cause of gear failure was due to misalignment produced during assembly or in-service operation. It is suggested to control periodically the level of oil lubricant. (orig./IHOE) [de

  18. STAR-H2: a long-refueling interval battery reactor for hydrogen and water supply to cities of developing countries

    International Nuclear Information System (INIS)

    Wade, D. C.; Doctor, R. D.; Sienicki, J. J.; Matonis, D. T.; Faibish, R. S.; Moisseytsev, A. V.

    2004-01-01

    The STAR-H2 concept is devised to attain Gen-IV goals by responding to foreseen mid century needs and market conditions. It is targeted for support of urban centers in developing countries and is designed to fit within a hierarchical hub-spoke architecture based on regional fuel cycle centers, nuclear fuel and hydrogen as long distance energy carriers and distributed electricity generation to mesh with urban energy distribution infrastructures using grid delivery of electricity, hydrogen, potable water, and communications (and sewage return) through a common grid of easements. Long (20 year) refueling interval and full core cassette refueling supported from client country consortia-owned regional fuel cycle (front and back end) service centers, operating under international oversight are intended to make nuclear-based energy security available to countries which don't wish to emplace an indigenous front to back fuel cycle infrastructure. The regional centers, infrequent cassette refueling and full transuranic recycle (both reload and spent fuel cassettes meet the spent fuel standard of self protection) are intended to provide barriers to misuse of materials and facilities for military purposes. Fuel cassette refueling and shipments are conducted by Regional Center personnel. Reactor fissile self sufficient operation and full transuranic multi recycle both extracts the full energy content of the uranium ore, and consigns only fission products to waste. Small to mid sizing permits incremental deployments where capital financing is dear and/or indigenous infrastructure is at an early stage of development. Modular construction, factory fabrication, and delivery of a turnkey heat source reactor to the client's site where a non safety grade balance of plant has already been emplaced by local labor to local standards will facilitate rapid assembly and initiation of revenue generation. The concept employs extensive levels of passive safety to be consistent with a worldwide

  19. Operational transparency: an advanced safeguards strategy for future on-load refuelled reactors

    International Nuclear Information System (INIS)

    Whitlock, J.J.; Trask, D.

    2012-01-01

    The IAEA's system for tracking fuel movement in an on-load refuelled heavy-water reactor is robust, but an opportunity remains to exploit the wealth of data streaming from the reactor vault during operation and provide real-time, third-party monitoring of reactor status and history. This concept of Operational Transparency would require that large amounts of operational data be reduced in near-real time to a small subset of high-level information. Operational Transparency would enhance the IAEA's ability to monitor the state of the core to an unprecedented level. This paper provides an overview of the novel concept of Operational Transparency in heavy water reactors, using potential application to CANDU reactors as an example, and explores some of the technical challenges that will need to be solved for efficient implementation. (author)

  20. Design Status and Applications of Small reactors without On-site Refuelling

    International Nuclear Information System (INIS)

    Kuznetsov, V.

    2006-01-01

    Small reactors without on-site refuelling are the reactors that can operate without reloading and shuffling of fuel for a reasonably long period, consistent with plant economy and considerations of energy security, with no fresh or spent fuel being stored at a site during reactor operation. Such reactors could simplify the implementation of safeguards and provide certain guarantees of sovereignty to those countries that would prefer to lease fuel from a foreign vendor or, perhaps, an international fuel cycle centre. About 30 concepts of such reactors are being analyzed or developed in 6 IAEA Member States. They cover all principle reactor lines: water cooled, fast gas cooled, sodium cooled, lead or lead bismuth cooled and molten salt cooled reactors. An increased refuelling interval could be achieved with reduced core power density, burnable absorbers, or high conversion ratio. The design goals for small reactors without on-site refuelling, inter alia, include: difficult unauthorized access to fuel; design provisions to facilitate the implementation of safeguards; capability to survive all postulated accident scenarios without requiring emergency response in the public domain; economic competitiveness for anticipated market conditions and applications; the capability to achieve higher manufacturing quality through factory mass production, design standardization and common basis for design certification; and a flexibility in siting and applications. Such reactors are often considered in conjunction with fuel or NPP leasing Small reactors without on-site refuelling have many common technology development issues related to the provision of lifetime core operation, economic competitiveness, high level of safety and proliferation resistance. Reestablishment of a practice of licensing by test and establishment of legal provisions and the insurance scheme for a transit of fuel loads or factory fabricated reactors through the territory of a third country are mentioned as

  1. Manufacturing Competitiveness and Supply Chain Analyses for Hydrogen Refueling Stations

    Energy Technology Data Exchange (ETDEWEB)

    Mayyas, Ahmad T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Garland, Nancy [U.S. Department of Energy

    2018-04-27

    This slide deck was presented in the monthly FCTO webinar series (May 2017). The goal of this presentation was to share our latest results and remarks on the manufacturing competitiveness analysis of the hydrogen refueling stations (HRS). Manufacturing cost models were developed for major systems in the HRS such as compressors, storage tanks, chillers, heat exchangers, and dispensers. In addition to the cost models, we also discussed important remarks from our analysis for the international trade flows and global supply chain for the hydrogen refueling stations. The last part of the presentation also highlights effect of economies of scale and high production volumes on lowering the cost of the hydrogen at the pump.

  2. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 7. Development of hydrogen refueling station; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 7. Suiso kyokyu station no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the development of hydrogen refueling stand-alone stations for hydrogen fueled automobiles in the WE-NET. Supply capacity of practical size of 1/10, 30 Nm{sup 3} was selected as the object. For the natural gas reformed type hydrogen generator, discussions were given on design and manufacture of a reforming unit and a PSA device. The PCT diagram method was discussed to estimate the capacity of a hydrogen absorbing alloy type storing facility. Interface between fuel cell driven automobiles and the station was adjusted. For the solid polymer electrolyte water decomposition type, safety measures were discussed with a high-pressure filling system kept in mind. Detailed design was made on a water decomposing hydrogen generator. Fabrication was completed on the hydrogen absorbing alloy type storing facility, and verifications were given on the storage amount, hydrogen absorbing speed, and discharge capability. In the high-pressure refueling system, temperature rise was simulated at a pressure of 35 MPa. Refueling for ten minutes raised the gas temperature by 75 degrees C, and the container surface by 65 degrees C. Local temperature rise was forecasted in the actual work, which is a future discussion assignment. An outline method was discussed for the verification test. (NEDO)

  3. Dual winch nuclear fuel transfer system providing more reliable fuel transfer during refueling operations

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Harper, M.J.; Stefko, D.J.

    1991-01-01

    This paper describes a nuclear power plant having an auxiliary building, a containment building having the wall, a track extending through a transfer tube within the containment wall, and a fuel transfer system for moving fuel assemblies along the track between the auxiliary building side and the containment building side of the containment wall. It comprises: a car having wheels for movement along spaced rails of the track and further having a carrying basket for one or more fuel assemblies; winch means located on the auxiliary building side of the containment wall and above the water level existing over the track during refueling operations to drive the car along the track; first cable means and second cable means extending substantially vertically downward from the winch means to the tack level; first sheave means for directing the first and the second cable means substantially in the horizontal direction along the track; means for securing the first cable means to the car so that winch pulling force on the first cable means drives the car away from the containment building; second sheave means located near the containment end of the transfer tube

  4. Refueling system with small diameter rotatable plugs

    International Nuclear Information System (INIS)

    Ritz, W.C.

    1987-01-01

    This patent describes a liquid-metal fastbreeder nuclear reactor comprising a reactor pressure vessel and closure head therefor, a reactor core barrel disposed within the reactor vessel and enclosing a reactor core having therein a large number of closely spaced fuel assemblies, and the reactor core barrel and the reactor core having an approximately concentric circular cross-sectional configuration with a geometric center in predetermined location within the reactor vessel. The improved refueling system described here comprises: a large controllably rotatable plug means comprising the substantial portion of the closure head, a reactor upper internals structure mounted from the large rotatable plug means. The large rotatable plug means has an approximately circular configuration which approximates the cross-sectional configuration of the reactor core barrel with a center of rotation positioned a first predetermined distance from the geometric center of the reactor core barrel so that the large rotatable plug means rotates eccentrically with respect to the reactor core barrel; a small controllably rotatable plug means affixed to the large rotatable plug means and rotatable with respect thereto. The small rotatable plug means has a center of rotation which is offset a second predetermined distance from the rotational center of the large rotatable plug means so that the small rotatable plug means rotates eccentrically with respect to the large rotatable plug means

  5. CLEO: A knowledge-based refueling assistant at FFTF

    International Nuclear Information System (INIS)

    Smith, D.E.; Kocher, L.F.; Seeman, S.E.

    1985-07-01

    CLEO is computer software system to assist in the planning and performance of the reactor refueling operations at the Fast Flux Test Facility. It is a recently developed application of artificial intelligence software with both expert systems and automated reasoning aspects. The computer system seeks to organize the sequence of core component movements according to the rules and logic used by the expert. In this form, CLEO has aspects which tie it to both the expert systems and automated reasoning areas within the artificial intelligence field

  6. The steam generating heavy water reactor

    International Nuclear Information System (INIS)

    Middleton, J.E.

    1975-01-01

    A review is presented on the evolution of the SGHWR concept by the United Kingdom Atomic Energy Authority and the production of early commercial designs, together with later development by the Design and Construction Companies. This is followed by a description of the current commercial design. Possible future developments are suggested. The many advantageous features of the concept are mentioned with a view to supporting optimism for the future of the system. Headings include the following: safety criteria and risk assessment; emergency core cooling system design and development; protective systems; reactor coolant system; reactivity control; off-load refuelling; pressure containment; 'fence' header coolant circuit design; feed water injection; continuous spray cooling; low pressure cooling systems for residual heat removal during refuelling; high pressure cooling system for guaranteed feed water supply; auxiliary systems; structural materials; calandria and neutron shields; fuel element development; alternative loop circuit design; future developments (use of hydraulic diodes to provide a substantial reverse flow resistance by the generation of a vortex; multi-drum and multi-pump schemes; refuelling alternatives; coolant circuit inversion; use of superheat channels). (U.K.)

  7. 14 CFR 29.979 - Pressure refueling and fueling provisions below fuel level.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.979 Pressure refueling and fueling provisions below fuel level. (a) Each fueling connection... from that tank in case of malfunction of the fuel entry valve. (b) For systems intended for pressure...

  8. A repeatedly refuelable mediated biofuel cell based on a hierarchical porous carbon electrode

    Science.gov (United States)

    Fujita, Shuji; Yamanoi, Shun; Murata, Kenichi; Mita, Hiroki; Samukawa, Tsunetoshi; Nakagawa, Takaaki; Sakai, Hideki; Tokita, Yuichi

    2014-05-01

    Biofuel cells that generate electricity from renewable fuels, such as carbohydrates, must be reusable through repeated refuelling, should these devices be used in consumer electronics. We demonstrate the stable generation of electricity from a glucose-powered mediated biofuel cell through multiple refuelling cycles. This refuelability is achieved by immobilizing nicotinamide adenine dinucleotide (NAD), an electron-transfer mediator, and redox enzymes in high concentrations on porous carbon particles constituting an anode while maintaining their electrochemical and enzymatic activities after the immobilization. This bioanode can be refuelled continuously for more than 60 cycles at 1.5 mA cm-2 without significant potential drop. Cells assembled with these bioanodes and bilirubin-oxidase-based biocathodes can be repeatedly used to power a portable music player at 1 mW cm-3 through 10 refuelling cycles. This study suggests that the refuelability within consumer electronics should facilitate the development of long and repeated use of the mediated biofuel cells as well as of NAD-based biosensors, bioreactors, and clinical applications.

  9. The Feasibility of Pellet Re-Fuelling of a Fusion Reactor

    DEFF Research Database (Denmark)

    Chang, Tinghong; Jørgensen, L. W.; Nielsen, P.

    1980-01-01

    The feasibility of re-fuelling a fusion reactor by injecting pellets of frozen hydrogen isotopes is reviewed. First a general look is taken of the dominant energy fluxes received by the pellet, the re-fuelling rate required and the relation between pellet size, injection speed and frequency...

  10. The influence of the placement method of fuel dispenserson the refueling cycle of vehicles

    Directory of Open Access Journals (Sweden)

    Levin Ruslan Yur’evich

    2015-05-01

    Full Text Available Logistics of production processes at a gas station is a critical point in the system of petroleum products, on the operation of which the effectiveness and sustainability of the transport sector depends. The provision and supply of road transportation of petroleum products is one of the most urgent tasks.Technological processes of reception, storage of fuel and refuelling of motor vehicles on petrol stations needs a scientific study of their structure and organization. At the design stage of a gas station, it is necessary to consider quite a lot of different factors: the configuration of the area under the gas station, the scheme of arrangement and the number of fuel dispensers, the trajectory of motion and the design of vehicles, calls to the station, distance between cars on duty, between the elements of buildings and equipment, as well as the requirements for fire, building, public, sanitary-epidemiological and state regulations. Therefore, the designer has a great opportunity for varying the parameters of the elements of the station, especially when considering the characteristics of the fueled vehicles.Typical projects at a same power station include various sizes, the seizure of land to build a station changes from planning decisions and the locations of all its technological elements. For increase of functioning efficiency of transportation systems of petroleum products in modern conditions on the basis of the design and technical innovations it is necessary to conduct special studies.Research planning decisions for a refueling station led to the conclusion that the placement of technological equipment in the refueling area has a certain impact on the length of vehicles service. Improving the layout of the refueling zone several times reduces the loss of the components of the refueling cycle time and increase the capacity of the station.Information base describing the stages of a gas station includes parts of refueling cycle time and

  11. RBMK full scope simulator gets virtual refuelling machine

    International Nuclear Information System (INIS)

    Khoudiakov, M.; Slonimsky, V.; Mitrofanov, S.

    2006-01-01

    The paper describes a continuation of efforts of an international Russian-Norwegian joint team to drastically increase operational safety during the refuelling process of an RBMK-type reactor by implementing a training simulator based on an innovative Virtual Reality (VR) approach. During the preceding stage of the project a display-based simulator was extended with VR models of the real Refueling Machine (RM) and its environment in order to improve both the learning process and operation's effectiveness. The simulator's challenge is to support the performance (operational activity) of RM operational staff firstly and to take major part in developing basic knowledge and skills as well as to keep skilled staff in close touch with the complex machinery of the Refueling Machine. At the given 2nd stage the functional scope of the VR-simulator was greatly enhanced - firstly, by connecting to the RBMK-unit full-scope simulator, and, secondly, by a training program and simulator model upgrade. (author)

  12. Fuel management study on quarter core refueling for Ling Ao NPP

    International Nuclear Information System (INIS)

    Zhang Hong; Li Jinggang

    2012-01-01

    The fuel management study on quarter core refueling is introduced for Ling Ao NPP. Starting from the selection of the objective of fuel management for quarter core refueling, the code and method used and the analysis carried out are explained in details to reach the final loading pattern chosen. The start-up physics test results are listed to demonstrate the realized quarter core fuel management. In the end, the advantage and disadvantage after turning to quarter core refueling has been given for the power plant from the fuel management point of view. (authors)

  13. Some novel on-power refuelling features of CANDU stations

    International Nuclear Information System (INIS)

    Erwin, D.; Pendlebury, B.; Watson, J.F.; Welch, A.C.

    1976-01-01

    Part A of the paper describes the reasons for, and advantages resulting from, the use of flow assisted refuelling in the CANDU type nuclear reactors at the Pickering Generating Station. A separate fuel handling system is used for each reactor unit, as distinct from the system employed at the Bruce Generating station, where the fuel handling system is shared among several units. Part B of the paper describes some of the advantages of the shared concept with particular emphasis on the availability of the fuel handling system. (author)

  14. Fire Protection Engineering Design Brief Template. Hydrogen Refueling Station.

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Angela Christine [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Muna, Alice Baca [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Groth, Katrina M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Building a hydrogen infrastructure system is critical to supporting the development of alternate- fuel vehicles. This report provides a methodology for implementing a performance-based design of an outdoor hydrogen refueling station that does not meet specific prescriptive requirements in NFPA 2, The Hydrogen Technologies Code . Performance-based designs are a code-compliant alternative to meeting prescriptive requirements. Compliance is demonstrated by comparing a prescriptive-based fueling station design with a performance-based design approach using Quantitative Risk Assessment (QRA) methods and hydrogen risk assessment tools. This template utilizes the Sandia-developed QRA tool, Hydrogen Risk Analysis Models (HyRAM), which combines reduced-order deterministic models that characterize hydrogen release and flame behavior with probabilistic risk models to quantify risk values. Each project is unique and this template is not intended to account for site-specific characteristics. Instead, example content and a methodology are provided for a representative hydrogen refueling site which can be built upon for new hydrogen applications.

  15. Improvement in or relating to methods and apparatus for refuelling nuclear reactors

    International Nuclear Information System (INIS)

    Shumyakin, E.P.; Sabir-de-Ribas, K.I.; Druzhinsky, I.A.; Kondratiev, P.V.; Andreichikov, B.I.; Slepov, L.M.; Borisjuk, E.V.; Smirnov, A.M.

    1977-01-01

    This invention relates to improvements in the methods and in the apparatus used for refuelling liquid metal cooled fast reactors and in particular to systems for cooling the fuel assemblies as they are removed from the reactor. (UK)

  16. Optimization of refueling-shuffling scheme in PWR core by random search strategy

    International Nuclear Information System (INIS)

    Wu Yuan

    1991-11-01

    A random method for simulating optimization of refueling management in a pressurized water reactor (PWR) core is described. The main purpose of the optimization was to select the 'best' refueling arrangement scheme which would produce maximum economic benefits under certain imposed conditions. To fulfill this goal, an effective optimization strategy, two-stage random search method was developed. First, the search was made in a manner similar to the stratified sampling technique. A local optimum can be reached by comparison of the successive results. Then the other random experiences would be carried on between different strata to try to find the global optimum. In general, it can be used as a practical tool for conventional fuel management scheme. However, it can also be used in studies on optimization of Low-Leakage fuel management. Some calculations were done for a typical PWR core on a CYBER-180/830 computer. The results show that the method proposed can obtain satisfactory approach at reasonable low computational cost

  17. Image Dependent Relative Formation Navigation for Autonomous Aerial Refueling

    Science.gov (United States)

    2011-03-01

    and local variations of the Earth’s surface make a mathematical model difficult to create and use. The definition of an equipotential surface ...controlled with flight control surfaces attached to it. To refuel using this method, the receiver pilot flies the aircraft to within a defined refueling...I-frame would unnecessarily complicate aircraft navigation that, by definition, is limited to altitudes relatively close to the surface of the Earth

  18. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  19. Pellet refueling program at Risoe

    International Nuclear Information System (INIS)

    Andersen, V.; Chang, C.T.; Joergensen, L.W.; Nielsen, P.; Sillesen, A.H.

    1978-01-01

    The pellet refueling work at Riso has up to now been concentrated at studying the ablation rate of hydrogen pellets in hydrogen and deuterium plasmas in the Puffatron device. The main results of these studies are well known and we shall only give a brief summary including some more recent results relating to the ablation process. The work on the Puffatron device has been completed and we are presently preparing to start ablation studies in a small Tokamak, Dante. This tokamak has only been constructed this summer and ablation studies are expected to begin in the beginning of 1978. We shall give the expected parameters of the tokamak plasma and indicate some of the planned work. In this presentation we shall also report on the theoretical work on refueling taking place at Riso. We have particularly been interested in the effect of α-particles which could significantly alter the conclusions made from present experiments

  20. Status of small reactor designs without on-site refuelling

    International Nuclear Information System (INIS)

    2007-01-01

    There is an ongoing interest in member states in the development and application of small and medium sized reactors (SMRs). In the near term, most new NPPs are likely to be evolutionary designs building on proven systems while incorporating technological advances and often the economics of scale, resulting from the reactor outputs of up to 1600 MW(e). For the longer term, the focus is on innovative designs aiming to provide increased benefits in the areas of safety and security, non-proliferation, waste management, resource utilization and economy, as well as to offer a variety of energy products and flexibility in design, siting and fuel cycle options. Many innovative designs are reactors within the small-to-medium size range, having an equivalent electric power less than 700 MW(e) or even less than 300 MW(e). A distinct trend in design and technology development, accounting for about half of the SMR concepts developed worldwide, is represented by small reactors without on-site refuelling. Such reactors, also known as battery-type reactors, could operate without reloading and shuffling of fuel in the core over long periods, from 5 to 25 years and beyond. Upon the advice and with the support of IAEA member states, within its Programme 1 'Nuclear Power, Fuel Cycle, and Nuclear Science', the IAEA provides a forum for the exchange of information by experts and policy makers from industrialized and developing countries on the technical, economic, environmental, and social aspects of SMRs development and implementation in the 21st century, and makes this information available to all interested Member States by producing status reports and other publications dedicated to advances in SMR technology. The objective of this report is to provide Member States, including those just considering the initiation of nuclear power programmes and those already having practical experience in nuclear power, with a balanced and objective information on important development trends and

  1. The achievement of on-load refuelling at Heysham 2 and Torness AGRs

    International Nuclear Information System (INIS)

    Sterland, P.R.; MacPherson, D.

    1995-01-01

    Heysham 2 and Torness are the last of the advanced gas cooled reactors constructed for the Central Electricity Generating Board and the South of Scotland Electricity Board. They are now operated by Nuclear Electric (NE) and Scottish Nuclear Limited (SNL), respectively. They were designed for on-load refuelling at high power and, being based on the design used for Hinkley Point B and Hunterston B, have benefited from experience at these stations. This paper examines the analysis work which was carried out in order to provide a sound, long-term, mainly probabilistic safety case which supports on-load refuelling. A significant problem has been that the design reliability of the microprocessor-based control and protection systems, used for the fuel route, could not be justified, and a number of changes to the overall protection system have had to be introduced to compensate for this. The safety assessment has covered the fuelling machine pressure boundary, the hoist and fuel assembly components, possible faults and the protection which is necessary to prevent them, the fuel and fuelling machine cooling requirements, the mechanical and radiological consequences of dropping fuel, and the effect of refuelling transients on the reactor and conventional plant. The resultant safety case complies with the stringent safety standards adopted by NE and SNL and accepted by the UK safety authority, the Nuclear Installations Inspectorate (NII). (author)

  2. Aerial Refueling For NATO’s Smart Defence Initiative

    Science.gov (United States)

    2012-04-01

    Rome: NATO Defense College, 2012, 148. 40 David A. Brown , "NATO Studying Development of Dedicated Refueling Unit Similar to Early Warning Force...accessed March 1, 2012). Brown , David A. "NATO Studying Development of Dedicated Refueling Unit Similar to Early Warning Force." Aviation Week...Aircraft. Coulsdon, Surrey: IHS Global Limited, 2011. Jennings, Gareth . "Nations Pool for NATO C-17A Fleet." Jane’s Defence Weekly, October 2008

  3. 40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.

    Science.gov (United States)

    2010-07-01

    ..., statistical analyses, additional data, or other information which is relevant to the decision. The... Durability demonstration procedures for refueling emissions. This section applies to 2008 and later model...-duty rules as allowed under the provisions of § 86.1801-01(c)(1) which are subject to refueling loss...

  4. Integrated services as the key to the optimisation of refueling outages

    International Nuclear Information System (INIS)

    Ortega, Juan; Gonzalez, Roberto; Gutierrez, Jose E.

    2010-01-01

    Refueling outages at nuclear power plants are subject to demanding improvement criteria in each and every one of the activities scheduled. The management of activities on the refueling floor, including the phases of opening and closing of the reactor vessel and associated tasks relating to the reactor internals, the unloading, loading and management of the irradiated fuel and activities requested for the in-service inspection of essential primary circuit components, are interventions that have an impact on the refueling critical path and whose overall integration allows for significant optimization of the entire management of this fundamental refueling activity. For several years now, ENUSA, as the company specializing in irradiated fuel services, TECNATOM as the company responsible for the in-service inspection of critical primary side components and Westinghouse as the technology provider and specialist in the supply of plant support services, have together formed a solid working team offering this integrated refueling service to the Spanish plants. Today, the new and heightened demands regarding the training and specialization of the personnel participating in refueling outages, the need to consider contingencies in the activities scheduled and the objectives relating to the ALARA concept and safe operations require that this service include new activities providing synergies and leading to higher levels of commitment to excellence. This paper will present the service model developed, the most significant activities integrated in the service and the advantages and milestones achieved and reached during this period, compared to the conventional distributed functions model. Likewise, an analysis will be made of the new challenges that are being addressed, with a view to bringing about a more global integration. (authors)

  5. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    Science.gov (United States)

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  6. Support services to refuelling exploitation

    International Nuclear Information System (INIS)

    Castineira, M; Cortes, M.; Rayo, A.

    2010-01-01

    The refuelling period in nuclear power stations is very important due to the need to optimise its duration, large volumes of work and resources that have to be planned and coordinated and their impact on the subsequent operating cycle. Empresarios Agrupados has a permanent organisation, with specialised resources and extensive availability of human resources. (Author)

  7. BWR Servicing and Refueling Improvement Program: Phase I summary report

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.R.

    1978-09-01

    Under the U.S. Department of Energy sponsorship, General Electric Co. (GE) undertook a study of boiling water reactor (BWR) refueling outages for the purpose of recommending the development and demonstration of critical path time savings improvements. The Tennessee Valley Authority (TVA) joined the study as a subcontractor, providing monitoring assistance and making the Browns Ferry Site available for improvement demonstrations. Agreement was also reached with Georgia Power Co., Power Authority of the State of New York, and Commonwealth Edison Co. for monitoring and data collection at Hatch 1, FitzPatrick, and Quad Cities 1 nuclear plants, respectively. The objective was to identify, develop, and demonstrate improved refueling, maintenance, and inspection procedures and equipment. The improvements recommended in this study are applicable to BWR nuclear plants currently in operation as well as those in the design and construction phases. The recommendations and outage information can be used as a basis to plan and conduct the first outages of new plants and to improve the planning and facilities of currently operating plants. Many of the recommendations can readily be incorporated in plants currently in the design and construction phases as well as in the design of future plants. Many of these recommended improvements can be implemented immediately by utilities without further technical development.

  8. BWR Servicing and Refueling Improvement Program: Phase I summary report

    International Nuclear Information System (INIS)

    Perry, D.R.

    1978-09-01

    Under the U.S. Department of Energy sponsorship, General Electric Co. (GE) undertook a study of boiling water reactor (BWR) refueling outages for the purpose of recommending the development and demonstration of critical path time savings improvements. The Tennessee Valley Authority (TVA) joined the study as a subcontractor, providing monitoring assistance and making the Browns Ferry Site available for improvement demonstrations. Agreement was also reached with Georgia Power Co., Power Authority of the State of New York, and Commonwealth Edison Co. for monitoring and data collection at Hatch 1, FitzPatrick, and Quad Cities 1 nuclear plants, respectively. The objective was to identify, develop, and demonstrate improved refueling, maintenance, and inspection procedures and equipment. The improvements recommended in this study are applicable to BWR nuclear plants currently in operation as well as those in the design and construction phases. The recommendations and outage information can be used as a basis to plan and conduct the first outages of new plants and to improve the planning and facilities of currently operating plants. Many of the recommendations can readily be incorporated in plants currently in the design and construction phases as well as in the design of future plants. Many of these recommended improvements can be implemented immediately by utilities without further technical development

  9. Performance of a rapidly-refuelable aluminum-air battery

    Science.gov (United States)

    Levy, D. J.; Hollandsworth, R. P.; Gonzales, E. M.; Littauer, E. L.

    The Al-air battery is being developed to provide an electric vehicle with conventional automobile performance. A rapidly-refuelable, 6-cell battery (200-sq cm electrodes) was evaluated. RX-808 aluminum anodes and air cathodes were used with a flowing alkaline electrolyte. Peak power was found to increase with temperature, decrease with aluminate concentration and be unaffected by electrolyte flow. The best performance was 5.28 kW/sq m peak power density, 2.08 kWh/kg Al energy density and 80 percent coulombic efficiency. Anode refueling is rapid and 100 percent utilization is achieved. Additional evaluation included cathode catalysts, a thermal balance and monitoring electrolyte composition.

  10. The design and use of proficiency based BWR reactor maintenance and refuelling training mockups

    International Nuclear Information System (INIS)

    Ford, G.J.

    1996-01-01

    The purpose of this paper is to describe the ABB experience with the design and use of boiling water reactor training facilities. The training programs were developed and implemented in cooperation with the nuclear utilities. ABB operates two facilities, the ABB ATOM Light Water Reactor Service Center located in Vasteras, Sweden, and the ABB Combustion Engineering Nuclear Operations BWR Training Center located in Chattanooga, Tennessee, USA. The focus of the training centers are reactor maintenance and refueling activities plus the capability to develop and qualify tools, procedures and repair techniques

  11. Management of refuelling, modifications and accidental shut-down of nuclear power plant

    International Nuclear Information System (INIS)

    1996-01-01

    This document is the appendix of HAF 0300 (91) 'Code on the Safety of Nuclear Power Plant Operation', which was promulgated by the National Nuclear Safety Administration (NNSA) on March 2, 1994, and has the same legal effect. This appendix is applicable to establish the administrative management procedures for refuelling, modifications and accidental shut-down in the period of operation of pressurized water thermal neutron reactor of nuclear power plants. The NNSA shall be responsible for interpretation of this document

  12. Validation of physics model of FARE-Tool by comparison of RFSP flux simulations with measurements at discrete refuelling steps

    International Nuclear Information System (INIS)

    Shad, M.A.

    1995-01-01

    In CANDU 6 the on-power refuelling is done in the direction of the coolant flow through the channel, flow being in alternate direction in adjacent channels. The channel flow pushes the fuel string (a total of 20 bundles with the 8-bundle fuelling scheme) towards the downstream Fuelling Machine (FM), obviating the need for the upstream FM to insert the rams into the active core to push the fuel. In some channels of the outer core region, however, the coolant flow is low and the hydraulic drag is not enough to push the fuel string. In these channels a Flow Assist Ram Extension (FARE) tool is used during refuelling to augment the flow and hence enhance the hydraulic drag required to push the fuel string. The FARE-Tool is a strong neutron absorber and its use results in a severe local flux depression. During the refuelling process, when the FARE-Tool travels in the immediate vicinity of a Reactor Regulating System (RRS) detector, the spatial control system causes a short-term zone-fill reduction in an attempt to maintain the reference zone powers. This short term zone drain may in turn result in a single channel ROP trip of the SDS l or SDS2 reactor protection system. Therefore, the control room operator is always interested in minimizing the occurrence of this category of trip for obvious economic reasons. The physics modelling of the FARE-Tool used in the 2-neutron-energy-group 3-dimensional diffusion code RFSP is validated by comparing the simulated response of the in-core detectors with the measured response of the same detectors during refuelling. These measurements were recorded during a specially scheduled refuelling of channel B09 at the Point Lepreau Generating Station on 1993 July 6 at 3591 Equivalent Full Power Days (EFPDs). 3 refs., 10 tabs., 1 fig

  13. New selection criteria for channel refueling of a Candu-6 reactor: introduction to floppy rules

    International Nuclear Information System (INIS)

    Brissette, D.

    2001-01-01

    A revised set of rules is in use at Gentilly-2 NGS for the selection of channels for refuelling. Traditional hard channel rejection rules (of go/no-go type) have been replaced by a more efficient set of soft evaluation rules based on concepts borrowed to the Fuzzy Logic. New evaluation rules, labelled as 'Floppy Rules', enable to assess and rate the channel suitability for refuelling by using a smooth and natural continuum of values qualifying excellent, good, fair and poor choices. Global channel suitability for refuelling is measured by combining separate ratings obtained from individual evaluation rules. Each evaluation rule is based on a specific control parameter related to local or lumped core properties. Two new software codes (NEWRULES and REFUEL) designed around the concept of Floppy Rules enable to perform a very efficient selection of optimized channel refuelling sequences either in manual and automatic mode. (author)

  14. Relative position control design of receiver UAV in flying-boom aerial refueling phase.

    Science.gov (United States)

    An, Shuai; Yuan, Suozhong

    2018-02-01

    This paper proposes the design of the relative position-keeping control of the receiver unmanned aerial vehicle (UAV) with the time-varying mass in the refueling phase utilizing an inner-outer loop structure. Firstly, the model of the receiver in the refueling phase is established. And then tank model is set up to analyze the influence of fuel transfer on the receiver. Subsequently, double power reaching law based sliding mode controller is designed to control receiver translational motion relative to tanker aircraft in the outer loop while active disturbance rejection control technique is applied to the inner loop to stabilize the receiver. In addition, the closed-loop stabilities of the subsystems are established, respectively. Finally, an aerial refueling model under various refueling strategies is utilized. Simulations and comparative analysis demonstrate the effectiveness and robustness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Joint deployment of refuelling infrastructure and vehicles

    International Nuclear Information System (INIS)

    Smith, R.

    2010-01-01

    A wide range of fuels will be used in future transportation technologies. This presentation discussed refuelling infrastructure solutions for alternative fuels. A well-placed demonstration infrastructure will help to accelerate market development. Stakeholder collaboration is needed to create high value business paradigms and identify stakeholder benefits. Infrastructure paradigms include the home; businesses; retail public refuelling forecourts; and multi-fuel waste heat recovery sites. Commercial nodes can be developed along major transportation routes. Stakeholder groups include technology providers, supply chain and service providers, commercial end-users, and government. A successful alternative fuel infrastructure model will consider market development priorities, time frames and seed investment opportunities. Applications must be market-driven in order to expand. A case study of the natural gas vehicle (NGV) program in Ontario was also discussed, as well as various hydrogen projects. tabs., figs.

  16. The achievement of on-load refuelling at Heysham 2 and Torness AGRs

    International Nuclear Information System (INIS)

    Sterland, P.R.; MacPherson, D.

    1995-01-01

    Heysham 2 and Torness are the last of the advanced gas cooled reactors (AGR) constructed for the Central Electricity Generating Board and the South of Scotland Electricity Board. They are now operated by Nuclear Electric (NE) and Scottish Nuclear Limited (SNL) respectively. They were designed for on load refuelling at high power and being based on the design used for Hinkley Point B and Hunterston B, have benefited from experience at these stations. This paper examines the analysis work which was carried out in order to provide a sound, long term, mainly probabilistic safety case which supports on load refuelling. A significant problem has been that the design reliability of the microprocessor based control and protection systems, used for the fuel route, could not be justified and a number of changes to the overall protection system have had to be introduced to compensate for this. The resultant safety case complies with the stringent safety standards adopted by NE and SNL and accepted by the UK safety authority, the Nuclear Installations Inspectorate (NII). (author)

  17. Passive safe small reactor for distributed energy supply system sited in water filled pit at seaside

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Imayoshi, Shou

    2003-01-01

    Japan Atomic Energy Research Institute has developed a Passive Safe Small Reactor for Distributed Energy Supply System (PSRD) concept. The PSRD is an integrated-type PWR with reactor thermal power of 100 to 300 MW aimed at supplying electricity, district heating, etc. In design of the PSRD, high priority is laid on enhancement of safety as well as improvement of economy. Safety is enhanced by the following means: i) Extreme reduction of pipes penetrating the reactor vessel, by limiting to only those of the steam, the feed water and the safety valves, ii) Adoption of the water filled containment and the passive safety systems with fluid driven by natural circulation force, and iii) Adoption of the in-vessel type control rod drive mechanism, accompanying a passive reactor shut-down device. For improvement of economy, simplification of the reactor system and long operation of the core over five years without refueling with low enriched UO 2 fuel rods are achieved. To avoid releasing the radioactive materials to the circumstance even if a hypothetical accident, the containment is submerged in a pit filled with seawater at a seaside. Refueling or maintenance of the reactor can be conducted using an exclusive barge instead of the reactor building. (author)

  18. Exposure to regular gasoline and ethanol oxyfuel during refueling in Alaska.

    OpenAIRE

    Backer, L C; Egeland, G M; Ashley, D L; Lawryk, N J; Weisel, C P; White, M C; Bundy, T; Shortt, E; Middaugh, J P

    1997-01-01

    Although most people are thought to receive their highest acute exposures to gasoline while refueling, relatively little is actually known about personal, nonoccupational exposures to gasoline during refueling activities. This study was designed to measure exposures associated with the use of an oxygenated fuel under cold conditions in Fairbanks, Alaska. We compared concentrations of gasoline components in the blood and in the personal breathing zone (PBZ) of people who pumped regular unleade...

  19. Structural Analysis of Advanced Refueling Machine of APR1400

    International Nuclear Information System (INIS)

    Cho, J. R.; Kim, Y. H.; Park, B. T.; Park, J. B.; Jung, J. H.

    2007-01-01

    The Refueling Machine (RM) consists of two structural parts of bridge and trolley. The bridge structure is approximately 8.5 m long and 5 m wide and is primarily composed of two deep wide flange sections spanning the rector area at the operating level. The trolley is mounted on wheels that roll on the rails of the bridge. Vertical movements of trolley and bridge are restricted by guide rollers. In this paper, dynamic and structural analyses based on the earthquake spectrum are carried out to verify the structural integrity of advanced refueling machine. It is done by 3-dimensional finite element analysis using ANSYS software

  20. Strength analysis of refueling machine for large PWR in nuclear power plant

    International Nuclear Information System (INIS)

    Jia Xiaofeng; Zhou Guofeng; Bi Xiangjun; Ji Shunying

    2010-01-01

    The refueling machine of PWR plays important roles in nuclear power plant operation,and the dynamic analysis and strength assessment should be carried out to check its safety. In this paper, the finite element model (FEM) was established with the software ANSYS 12 for the refueling machine structure of large 1 000 MW PWR. The dynamic computations were performed under three work conditions, i.e. normal (cart starting and braking), abnormal (OBE) and accident(SSE) conditions, respectively. The structure responses (internal force and stress) of refueling machine under earthquake response spectrum in three directions were combined with the method of square root of square sum (SRSS). Moreover, the static response under gravity was also considered to construct the most critical conditions. With the simulated results, the strength of main structure, bold and weld joint,and the stability of landing leg for additional crane were assessed based on the RCCM code. At last, the local stress analysis of finger-form hook, which function is to take fuel assemblies, was also analyzed, while its strength was also assessed. The results show that the strengths of the refueling machine under various working conditions can meet the safety requirements. (authors)

  1. Towards a standardized grasping and refuelling on-orbit servicing for geo spacecraft

    Science.gov (United States)

    Medina, Alberto; Tomassini, Angelo; Suatoni, Matteo; Avilés, Marcos; Solway, Nick; Coxhill, Ian; Paraskevas, Iosif S.; Rekleitis, Georgios; Papadopoulos, Evangelos; Krenn, Rainer; Brito, André; Sabbatinelli, Beatrice; Wollenhaupt, Birk; Vidal, Christian; Aziz, Sarmad; Visentin, Gianfranco

    2017-05-01

    Exploitation of space must benefit from the latest advances in robotics. On-orbit servicing is a clear candidate for the application of autonomous rendezvous and docking mechanisms. However, during the last three decades most of the trials took place combining extravehicular activities (EVAs) with telemanipulated robotic arms. The European Space Agency (ESA) considers that grasping and refuelling are promising near-mid-term capabilities that could be performed by servicing spacecraft. Minimal add-ons on spacecraft to enhance their serviceability may protect them for a changing future in which satellite servicing may become mainstream. ESA aims to conceive and promote standard refuelling provisions that can be installed in present and future European commercial geostationary orbit (GEO) satellite platforms and scientific spacecraft. For this purpose ESA has started the ASSIST activity addressing the analysis, design and validation of internal provisions (such as modifications to fuel, gas, electrical and data architecture to allow servicing) and external provisions (such as integrated berthing fixtures with peripheral electrical, gas, liquid connectors, leak check systems and corresponding optical and radio markers for cooperative rendezvous and docking). This refuelling approach is being agreed with European industry (OHB, Thales Alenia Space) and expected to be consolidated with European commercial operators as a first step to become an international standard; this approach is also being considered for on-orbit servicing spacecraft, such as the SpaceTug, by Airbus DS. This paper describes in detail the operational means, structure, geometry and accommodation of the system. Internal and external provisions will be designed with the minimum possible impact on the current architecture of GEO satellites without introducing additional risks in the development and commissioning of the satellite. End-effector and berthing fixtures are being designed in the range of few

  2. Refueling strategy at the Budapest research reactor

    International Nuclear Information System (INIS)

    Hargitai, Timor

    1998-01-01

    Refueling strategy is very important for nuclear power plants and for highly utilized research reactors with power level in the megawatt range. New core design shall fulfill several demands and needs which can contradict each other sometimes. The loaded uranium quantity should assure the scheduled operation time (energy generation) and the maneuvering capability even at the end of the campaign. On the other hand the built in excess reactivity cannot be too high, because otherwise it would jeopardize the shutdown margin and reactor safety. Moreover the core arrangement should be optimum for in-core irradiation purposes and for the beam port experiments too. Sometimes this demand can be in contradiction with the desired burnup level. The achieved burnup level is very important from the fresh fuel consumption point of view, which has direct economic significance, however the generated spent fuel quantity is an important issue too. The refueling technique presented here allowed us at the Budapest Research Reactor to reach average burnup levels superseding 60%. (author)

  3. Plasma density measurements on refuelling by solid hydrogen pellets in a rotating plasma

    International Nuclear Information System (INIS)

    Joergensen, L.W.; Sillesen, A.H.

    1978-01-01

    The refuelling of a plasma by solid hydrogen pellets situated in the plasma is investigated. Nearly half of the pellet material is evaporated and seems to be completely ionized, resulting in an increase of the amount of plasma equivalent to one third of the total amount of plasma without refuelling. The gross behaviour of the plasma is not changed. (author)

  4. THE KINETICS OF CONTAMINANTS ACCUMULATION IN THE JET FUEL DURING THE TECHNOLOGICAL PROCESS OF ITS PREPARATION FOR AIRCRAFT REFUELING

    Directory of Open Access Journals (Sweden)

    A. A. Brailko

    2017-01-01

    Full Text Available Much attention is payed to the tasks for ensuring domestic and international aircraft safety and regularity, which are multifaceted and complex. One of them is the system of ensuring the quality of aviation fuel for refueling aircraft at airports. A significant influence of the quality, chemical composition and fuel range on the reliability and lifetime of components and parts of the aircraft fuel system was studied in the process of development and experience accumulation of aircraft operating, processes of aviation fuel production, as well as during storage, quality control, transportation, refueling preparation and aircraft refueling. Currently, work is being done to study the influence of fuel quality on the units of the technological scheme of fuel-filling complexes, which provide the required cleanliness of the fuel according to the regulations. The article describes the trend level of aviation fuel cleanliness at the stages from receipt to issuance to the refueling station. The evaluation of compliance with existing regulations on the level of jet fuel cleanliness and the efficiency of fuel cleaning facilities is carried out. It is stated that one of the problems of insufficient level of aviation fuel cleaning quality is a violation of the acceptable contamination level of the fuel before the filter. It was found that the disadvantage of the used filter paper is the fiber wash out process. According to this research it was found that while cleaning fuel from mechanical admixtures it is necessary to take into account the technical condition of the filtering element, and proposal was developed for fuel-filling systems to ensure aviation fuel cleanliness in compliance with regulations.

  5. Generalized model development for a cryo-adsorber and 1-D results for the isobaric refueling period

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V. Senthil [India Science Lab, General Motors Global R and D, Creator Building, International Technology Park, Bangalore 560066 (India); Kumar, Sudarshan [Chemical Sciences and Material Systems Lab, General Motors Global R and D, Warren Technical Center Campus, 30500 Mound Road, Warren, MI 48090 (United States)

    2010-04-15

    We have developed 3-D model equations for a cryo-adsorption hydrogen storage tank, where the energy balance accommodates the temperature and pressure variation of all the thermodynamic properties. We then reduce the 3-D model to the 1-D isobaric system and study the isobaric refueling period, for simplified geometry and charging conditions. The hydrogen capacity evolution predicted by the 1-D axial bed model is significantly different than that predicted by the lumped-parameter model because of the presence of sharp temperature gradients during refueling. The 1-D model predicts a higher hydrogen capacity than the lumped-parameter model. This observation can be rationalized by the fact that a bed with temperature gradients on equilibration should desorb gas, whenever the adsorbed phase entropy is lower than the gas phase entropy. The 1-D analysis of the isobaric refueling period does not show any significant difference in hydrogen capacity evolution among the axial, single and multicartridge annular bed designs. Hence, a multicartridge annular design, though giving a slightly lower pressure drop, does not offer any heat and mass transfer enhancement over the single cartridge design. And, the single cartridge annular design appears to be optimal. (author)

  6. Extending the features of RBMK refuelling machine simulator with a training tool based on virtual reality

    International Nuclear Information System (INIS)

    Khoudiakov, M.; Slonimsky, V.; Mitrofanov, S.

    2004-01-01

    The paper describes a continuation of efforts of an international Russian - Norwegian joint team to improve operational safety during the refuelling process of an RBMK-type reactor by implementing a training simulator based on an innovative Virtual Reality (VR) approach. During the preceding 1st stage of the project a display-based simulator was extended with VR models of the real Refuelling Machine (RM) and its environment in order to improve both the learning process and operation's effectiveness. The simulator's challenge is to support the performance (operational activity) of RM operational staff firstly by helping them to develop basic knowledge and skills as well as to keep skilled staff in close touch with the complex machinery of the Refuelling Machine. During the 2nd stage of the joint project the functional scope of the VR-simulator was greatly enhanced - firstly, by connecting to the RBMK-unit full-scope simulator, and, secondly, by including a training program and simulator model upgrade. The present 3rd stage of the Project is primarily oriented towards the improvement of the training process for maintenance and operational personnel by means of a development of the Training Support Methodology and Courses (TSMC) to be based on Virtual Reality and enlarged functionality of 3D and process modelling. The TMSC development is based on Russian and International Regulatory Bodies requirements and recommendations. Design, development and creation of a specialised VR-based Training System for RM Maintenance Personnel are very important for the Russian RBMK plants. The main goal is to create a powerful, autonomous VR-based simulator for training technical maintenance personnel on the Refuelling Machine. VR based training is expected to improve the effect of training compared to the current training based on traditional methods using printed documentation. The LNPP management and the Regulatory Bodies supported this goal. The VR-based Training System should

  7. Report on the Fourth Reactor Refueling. Laguna Verde Nuclear Central. Unit 1. April-May 1995

    International Nuclear Information System (INIS)

    Mendoza L, A.; Flores C, E.; Lopez G, C.P.F.

    1995-01-01

    The fourth refueling of the Unit 1 of Laguna Verde Nuclear Central was executed in the period of April 17 to May 31 of 1995 with the participation of a task group of 358 persons, included technicians and radiation protection officials and auxiliaries.The radiation monitoring and radiological surveillance to the workers was present length ways the refueling process and always attached to the ALARA criteria. The check points for radiation levels were set at: primary container or dry well, reloading floor, decontamination room (level 10.5), turbine building and radioactive waste building. To take advantage of the refueling process, rooms 203 and 213 of the turbine buildings were subject to inspection and maintenance work in valves, heaters and drains of heaters. Management aspects as personnel selection and training, costs, and countable are also presented in this report. Owing to the high cost of man-hour of the members of the ININ staff, its participation in the refueling process was in smaller number than years before. (Author)

  8. Refueling device for a nuclear reactor with fast neutrons

    International Nuclear Information System (INIS)

    Artemev, L.N.; Vitalevitsch, K.V.

    1978-01-01

    The refueling device has got a drum-shaped cartridge containing cells for unirradiated fuel assemblies and control rods as well as a grab for manipulation. The cells for the fuel assemblies are identical with those for the control rods. For the control rods in stock and those on the way from the drum-shaped magazine to the refueling mechanism there are provided cup-shaped casings (adapters) adapting their ends to the dimensions of the fuel assemblies. The casing is clamped to an annular tee-slot below the top by means of a collet. By this means fuel assemblies as well as control rods can be handled with the grab. By means of a stop on the grab the casing can be detached from the control rod. (DG) [de

  9. Liquefied petroleum gas cold burn sustained while refueling a car.

    Science.gov (United States)

    Scarr, Bronwyn; Mitra, Biswadev; Maini, Amit; Cleland, Heather

    2010-02-01

    There have been few cases of cold burn related to the exposure of liquid petroleum gas (LPG). We present the case of a young woman exposed to LPG while refueling her car who sustained partial thickness burns to the dorsum of her hand. Contact with LPG leaking from a pressurized system causes tissue damage because of cold injury. Immediate management of LPG is extrapolated from the management of frostbite. The increasing use of LPG mandates an awareness of prevention strategies and management principles in the setting of adverse events.

  10. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung

    2002-01-01

    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified

  11. Use of an advanced document system in post-refuelling updating of nuclear power plant documentation; Utilizacion de un sistema documental avanzado en la actualizacion de documentacion post recarga

    Energy Technology Data Exchange (ETDEWEB)

    Puech Suanzes, P; Cortes Soler, M [Empresarios Agrupados, A.I.E., Madrid (Spain)

    1993-12-15

    This paper discusses the results of the extensive use of an advanced document system to update documentation prepared by traditional methods and affected by changes in the period between two plant refuellings. The implementation of a system for the capture, retrieval and storage of drawings using optical discs is part of a plan to modernize production and management tools and to thus achieve better control of document configuration. These processes are consequently optimized in that: 1. The deterioration of drawings is detained with the help of an identical, updated, legible, reliable support for all users. 2. The time required to update documentation is reduced. Given the large number of drawings, the implementation method should effectively combine costs and time. The document management tools ensure optical disc storage control so that from the moment a drawing resides in the system, any modification to it is made through the system utilities, thus ensuring quality and reducing schedules. The system described was used to update the electrical drawings of Almaraz Nuclear Power Plant. Changes made during the eighth refuelling of Unit I were incorporated and the time needed to issue the updated drawings was reduced by one month. (author)

  12. Design for air-to-air refuelling operations; new passenger and tanker aircraft design for AAR scenarios

    NARCIS (Netherlands)

    Li, M.O.

    2014-01-01

    Air-to-air refuelling is a way to improve fuel efficiency of the overall transport system without waiting for the improvement of basic aviation technology. To take full advantage of such an operation, both passenger aircraft and tanker aircraft (which deliver required fuel to the passenger aircraft

  13. Optimal mission planning of GEO on-orbit refueling in mixed strategy

    Science.gov (United States)

    Chen, Xiao-qian; Yu, Jing

    2017-04-01

    The mission planning of GEO on-orbit refueling (OOR) in Mixed strategy is studied in this paper. Specifically, one SSc will be launched to an orbital slot near the depot when multiple GEO satellites are reaching their end of lives. The SSc replenishes fuel from the depot and then extends the lifespan of the target satellites via refueling. In the mixed scenario, only some of the target satellites could be served by the SSc, and the remaining ones will be fueled by Pseudo SScs (the target satellite which has already been refueled by the SSc and now has sufficient fuel for its operation as well as the fuel to refuel other target satellites is called Pseudo SSc here). The mission sequences and fuel mass of the SSc and Pseudo SScs, the dry mass of the SSc are used as design variables, whereas the economic benefit of the whole mission is used as design objective. The economic cost and benefit models are stated first, and then a mathematical optimization model is proposed. A comprehensive solution method involving enumeration, particle swarm optimization and modification is developed. Numerical examples are carried out to demonstrate the effectiveness of the model and solution method. Economic efficiencies of different OOR strategies are compared and discussed. The mixed strategy would perform better than the other strategies only when the target satellites satisfy some conditions. This paper presents an available mixed strategy scheme for users and analyzes its advantages and disadvantages by comparing with some other OOR strategies, providing helpful references to decision makers. The best strategy in practical applications depends on the specific demands and user preference.

  14. Small Reactors without On-site Refuelling: Neutronic Characteristics, Emergency Planning and Development Scenarios. Final Report of an IAEA Coordinated Research Project

    International Nuclear Information System (INIS)

    2010-09-01

    Small reactors without on-site refuelling have a capability to operate without reloading or shuffling of fuel in their cores for reasonably long periods of time consistent with plant economy and considerations of energy security, with no fresh or spent fuel being stored at the site during reactor operation. In 2009, more than 25 design concepts of such reactors were analyzed or developed in IAEA Member States, representing both developed and developing countries. Small reactors without on-site refuelling are being developed for several reactor lines, including water cooled reactors, sodium cooled fast reactors, lead and lead bismuth cooled reactors, and also include some non-conventional concepts. Most of the concepts of small reactors without on-site refuelling reactors are at early design stages. To make such reactors viable, further research and development (R and D) is necessary, inter alia, to validate long-life core operation, define and validate new robust types of fuel, justify an option of plant location in the proximity to its users, and examine possible niches that such reactors could fill in future energy systems. To further research and development (R and D) in the areas mentioned above and several others, and to facilitate progress in Member States in design and technology development for small reactors without on-site refueling, the IAEA has conducted a dedicated Coordinated Research Project (CRP) entitled 'Small Reactors without On-site Refuelling' (CRPi25001). The project started late in 2004 and, after a review in 2008, was extended for one more year to be ended in 2009. The project has created a network of 18 research institutions from 10 Member States, representing both developed and developing countries. Over the CRP period, collaborative results were achieved for many of the abovementioned research areas. Some studies highlighted new directions of research to be furthered after the CRP completion. Some studies remained the efforts of

  15. Refueling availability for alternative fuel vehicle markets: Sufficient urban station coverage

    International Nuclear Information System (INIS)

    Melaina, Marc; Bremson, Joel

    2008-01-01

    Alternative fuel vehicles can play an important role in addressing the challenges of climate change, energy security, urban air pollution and the continued growth in demand for transportation services. The successful commercialization of alternative fuels for vehicles is contingent upon a number of factors, including vehicle cost and performance. Among fuel infrastructure issues, adequate refueling availability is one of the most fundamental to successful commercialization. A commonly cited source reports 164,300 refueling stations in operation nationwide. However, from the perspective of refueling availability, this nationwide count tends to overstate the number of stations required to support the widespread deployment of alternative fuel vehicles. In terms of spatial distribution, the existing gasoline station networks in many urban areas are more than sufficient. We characterize a sufficient level of urban coverage based upon a subset of cities served by relatively low-density station networks, and estimate that some 51,000 urban stations would be required to provide this sufficient level of coverage to all major urban areas, 33 percent less than our estimate of total urban stations. This improved characterization will be useful for engineering, economic and policy analyses. (author)

  16. Air Force Air Refueling: The KC-X Aircraft Acquisition Program

    National Research Council Canada - National Science Library

    Knight, William; Bolkcom, Christopher

    2008-01-01

    ... to accomplish air refueling missions. The program is expected to cost approximately $35 billion. Both Boeing and a consortium consisting of Northrop Grumman and European Aeronautic Defence and Space Company...

  17. Management of individual and collective dosimetry at Fessenheim nuclear plant. Evaluation after refueling shutdown

    International Nuclear Information System (INIS)

    Lamarre, D.; Waller, A.

    1980-01-01

    The principle of dosimetry management chosen by Fessenheim nuclear power station was originally consisted of two phases: - an automatic acquisition of individual doses realized by stylodosimeter readers; - a deferred data processing by computer. The whole system has not been used during the shutdown for the first refuelling of unit number one in view of encountered difficulties with perfecting of automatic readers prototype, this last phase has been replaced by a manual acquisition of doses. The dosimetry data processing has two main objects: - supervision of individual dosimetry for people who work in the nuclear power station; - knowledge of doses assigned for each working and equipment. Moreover, a first dosimetric result of the shutdown for refuelling of unit number one, enables to notice the workings which doses are the most important and written in percentage of total doses: regulatory controls: about 19%; - steam generators working: 16%; - working decontamination and making health physics screen (lock chamber) 10% [fr

  18. Improving refueling outages through partnership

    International Nuclear Information System (INIS)

    Mercado, Angelo L.

    2004-01-01

    This paper describes an approach to reduce nuclear plant outage duration and cost through partnership. Partnership is defined as a long-term commitment between the utility and the vendor with the objective of achieving shared business goals by maximizing the effectiveness of each party's resources. The elements of an effective partnership are described. Specific examples are given as to how partnership has worked in the effective performance of refueling outages. To gain the full benefits of a partnership, both parties must agree to share information, define the scope early, communicate goals and expectations, and identify boundaries for technical ownership. (author)

  19. Compact toroid refueling of reactors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Hogan, J.T.; Milora, S.L.; Thomas, C.E.

    1988-04-01

    The feasibility of refueling fusion reactors and devices such as the International Thermonuclear Engineering Reactor (ITER) with high-velocity compact toroids is investigated. For reactors with reasonable limits on recirculating power, it is concluded that the concept is not economically feasible. For typical ITER designs, the compact toroid fueling requires about 15 MW of electrical power, with about 5 MW of thermal power deposited in the plasma. At these power levels, ideal ignition (Q = ∞) is not possible, even for short-pulse burns. The pulsed power requirements for this technology are substantial. 6 ref., 1 figs

  20. Refueling outage services in Spanish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Landete, J. L.; Soto, M.; Nunuez, A.

    2007-01-01

    DOMINGUIS Group, through its 75 years of business development, has positioned as the Spanish leader Group in Services for the Nuclear Energy and Petrochemical Sectors. In this article, we present the most significant services summary that, through the companies that constitute DOMINGUIS Group, we have developed in Refueling Outage in Spanish Nuclear Power Plants. (Author)

  1. Improvement of availability of PWR nuclear plants through the reduction of the time required for refueling/maintenance outages

    International Nuclear Information System (INIS)

    Mayers, J.B.; Soth, L.G.

    1978-04-01

    The objective of the project, conducted by Commonwealth Research Corporation and Westinghouse Electric Corporation, is to identify improvements in procedures and equipment which will reduce the time required for refueling/maintenance outages at PWR nuclear power plants. The outage of Commonwealth Edison Zion Station Unit 1 in March through May of 1976 was evaluated to identify those items which caused delays and those work activities that offer the potential for significant improvements that could reduce the overall duration of the outage and achieve an improvement in the plant's availability for power production. Modifications in procedures have been developed and were evaluated during one or more outages in 1977. Conceptual designs have been developed for equipment modifications to the refueling system that could reduce the time required for the refueling portion of the outage. The purpose of the interim report is to describe those conceptual designs and to assess their impact upon future outages. Recommendations are included for the implementation of these equipment improvements in a continuation of this program as a demonstration of plant availability benefits that can be realized in PWR nuclear plants already in operation or under construction

  2. Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting

    Energy Technology Data Exchange (ETDEWEB)

    Melendez, M.; Milbrandt, A.

    2008-04-01

    Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

  3. Hyapproval : final handbook for approval of hydrogen refuelling stations

    NARCIS (Netherlands)

    Wurster, R.; Landinger, H.; Machens, C.; Allidières, L.; Molag, M.; Barron, J.; Reijalt, M.; Hill, H.J.

    2006-01-01

    HyApproval is an EC co-financed Specific Targeted Research Project (STREP) to develop a Handbook facilitating the approval of Hydrogen Refuelling Stations (HRS). The project, started in October 2005, will be performed over 24 months by a balanced partnership including 25 partners from industry, SMEs

  4. Hydrogen Production for Refuelling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hulteberg, Christian; Aagesen, Diane (Intelligent Energy, Long Beach, CA (United States))

    2009-08-15

    The aim of this work is to support the development of a high-profile demonstration of hydrogen generation technologies in a Swedish context. The overall objective of the demonstration is to deploy a reforming based hydrogen refilling station along the Swedish west coast; intermediate to the Malmoe refuelling station and planned stations in Goeteborg. In this way, the Norwegian hydrogen highway will be extended through the south of Sweden and down into Denmark. The aim of the project's first phase, where this constitutes the final report, was to demonstrate the ability to operate the IE reforming system on the E.On/SGC site-specific fuel. During the project, a preliminary system design has been developed, based on IE's proprietary reformer. The system has been operated at pressure, to ensure a stable operation of the downstream PSA; which has been operated without problems and with the expected hydrogen purity and recovery. The safe operation of the proposed and tested system was first evaluated in a preliminary risk assessment, as well as a full HazOp analysis. A thorough economic modelling has been performed on the viability of owning and operating this kind of hydrogen generation equipment. The evaluation has been performed from an on-site operation of such a unit in a refuelling context. The general conclusion from this modelling is that there are several parameters that influence the potential of an investment in a Hestia hydrogen generator. The sales price of the hydrogen is one of the major drivers of profitability. Another important factor is the throughput of the unit, more important than efficiency and utilization. Varying all of the parameters simultaneously introduce larger variations in the NPV, but 60% of the simulations are in the USD 90 000 to USD 180 000 interval. The chosen intervals for the parameters were: Hydrogen Sales Price (USD 5 - USD 7 per kg); Investment Cost (USD 70 000 - USD 130 000 per unit); Throughput (20 - 30 kg

  5. The hydrogen refuelling plant in Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Giron, E.; Saez, A.; Julia, A.

    2005-07-01

    Since the late days of spring 2003, a hydrogen refuelling station is operating in Madrid to provide fuel to a set of four FC-buses running in the frame of the European demonstration projects CUTE and CITYCELLS. This station is located at one of the EMT(1) bus depot premises. The station was designed and built for the EMT by the consortium 'esH2' composed by the industrial gases manufacturer Air Liquide Espana, the energy utility Gas Natural SDG and the oil company Repsol YPF. (Author)

  6. 40 CFR 86.152-98 - Vehicle preparation; refueling test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preparation; refueling test... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle...

  7. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    Energy Technology Data Exchange (ETDEWEB)

    Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

    2014-05-01

    Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

  8. Development of a dose database in the refuelling scenario of a nuclear power plant for a virtual reality application

    International Nuclear Information System (INIS)

    Rodenas, J.; Zarza, I.; Pascual, A.; Felipe, A.; Sanchez-Mayoral, M.L.

    2002-01-01

    Operators in Nuclear Power Plants can receive high doses during refuelling operation. A training program simulating refuelling operations will be useful to reduce doses received by workers as well as to minimise operation time. With this goal in mind a Virtual Reality application is developed in the frame of CIPRES Project (Calculos Interactivos de Proteccion Radiologica en un Entorno de Simulacion - Interactive Calculations of Radiological Protection in a Simulation Environment), a RD project sponsored by IBERINCO and developed jointly by IBERINCO and the Nuclear Engineering Department of the Polytechnic University of Valencia. The Virtual Reality application requires the possibility of displaying doses, both instantaneous and accumulated, at all times during the operator training. Therefore, it is necessary to elaborate a database containing dose rates at every point of the refuelling plant. This database is elaborated from Radiological Protection Surveillance data measured throughout the plant during refuelling operation. To estimate doses throughout the refuelling plant some interpolation routines have been used. Different assumptions have been adopted in order to perform the interpolation and obtain consistent data. In this paper, procedures developed to elaborate the dose database for the Virtual Reality application are presented and analysed

  9. Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles †

    Directory of Open Access Journals (Sweden)

    Matteo Muratori

    2018-05-01

    Full Text Available The year 2014 marked hydrogen fuel cell electric vehicles (FCEVs first becoming commercially available in California, where significant investments are being made to promote the adoption of alternative transportation fuels. A refueling infrastructure network that guarantees adequate coverage and expands in line with vehicle sales is required for FCEVs to be successfully adopted by private customers. In this paper, we provide an overview of modelling methodologies used to project hydrogen refueling infrastructure requirements to support FCEV adoption, and we describe, in detail, the National Renewable Energy Laboratory’s scenario evaluation and regionalization analysis (SERA model. As an example, we use SERA to explore two alternative scenarios of FCEV adoption: one in which FCEV deployment is limited to California and several major cities in the United States; and one in which FCEVs reach widespread adoption, becoming a major option as passenger vehicles across the entire country. Such scenarios can provide guidance and insights for efforts required to deploy the infrastructure supporting transition toward different levels of hydrogen use as a transportation fuel for passenger vehicles in the United States.

  10. On the refuelling of large divertor experiments

    International Nuclear Information System (INIS)

    Staebler, A.; Haas, G.; Ott, W.; Speth, E.

    1976-01-01

    The use of fast hydrogen atoms, molecules and clusters for refuelling large divertor-experiments like ASDEX is investigated. Three criteria for the choice among the various methods are discussed. It is shown that clusters suffer from lack of penetration. Molecules, created by fragmentation of clusters, offer the advantage of plasma-like energy combined with appreciable penetration. Large penetration and high ionization efficiency can only be achieved at energies for above the plasma temperature with H 0 -atoms of several tens of keV

  11. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 5: Analysis of core damage frequency from seismic events for plant operational state 5 during a refueling outage

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.; Tong, W.H.

    1994-08-01

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Sandia National Laboratories studying a boiling water reactor (Grand Gulf), and the other at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1). Both the Sandia and Brookhaven projects have examined only accidents initiated by internal plant faults---so-called ''internal initiators.'' This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling outage conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Grand Gulf. All of the many systems modeling assumptions, component non-seismic failure rates, and human effort rates that were used in the internal-initiator study at Grand Gulf have been adopted here, so that the results of the study can be as comparable as possible. Both the Sandia study and this study examine only one shutdown plant operating state (POS) at Grand Gulf, namely POS 5 representing cold shutdown during a refueling outage. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POS 5. The results of the analysis are that the core-damage frequency for earthquake-initiated accidents during refueling outages in POS 5 is found to be quite low in absolute terms, less than 10 -7 /year

  12. GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles

    Science.gov (United States)

    Khanafseh, Samer Mahmoud

    Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted

  13. Developing a virtual reality application for training Nuclear Power Plant operators: Setting up a database containing dose rates in the refuelling plant

    International Nuclear Information System (INIS)

    Rodenas, J.; Zarza, I.; Burgos, M. C.; Felipe, A.; Sanchez-Mayoral, M. L.

    2004-01-01

    Operators in Nuclear Power Plants can receive high doses during refuelling operations. A training programme for simulating refuelling operations will be useful in reducing the doses received by workers as well as minimising operation time. With this goal in mind, a virtual reality application is developed within the framework of the CIPRES project. The application requires doses, both instantaneous and accumulated, to be displayed at all times during operator training. Therefore, it is necessary to set up a database containing dose rates at every point in the refuelling plant. This database is based on radiological protection surveillance data measured in the plant during refuelling operations. Some interpolation routines have been used to estimate doses through the refuelling plant. Different assumptions have been adopted in order to perform the interpolation and obtain consistent data. In this paper, the procedures developed to set up the dose database for the virtual reality application are presented and analysed. (authors)

  14. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Duleep, Gopal [HD Systems

    2013-06-01

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

  15. H2USA: Siting Refueling Stations in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zuboy, Jarett [Consultant; Ellis, Steve [Honda

    2017-11-01

    To achieve cost-effective deployment of both fuel cell electric vehicles (FCEVs) and hydrogen stations, the number of vehicles and public stations must grow together in areas of highest demand. This fact sheet introduces two advanced modeling tools and presents preliminary analysis of the hydrogen refueling station locations needed to support early consumer demand for FCEVs in the Northeast United States. United States.

  16. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    Energy Technology Data Exchange (ETDEWEB)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  17. Integrated refuelling activity service; Servicio integrado de actividades de recarga

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Valcarcel, M.; Lopez Garcia, J.L.

    2010-07-01

    Refuelling outages at nuclear power plants are subject to demanding improvement criteria in each and every one of the activities scheduled. In this article, the advantages of this general service performed by UTE-TWE for Asco and Vandellos II nuclear power plants, and their results and learned lessons are presented. (Author)

  18. Refueling Stop Activity Detection and Gas Station Extraction Using Crowdsourcing Vehicle Trajectory Data

    Directory of Open Access Journals (Sweden)

    YANG Wei

    2017-07-01

    Full Text Available In view of the deficiencies of current surveying methods of gas station, an approach is proposed to extract gas station from vehicle traces. Firstly, the spatial-temporal characteristics of individual and collective refueling behavior of trajectory is analyzed from aspects of movement features and geometric patterns. Secondly, based on Stop/Move model, the velocity sequence linear clustering algorithm is proposed to extract refueling stop tracks. Finally, using the methods including Delaunay triangulation, Fourier shape recognition and semantic constraints to identify and extract gas station. An experiment using 7 days taxi GPS traces in Beijing verified the novel method. The experimental results of 482 gas stations are extracted and the correct rate achieves to 93.1%.

  19. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    Science.gov (United States)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  20. On the Drag Effect of a Refuelling Pellet

    DEFF Research Database (Denmark)

    Chang, Tinghong; Michelsen, Poul

    1981-01-01

    A refueling pellet is subjected mainly to two kinds of drags: (1) inertial drag caused by the motion of the pellet relative to the surrounding plasma, and (2) ablation drag caused by an uneven ablation rate of the front and the rear surface of the pellet in an inhomogeneous plasma. Computational ...... results showed that for reasonable combinations of pellet size and injection speed, the drag effect is hardly detectable for plasma conditions prevailing in current large tokamaks....

  1. Pellets for fusion reactor refueling. Annual progress report, January 1, 1976--December 31, 1976

    International Nuclear Information System (INIS)

    Turnbull, R.J.; Kim, K.

    1977-01-01

    The purpose of this research is to test the feasibility of refueling fusion reactors using solid pellets composed of fuel elements. A solid hydrogen pellet generator has been constructed and experiments have been done to inject the pellets into the ORMAK Tokamak. A theory has been developed to describe the pellet ablation in the plasma, and an excellent agreement has been found between the theory and the experiment. Techniques for charging the pellets have been developed in order to accelerate and control them. Other works currently under way include the development of techniques for accelerating the pellets for refueling purpose. Evaluation of electrostatic acceleration has also been performed

  2. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  3. Influence of hydrazine primary water chemistry on corrosion of fuel cladding and primary circuit components

    International Nuclear Information System (INIS)

    Iourmanov, V.; Pashevich, V.; Bogancs, J.; Tilky, P.; Schunk, J.; Pinter, T.

    1999-01-01

    Earlier at Paks 1-4 NPP standard ammonia chemistry was in use. The following station performance indicators were improved when hydrazine primary water chemistry was introduced: occupational radiation exposures of personnel; gamma-radiation dose rates near primary system components during refuelling and maintenance outages. The reduction of radiation exposures and radiation fields were achieved without significant expenses. Recent results of experimental studies allowed to explain the mechanism of hydrazine dosing influence on: corrosion rate of structure materials in primary coolant; behaviour of soluble and insoluble corrosion products including long-life corrosion-induced radionuclides in primary system during steady-state and transient operation modes; radiolytic generation of oxidising radiolytic products in core and its corrosion activity in primary system; radiation situation during refuelling and maintenance outages; foreign material degradation and removal (including corrosion active oxidant species) from primary system during abnormal events. Operational experience and experimental data have shown that hydrazine primary water chemistry allows to reduce corrosion wear and thereby makes it possible to extend the life-time of plant components in primary system. (author)

  4. Detailed description of an SSAC at the facility level for on-load refueled power reactor facilities

    International Nuclear Information System (INIS)

    Jones, R.J.

    1985-11-01

    The purpose of this document is to provide a detailed description of a system for the accounting for and control of nuclear material in an on-load refueled power reactor facility which can be used by a facility operator to establish his own system to comply with a national system for nuclear material accounting and control and to facilitate application of IAEA safeguards. The scope of this document is limited to descriptions of the following SSAC elements: (1) Nuclear Material Measurements; (2) Measurement Quality; (3) Records and Reports; (4) Physical Inventory Taking; (5) Material Balance Closing

  5. Advanced light water reactor plants System 80+trademark design certification program. Annual progress report, October 1, 1994 - September 30, 1995

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of this report is to provide the status of the progress that was made towards Design Certification of System 80+trademark during the US government's 1995 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2, and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems

  6. Advanced light water reactor plants System 80+trademark design certification program. Annual progress report, October 1, 1995 - September 30, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80+trademark during the US government's 1996 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2 and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems

  7. REFUEL. The harvest so far. Papers to the 15th European Biomass Conference and Exhibition, May 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The REFUEL project is designed to encourage a greater market penetration of biofuels. To help achieve this goal, we will develop a biofuels road map, consistent with EU biofuel policies and supported by stakeholders involved in the biofuels field. Starting early 2006, the project involves seven renowned partners and will take 24 months to complete. Refuel is financed by the European Commission under the 'Intelligent Energy - Europe' programme. This report contains papers that were presented at the title conference

  8. Investigating attitudes to hydrogen refuelling facilities and the social cost to local residents

    International Nuclear Information System (INIS)

    O'Garra, Tanya; Mourato, Susana; Pearson, Peter

    2008-01-01

    Vehicles fuelled by hydrogen (H 2 ) have attracted increasing attention because of their potentially enhanced environmental profiles. Their penetration into the vehicle stock will be influenced by the spread of refuelling facilities. This study investigates local attitudes towards the proposed installation of H 2 storage facilities at existing refuelling stations throughout London. Using multinomial logit analysis, we identify the determinants of attitudes. Results suggest that residents living very close to a proposed H 2 facility are less likely to be opposed than residents living 200-500 m away. Opposition appears to be determined by a lack of trust in safety regulations, non-environmental attitudes, and concerns about the existing local refuelling station. The social cost to local residents of a local H 2 storage facility was estimated using a method developed by Atkinson et al. [2004. 'Amenity' or 'eyesore'? Negative willingness to pay for options to replace electricity transmission towers. Applied Economics Letters 11(4), 203-208], which elicits the amount of time respondents are willing to commit to oppose a new facility development. Using the leisure rate of time, the social cost is estimated at just under Pounds 14 per local opposed resident. Add to this the WTP to support opposition efforts by a local group, and the value comes to just under Pounds 25 per opposed resident

  9. Autonomous Aerial Refueling Ground Test Demonstration—A Sensor-in-the-Loop, Non-Tracking Method

    Directory of Open Access Journals (Sweden)

    Chao-I Chen

    2015-05-01

    Full Text Available An essential capability for an unmanned aerial vehicle (UAV to extend its airborne duration without increasing the size of the aircraft is called the autonomous aerial refueling (AAR. This paper proposes a sensor-in-the-loop, non-tracking method for probe-and-drogue style autonomous aerial refueling tasks by combining sensitivity adjustments of a 3D Flash LIDAR camera with computer vision based image-processing techniques. The method overcomes the inherit ambiguity issues when reconstructing 3D information from traditional 2D images by taking advantage of ready to use 3D point cloud data from the camera, followed by well-established computer vision techniques. These techniques include curve fitting algorithms and outlier removal with the random sample consensus (RANSAC algorithm to reliably estimate the drogue center in 3D space, as well as to establish the relative position between the probe and the drogue. To demonstrate the feasibility of the proposed method on a real system, a ground navigation robot was designed and fabricated. Results presented in the paper show that using images acquired from a 3D Flash LIDAR camera as real time visual feedback, the ground robot is able to track a moving simulated drogue and continuously narrow the gap between the robot and the target autonomously.

  10. H2moves.eu Scandinavia. ''Experience from operating a 70 MPa hydrogen refuelling station in Oslo''. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sloth, M.

    2013-02-15

    As part of the H2MOVES Scandinavia project H2 Logic were to construct a large scale hydrogen refuelling station (HRS) in Oslo providing hydrogen for FCEV's from Daimler and Hyundai in the project. The effort has provided extensive results and lessons learned across the entire process from site selection, HRS design and manufacturing to the final installation and operation. An extensive site screening of more than 30 sites in Oslo was firstly conducted to identify the most optimal location for the HRS. A suitable site was identified at the research organisation SINTEF in Gaustad in the western part of Oslo. The location was strategically well located with regards to the other HRS's in the city ensuring good refuelling coverage in Oslo. The HRS was manufactured, installed and operated by H2 Logic based on the company's H2Station technology. The HRS provides 70MPa refuelling in accordance with the SAE J2601, and operation results have confirmed refuelling times consistently below four minutes for a full tank. The HRS includes onsite electrolysis production providing a 20kg/day base load supply, with potentially additional trucking-in of hydrogen up to a total capacity of 200kg/day. The installation of the HRS took in total 10 days, from arrival at site, until first refuelling was conducted. This included local inspection by third parties and authorities as well as several days of hydrogen production and compression to reach the necessary refuelling pressure. Before opening a refuelling recommendation process was successfully conducted by Daimler. The HRS opened on 21st November 2011 and has been operated for 13,5 months during the remainder project period (ending December 2012). The HRS is expected to continue operation beyond the project. Below are shown the major operation results from the HRS during the project: 1) 701 kg dispensed; 2) 313 refueling's conducted; 3) Average availability of 97% during first half of 2012; 4) 53% of all down

  11. Options for shortening nuclear power plant refueling outages

    International Nuclear Information System (INIS)

    Kastl, H.

    2001-01-01

    Deregulation of the European electricity market on 01.01.1999 forced a large number of electric utilities- especially nuclear power plant operators - to find ways of drastically cutting down their costs in order to be able to compete successfully within the new market environment. Nuclear power plants currently in operation mainly have three potential ways of reducing their power generating costs: by increasing plant availability, reducing fuel costs and cutting down operating costs. The optimization of plant refueling outages offers considerable potential for enhancing plant availability, but also helps bring down operating costs by reducing expenditure on maintenance. In order to optimize an outage in terms of its duration and costs, a variety of approaches are possible - all of which, however, involve certain key factors such as good organization, planning, logistics and control, improvement of equipment and tools, as well as motivation of personnel. Another aspect is the introduction of innovative technologies. In the last few years, such technologies have frequently enabled maintenance effort to be reduced, thus saving considerable time, and have also resulted in a need for fewer personnel to carry out the work, thus reducing radiation exposure. In many instances they have also improved the quality of work and outage performance as a whole. The paper uses recent examples to show how innovative technologies can contribute to-wards reducing nuclear plant maintenance costs and shorten the duration of refueling out-ages. (author)

  12. Technology development for indigenous water lubricated bearings

    International Nuclear Information System (INIS)

    Limaye, P.K.; Soni, N.L.; Agrawal, R.G.

    2010-01-01

    Water Lubricated Bearings (WLB) are used in various mechanisms of fuel handling systems of PHWRs and AHWR. Availability and random failures of these bearings was a major factor in refuelling operations. Indigenous development of these bearings was taken up and 7 types of antifriction bearings in various sizes (totaling 37 variants) for PHWR, AHWR and Dhruva applications were successfully developed. This paper deals with various aspects of WLB development. (author)

  13. Business fleet refueling assessment. Final report, March 1992-November 1992

    International Nuclear Information System (INIS)

    Chaudier, A.

    1993-01-01

    The report investigates refueling characteristics and capabilities for the light-duty market sector, particularly business automobile fleets. It develops a profile of the characteristics of light-duty and automobile business fleets in 22 designated non-attainment areas, as well as Pittsburgh and Salt Lake City. Reliable data on these subjects will enable better analysis of the market potential for natural gas in the surveyed areas

  14. Improvement of availability of PWR nuclear plants through the reduction of the time required for refueling/maintenance outages, Phase 1. Final report

    International Nuclear Information System (INIS)

    Thompson, C.A.

    1978-08-01

    The objective of this project is to identify improvements in procedures and equipment which will reduce the time required for refueling/maintenance outages at PWR nuclear power plants. The outage of Commonwealth Edison Zion Station Unit 1 in March through May of 1976 was evaluated to identify those items which caused delays and those work activities that offer the potential for significant improvements toward reducing its overall duration. Thus, the plant's availability for power production would be increased. Revisions in procedures and some equipment modifications were implemented and evaluated during the Zion Unit 2 refueling/maintenance outage beginning in January 1977. Analysis of the observed data has identified benefits available through improved refueling equipment and also areas where additional new, innovative refueling, or refueling-related equipment should be beneficial. A number of specific design concepts are recommended as a result of Phase 1. In addition, a new master planning mechanism is described for implementation during subsequent planned outages at Zion Station. This final report describes the recommended conceptual designs and planning mechanism and assesses their impact upon future outages. Their effect on savings in refueling time, labor, and radiation exposure is discussed. The estimated economic payoff for these concepts was found to be of such significance that an additional phase of the program is warranted. During this extended phase, a more detailed engineering study should be undertaken to determine the cost of implementation along with more specific estimates of the benefits for PWR plants already in operation or under construction

  15. Louisiana SIP: LAC 33:III Ch 2132. Stage II Vapor Recovery Systems for Control of Vehicle Refuelling Emissions at Gasoline Dispensing Facilities; SIP effective 2011-08-04 (LAd34) and 2016-02-29 (LAd47) to 2017-09-27

    Science.gov (United States)

    Louisiana SIP: LAC 33:III Ch 2132. Stage II Vapor Recovery Systems for Control of Vehicle Refuelling Emissions at Gasoline Dispensing Facilities; SIP effective 2011-08-04 (LAd34) and 2016-02-29 (LAd47) to 2017-09-27

  16. REFUEL. Potential and realizable cost reduction of 2nd generation biofuels

    International Nuclear Information System (INIS)

    Londo, H.M.; Deurwaarder, E.P.; Lensink, S.M.; Junginer, H.M.; De Wit, M.

    2007-05-01

    In the REFUEL project steering possibilities for and impacts of a greater market penetration of biofuels are assessed. Several benefits are attributed to second generation biofuels, fuels made from lignocellulosic feedstock, such as higher productivity, less impacts on land use and food markets and improved greenhouse gas emission reductions. The chances of second generation biofuels entering the market autonomously are assessed and several policy measures enhancing those changes are evaluated. It shows that most second generation biofuels might become competitive in the biofuel market, if the production of biodiesel from oil crops becomes limited by land availability. Setting high biofuel targets, setting greenhouse gas emissions caps on biofuel and setting subtargets for second generation biofuels, all have a similar impact of stimulating second generation's entrance into the biofuel market. Contrary, low biofuel targets and high imports can have a discouraging impact on second generation biofuel development, and thereby on overall greenhouse gas performance. Since this paper shows preliminary results from the REFUEL study, one is advised to contact the authors before quantitatively referring to this paper

  17. THE KINETICS OF CONTAMINANTS ACCUMULATION IN THE JET FUEL DURING THE TECHNOLOGICAL PROCESS OF ITS PREPARATION FOR AIRCRAFT REFUELING

    OpenAIRE

    A. A. Brailko

    2017-01-01

    Much attention is payed to the tasks for ensuring domestic and international aircraft safety and regularity, which are multifaceted and complex. One of them is the system of ensuring the quality of aviation fuel for refueling aircraft at airports. A significant influence of the quality, chemical composition and fuel range on the reliability and lifetime of components and parts of the aircraft fuel system was studied in the process of development and experience accumulation of aircraft operati...

  18. Pressurized water reactor inspection procedures

    International Nuclear Information System (INIS)

    Heinrich, D.; Mueller, G.; Otte, H.J.; Roth, W.

    1998-01-01

    Inspections of the reactor pressure vessels of pressurized water reactors (PWR) so far used to be carried out with different central mast manipulators. For technical reasons, parallel inspections of two manipulators alongside work on the refueling cavity, so as to reduce the time spent on the critical path in a revision outage, are not possible. Efforts made to minimize the inspection time required with one manipulator have been successful, but their effects are limited. Major reductions in inspection time can be achieved only if inspections are run with two manipulators in parallel. The decentralized manipulator built by GEC Alsthom Energie and so far emmployed in boiling water reactors in the USA, Spain, Switzerland and Japan allows two systems to be used in parallel, thus reducing the time required for standard inspection of a pressure vessel from some six days to three days. These savings of approximately three days are made possible without any compromises in terms of positioning by rail-bound systems. During inspection, the reactor refueling cavity is available for other revision work without any restrictions. The manipulator can be used equally well for inspecting standard PWR, PWR with a thermal shield, for inspecting the land between in-core instrumentation nozzles, BWR with and without jet pumps (complementary inspection), and for inspecting core support shrouds. (orig.) [de

  19. Limiting factor analysis of high availability nuclear plants (boiling water reactors). Final report

    International Nuclear Information System (INIS)

    Frederick, L.G.; Brady, R.M.; Shor, S.W.W.; McCusker, J.T.; Alden, W.M.; Kovacs, S.

    1979-08-01

    The pertinent results are presented of a 16-month study conducted for Electric Power Research Institute by General Electric Company, Bechtel Power Corporation, and Philadelphia Electric Company. The study centered around the Peach Bottom 2 Atomic Power Station, but also included limited study of operations at 20 additional operating boiling water reactors. The purpose of the study was to identify and evaluate key factors limiting plant availability, and to identify potential improvements for eliminating or alleviating those limitations. The key limiting factors were found to be refueling activities; activities related to the reactor fuel; reactor scrams; activities related to 20 operating systems or major components; delays due to radiation, turbid water during refueling operations, facilities/working conditions, and dirt/foreign material; and general maintenance/repair of valves and piping. Existing programs to reduce the effect on plant unavailability are identified, and suggestions for further action are made

  20. Advanced light water reactor plants System 80+{trademark} design certification program. Annual progress report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The purpose of this report is to provide the status of the progress that was made towards Design Certification of System 80+{trademark} during the US government`s 1995 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2, and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems.

  1. Insights from Hydrogen Refueling Station Manufacturing Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mayyas, Ahmad

    2015-12-18

    In work for the Clean Energy Manufacturing Analysis Center (CEMAC), NREL is currently collaborating with Great Lakes Wind Network in conducting a comprehensive hydrogen refueling stations manufacturing competitiveness and supply chain analyses. In this project, CEMAC will be looking at several metrics that will facilitate understanding of the interactions between and within the HRS supply chain, such metrics include innovation potential, intellectual properties, learning curves, related industries and clustering, existing supply chains, ease of doing business, and regulations and safety. This presentation to Fuel Cell Seminar and Energy Exposition 2015 highlights initial findings from CEMAC's analysis.

  2. Lainsa refueling specific services. Ideas of an evolution

    International Nuclear Information System (INIS)

    Soto Tomas, M.

    2010-01-01

    The knowledge evolution, in relation to works to develop in Refueling, related to the Cleaning and Decontamination, changed from almost total ignorance to be a reality, thanks personnel support and external organizations, already knowledgeable of the same, and to the human team effort highly involved in the fulfillment of the management development. We search where to find knowledge and we did it. We had ideas and we became them truth. The evolutionary process was positive. Some stages, equipment and developed services are commented, which allow us to offer High Quality Services and in agreed time term, especially during c ritical path . (Author)

  3. Investigation of in-cabin volatile organic compounds (VOCs) in taxis; influence of vehicle's age, model, fuel, and refueling.

    Science.gov (United States)

    Bakhtiari, Reza; Hadei, Mostafa; Hopke, Philip K; Shahsavani, Abbas; Rastkari, Noushin; Kermani, Majid; Yarahmadi, Maryam; Ghaderpoori, Afshin

    2018-06-01

    The air pollutant species and concentrations in taxis' cabins can present significant health impacts on health. This study measured the concentrations of benzene, toluene, ethylbenzene, xylene (BTEX), formaldehyde, and acetaldehyde in the cabins of four different taxi models. The effects of taxi's age, fuel type, and refueling were investigated. Four taxi models in 3 age groups were fueled with 3 different fuels (gas, compressed natural gas (CNG), and liquefied petroleum gas (LPG)), and the concentrations of 6 air pollutants were measured in the taxi cabins before and after refueling. BTEX, formaldehyde, and acetaldehyde sampling were actively sampled using NIOSH methods 1501, 2541, and 2538, respectively. The average BTEX concentrations for all taxi models were below guideline values. The average concentrations (±SD) of formaldehyde in Model 1 to Model 4 taxis were 889 (±356), 806 (±323), 1144 (±240), and 934 (±167) ppbv, respectively. Acetaldehyde average concentrations (±SD) in Model 1 to Model 4 taxis were 410 (±223), 441 (±241), 443 (±210), and 482 (±91) ppbv, respectively. Refueling increased the in-vehicle concentrations of pollutants primarily the CNG and LPG fuels. BTEX concentrations in all taxi models were significantly higher for gasoline. Taxi age inversely affected formaldehyde and acetaldehyde. In conclusion, it seems that refueling process and substitution of gasoline with CNG and LPG can be considered as solutions to improve in-vehicle air concentrations for taxis. Copyright © 2018. Published by Elsevier Ltd.

  4. H2T liquid hydrogen delivery system

    International Nuclear Information System (INIS)

    Roy, S.

    2002-01-01

    This Power Point presentation provides a preliminary evaluation of the cost of delivering liquid hydrogen produced in Quebec to hydrogen fuelled cars in Germany. The presentation describes the chain of events regarding liquid hydrogen delivery, beginning with the production of hydrogen from an initial source of hydro power. Water passes through an electrolyzer where hydrogen is liquefied and then placed into a container which is transported to market via truck, rail or tanker. Once transported, the hydrogen fuel is made available for consumers at refueling stations. The paper lists the costs related to transportation with reference to safety rules, pure transportation costs, leasing fees for the containers, and permission of customs duties for the import of hydrogen and export of empty containers between Quebec and Germany. A graph depicting a typical refueling station in Germany and the refueling events per hour was presented. For safety reasons, refueling is performed by a refueling robot. A blueprint of safety and protection distances at a refueling station was also presented. tabs., figs

  5. Service water chemical cleaning at River Bend gets results

    International Nuclear Information System (INIS)

    Brice, T.O.; Glover, W.A.

    1994-01-01

    The largest known Service Water System (SWS) chemical cleaning ever performed at a nuclear plant was successfully completed at, River Bend Station. Corrosion product buildup was observed during system inspections in the first operating cycle and the first refueling outage in 1987. Under deposit corrosion was followed with microbiologically influenced corrosion (MIC) occurring as a later stage under deposits. The heavy corrosion caused blockage of heat exchanger tubes, fouling of valve seats, and general flow blockage throughout the system. Various options were evaluated for restoring the SWS back to an acceptable long term operating condition. The large scale chemical cleaning performed arrested the corrosion by removing the deposits down to the bare metal surfaces and leaving behind a protective passivation layer. After the cleaning, the open recirculating SWS was converted to a closed system. The implementation of a molybdate/nitrate water treatment program with a copper corrosion inhibitor maintained at a high pH (8.5--10.5) has significantly reduced corrosion rates in the closed system. This should extend the life of the SWS piping for the remaining life of the plant. Several field tests were conducted to qualify the process and demonstrate its ability to achieve acceptable cleaning results prior to being used on a larger scale. In the summer of 1992, temporary and permanent modifications were installed to divide the SWS into two separate cleaning loops for the system wide cleaning. The SWS chemical was successfully performed and completed on schedule during the fourth refueling outage. Post cleaning inspections at various locations throughout the Service Water System showed the process to be very effective at complete deposit removal

  6. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    International Nuclear Information System (INIS)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core

  7. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  8. Support services to refuelling exploitation; Servicios de apoyo a explotacion en recarga

    Energy Technology Data Exchange (ETDEWEB)

    Castineira, M; Cortes, M.; Rayo, A.

    2010-07-01

    The refuelling period in nuclear power stations is very important due to the need to optimise its duration, large volumes of work and resources that have to be planned and coordinated and their impact on the subsequent operating cycle. Empresarios Agrupados has a permanent organisation, with specialised resources and extensive availability of human resources. (Author)

  9. Refueling outage data collection and analysis

    International Nuclear Information System (INIS)

    Harshaw, K.; Quilliam, J.; Brinsfield, W.; Jeffries, J.

    1993-07-01

    This report summarizes the results of an EPRI project to compile an industry generic refueling outage database applicable to alternate (non-full-power) modes of shutdown conditions at nuclear power plants. The project team evaluated five outages at two BWR plants. They obtained data primarily from control room logs, outage schedules, incident reports, and licensee event reports. The team organized the data by outage segment and time line. Due to its small sample size, this study produced no conclusive results related to initiating event frequencies, equipment failure rates, or human reliability estimates during shutdown conditions. However, it pointed out the problems of brief or inconsistent recordkeeping. A too brief record results in difficulty determining if the root cause of an event was mechanical or the result of human performance. Retrieval of data can be difficult and labor-intensive. There is a clear need for better, more comprehensive documentation

  10. Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues

    Energy Technology Data Exchange (ETDEWEB)

    Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

    1998-02-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

  11. Post-accident cooling capacity analysis of the AP1000 passive spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Su Xia

    2013-01-01

    The passive design is used in AP1000 spent fuel pool cooling system. The decay heat of the spent fuel is removed by heating-boiling method, and makeup water is provided passively and continuously to ensure the safety of the spent fuel. Based on the analysis of the post-accident cooling capacity of the spent fuel cooling system, it is found that post-accident first 72-hour cooling under normal refueling condition and emergency full-core offload condition can be maintained by passive makeup from safety water source; 56 hours have to be waited under full core refueling condition to ensure the safety of the core and the spent fuel pool. Long-term cooling could be conducted through reserved safety interface. Makeup measure is available after accident and limited operation is needed. Makeup under control could maintain the spent fuel at sub-critical condition. Compared with traditional spent fuel pool cooling system design, the AP1000 design respond more effectively to LOCA accidents. (authors)

  12. Technical and economic analysis of hydrogen refuelling

    International Nuclear Information System (INIS)

    Nistor, Silviu; Dave, Saraansh; Fan, Zhong; Sooriyabandara, Mahesh

    2016-01-01

    Highlights: • Technical and economic models of a hydrogen station for vehicles refuelling. • Hydrogen demand from fuel cell electric vehicles modelled stochastically. • Study case based on a UK pilot project. • Operation of the H_2 station using combined energy from wind and power grid is preferred. • Return on investment of 5–10 years is possible for the hydrogen station. - Abstract: This paper focuses on technical and economic analysis of a hydrogen refilling station to provide operational insight through tight coupling of technical models of physical processes and economic models. This allows the dynamic relationships of the system to be captured and analysed to provide short/medium term analytical capability to support system design, planning, and financing. The modelling developed here highlights the need to closely link technical and economic models for technology led projects where technical capability and commercial feasibility are important. The results show that hydrogen fuel can be competitive with petrol on a GBP/KG basis if the return on investment period is over 10 years for PEM electrolysers and 5 for Alkaline electrolysers. We also show that subsidies on capital costs (as reflected by some R&D funding programs) make both PEM and Alkaline technologies cheaper than the equivalent price of petrol, which suggests more emphasis should be put on commercialising R&D funded projects as they have commercial advantages. The paper also shows that a combined wind and grid connected station is preferable so that a higher number of customers are served (i.e. minimum shortage of hydrogen).

  13. Risk assessment of LPG automotive refuelling facilities

    Energy Technology Data Exchange (ETDEWEB)

    Melchers, R.E. [University of Newcastle, Newcastle (Australia). Dept. of Civil, Surveying and Enviromental Engineering; Feutrill, W.R. [Wesfarmers Kleenheat Gas Pty. Ltd., Perth (Australia)

    2001-12-01

    Quantified risk analysis (QRA) was used for the revision of regulatory separation distances associated with medium size liquefied petroleum gas (LPG) refuelling facilities used in automotive service (gas) stations. Typically these facilities consist of a 7.5 kl pressure vessel, pump, pipework, dispensing equipment and safety equipment. Multi-tank installations are relatively uncommon. This paper describes the hazard scenarios considered, the risk analysis procedure and the selection and application of data for initiating events and for rates of failure of mechanical components and of the pressure vessel. Human errors and intervention possibilities were also considered. Because of the inapplicability of established consequence models and the relatively small scale of the facilities, a number of tests were performed to estimate flame length, flame impingement effects, ignition probabilities and the effectiveness of screening devices. (author)

  14. Environmental and biological monitoring of benzene during self-service automobile refueling.

    OpenAIRE

    Egeghy, P P; Tornero-Velez, R; Rappaport, S M

    2000-01-01

    Although automobile refueling represents the major source of benzene exposure among the nonsmoking public, few data are available regarding such exposures and the associated uptake of benzene. We repeatedly measured benzene exposure and uptake (via benzene in exhaled breath) among 39 self-service customers using self-administered monitoring, a technique rarely used to obtain measurements from the general public (130 sets of measurements were obtained). Benzene exposures averaged 2.9 mg/m(3) (...

  15. Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

    1997-07-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

  16. Hydrogen Refuelling Station Hamburg HafenCity

    Energy Technology Data Exchange (ETDEWEB)

    Hustadt, Daniel [Vattenfall Europe Innovation GmbH (Germany)

    2010-07-01

    Decoupling the growing road traffic and the related greenhouse gas emissions demand a major effort by research, OEMs as well as oil and energy companies. Above all the reduction of CO2-emissions is a growing need for climate protection. Bio fuels can help to reach those targets, however the available sources are not enough to guarantee a sustainable supply. Battery Electric Vehicles are today limited technically with regards to range and weight and will most likely be used in metropolitan regions. In this project the necessary infrastructure to refuel buses and cars of a bigger fleet will be installed. Doing so the prerequisite for using fuel cell based cars and buses as an alternative way of mobility is developed. The capability of new components for the productions, storage and distribution of larger amounts of hydrogen is shown. Additionally still existing potential optimizing on a technical and operational level shall be made available. (orig.)

  17. An analysis of fast reactor fuel assembly performance taking into account their mechanical interaction in the core and refuelling line capabilities

    International Nuclear Information System (INIS)

    Buksha, Yu.K.; Zabudko, L.M.; Kravchenko, I.N.; Matveenko, L.V.; Meshkov, M.N.

    1984-01-01

    An approach to assessment of fast reactor fuel assembly performance has been considered. A concept of passive restraint of fuel assemblies in a reactor adopted in the USSR is described. Some methods for calculating the interassembly interactions during operation are briefly outlined, some calculated results are presented. A problem of fuel assembly performance during refuelling taking into account the refuelling line capabilities is considered. Some results from fuel assemblies operation experience in the BN-600 reactor are given. (author)

  18. Development of pre-startup equipment for light water reactors

    International Nuclear Information System (INIS)

    Ram, Rajit; Borkar, S.P.; Dixit, M.Y.; Das, Debashis; Patil, R.K.

    2010-01-01

    Light water reactor (LWR) core typically has high excess reactivity as compared to Pressurized Heavy Water Reactor (PHWR). Unlike PHWR, where online refueling is done, LWR is operated for a long period to achieve maximum fuel burn-up before refueling. Since the reactivity is always reducing with burn-up of the core, the positions of control rods at criticality are always changing in a single direction, i.e. away from the core. Therefore it is possible to start the LWR even if the nuclear instrumentation is not online, provided the criticality position of control rods is known for previous operation. However, for the very first startup, the criticality position of control rods is required to be determined. A special nuclear instrumentation system, called Pre-startup equipment (PSE) is developed using two numbers of in-core detectors along with the processing electronics. The PSE enables operators to determine the criticality position of control rods for the first startup at zero power. The same equipment can also be used during loading of fuel assemblies. This paper discusses the features and architecture of PSE, its individual circuit blocks and specifications. (author)

  19. LINK2009 Phase 1: Development of 2. generation fuel cell vehicles and hydrogen refueling station. Final report; LINK2009 fase 1: Udvikling af 2. gen. braendselscelle koeretoejer og brinttankstation. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-15

    LINK2009 project was to develop 2nd gen. technologies fuel cell systems for vehicles and 350bar hydrogen refueling stations. Also the LINK2009 project were to ensure a continuously positioning of Denmark and the Scandinavian Region within hydrogen for transport and continue to attract international car manufacturers to conduct demonstration and later market introduction in the region. The LINK2009 project is divided in two phases where this first phase only deals with the development of the 2nd generation technologies, whereas the following phase 2 will include the demonstration hereof as well as additional research activities. This Report describes the results of the phase 1 that was commenced in summer 2008 and ended in late 2009. Phase 1 has resulted in the development of new 2nd generation fuel cell technology for use in a city car and a service vehicle. Stated targets for price and efficiency have been reached and the following demonstration in Phase 2 is to confirm reaching of life time targets. The efficiency of the fuel cell system for the city car has been measured to be 42-48% at a power delivery of respectively 10kW and 2kW, which is significantly above the target of >40%. System simplifications and selection of new components have enabled a 50% reduction in the kW price for the fuel cell system, including 700bar hydrogen storage, now totalling Euro 4.500/kW. This creates sufficient basis for conducting demonstration of the system in vehicles. 9 vehicles are planned to be demonstrated in the following phase 2. Additional 8 vehicles were put in operation in Copenhagen in November 2009. Phase 1 has conducted development of 2nd gen. hydrogen refuelling technology that has resulted in concepts for both 350bar and 700bar refuelling as well as a concept for onsite hydrogen production at refuelling stations. In separate projects the developed 350bar technology has been brought to use in a newly established hydrogen station in Copenhagen, and the hydrogen

  20. WLAN Hot Spot services for the automotive and oil industries :a business analysis Or : "Refuel the car with petrol and information, both ways at the gas station"

    NARCIS (Netherlands)

    L-F. Pau (Louis-François); M.H.P. Oremus

    2003-01-01

    textabstractWhile you refuel for gas ,why not refuel for information or download vehicle data ? This paper analyzes in extensive detail the user segmentation by vehicle usage , service offering , and full business models from WLAN hot spot services delivered to vehicles (private, professional ,

  1. Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station

    International Nuclear Information System (INIS)

    Wilding, B.; Bramwell, D.

    1999-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG and E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG and E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California

  2. Multi-Application Small Light Water Reactor Final Report

    International Nuclear Information System (INIS)

    Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.

    2003-01-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle. Development of the baseline design concept has been sufficiently completed to determine that it complies with the safety requirements and criteria, and satisfies the major goals already noted. The more significant features of the baseline single-unit design concept include: (1) Thermal Power--150 MWt; (2) Net Electrical Output--35 MWe; (3) Steam Generator Type--Vertical, helical tubes; (4) Fuel UO 2 , 8% enriched; (5) Refueling Intervals--5 years; (6) Life-Cycle--60 years. The economic performance was assessed by designing a power plant with an electric generation capacity in the range of current and advanced evolutionary systems. This approach allows for direct comparison of economic performance and forms a basis for further evaluation, economic and technical, of the proposed design and for the design evolution towards a more cost competitive concept. Applications such as cogeneration

  3. Nuclear reactor refueling system

    International Nuclear Information System (INIS)

    Wade, E.E.

    1978-01-01

    A system for transferring fuel assemblies between a nuclear reactor core and a fuel storage area while the fuel assembies remain completely submerged in a continuous body of coolant is described. The system comprises an in-vessel fuel transfer machine located inside the reactor vessel and an ex-vessel fuel transfer machine located in a fuel storage tank. The in-vessel fuel transfer machine comprises two independently rotatable frames with a pivotable fuel transfer apparatus disposed on the lower rotatable frame. The ex-vessel fuel transfer machine comprises one frame with a pivotable fuel transfer apparatus disposed thereon. The pivotable apparatuses are capable of being aligned with each other to transfer a fuel assembly between the reactor vessel and fuel storage tank while the fuel assembly remains completely submerged in a continuous body of coolant. 9 claims, 7 figures

  4. Ensuring safety of fuel cell applications and hydrogen refuelling. Legislation and standards; Polttokennosovellusten ja vetytankkauksen turvallisuuden varmistaminen. Saeaedoeksiae ja standardeja

    Energy Technology Data Exchange (ETDEWEB)

    Nissila, M.; Sarsama, J.

    2013-09-15

    Fuel cell technology is considered a promising alternative in terms of viable energy systems. The advantages of fuel cell systems include a good efficiency rate and the lack of harmful environmental emissions. Factors which may slow down the commercialisation of fuel cell technology, e.g. fuel cell vehicles, include the high price of hydrogen and the insufficiency of the infrastructure required for the distribution of hydrogen. A large proportion of major car manufacturers are committed to introducing fuel cell cars to the market by 2014-2016. In order to ensure a successful market introduction of fuel cell vehicles, this has to be aligned with the development of the necessary hydrogen infrastructure. In the early commercialisation stages of a new technology, it is important to give the public correct, justified and understandable information on the safety of the fuel cell applications, and also on the measures taken to ensure the safety of applications. A lack of necessary information, inaccurate perceptions and prejudices can have an adverse effect on the public acceptance of fuel cell applications. Hazards and potential accidents related to fuel cell systems are mainly associated with the flammable substances (e.g. hydrogen, methane) used as fuel, the high pressure of hydrogen, electrical hazards, and dangers concerning technical systems in general. The fuel cell applications reviewed in this publication are transport applications and stationary applications and the refuelling system of gaseous hydrogen. The publication concentrates on fuel cells using hydrogen as fuel. The publication gives an overview of how EU-legislation (mainly various directives) and Finnish legislation applies to fuel cell systems and applications, and what kind of safety requirements the legislation sets. In addition, a brief overview of safety standards concerning fuel cell systems and hydrogen refuelling is presented. (orig.)

  5. Feasibility study on application of WIMS-AECL to Wolsong-1 refueling simulation

    International Nuclear Information System (INIS)

    Kim, Y.; Lee, S.

    2005-01-01

    'Full text:' At present, in Wolsong nuclear power plant, all of the reactor physics calculations are based on the cell code POWDERPUFS-V (PPV). PPV code use semi-empirical approximation rather than direct solving of transport equation with robust methodology. Switch from PPV to more robust transport solver is world-wide trend in addition to GAI issued from Canadian regulatory body (CNSC). In this paper, feasibility study on the replacement of cell code POWDERPUFS-V (PPV) with WIMS-AECL was performed for Wolsong-1 NPP. The impact of the cell code replacement on physics design parameters and refueling simulation was assessed. First, fuel isotopic composition affecting core reactivity is compared between PPV and WIMS-AECL. Generally it was shown that WIMS-AECL predicts higher uranium fissile concentration while less plutonium concentration as fuel burnup increases compared with prediction of PPV. Infinite multiplication factor of WIMS-AECL is slightly less predicted than that of PPV. Also core reactivity change from operating condition change such as moderator temperature, coolant temperature, fuel temperature and coolant density were compared for both fresh fuel and equilibrium fuel. Specially the analysis of void reactivity which is current hot issue for positive reactivity insertion in LOCA was also performed. As a result of this study, all of WIMS-AECL results were similar to PPV based calculation in the fresh fuel. However, there is a tendency that the deviation between the two codes increases as the fuel burn-up increases. This is because PPV code was made from the laboratory condition with fresh fuel and low fuel temperature. Second, refueling simulation with WIMS-AECL based RFSP was tried to compare with current PPV based RFSP simulation for about 20 months (5775FPD ∼ 6324FPD). To cover wide range of operating parameter condition such as purity of moderator and coolant and boron concentration, tremendous amount of computation time is needed with WIMS

  6. Pellets for fusion reactor refueling. Annual progress report, 1 January 1975--31 December 1975

    International Nuclear Information System (INIS)

    Turnbull, R.J.

    1976-01-01

    The feasibility of refueling fusion reactors using pellets of deuterium-tritium is discussed. A pellet injector has been constructed and experiments have been done injecting solid pellets into the ORMAK machine. Theoretical explanations of the results from these experiments have been successful. Other experiments underway include techniques for charging the pellets in order to accelerate and control them

  7. Drogue tracking using 3D flash lidar for autonomous aerial refueling

    Science.gov (United States)

    Chen, Chao-I.; Stettner, Roger

    2011-06-01

    Autonomous aerial refueling (AAR) is an important capability for an unmanned aerial vehicle (UAV) to increase its flying range and endurance without increasing its size. This paper presents a novel tracking method that utilizes both 2D intensity and 3D point-cloud data acquired with a 3D Flash LIDAR sensor to establish relative position and orientation between the receiver vehicle and drogue during an aerial refueling process. Unlike classic, vision-based sensors, a 3D Flash LIDAR sensor can provide 3D point-cloud data in real time without motion blur, in the day or night, and is capable of imaging through fog and clouds. The proposed method segments out the drogue through 2D analysis and estimates the center of the drogue from 3D point-cloud data for flight trajectory determination. A level-set front propagation routine is first employed to identify the target of interest and establish its silhouette information. Sufficient domain knowledge, such as the size of the drogue and the expected operable distance, is integrated into our approach to quickly eliminate unlikely target candidates. A statistical analysis along with a random sample consensus (RANSAC) is performed on the target to reduce noise and estimate the center of the drogue after all 3D points on the drogue are identified. The estimated center and drogue silhouette serve as the seed points to efficiently locate the target in the next frame.

  8. Considering the dynamic refueling behavior in locating electric vehicle charging stations

    Science.gov (United States)

    Liu, K.; Sun, X. H.

    2014-11-01

    Electric vehicles (EVs) will certainly play an important role in addressing the energy and environmental challenges at current situation. However, location problem of EV charging stations was realized as one of the key issues of EVs launching strategy. While for the case of locating EV charging stations, more influence factors and constraints need to be considered since the EVs have some special attributes. The minimum requested charging time for EVs is usually more than 30minutes, therefore the possible delay time due to waiting or looking for an available station is one of the most important influence factors. In addition, the intention to purchase and use of EVs that also affects the location of EV charging stations is distributed unevenly among regions and should be considered when modelling. Unfortunately, these kinds of time-spatial constraints were always ignored in previous models. Based on the related research of refuelling behaviours and refuelling demands, this paper developed a new concept with dual objectives of minimum waiting time and maximum service accessibility for locating EV charging stations - named as Time-Spatial Location Model (TSLM). The proposed model and the traditional flow-capturing location model are applied on an example network respectively and the results are compared. Results demonstrate that time constraint has great effects on the location of EV charging stations. The proposed model has some obvious advantages and will help energy providers to make a viable plan for the network of EV charging stations.

  9. Automatic refueling platform and CRD remote handling device for BWR plant

    International Nuclear Information System (INIS)

    Kato, Hiroaki; Takagi, Kaoru

    1978-01-01

    In BWR plants, machines for replacing fuel assemblies and control rod drives are usually operated directly by personnel. An automatic refueling platform and a CRD remote handling device aiming at radiation exposure reduction and handling perfectness are described, which are already used in BWR plants. Automation of the former is achieved in transporting fuel assemblies between a reactor pressure vessel and a fuel storage pool, shuffling fuel assemblies in a reactor core and moving fuel assemblies in a fuel storage pool. In the latter, replacement of CRDs is nearly all performed remotely. (Mori, K.)

  10. Physical aspects of the Canadian generation IV supercritical water-cooled pressure tube reactor plant design

    Energy Technology Data Exchange (ETDEWEB)

    Gaudet, M.; Yetisir, M.; Haque, Z. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The form of the containment building is a function of the requirements imposed by various systems. In order to provide sufficient driving force for naturally-circulated emergency cooling systems, as well as providing a gravity-driven core flooding pool function, the Canadian SCWR reactor design relies on elevation differences between the reactor and the safety systems. These elevation differences, the required cooling pool volumes and the optimum layout of safety-related piping are major factors influencing the plant design. As a defence-in-depth, the containment building and safety systems also provide successive barriers to the unplanned release of radioactive materials, while providing a path for heat flow to the ultimate heat sink, the atmosphere. Access to the reactor for refuelling is from the top of the reactor, with water used as shielding during the refuelling operations. The accessibility to the reactor and protection of the environment are additional factors influencing the plant design. This paper describes the physical implementation of the major systems of the Canadian SCWR within the reactor building, and the position of major plant services relative to the reactor building. (author)

  11. A cislunar transportation system fuelled by lunar resources

    Science.gov (United States)

    Sowers, G. F.

    2016-11-01

    A transportation system for a self sustaining economy in cislunar space is discussed. The system is based on liquid oxygen (LO2), liquid hydrogen (LH2) propulsion whose fuels are derived from ice mined at the polar regions of the Moon. The elements of the transportation system consist of the Advanced Cryogenic Evolved Stage (ACES) and the XEUS lander, both being developed by United Launch Alliance (ULA). The main propulsion elements and structures are common between ACES and XEUS. Both stages are fully reusable with refueling of their LO2/LH2 propellants. Utilization of lunar sourced propellants has the potential to dramatically lower the cost of transportation within the cislunar environs. These lower costs dramatically lower the barriers to entry of a number of promising cislunar based activities including space solar power. One early application of the architecture is providing lunar sourced propellant to refuel ACES for traditional spacecraft deployment missions. The business case for this application provides an economic framework for a potential lunar water mining operation.

  12. Optimization of a fuel bundle within a CANDU supercritical water reactor

    International Nuclear Information System (INIS)

    Schofield, M.E.

    2009-01-01

    The supercritical water reactor is one of six nuclear reactor concepts being studied under the Generation IV International Forum. Generation IV nuclear reactors will improve the metrics of economics, sustainability, safety and reliability, and physical protection and proliferation resistance over current nuclear reactor designs. The supercritical water reactor has specific benefits in the areas of economics, safety and reliability, and physical protection. This work optimizes the fuel composition and bundle geometry to maximize the fuel burnup, and minimize the surface heat flux and the form factor. In optimizing these factors, improvements can be achieved in the areas of economics, safety and reliability of the supercritical water reactor. The WIMS-AECL software was used to model a fuel bundle within a CANDU supercritical water reactor. The Gauss' steepest descent method was used to optimize the above mentioned factors. Initially the fresh fuel composition was optimized within a 43-rod CANFLEX bundle and a 61-rod bundle. In both the 43-rod and 61-rod bundle scenarios an online refuelling scheme and non-refuelling scheme were studied. The geometry of the fuel bundles was then optimized. Finally, a homogeneous mixture of thorium and uranium fuel was studied in a 60-rod bundle. Each optimization process showed definitive improvements in the factors being studied, with the most significant improvement being an increase in the fuel burnup. The 43-rod CANFLEX bundle was the most successful at being optimized. There was little difference in the final fresh fuel content when comparing an online refuelling scheme and non-refuelling scheme. Through each optimization scenario the ratio of the fresh fuel content between the annuli was a significant determining cause in the improvements in the factors being optimized. The geometry optimization showed that improvement in the design of a fuel bundle is indeed possible, although it would be more advantageous to pursue it

  13. Check valve slam waterhammer in piping systems equipped with multiple parallel pumps

    International Nuclear Information System (INIS)

    Sponsel, J.; Bird, E.; Zarechnak, A.

    1993-01-01

    The low pressure safety injection system at the calvert cliff's plant is designed to provide cooling water to the reactor in the event of a postulated accident and for reactor cool-down and decay heat removal during normal maintenance and refueling. This system experienced repeated damage to the axial piping supports on the pump section and the discharge headers due to the check valve phenomenon. To determine the cause, testing was performed in both the LPSI and CCW systems

  14. CAREM-25: Residual heat removal system

    International Nuclear Information System (INIS)

    Arvia, Roberto P.; Coppari, Norberto R.; Gomez de Soler, Susana M.; Ramilo, Lucia B.

    2000-01-01

    The objective of this work was the definition and consolidation of the residual heat removal system for the CAREM 25 reactor. The function of this system is cool down the primary circuit, removing the core decay heat from hot stand-by to cold shutdown and during refueling. In addition, this system heats the primary water from the cold shutdown condition to hot stand-by condition during the reactor start up previous to criticality. The system has been designed according to the requirements of the standards: ANSI/ANS 51.1 'Nuclear safety criteria for the design of stationary PWR plants'; ANSI/ANS 58.11 'Design criteria for safe shutdown following selected design basis events in light water reactors' and ANSI/ANS 58.9 'Single failure criteria for light water reactor safety-related fluid systems'. The suggested design fulfills the required functions and design criteria standards. (author)

  15. Assessment of occupational exposure to BTEX compounds at a bus diesel-refueling bay: A case study in Johannesburg, South Africa.

    Science.gov (United States)

    Moolla, Raeesa; Curtis, Christopher J; Knight, Jasper

    2015-12-15

    Of increasing concern is pollution by volatile organic compounds, with particular reference to five aromatic hydrocarbons (benzene, toluene, ethyl benzene and two isomeric xylenes; BTEX). These pollutants are classified as hazardous air pollutants. Due to the potential health risks associated with these pollutants, BTEX concentrations were monitored at a bus diesel-refueling bay, in Johannesburg, South Africa, using gas chromatography, coupled with a photo-ionization detector. Results indicate that o-xylene (29-50%) and benzene (13-33%) were found to be the most abundant species of total BTEX at the site. Benzene was within South African occupational limits, but above international occupational exposure limits. On the other hand, occupational concentrations of toluene, ethyl-benzene and xylenes were within national and international occupational limits throughout the monitoring period, based on 8-hour workday weighted averages. Ethyl-benzene and p-xylene concentrations, during winter, correspond to activity at the site, and thus idling of buses during refueling may elevate results. Overall, occupational air quality at the refueling bay is a matter of health concern, especially with regards to benzene exposure, and future reduction strategies are crucial. Discrepancies between national and international limit values merit further investigation to determine whether South African guidelines for benzene are sufficiently precautionary. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Report on the Fourth Reactor Refueling. Laguna Verde Nuclear Central. Unit 1. April-May 1995; Informe de la Cuarta Recarga de Combustible. Central Laguna Verde. Unidad 1. Abril-Mayo 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza L, A; Flores C, E; Lopez G, C P.F.

    1996-12-31

    The fourth refueling of the Unit 1 of Laguna Verde Nuclear Central was executed in the period of April 17 to May 31 of 1995 with the participation of a task group of 358 persons, included technicians and radiation protection officials and auxiliaries.The radiation monitoring and radiological surveillance to the workers was present length ways the refueling process and always attached to the ALARA criteria. The check points for radiation levels were set at: primary container or dry well, reloading floor, decontamination room (level 10.5), turbine building and radioactive waste building. To take advantage of the refueling process, rooms 203 and 213 of the turbine buildings were subject to inspection and maintenance work in valves, heaters and drains of heaters. Management aspects as personnel selection and training, costs, and countable are also presented in this report. Owing to the high cost of man-hour of the members of the ININ staff, its participation in the refueling process was in smaller number than years before. (Author).

  17. Parametric and scaling studies of condensation oscillation in subcooled water of the in-containment refueling water storage tank

    International Nuclear Information System (INIS)

    Lee, Jun Hyung; No, Hee Cheon

    1999-01-01

    Condensation oscillation by jetting the steam into subcooled water through spargers is studied. To provide a suitable guideline for oscillation phenomena in the IRWST of the next generation reactor, scaling methodology is introduced. Through scaling methodology and subsequent tests, it shows that the volume of steam cavity determines the dynamic characteristics of condensation oscillation. The second-order linear differential equation for frequency analysis is derived and its results are compared with those from the test data. Two types of condensation phenomena exist according to steam flow rates. At subsonic jet, condensation interface becomes irregular in shape and upper system volumes affect the dynamic characteristics of condensation oscillation. At sonic jet, a regular steam cavity forms at the exit of discharge holes. Parametric effects and subsequent dynamic responses of the pool tank are investigated through experiments in applicable test ranges. When the temperature of pool water becomes lower, the amplitude becomes larger. Critical parameters are derived from the scaling methodology and are system volume, cavity volume, discharge hole area, and density ration. It is found that system friction factors affect frequency components of condensation oscillation. Oscillations of a steam cavity occur mainly on the face of the axial direction and pressure amplitudes become larger than that of the lateral direction

  18. Integrated head area design of KNGR to reduce refueling outage duration

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Tae; Park, Chi Yong; Kim, In Hwan; Kim, Dae Woong [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In the design of KNGR (Korea Next Generation Reactor), we believe that economy is one of the most important factors to be considered. Thus, we reviewed and evaluated the consequences of designing the head area into an integrated package from an economical point of view. The refueling outage durations of the nuclear power plants currently in operation in Korea, some having and others not having integrated head package, are compared. This paper discusses the characteristics of head area design and the critical design issues of KNGR head area to evaluate the effect of the head area characteristics on the outage duration. 8 refs., 4 figs. (Author)

  19. Integrated head area design of KNGR to reduce refueling outage duration

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Tae; Park, Chi Yong; Kim, In Hwan; Kim, Dae Woong [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    In the design of KNGR (Korea Next Generation Reactor), we believe that economy is one of the most important factors to be considered. Thus, we reviewed and evaluated the consequences of designing the head area into an integrated package from an economical point of view. The refueling outage durations of the nuclear power plants currently in operation in Korea, some having and others not having integrated head package, are compared. This paper discusses the characteristics of head area design and the critical design issues of KNGR head area to evaluate the effect of the head area characteristics on the outage duration. 8 refs., 4 figs. (Author)

  20. Study of applicability of a reverse osmosis system in the treatment of waste liquids (RAD-WASTE); Estudio de aplicabilidad de un sistema de osmosis inversa en el tratamiento de residuos liquidos (RAD-WASTE)

    Energy Technology Data Exchange (ETDEWEB)

    Hortiguela Martinez, R.; Ruiz Garcia, P.; Saiz Cuesta, A.

    2013-07-01

    Study of alternatives to the current system of water treatment line of soils of the refueling (evaporation followed by a demineralization with ion exchange resins), with a technique more respectful with the environment as it is reverse osmosis. This process removed the soluble salts through semi-permeable membranes. These membranes are permeable to water but impermeable to most ions.

  1. TELESCOPE sipping - a proven fuel leak detection system

    International Nuclear Information System (INIS)

    Deleryd, R.; Collin, P.

    1996-01-01

    The advantages of the TELESCOPE sipping method are: For BWRs: clamp-on sipping nozzle, which attaches easily to the grapple of the telescope mast on the refuelling platform, but does not affect its operation; no heavy and large sipping bells have to be operated in the core with risk of damage, entangled hoses or lifting rods/wires; the sipping can also be performed for testing long time storaged fuel in the spent fuel pool. For PWRs: simple attachment of water suction hose or tube to the refuelling platform mast. (orig./DG)

  2. The development of calculational methods and assessment standards for AGR refuelling safety cases

    International Nuclear Information System (INIS)

    Dawson, J.W.; Grant, R.J.; Thomas, D.L.

    1995-01-01

    This paper considers the methods used to assess the protection needed against hazards in the AGR fuel route. These methods are all directed towards the objective of showing that all postulated events taking place during refuelling are acceptable within agreed criteria of severity versus frequency. The methods allow the determination of temperatures arising in various hazards, from which estimates can be made of the radiological release, if any, which would occur. Comparison of this estimate with the level considered acceptable at the fault frequency leads to the requirement for protection. (author)

  3. Conceptual mechanical design for a pressure-tube type supercritical water-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Diamond, W.; Leung, L.K.H.; Martin, D.; Duffey, R. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    This paper presents a conceptual mechanical design for a heavy-water-moderated pressure-tube supercritical water (SCW) reactor, which has evolved from the well-established CANDU nuclear reactor. As in the current designs, the pressure-tube SCW reactor uses a calandria vessel and, as a result, many of today's technologies (such as the shutdown safety systems) can readily be adopted with small changes. Because the proposed concept uses a low-pressure moderator, it does not require a pressure vessel that is subject to the full SCW pressure and temperature conditions. The proposed design uses batch refueling and hence, the reactor core is orientated vertically. Significant simplifications result in the design with the elimination of on line fuelling systems, fuel channel end fittings and fuel channel closure seals and thus utilize the best features of Light Water Reactor (LWR) and Heavy Water Reactor (HWR) technologies. The safety goal is based on achieving a passive 'no core melt' configuration for the channels and core, so the mechanical features and systems directly reflect this desired attribute. (author)

  4. Conceptual mechanical design for a pressure-tube type supercritical water-cooled reactor

    International Nuclear Information System (INIS)

    Yetisir, M.; Diamond, W.; Leung, L.K.H.; Martin, D.; Duffey, R.

    2011-01-01

    This paper presents a conceptual mechanical design for a heavy-water-moderated pressure-tube supercritical water (SCW) reactor, which has evolved from the well-established CANDU nuclear reactor. As in the current designs, the pressure-tube SCW reactor uses a calandria vessel and, as a result, many of today's technologies (such as the shutdown safety systems) can readily be adopted with small changes. Because the proposed concept uses a low-pressure moderator, it does not require a pressure vessel that is subject to the full SCW pressure and temperature conditions. The proposed design uses batch refueling and hence, the reactor core is orientated vertically. Significant simplifications result in the design with the elimination of on line fuelling systems, fuel channel end fittings and fuel channel closure seals and thus utilize the best features of Light Water Reactor (LWR) and Heavy Water Reactor (HWR) technologies. The safety goal is based on achieving a passive 'no core melt' configuration for the channels and core, so the mechanical features and systems directly reflect this desired attribute. (author)

  5. The Palm Desert renewable [hydrogen] transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, C.E.; Lehman, P. [Humboldt State Univ., Arcata, CA (United States). Schatz Energy Research Center

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  6. Ontario Hydro Pickering Generating Station fuel handling system performance

    International Nuclear Information System (INIS)

    Underhill, H.J.

    1986-01-01

    The report briefly describes the Pickering Nuclear Generating Station (PNGS) on-power fuel handling system and refuelling cycle. Lifetime performance parameters of the fuelling system are presented, including station incapability charged to the fuel handling system, cost of operating and maintenance, dose expenditure, events causing system unavailability, maintenance and refuelling strategy. It is concluded that the 'CANDU' on-power fuelling system, by consistently contributing less than 1% to the PNGS incapability, has been credited with a 6 to 20% increase in reactor capacity factor, compared to off-power fuelling schemes. (author)

  7. An experimental investigation of the thermal mixing in a water pool using a simplified I-sparger

    International Nuclear Information System (INIS)

    Kim, Y. S.; Jun, H. G.; Youn, Y. J.; Park, C. K.; Song, C. H.

    2004-01-01

    The SDVS (Safety Depressurization and Vent System) in the APR1400 is designed to cope with some DBEs (Design Bases Events) and beyond-DBEs related to overpressurization of the RCS (Reactor Coolant System). When the POSRV (Power Operated Safety Relief Valve) is actuated, steam from the pressurizer is discharged to the IRWST(In-containment Refueling Water Storage Tank) through I-spargers. When injected steam is condensed in the pool, it induces water motions and temperature variations in the pool, which effects on the steam jet condensation, vice versa. The B and C(Blowdown and Condensation) loop is a test facility for the thermal mixing through a steam sparger in a water pool. Thermal mixing tests provide basic understanding of the physics and some insights related to efficient pool mixing, dynamic load, and the IRWST design improvement etc

  8. Minimizing or eliminating refueling of nuclear reactor

    Science.gov (United States)

    Doncals, Richard A.; Paik, Nam-Chin; Andre, Sandra V.; Porter, Charles A.; Rathbun, Roy W.; Schwallie, Ambrose L.; Petras, Diane S.

    1989-01-01

    Demand for refueling of a liquid metal fast nuclear reactor having a life of 30 years is eliminated or reduced to intervals of at least 10 years by operating the reactor at a low linear-power density, typically 2.5 kw/ft of fuel rod, rather than 7.5 or 15 kw/ft, which is the prior art practice. So that power of the same magnitude as for prior art reactors is produced, the volume of the core is increased. In addition, the height of the core and it diameter are dimensioned so that the ratio of the height to the diameter approximates 1 to the extent practicable considering the requirement of control and that the pressure drop in the coolant shall not be excessive. The surface area of a cylinder of given volume is a minimum if the ratio of the height to the diameter is 1. By minimizing the surface area, the leakage of neutrons is reduced. By reducing the linear-power density, increasing core volume, reducing fissile enrichment and optimizing core geometry, internal-core breeding of fissionable fuel is substantially enhanced. As a result, core operational life, limited by control worth requirements and fuel burnup capability, is extended up to 30 years of continuous power operation.

  9. Fuel handling system of Indian 500 MWe PHWR-evolution and innovations

    International Nuclear Information System (INIS)

    Sanatkumar, A.; Jit, I.; Muralidhar, G.

    1996-01-01

    India has gained rich experience in design, manufacture, testing, operation and maintenance of the Fuel Handling System of CANDU type PHWRs. When design and layout of the first 500 MWe PHWR was being evolved, it was possible for us to introduce many special and innovative features in the Fuel Handling System which are friendly for operations and maintenance personnel. Some of these are: Simple, robust and modular mechanisms for ease of maintenance; Shorter turnaround time for refuelling a channel by introduction of transit equipment between the Fuelling Machine (FM) Head and light water equipment; Optimised layout to transport spent fuel in straight and short path and also to facilitate direct wheeling out of the FM Head from the Reactor Building to the Service Building; Provision to operate the FM Head even when the Primary Heat Transport (PHT) System is open for maintenance; Control-console engineered for carrying out refuelling operations in the sitting position; and, Dedicated calibration and maintenance facility to facilitate quick replacement of the FM Head as a single unit. The above special features have been described in this paper. (author). 7 figs

  10. Fuel handling system of Indian 500 MWe PHWR-evolution and innovations

    Energy Technology Data Exchange (ETDEWEB)

    Sanatkumar, A; Jit, I; Muralidhar, G [Nuclear Power Corporation of India Ltd., Mumbai (India)

    1997-12-31

    India has gained rich experience in design, manufacture, testing, operation and maintenance of the Fuel Handling System of CANDU type PHWRs. When design and layout of the first 500 MWe PHWR was being evolved, it was possible for us to introduce many special and innovative features in the Fuel Handling System which are friendly for operations and maintenance personnel. Some of these are: Simple, robust and modular mechanisms for ease of maintenance; Shorter turnaround time for refuelling a channel by introduction of transit equipment between the Fuelling Machine (FM) Head and light water equipment; Optimised layout to transport spent fuel in straight and short path and also to facilitate direct wheeling out of the FM Head from the Reactor Building to the Service Building; Provision to operate the FM Head even when the Primary Heat Transport (PHT) System is open for maintenance; Control-console engineered for carrying out refuelling operations in the sitting position; and, Dedicated calibration and maintenance facility to facilitate quick replacement of the FM Head as a single unit. The above special features have been described in this paper. (author). 7 figs.

  11. Study of Some Innovant Reactors without on- Site Refueling with Triso and Cermet Fuel

    OpenAIRE

    A.Chetaine; A. Benchrif; H. Amsil; V. Kuznetsov; Y. Shimazu

    2012-01-01

    The evaluation of unit cell neutronic parameters and lifetime for some innovant reactors without on sit-refuling will be held in this work. the behavior of some small and medium reactors without on site refueling with triso and cermet fuel. For the FBNR long life except we propose to change the enrichment of the Cermet MFE to 9%. For the AFPR reactor we can see that the use of the Cermet MFE can extend the life of this reactor but to maintain the same life period for AFPR...

  12. Optimization of travel salesman problem using the ant colony system and Greedy search

    International Nuclear Information System (INIS)

    Esquivel E, J.; Ordonez A, A.; Ortiz S, J. J.

    2008-01-01

    In this paper we present some results obtained during the development of optimization systems that can be used to design refueling and patterns of control rods in a BWR. These systems use ant colonies and Greedy search. The first phase of this project is to be familiar with these optimization techniques applied to the problem of travel salesman problem (TSP). The utility of TSP study is that, like the refueling design and pattern design of control rods are problems of combinative optimization. Even, the similarity with the problem of the refueling design is remarkable. It is presented some results for the TSP with the 32 state capitals of Mexico country. (Author)

  13. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Eiichi [Omiya Technical Institute, Saitama-ken (Japan)

    1995-03-01

    Radiation exposure during the refueling outages at Japanese Pressurized Water Reactor (PWR) Plants has been gradually decreased through continuous efforts keeping the radiation dose rates at relatively low level. The improvement of primary water chemistry in respect to reduction of the radiation sources appears as one of the most important contributions to the achieved results and can be classified by the plant operation conditions as follows

  14. Scaling and parametric studies of condensation oscillation in an in-containment refueling water storage tank

    International Nuclear Information System (INIS)

    Lee, Jun Hyung; No, Hee Cheon

    2001-01-01

    The purpose of this paper is to study the condensation oscillation phenomena by steam-jetting into subcooled water through a sparger, implementing a scaling methodology and the similarity correlation between the test facility and model prototype. In additon, the results of this study can provide suitable guidelines for sparger design utilized in the IRWST for the Advanced Passive Reactor 1400 (APR 1400). To corroborate the scaling methodology, various experimental tests were conducted. The scaling-related parameters experimentally considered were water temperatures, mass flux, discharge system volumes, tank sizes, source pressure, steam-jetting directions, and numbers of sparger discharge holes. To preserve the scaling similarity, the thickness of the minimum water volume created by the boundary layer that encloses the steam cavity was found to be equal to the maximum length of the steam cavity formed. Four key scaling parameters were identified and empirically correlated with the maximum amplitude of pressure oscillation. They are as follows: Volume of the steam cavity, flow restriction coefficient, discharge hole area, and density ratio of steam to water. Variations of the oscillation amplitude were small when steam-jetting directions were altered. The concept of a reduction factor was introduced for estimating the oscillation amplitude of the multi-hole sparger with test data from a single-hole sparger

  15. Neutron flux control systems validation

    International Nuclear Information System (INIS)

    Hascik, R.

    2003-01-01

    In nuclear installations main requirement is to obtain corresponding nuclear safety in all operation conditions. From the nuclear safety point of view is commissioning and start-up after reactor refuelling appropriate period for safety systems verification. In this paper, methodology, performance and results of neutron flux measurements systems validation is presented. Standard neutron flux measuring chains incorporated into the reactor protection and control system are used. Standard neutron flux measuring chain contains detector, preamplifier, wiring to data acquisition unit, data acquisition unit, wiring to display at control room and display at control room. During reactor outage only data acquisition unit and wiring and displaying at reactor control room is verified. It is impossible to verify detector, preamplifier and wiring to data acquisition recording unit during reactor refuelling according to low power. Adjustment and accurate functionality of these chains is confirmed by start-up rate (SUR) measurement during start-up tests after refuelling of the reactors. This measurement has direct impact to nuclear safety and increase operational nuclear safety level. Briefly description of each measuring system is given. Results are illustrated on measurements performed at Bohunice NPP during reactor start-up tests. Main failures and their elimination are described (Authors)

  16. A guidance law for UAV autonomous aerial refueling based on the iterative computation method

    Directory of Open Access Journals (Sweden)

    Luo Delin

    2014-08-01

    Full Text Available The rendezvous and formation problem is a significant part for the unmanned aerial vehicle (UAV autonomous aerial refueling (AAR technique. It can be divided into two major phases: the long-range guidance phase and the formation phase. In this paper, an iterative computation guidance law (ICGL is proposed to compute a series of state variables to get the solution of a control variable for a UAV conducting rendezvous with a tanker in AAR. The proposed method can make the control variable converge to zero when the tanker and the UAV receiver come to a formation flight eventually. For the long-range guidance phase, the ICGL divides it into two sub-phases: the correction sub-phase and the guidance sub-phase. The two sub-phases share the same iterative process. As for the formation phase, a velocity coordinate system is created by which control accelerations are designed to make the speed of the UAV consistent with that of the tanker. The simulation results demonstrate that the proposed ICGL is effective and robust against wind disturbance.

  17. Rapid changes in the size of different functional organ and muscle groups during refueling in a long-distance migrating shorebird

    NARCIS (Netherlands)

    Piersma, T; Gudmundsson, GA; Lilliendahl, K; Gudmundsson, Gudmundur A.

    1999-01-01

    The adaptive value of size changes in different organ and muscle groups was studied in red knots (Calidris canutus islandica) in relation to their migration. Birds were sampled on five occasions: at arrival in Iceland in May 1994, two times during subsequent refueling, at departure toward, and on

  18. Recent advances in severe accident technology - direct containment heating in advanced light water reactors

    International Nuclear Information System (INIS)

    Fontana, M.H.

    1993-01-01

    The issues affecting high-pressure melt ejection (HPME) and the consequential containment pressurization from direct containment heating (DCH), as they affect advanced light water reactors (ALWRs), specifically advanced pressurized water reactors (APWRs), were reviewed by the U.S. Department of Energy Advanced Reactor Severe Accident Program (ARSAP). Recommendations from ARSAP regarding the design of APWRs to minimize DCH are embodied within the Electric Power Research Institute ALWR Utility Requirements Document, which specifies (a) a large, strong containment; (b) an in-containment refueling water storage tank; (c) a reactor cavity configuration that minimizes energy transport to the containment atmosphere; and (d) a reactor coolant system depressurization system. Experimental and analytical efforts, which have focused on current-generation plants, and analyses for APWRs were reviewed. Although DCH is a subject of continuous research and considerable uncertainties remain, it is the judgment of the ARSAP that reactors complying with the recommended design requirements would have a low probability of early containment failure due to HPME and DCH

  19. Refueling the RPI reactor facility with low-enrichment fuel

    International Nuclear Information System (INIS)

    Harris, D.R.; Rodriguez-Vera, F.; Wicks, F.E.

    1985-01-01

    The RPI Critical Facility has operated since 1963 with a core of thin, highly enriched fuel plates in twenty-five fuel assembly boxes. A program is underway to refuel the reactor with 4.81 w/o enriched SPERT (F-1) fuel rods. Use of these fuel rods will upgrade the capabilities of the reactor and will eliminate a security risk. Adequate quantities of SPERT (F-1) fuel rods are available, and their use will result in a great cost saving relative to manufacturing new low-enrichment fuel plates. The SPERT fuel rods are 19 inches longer than are the present fuel plates, so a modified core support structure is required. It is planned to support and position the SPERT fuel pins by upper and lower lattice plates, thus avoiding the considerable cost of new fuel assembly boxes. The lattice plates will be secured to the existing top and bottom plates. The design permits the fabrication and use of other lattice plates for critical experiment research programs in support of long-lived full development for power reactors. (author)

  20. Laser driven pellet refuelling for JET (and reactor) uses

    International Nuclear Information System (INIS)

    Spalding, I.J.

    1978-11-01

    Published estimates of pellet sizes and velocities required to refuel JET and post-JET experiments are summarized. Possible advantages and difficulties of accelerating solid, unconstrained hydrogenic (and also jacketed) pellets to these velocities using laser techniques are then discussed. An essential problem to be solved is adequate axial guidance of the pellet during its acceleration, since laser pulse durations of many sound-transit times (in the solid D 2 ) are necessary to avoid shock-heating the pellet. It is shown that Culham's multikilojoule CO 2 TROJAN laser facility is well suited to testing many of the concepts proposed. In particular it is shown that successful verification, and subsequent optimization, of such (novel) techniques would permit single shot tests of contemporary pellet ablation theories by the injection of approximately 1 mm diameter D 2 pellets at velocities 6 cm s -1 into the JET plasma. Means for scaling these techniques to repetition rates of order 10 Hz, and to the 1 cm pellet diameters possibly required in a working Tokamak reactor, are also discussed. (author)

  1. Major outage trends in light water reactors. Interim report

    International Nuclear Information System (INIS)

    Burns, E.T.

    1978-04-01

    The report is a summary of the major outages which occurred in light water reactor plants during the period January 1971 through June 1977. Only those outages greater than 100 hours duration (exclusive of refueling outages) are included in the report. The trends in outages related to various reactor systems and components are presented as a function of plant age, and alternatively, calendar year. The principal contributors to major outages are ranked by their effect on the overall outage time for PWRs and BWRs. In addition, the outage history of each operating nuclear plant greater than 150 MWe is presented, along with a brief summary of those outages greater than two months duration

  2. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling: Technical progress report

    International Nuclear Information System (INIS)

    Kim, Kyekyoon.

    1987-12-01

    This paper discusses the use of a railgun accelerator to inject hydrogen pellets into a magnetic fusion reactor for refueling purposes. Specific studies in this paper include: 1.5 mm-diameter two-stage fuseless plasma-arc-driven electromagnetic railgun, construction and testing of a 3.2 mm-diameter two-stage railgun and a theoretical analysis of the behavior of a railgun plasma-arc armature inside a railgun

  3. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  4. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  5. New signal acquisition and processing system for the execution of initial criticality after refueling and physical tests at low power in Angra-2, with the incorporation of the real time resolution of the inverse point kinetic equation - IPK

    Energy Technology Data Exchange (ETDEWEB)

    Júnior, Décio Brandes M.F.; Oliveira, Mônica Georgia N.; Silva, Cristiano da, E-mail: deciobr@eletronuclear.gov.br, E-mail: mongeor@eletronuclear.gov.br, E-mail: cdsilva@eletronuclear.gov.br [Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Angra dos Reis, RJ (Brazil). Departamento DDD.O - Física de Reatores

    2017-07-01

    The goal of this work is present the new System of Acquisition and Signal Processing for the execution of the initial criticality after refueling and physical tests at low power with the incorporation of the real time resolution of Inverse Point Kinetic Equations (IPK). The system was developed using cRIO 9082 hardware (compactRIO), which is a programmable logic controller (PLC) and, the National Lab's LabVIEW programming language. The developed system enabled a better visualization and monitoring interface of the neutron flux evolution during the first criticality of cycle and following the low power physical tests, which allows the Reactor Physics Group and Reactor Operators of Angra 2 guide faster and accurately the reactivity variations at physical tests. The digital reactivity meter developed reinforces in Angra-2 the set of operational practices of reactivity management. (author)

  6. New signal acquisition and processing system for the execution of initial criticality after refueling and physical tests at low power in Angra-2, with the incorporation of the real time resolution of the inverse point kinetic equation - IPK

    International Nuclear Information System (INIS)

    Júnior, Décio Brandes M.F.; Oliveira, Mônica Georgia N.; Silva, Cristiano da

    2017-01-01

    The goal of this work is present the new System of Acquisition and Signal Processing for the execution of the initial criticality after refueling and physical tests at low power with the incorporation of the real time resolution of Inverse Point Kinetic Equations (IPK). The system was developed using cRIO 9082 hardware (compactRIO), which is a programmable logic controller (PLC) and, the National Lab's LabVIEW programming language. The developed system enabled a better visualization and monitoring interface of the neutron flux evolution during the first criticality of cycle and following the low power physical tests, which allows the Reactor Physics Group and Reactor Operators of Angra 2 guide faster and accurately the reactivity variations at physical tests. The digital reactivity meter developed reinforces in Angra-2 the set of operational practices of reactivity management. (author)

  7. Nuclear refueling platform drive system

    International Nuclear Information System (INIS)

    Busch, F.R.; Faulstich, D.L.

    1992-01-01

    This patent describes a drive system. It comprises: a gantry including a bridge having longitudinal and transverse axes and supported by spaced first and second end frames joined to fist and second end frames joined to first and second drive trucks for moving the bridge along the transverse axis; first means for driving the first drive truck; second means for driving the second drive truck being independent from the first driving means; and means for controlling the first and second driving means for reducing differential transverse travel between the first and second drive trucks, due to a skewing torque acting on the bridge, to less than a predetermined maximum, the controlling means being in the form of an electrical central processing unit and including: a closed-loop first velocity control means for controlling velocity of the first drive truck by providing a first command signal to the first driver means; a close loop second velocity control means for controlling velocity of the second drive truck by providing a second command signal to the second driving means; and an auxiliary closed-loop travel control means

  8. Design and prototyping of an ionic liquid piston compressor as a new generation of compressors for hydrogen refueling stations

    DEFF Research Database (Denmark)

    Arjomand Kermani, Nasrin

    to investigate the heat transfer phenomena inside the compression chamber; the system performance is evaluated, followed by the design process. The model is developed based on the mass and energy balance of the hydrogen, and liquid bounded by the wall of the compression chamber. Therefore, at each time step...... and positional node, the model estimates the pressure and temperature of the hydrogen and liquid, the temperature of the compression chamber wall, and the amount of heat extracted from the hydrogen directly at the interface between the hydrogen and liquid, and through the wall. The results indicate......, fabrication, and control of the prototype is described in the presented work. The new compressor design has high potential to be used as an alternative to the conventional reciprocating compressors in hydrogen refueling stations, as it provides a simpler design with lower manufacturing costs, higher...

  9. Results of automatic system implementation for Cofrentes power plant detection system LPRM inspection execution

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, M., E-mail: mpalomo@iqn.upv.es [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia (Spain); Urrea, M., E-mail: matias.urrea@iberdrola.es [C.N.Cofrentes - Iberdrola Generacion S.A., Valencia (Spain); Curiel, M., E-mail: m.curiel@lainsa.com [LAINSA, Grupo Dominguis, Valencia (Brazil); Arnaldos, A., E-mail: a.arnaldos@titaniast.com [TITANIA Servicios Teconologicos, Valencia (Spain)

    2011-07-01

    During this presentation we are going to introduce the results of Cofrentes nuclear power plant automation of the detection system LPRM (Local Power Range Monitor) inspection procedure. An LPRM's test system has been developed and it consists in a software application and data acquisition hardware that performs automatically the complete detection system process: refueling, storage and operation inspection: Ramp voltage generation, measured voltage Plateaux evaluation, qualification report emission; historical analysis to scan burn evolution. The inspections differentiations are developed by the different specifications that it has to fulfil: operation inspection: it is made to check the fission bolt wearing, the detection system functioning and to analyse malfunctioning. From technical specifications and curves analyses it can be determined each LPRM's substitution. Storage inspection: it is made to check the correct functioning and isolation losses before being installed in the core during refueling. Refueling inspection: it is checked that storage LPRM's installation is correct and that they are ready for new fuel cycle. The software application LPRM's Test has been developed by National Instruments LabVIEW, and it performs the following actions: Protocol IEEE-488 (GPIB) control of the source KEITHLEY 237. This source generates the ramp voltage and measure voltage; information acquisition of storage, process and source, identifying LPRM and realization conditions of the same; data analysis and conditions report, historical comparative analysis. (author)

  10. PWR and BWR light water reactor systems in the USA and their fuel cycle

    International Nuclear Information System (INIS)

    Crawford, W.D.

    1977-01-01

    Light water reactor operating experience in the USA can be considered to date from the choice of the pressurized water reactor (PWR) for use in the naval reactor program and the subsequent construction and operation of the nuclear power plant at Shippingport, Pennsylvania in 1957. The development of the boiling water reactor (BWR) in 1954 and its selection for the plant at Dresden, Illinois in 1959 established this concept as the other major reactor type in the US nuclear power program. The subsequent growth profile is presented, leading to 31 PWR's and 23 BWR's currently in operation as well as to plants in the planning and construction phase. A significant operating record has been accumulated concerning the availability of each of these reactor types as determined by: (1) outage for refueling, (2) component reliability, (3) maintenance requirements, and (4) retrofitting required by government regulation. In addition, the use and performance of BWR's and PWR's in meeting system load requirements is discussed. The growing concern regarding possible terrorist activities and other potential threats has resulted in systems and procedures designed to assure effective safeguards at nuclear power installations. Safeguards measures currently in place are described. Environmental effects of operating plants are subject to both radiological and non-radiological monitoring to verify that results are within the limits established in the licensing process. The operating results achieved and the types of modifications that have been required of operating plants by the Nuclear Regulatory Commission are reviewed. The PWR and BWR Fuel Cycle is examined in terms of: (1) fuel burnup experience and prospects for improvement, (2) the status and outlook for natural uranium resources, (3) enrichment capacity, (4) reprocessing and recycle, and the interrelationships among the latter three factors. High level waste management currently involving on-site storage of spent fuel is discussed

  11. Shutdown risk analysis for a BWR plant (residual heat removal systems)

    International Nuclear Information System (INIS)

    Rebollo Garcia, C.; Merino Teillet, A.; Cerezo, L.

    1994-01-01

    This report analyses the different risk situations which may arise during refuelling outage at Cofrentes NPP. The most critical situations are determined in terms of the small amount of coolant available and the lowest number of heat removal and water make-up systems available. The available times before the boiling point of the coolant is reached and the subsequent moment when the fuel elements are left uncovered in the event of the failure of the normal heat removal functions are determined. The analysis identifies the alternative systems which can be used besides those required by the technical specification and their capacity for residual heat removal and coolant make-up functions. (Author)

  12. Advanced light water reactor plant

    International Nuclear Information System (INIS)

    Giedraityte, Zivile

    2008-01-01

    For nuclear power to be competitive with the other methods of electrical power generation the economic performance should be significantly improved by increasing the time spent on line generating electricity relative to time spent off-line conducting maintenance and refueling. Maintenance includes planned actions (surveillances) and unplanned actions (corrective maintenance) to respond to component degradation or failure. A methodology is described which is used to resolve maintenance related operating cycle length barriers. Advanced light water nuclear power plant is designed with the purpose to maximize online generating time by increasing operating cycle length. (author)

  13. Reliable, fault tolerant control systems for nuclear generating stations

    International Nuclear Information System (INIS)

    McNeil, T.O.; Olmstead, R.A.; Schafer, S.

    1990-01-01

    Two operational features of CANDU Nuclear Power Stations provide for high plant availability. First, the plant re-fuels on-line, thereby eliminating the need for periodic and lengthy refuelling 'outages'. Second, the all plants are controlled by real-time computer systems. Later plants are also protected using real-time computer systems. In the past twenty years, the control systems now operating in 21 plants have achieved an availability of 99.8%, making significant contributions to high CANDU plant capacity factors. This paper describes some of the features that ensure the high degree of system fault tolerance and hence high plant availability. The emphasis will be placed on the fault tolerant features of the computer systems included in the latest reactor design - the CANDU 3 (450MWe). (author)

  14. Core design of super LWR with double tube water rods

    International Nuclear Information System (INIS)

    Wu, Jianhui; Oka, Yoshiaki

    2014-01-01

    Highlights: • Supercritical light water cooled and moderated reactor with double tube water rods is developed. • Double-row fuel rod assembly and out-in fuel loading pattern are applied. • Separation plates in peripheral assemblies increase average outlet temperature. • Neutronic and thermal design criteria are satisfied during the cycle. - Abstract: Double tube water rods are employed in core design of super LWR to simplify the upper core structure and refueling procedure. The light water moderator flows up in the inner tube from the bottom of the core, then, changes the flow direction at the top of the core into the outer tube and flows out at the bottom of the core. It eliminates the moderator guide/distribution tubes into the single tube water rods from the top dome of the reactor pressure vessel of the previous super LWR design. Two rows of fuel rods are filled between the water rods in the fuel assembly. Out-in refueling pattern is adopted to flatten radial power distribution. The peripheral fuel assemblies of the core are divided into four flow zones by separation plates for increasing the average core outlet temperature. Three enrichment zones are used for axial power flattening. The equilibrium core is analyzed based on neutronic/thermal-hydraulic coupled model. The results show that, by applying the separation plates in peripheral fuel assemblies and low gadolinia enrichment, the maximum cladding surface temperature (MCST) is limited to 653 °C with the average outlet temperature of 500 °C. The inherent safety is satisfied by the negative void reactivity effects and sufficient shutdown margin

  15. Refueling and density control in the ZT-40M reversed field pinch

    International Nuclear Information System (INIS)

    Wurden, G.A.; Weber, P.G.; Watt, R.G.; Munson, C.P.; Cayton, T.E.; Buechl, K.

    1987-01-01

    The effects of pellet injection and gas puff refueling have been studied in the ZT-40M Reversed Field Pinch. Multiple deuterium pellets (≤ 6 x 10 19 D atoms/pellet) with velocities ranging from 300 to 700 m/sec have been injected into plasmas with n-bar/sub e/ ∼1 to 5 X 10 19 m -3 , I/sub phi/ ∼100 to 250 kA, T/sub e/(0) ∼150 to 300 eV and discharge durations of ≤ 20 msec. Photographs and an array D/sub α/ detectors show substantial deflection of the pellet trajectory in both the poloidal and toroidal planes, due to asymmetric ablation of the pellet by electrons streaming along field lines. To compensate for the poloidal deflection, the injector was moved up +14 cm off-axis, allowing the pellets to curve down to the midplane. In this fashion, central peaking of the pellet density deposition profile can be obtained. Both electron and ion temperatures fall in response to the density rise, such that β/sub θ/(β/sub θ/ identical to n-bar/sub e/(T/sub e/(0) + T/sub i/)/(B/sub θ/(a)) 2 ) remains roughly constant. Energy confinement is momentarily degraded, and typically a decrease in F (F identical to B/sub phi/(a)/(B/sub phi/)) is seen as magnetic energy is converted to plasma energy when the pellet ablates. As a result of pellet injection at I/sub phi/ = 150 kA we observe T/sub e/(0) α n-bar/sub e//sup -.9 +- .1/, while the helicity based resistivity eta/sub k/ transiently varies as n-bar/sub e//sup .7 +- .1/. While the achievement of center-peaked density profiles is possible with pellet injection, gas puffing at rates strong enough to show a 50% increase in n-bar/sub e/ over a period of 10 msec (∼150 torr-litres/sec) leads to hollow density profiles. The refueling requirements for parameters expected in the next generation RFPs (ZTH, RFX) can be extrapolated from these data using modified tokamak pellet ablation codes

  16. Primary circuit water chemistry during shutdown period at Kalinin NPP

    International Nuclear Information System (INIS)

    Gorbatenko, S.; Otchenashev, G.; Yurmanov, V.

    2005-01-01

    The primary circuit water chemistry feature at Kalinin NPP is using of special up-dated regime during the period of unit shutdown for refueling. The main objective of up-dated regime is removing from the circuit long time living corrosion products on SVO-2 ion exchange filters with the purpose of dose rates reduction from the equipment and in such a way reduction of maintenance personnel overexposure. (N.T.)

  17. 76 FR 82079 - AP1000 Design Certification Amendment

    Science.gov (United States)

    2011-12-30

    ... generators, the refueling water storage tank, and various equipment for power generation, refueling, and... in settling of any resultant debris) to facilitate heat transfer to the containment vessel and for...). The source of water for the evaporative cooling is the passive containment cooling water storage tank...

  18. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  19. Power flattening and reactivity suppression strategies for the Canadian supercritical water reactor concept

    International Nuclear Information System (INIS)

    McDonald, M.; Colton, A.; Pencer, J.

    2015-01-01

    The Canadian supercritical water-cooled reactor (SCWR) is a conceptual heavy water moderated, supercritical light water cooled pressure tube reactor. In contrast to current heavy water power reactors, the Canadian SCWR will be a batch fuelled reactor. Associated with batch fuelling is a large beginning-of-cycle excess reactivity. Furthermore, radial power peaking arising as a consequence of batch refuelling must be mitigated in some way. In this paper, burnable neutron absorber (BNA) added to fuel and absorbing rods inserted into the core are considered for reactivity management and power flattening. A combination of approaches appears adequate to reduce the core radial power peaking, while also providing reactivity suppression. (author)

  20. Feasibility study of CANDU-9 fuel handling system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jeong Ki; Jo, C. H.; Kim, H. M.

    1996-12-01

    CANDU`s combination of natural uranium, heavy water and on-power refuelling is unique in its design and remarkable for reliable power production. In order to offer more output, better site utilization, shorter construction time, improved station layout, safety enhancements and better control panel layout, CANDU-9 is now under development with design improvement added to all proven CANDU advantages or applicable technologies. One of its major improvement has been applied to fuel handling system. This system is very similar to that of CANDU-3, and some parts of the system are applied to those of the existing CANDU-6 or CANDU-9. Design concepts and design requirements of fuel handling system for CANDU-9 have been identified to compare with those of the existing CANDU and the design feasibilities have been evaluated. (author). 4 tabs., 13 figs., 9 refs.

  1. Fuel management for off-load annual refuelling of the D-HHT 600 MW(e) reference core

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1973-03-16

    The reference design for the Dragon-HHT reactor has been optimised for on-load continuous refuelling. The possiblity to operate the reactor on a discontinuous annual reloading schedule might prove of interest and/or necessity. In this paper the influence of an annual 4-batch fuel management scheme on the core physics and fuel cycle economics is investigated. The results of the present investigation give a good indication of the relative merits of the two fuel management schemes. Although a broader parameter survey and a more detailed scrutinising of special cases would be desirable, we feel that the main conclusions are correct and that the principle differences have been elicited.

  2. PWR upper/lower internals shield

    Energy Technology Data Exchange (ETDEWEB)

    Homyk, W.A. [Indian Point Station, Buchanan, NY (United States)

    1995-03-01

    During refueling of a nuclear power plant, the reactor upper internals must be removed from the reactor vessel to permit transfer of the fuel. The upper internals are stored in the flooded reactor cavity. Refueling personnel working in containment at a number of nuclear stations typically receive radiation exposure from a portion of the highly contaminated upper intervals package which extends above the normal water level of the refueling pool. This same issue exists with reactor lower internals withdrawn for inservice inspection activities. One solution to this problem is to provide adequate shielding of the unimmersed portion. The use of lead sheets or blankets for shielding of the protruding components would be time consuming and require more effort for installation since the shielding mass would need to be transported to a support structure over the refueling pool. A preferable approach is to use the existing shielding mass of the refueling pool water. A method of shielding was devised which would use a vacuum pump to draw refueling pool water into an inverted canister suspended over the upper internals to provide shielding from the normally exposed components. During the Spring 1993 refueling of Indian Point 2 (IP2), a prototype shield device was demonstrated. This shield consists of a cylindrical tank open at the bottom that is suspended over the refueling pool with I-beams. The lower lip of the tank is two feet below normal pool level. After installation, the air width of the natural shielding provided by the existing pool water. This paper describes the design, development, testing and demonstration of the prototype device.

  3. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  4. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  5. LiquidPower-1. Development and proof-of-concept of core methanol reformer for stationary and motive fuel cell systems and hydrogen refuelling stations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krogsgaard, J.; Mortensen, Henrik [H2 Logic A/S, Herning (Denmark); Skipper, T. [Dantherm Power A/S, Hobro (Denmark)

    2013-03-15

    LiquidPower-1 has developed laboratory test systems for methanol reforming and tested reformers from four different suppliers. This has contributed to determining the state-of-the-art level for methanol reforming and enabled an update of the LiquidPower R and D Roadmap onwards a commercialisation of the technology. The project has achieved the following results: 1) A detailed technical specification of methanol reformers for the fuel cell back-up power and hydrogen refueling station markets has been conducted; 2) Laboratory test systems for methanol reformers has been developed and established at Dantherm Power and H2 Logic; 3) Initial test of reformers from four suppliers has been conducted - with two suppliers being selected for continued tests; 4) Extensive laboratory tests conducted of reformers from two suppliers, with the aim to determine state-of-the-art for price, efficiency, capacity and lifetime. Several errors and break-downs were experienced during the test period, which revealed a need for further R and D to improve lifetime and stability; 5) The LiquidPower F and U Roadmap has been updated. Reformer TCO targets (Total Cost of Operation) for each of the markets have been calculated including updated targets for efficiency and cost. These targets also serve as the main ones to be pursued as part of the continued R and D roadmap execution. Compared to the previous edition of the Roadmap, the project has confirmed the viability of methanol reforming, but also revealed that stability and lifetime needs to be addressed and solved before commencing commercialization of the technology. If the Roadmap is successful a commercialization can commence beyond 2015. (Author)

  6. Microbiological community in biogas systems and evaluation of microbial risks from gas usage

    Energy Technology Data Exchange (ETDEWEB)

    Vinneraas, B.; Nordin, A. [Swedish Univ. of Agricultural Sciences, Dept. of Biometry and Engineering, Uppsala (Sweden); Schoenning, C. [Swedish Inst. for Infectious Disease Control, Dept. of Parasitology, Mycology, Environmental Mirobiology and Water, Solna (Sweden)

    2007-12-15

    The plans for introducing biogas produced from organic waste to the pipe system for natural gas have raised concerns about the risk of transmitting disease via the gas. To assess this risk, condensate water from gas pipes and gas from different parts of biogas upgrading systems were sampled and cultured for microbial content. The number of microorganisms found in the biogas correspond to the densities in sampled natural gas. Since no pathogens were identified and since the exposure to gas from e. g. cookers and refueling of cars may only result in the inhalation of small volumes of gas, the risk of spreading disease via biogas was judged to be very low. (orig.)

  7. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  8. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  9. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Mary L.

    2012-09-01

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  10. Detection and Tracking Strategies for Autonomous Aerial Refuelling Tasks Based on Monocular Vision

    Directory of Open Access Journals (Sweden)

    Yingjie Yin

    2014-07-01

    Full Text Available Detection and tracking strategies based on monocular vision are proposed for autonomous aerial refuelling tasks. The drogue attached to the fuel tanker aircraft has two important features. The grey values of the drogue's inner part are different from the external umbrella ribs, as shown in the image. The shape of the drogue's inner dark part is nearly circular. According to crucial prior knowledge, the rough and fine positioning algorithms are designed to detect the drogue. Particle filter based on the drogue's shape is proposed to track the drogue. A strategy to switch between detection and tracking is proposed to improve the robustness of the algorithms. The inner dark part of the drogue is segmented precisely in the detecting and tracking process and the segmented circular part can be used to measure its spatial position. The experimental results show that the proposed method has good performance in real-time and satisfied robustness and positioning accuracy.

  11. HyApproval - Handbook for the approval of hydrogen refuelling stations - First preliminary achievements

    Energy Technology Data Exchange (ETDEWEB)

    Wurster, R.; Vandendungen, G.; Guichard, J.; Molag, M.; Barron, J.; Reijalt, M.; Hill, H.J.; Landinger, H.

    2007-05-15

    The EU-funded project HyApproval [www.hyapproval.org] aims at developing a universal Handbook to facilitate the approval process of Hydrogen Refuelling Stations (HRS) in Europe. The main goal of the HyApproval partnership with 22 partners from Europe and one each from China, Japan and the USA is to provide a Handbook of technical and regulatory requirements to assist authorisation officials, companies and organisations in the safe implementation and operation of HRS. Achievements during the first 15 months: analyses of HRS technology concepts and of equipment and safety distances/ Intermediate Design Paper/ Regulations, Codes and Standards (RCS) review and comparison/ first Handbook draft and first review sessions with HySafe experts/ safety matrix/ identification of accident scenarios/ agreement on safety documentation/ critical review of reliability data from collections and risk studies/ risk assessment (RA) criteria definition and RA/ matrix of acceptability and awareness levels/ database of Fire Associations and First Responders/ calendar of hydrogen events/ general description of CGH{sub 2} interfaces. (au)

  12. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  13. Fuel Management Study for a CANDU reactor Using New Physics Codes Suite

    International Nuclear Information System (INIS)

    Kim, Won Young; Kim, Bong Ghi; Park, Joo Hwan

    2008-01-01

    A CANDU reactor is a heavy-water-moderated, natural uranium fuelled reactor with a pressure tube. The reactor contains a horizontal cylindrical vessel (calandria) and each pressure tube is isolated from the heavy-water moderator in a calandria. This allows the moderator system to be operated of a high-pressure and of a high-temperature coolant in pressure tube. The primary reactivity control in a CANDU reactor is the on-power refueling on a daily basis and an additional reactivity control is provided through an individual reactivity device movement, which includes 21 adjusters, 6 liquid zone controllers, 4 mechanical control absorbers and 2 shutdown systems. The refueling in CANDU is carried out on power and this makes the in-core fuel management different from that in a reactor refueled during shutdowns. The objective of a fuel management is to determine a fuel loading and fuel replacement procedure which will result in a minimum total unit energy cost in a safe and reliable operation. In this article, the in-core fuel management for the CANDU reactor was studied by using the new physics code suite of WIMS-IST/DRAGON-IST/RFSP-IST with the model of Wolsong-1 NPP

  14. Development of a Web-based CANDU Core Management Procedure Automation System

    International Nuclear Information System (INIS)

    Lee, Sanghoon; Kim, Eunggon; Park, Daeyou; Yeom, Choongsub; Suh, Hyungbum; Kim, Sungmin

    2006-01-01

    CANDU reactor core needs efficient core management to increase safety, stability, high performance as well as to decrease operational cost. The most characteristic feature of CANDU is so called 'on-power refueling' i.e., there is no shutdown during refueling in opposition to that of PWR. Although this on-power refueling increases the efficiency of the plant, it requires heavy operational task and difficulties in real time operation such as regulating power distribution, burnup distribution, LZC statistics, the position of control devices and so on. To enhance the CANDU core management, there are several approaches to help operator and reduce difficulties, one of them is the COMOS (CANDU Core On-line Monitoring System). It has developed as an online core surveillance system based on the standard incre instrumentation and the numerical analysis codes such as RFSP (Reactor Fueling Simulation Program). As the procedure is getting more complex and the number of programs is increased, it is required that integrated and cooperative system. So, KHNP and IAE have been developing a new web-based system which can support effective and accurate reactor operational environment called COMPAS that means CANDU cOre Management Procedure Automation System. To ensure development of successful system, several steps of identifying requirements have been performed and Software Requirement Specification (SRS) document was developed. In this paper we emphasis on the how to keep consistency between the requirements and system products by applying requirement traceability methodology

  15. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  16. Analysis for a PRHRS Condensation Heat Exchanger of the SMART-P Plant

    International Nuclear Information System (INIS)

    Lee, Kwon-Yeong; Kim, Moo Hwan

    2007-01-01

    When an emergency such as the unavailability of feedwater or the loss of off-site power arises with SMART-P, the PRHRS passively removes the core decay heat via natural convection. The system is connected to the feedwater and steam pipes and consists of a heat exchanger submerged in a refueling water tank, a compensation tank, and check and isolation valves. The heat exchanger removes the heat from the reactor coolant system through a steam generator via condensation heat transfer to water in the refueling water tank. The compensating tank is pressurized using a nitrogen gas to make up the water volume change in the PRHRS. Before PRHRS operation, nitrogen may be dissolved in the cooling water of the PRHRS. Therefore, during PRHRS operation, nitrogen gas might be generated due to evaporation in the steam generator, which will act as a noncondensable gas in the condensation heat exchanger. The main objective of the present study was to assess the design of a PRHRS condensation heat exchanger (PRHRS HX) by investigating its heat transfer characteristics

  17. Safety considerations for compressed hydrogen storage systems

    International Nuclear Information System (INIS)

    Gleason, D.

    2006-01-01

    An overview of the safety considerations for various hydrogen storage options, including stationary, vehicle storage, and mobile refueling technologies. Indications of some of the challenges facing the industry as the demand for hydrogen fuel storage systems increases. (author)

  18. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  19. Study of flow instabilities in double-channel natural circulation boiling systems

    International Nuclear Information System (INIS)

    Durga Prasad, Gonella V.; Pandey, Manmohan; Pradhan, Santosh K.; Gupta, Satish K.

    2008-01-01

    Natural circulation boiling systems consisting of parallel channels can undergo different types of oscillations (in-phase or out-of-phase) depending on the geometric parameters and operating conditions. Disturbances in one channel affect the flow in other channels, which triggers thermal-hydraulic oscillations. In the present work, the modes of oscillation under different operating conditions and channel-to-channel interaction during power fluctuations and on-power refueling in a double-channel natural circulation boiling system are investigated. The system is modeled using a lumped parameter mathematical model and RELAP5/MOD3.4. Parametric studies are carried out for an equal-power double-channel system, at different operating conditions, with both the models, and the results are compared. Instabilities, non-linear oscillations, and effects of recirculation loop dynamics and geometric parameters on the mode of oscillations, are studied using the lumped model. The two channels oscillate out-of-phase in Type-I region, but in Type-II region, both the modes of oscillation are observed under different conditions. Channel-to-channel interaction and on-power refueling studies are carried out using the RELAP model. At high powers, disturbances in one channel significantly affect the stability of the other channel. During on-power refueling, a near-stagnation condition or low-velocity reverse flow can occur, the possibility of reverse flow being higher at lower pressures

  20. Cost-benefit analysis of multi-regional nuclear energy systems deployment

    International Nuclear Information System (INIS)

    Van Den Durpel, L.G.G.; Wade, D.C.; Yacout, A.M.

    2007-01-01

    The paper describes the preliminary results of a cost/benefit-analysis of multi-regional nuclear energy system approaches with a focus on how multi-regional approaches may benefit a growing nuclear energy system in various world regions also being able to limit, or even reduce, the costs associated with the nuclear fuel cycle and facilitating the introduction of nuclear energy in various regions in the world. The paper highlights the trade-off one might envisage in deploying such multi-regional approaches but also the pay backs possible and concludes on the economical benefits one may associate to regional fuel cycle centres serving a world-fleet of STAR (small fast reactors of long refueling interval) where these STARs may be competitive compared to the LWRs (Light Water Reactors) as a base-case nuclear reactor option. (authors)

  1. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  2. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  3. SWR 1000: the main design features of the advanced boiling water reactor with passive safety systems

    International Nuclear Information System (INIS)

    Carsten, Pasler

    2007-01-01

    The SWR-1000 (1000 MW) is a boiling water reactor whose economic efficiency in comparison with large-capacity designs is achieved by deploying very simple passive safety equipment, simplified systems for plant operation, and a very simple plant configuration in which systems engineering is optimized and dependence on electrical and instrumentation and control systems is reduced. In addition, systems and components that require protection against natural and external man-made hazards are accommodated in such a way that as few buildings as possible have to be designed to withstand the loads from such events. The fuel assemblies have been enlarged from a 10*10 rod array to a 12*12 array. This reduces the total number of fuel assemblies in the core and thus also the number of control rods and control rod drives, as well as in-core neutron flux monitors. The design owes its competitiveness to the fact that investment costs, maintenance costs and fuel cycle costs are all lower. In addition, refueling outages are shorter, thanks to the reduced scope of outage activities. The larger fuel assemblies have been extensively and successfully tested, as have all of the other new components and systems incorporated into the plant design. As in existing plants, the forced coolant circulation method is deployed, ensuring problem-free startup, and enabling plant operators to adjust power rapidly in the high power range (70%-100%) without moving the control rods, as well as allowing spectral-shift and stretch-out operation. The plant safety concept is based on a combination of passive safety systems and a reduced number of active safety systems. All postulated accidents can be controlled using passive systems alone. Control of a postulated core melt accident is assured with considerable safety margins thanks to passive flooding of the containment for in-vessel melt retention. The SWR-1000 is compliant with international nuclear codes and standards, and is also designed to withstand

  4. Water electrolysis system

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao; Ikehara, Masahisa; Kataoka, Noboru; Ueno, Syuichi; Ishikawa, Nobuhide.

    1996-01-01

    Nissho Iwai Co. and Ebara Co. received an order for hydrogen and oxygen generating system (water electrolysis system) to be installed at Tokai-2 power station of The Japan Atomic Power Company, following the previous order at Tsuruga-1 where the gas injection from FY1996 is planned. Hydrogen gas generated by the system will be injected to coolant of boiling water reactors to improve corrosive environment. The system is being offered by a tripartite party, Nissho Iwai, Ebara, and Norsk Hydro Electrolysers of Norway (NHEL). NHEL provides a electrolyser unit, as a core of the system. Ebara provides procurement, installation, and inspection as well as total engineering work, under the basic design by NHEL which has over 60 years-experience in this field. (author)

  5. Thorium in heavy water reactors

    International Nuclear Information System (INIS)

    Andersson, G.

    1984-12-01

    Advanced heavy water reactors can provide energy on a global scale beyond the foreseeable future. Their economic and safety features are promising: 1. The theoretical feasibility of the Self Sufficient Equilibrium Thorium (SSET) concept is confirmed by new calculations. Calculations show that the adjuster rod geometry used in natural uranium CANDU reactors is adequate also for SSET if the absorption in the rods is graded. 2. New fuel bundle designs can permit substantially higher power output from a CANDU reactor. The capital cost for fuel, heavy water and mechanical equipment can thereby be greatly reduced. Progress is possible with the traditional fuel material oxide, but the use of thorium metal gives much larger effects. 3. A promising long range possibility is to use pressure tanks instead of pressure tubes. Heat removal from the core is facilitated. Negative temperature and void coefficients provide inherent safety features. Refuelling under power is no longer needed if control by moderator displacement is used. Reduced quality demand on the fuel permits lower fuel costs. The neutron economy is improved by the absence of pressure and clandria tubes and also by the use of radial and axial blankets. A modular seed blanket design can reduce the Pa losses. The experience from construction of tank designs is good e.g. AAgesta, Attucha. It is now also possible to utilize technology from LWR reactors and the implementation of advanced heavy water reactors would thus be easier than HTR or LMFBR systems. (Author)

  6. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  7. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  8. 75 FR 20627 - Biweekly Notice: Applications and Amendments to Facility Operating Licenses Involving No...

    Science.gov (United States)

    2010-04-20

    ... replacement SGs, their method of operation, operational leakage limits, or primary coolant chemistry controls... Instrumentation,'' Table 3.3.5-1, to raise the refueling water tank (RWT) low level allowable values for the... of the Chemical and Volume Control System (CVCS) that supports ECCS [emergency core cooling system...

  9. Power System Operations With Water Constraints

    Science.gov (United States)

    Qiu, F.; Wang, J.

    2015-12-01

    The interdependency between water and energy, although known for many decades, has not received enough attention until recent events under extreme weather conditions (especially droughts). On one hand, water and several types of energy supplies have become increasingly scarce; the demand on water and energy continues to grow. On the other hand, the climate change has become more and more disruptive (i.e., intensity and frequency of extreme events), causing severe challenges to both systems simultaneously. Water and energy systems have become deeply coupled and challenges from extreme weather events must be addressed in a coordinated way across the two systems.In this work, we will build quantitative models to capture the interactions between water and energy systems. We will incorporate water constraints in power system operations and study the impact of water scarcity on power system resilience.

  10. Heavy water upgrading system in the Fugen heavy water reactor

    International Nuclear Information System (INIS)

    Matsushita, T.; Susaki, S.

    1980-01-01

    The heavy water upgrading system, which is installed in the Fugen heavy water reactor (HWR) was designed to reuse degraded heavy water generated from the deuteration-dedeuteration of resin in the ion exchange column of the moderator purification system. The electrolysis method has been applied in this system on the basis of the predicted generation rate and concentration of degraded heavy water. The structural feature of the electrolytic cell is that it consists of dual cylindrical electrodes, instead of a diaphragm as in the case of conventional water electrolysis. 2 refs

  11. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  12. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  13. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  14. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  15. Development and demonstration of techniques for reducing occupational radiation doses during refueling outages. Tasks 7A/7B. Advanced outage management and radiation exposure control

    International Nuclear Information System (INIS)

    1985-03-01

    Objectives of Tasks 7A and 7B were to develop and demonstrate computer based systems to assist plant management and staff in utilizing information more effectively to reduce occupational exposures received as a result of refueling outages, and to shorten the duration of the outage. The Advanced Outage Management (AOM) Tool (Task 7A) is an automated outage planning system specifically designed to meet the needs of nuclear plant outage management. The primary objective of the AOM tool is to provide a computerized system that can manipulate the information typically associated with outage planning and scheduling to furnish reports and schedules that more accurately project the future course of the outage. The Radiation Exposure Control (REC) Tool (Task 7B) is a computerized personnel radiation exposure accounting and management system designed to enable nuclear plant management to project and monitor total personnel radiation exposure on a real-time basis. The two systems were designed to operate on the same computer system and interface through a common database that enables information sharing between plant organizations not typically interfaced. This interfacing provides outage planners with a means of incorporating occupational radiation exposure as a factor for making decisions on the course of an outage

  16. Water in micro- and nanofluidics systems described using the water potential

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    This Tutorial Review shows the behaviour of water in micro- and nanofluidic systems. The chemical potential of water (‘water potential’) conveniently describes the energy level of the water at different locations in and around the system, both in the liquid and gaseous state. Since water moves from

  17. Rotating Ceramic Water Filter Discs System for Water Filtration

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-04-01

    Full Text Available This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hydraulic conductivity of the first module was 13.7mm/day and that for the second module was 50mm/day. Results showed that the water filtration system can be operated continuously with a constant flow rate and the filtration process was controlled by a skin thin layer of rejected materials. The ceramic water filters of both filtration modules have high removal efficiency of total suspended solids up to 100% and of turbidity up to 99.94%.

  18. The effect of water purification systems on fluoride content of drinking water

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-03-01

    Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  19. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  20. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  1. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  2. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  3. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  4. PWR [pressurized water reactor] optimal reload configuration with an intelligent workstation

    International Nuclear Information System (INIS)

    Greek, K.J.; Robinson, A.H.

    1990-01-01

    In a previous paper, the implementation of a pressurized water reactor (PWR) refueling expert system that combined object-oriented programming in Smalltalk and a FORTRAN power calculation to evaluate loading patterns was discussed. The expert system applies heuristics and constraints that lead the search toward an optimal configuration. Its rate of improvement depends on the expertise coded for a search and the loading pattern from where the search begins. Due to its complexity, however, the solution normally cannot be served by a rule-based expert system alone. A knowledge base may take years of development before final acceptance. Also, the human pattern-matching capability to view a two-dimensional power profile, recognize an imbalance, and select an appropriate response has not yet been surpassed by a rule-based system. The user should be given the ability to take control of the search if he believes the solution needs a new direction and should be able to configure a loading pattern and resume the search. This paper introduces the workstation features of Shuffle important to aid the user to manipulate the configuration and retain a record of the solution

  5. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  6. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  7. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  8. Establishment of computer aided technology for operation, maintenance, and core management

    International Nuclear Information System (INIS)

    Iguchi, Masaki; Isomura, Kazutoshi; Okawa, Tsuyoshi; Sakurai, Naoto

    2003-01-01

    In Fugen, the accumulated know-how of skilled operators, maintenance engineers, and core management engineers have been systematized by using the latest computer technology. These computerized systems have enhanced the technology of operating, maintenance and core management. This report describes the development of a reactor feed water control system with fuzzy logic, a refueling support system, and an automatic refueling planning system. Since operation of reactor feedwater control at low power requires a delicate operational technique and the knowledge and experience of operators, the application of a fuzzy algorithm was deemed effective in Fugen. Its good performance comparable to that of experienced operators can be realized. The fuel-handling operation takes proposed plans, fuel management and efficient operation by skilled operators. AI technology was applied to fuel-handling support system using past operation results and experience of skilled operators. This system is as capable of fuel-handling as skilled operators. Planning an adequate fuel loading pattern is time-consuming even for expert core management engineers. The Automatic Refueling Planning System (ARPS) was developed using Genetic Algorithms (GA) and a Simulated Annealing (SA). It has been verified that long-term fuel loading patterns of the Fugen NPS evaluated by ARPS are equivalent to that of an expert core management engineer. (author)

  9. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  10. Water hammer analysis in a water distribution system

    Directory of Open Access Journals (Sweden)

    John Twyman

    2017-04-01

    Full Text Available The solution to water hammer in a water distribution system (WDS is shown by applying three hybrid methods (HM based on the Box’s scheme, McCormack's method and Diffusive Scheme. Each HM formulation in conjunction with their relative advantages and disadvantages are reviewed. The analyzed WDS has pipes with different lengths, diameters and wave speeds, being the Courant number different in each pipe according to the adopted discretization. The HM results are compared with the results obtained by the Method of Characteristics (MOC. In reviewing the numerical attenuation, second order schemes based on Box and McCormack are more conservative from a numerical point of view, being recommendable their application in the analysis of water hammer in water distribution systems.

  11. Annotated bibliography of safety-related occurrences in pressurized-water nuclear power plants as reported in 1976

    International Nuclear Information System (INIS)

    Scott, R.L.; Gallaher, R.B.

    1977-01-01

    The bibliography contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at pressurized-water reactor nuclear power plants in 1976. Included are 1264 abstracts that describe incidents, failures, and design construction deficiencies experienced at the facilities. They are arranged alphabetically by reactor name and then chronologically for each reactor. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables summarizing the information contained in the bibliography are presented. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). A few of the unique events that occurred during the year are reviewed in detail

  12. Annotated bibliography of safety-related occurrences in pressurized-water nuclear power plants as reported in 1975

    International Nuclear Information System (INIS)

    Scott, R.L.; Gallaher, R.B.

    1976-07-01

    The bibliography presented contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at pressurized-water reactor nuclear power plants in 1975. The report includes 1097 abstracts, arranged alphabetically by reactor name and then chronologically for each reactor, that describe incidents, failures, and design or construction deficiencies experienced at the facilities. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables summarizing the information contained in the bibliography are presented. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). A few of the unique events that occurred during the year are reviewed in detail

  13. Annotated bibliography of safety-related occurrences in pressurized-water nuclear power plants as reported in 1976

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.L.; Gallaher, R.B.

    1977-08-01

    The bibliography contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at pressurized-water reactor nuclear power plants in 1976. Included are 1264 abstracts that describe incidents, failures, and design construction deficiencies experienced at the facilities. They are arranged alphabetically by reactor name and then chronologically for each reactor. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables summarizing the information contained in the bibliography are presented. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). A few of the unique events that occurred during the year are reviewed in detail.

  14. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1975

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.L.; Gallaher, R.B.

    1976-07-01

    The bibliography presented contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1975. The report includes 1169 abstracts, arranged alphabetically by reactor name and then chronologically for each reactor, that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Seven of the unique events that occurred during the year are reviewed in detail.

  15. Annotated bibliography of safety-related occurrences in pressurized-water nuclear power plants as reported in 1975

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.L.; Gallaher, R.B.

    1976-07-01

    The bibliography presented contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at pressurized-water reactor nuclear power plants in 1975. The report includes 1097 abstracts, arranged alphabetically by reactor name and then chronologically for each reactor, that describe incidents, failures, and design or construction deficiencies experienced at the facilities. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables summarizing the information contained in the bibliography are presented. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). A few of the unique events that occurred during the year are reviewed in detail.

  16. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1975

    International Nuclear Information System (INIS)

    Scott, R.L.; Gallaher, R.B.

    1976-07-01

    The bibliography presented contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1975. The report includes 1169 abstracts, arranged alphabetically by reactor name and then chronologically for each reactor, that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Seven of the unique events that occurred during the year are reviewed in detail

  17. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  18. F-15 Intelligent Flight Control System and Aeronautics Research at NASA Dryden

    Science.gov (United States)

    Brown, Nelson A.

    2009-01-01

    This viewgraph presentation reviews the F-15 Intelligent Flight Control System and Aeronautics including Autonomous Aerial Refueling Demonstrations, X-48B Blended Wing Body, F-15 Quiet Spike, and NF-15 Intelligent Flight Controls.

  19. Device for refueling a nuclear reactor having a core comprising a plurality of fuel assemblies

    International Nuclear Information System (INIS)

    Van Santen, A.; Elofsson, K.

    1975-01-01

    A nuclear reactor formed of fuel assemblies each including a plurality of parallel fuel rods arranged in a predetermined fuel rod lattice, which rods are freely extractable and insertable at one end of the fuel assembly, is refueled by extracting from one of the fuel assemblies a number of fuel rods substantially less than the total number of fuel rods and replacing these by inserting new fuel rods into the vacated positions. The removal and return of the rods is produced by a tool having a plurality of gripping members capable of engaging shoulders beneath heads formed on the upper ends of the fuel rods. This may be accomplished by providing a tool having a number of gripping members attached to the tool body corresponding to the lattice positions of the fuel rods to be extracted, having gripping members which can be pushed together to grip beneath shoulders on the upper ends of the fuel rods. (Official Gazette)

  20. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    King, V.

    2000-01-01

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  1. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  2. Prototype water reuse system

    Science.gov (United States)

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    A small-scale water reuse system (150 L/min) was developed to create an environment for observing fish under a variety of temperature regimes. Key concerns of disease control, water quality, temperature control, and efficiency and case of operation were addressed. Northern squawfish (Ptychocheilus oregonensis) were held at loading densities ranging from 0.11 to 0.97 kg/L per minute and at temperatures from 10 to 20°C for 6 months with no disease problems or degradation ofwater quality in the system. The system required little maintenance during 2 years of operation.

  3. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  4. Gross decontamination experiment report

    International Nuclear Information System (INIS)

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment

  5. Gross decontamination experiment report

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  6. Pellet acceleration studies relating to the refuelling of a steady-state fusion reactor

    International Nuclear Information System (INIS)

    Dimock, D.; Jensen, K.; Jensen, V.O.; Joergensen, L.W.; Pecseli, H.L.; Soerensen, H.; Oester, F.

    1975-11-01

    Several methods for refuelling a steady state-fusion reactor have been proposed, and the pellet method seems advantageous if the pellet can be accelerated to the necessary velocity. A study group was formed to analyze this acceleration problem. Two pellet velocity values were considered: 10 4 m/s and 300 m/s. A pellet velocity of 10 4 m/s may be suitable in the case of a reactor, whereas 300 m/s is believed to be a reasonable velocity at which to perform realistic ablation experiments in the near future. A pneumatic acceleration method was found promising. The pressure is either supplied separately or by evaporation of a part of the pellet. In the latter case, a spark behind the pellet should provide the evoporation and the necessary heating of the driving gas. A preliminary test at room temperature with pellets made of beeswax (the density being ten times that of solid hydrogen, and plastic properties similar to those of solid hydrogen) resulted in a pellet velocity of 100 m/s at a modest value of the energy supplied to the spark. (Auth.)

  7. Results of automatic system implementation for Cofrentes nuclear power plant LPRM inspection execution

    International Nuclear Information System (INIS)

    Curiel, M.; Palomo, M. J.; Rodriguez, M.; Arnaldos, A.

    2010-10-01

    During this presentation we are going to introduce the results of Cofrentes nuclear power plant automation of the detection system LPRM (Local Power Range Monitor) inspection procedure. An LPRM test system has been developed and it consists in a software application and data acquisition hardware that performs automatically the complete detection system process: 1) Refuelling, storage and operation inspection: ramp voltage generation, measured voltage plateaux evaluation, qualification report emission. 2) Historical analysis to scan burn evolution. The inspections differentiations are developed by the different specifications that it has to fulfil: 1) Operation inspection: it is made to check the fission bolt wearing, the detection system functioning and to analyse malfunctioning. From technical specifications and curves analyses it can be determined each LPRM substitution. 2) Storage inspection: it is made to check the correct functioning and isolation losses before being installed in the core during refueling. 3) Refueling inspection: it is checked that storage LPRM installation is correct and that they are ready for new fuel cycle. The software application LPRM test has been developed by National Instruments LabVIEWTM, and it performs the following actions: 1) Protocol IEEE-488 (GPI B) control of the source Keithley 237. This source generates the ramp voltage and measure voltage. 2) Information acquisition of storage, process and source, identifying LPRM and realization conditions of the same. 3) Data analysis and conditions report. 4) Historical comparative analysis. (Author)

  8. Results of automatic system implementation for Cofrentes nuclear power plant LPRM inspection execution

    Energy Technology Data Exchange (ETDEWEB)

    Curiel, M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Palomo, M. J. [ISIRYM, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia (Spain); Rodriguez, M. [Iberdrola Generacion S. A., Central Nuclear Cofrentes, Carretera Almansa Requena s/n, 04662 Cofrentes, Valencia (Spain); Arnaldos, A., E-mail: m.curiel@lainsa.co [TITANIA Servicios Tecnologicos SL, Sorollo Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain)

    2010-10-15

    During this presentation we are going to introduce the results of Cofrentes nuclear power plant automation of the detection system LPRM (Local Power Range Monitor) inspection procedure. An LPRM test system has been developed and it consists in a software application and data acquisition hardware that performs automatically the complete detection system process: 1) Refuelling, storage and operation inspection: ramp voltage generation, measured voltage plateaux evaluation, qualification report emission. 2) Historical analysis to scan burn evolution. The inspections differentiations are developed by the different specifications that it has to fulfil: 1) Operation inspection: it is made to check the fission bolt wearing, the detection system functioning and to analyse malfunctioning. From technical specifications and curves analyses it can be determined each LPRM substitution. 2) Storage inspection: it is made to check the correct functioning and isolation losses before being installed in the core during refueling. 3) Refueling inspection: it is checked that storage LPRM installation is correct and that they are ready for new fuel cycle. The software application LPRM test has been developed by National Instruments LabVIEWTM, and it performs the following actions: 1) Protocol IEEE-488 (GPI B) control of the source Keithley 237. This source generates the ramp voltage and measure voltage. 2) Information acquisition of storage, process and source, identifying LPRM and realization conditions of the same. 3) Data analysis and conditions report. 4) Historical comparative analysis. (Author)

  9. Water sample-collection and distribution system

    Science.gov (United States)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  10. Self locking drive system for rotating plug of a nuclear reactor

    International Nuclear Information System (INIS)

    Brubaker, J.E.

    1979-01-01

    A self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event whould occur during reactor refueling is described. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm

  11. Method for temporary shielding of reactor vessel internals

    International Nuclear Information System (INIS)

    Grimm, N.P.; Sejvar, J.

    1991-01-01

    This patent describes a method for shielding stored internals for reactor vessel annealing. It comprises removing nuclear fuel from the reactor vessel containment building; removing and storing upper and lower core internals under water in a refueling canal storage area; assembling a support structure in the refueling canal between the reactor vessel and the stored internals; introducing vertical shielding tanks individually through a hatch in the containment building and positioning each into the support structure; introducing horizontal shielding tanks individually through a hatch in the containment building and positioning each above the stored internals and vertical tanks; draining water from the refueling canal to the level of a flange of the reactor vessel; placing an annealing apparatus in the reactor vessel; pumping the remaining water from the reactor vessel; and annealing the reactor vessel

  12. Water sensors with cellular system eliminate tail water drainage in alfalfa irrigation

    Directory of Open Access Journals (Sweden)

    Rajat Saha

    2011-10-01

    Full Text Available Alfalfa is the largest consumer of water among all crops in California. It is generally flood-irrigated, so any system that decreases runoff can improve irrigation efficiency and conserve water. To more accurately manage the water flow at the tail (bottom end of the field in surface-irrigated alfalfa crops, we developed a system that consists of wetting-front sensors, a cellular communication system and a water advance model. This system detects the wetting front, determines its advance rate and generates a cell-phone alert to the irrigator when the water supply needs to be cut off, so that tail water drainage is minimized. To test its feasibility, we conducted field tests during the 2008 and 2009 alfalfa growing seasons. The field experiments successfully validated the methodology, producing zero tail water drainage.

  13. Devices for the contamination containment employees in the steam generator inspection; Dispositivo para confinamiento de la contaminacion empleados en la inspeccion de generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Bueno, A.; Largo Izquierdo, P.; Calleja Rubio, J. A.

    2010-07-01

    The process of induced current inspection of the tubes of the steam generator is a typical programmed inspections at each refueling outages of pressurized water in nuclear power plants. components inspection being quite active, interested in the program of continuous improvement, further optimize the inspection system.

  14. Radiation Dose-Rate Extraction from the Camera Image of Quince 2 Robot System using Optical Character Recognition

    International Nuclear Information System (INIS)

    Cho, Jai Wan; Jeong, Kyung Min

    2012-01-01

    In the case of the Japanese Quince 2 robot system, 7 CCD/CMOS cameras were used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. The Quince 2 robot measured radiation in the unit 2 reactor building refueling floor of the Fukushima nuclear power plant. The CCD camera with wide field-of-view (fisheye) lens reads indicator of the dosimeter loaded on the Quince 2 robot, which was sent to carry out investigating the unit 2 reactor building refueling floor situation. The camera image with gamma ray dose-rate information is transmitted to the remote control site via VDSL communication line. At the remote control site, the radiation information in the unit 2 reactor building refueling floor can be perceived by monitoring the camera image. To make up the radiation profile in the surveyed refueling floor, the gamma ray dose-rate information in the image should be converted to numerical value. In this paper, we extract the gamma ray dose-rate value in the unit 2 reactor building refueling floor using optical character recognition method

  15. Radiation Dose-Rate Extraction from the Camera Image of Quince 2 Robot System using Optical Character Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In the case of the Japanese Quince 2 robot system, 7 CCD/CMOS cameras were used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. The Quince 2 robot measured radiation in the unit 2 reactor building refueling floor of the Fukushima nuclear power plant. The CCD camera with wide field-of-view (fisheye) lens reads indicator of the dosimeter loaded on the Quince 2 robot, which was sent to carry out investigating the unit 2 reactor building refueling floor situation. The camera image with gamma ray dose-rate information is transmitted to the remote control site via VDSL communication line. At the remote control site, the radiation information in the unit 2 reactor building refueling floor can be perceived by monitoring the camera image. To make up the radiation profile in the surveyed refueling floor, the gamma ray dose-rate information in the image should be converted to numerical value. In this paper, we extract the gamma ray dose-rate value in the unit 2 reactor building refueling floor using optical character recognition method

  16. Household pasteurization of drinking-water: the chulli water-treatment system.

    Science.gov (United States)

    Islam, Mohammad Fakhrul; Johnston, Richard B

    2006-09-01

    A simple flow-through system has been developed which makes use of wasted heat generated in traditional clay ovens (chullis) to pasteurize surface water. A hollow aluminium coil is built into the clay chulli, and water is passed through the coil during normal cooking events. By adjusting the flow rate, effluent temperature can be maintained at approximately 70 degrees C. Laboratory testing, along with over 400 field tests on chulli systems deployed in six pilot villages, showed that the treatment completely inactivated thermotolerant coliforms. The chulli system produces up to 90 litres per day of treated water at the household level, without any additional time or fuel requirement. The technology has been developed to provide a safe alternative source of drinking-water in arsenic-contaminated areas, but can also have wide application wherever people consume microbiologically-contaminated water.

  17. MUWS (Microbiology in Urban Water Systems – an interdisciplinary approach to study microbial communities in urban water systems

    Directory of Open Access Journals (Sweden)

    P. Deines

    2010-07-01

    Full Text Available Microbiology in Urban Water Systems (MUWS is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems and sewer networks are both large, highly interconnected, dynamic, subject to time and varying inputs and demands, and difficult to control. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance within urban water infrastructure systems is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we ultimately aim to link microbial community abundance, diversity and function to physical and engineering variables so that novel insights into the performance and management of both water distribution systems and sewer networks can be explored. By presenting the details and principals behind the molecular microbiological techniques that we use, this paper demonstrates the potential of an integrated approach to better understand how urban water system function, and so meet future challenges.

  18. Development of a Remotely-operated Visual Inspection System for Reactor Vessel Bottommounted Instrument Penetrations of KSNP and Lessons Learned

    International Nuclear Information System (INIS)

    Jeong, Kyungmin; Choi, Youngsu; Lee, Sunguk; Seo, Yongchil; Kang, Jong Gyu; Kim, Seungho; Jung, Seungho

    2006-01-01

    In April 2003, South Texas Project Unit 1 made a surprising discovery of boron acid leakage from two nozzles from a bare-metal examination of the reactor vessel bottom-mounted instrument penetrations during a routine refueling outage. A small powdery substance about 150mg was found on the outside of two instrument guide penetration nozzles on the bottom of the reactor. The primary coolant water of pressurized water reactors has caused cracking in penetrations with Alloy 600 through a process called primary water stress corrosion cracking. In South Korea, it is required to conduct 100% visual inspection of the outside of instrument guide penetration nozzles on the bottom of PWRs to confirm the integrity of reactor vessel. This paper describes the remotely-operated visual inspection systems for reactor vessel bottom-mounted instrument penetrations dispatched two times to Youngkwang NPPs and discusses the lessons learned

  19. 21 CFR 1250.82 - Potable water systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...

  20. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  1. Steam generation: fossil-fired systems: utility boilers; industrial boilers; boiler auxillaries; nuclear systems: boiling water; pressurized water; in-core fuel management; steam-cycle systems: condensate/feedwater; circulating water; water treatment

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A survey of development in steam generation is presented. First, fossil-fired systems are described. Progress in the design of utility and industrial boilers as well as in boiler auxiliaries is traced. Improvements in coal pulverizers, burners that cut pollution and improve efficiency, fans, air heaters and economisers are noted. Nuclear systems are then described, including the BWR and PWR reactors, in-core fuel management techniques are described. Finally, steam-cycle systems for fossil-fired and nuclear power plants are reviewed. Condensate/feedwater systems, circulating water systems, cooling towers, and water treatment systems are discussed

  2. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    Science.gov (United States)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  3. Total Water Management, the New Paradigm for Urban Water Systems

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  4. Fuel Fraction Analysis of 500 MWth Gas Cooled Fast Reactor with Nitride (UN-PuN) Fuel without Refueling

    Science.gov (United States)

    Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi

    2017-01-01

    Nuclear Power Plant (NPP) is one of candidates which can support electricity demand in the world. The Generation IV NPP has fourth main objective, i.e. sustainability, economics competitiveness, safety and reliability, and proliferation and physical protection. One of Gen-IV reactor type is Gas Cooled Fast Reactor (GFR). In this study, the analysis of fuel fraction in small GFR with nitride fuel has been done. The calculation was performed by SRAC code, both Pij and CITATION calculation. SRAC2002 system is a code system applicable to analyze the neutronics of variety reactor type. And for the data library used JENDL-3.2. The step of SRAC calculation is fuel pin calculated by Pij calculation until the data homogenized, after it homogenized we calculate core reactor. The variation of fuel fraction is 40% up to 65%. The optimum design of 500MWth GFR without refueling with 10 years burn up time reach when radius F1:F2:F3 = 50cm:30cm:30cm and height F1:F2:F3 = 50cm:40cm:30cm, variation percentage Plutonium in F1:F2:F3 = 7%:10%:13%. The optimum fuel fraction is 41% with addition 2% Plutonium weapon grade mix in the fuel. The excess reactivity value in this case 1.848% and the k-eff value is 1.01883. The high burn up reached when the fuel fraction is low. In this study 41% fuel fraction produce faster fissile fuel, so it has highest burn-up level than the other fuel fraction.

  5. [Water-saving mechanisms of intercropping system in improving cropland water use efficiency].

    Science.gov (United States)

    Zhang, Feng-Yun; Wu, Pu-Te; Zhao, Xi-Ning; Cheng, Xue-Feng

    2012-05-01

    Based on the multi-disciplinary researches, and in terms of the transformation efficiency of surface water to soil water, availability of cropland soil water, crop canopy structure, total irrigation volume needed on a given area, and crop yield, this paper discussed the water-saving mechanisms of intercropping system in improving cropland water use efficiency. Intercropping system could promote the full use of cropland water by plant roots, increase the water storage in root zone, reduce the inter-row evaporation and control excessive transpiration, and create a special microclimate advantageous to the plant growth and development. In addition, intercropping system could optimize source-sink relationship, provide a sound foundation for intensively utilizing resources temporally and spatially, and increase the crop yield per unit area greatly without increase of water consumption, so as to promote the crop water use efficiency effectively.

  6. Preoperational test report, raw water system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  7. Preoperational test report, raw water system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  8. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    Directory of Open Access Journals (Sweden)

    Juan Joaquín Suárez López

    2014-08-01

    Full Text Available The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmental approaches to the administrations, for instance, in the management of urban drainage and sewerage systems. The practical expression of this whole cluster interactions is beginning to take shape in several countries, with the definition of Low Impact Development and Water Sensitivity Urban Design concepts. Intends to integrate this new strategic approach under the name: “Water Sensitive Urban Development” (WSUD. With WSUD approach, the current urban water systems (originally conceived under the traditional concept of urban water cycle can be transformed, conceptual and physically, for an integrated management of the urban water system in new models of sustainable urban development. A WSUD implementing new approach to the management of pollution associated with stormwater in the urban water system is also presented, including advances in environmental regulations and incorporation of several techniques in Spain.

  9. Evaluation on the thermal-hydraulic behavior of condensation pool and piping system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Soon Bum; Lee, B. E.; Baek, S. C.; Joo, S. Y.; Lee, D. E.; Woo, S. W. [Kyungpook National Univ., Daegu (Korea, Republic of)

    2002-03-15

    The In-containment Refueling Water Storage Tank (IRWST) has the function of heat sink, when steam is released from the pressurizer. The hydrodynamic behaviors occurring at the piping system and sparger are very complex because of the wide variety of operating conditions and the complex geometry. Hydrodynamic behavior when air is discharged through a sparger in a condensation pool is investigated using CFD techniques in the present study. The effect of pressure acting on the sparger header during both water and air discharge through the sparger is studied. In addition, pressure oscillation occurring in the IRWST during air discharge through the sparger is studied for a better understanding of mechanisms of air discharge md an advanced evaluation technology of reactor safety. Understanding of flow behaviors occurring m the various types of pipes when POSRV is opened are also very important because those are very complex and may damage the structures of reactor coolant system. The principle of shock tube has been applied to analyze flow behaviors occurring in the piping system and several important phenomena which can be used for the evaluation of nuclear reactor safety has been obtained.

  10. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  11. Water chemistry diagnosis system for nuclear power plants

    International Nuclear Information System (INIS)

    Igarashi, Hiroo; Koya, Hiroshi; Osumi, Katsumi.

    1990-01-01

    The water quality control for the BWRs in Japan has advanced rapidly recently, and as to the dose reduction due to the decrease of radioactivity, Japan takes the position leading the world. In the background of the advanced water quality control like this and the increase of nuclear power plants in operation, the automation of arranging a large quantity of water quality control information and the heightening of its reliability have been demanded. Hitachi group developed the water quality synthetic control system which comprises the water quality data management system to process a large quantity of water quality data with a computer and the water quality diagnosis system to evaluate the state of operation of the plants by the minute change of water quality and to carry out the operational guide in the aspect of water quality control. To this water quality diagnosis system, high speed fuzzy inference is applied in order to do rapid diagnosis with fuzzy data. The trend of development of water quality control system, the construction of the water quality synthetic control system, the configuration of the water quality diagnosis system and the development of algorithm and the improvement of the reliability of maintenance are reported. (K.I.)

  12. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1976

    International Nuclear Information System (INIS)

    Scott, R.L.; Gallaher, R.B.

    1977-01-01

    This bibliography contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1976. The report includes 1,253 abstracts that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. They are arranged alphabetically by reactor name and then chronologically for each reactor. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Three of the unique events that occurred during the year are reviewed in detail

  13. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1976

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.L.; Gallaher, R.B.

    1977-08-02

    This bibliography contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1976. The report includes 1,253 abstracts that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. They are arranged alphabetically by reactor name and then chronologically for each reactor. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Three of the unique events that occurred during the year are reviewed in detail.

  14. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  15. Silver disinfection in water distribution systems

    Science.gov (United States)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  16. Development of Reactor Vessel Bottom Mount Instrumentation Nozzle Routine Inspection Device

    Energy Technology Data Exchange (ETDEWEB)

    Khaled, Atya Ahmed Abdallah; Ihn, Namgung [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    The primary coolant water of pressurized water reactors has created cracks in j-weld of penetrations with Alloy 600 through a process called primary water stress corrosion cracking. On October 6, 2013, BMI nozzle number 3 at Palo Verde Unit 3 (PVNGS-3) exhibited small white de-posits around the annulus. Nozzle attachment to the RV lower head is by J-groove weld to the inside penetration of the nozzle and the weld material is of Alloy 600 material. Above two cases clearly show the necessity of routine inspection of RV lower head penetration during refueling outage. Nondestructive inspection is generally performed to detect fine cracks or defects that may develop during operation. Defects usually occur at weld regions, hence most non-destructive inspection is to scan and check any defects or crack in the weld region. BMI nozzles at the bottom head of a nuclear reactor vessel (RV) are one of such area for inspection. But BMI nozzles have not been inspected during regular refuel outage due to the relative small size of BMI nozzle and limited impact of the consequences of BMI leak. However, there is growing concern since there have been leaks at nuclear power plants (NPPs) as well as recent operating experience. In this study, we propose a system that is conveniently used for nondestructive inspection of BMI nozzles during regular refueling outage without removing all the reactor internals. A 3D model of the inspection system was also developed along with the RV and internals which permits a virtual 3D simulation to check the design concept and usability of the system.

  17. Key issues for the control of refueling outage duration and costs in PWR nuclear power plants

    International Nuclear Information System (INIS)

    Degrave, C.; Martin-Onraet, M.

    2000-01-01

    For several years, EDF, within the framework of the CIDEM project and in collaboration with some German Utilities, has undertaken a detailed review of the operating experience both of its own NPP and of foreign units, in order to improve the performances of future units under design, particularly the French-German European Pressurized Reactor (EPR) project. This review made it possible to identify the key issues allowing to decrease the duration of refueling and maintenance outages. These key issues can be classified in 3 categories: Design; Maintenance and Logistic Support; Outage Management. Most key issues in the design field and some in the logistic support field have been studied and could be integrated into the design of any future PWR unit, as for the EPR project. Some of them could also be adapted to current plants, provided they are feasible and profitable. The organization must be tailored to each country, utility or period: it widely depends on the power production environment, particularly in a deregulation context. (author)

  18. Hydrogen for buses in London: A scenario analysis of changes over time in refuelling infrastructure costs

    International Nuclear Information System (INIS)

    Shayegan, S.; Pearson, P.J.G.; Hart, D.

    2009-01-01

    The lack of a hydrogen refuelling infrastructure is one of the major obstacles to the introduction of the hydrogen vehicles to the road transport market. To help overcome this hurdle a likely transitional solution is to introduce hydrogen for niche applications such as buses or other types of fleet vehicles for which fuel demand is predictable and localised. This paper analyses the costs of different hydrogen production-delivery pathways, via a case study of buses in London. Scenario analysis over time (2007-2025) is used to investigate potential changes to the cost of hydrogen as a result of technology development, growing demand for hydrogen and changes in energy prices (gas and electricity). It is found that factors related to hydrogen demand have the greatest effect on the unit cost of hydrogen, while for the whole of the analysis period, on-site SMR (steam methane reforming) remains the least-cost production-delivery pathway. (author)

  19. Defect and Innovation of Water Rights System

    Institute of Scientific and Technical Information of China (English)

    Zhou Bin

    2008-01-01

    The rare deposition of water resources conflicts with its limitless demand. This determined the existence of the water rights transaction system. The implementation of the water rights transaction system requires clarifying the definition of water re-source fight above all distinctly. At present, it is a kind of common right system arrangement which needs the Chinese government to dispose of water resources. Though a series of management sys-tems guaranteed the government's supply of water resource, it hindered the development of the water market seriously and caused the utilization of water resources to stay in the inefficient or low efficient state for a long time. Thus, we should change the government's leading role in the resource distribution and really rely on the market to carry on the water rights trade and transac-tion. In this way, the water rights could become a kind of private property right relatively, and circulate freely in the market. As a result of this, we should overcome the defects of common right, make its external performance internalized maximally and achieve the optimized water resource disposition and use it more effec-tively.

  20. Nutritional recommendations for water polo.

    Science.gov (United States)

    Cox, Gregory R; Mujika, Iñigo; van den Hoogenband, Cees Rein

    2014-08-01

    Water polo is an aquatic team sport that requires endurance, strength, power, swimming speed, agility, tactical awareness, and specific technical skills, including ball control. Unlike other team sports, few researchers have examined the nutritional habits of water polo athletes or potential dietary strategies that improve performance in water polo match play. Water polo players are typically well muscled, taller athletes; female players display higher levels of adiposity compared with their male counterparts. Positional differences exist: Center players are heavier and have higher body fat levels compared with perimeter players. Knowledge of the physical differences that exist among water polo players offers the advantage of player identification as well as individualizing nutrition strategies to optimize desired physique goals. Individual dietary counseling is warranted to ensure dietary adequacy, and in cases of physique manipulation. Performance in games and during quality workouts is likely to improve by adopting strategies that promote high carbohydrate availability, although research specific to water polo is lacking. A planned approach incorporating strategies to facilitate muscle glycogen refueling and muscle protein synthesis should be implemented following intensified training sessions and matches, particularly when short recovery times are scheduled. Although sweat losses of water polo players are less than what is reported for land-based athletes, specific knowledge allows for appropriate planning of carbohydrate intake strategies for match play and training. Postgame strategies to manage alcohol intake should be developed with input from the senior player group to minimize the negative consequences on recovery and player welfare.

  1. Early hydrogen water chemistry project review, improvement opportunities and conceptural design options at Exelon boiling water reactors

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    Intergranular Stress Corrosion Cracking (IGSCC) and its impacts have been a major concern to the BWR fleet since the mid-70's. Several alternative strategies have been employed to reduce the negative impacts, however, the newest being Early Hydrogen Water Chemistry (EHWC). The Electric Power Research Institute (EPRI) and the BWRVIP (Vessel Internals Project) has strongly supported the development of EHWC, including laboratory testing and a demonstration program that was performed at Peach Bottom Atomic Power Station in October 2011. This paper will review the impacts of a 'Special Test Program' on a BWR plant including: Project management findings; technical reviews and documents required to support such a demonstration program; temporary equipment design, installation and testing; keeping the demonstration progressing along with the plant return from a refuel outage; and lessons learned that can be applied to EHWC implementation during future start-ups. Details will be compared between various Exelon BWRs in support of conceptual designs for EHWC systems and operation. Some comparisons on operational impacts will be provided between various types of BWR plants with differing 'Balance of Plant' designs. (authors)

  2. Water Hammer Mitigation on Postulated Pipe Break of Feed Water System

    International Nuclear Information System (INIS)

    Seong, Ho Je; Woo, Kab Koo; Cho, Keon Taek

    2008-01-01

    The Feed Water (FW) system supplies feedwater from the deaerator storage tank to the Steam Generators(S/G) at the required pressure, temperature, flow rate, and water chemistry. The part of FW system, from the S/G to Main Steam Valve House just outside the containment building wall, is designed as safety grade because of its safety function. According to design code the safety related system shall be designed to protect against dynamic effects that may results from a pipe break on high energy lines such as FW system. And the FW system should be designed to minimize blowdown volume of S/G secondary side during the postulated pipe break. Also the FW system should be designed to prevent the initiation or to minimize the effects of water hammer transients which may be induced by the pipe break. This paper shows the results of the hydrodynamic loads induced by the pipe break and the optimized design parameters to mitigate water hammer loads of FW system for Shin-Kori Nuclear Power Plant Unit 3 and 4 (SKN 3 and 4)

  3. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  4. Water system integration of a chemical plant

    International Nuclear Information System (INIS)

    Zheng Pingyou; Feng Xiao; Qian Feng; Cao Dianliang

    2006-01-01

    Water system integration can minimize both the freshwater consumption and the wastewater discharge of a plant. In industrial applications, it is the key to determine reasonably the contaminants and the limiting concentrations, which will decide the freshwater consumption and wastewater discharge of the system. In this paper, some rules to determine the contaminants and the limiting concentrations are proposed. As a case study, the water system in a chemical plant that produces sodium hydroxide and PVC (polyvinyl chloride) is integrated. The plant consumes a large amount of freshwater and discharges a large amount of wastewater, so minimization of both the freshwater consumption and the wastewater discharge is very important to it. According to the requirements of each water using process on the water used in it, the contaminants and the limiting concentrations are determined. Then, the optimal water reuse scheme is firstly studied based on the water network with internal water mains. To reduce the freshwater consumption and the wastewater discharge further, decentralized regeneration recycling is considered. The water using network is simplified by mixing some of the used water. After the water system integration, the freshwater consumption is reduced 25.5%, and the wastewater discharge is reduced 48%

  5. User manual of Visual Balan V. 1.0 Interactive code for water balances and refueling estimation

    International Nuclear Information System (INIS)

    Samper, J.; Huguet, L.; Ares, J.; Garcia, M. A.

    1999-01-01

    This document contains the Users Manual of Visual Balan V1.0, an updated version of Visual Balan V0.0 (Samper et al., 1997). Visual Balan V1.0 performs daily water balances in the soil, the unsaturated zone and the aquifer in a user-friendly environment which facilitates both the input data process and the postprocessing of results. The main inputs of the balance are rainfall and irrigation while the outputs are surface runoff, evapotranspiration, interception, inter flow and groundwater flow. The code evaluates all these components in a sequential manner by starting with rainfall and irrigation, which must be provided by the user, and continuing with interception, surface runoff, evapotranspiration, and potential recharge (water flux crossing the bottom of the soil). This potential recharge is the input to the unsaturated zone where water can flow horizontally as subsurface flow (inter flow) or vertically as percolation into the aquifer. (Author)

  6. Results of automatic system implementation for the friction control rods execution in Cofrentes nuclear power plant

    International Nuclear Information System (INIS)

    Curiel, M.; Palomo, M. J.; Urrea, M.; Arnaldos, A.

    2010-10-01

    The purpose of this presentation is to show the obtained results in Cofrentes nuclear power plant (Spain) of control rods Pcc/24 friction test procedure. In order to perform this, a control rod friction test system has been developed. Principally, this system consists on software and data acquisition hardware that obtains and analyzes the control rod pressure variation on which the test is being made. The Pcc/24 procedure objective is to detect an excessive friction in the control rod movement that could cause a control rod drive movement slower than usual. This test is necessary every time that an anomalous alteration is produced in the reactor core that could affect to a fuel rod, and it is executed before the time measure of control rods rapid scram test of the affected rods. This test has to be carried out to all the reactor control rods and takes valuable time during plant refuelling. So, by means of an automatic system to perform the test, we obtain an important time saving during refuelling. On the other hand, the on-line monitoring of the control rod insertion and changes in differential pressure, permits a control rod operation fast and safe validation. Moreover, an automatic individual report of every rod is generated by the system and a final global result report of the entire test developed in refuelling is generated. The mentioned reports can be attached directly to the procedure documents obtaining an office data processing important saving time. (Author)

  7. Results of automatic system implementation for the friction control rods execution in Cofrentes nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Curiel, M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, local 10, Av. de las Cortes Valencianas, 46015 Valencia (Spain); Palomo, M. J. [ISIRYM, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia (Spain); Urrea, M. [Iberdrola Generacion S. A., Central Nuclear Cofrentes, Carretera Almansa Requena s/n, 04662 Cofrentes, Valencia (Spain); Arnaldos, A., E-mail: m.curiel@lainsa.co [TITANIA Servicios Tecnologicos SL, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain)

    2010-10-15

    The purpose of this presentation is to show the obtained results in Cofrentes nuclear power plant (Spain) of control rods Pcc/24 friction test procedure. In order to perform this, a control rod friction test system has been developed. Principally, this system consists on software and data acquisition hardware that obtains and analyzes the control rod pressure variation on which the test is being made. The Pcc/24 procedure objective is to detect an excessive friction in the control rod movement that could cause a control rod drive movement slower than usual. This test is necessary every time that an anomalous alteration is produced in the reactor core that could affect to a fuel rod, and it is executed before the time measure of control rods rapid scram test of the affected rods. This test has to be carried out to all the reactor control rods and takes valuable time during plant refuelling. So, by means of an automatic system to perform the test, we obtain an important time saving during refuelling. On the other hand, the on-line monitoring of the control rod insertion and changes in differential pressure, permits a control rod operation fast and safe validation. Moreover, an automatic individual report of every rod is generated by the system and a final global result report of the entire test developed in refuelling is generated. The mentioned reports can be attached directly to the procedure documents obtaining an office data processing important saving time. (Author)

  8. Corrosion evaluation of service water system materials

    International Nuclear Information System (INIS)

    Stein, A.A.; Felder, C.M.; Martin, R.L.

    1994-01-01

    The availability and reliability of the service water system is critical for safe operation of a nuclear power plant. Degradation of the system piping and components has forced utilities to re-evaluate the corrosion behavior of current and alternative system materials, to support assessments of the remaining service life of the service water system, selection of replacement materials, implementation of corrosion protection methods and corrosion monitoring programs, and identification of maintenance and operational constraints consistent with the materials used. TU Electric and Stone and Webster developed a service water materials evaluation program for the Comanche Peak Steam Electric Station. Because of the length of exposure and the generic interest in this program by the nuclear power industry, EPRI joined TU to co-sponsor the test program. The program was designed to evaluate the corrosion behavior of current system materials and candidate replacement materials and to determine the operational and design changes which could improve the corrosion performance of the system. Although the test program was designed to be representative of service water system materials and environments targeted to conditions at Comanche Peak, these conditions are typical of and relevant to other fresh water cooled nuclear service water systems. Testing was performed in raw water and water treated with biocide under typical service water operating conditions including continuous flow, intermittent flow, and stagnant conditions. The test program evaluated the 300 Series and 6% molybdenum stainless steels, copper-nickel, titanium, carbon steel, and a formed-in-place nonmetallic pipe lining to determine susceptibility to general, crevice, and microbiologically influenced corrosion and pitting attack. This report presents the results of the test program after 4 years of exposure

  9. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  11. PWR secondary water chemistry diagnostic system

    International Nuclear Information System (INIS)

    Miyazaki, S.; Hattori, T.; Yamauchi, S.; Kato, A.; Suganuma, S.; Yoshikawa, T.

    1989-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend operating life of the plant. We developed an advanced water chemistry management system which is able to monitor and diagnose secondary water chemistry. A prototype system had been installed at one plant in Japan since Nov. 1986 in order to evaluate system performance and man-machine interface. The diagnosis system has been successfully tested off line using synthesized plant data for various cases. We are continuing to improve the applicability and develop new technology which make it evaluate steam generator crevice chemistry. (author)

  12. Water quality diagnosis system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu

    1989-01-01

    By using a model representing a relationship between the water quality parameter and the dose rate in primary coolant circuits of a water cooled reactor, forecasting for the feature dose rate and abnormality diagnosis for the water quality are conducted. The analysis model for forecasting the reactor water activity or the dose rate receives, as the input, estimated curves for the forecast Fe, Ni, Co concentration in feedwater or reactor water pH, etc. from the water quality data in the post and forecasts the future radioactivity or dose rate in the reactor water. By comparing the result of the forecast and the setting value such as an aimed value, it can be seen whether the water quality at present or estimated to be changed is satisfactory or not. If the quality is not satisfactory, it is possible to take an early countermeasure. Accordingly, the reactor water activity and the dose rate can be kept low. Further, the basic system constitution, diagnosis algorithm, indication, etc. are identical between BWR and PWR reactors, except for only the difference in the mass balance. (K.M.)

  13. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description. System 47-4

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid PandID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water PandID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO

  14. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  15. Small Drinking Water Systems Communication and Outreach ...

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  16. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  17. Performance of on-power fuelling equipment at Rajasthan Atomic Power Station

    International Nuclear Information System (INIS)

    Jayabarathan, S.; Gopalakrishnan, S.

    1977-01-01

    Natural uranium reactors on account of their intrinsically low reactivity need frequent refuelling. The Rajasthan Atomic Power Station based on natural uranium reactors has, therefore, been provided with on-power fuel handling system which was installed in 1972. Its performance has met the design intent and operational objectives which are enumerated. However, continuous fuelling 7 to 10 days has not been possible because frequent maintenance of refuelling system is needed on account of certain deficiencies major of which is the heavy water leakage. For better performance, installation of a programmable logic controller is suggested. Mention has also been made of inadequate number of skilled man-power required for maintenance which leads to quick depletion of man-rem of all the available personnel trained for maintenance work. (M.G.B.)

  18. Reference Design for a Simple, Durable and Refuelable Interplanetary Spacecraft

    Science.gov (United States)

    McConnell, B. S.; Tolley, A. M.

    This article describes a reference design for interplanetary vessels, composed mostly of water, that utilize simplified RF engines for low thrust, long duration propulsion, and hydrogen peroxide for short duration, high thrust burns. The electrothermal engines are designed to heat a wide range of liquid materials, possibly also milled solids or surface dusts. The system emphasizes simple components and processes based on older technologies, many well known since the 1960s, that are understandable, can process a variety of materials, and are easily serviced in flight. The goal is to radically simplify systems and their inter-dependencies, to a point where a reasonably skilled person can learn to operate these vessels, not unlike a sailboat, and to eliminate many design and testing bottlenecks in their construction. The use of water, or hydrogen peroxide generated in situ from that water, is multiply advantageous because it can be used for structure, consumption, irrigation, radiation and debris shielding, and thermal regulation, and thus greatly reduce dead weight by creating an almost fully consumable ship. This also enables the ship to utilize a wide range of in situ materials, and eventually obtain reaction mass from lower gravity sites. The ability to switch between low thrust, constant power and high thrust, short duration maneuvers will enable these ships to travel freely and reach many interesting destinations throughout the solar system. One can think of them as “spacecoaches”, not unlike the prairie schooners of the Old West, which were rugged, serviceable by tradesmen, and easily maintained.

  19. Cold Vacuum Drying facility potable water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) potable water (PW) system. The PW system provides potable water to the CVDF for supply to sinks, water closets, urinals, showers, custodial service sinks, drinking fountains, the decontamination shower, supply water to the non-PW systems, and makeup water for the de-ionized water system

  20. A simple high efficiency solar water purification system

    Energy Technology Data Exchange (ETDEWEB)

    Duff, W.S.; Hodgson, D.A. [Colorado State University, Fort Collins, CO (United States). Dept. of Mechanical Engineering

    2005-07-01

    A new passive solar water pasteurization system based on density difference flow principles has been designed, built and tested. The system contains no valves and regulates flow based on the density difference between two columns of water. The new system eliminates boiling problems encountered in previous designs. Boiling is undesirable because it may contaminate treated water. The system with a total absorber area of 0.45 m2 has achieved a peak flow rate of 19.3 kg/h of treated water. Experiments with the prototype systems presented in this paper show that density driven systems are an attractive option to existing solar water pasteurization approaches. (author)

  1. Biofuels cost developments in the EU27+ until 2030. Full-chain cost assessment and implications of policy options. REFUEL WP4 final report

    International Nuclear Information System (INIS)

    Londo, H.M.; Lensink, S.M.; Deurwaarder, E.P.; Wakker, A.; De Wit, M.; Junginger, M.; Koenighofer, K; Jungmeier, G.

    2008-02-01

    With the rapid developments in the biofuels domain comes the need for biofuel policies that spur their introduction in a responsible way. The REFUEL project, supported by the EU Intelligent Energy Europe programme, develops a road map for biofuels in the EU27+ up to 2030. This WP4 report shows the results of a full-chain analysis of the costs of different biofuels. Effects of different levels of biofuel target setting were analysed, and also the impact of different additional policy measures, such as the introduction of a CO2 pricing mechanism and specific subsidies

  2. Analysis of decay heat removal following loss of RHR

    International Nuclear Information System (INIS)

    Naff, S.A.; Ward, L.W.

    1991-01-01

    Recent plant experience has included many events occurring during outages at pressurized water reactors. A recent example is the loss of residual heat removal system event that occurred March 20, 1990 at the Vogtle-1 plant following refueling. Plant conditions during outages differ markedly from those prevailing at normal full-power operation on which most past research has concentrated. Specifically, during outages the core power is low, the coolant system may be in a drained state with air or nitrogen present, and various reactor coolant system closures may be unsecured. With the residual heat removal system operating, the core decay heat is readily removed. However, if the residual heat removal system capability is lost and alternative heat removal means cannot be established, heat up of the coolant could lead to core coolant boil-off, fuel rod heat up, and core damage. A study was undertaken by the Nuclear Regulatory Commission to identify what information was needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that might be used, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain into the reactor coolant system, core water boil-off, and reflux condensation cooling processes

  3. Identification and characterization of steady and occluded water in drinking water distribution systems.

    Science.gov (United States)

    Tong, Huiyan; Zhao, Peng; Zhang, Hongwei; Tian, Yimei; Chen, Xi; Zhao, Weigao; Li, Mei

    2015-01-01

    Deterioration and leakage of drinking water in distribution systems have been a major issue in the water industry for years, which are associated with corrosion. This paper discovers that occluded water in the scales of the pipes has an acidic environment and high concentration of iron, manganese, chloride, sulfate and nitrate, which aggravates many pipeline leakage accidents. Six types of water samples have been analyzed under the flowing and stagnant periods. Both the water in the exterior of the tubercles and stagnant water carry suspended iron particles, which explains the occurrence of "red water" when the system hydraulic conditions change. Nitrate is more concentrated in occluded water under flowing condition in comparison with that in flowing water. However, the concentration of nitrate in occluded water under stagnant condition is found to be less than that in stagnant water. A high concentration of manganese is found to exist in steady water, occluded water and stagnant water. These findings impact secondary pollution and the corrosion of pipes and containers used in drinking water distribution systems. The unique method that taking occluded water from tiny holes which were drilled from the pipes' exteriors carefully according to the positions of corrosion scales has an important contribution to research on corrosion in distribution systems. And this paper furthers our understanding and contributes to the growing body of knowledge regarding occluded environments in corrosion scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Assessment of water supply system and water quality of Lighvan village using water safety plan

    Directory of Open Access Journals (Sweden)

    Mojtaba Pourakbar

    2015-12-01

    Full Text Available Background: Continuous expansion of potable water pollution sources is one of the main concerns of water suppliers, therefore measures such as water safety plan (WSP, have been taken into account to control these sources of pollution. The aim of this study was to identify probable risks and threatening hazards to drinking water quality in Lighvan village along with assessment of bank filtration of the village. Methods: In the present study all risks and probable hazards were identified and ranked. For each of these cases, practical suggestions for removing or controlling them were given. To assess potable water quality in Lighvan village, sampling was done from different parts of the village and physicochemical parameters were measured. To assess the efficiency of bank filtration system of the village, independent t test was used to compare average values of parameters in river and treated water. Results: One of the probable sources of pollution in this study was domestic wastewater which threatens water quality. The results of this study show that bank filtration efficiency in water supply of the village is acceptable. Conclusion: Although Bank filtration imposes fewer expenses on governments, it provides suitable water for drinking and other uses. However, it should be noted that application of these systems should be done after a thorough study of water pollution level, types of water pollutants, soil properties of the area, soil percolation and system distance from pollutant sources.

  5. Fusion-supported decentralized nuclear energy system

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-04-01

    A decentralized nuclear energy system is proposed comprising mass-produced pressurized water reactors in the size range 10 to 300 MW (thermal), to be used for the production of process heat, space heat, and electricity in applications where petroleum and natural gas are presently used. Special attention is given to maximizing the refueling interval with no interim batch shuffling in order to minimize fuel transport, reactor downtime, and opportunity for fissile diversion. These objectives demand a substantial fissile enrichment (7 to 15%). The preferred fissile fuel is U-233, which offers an order of magnitude savings in ore requirements (compared with U-235 fuel), and whose higher conversion ratio in thermal reactors serves to extend the period of useful reactivity and relieve demand on the fissile breeding plants (compared with Pu-239 fuel). Application of the neutral-beam-driven tokamak fusion-neutron source to a U-233 breeding pilot plant is examined. This scheme can be extended in part to a decentralized fusion energy system, wherein remotely located large fusion reactors supply excess tritium to a distributed system of relatively small nonbreeding D-T reactors

  6. Application of expert system to evaluating reactor water cleanup system performance

    International Nuclear Information System (INIS)

    Maeda, Katsuji; Nakamura, Masahiro; Nagasawa, Katsumi; Fushiki, Sumiyuki.

    1991-01-01

    Expert systems employing artificial intelligence (AI) have been developed for finding and elucidating causes of anomalies and malfunctions, presenting pertinent recommendation for countermeasures and for making precautionary diagnosis. On the other hand, further improvements in reliabilities for chemical control are required to promote BWR plant reliability and advancement. Especially, it is necessary to maintain the reactor water purity in high quality to minimize stress corrosion cracking (SCC) in primary cooling system, fuel performance degradation and radiation buildup. The reactor water quality is controlled by the reactor water cleanup (RWCU) system. So, it is very important to maintain the RWCU performance, in order to keep good reactor water quality. This paper describes an expert system used for evaluating RWCU system performance in BWR plants. (author)

  7. The Pluralistic Water Research Concept: A New Human-Water System Research Approach

    Directory of Open Access Journals (Sweden)

    Mariele Evers

    2017-11-01

    Full Text Available The use and management of water systems is influenced by a number of factors, such as economic growth, global change (e.g., urbanization, hydrological-climatic changes, politics, history and culture. Despite noteworthy efforts to develop integrative approaches to analyze water-related problems, human-water research remains a major challenge for scholars and decision makers due to the increasing complexity of human and water systems interactions. Although existing concepts try to integrate the social and water dimensions, they usually have a disciplinary starting point and perspective, which can represent an obstacle to true integration in human-water research. Hence, a pluralistic approach is required to better understand the interactions between human and water systems. This paper discusses prominent human-water concepts (Integrated Water Resources Management (IWRM, socio-hydrology, and political ecology/hydrosocial approach and presents a newly developed concept termed pluralistic water research (PWR. This is not only a pluralistic but also an integrative and interdisciplinary approach which aims to coherently and comprehensively integrate human-water dimensions. The different concepts are illustrated in a synopsis, and diverse framing of research questions are exemplified. The PWR concept integrates physical and social sciences, which enables a comprehensive analysis of human-water interactions and relations. This can lead to a better understanding of water-related issues and potentially sustainable trajectories.

  8. Wide-area service water information management system; Koiki suido joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-10

    A wide-area service water system is required to be more resistant to emergency situations, e.g., drought and hazards, and meet consumers' diversifying needs in each area, while stably supplying water at ordinary times by utilizing purification plants located in places within its system and piping networks in the water area. Fuji Electric is providing information management systems for wide-area service water systems, developed based on the company's abundant system know-hows accumulated for a long time and latest techniques. They are characterized by (1) Web monitoring, aided by an intranet system, (2) high-speed data transmission by a digital transmission system, (3) open network environments, and (4) emergency calling of the staff, and management of stock materials. The system allows to monitor operating conditions within the area on real time, needless to say, and business administration with civil minimum taken into consideration, e.g., stabilizing water quality by coordinating the purification plants within the system. (translated by NEDO)

  9. The optimisation of a water distribution system using Bentley WaterGEMS software

    Directory of Open Access Journals (Sweden)

    Świtnicka Karolina

    2017-01-01

    Full Text Available The proper maintenance of water distribution systems (WDSs requires from operators multiple actions in order to ensure optimal functioning. Usually, all requirements should be adjusted simultaneously. Therefore, the decision-making process is often supported by multi-criteria optimisation methods. Significant improvements of exploitation conditions of WDSs functioning can be achieved by connecting small water supply networks into group systems. Among many potential tools supporting advanced maintenance and management of WDSs, significant improvements have tools that can find the optimal solution by the implemented mechanism of metaheuristic methods, such as the genetic algorithm. In this paper, an exemplary WDS functioning optimisation is presented, in relevance to a group water supply system. The action range of optimised parameters included: maximisation of water flow velocity, regulation of pressure head, minimisation of water retention time in a network (water age and minimisation of pump energy consumption. All simulations were performed in Bentley WaterGEMS software.

  10. Fuel cycle flexibility in Advanced Heavy Water Reactor (AHWR) with the use of Th-LEU fuel

    International Nuclear Information System (INIS)

    Thakur, A.; Singh, B.; Pushpam, N.P.; Bharti, V.; Kannan, U.; Krishnani, P.D.; Sinha, R.K.

    2011-01-01

    The Advanced Heavy Water Reactor (AHWR) is being designed for large scale commercial utilization of thorium (Th) and integrated technological demonstration of the thorium cycle in India. The AHWR is a 920 MW(th), vertical pressure tube type cooled by boiling light water and moderated by heavy water. Heat removal through natural circulation and on-line fuelling are some of the salient features of AHWR design. The physics design of AHWR offers considerable flexibility to accommodate different kinds of fuel cycles. Our recent efforts have been directed towards a case study for the use of Th-LEU fuel cycle in a once-through mode. The discharged Uranium from Th-LEU cycle has proliferation resistant characteristics. This paper gives the initial core, fuel cycle characteristics and online refueling strategy of Th-LEU fuel in AHWR. (author)

  11. The different services carried out on valves during nuclear power plants refuelling outages. To the Valves Integrated Service; La gestion de las diferentes actividades en valvulas durante las paradas. Hacia el Servicio Integral de Valvulas

    Energy Technology Data Exchange (ETDEWEB)

    Laporta, J. M.

    2007-07-01

    The different services carried out on valves during nuclear power plants refuelling outages represent overall one of the activities most interfacing with other refuelling tasks because of the large multidisciplinary teams that participate. Different specialized teams are involved on these activities, mainly on testing, diagnostics and maintenance tasks, performed over the same components, in a sequence of processes closely related with common resources. Under such circumstances, coordination between the different teams intervening and the management of administrative documents and activities in close collaboration with the Control Room is fundamental to ensure that the work is performed in the right sequence avoiding downtimes and optimising the critical path. The integration of these processes and the resources involved allow us to undertake the services globally, forming multidisciplinary teams that optimise resources-fundamentally coordination resources and multi-purpose auxiliary resources-maintaining in all cases the necessary degree of specialisation in keeping with the different tasks making up the Valves Integrated Service. (Author)

  12. A fuzzy recommendation system for daily water intake

    Directory of Open Access Journals (Sweden)

    Bin Dai

    2016-05-01

    Full Text Available Water is one of the most important constituents of the human body. Daily consumption of water is thus necessary to protect human health. Daily water consumption is related to several factors such as age, ambient temperature, and degree of physical activity. These factors are generally difficult to express with exact numerical values. The main objective of this article is to build a daily water intake recommendation system using fuzzy methods. This system will use age, physical activity, and ambient temperature as the input factors and daily water intake values as the output factor. The reasoning mechanism of the fuzzy system can calculate the recommended value of daily water intake. Finally, the system will compare the actual recommended values with our system to determine the usefulness. The experimental results show that this recommendation system is effective in actual application.

  13. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  14. Interactive color graphics system for BWR fuel management

    International Nuclear Information System (INIS)

    Reese, A.P.

    1986-01-01

    An interactive color graphics system has been developed by the General Electric Company for fuel management engineers. The system consists of a Hewlett-Packard color graphics workstation in communication with a host mainframe. The system aids in such tasks as fuel cycle optimization, refueling bundle shuffle and control blade sequence design. Since being installed in 1983 turn-around time for a typical cycle reload and control blade pattern design has been reduced by a factor of four

  15. Mycobacteria in water and loose deposits of drinking water distribution systems in Finland.

    Science.gov (United States)

    Torvinen, Eila; Suomalainen, Sini; Lehtola, Markku J; Miettinen, Ilkka T; Zacheus, Outi; Paulin, Lars; Katila, Marja-Leena; Martikainen, Pertti J

    2004-04-01

    Drinking water distribution systems were analyzed for viable counts of mycobacteria by sampling water from waterworks and in different parts of the systems. In addition, loose deposits collected during mechanical cleaning of the main pipelines were similarly analyzed. The study covered 16 systems at eight localities in Finland. In an experimental study, mycobacterial colonization of biofilms on polyvinyl chloride tubes in a system was studied. The isolation frequency of mycobacteria increased from 35% at the waterworks to 80% in the system, and the number of mycobacteria in the positive samples increased from 15 to 140 CFU/liter, respectively. Mycobacteria were isolated from all 11 deposits with an accumulation time of tens of years and from all 4 deposits which had accumulated during a 1-year follow-up time. The numbers of mycobacteria were high in both old and young deposits (medians, 1.8 x 10(5) and 3.9 x 10(5) CFU/g [dry weight], respectively). Both water and deposit samples yielded the highest numbers of mycobacteria in the systems using surface water and applying ozonation as an intermediate treatment or posttreatment. The number and growth of mycobacteria in system waters correlated strongly with the concentration of assimilable organic carbon in the water leaving the waterworks. The densities of mycobacteria in the developing biofilms were highest at the distal sites of the systems. Over 90% of the mycobacteria isolated from water and deposits belonged to Mycobacterium lentiflavum, M. tusciae, M. gordonae, and a previously unclassified group of mycobacteria. Our results indicate that drinking water systems may be a source for recently discovered new mycobacterial species.

  16. Joint optimization of regional water-power systems

    Science.gov (United States)

    Pereira-Cardenal, Silvio J.; Mo, Birger; Gjelsvik, Anders; Riegels, Niels D.; Arnbjerg-Nielsen, Karsten; Bauer-Gottwein, Peter

    2016-06-01

    Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs in very distinct ways, according to the local inflow, storage capacity, hydropower productivity, and irrigation demand and productivity. This highlights the importance of appropriately representing the water users' spatial distribution and marginal benefits and costs when allocating water resources optimally. The method can handle further spatial disaggregation and can be extended to include other aspects of the water-energy nexus.

  17. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  18. Monitoring Performance of a combined water recycling system

    OpenAIRE

    Castleton, H.F.; Hathway, E.A.; Murphy, E.; Beck, S.B.M.

    2014-01-01

    Global water demand is expected to outstrip supply dramatically by 2030, making water recycling an important tool for future water security. A large combined grey water and rainwater recycling system has been monitored in response to an identified knowledge gap of the in-use performance of such systems. The water saving efficiency of the system was calculated at −8ṡ5% in 2011 and –10% in 2012 compared to the predicted 36%. This was due to a lower quantity of grey water and rainwater being col...

  19. 33 CFR 149.419 - Can the water supply for the helicopter deck fire protection system be part of a fire water system?

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Can the water supply for the... § 149.419 Can the water supply for the helicopter deck fire protection system be part of a fire water system? (a) The water supply for the helicopter deck fire protection system required under § 149.420 or...

  20. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  1. TORR system polishes oily water clean

    International Nuclear Information System (INIS)

    Mowers, J.

    2002-01-01

    The TORR (total oil recovery and remediation) system utilizes a specially patented polymer material, similar to styrofoam, which is used to get rid of non-soluble hydrocarbons from water. An application in Fort Smith, Northwest Territories, is described where it was used to recover diesel oil, which had been seeping into the groundwater over a period of 20 years. About 100,000 gallons of heating oil had leached into the water; TORR removed the non-soluble hydrocarbons, while another piece of equipment removed the soluble portions. After treatment the water tested consistently at non-detectable levels and was clean enough to be discharged into the town's sewer system. The system is considered ideal for oil spills clean-up underground, onshore, or the open sea, but it also has many potentially useful applications in industrial and oilfield applications. Water used in steam injection and water floods to produce heavy oil and SAGD applications are some of the obvious ones that come to mind. Cleaning up the huge tailings ponds at the mining and processing of oil sands, and removing diluent from water that is used to thin out bitumen in pipelines so that it can be transported to processing plants, are other promising areas of application. Several field trials to test the effectiveness of the system in these type of applications are scheduled for the summer and fall of 2002

  2. Sustainable application of renewable sources in water pumping systems: Optimized energy system configuration

    International Nuclear Information System (INIS)

    Ramos, J.S.; Ramos, H.M.

    2009-01-01

    Eighteen years ago, in Portugal, the expenses in a water supply system associated with energy consumption were quite low. However, with the successive crises of energy fuel and the increase of the energy tariff as well as the water demand, the energy consumption is becoming a larger and a more important part of the total budget of water supply pumping systems. Also, new governmental policies, essentially in developed countries, are trying to implement renewable energies. For these reasons, a case-study in Portugal of a water pumping system was analysed to operate connected to solar and wind energy sources. A stand-alone and a grid-connected systems were tested. The stand alone was compared with the cost of extending the national electric grid. In the grid-connected system two solutions were analysed, one with a water turbine and another without. To be able to implement a water turbine, a larger water pump was needed to pump the necessary water as for consumption as for energy production. For the case analysed the system without a water turbine proved to be more cost-effective because the energy tariff is not yet so competitive as well as the cost of water turbines

  3. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  4. Submersible purification system for radioactive water

    Science.gov (United States)

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  5. Space Station Freedom regenerative water recovery system configuration selection

    Science.gov (United States)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  6. LARA: Expert system for acoustic localization of robot in a LMFBR

    International Nuclear Information System (INIS)

    Lhuillier, C.; Malvache, P.

    1986-12-01

    The expert system LARA (Acoustic Localization of Autonomic Robot) has been developed to show the interest of introducing artificial intelligency for fine automatic positioning of refuelling machine in a LMFBR reactor. LARA which is equipped with an acoustic detector gives rapidly a good positioning on the fuel [fr

  7. Water turbine system and method of operation

    Science.gov (United States)

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  8. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    OpenAIRE

    Rygaard, Martin

    2011-01-01

    While integrated assessments of sustainability of water systems are largely focused on quantity issues, chemical use, and energy consumption, effects of the supplied water quality are often overlooked. Drinking water quality affects corrosion rates, human health, applicability of water and aesthetics. Even small changes in the chemical composition of water may accumulate large impacts on city scale. Here, a method for integrated assessment of water quality is presented. Based on dose-response...

  9. Instrumentation for NBI SST-1 cooling water system

    International Nuclear Information System (INIS)

    Qureshi, Karishma; Patel, Paresh; Jana, M.R.

    2015-01-01

    Neutral Beam Injector (NBI) System is one of the heating systems for Steady state Superconducting Tokamak (SST-1). It is capable of generating a neutral hydrogen beam of power 0.5 MW at 30 kV. NBI system consists of following sub-systems: Ion source, Neutralizer, Deflection Magnet and Magnet Liner (ML), Ion Dump (ID), V-Target (VT), Pre Duct Scraper (PDS), Beam Transmission Duct (BTD) and Shine Through (ST). For better heat removal management purpose all the above sub-systems shall be equipped with Heat Transfer Elements (THE). During beam operation these sub-systems gets heated due to the received heat load which requires to be removed by efficient supplying water. The cooling water system along with the other systems (External Vacuum System, Gas Feed System, Cryogenics System, etc.) will be controlled by NBI Programmable Logic Control (PLC). In this paper instrumentation and its related design for cooling water system is discussed. The work involves flow control valves, transmitters (pressure, temperature and water flow), pH and conductivity meter signals and its interface with the NBI PLC. All the analog input, analog output, digital input and digital output signals from the cooling water system will be isolated and then fed to the NBI PLC. Graphical Users Interface (GUI) needed in the Wonderware SCADA for the cooling water system shall also be discussed. (author)

  10. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  11. Key Issues for the control of refueling outage duration and costs in PWR Nuclear Power Plants

    International Nuclear Information System (INIS)

    Degrave, Claude

    2002-01-01

    For several years, EDF, within the framework of the CIDEM1 project and in collaboration with some German Utilities, has undertaken a detailed review of the operating experience both of its own NPP and of foreign units, in order to improve the performances of future units under design, particularly the French-German European Pressurized Reactor (EPR) project. This review made it possible to identify the key issues allowing to decrease the duration of refueling and maintenance outages. These key issues can be classified in 3 categories Design, Maintenance and Logistic Support, Outage Management. Most of the key issues in the design field and some in the logistic support field have been studied and could be integrated into the design of any future PWR unit, as for the EPR project. Some of them could also be adapted to current plants, provided they are feasible and profitable. The organization must be tailored to each country, utility or period: it widely depends on the power production environment, particularly in a deregulation context. (author)

  12. Exact docking flight controller for autonomous aerial refueling with back-stepping based high order sliding mode

    Science.gov (United States)

    Su, Zikang; Wang, Honglun; Li, Na; Yu, Yue; Wu, Jianfa

    2018-02-01

    Autonomous aerial refueling (AAR) exact docking control has always been an intractable problem due to the strong nonlinearity, the tight coupling of the 6 DOF aircraft model and the complex disturbances of the multiple environment flows. In this paper, the strongly coupled nonlinear 6 DOF model of the receiver aircraft which considers the multiple flow disturbances is established in the affine nonlinear form to facilitate the nonlinear controller design. The items reflecting the influence of the unknown flow disturbances in the receiver dynamics are taken as the components of the "lumped disturbances" together with the items which have no linear correlation with the virtual control variables. These unmeasurable lumped disturbances are estimated and compensated by a specially designed high order sliding mode observer (HOSMO) with excellent estimation property. With the compensation of the estimated lumped disturbances, a back-stepping high order sliding mode based exact docking flight controller is proposed for AAR in the presence of multiple flow disturbances. Extensive simulation results demonstrate the feasibility and superiority of the proposed docking controller.

  13. Results of automatic system implementation for the friction control rods execution in Cofrentes nuclear power plant

    International Nuclear Information System (INIS)

    Palomo, M.; Urrea, M.; Arnaldos, A.

    2011-01-01

    The purpose of this presentation is to show the obtained results in Cofrentes Nuclear Power Plant (Spain) of Control Rods PCC/24 Friction Test Procedure. In order to perform this, a Control Rod Friction Test System has been developed. Principally, this system consists on software and data acquisition hardware that obtains and analyzes the control rod pressure variation on which the test is being made. The PCC/24 Procedure objective is to detect an excessive friction in the control rod movement that could cause a CRD (Control Rod Drive) movement slower than usual. This test is necessary every time that an anomalous alteration is produced in the reactor core that could affect to a fuel rod, and it is executed before the time measure of control rods rapid scram test of the affected rods. This test has to be carried out to all the reactor control rods and takes valuable time during plant refuelling. So, by means of an automatic system to perform the test, we obtain an important time saving during refuelling. On the other hand, the on-line monitoring of the control rod insertion and changes in differential pressure, permits a control rod operation fast and safe validation. Moreover, an automatic individual report of every rod is generated by the system and a final global result report of the entire test developed in refuelling is generated. The mentioned reports can be attached directly to the procedure documents obtaining an office data processing important saving time.(author)

  14. Results of automatic system implementation for the friction control rods execution in Cofrentes nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, M., E-mail: mpalomo@iqn.upv.es [Universidad Politecnica de Valencia (UPV) (Spain); Urrea, M., E-mail: matias.urrea@iberdrola.es [Iberdrola Generacion S.A. Valencia (Spain). C.N. Cofrentes; Curiel, M., E-mail: m.curiel@lainsa.com [Logistica y Acondicionamientos Industriales (LAINSA), Valencia (Spain); Arnaldos, A., E-mail: a.arnaldos@titaniast.com [TITANIA Servicios Teconologicos, Valencia (Spain)

    2011-07-01

    The purpose of this presentation is to show the obtained results in Cofrentes Nuclear Power Plant (Spain) of Control Rods PCC/24 Friction Test Procedure. In order to perform this, a Control Rod Friction Test System has been developed. Principally, this system consists on software and data acquisition hardware that obtains and analyzes the control rod pressure variation on which the test is being made. The PCC/24 Procedure objective is to detect an excessive friction in the control rod movement that could cause a CRD (Control Rod Drive) movement slower than usual. This test is necessary every time that an anomalous alteration is produced in the reactor core that could affect to a fuel rod, and it is executed before the time measure of control rods rapid scram test of the affected rods. This test has to be carried out to all the reactor control rods and takes valuable time during plant refuelling. So, by means of an automatic system to perform the test, we obtain an important time saving during refuelling. On the other hand, the on-line monitoring of the control rod insertion and changes in differential pressure, permits a control rod operation fast and safe validation. Moreover, an automatic individual report of every rod is generated by the system and a final global result report of the entire test developed in refuelling is generated. The mentioned reports can be attached directly to the procedure documents obtaining an office data processing important saving time.(author)

  15. Identification of the microbiological community in biogas systems and evaluation of microbial risks from gas usage

    Energy Technology Data Exchange (ETDEWEB)

    Vinneraas, Bjoern [Swedish University of Agricultural Sciences, Department of Biometry and Engineering, Box 7032, SE-750 07 Uppsala (Sweden); Schoenning, Caroline [Swedish Institute for Infectious Disease Control, Department of Parasitology, Mycology, Environmental Mirobiology and Water, SE-171 82 Solna (Sweden); Nordin, Annika [National Veterinary Institute, Department of Wild Life, Fish and Environment, SE-751 89 Uppsala (Sweden)

    2006-08-31

    The plans for introducing biogas produced from organic waste to the pipe system for natural gas has raised concerns about the risk of transmitting disease via the gas. To assess this risk, condensate water from gas pipes and gas from different parts of a biogas upgrading system were sampled and cultured for microbial content. On average, 10{sup 5} cfu ml{sup -1} were found in the condensate water throughout the system, while in the gas between 10 and 100 cfu m{sup -3} were found. The microorganisms were subjected to further identification and found to represent a wide variety, e.g. fungi and spore-forming and non-spore-forming bacteria, including species such as Enterobacteriaceae. The number of microorganisms found in the biogas corresponded to the densities in sampled natural gas, which also held 10-100 cfu m{sup -3}. Since no pathogens were identified and since the exposure to gas from e.g. cookers and refuelling of cars may only result in the inhalation of small volumes of gas, the risk of spreading disease via biogas was judged to be very low. (author)

  16. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  17. A study of Cirus heavy water system isotopic purity

    International Nuclear Information System (INIS)

    Thomas, Shibu; Sahu, A.K.; Unni, V.K.P.; Pant, R.C.

    2000-01-01

    Cirus uses heavy water as moderator and helium as cover gas. Approximately one tonne of heavy water was added to the system every year for routine make up. Isotopic purity (IP) of this water used for addition was always higher than that of the system. Though this should increase IP of heavy water in the system, it has remained almost at the same level, over the years. A study was carried out to estimate the extent of improvement in IP of heavy water in the system that should have occurred because of this and other factors in last 30 years. Reasons for non-occurrence of such an improvement were explored. Ion exchange resins used for purification of heavy water and air ingress into helium cover gas system appear to be the principal sources of entry of light water into heavy water system. (author)

  18. Leaks in the internal water supply piping systems

    OpenAIRE

    Orlov Evgeniy Vladimirovich; Komarov Anatoliy Sergeevich; Mel’nikov Fedor Alekseevich; Serov Aleksandr Evgen’evich

    2015-01-01

    Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold) as a result of impaired integrity, complicating the operation of a system and leading to high costs of ...

  19. Heavy water technology and its contribution to energy sustainability

    International Nuclear Information System (INIS)

    MacDiarmid, H.; Alizadeh, A.; Hopwood, J.; Duffey, R.

    2009-01-01

    Full text: As the global nuclear industry expands several markets are exploring avenues and technologies to underpin energy security. Heavy water reactors are the most versatile power reactors in the world. They have the potential to extend resource utilization significantly, to allow countries with developing industrial infrastructures access to clean and abundant energy, and to destroy long-lived nuclear waste. These benefits are available by choosing from an array of possible fuel cycles. Several factors, including Canada's early focus on heavy-water technology, limited heavy-industry infrastructure at the time, and a desire for both technological autonomy and energy self-sufficiency, contributed to the creation of the first commercial heavy water reactor in 1962. With the maturation of the industry, the unique design features of the now-familiar product-on-power refuelling, high neutron economy, and simple fuel design-make possible the realization of its potential fuel-cycle versatility. As resource constrains apply pressure on world markets, the feasibility of these options have become more attractive and closer to entering widespread commercial application

  20. Reactor component inventory system at FFTF

    International Nuclear Information System (INIS)

    Ordonez, C.R.; Redekopp, R.D.; Reed, E.A.

    1985-02-01

    A reliable inventory control system was developed at the Fast Flux Test Facility (FFTF) to keep track of the occupancy of 900 refueling facility locations, to compile historical data on the movement of each reactor assembly, and to simulate assembly moves. The simulate capability is valuable because it allows verification of documents before they are issued for use in the plant, and eliminates the possibility of planning illegal or impossible moves. The system is installed on a UNIVAC 1100 computer and is maintained using a data base management system by Sperry Univac called MAPPER

  1. Main features and potentialities of gas-blanket systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-02-01

    A review is given of the features and potentialities of cold-blanket systems, with respect to plasma equilibrium, stability, and reactor technology. The treatment is concentrated on quasi-steady magnetized plasmas confined at moderately high beta values. The cold-blanket concept has specific potentialities as a fusion reactor, e.g. in connection with the desired densities and dimensions of full-scale systems, refuelling, as well as ash and impurity removal, and stability. (author)

  2. Observations and insights from low power and shutdown studies: Grand Gulf Nuclear Power Plant during POS 5 of a refueling outage

    International Nuclear Information System (INIS)

    Whitehead, D.W.; Brown, T.D.; Forester, J.A.

    1995-04-01

    With the recent completion of the documentation of the results from the Grand Gulf Nuclear Power Plant Low Power and Shutdown (LP and S) project funded by the US Nuclear Regulatory Commission (NRC), detailed probabilistic risk assessment (PRA) information from a boiling water reactor (BWR) for a specific time period in LP and S conditions became available for examination. This report contains observations and insights extracted from an examination of: (1) results in the LP and S documentation; (2) the specific models and assumptions used in the LP and S analyses; (3) selected results from the full-power analysis; (4) the experience of the analysts who performed the original LP and S study; and (5) results from sensitivity calculations performed as part of this project to help determine the impact that model assumptions and data values had on the results from the original LP and S analysis. Specifically, this study makes observations on and develops insights from the estimates of core damage frequency and aggregate risk (early fatalities and total latent cancer fatalities) associated with operations during plant operational state (POS) 5 (i.e., basically cold shutdown as defined by Technical Specifications) during a refueling outage for traditional internal events. A discussion of similarities and differences between full power accidents and accidents during LP and S conditions is provided. As part of this discussion, core damage frequency and risks results are presented on a per hour and per calendar year basis, allowing alternative perspectives on both the core damage frequency and risk associated with these two operational states

  3. A transportable system for radioactivity contaminated water treatment

    International Nuclear Information System (INIS)

    2013-01-01

    Contaminated water treatment system called SARRY for retrieval and recovery of water in operation at the site of Fukushima Daiichi Nuclear Power Plant since August 2011 has been modified by compacting the system size to develop a mobile system SARRY-Aqua that can process Cs-contaminated water (one ton/hour) to the level of 10 Bq/kg. Installing the system in a small container with dimensions conforming to the international standards facilitates transportation by truck and enables the contaminated water treatment occurring in a variety of locations. (S. Ohno)

  4. Joint optimization of regional water-power systems

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Mo, Birger; Gjelsvik, Anders

    2016-01-01

    using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs...... for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost...... of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved...

  5. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  6. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  7. Grey water treatment systems: A review

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a

  8. Drying of heavy water system and works of charging heavy water in Fugen

    International Nuclear Information System (INIS)

    Matsushita, Tadashi; Iijima, Setsuo

    1980-01-01

    The advanced thermal reactor ''Fugen'' is the first heavy water-moderated, boiling light water-cooled nuclear reactor for power generation in Japan. It is a large heavy water reactor having about 130 m 3 of heavy water inventory and about 300 m 3 of helium space as the cover gas of the heavy water system. The heavy water required was purchased from FRG, which had been used for the power output test in the KKN, and the quality was 99.82 mol % mean heavy water concentration. The concentration of heavy water for Fugen used for the nuclear design is 99.70 mol%, and it was investigated how heavy water can be charged without lowering the concentration. The matters of investigation include the method of bringing the heavy water and helium system to perfect dryness after washing and light water test, the method of confirming the sufficient dryness to prevent the deterioration, and the method of charging heavy water safely from its containers. On the basis of the results of investigation, the actual works were started. The works of drying the heavy water and helium system by vacuum drying, the works of sampling heavy water and the result of the degree of deterioration, and the works of charging heavy water and the measures to the heavy water remaing in the containers are described. All the works were completed safely and smoothly. (J.P.N.)

  9. Influences of water quality and climate on the water-energy nexus: A spatial comparison of two water systems.

    Science.gov (United States)

    Stang, Shannon; Wang, Haiying; Gardner, Kevin H; Mo, Weiwei

    2018-07-15

    As drinking water supply systems plan for sustainable management practices, impacts from future water quality and climate changes are a major concern. This study aims to understand the intraannual changes of energy consumption for water treatment, investigate the relative importance of water quality and climate indicators on energy consumption for water treatment, and predict the effects of climate change on the embodied energy of treated, potable water at two municipal drinking water systems located in the northeast and southeast US. To achieve this goal, a life cycle assessment was first performed to quantify the monthly energy consumption in the two drinking water systems. Regression and relative importance analyses were then performed between climate indicators, raw water quality indicators, and chemical and energy usages in the treatment processes to determine their correlations. These relationships were then used to project changes in embodied energy associated with the plants' processes, and the results were compared between the two regions. The projections of the southeastern US water plant were for an increase in energy demand resulted from an increase of treatment chemical usages. The northeastern US plant was projected to decrease its energy demand due to a reduced demand for heating the plant's infrastructure. The findings indicate that geographic location and treatment process may determine the way climate change affects drinking water systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Energy costs and Portland water supply system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W.M.; Hawley, R.P.

    1981-10-01

    The changing role of electrical energy on the Portland, Oregon, municipal-water-supply system is presented. Portland's actions in energy conservation include improved operating procedures, pump modifications, and modifications to the water system to eliminate pumping. Portland is implementing a small hydroelectric project at existing water-supply dams to produce an additional source of power for the area. Special precautions in construction and operation are necessary to protect the high quality of the water supply. 2 references, 7 figures.

  11. Leaks in the internal water supply piping systems

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2015-03-01

    Full Text Available Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold as a result of impaired integrity, complicating the operation of a system and leading to high costs of repair and equipment restoration. A large number of leaks occur in old buildings, where the regulatory service life of pipelines has come to an end, and the scheduled repair for some reason has not been conducted. Steel pipelines are used in the systems without any protection from corrosion and they get out of order. Leakages in new houses are also not uncommon. They usually occur as a result of low-quality adjustment of the system by workers. It also important to note the absence of certain skills of plumbers, who don’t conduct the inspections of in-house systems in time. Sometimes also the residents themselves forget to keep their pipeline systems and water fittings in their apartment in good condition. Plumbers are not systematically invited for preventive examinations to detect possible leaks in the domestic plumbing. The amount of unproductive losses increases while simultaneous use of valve tenants, and at the increase of the number of residents in the building. Water leaks in the system depend on the amount of water system piping damages, and damages of other elements, for example, water valves, connections, etc. The pressure in the leak area also plays an important role.

  12. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    Science.gov (United States)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  13. Solar Powered Automated Pipe Water Management System, Water Footprint and Carbon Footprint in Soybean Production

    Science.gov (United States)

    Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.

    2018-05-01

    An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.

  14. Amoxicillin in a biological water recovery system

    International Nuclear Information System (INIS)

    Morse, A.; Jackson, A.; Rainwater, K.; Pickering, K.

    2002-01-01

    Pharmaceuticals are new contaminants of concern in the aquatic environment, having been identified in groundwater, surface water, and residential tap water. Possible sources of pharmaceuticals include household wastewaters, runoff from feedlots, or waste discharges from pharmaceutical manufacturing plants. When surface water or groundwater supplies impacted by pharmaceuticals are used in drinking water production, the contaminants may reduce drinking water quality. Many pharmaceuticals, such as amoxicillin, pass through the body largely unmetabolized and directly enter wastewater collection systems. Pharmaceuticals are designed to persist in the body long enough to have the desired therapeutic effect. Therefore, they may also have the ability to persist in the environment (Seiler et al, 1999). The purpose of this work is to determine the overall transformation potential of a candidate pharmaceutical in wastewater treatment with specific emphasis on recycle systems. Amoxicillin is the selected pharmaceutical agent, an orally absorbed broad-spectrum antibiotic with a variety of clinical uses including ear, nose, and throat infections and lower respiratory tract infections. Experiments were conducted using an anaerobic reactor (with NO 3 - and NO 2 - as the e - acceptors) followed by a two-phase nitrifying tubular reactor. Influent composed of water, urine and surfactant was spiked with amoxicillin and fed into the wastewater recycle system. The concentration of amoxicillin in the feed and effluent was quantified using an HPLC. Results from this study include potential for long-term buildup in recycled systems, accumulation of breakdown products and possible transfer of antibiotic resistance to microorganisms in the system effluent. In addition, the results of this study may provide information on contamination potential for communities that are considering supplementing drinking water supplies with recovered wastewater or for entities considering a closed loop

  15. Design optimization of photovoltaic powered water pumping systems

    International Nuclear Information System (INIS)

    Ghoneim, A.A.

    2006-01-01

    The use of photovoltaics as the power source for pumping water is one of the most promising areas in photovoltaic applications. With the increased use of water pumping systems, more attention has been paid to their design and optimum utilization in order to achieve the most reliable and economical operation. This paper presents the results of performance optimization of a photovoltaic powered water pumping system in the Kuwait climate. The direct coupled photovoltaic water pumping system studied consists of the PV array, DC motor, centrifugal pump, a storage tank that serves a similar purpose to battery storage and a maximum power point tracker to improve the efficiency of the system. The pumped water is desired to satisfy the domestic needs of 300 persons in a remote area in Kuwait. Assuming a figure of 40 l/person/day for water consumption, a volume of 12 m 3 should be pumped daily from a deep well throughout the year. A computer simulation program is developed to determine the performance of the proposed system in the Kuwait climate. The simulation program consists of a component model for the PV array with maximum power point tracker and component models for both the DC motor and the centrifugal pump. The five parameter model is adapted to simulate the performance of amorphous silicon solar cell modules. The size of the PV array, PV array orientation and the pump-motor-hydraulic system characteristics are varied to achieve the optimum performance for the proposed system. The life cycle cost method is implemented to evaluate the economic feasibility of the optimized photovoltaic powered water pumping system. At the current prices of PV modules, the cost of the proposed photovoltaic powered water pumping system is found to be less expensive than the cost of the conventional fuel system. In addition, the expected reduction in the prices of photovoltaic modules in the near future will make photovoltaic powered water pumping systems more feasible

  16. Neutral sodium/bicarbonate/sulfate hot waters in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, W.A.J. (Dept. of Industrial and Scientific Research, Wairakei, New Zealand); Klyen, L.E.; Rhode, M.

    1980-03-01

    The least understood thermal water is a near neutral water which contains varying amounts of bicarbonate and sulfate as the major anions, low concentrations of chloride (< 30 ppM) and sodium as the major cation. In the past this water has been referred to as a sodium bicarbonate water but present studies suggest that the quantities of bicarbonate and sulfate in this water type are frequently of the same order. Of particular interest is the distribution and position of the sodium/bicarbonate/sulfate water in the same and different systems. Many hot springs in Indonesia, for example, discharge water of this composition. Present studies indicate that this water type can originate from high temperature reservoirs which form the secondary steam heated part of a normal high temperature geothermal system. The hydrological conditions producing these waters in geothermal systems are investigated and the relationship between the water type and vapor dominated systems is discussed. It is suggested that the major water type occurring in the so called vapor dominated parts of geothermal systems is this water. The water does not simply represent steam condensate, rather it consists essentially of meteoric water which has been steam heated. The water composition results from the interaction of carbon dioxide and hydrogen sulfide with meteoric water and the rocks confining this water in the aquifer.

  17. Cold Vacuum Drying facility deionized water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit

  18. Designing and visualizing the water-energy-food nexus system

    Science.gov (United States)

    Endo, A.; Kumazawa, T.; Yamada, M.; Kato, T.

    2017-12-01

    The objective of this study is to design and visualize a water-energy-food nexus system to identify the interrelationships between water-energy-food (WEF) resources and to understand the subsequent complexity of WEF nexus systems holistically, taking an interdisciplinary approach. Object-oriented concepts and ontology engineering methods were applied according to the hypothesis that the chains of changes in linkages between water, energy, and food resources holistically affect the water-energy-food nexus system, including natural and social systems, both temporally and spatially. The water-energy-food nexus system that is developed is significant because it allows us to: 1) visualize linkages between water, energy, and food resources in social and natural systems; 2) identify tradeoffs between these resources; 3) find a way of using resources efficiently or enhancing the synergy between the utilization of different resources; and 4) aid scenario planning using economic tools. The paper also discusses future challenges for applying the developed water-energy-food nexus system in other areas.

  19. Water maser emission from exoplanetary systems

    Science.gov (United States)

    Cosmovici, C. B.; Pogrebenko, S.

    2018-01-01

    Since the first discovery of a Jupiter-mass planet in 1995 more than 2000 exo-planets have been found to exist around main sequence stars. The detection techniques are based on the radial velocity method (which involves the measurement of the star's wobbling induced by the gravitational field of the orbiting giant planets) or on transit photometry by using space telescopes (Kepler, Corot, Hubble and Spitzer) outside the absorbing Earth atmosphere. From the ground, as infrared observations are strongly limited by atmospheric absorption, radioastronomy offers almost the only possible way to search for water presence and abundance in the planetary atmospheres of terrestrial-type planets where life may evolve. Following the discovery in 1994 of the first water maser emission in the atmosphere of Jupiter induced by a cometary impact, our measurements have shown that the water maser line at 22 GHz (1.35 cm) can be used as a powerful diagnostic tool for water search outside the solar system, as comets are able to deliver considerable amounts of water to planets raising the fascinating possibility of extraterrestrial life evolution. Thus in 1999 we started the systematic search for water on 35 different targets up to 50 light years away from the Sun. Here we report the first detection of the water maser emission from the exoplanetary systems Epsilon Eridani, Lalande 21185 and Gliese 581. We have shown the peculiar feasibility of water detection and its importance in the search for exoplanetary systems especially for the Astrobiology programs, given the possibility of long period observations using powerful radiotelescopes equipped with adequate spectrometers.

  20. Solar-Based Fuzzy Intelligent Water Sprinkle System

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2012-03-01

    Full Text Available A solar-based intelligent water sprinkler system project that has been developed to ensure the effectiveness in watering the plant is improved by making the system automated. The control system consists of an electrical capacitance soil moisture sensor installed into the ground which is interfaced to a controller unit of Motorola 68HC11 Handy board microcontroller. The microcontroller was programmed based on the decision rules made using fuzzy logic approach on when to water the lawn. The whole system is powered up by the solar energy which is then interfaced to a particular type of irrigation timer for plant fertilizing schedule and rain detector through a simple design of rain dual-collector tipping bucket. The controller unit automatically disrupted voltage signals sent to the control valves whenever irrigation was not needed. Using this system we combined the logic implementation in the area of irrigation and weather sensing equipment, and more efficient water delivery can be made possible. 

  1. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  2. Innovated feed water distributing system of VVER steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Sousek, P.; Simo, T.; Lehota, M.; Lipka, J.; Slugen, V.

    2000-01-01

    Defects in feed water distributing system due to corrosion-erosion effects have been observed at many VVER 440 steam generators (SG). Therefore analysis of defects origin and consequently design development and testing of a new feed water distributing system were performed. System tests in-situ supported by calculations and comparison of measured and calculated data were focused on demonstration of long term reliable operation, definition of water flow and water chemical characteristics at the SG secondary side and their measurements and study of dynamic characteristics needed for the innovated feed water distributing system seismic features approval. The innovated feed water distributing system was installed in the SGs of two VVER units already. (author)

  3. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  4. The System 80+ standard plant design reduces operations and maintenance costs

    International Nuclear Information System (INIS)

    Chari, D.R.; Robertson, J.E.

    1998-01-01

    To be cost-competitive, nuclear power plants must maximize plant availability and minimize operations and maintenance (O and M) costs. A plant whose design supports these goals will generate more power at less cost and thereby have a lower unit generating cost. The ABB Combustion Engineering Nuclear Systems (ABB-CE) System 80+ Standard Nuclear Power Plant, rated at 1400 megawatts electric (MWe), is designed for high availability at reduced cost. To demonstrate that the duration of refueling outages, the major contributor to plant unavailability, can be shortened, ABB-CE developed a detailed plan that shows a System 80+ plant can safely perform a refueling and maintenance outage in 18 days. This is a significant reduction from the average current U.S. plant outages of 45 days, and is possible due to a two-part outage strategy: use System 80+ advanced system design features and relaxed technical specification (TS) time limits to shift some maintenance from outages to operating periods: and, use System 80+ structural, system, and component features, such as the larger operating floor, permanent pool seal, integral reactor head area cable tray system and missile shield, and longer life reactor coolant pump seals, to reduce the scope and duration of outage maintenance activities. Plant staffing level is the major variable, or controllable contributor to operations costs. ABB-CE worked with the Institute of Nuclear Power Operations (INPO) to perform detailed staffing analyses that show a System 80+ plant can be operated reliably with 30 percent less staff than currently operating nuclear plants of similar size. Safety was not sacrificed when ABB-CE developed the System 80+ refueling outage plan and staffing level. The outage plan was developed utilizing a defense-in-depth concept for shutdown safety. The defense in-depth concept is implemented via systematic control of outage risk evaluation (SCORE) cards. The SCORE cards identify primary and alternate means of

  5. Significance of losses in water distribution systems in India.

    Science.gov (United States)

    Raman, V

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the system. At a conservative estimate, the national loss of processed water through leaks in the water distribution systems amounts to 10(12) litres per year, which is equivalent to 500 million rupees.It is possible to bring down the water losses in the pipe mains to 3-5% of the total flow, and the cost incurred on the control programme can be recovered in 6-18 months. Appropriate conservation measures will help in achieving the goals of the International Water Supply and Sanitation Decade to provide clean water for all.

  6. The Utilisation of Solar System in Combined Heating System of Water

    Directory of Open Access Journals (Sweden)

    Ján Jobbágy

    2017-01-01

    Full Text Available The paper assessed the topicality and returns of solar system utilization to heating of water. Practical measurements were conducted after reconstruction of the family house. (in Nesvady, Slovak republic, on which the solar system were assembled. The system consists of the gas heater, solar panels, distributions and circulation pump. The solar system was assembled due to decreasing of operation costs and connected with conventional already used gas heating system by boiler Quantum (V = 115 L. The conventional system was used for 21 days to gather basic values for evaluation. At this point it was observed that 11.93 m3 of gas is needed to heat up 1 m3 of water. Used water in this case was heated from initial 16.14 °C to 52.04 °C of output temperature. Stand by regime of boiler was characterized by 0.012 m3.h-1 consumption of gas. The rest of the measurements represent the annual (from 03/2013 to 02/2014 operation process of boiler Tatramat VTS 200L (trivalent with 200 litres of volume (as a part of Thermosolar solar system. The solar collectors TS 300 are also part of the solar system. An input and output temperatures of heating water we observed along with water and gas consumption, intensity of solar radiation and actual weather conditions. The amount of heat produced by solar system was then calculated. Total investment on solar system were 2,187.7 € (1,475.7 € with subsidy. Therefore, return on investment for the construction of the solar system was set at 23 years even with subsidy.

  7. California community water systems inventory dataset, 2010

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

  8. Conceptual analyses of neutronic and equilibrium refueling parameters to develop a cost-effective multi-purpose pool-type research reactor using WIMSD and CITVAP codes

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin, E-mail: ahedayat@aeoi.org.ir

    2016-12-01

    Highlights: • Introducing a high-beneficent and low-cost multipurpose research reactor. • High technical documents and standard safety issues are introduced coherently. • High effective conceptual neutronic analyses and fuel management strategy. • Gaining high score design criteria and safety margins via 3-D core modeling. • Capacity and capability to produce all medical and industrial radioisotopes. - Abstract: In this paper, neutronic and equilibrium refueling parameters of a multi-purpose cost-effective research reactor have been studied and analyzed. It has been tried to provide periodic and long-term requirements of the irradiating applications coherently. The WIMSD5B and CITVAP codes are used to calculate neutronic parameters and simulate fuel management strategy. The used nuclear data, codes, and calculating methods have been severally benchmarked and verified, successfully. Fundamental concepts, design criteria, and safety issues are introduced and discussed, coherently. Design criteria are selected to gain the most economic benefits per capital costs via minimum required reactor power. Accurate, fast and simplified models have been tried for an integrated decision making and analyses using deterministic codes. Core management, power effects, fuel consumption and burn up effects, and also a complete simulation of the fuel management strategy are presented and analyzed. Results show that the supposed reactor core design can be promisingly suitable in accordance with the commercial multi-purpose irradiating applications. It also retains Operating Limits and Conditions (OLCs) due to standard safety issues, conservatively where safety parameters are calculated using best estimate tools. Such reactor core configuration and integrated refueling task can effectively enhance the Quality Assurance (QA) of the general irradiating applications of the current MTR within their power limits and corresponding OLCs.

  9. Summary of EPRI projects for improving power plant maintenance and maintainability

    International Nuclear Information System (INIS)

    Shugars, H.G.; Poole, D.N.; Pack, R.W.

    1979-01-01

    The Electric Power Research Institute is sponsoring projects to improve power plant maintenance and maintainability. Areas presently being emphasized are improvements in plant design for maintainability, improvements in performing nuclear plant refuelings, and development of on-line monitoring and diagnostic systems for various plant components. The seven projects are reviewed. They are: (1) human factors review of power plant maintainability; (2) refueling outage improvement; (3) on-line monitoring and diagnostics for power plant machinery; (4) acoustic emission and vibrati1on signature analysis of fossil fuel plant components; (5) acoustic monitoring of power plant valves; (6) on-line monitoring and diagnostics for generators; and (7) detection of water induction in steam turbines. Each project contractor and the project manager are listed for reference. 8 references

  10. Solar PV energy for water pumping system

    International Nuclear Information System (INIS)

    Mahar, F.

    1997-01-01

    The paper provides an introduction into understanding the relative merits, characteristics, including economics, of photovoltically powered water pumping systems. Although more than 10,000 photovoltaic pumping systems are known to be operating through out the world, many potential users do not know how to decide weather feasibility assessment, and system procurement so that the reader can made an informed decision about water pumping systems, especially those powered with photovoltaics. (author)

  11. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  12. Urban Water Innovation Network (UWIN): Transitioning Toward Sustainbale Urban Water Systems

    Science.gov (United States)

    Arabi, M.

    2015-12-01

    City water systems are at risk of disruption from global social and environmental hazards, which could have deleterious effects on human health, property, and loss of critical infrastructure. The Urban Water Innovation Network (UWIN), a consortium of 14 academic institutions and other key partners across the U.S., is working to address challenges that threaten urban water systems across the nation. UWIN's mission is to create technological, institutional and management solutions to help communities increase the resilience of their water systems and enhance their preparedness for responding to water crisis. The network seeks solutions that achieve widespread adoption consistent with inclusive, equitable and sustainable urban development. The integrative and adaptive analysis framework of UWIN is presented. The framework identifies a toolbox of sustainable solutions by simultaneously minimizing pressures, enhancing resilience to extreme events, and maximizing cobenefits. The benefits of sustainable urban water solutions for linked urban ecosystems, economies, and arrangements for environmental justice and social equity, will be discussed. The network encompasses six U.S. regions with varying ecohydrologic and climatic regimes ranging from the coastal moist mid-latitude climates of the Mid-Atlantic to the subtropical semi-arid deserts of the Southwest. These regions also represent a wide spectrum of demographic, cultural, and policy settings. The opportunities for cross-site assessments that facilitate the exploration of locally appropriate solutions across regions undergoing various development trajectories will be discussed.

  13. Information Theory for Risk-based Water System Operation

    NARCIS (Netherlands)

    Weijs, S.V.

    2011-01-01

    Operational management of water resources needs predictions of future behavior of water systems, to anticipate shortage or excess of water in a timely manner. Because the natural systems that are part of the hydrological cycle are complex, the predictions inevitably are subject to considerable

  14. Hybrid expert system implementation to determine core reload patterns

    International Nuclear Information System (INIS)

    Greek, K.J.; Robinson, A.H.

    1989-01-01

    Determining reactor reload fuel patterns is a computationally intensive problem solving process for which automation can be of significant benefit. Often much effort is expended in the search for an optimal loading. While any modern programming language could be used to automate solution, the specialized tools of artificial intelligence (AI) are the most efficient means of introducing the fuel management expert's knowledge into the search for an optimum reload pattern. Prior research in pressurized water reactor refueling strategies developed FORTRAN programs that automated an expert's basic knowledge to direct a search for an acceptable minimum peak power loading. The dissatisfaction with maintenance of compiled knowledge in FORTRAN programs has served as the motivation for the development of the SHUFFLE expert system. SHUFFLE is written in Smalltalk, an object-oriented programming language, and evaluates loadings as it generates them using a two-group, two-dimensional nodal power calculation compiled in a personal computer-based FORTRAN. This paper reviews the object-oriented representation developed to solve the core reload problem with an expert system tool and its operating prototype, SHUFFLE

  15. WaterOnto: Ontology of Context-Aware Grid-Based Riverine Water Management System

    Directory of Open Access Journals (Sweden)

    Muhammad Hussain Mughal

    2017-06-01

    Full Text Available The management of riverine water always remains a big challenge, because the volatility of water flow creates hurdles to determine the exact time and quantity of water flowing in rivers and available for daily use. The volatile water caused by various water sources and irregular flow pattern generates different kinds of challenges for management. Distribution of flow of water in irrigation network affects the relevant community in either way. In the monsoon seasons, river belt community high risk of flood, while far living community suffering drought. Contemplating this situation, we have developed an ontology for context-aware information representation of riverine water management system abetting the visualization and proactive planning for the complex real-time situation. The purpose of this WaterOnto is to improve river water management and enable for efficient use of this precious natural resource. This would also be helpful to save the extra water being discharged in sea & non-irrigational areas, and magnitude and location of water leakage. We conceptualized stakeholder and relevant entities. We developed a taxonomy of irrigation system concepts in machine process able structure. Being woven these hierarchies together we developed a detailed conceptualization of river flow that helps us to manage the flow of water and enable to extract danger situation.

  16. A completely passive continuous flow solar water purification system

    Energy Technology Data Exchange (ETDEWEB)

    Duff, William S.; Hodgson, David A. [Dept. of Mechanical Enginnering, Colorado State Univ., Fort Collins, CO (United States)

    2008-07-01

    Water-borne pathogens in developing countries cause several billion cases of disease and up to 10 million deaths each year, at least half of which are children. Solar water pasteurization is a potentially cost-effective, robust and reliable solution to these problems. A completely passively controlled solar water pasteurization system with a total collector area of 0.45 m{sup 2} has been constructed. The system most recently tested produced 337 litres per m{sup 2} of collector area of treated water on a sunny day. We developed our completely passive density-driven solar water pasteurization system over a five year span so that it now achieves reliable control for all possible variations in solar conditions. We have also substantially increased its daily pure water production efficiency over the same period. We will discuss the performance of our water purification system and provide an analyses that demonstrates that the system insures safe purified water production at all times. (orig.)

  17. Two-loop feed water control system in BWR plants

    International Nuclear Information System (INIS)

    Omori, Takashi; Watanabe, Takao; Hirose, Masao.

    1982-01-01

    In the process of the start-up and shutdown of BWR plants, the operation of changing over feed pumps corresponding to plant output is performed. Therefore, it is necessary to develop the automatic changeover system for feed pumps, which minimizes the variation of water level in reactors and is easy to operate. The three-element control system with the water level in reactors, the flow rate of main steam and the flow rate of feed water as the input is mainly applied, but long time is required for the changeover of feed pumps. The two-loop feed control system can control simultaneously two pumps being changed over, therefore it is suitable to the automatic changeover control system for feed pumps. Also it is excellent for the control of the recirculating valves of feed pumps. The control characteristics of the two-loop feed water control system against the external disturbance which causes the variation of water level in reactors were examined. The results of analysis by simulation are reported. The features of the two-loop feed water control system, the method of simulation and the evaluation of the two-loop feed water control system are described. Its connection with a digital feed water recirculation control system is expected. (Kako, I.)

  18. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1. Volume 5: Analysis of core damage frequency from seismic events during mid-loop operations

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.; Tong, W.H.

    1994-08-01

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1) and the other at Sandia National Laboratories studying a boiling water reactor (Grand Gulf). Both the Brookhaven and Sandia projects have examined only accidents initiated by internal plant faults--so-called ''internal initiators.'' This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling shutdown conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Surry Unit 1. All of the many systems modeling assumptions, component non-seismic failure rates, and human error rates that were used in the internal-initiator study at Surry have been adopted here, so that the results of the two studies can be as comparable as possible. Both the Brookhaven study and this study examine only two shutdown plant operating states (POSs) during refueling outages at Surry, called POS 6 and POS 10, which represent mid-loop operation before and after refueling, respectively. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POSs 6 and 10. The results of the analysis are that the core-damage frequency of earthquake-initiated accidents during refueling outages in POS 6 and POS 10 is found to be low in absolute terms, less than 10 -6 /year

  19. Seismic Fragility of the LANL Fire Water Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mertz

    2007-03-30

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  20. Seismic Fragility of the LANL Fire Water Distribution System

    International Nuclear Information System (INIS)

    Greg Mertz Jason Cardon Mike Salmon

    2007-01-01

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10 -3 that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  1. The UK nuclear programme: The Sizewell experience

    International Nuclear Information System (INIS)

    Salter, W.B.

    1990-01-01

    The current status of the Sizewell 'B' PWR programme and the effect on it of the proposed privatisation of U.K electricity generation is reviewed. Departures from and additions to the Standard Nuclear Unit Power Plant System (SNUPPS) reference plant design are given. These include Reactor Coolant System overpressure protection and the addition of an Emergency Charging System and an Emergency Boration System. Improvements in monitoring Reactor Coolant System water level during refuelling and maintenance shutdown operations are presented. (author)

  2. Greenlandic water and sanitation systems-identifying system constellation and challenges

    DEFF Research Database (Denmark)

    Hendriksen, Kåre; Hoffmann, Birgitte

    2017-01-01

    " (United Nations 2015). This obviously raises the question of how this can be achieved considering the very different conditions and cultures around the globe. This article presents the Greenlandic context and elucidates the current Greenland water supply system and wastewater management system from......A good water supply and wastewater management is essential for a local sustainable community development. This is emphasized in the new global goals of the UN Sustainable Development, where the sixth objective is to: "Ensure availability and sustainable management of water and sanitation for all...... a socio-technical approach, focusing on the geographic, climatic and cultural challenges. The article identifies a diverse set of system constellations in different parts of Greenland and concludes with a discussion of health and quality of life implications....

  3. Fungal contaminants in man-made water systems connected to municipal water.

    Science.gov (United States)

    Kadaifciler, Duygu Göksay; Demirel, Rasime

    2018-04-01

    Water-related fungi are known to cause taste and odor problems, as well as negative health effects, and can lead to water-pipeline clogging. There is no legal regulation on the occurrence of fungi in water environments. However, much research has been performed, but further studies are needed. The main objectives of this study were to evaluate the fungal load and the presence of mycotoxigenic fungi in man-made water systems (for homes, hospitals, and shopping centers) connected to municipal water in Istanbul, Turkey. The mean fungal concentrations found in the different water samples were 98 colony-forming units (CFU)/100 mL in shopping centers, 51 CFU/100 mL in hospitals, and 23 CFU/100 mL in homes. The dominant fungal species were identified as Aureobasidium pullulans and Fusarium oxysporum. Aflatoxigenic Aspergillus flavus and ochratoxigenic Aspergillus westerdijkiae were only detected in the hospital water samples. Alternaria alternata, Aspergillus clavatus, Aspergillus fumigatus, and Cladosporium cladosporioides were also detected in the samples. The study reveals that the municipal water supplies, available for different purposes, could thus contain mycotoxigenic fungi. It was concluded that current disinfection procedures may be insufficient, and the presence of the above-mentioned fungi is important for people with suppressed immune systems.

  4. Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization

    Science.gov (United States)

    Newman, J. P.; Dandy, G. C.; Maier, H. R.

    2014-10-01

    In many regions, conventional water supplies are unable to meet projected consumer demand. Consequently, interest has arisen in integrated urban water systems, which involve the reclamation or harvesting of alternative, localized water sources. However, this makes the planning and design of water infrastructure more difficult, as multiple objectives need to be considered, water sources need to be selected from a number of alternatives, and end uses of these sources need to be specified. In addition, the scale at which each treatment, collection, and distribution network should operate needs to be investigated. In order to deal with this complexity, a framework for planning and designing water infrastructure taking into account integrated urban water management principles is presented in this paper and applied to a rural greenfield development. Various options for water supply, and the scale at which they operate were investigated in order to determine the life-cycle trade-offs between water savings, cost, and GHG emissions as calculated from models calibrated using Australian data. The decision space includes the choice of water sources, storage tanks, treatment facilities, and pipes for water conveyance. For each water system analyzed, infrastructure components were sized using multiobjective genetic algorithms. The results indicate that local water sources are competitive in terms of cost and GHG emissions, and can reduce demand on the potable system by as much as 54%. Economies of scale in treatment dominated the diseconomies of scale in collection and distribution of water. Therefore, water systems that connect large clusters of households tend to be more cost efficient and have lower GHG emissions. In addition, water systems that recycle wastewater tended to perform better than systems that captured roof-runoff. Through these results, the framework was shown to be effective at identifying near optimal trade-offs between competing objectives, thereby enabling

  5. Service water system aging assessment - Phase I

    International Nuclear Information System (INIS)

    Jarrell, D.B.; Zimmerman, P.W.; Gore, M.L.

    1988-01-01

    The Service Water System (SWS) represents the final heat transfer loop between decay heat generated in the nuclear core and the safe dispersal of that heat energy in the environment. It is the objective of this investigation to demonstrate that aging phenomena can be identified and quantified such that aging degradation of system components can be detected and mitigated prior to the reduction of system availability to below an acceptable threshold. The approach used during the Phase I task was to (1) perform a literature search of government and private sector reports which relate to service water, aging related degradation, and potential methodologies for analysis; (2) assemble a data base which contains all the commercial power plants in the US, their Service Water System configuration, characteristics, and water source; (3) obtain and examine the available service water data from large generic data bases, i.e. NPRDS, LER, NPE, inspection reports, and other relevant plant reference data; (4) perform a fault tree analysis of a typical plant service water systems to examine failure propagation and understand specific input requirements of probabilistic risk analyses; (5) develop an in-depth questionnaire protocol for examining the information resource at a power plant which is not available through data base query and visit a central station power plant and solicit the required information; (6) analyze the information obtained from the in-depth plant interrogation and draw contrasts and conclusions with the data base information; (7) utilize the plant information to perform an interim assessment of service water system degradation mechanisms and focus future investigations. This paper addresses the elements of this task plan numbered 1, 3, 6, and 7. The remaining items are detailed in the phase-I report

  6. Solar System Exploration Augmented by In-Situ Resource Utilization: Mercury and Saturn Propulsion Investigations

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.

  7. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  8. Adjustable speed drives improve circulating water system

    International Nuclear Information System (INIS)

    Dent, R.A.; Dicic, Z.

    1994-01-01

    This paper illustrates the integration of electrical and mechanical engineering requirements to produce a solution to past problems and future operating demands. The application of adjustable speed drives in the modifications of the circulating water system at Indian Point No. 3 Nuclear Power Plant provided increased operating flexibility, efficiency and avoided otherwise costly renovations to the plant electrical systems. Rectification of the original inadequate design of the circulating water system, in addition to maximizing plant efficiency consistent with environmental considerations, formed the basis for this modification. This entailed replacement of all six circulating water pumps and motors and physical modifications to the intake system. This paper details the methodology used in this engineering task. The new system was installed successfully and has been operating reliably and economically for the past eight years

  9. Finite element modelling of different CANDU fuel bundle types in various refuelling conditions

    International Nuclear Information System (INIS)

    Roman, M. R.; Ionescu, D. V.; Olteanu, G.; Florea, S.; Radut, A. C.

    2016-01-01

    The objective of this paper is to develop a finite element model for static strength analysis of the CANDU standard with 37 elements fuel bundle and the SEU43 with 43 elements fuel bundle design for various refuelling conditions. The computer code, ANSYS7.1, is used to simulate the axial compression in CANDU type fuel bundles subject to hydraulic drag loads, deflection of fuel elements, stresses and displacements in the end plates. Two possible situations for the fuelling machine side stops are considered in our analyses, as follows: the last fuel bundle is supported by the two side stops and a side stop can be blocked therefore, the last fuel bundle is supported by only one side stop. The results of the analyses performed are briefly presented and also illustrated in a graphical form. The finite element model developed in present study is verified against test results for endplate displacement and element bowing obtained from strength tests with fuel bundle string and fuelling machine side-stop simulators. Comparison of ANSYS model predictions with these experimental results led to a very good agreement. Despite the difference in hydraulic load between SEU43 and CANDU standard fuel bundles strings, the maximum stress in the SEU43 endplate is about the same with the maximum stress in the CANDU standard endplate. The comparative assessment reveals that SEU43 fuel bundle is able to withstand high flow rate without showing a significant geometric instability. (authors)

  10. Intrusion problematic during water supply systems' operation

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Rodriguez, Jesus; Lopez-Jimenez, P. Amparo [Departamento de Ingenieria Hidraulica y Medio Ambiente, Universidad Politecnica de Valencia, Camino de Vera, s/n, 46022, Valencia (Spain); Ramos, Helena M. [Civil Engineering Department and CEHIDRO, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal)

    2011-07-01

    Intrusion through leaks occurrence is a phenomenon when external fluid comes into water pipe systems. This phenomenon can cause contamination problems in drinking pipe systems. Hence, this paper focuses on the entry of external fluids across small leaks during normal operation conditions. This situation is especially important in elevated points of the pipe profile. Pressure variations can origin water volume losses and intrusion of contaminants into the drinking water pipes. This work focuses in obtaining up the physical representation on a specific case intrusion in a pipe water system. The combination of two factors is required to generate this kind of intrusion in a water supply system: on one hand the existence of at least a leak in the system; on the other hand, a pressure variation could occur during the operation of the system due to consumption variation, pump start-up or shutdown. The potential of intrusion during a dynamic or transient event is here analyzed. To obtain this objective an experimental case study of pressure transient scenario is analyzed with a small leak located nearby the transient source.

  11. An analysis of the water-level monitoring system for a boiling-water reactor

    International Nuclear Information System (INIS)

    Carlson, R.W.; Belblidia, L.A.; Russell, J.L. Jr.

    1985-01-01

    The water-level instrumentation system is very important to the overall safety of a BWR. This system is being monitored by the Safety Parameter Display System (SPDS) that is being installed in Georgia Power Company's Plant Hatch. One of the most significant functions of the SPDS is the comparison of redundant instrument readings and formation of the best estimate of each parameter from those readings which are consistent. When comparing water-level instrument readings, it is necessary to correct the individual readings for differences between current and calibration conditions as well as for differences between calibration conditions for the multiple instruments. This paper documents the examination of the water-level instrumentation system at Plant Hatch and presents the development of the equations that were used to determine the differences between indicated and actual water levels. (author)

  12. Evolution of PHWR fuel transfer system based on operating experience

    International Nuclear Information System (INIS)

    Parvatikar, R.S.; Singh, Jaipal; Chaturvedi, P.C.; Bhambra, H.S.

    2006-01-01

    Fuel Transfer System facilitates loading of new fuel into Fuelling Machine, receipt of spent fuel from Fuelling Machine and its further transportation to Storage Bay. To overcome the limitations of transferring a pair of bundles in the single tube Airlock and Transfer Arm in RAPS-1 and 2/MAPS, a new concept of six tube Transfer Magazine was introduced in NAPS. This resulted in simultaneous loading of new fuel from Transfer Magazine into the Fuelling Machine and unloading of spent fuel from the Fuelling Machine through the exchange mode. It further facilitated the parallel/simultaneous operation of refuelling by Fuelling Machines on the reactor and transferring of spent fuel bundles from the Transfer Magazine to the bay. This new design of Fuel Transfer System was adopted for all standardised 220 MWe PHWRs. Based on the experience gained in 220 MWe PHWRs in the area of operation and maintenance, a number of improvements have been carried out over the years. These aspects have been further strengthened and refined in the Fuel Transfer System of 540 MWe units. The operating experience of the system indicates that the presence of heavy water in the Transfer Magazine poses limitations in its maintenance in the Fuel Transfer room. Further, Surveillance and maintenance of large number of under water equipment and associated valves, rams and underwater sensors is putting extra burden on the O and M efforts. A new concept of mobile light water filled Transfer Machine has been evolved for proposed 700 MWe PHWR units to simplify Fuel Transfer System. This has been made possible by adopting snout level control in the Fuelling Machine, elimination of Shuttle Transport System and locating the Storage Bay adjacent to the Reactor Building. This paper describes the evolution of Fuel Transfer System concepts and various improvements based on the experience gained in the operation and maintenance of the system. (author)

  13. Performance of chromatographic systems to model soil-water sorption.

    Science.gov (United States)

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Multi-spark discharge system for preparation of nutritious water

    Science.gov (United States)

    Nakaso, Tetsushi; Harigai, Toru; Kusumawan, Sholihatta Aziz; Shimomura, Tomoya; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi

    2018-01-01

    The nitrogen compound concentration in water is increased by atmospheric-pressure plasma discharge treatment. A rod-to-water electrode discharge treatment system using plasma discharge has been developed by our group to obtain water with a high concentration of nitrogen compounds, and this plasma-treated water improves the growth of chrysanthemum roots. However, it is difficult to apply the system to the agriculture because the amount of treated water obtained by using the system too small. In this study, a multi-spark discharge system (MSDS) equipped multiple spark plugs is presented to obtain a large amount of plasma-treated water. The MSDS consisted of inexpensive parts in order to reduce the system introduction cost for agriculture. To suppress the temperature increase of the spark plugs, the 9 spark plugs were divided into 3 groups, which were discharged in order. The plasma-treated water with a NO3- concentration of 50 mg/L was prepared using the MSDS for 90 min, and the treatment efficiency was about 6 times higher than that of our previous system. It was confirmed that the NO2-, O3, and H2O2 concentrations in the water were also increased by treating the water using the MSDS.

  15. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...

  16. Cost-benefit of the bubble tower concept as a containment passive safety system

    International Nuclear Information System (INIS)

    Iotti, R.C.; Bardach, H.; Shin, J.J.; Parnes, M.J.

    1994-01-01

    Containment system integrity for both PWRs and BWRs can be assured by passive measures highlighted the use of an accessory Bubble Tower. The utilization of the Bubble Tower precludes the possibility of containment overpressurization. From the thermodynamic standpoint, the Bubble Tower is simply water column of about 120 ft. height attached to the containment and connected to the air space above the suppression pool of a BWR, or a PWR In-containment Refueling Water Storage Tank. From the radiological protection standpoint, the Bubble Tower is a water column sufficient to effect decontamination factors of at least 100 for nuclide species other than the noble gases, and with the addition of organic solubilizers sufficient to effect decontamination factors of at least 10 iodides and at least 100 for other nuclide species. When containment steam or noncondensable gas passes through the Bubble Tower, a significant fraction of the radionuclides is absorbed by the water column. When a cost-benefit dose evaluation is performed relative to the utilization of a Bubble Tower, even under conditions where the dollars per man-rem is taken as $1000, the results are favorable. They are substantially more favorable when the dollars per man-rem is taken as $5000 or $10,000 as are the current trends. (author)

  17. An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Mukta Sapkota

    2014-12-01

    Full Text Available This paper presents a critical review of the physical impacts of decentralized water supply systems on existing centralized water infrastructures. This paper highlights the combination of centralized and decentralized systems, which is referred to as hybrid water supply systems. The system is hypothesized to generate more sustainable and resilient urban water systems. The basic concept is to use decentralized water supply options such as rainwater tanks, storm water harvesting and localized wastewater treatment and reuse in combination with centralized systems. Currently the impact of hybrid water supply technologies on the operational performance of the downstream infrastructure and existing treatment processes is yet to be known. The paper identifies a number of significant research gaps related to interactions between centralized and decentralized urban water services. It indicates that an improved understanding of the interaction between these systems is expected to provide a better integration of hybrid systems by improved sewerage and drainage design, as well as facilitate operation and maintenance planning. The paper also highlights the need for a framework to better understand the interaction between different components of hybrid water supply systems.

  18. Patterns, structures and regulations of domestic water cycle systems in China

    Science.gov (United States)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system

  19. Significance of losses in water distribution systems in India

    OpenAIRE

    Raman, V.

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the sys...

  20. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  1. Geochemical study of water-rock interaction processes on geothermal systems of alkaline water in granitic massif

    International Nuclear Information System (INIS)

    Buil gutierrez, B.; Garcia Sanz, S.; Lago San Jose, M.; Arranz Yague, E.; Auque Sanz, L.

    2002-01-01

    The study of geothermal systems developed within granitic massifs (with alkaline waters and reducing ORP values) is a topic of increasing scientific interest. These systems are a perfect natural laboratory for studying the water-rock interaction processes as they are defined by three main features: 1) long residence time of water within the system, 2) temperature in the reservoir high enough to favour reaction kinetics and finally, 3) the comparison of the chemistry of the incoming and outgoing waters of the system allows for the evaluation of the processes that have modified the water chemistry and its signature, The four geothermal systems considered in this paper are developed within granitic massifs of the Spanish Central Pyrenes; these systems were studied from a geochemical point of view, defining the major, trace and REE chemistry of both waters and host rocks and then characterizing the composition and geochemical evolution of the different waters. Bicarbonate-chloride-sodic and bicarbonate-sodic compositions are the most representative of the water chemistry in the deep geothermal system, as they are not affected by secondary processes (mixing, conductive cooling, etc). (Author)

  2. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  3. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  4. Maximising water supply system yield subject to multiple reliability ...

    African Journals Online (AJOL)

    Maximising water supply system yield subject to multiple reliability constraints via simulation-optimisation. ... Water supply systems have to satisfy different demands that each require various levels of reliability ... and monthly operating rules that maximise the yield of a water supply system subject to ... HOW TO USE AJOL.

  5. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  6. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-11

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground conductor, and a separator at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.

  7. Small Water System Management Program: 100 K Area

    International Nuclear Information System (INIS)

    Hunacek, G.S. Jr.

    1995-01-01

    Purposes of this document are: to provide an overview of the service and potable water system presently in service at the Hanford Site's 100 K Area; to provide future system forecasts based on anticipated DOE activities and programs; to delineate performance, design, and operations criteria; and to describe planned improvements. The objective of the small water system management program is to assure the water system is properly and reliably managed and operated, and continues to exist as a functional and viable entity in accordance with WAC 246-290-410

  8. Influence of an Extended Domestic Drinking Water System on the Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    Ljiljana Zlatanović

    2018-04-01

    Full Text Available Drinking water and fire safety are strongly bonded to each other. Actual drinking water demand and fire flows are both delivered through the same network, and are both devoted to public health and safety. In The Netherlands, the discussion about fire flows supplied by the drinking water networks has drawn fire fighters and drinking water companies together, searching for novel approaches to improve public safety. One of these approaches is the application of residential fire sprinkler systems fed by drinking water. This approach has an impact on the layout of domestic drinking water systems (DDWSs, as extra plumbing is required. This study examined the influence of the added plumbing on quality of both fresh and 10 h stagnant water in two full scale DDWSs: a conventional and an extended system. Overnight stagnation was found to promote copper and zinc leaching from pipes in both DDWSs. Microbial numbers and viability in the stagnant water, measured by heterotrophic plate count (HPC, flow cytometry (FCM and adenosine tri-phosphate (ATP, depended on the temperature of fresh water, as increased microbial numbers and viability was measured in both DDWSs when the temperature of fresh water was below the observed tipping point (15 °C for the HPC and 17 °C for the FCM and ATP measurements respectively and vice versa. A high level of similarity between water and biofilm communities, >98% and >70–94% respectively, indicates that the extension of the DDWS did not affect either the microbial quality of fresh drinking water or the biofilm composition.

  9. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    Energy Technology Data Exchange (ETDEWEB)

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in the tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).

  10. Optimization of the overall energy consumption in cascade fueling stations for hydrogen vehicles

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard; Rokni, Masoud

    2014-01-01

    of refueling stations as a function of number of tanks, volume of the tanks and the pressure in the tanks. This is done for a complete refueling cycle. It is found that the energy consumption decreases with the number of tanks approaching an exponential function. The compressor accounts for app. 50......% of the energy consumption. Going from one tank to three tanks gives an energy saving of app. 30%. Adding more than four tanks the energy saving per extra added tank is less than 4%. The optimal numbers of tanks in the cascade system are three or four....... the vehicles. The cascade system at the station has to be refueled as the tank sizes are limited by the high pressures. The process of filling a vehicle and afterward bringing the tanks in refueling station back to same pressures, are called a complete refueling cycle. This study analyzes power consumption...

  11. Water removal from a dry barrier cover system

    International Nuclear Information System (INIS)

    Stormont, J.C.; Ankeny, M.D.; Tansey, M.K.

    1994-01-01

    The results of the numerical simulations reveal that horizontal air flow through the coarse with reasonable pressure gradients can remove large quantities of water from the cover system. Initially, the water removal from the cover system is dominated by the evaporation and advection of water vapor out of the coarse layer. Once the coarse layer is dry, removal of water by evaporation near the fine/coarse layer interface reduces the local water content and water potential, and water moves toward the fine-coarse layer interface and becomes available for evaporation. This result is important in that it suggests the fine layer water content may be moderated by air flow in the coarse layer. Incorporating diffusion of water vapor from the fine layer into the coarse layer substantially increases the water movement out of the fine layer

  12. Introduction of HTR-PM Operation and Fuel Management System

    International Nuclear Information System (INIS)

    Liu Fucheng; Luo Yong; Gao Qiang

    2014-01-01

    There is a big difference between High Temperature Gas-cooled Reactor Pebble-modules Demonstration Project(HTR-PM) and PWR in operation mode. HTR-PM is a continually refuelled reactor, and the operation and fuel management of it, which affect each other, are inseparable. Therefore, the analysis of HTR-PM fuel management needs to be carried out “in real time”. HTR-PM operation and fuel management system is developed for on-power refuelling mode of HTR-PM. The system, which calculates the core neutron flux and power distribution, taking high-temperature reactor physics analysis software-VSOP as a basic tool, can track and predict the core state online, and it has the ability to restructure core power distribution online, making use of ex-core detectors to correct and check tracking calculation. Based on the ability to track and predict, it can compute the core parameters to provide support for the operation of the reactor. It can also predict the operation parameters of the reactor to provide reference information for the fuel management.The contents of this paper include the development purposes, architecture, the main function modules, running process, and the idea of how to use the system to carry out HTR-PM fuel management. (author)

  13. Energy and water quality management systems for water utility's operations: a review.

    Science.gov (United States)

    Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G

    2015-04-15

    Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Impact of Hybrid Water Supply on the Centralised Water System

    Directory of Open Access Journals (Sweden)

    Robert Sitzenfrei

    2017-11-01

    Full Text Available Traditional (technical concepts to ensure a reliable water supply, a safe handling of wastewater and flood protection are increasingly criticised as outdated and unsustainable. These so-called centralised urban water systems are further maladapted to upcoming challenges because of their long lifespan in combination with their short-sighted planning and design. A combination of (existing centralised and decentralised infrastructure is expected to be more reliable and sustainable. However, the impact of increasing implementation of decentralised technologies on the local technical performance in sewer or water supply networks and the interaction with the urban form has rarely been addressed in the literature. In this work, an approach which couples the UrbanBEATS model for the planning of decentralised strategies together with a water supply modelling approach is developed and applied to a demonstration case. With this novel approach, critical but also favourable areas for such implementations can be identified. For example, low density areas, which have high potential for rainwater harvesting, can result in local water quality problems in the supply network when further reducing usually low pipe velocities in these areas. On the contrary, in high demand areas (e.g., high density urban forms there is less effect of rainwater harvesting due to the limited available space. In these high density areas, water efficiency measures result in the highest savings in water volume, but do not cause significant problems in the technical performance of the potable water supply network. For a more generalised and case-independent conclusion, further analyses are performed for semi-virtual benchmark networks to answer the question of an appropriate representation of the water distribution system in a computational model for such an analysis. Inappropriate hydraulic model assumptions and characteristics were identified for the stated problem, which have more

  15. Hydroponic systems and water management in aquaponics: A review

    Directory of Open Access Journals (Sweden)

    Carmelo Maucieri

    2017-09-01

    Full Text Available Aquaponics (AP, the integrated multi-trophic fish and plants production in quasi-closed recirculating system, is one of the newest sustainable food production systems. The hydroponic component of the AP directly influences water quality (in turn influencing fish growth and health, and water consumption (through evapotranspiration of the entire system. In order to assess the role of the design and the management of the hydroponic component on the overall performance, and water consumption of the aquaponics, 122 papers published from 1979 to 2017 were reviewed. Although no unequivocal results were found, the nutrient film technique appears in several aspects less efficient than medium-based or floating raft hydroponics. The best system performance in terms of fish and plant growth, and the highest nutrient removal from water was achieved at water flow between 0.8 L min–1 and 8.0 L min–1. Data on water consumption of aquaponics are scarce, and no correlation between the ratio of hydroponic unit surface/fish tank volume and the system water loss was found. However, daily water loss was positively correlated with the hydroponic surface/fish tank volume ratio if the same experimental conditions and/or systems were compared. The plant species grown in hydroponics influenced the daily water loss in aquaponics, whereas no effect was exerted by the water flow (reciprocating flood/drain cycle or constant flow or type (medium-based, floating or nutrient film technique of hydroponics.

  16. Experimental study of hot water layer in a model in scale of the Brazilian Multipurpose Reactor (RMB)

    International Nuclear Information System (INIS)

    Tomaz, Gabriel Caio Queiroz

    2017-01-01

    The Brazilian Multipurpose Reactor (RMB) is a 30 MW open pool research reactor planned to be constructed in Brazil. Such type of reactor is built inside a deep pool of purified and demineralized water, providing radiological protection still keeping the core accessible for maintenance and refueling. However, dissolved ions become activated in the pool water due to the core neutron flux, releasing radiation in the reactor room when the activated elements reach the top. Thus high power open pool reactors, as RMB, have an auxiliary thermal-hydraulic circuit that creates a Hot Water Layer (HWL) on the pool’s top, keeping the activated water under the HWL and mitigating the dose rate to which the operators are exposed to. The Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) built a 1/10 scale experimental bench of the RMB’s pool for the HWL investigation. This work presents the results of the pool’s heating due to the reactor startup in the HWL stability. (author)

  17. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  18. Biological stability in drinking water distribution systems : A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the

  19. Experimental studies of water hammer in propellant feed system of reaction control system

    Directory of Open Access Journals (Sweden)

    Avanish Kumar

    2018-03-01

    Full Text Available Water hammer pressure transient produces large dynamic forces which can damage the pipes and other assemblies in the feed line of a reaction control system (RCS. It has led to the failure of pressure transducers monitoring the manifold pressure in the feed line of RCS. Therefore, water hammer studies have been carried out to understand its effect in feed line. Feedline system has been simplified to develop a mathematical model and experiments have been carried out at extensive levels. The mathematical model was developed considering pipe of uniform c/s and moving liquid-gas interface. The experimental studies have been done using water as working medium instead of actual propellant. The studies showed that rate of pressurization have a very critical role on the water hammer amplitude. Sensitivity studies have been also carried out to study the effect of density, friction and initial liquid column length on water hammer amplitude. Keywords: Water hammer, Reaction control system (RCS, Propellant feed system, Experimental study, Testing

  20. A fuzzy recommendation system for daily water intake

    OpenAIRE

    Bin Dai; Rung-Ching Chen; Shun-Zhi Zhu; Chung-Yi Huang

    2016-01-01

    Water is one of the most important constituents of the human body. Daily consumption of water is thus necessary to protect human health. Daily water consumption is related to several factors such as age, ambient temperature, and degree of physical activity. These factors are generally difficult to express with exact numerical values. The main objective of this article is to build a daily water intake recommendation system using fuzzy methods. This system will use age, physical activity, and a...