WorldWideScience

Sample records for refrigeration systems cooled

  1. Exergy analysis of refrigerators for large scale cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Loehlein, K [Sulzer Cryogenics, Winterthur (Switzerland); Fukano, T [Nippon Sanso Corp., Kawasaki (Japan)

    1993-01-01

    Facilities with superconducting magnets require cooling capacity at different temperature levels and of different types (refrigeration or liquefaction). The bigger the demand for refrigeration, the more investment for improved efficiency of the refrigeration plant is justified and desired. Refrigeration cycles are built with discrete components like expansion turbines, cold compressors, etc. Therefore the exergetic efficiency for producing refrigeration on a distinct temperature level is significantly dependent on the 'thermodynamic arrangement' of these components. Among a variety of possibilities, limited by the range of applicability of the components, one has to choose the best design for higher efficiency on every level. Some influences are being quantified and aspects are given for a optimal integration of the refrigerator into the whole cooling system. (orig.).

  2. CoolPack – Simulation tools for refrigeration systems

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.; Andersen, Simon Engedal

    1999-01-01

    CoolPack is a collection of programs used for energy analysis and optimisation of refrigeration systems. CoolPack is developed at the Department of Energy Engineering at the Technical University of Denmark. The Danish Energy Agency finances the project. CoolPack is freeware and can be downloaded...

  3. Thermodynamic analysis of hydrocarbon refrigerants in a sub-cooling refrigeration system

    Directory of Open Access Journals (Sweden)

    BUKOLA O. BOLAJI

    2013-06-01

    Full Text Available In this study, the performance simulation of some hydrocarbon refrigerants (R290, R600 and R600a as alternatives to R134a in refrigeration system with sub-cooling is conducted by thermodynamic calculation of performance parameters using the REFPROP software. The results obtained showed that the saturated vapour pressure and temperature characteristic profiles for R600 and R600a are very close to that of R134a. The three hydrocarbon refrigerants exhibited very high refrigerating effect and condenser duty than R134a. The best of these parameters was obtained using R600. The discharge temperatures obtained using R600 and R600a were low, while that of R290 was very much higher. The highest coefficient of performance (COP and relative capacity index were obtained using R600. Average COPs of R600 and R600a are 4.6 and 2.2% higher than that of R134a, respectively. The performances of R600 and R600a in system were better than those of R134a and R290. The best performance was obtained using R600 in the system.

  4. Numerical model of sprayed air cooled condenser coupled to refrigerating system

    International Nuclear Information System (INIS)

    Youbi-Idrissi, M.; Macchi-Tejeda, H.; Fournaison, L.; Guilpart, J.

    2007-01-01

    Because of technological, economic and environmental constraints, many refrigeration and air conditioning units are equipped with a simple air cooled condenser. Spraying the condenser seems to be an original solution to improve the energetic performances of such systems. To characterise this energetic benefit, a semi-local mathematical model was developed and applied to a refrigerating machine with and without spraying its air cooled condenser. It is found that, compared to a dry air cooled condenser, both the calorific capacity and machine COP increase by 13% and 55%, respectively. Furthermore, the model shows that a spray flow rate threshold occurs. It should not be exceeded to assure an effective and rational spray use

  5. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  6. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  7. Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems

    International Nuclear Information System (INIS)

    Wang, L.; Chen, G.M.; Wang, Q.; Zhong, M.

    2007-01-01

    In China, the application of small size gas-fired air-cooled absorption refrigeration systems as an alternative for electric compression air conditioning systems has shown broad prospects due to occurrence of electricity peak demand in Chinese big cities and lack of water resources. However, for conventional air-cooled absorption refrigeration systems, it is difficult to enhance the heat and mass transfer process in the falling film absorber, and may cause problems, for example, remarkable increase of pressure, temperature and concentration in the generators, risk of crystallization, acceleration of corrosion, degradation of performance, and so on. This paper presents a gas-fired air-cooled adiabatic absorption refrigeration system using lithium bromide-water solutions as its working fluid, which is designed with a cooling capacity of 16 kW under standard conditions. The system has two new features of waste heat recovery of condensed water from generator and an adiabatic absorber with an air cooler. Performance simulation and characteristic analysis are crucial for the optimal control and reliability of operation in extremely hot climates. A methodology is presented to simulate thermodynamic performance of the system. The influences of outdoor air temperature on operation performances of the system are investigated

  8. Cooling performance and evaluation of automotive refrigeration system for a passenger car

    Science.gov (United States)

    Prajitno, Deendarlianto, Majid, Akmal Irfan; Mardani, Mahardeka Dhias; Wicaksono, Wendi; Kamal, Samsul; Purwanto, Teguh Pudji; Fauzun

    2016-06-01

    A new design of automotive refrigeration system for a passenger car was proposed. To ensure less energy consumption and optimal thermal comfort, the performance of the system were evaluated. This current research was aimed to evaluate the refrigeration characteristics of the system for several types of cooling load. In this present study, a four-passenger wagon car with 1500 cc gasoline engine that equipped by a belt driven compressor (BDC) was used as the tested vehicle. To represent the tropical condition, a set of lamps and wind sources are installed around the vehicle. The blower capacity inside a car is varied from 0.015 m/s to 0.027 m/s and the compressor speed is varied at variable 820, 1400, and 2100 rpm at a set temperature of 22°C. A set of thermocouples that combined by data logger were used to measure the temperature distribution. The system uses R-134a as the refrigerant. In order to determine the cooling capacity of the vehicle, two conditions were presented: without passengers and full load conditions. As the results, cooling capacity from any possible heating sources and transient characteristics of temperature in both systems for the cabin, engine, compressor, and condenser are presented in this work. As the load increases, the outlet temperature of evaporator also increases due to the increase of condensed air. This phenomenon also causes the increase of compressor work and compression ratio which associated to the addition of specific volume in compressor inlet.

  9. Utilization of process energy from supermarket refrigeration systems. Coupling of cooling and heating; Prozessenergienutzung von Supermarktkaelteanlagen. Kaelte-Waerme-Kopplung

    Energy Technology Data Exchange (ETDEWEB)

    Wirsching, Alexander [TEKO Gesellschaft fuer Kaeltetechnik mbH, Altenstadt (Germany). Technologie und Kommunikation

    2010-03-15

    The efficiency is defined as the relation between utility and expenditure. Thus, it is obvious for the specialist of refrigeration to tackle with the expenditure (energy consumption) since the utilization conventionally is defined as the produced/need cooling performance of a refrigeration plant. If refrigeration plants are regarded according to their function (withdrawal of heat from a refrigeration chamber and delivery to the environment), the heating system is the producer of the requirement for cooling in 'the winter' (heating season). Thus, the refrigeration plant perhaps already has a marvellous efficiency, and the separate heating system too - however in interaction. The broad view moves into the focus. The possible approaches and effects are described in the contribution under consideration using the example of a Discount supermarket with a sales area of 800 square meters and a requirement of cooling of more than 30 kW.

  10. Experimental results of a direct air-cooled ammonia–lithium nitrate absorption refrigeration system

    International Nuclear Information System (INIS)

    Llamas-Guillén, S.U.; Cuevas, R.; Best, R.; Gómez, V.H.

    2014-01-01

    Absorption thermal cooling systems driven by renewable energy are a viable option in order to reduce fossil fuel consumption and the associated emissions. This work shows the results of an air cooled absorption cooling prototype working with an ammonia–lithium nitrate mixture at high ambient temperatures. An absorption refrigeration system was designed and built. The prototype is a one stage ammonia–lithium nitrate air cooled chiller. The experimental system was instrumented to evaluate each component. This paper shows the operation conditions in the experimental unit as well as some of the heat loads encountered at different operating conditions. The system was operated successfully at ambient temperatures in the range of 25–35 °C. A series of test showed that even at ambient temperatures it can be operated at evaporator temperatures below 10 °C producing chilled water for air conditioning applications such as radiative cooling panels. The system proved to stabilize very quickly and no risk of crystallization was encountered so the first results are promising in order to continue with the development of a more advanced prototype. - Highlights: •Experimental results of a direct air-cooled ammonia–lithium nitrate system. •The prototype is a one stage ammonia–lithium nitrate air cooled chiller. •The absorption system was operated successfully at ambient temperatures. •Cooling loads of 4.5 kW were reached in the chilled water side

  11. Energic, Exergic, Exergo‐economic investigation and optimization of auxiliary cooling system (ACS equipped with compression refrigerating system (CRS

    Directory of Open Access Journals (Sweden)

    Omid Karimi Sadaghiyani

    2017-09-01

    Full Text Available Heller main cooling tower as air-cooled heat exchanger is used in the combined cycle power plants (CCPP to reduce the temperature of condenser. In extreme summer heat, the efficiency of the cooling tower is reduced and it lessens performance of Steam Turbine Generation (STG unit of Combined Cycle Power Plant (CCPP. Thus, the auxiliary cooling system (ACS is equipped with compression refrigerating system (CRS. This auxiliary system is linked with the Heller main cooling tower and improves the performance of power plant. In other words, this auxiliary system increases the generated power of STG unit of CCPP by decreasing the temperature of returning water from cooling tower Therefore, in the first step, the mentioned auxiliary cooling system (ACS as a heat exchanger and compression refrigerating system (CRS have been designed via ASPEN HTFS and EES code respectively. In order to validate their results, these two systems have been built and theirs experimentally obtained data have been compared with ASPEN and EES results. There are good agreements between results. After that, exergic and exergo-economic analysis of designed systems have been carried out. Finally, the compression refrigerating system (CRS has been optimized via Genetic Algorithm (GA. Increasing in exergy efficiency (ε from 14.23% up to 36.12% and decreasing the total cost rate (ĊSystem from 378.2 ($/h to 308.2 ($/h are as results of multi-objective optimization.

  12. Cooling performance and energy saving of a compression-absorption refrigeration system driven by a gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Z.G.; Guo, K.H. [Sun Yat-Sen University, Guangzhou (China). Engineering School

    2006-07-01

    The prototype of combined vapour compression-absorption refrigeration system was set up, where a gas engine drove directly an open screw compressor in a vapour compression refrigeration chiller and waste heat from the gas engine was used to operate absorption refrigeration cycle. The experimental procedure and results showed that the combined refrigeration system was feasible. The cooling capacity of the prototype reached about 589 kW at the Chinese rated conditions of air conditioning (the inlet and outlet temperatures of chilled water are 12 and 7{sup o}C, the inlet and outlet temperatures of cooling water are 30 and 35{sup o}C, respectively). Primary energy rate (PER) and comparative primary energy saving were used to evaluate energy utilization efficiency of the combined refrigeration system. The calculated results showed that the PER of the prototype was about 1.81 and the prototype saved more than 25% of primary energy compared to a conventional electrically driven vapour compression refrigeration unit. Error analysis showed that the total error of the combined cooling system measurement was about 4.2% in this work. (author)

  13. Energy consumption of cooling systems. Optimization of the energy consumption of the cooling system in electric refrigerators; Energiforbrug i koelesystemer. Optimering af energiforbruget i koelesystemer i eldrevne koeleskabe

    Energy Technology Data Exchange (ETDEWEB)

    Danig, P.O. [Danmarks Tekniske Universitet (Denmark); Pedersen, J.K.; Ritchie, E. [Aalborg Universitet (Denmark); Kierkegaard, P. [CETEC E/F (Denmark)

    1997-12-31

    The aim of the project was to determine an energy optimum solution for household refrigerators comprising the whole system from electric power supply to the cooled food. The basic idea was to replace the normal ON/OFF control with continuous operation, but so that the engine`s speed of rotation and thereby the performance of the compressor should be controlled according to the cooling demand. A 325 l Gram refrigerator model KS350 was used in the experiments and as a reference. In conventional operation - with a 3,13 cm{sup 3} compressor using ON/OFF control - this refrigerator on average used 33 W at the ISO point (ISO 7371 standard). The most important technical results are that continuous operation of refrigerators uses substantial less energy than ON/OFF control, and that this mode of operation improves the quality of the stored food. A compressor which is small enough to even a refrigerator of the size of 325 l does not exist on the market. A new compressor type must therefore be developed which must by combined and optimized with a pinion. A new compressor type with pinion will, when developed, demand substantial production changes at costs of probably a three-figure million amount. There is no doubt that the continuous operation of refrigerators will become dominating in the future, and globally it will result in a decrease of the energy consumption of 2-3%. (LN)

  14. The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, Gordon B.; Langton, Brian J.; /SLAC; Little, William A.; /MMR-Technologies, Mountain View, CA; Powers, Jacob R; Schindler, Rafe H.; /SLAC; Spektor, Sam; /MMR-Technologies, Mountain View, CA

    2014-05-28

    The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results from a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)

  15. Performance improvement of air-cooled refrigeration system by using evaporatively cooled air condenser

    Energy Technology Data Exchange (ETDEWEB)

    Hajidavalloo, E.; Eghtedari, H. [Mechanical Engineering Department, Shahid Chamran University, Golestan St., Ahvaz (Iran)

    2010-08-15

    Increasing the coefficient of performance of air conditioner with air-cooled condenser is a challenging problem especially in area with very hot weather conditions. Application of evaporatively cooled air condenser instead of air-cooled condenser is proposed in this paper as an efficient way to solve the problem. An evaporative cooler was built and coupled to the existing air-cooled condenser of a split-air-conditioner in order to measure its effect on the cycle performance under various ambient air temperatures up to 49 C. Experimental results show that application of evaporatively cooled air condenser has significant effect on the performance improvement of the cycle and the rate of improvement is increased as ambient air temperature increases. It is also found that by using evaporatively cooled air condenser in hot weather conditions, the power consumption can be reduced up to 20% and the coefficient of performance can be improved around 50%. More improvements can be expected if a more efficient evaporative cooler is used. (author)

  16. Adopted Methodology for Cool-Down of SST-1 Superconducting Magnet System: Operational Experience with the Helium Refrigerator

    Science.gov (United States)

    Sahu, A. K.; Sarkar, B.; Panchal, P.; Tank, J.; Bhattacharya, R.; Panchal, R.; Tanna, V. L.; Patel, R.; Shukla, P.; Patel, J. C.; Singh, M.; Sonara, D.; Sharma, R.; Duggar, R.; Saxena, Y. C.

    2008-03-01

    The 1.3 kW at 4.5 K helium refrigerator / liquefier (HRL) was commissioned during the year 2003. The HRL was operated with its different modes as per the functional requirements of the experiments. The superconducting magnets system (SCMS) of SST-1 was successfully cooled down to 4.5 K. The actual loads were different from the originally predicted boundary conditions and an adjustment in the thermodynamic balance of the refrigerator was necessary. This led to enhanced capacity, which was achieved without any additional hardware. The required control system for the HRL was tuned to achieve the stable thermodynamic balance, while keeping the turbines' operating parameters at optimized conditions. An extra mass flow rate requirement was met by exploiting the margin available with the compressor station. The methodology adopted to modify the capacity of the HRL, the safety precautions and experience of SCMS cool down to 4.5 K, are discussed.

  17. Cooling performance and energy saving of a compression-absorption refrigeration system assisted by geothermal energy

    International Nuclear Information System (INIS)

    Kairouani, L.; Nehdi, E.

    2006-01-01

    The objectives of this paper are to develop a novel combined refrigeration system, and to discuss the thermodynamic analysis of the cycle and the feasibility of its practical development. The aim of this work was to study the possibility of using geothermal energy to supply vapour absorption system cascaded with conventional compression system. Three working fluids (R717, R22, and R134a) are selected for the conventional compression system and the ammonia-water pair for the absorption system. The geothermal temperature source in the range 343-349 K supplies a generator operating at 335 K. Results show that the COP of a combined system is significantly higher than that of a single stage refrigeration system. It is found that the COP can be improved by 37-54%, compared with the conventional cycle, under the same operating conditions, that is an evaporation temperature at 263 K and a condensation temperature of 308 K. For industrial refrigeration, the proposed system constitutes an alternative solution for reducing energy consumption and greenhouse gas emissions

  18. Airborne exposure to trihalomethanes from tap water in homes with refrigeration-type and evaporative cooling systems.

    Science.gov (United States)

    Kerger, Brent D; Suder, David R; Schmidt, Chuck E; Paustenbach, Dennis J

    2005-03-26

    This study evaluates airborne concentrations of common trihalomethane compounds (THM) in selected living spaces of homes supplied with chlorinated tap water containing >85 ppb total THM. Three small homes in an arid urban area were selected, each having three bedrooms, a full bath, and approximately 1000 square feet; two homes had standard (refrigeration-type) central air conditioning and the third had a central evaporative cooling system ("swamp cooler"). A high-end water-use pattern was used at each home in this exposure simulation. THM were concurrently measured on 4 separate test days in tap water and air in the bathroom, living room, the bedroom closest to the bathroom, and outside using Summa canisters. Chloroform (trichloromethane, TCM), bromodichloromethane (BDCM), and dibromochloromethane (DBCM) concentrations were quantified using U.S. EPA Method TO-14. The apparent volatilization fraction consistently followed the order: TCM > BDCM > DBCM. Relatively low airborne THM concentrations (similar to outdoors) were found in the living room and bedroom samples for the home with evaporative cooling, while the refrigeration-cooled homes showed significantly higher THM levels (three- to fourfold). This differential remained after normalizing the air concentrations based on estimated THM throughput or water concentrations. These findings indicate that, despite higher throughput of THM-containing water in homes using evaporative coolers, the higher air exchange rates associated with these systems rapidly clears THM to levels similar to ambient outdoor concentrations.

  19. Thermodynamic analysis of an absorption refrigeration system used to cool down the intake air in an Internal Combustion Engine

    International Nuclear Information System (INIS)

    Novella, R.; Dolz, V.; Martín, J.; Royo-Pascual, L.

    2017-01-01

    Highlights: • Enough power in the exhaust gases is available to operate the absorption cycle. • Three engine operating points are presented in the article. • Improvement potential up to 4% is possible in the engine indicated efficiency. • Engine indicated efficiency benefit was experimentally confirmed by direct testing. - Abstract: This paper deals with the thermodynamic analysis of an absorption refrigeration cycle used to cool down the temperature of the intake air in an Internal Combustion Engine using as a heat source the exhaust gas of the engine. The solution of ammonia-water has been selected due to the stability for a wide range of operating temperatures and pressures and the low freezing point. The effects of operating temperatures, pressures, concentrations of strong and weak solutions in the absorption refrigeration cycle were examined to achieve proper heat rejection to the ambient. Potential of increasing Internal Combustion Engine efficiency and reduce pollutant emissions was estimated by means of theoretical models and experimental tests. In order to provide boundary conditions for the absorption refrigeration cycle and to simulate its effect on engine performance, a 0D thermodynamic model was used to reproduce the engine performance when the intake air is cooled. Furthermore, a detailed experimental work was carried out to validate the results in real engine operation. Theoretical results show how the absorption refrigeration system decreases the intake air flow temperature down to a temperature around 5 °C and even lower by using the bottoming waste heat energy available in the exhaust gases in a wide range of engine operating conditions. In addition, the theoretical analysis estimates the potential of the strategy for increasing the engine indicated efficiency in levels up to 4% also at the operating conditions under evaluation. Finally, this predicted benefit in engine indicated efficiency has been experimentally confirmed by direct

  20. Experimental evaluation of desuperheating and oil cooling process through liquid injection in two-staged ammonia refrigeration systems with screw compressors

    International Nuclear Information System (INIS)

    Zlatanović, Ivan; Rudonja, Nedžad

    2012-01-01

    This paper examines the problem of achieving desuperheating through liquid injection in two-staged refrigeration systems based on screw compressors. The oil cooling process by refrigerant injection is also included. The basic thermodynamic principles of desuperheating and compressor cooling as well as short comparison with traditional method with a thermosyphon system have also been presented. Finally, the collected data referring to a big refrigeration plant are analyzed in the paper. Specific ammonia system concept applied in this refrigeration plant has demonstrated its advantages and disadvantages. - Highlights: ► An experiment was setup during a frozen food factory refrigeration system reconstruction and adaptation. ► Desuperheating and low-stage compressors oil cooling process were investigated. ► Efficiency of compression process and high-stage compressors functioning were examined. ► Evaporation temperature reduction has great influence on the need for injected liquid refrigerant. ► Several cases in which desuperheating and oil cooling process application are justified were determined.

  1. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  2. Use of process steam in vapor absorption refrigeration system for cooling and heating applications: An exergy analysis

    Directory of Open Access Journals (Sweden)

    S. Anand

    2016-12-01

    Full Text Available The exponential increase in cost of conventional fuels shifts the interest toward the use of alternative as well waste energy sources for the operation of refrigeration and air-conditioning units. The present study therefore analyzes the performance of a process steam-operated vapor absorption system for cooling and heating applications using ammonia and water as working fluids based on first and second laws of thermodynamics. A mathematical model has been developed based on exergy analysis to investigate the performance of the system. The different performance parameters such as coefficient of performance (COP and exergetic efficiency of absorption system for cooling and heating applications are also calculated under different operating conditions. The results obtained show that cooling and heating COP along with second law efficiency (exergy efficiency increases with the heat source temperature at constant evaporator, condenser, and absorber temperature. Also, COP as well as exergy efficiency increases with an increase in the evaporator temperature at constant generator, condenser, and absorber temperature. The effect of ambient temperature on the exergetic efficiency for cooling and heating applications is also studied. The results obtained from the simulation studies can be used to optimize different components of the system so that the performance can be improved significantly.

  3. Thermodynamic analysis of a novel ejector expansion transcritical CO_2/N_2O cascade refrigeration (NEETCR) system for cooling applications at low temperatures

    International Nuclear Information System (INIS)

    Megdouli, K.; Ejemni, N.; Nahdi, E.; Mhimid, A.; Kairouani, L.

    2017-01-01

    Natural substances are becoming very promising for long term alternative for refrigeration purposes. In this paper, two natural refrigerants have been proposed and analyzed for a novel ejector expansion transcritical cascade refrigeration (NEETCR) system. Nitrous oxide (N_2O) is used in the low temperature circuit (LTC) whereas carbon dioxide (CO_2) is used in the high temperature circuit (HTC) of the NEETCR system. The reject of refrigerant vapor heat in the HTC is carried out through the use of transcritical carbon dioxide Rankine cycle. This produces work, which will be used to reduce the consumption work of compressors and feed pump thereby resulting in the improvement of the energy efficiency of the whole system. The simulation results were obtained by a computer FORTRAN program, where REFPROP 9 database was used to get the refrigerant thermodynamic properties. The simulation results showed that the (NEETCR) system had higher coefficient of performance and higher system second law efficiency compared to the EETCR system. An enhancement more than 9% in the COP and exergy efficiency of NEETCR system was found in comparison with EETCR system, when the cooling capacity and operating conditions of the two systems were the same. The increase of COP of NEETCR system and its efficiency along with the reduction of power consumption make it more practical for the use in cooling applications. - Highlights: • Exergy-energy analysis of two cascade refrigeration systems is conducted. • The input power of the NEETCR system is lower than that of the EETCR system. • The COP of the NEETCR system is higher than that of the EETCR system. • The NEETCR system is promise in cascade refrigeration system.

  4. Efficiency analysis of alternative refrigerants for ejector cooling cycles

    International Nuclear Information System (INIS)

    Gil, Bartosz; Kasperski, Jacek

    2015-01-01

    Highlights: • Advantages of using alternative refrigerants as ejector refrigerants were presumed. • Computer software basing on theoretical model of Huang et al. (1999) was prepared. • Optimal temperature range of primary vapor for each working fluid was calculated. - Abstract: Computer software, basing on the theoretical model of Huang et al. with thermodynamic properties of selected refrigerants, was prepared. Investigation was focused on alternative refrigerants that belong to two groups of substances: common solvents (acetone, benzene, cyclopentane, cyclohexane and toluene) and non-flammable synthetic refrigerants applied in Organic Rankine Cycle (ORC) (R236ea, R236fa, R245ca, R245fa, R365mfc and RC318). Refrigerants were selected to detect a possibility to use them in ejector cooling system powered by a high-temperature heat source. A series of calculations were carried out for the generator temperature between 70 and 200 °C, with assumed temperatures of evaporation 10 °C and condensation 40 °C. Investigation revealed that there is no single refrigerant that ensures efficient operation of the system in the investigated temperature range of primary vapor. Each substance has its own maximum entrainment ratio and COP at its individual temperature of the optimum. The use of non-flammable synthetic refrigerants allows obtaining higher COP in the low primary vapor temperature range. R236fa was the most beneficial among the non-flammable synthetic refrigerants tested. The use of organic solvents can be justified only for high values of motive steam temperature. Among the solvents, the highest values of entrainment ratio and COP throughout the range of motive temperature were noted for cyclopentane. Toluene was found to be an unattractive refrigerant from the ejector cooling point of view

  5. Control of the Tevatron Satellite Refrigeration system

    International Nuclear Information System (INIS)

    Theilacker, J.; Chapman, L.; Gannon, J.; Hentges, M.; Martin, M.; Rode, C.H.; Zagel, J.

    1984-01-01

    This chapter describes a computerized control system for 24 satellite refrigerators which cool a six kilometer ring of superconducting magnets. The control system consists of 31 independent microprocessors operating over 400 servo loops, and a central computer system which provides monitoring, alarms, logging and changing of parameters. Topics considered include pressure measurement, flow measurement, temperature measurement, gas analysis, control valves, expansion engine controllers, and control loops. Each refrigerator has 12 active microprocessor based control loops which tune the refrigerator to one of its four operating modes: satellite, liquefier, refrigerator, and stand-by. It is suggested that optimizing the refrigerator control loops and quench recovery scheme will minimize the accelerator down time

  6. Optimal design of gas adsorption refrigerators for cryogenic cooling

    Science.gov (United States)

    Chan, C. K.

    1983-01-01

    The design of gas adsorption refrigerators used for cryogenic cooling in the temperature range of 4K to 120K was examined. The functional relationships among the power requirement for the refrigerator, the system mass, the cycle time and the operating conditions were derived. It was found that the precool temperature, the temperature dependent heat capacities and thermal conductivities, and pressure and temperature variations in the compressors have important impacts on the cooling performance. Optimal designs based on a minimum power criterion were performed for four different gas adsorption refrigerators and a multistage system. It is concluded that the estimates of the power required and the system mass are within manageable limits in various spacecraft environments.

  7. Thermodynamic and economic studies of two new high efficient power-cooling cogeneration systems based on Kalina and absorption refrigeration cycles

    International Nuclear Information System (INIS)

    Rashidi, Jouan; Ifaei, Pouya; Esfahani, Iman Janghorban; Ataei, Abtin; Yoo, Chang Kyoo

    2016-01-01

    Highlights: • Proposing two new power and cooling cogeneration systems based on absorption chillers and Kalina cycles. • Model-based comparison through thermodynamic and economic standpoints. • Investigating sensitivity of system performance and costs to the key parameters. • Reducing total annual costs of the base system up to 8% by cogeneration. • Increasing thermal efficiency up to 4.9% despite of cooling generation. - Abstract: Two new power and cooling cogeneration systems based on Kalina cycle (KC) and absorption refrigeration cycle (AC) are proposed and studied from thermodynamic and economic viewpoints. The first proposed system, Kalina power-cooling cycle (KPCC), combines the refrigerant loop of the water-ammonia absorption chiller, consisting of an evaporator and two throttling valves with the KC. A portion of the KC mass flow enters the evaporator to generate cooling after being condensed in the KPCC system. KPCC is a flexible system adapting power and cooling cogeneration to the demand. The second proposed system, Kalina lithium bromide absorption chiller cycle (KLACC), consists of the KC and a single effect lithium bromide-water absorption chiller (AC_L_i_B_r_-_w_a_t_e_r). The KC subsystem discharges heat to the AC_L_i_B_r_-_w_a_t_e_r desorber before condensing in the condenser. The performance and economic aspects of both proposed systems are analyzed and compared with the stand alone KC. A parametric analysis is conducted to evaluate the sensitivity of efficiencies and the generated power and cooling quantities to the key operating variables. The results showed that, thermal efficiency and total annual costs decreased by 5.6% and 8% for KPCC system but increased 4.9% and 58% for KLACC system, respectively. Since the power-cooling efficiency of KLACC is 42% higher than KPCC it can be applied where the aim is cooling generation without considering economic aspects.

  8. ESO2 Optimization of Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Madsen, Henrik; Heerup, Christian

    Supermarket refrigeration systems consists of a number of display cases, cooling cabinets and cold rooms connected to a central compressor pack. This configuration saves energy compared to placing a compressor at each cooling site. The classical control setup of a supermarket refrigeration system...... in the supermarket. The first approach to solve this problem is to design an overall control system which coordinates the compressor capacity and the current refrigeration load. The drawback of this approach is the complexity of the single controller. The solution is investigated in the first part of the report...

  9. A parasitic magnetic refrigerator for cooling superconducting magnet

    International Nuclear Information System (INIS)

    Nakagome, H.; Takahashi, M.; Ogiwara, H.

    1988-01-01

    The application of magnetic refrigeration principle at a liquid helium temperature (4.2K) is very useful for cooling a superconducting magnet for its potential of high efficiency. The magnetic refrigerator equipped with 14 pieces of GGG (gadolinium-gallium-garnet) single crystal unit (30mm in diameter 10mm in length) in the rotating disk operates along the gradient of the magnetic field produced by a racetrack superconducting magnet, whose maximum magnetic field is 4.5 Tesla and the minimum field is 1.1 Tesla. The final goal of their program is to liquefy gaseous helium evaporated from a liquid helium vessel of the racetrack superconducting magnet by the rotating magnetic refrigerator which operates by using the magnetic field of the superconducting magnet. A 0.12W refrigeration power in the 0.72rpm operation has been achieved under condition of 4.2K to 11.5K operation. The helium evaporation rate of this magnet system is estimated as the order of 10mW, and the achieved refrigeration power of 0.12W at 4.2K is sufficient for cooling the superconducting magnet

  10. Cooling high heat flux micro-electronic systems using refrigerants in high aspect ratio multi-microchannel evaporators

    International Nuclear Information System (INIS)

    Costa-Patry, E.

    2011-11-01

    Improving the energy efficiency of cooling systems can contribute to reduce the emission of greenhouse gases. Currently, most microelectronic applications are air-cooled. Switching to two-phase cooling systems would decrease power consumption and allow for the reuse of the extracted heat. For this type of application, multi-microchannel evaporators are thought to be well adapted. However, such devices have not been tested for a wide range of operating conditions, such that their thermal response to the high non-uniform power map typically generated by microelectronics has not been studied. This research project aims at clarifying these gray areas by investigating the behavior of the two-phase flow of different refrigerants in silicon and copper multi-microchannel evaporators under uniform, non-uniform and transient heat fluxes operating conditions. The test elements use as a heat source a pseudo-chip able to mimic the behavior of a CPU. It is formed by 35 independent sub-heaters, each having its own temperature sensor, such that 35 temperature and 35 heat flux measurements can be made simultaneously. Careful measurements of each pressure drop component (inlet, microchannels and outlet) found in the micro-evaporators showed the importance of the inlet and outlet restriction pressure losses. The overall pressure drop levels found in the copper test section were low enough to possibly be driven by a thermosyphon system. The heat transfer coefficients measured for uniform heat flux conditions were very high and typically followed a V-shape curve. The first branch was associated to the slug flow regime and the second to the annular flow regime. By tracking the minimum level of heat transfer, a transition criteria between the regimes was established, which included the effect of heat flux on the transition. Then for each branch, a different prediction method was used to form the first flow pattern-based prediction method for two-phase heat transfer in microchannels. A

  11. Refrigeration systems and applications

    CERN Document Server

    Dincer, Ibrahim

    2010-01-01

    Refrigeration Systems and Applications, 2nd edition offers a comprehensive treatise that addresses real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and the practical applications of refrigeration technology. New and unique analysis techniques (including exergy as a potential tool), models, correlations, procedures and applications are covered, and recent developments in the field are included - many of which are taken from the author's own research activities in this area. The book also includes so

  12. Cryogenic forced convection refrigerating system

    International Nuclear Information System (INIS)

    Klee, D.J.

    1988-01-01

    This patent describes the method of refrigerating products by contact with a refrigerating gas which comprises introducing product into a refrigeration zone, contacting the product with the refrigerating gas for a sufficient time to refrigerate it to the appropriate extent and removing the refrigerated product. The improvement for producing the refrigeration gas from a liquid cryogen such that essentially all of the liquid cryogen is fully vaporized before contacting the product comprises: (a) introducing the liquid cryogen, selected from the group consisting of liquid air and liquid nitrogen, at elevated pressure into an ejector as the motive fluid to accelerate a portion of a warm refrigerating gas through the ejector while mixing the cryogen and gas to effect complete vaporization of the liquid cryogen and substantial cooling of the portion of the refrigerating gas resulting in a cold discharge gas which is above the liquefaction temperature of the cryogen; (b) introducing the cold discharge gas into a forced circulation pathway of refrigerating gas and producing a cold refrigerating gas which contacts and refrigerates product and is then at least partially recirculated; (c) sensing the temperature of the refrigerating gas in the forced circulation pathway and controlling the introduction of liquid cryogen with regard to the sensed temperature to maintain the temperature of the discharge gas above the liquefacton temperature of the cryogen utilized

  13. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  14. Optimization analysis of the motor cooling method in semi-closed single screw refrigeration compressor

    Science.gov (United States)

    Wang, Z. L.; Shen, Y. F.; Wang, Z. B.; Wang, J.

    2017-08-01

    Semi-closed single screw refrigeration compressors (SSRC) are widely used in refrigeration and air conditioning systems owing to the advantages of simple structure, balanced forces on the rotor, high volumetric efficiency and so on. In semi-closed SSRCs, motor is often cooled by suction gas or injected refrigerant liquid. Motor cooling method will changes the suction gas temperature, this to a certain extent, is an important factor influencing the thermal dynamic performance of a compressor. Thus the effects of motor cooling method on the performance of the compressor must be studied. In this paper mathematical models of motor cooling process by using these two methods were established. Influences of motor cooling parameters such as suction gas temperature, suction gas quantity, temperature of the injected refrigerant liquid and quantity of the injected refrigerant liquid on the thermal dynamic performance of the compressor were analyzed. The performances of the compressor using these two kinds of motor cooling methods were compared. The motor cooling capacity of the injected refrigerant liquid is proved to be better than the suction gas. All analysis results obtained can be useful for optimum design of the motor cooling process to improve the efficiency and the energy efficiency of the compressor.

  15. Experimental study of the use of refrigeration systems as cooling and heating systems in the production process of the VCO

    Science.gov (United States)

    Mulawarman, AANB; Arsana, M. E.; Temaja, I. W.; Sukadana, IBP

    2018-01-01

    Coconut oil extracted from the coconut milk obtained from fresh coconuts s often called virgin coconut oil (VCO). VCO is beneficial to health as an anti-oxidant and can lower HDL cholesterol in the blood while increasing blood LDL levels. In Indonesia most of VCO being produced on a small scale of home industries. Its production capacity still needs to be increased by improving production processes and implementing an appropriate technology accordingly. This research aims to conduct a study on making small-scale production machinery needed to produce VCO with reduced production time and improved quality of VCO in accordance with ISO 7381 quality criteria. The experimental results of the VCO machine has been develop and tested show good Coefficient of Performance of the system in amount of 3.93 and 2.8 for heating and cooling system respectively. Temperature of the VCO cooling chamber can be maintained in the range of 8°C to 10°C, as well as for heating, the reactor temperature can be maintained from 39°C to 42°C. The expected goal of this research developing a prototype of VCO production machine was done with ability to provide more efficient production process able to increase volume of VCO result by 23%.

  16. The estimation of energy efficiency for hybrid refrigeration system

    International Nuclear Information System (INIS)

    Gazda, Wiesław; Kozioł, Joachim

    2013-01-01

    Highlights: ► We present the experimental setup and the model of the hybrid cooling system. ► We examine impact of the operating parameters of the hybrid cooling system on the energy efficiency indicators. ► A comparison of the final and the primary energy use for a combination of the cooling systems is carried out. ► We explain the relationship between the COP and PER values for the analysed cooling systems. -- Abstract: The concept of the air blast-cryogenic freezing method (ABCF) is based on an innovative hybrid refrigeration system with one common cooling space. The hybrid cooling system consists of a vapor compression refrigeration system and a cryogenic refrigeration system. The prototype experimental setup for this method on the laboratory scale is discussed. The application of the results of experimental investigations and the theoretical–empirical model makes it possible to calculate the cooling capacity as well as the final and primary energy use in the hybrid system. The energetic analysis has been carried out for the operating modes of the refrigerating systems for the required temperatures inside the cooling chamber of −5 °C, −10 °C and −15 °C. For the estimation of the energy efficiency the coefficient of performance COP and the primary energy ratio PER for the hybrid refrigeration system are proposed. A comparison of these coefficients for the vapor compression refrigeration and the cryogenic refrigeration system has also been presented.

  17. Thermoeconomic model of a commercial transcritical booster refrigeration system

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Elmegaard, Brian

    2011-01-01

    For cooling applications in supermarkets, booster refrigeration systems operating in both transcritical and subcritical conditions are increasingly used. A thermodynamic model of a transcritical booster refrigeration plant is tailored to match the new generation of commercial refrigeration plants...... of exergy for cooling. Second law analysis is needed to illustrate the characteristics of the plant at different load rates, according to the alternating load profile and corresponding to outdoor conditions. With the detailed model, different uses of the analysis are possible, including thermoeconomic...

  18. Evaluation of Variable Refrigerant Flow Systems Performance on Oak Ridge National Laboratory s Flexible Research Platform: Part 1 Cooling Season Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Im, Piljae [ORNL; Malhotra, Mini [ORNL; Munk, Jeffrey D [ORNL

    2016-08-01

    This report provides second-year cooling season test results for the multi-year project titled “Evaluation of Variable Refrigeration Flow (VRF) System on Oak Ridge National Laboratory (ORNL)’s Flexible Research Platform (FRP).” The purpose of the second-year project was to (1) evaluate the full- and partload performance of VRF systems compared with an existing baseline heating, ventilation, and airconditioning (HVAC) system, which is a conventional rooftop unit (RTU) variable-air-volume (VAV) system with electric resistance heating and (2) use hourly building energy simulation to evaluate the energy savings potential of using VRF systems in major US cities. The second-year project performance period was from July 2015 through June 2016.

  19. Optimizing cooling tower performance refrigeration systems, chemical plants, and power plants all have a resource quietly awaiting exploitation - cold water

    International Nuclear Information System (INIS)

    Burger, R.

    1993-01-01

    The cooling towers are hidden bonanzas for energy conservation and dollar savings when properly engineered and maintained. In many cases, the limiting factor of production is the quality and quantity of cold water coming off the cooling tower. The savings accrued in energy conservation and additional product manufactured can be an important factor on the operator's company's profit and loss sheet (7). Energy management analysis is a very important consideration in today's escalating climate of costs of energy. It is advisable to consider a thorough engineering inspection and evaluation of the entire plant to leave no stone unturned iii the search to reduce energy consumption (8). The cooling tower plays the major role on waste heat removal and should be given a thorough engineering inspection and evaluation by a specialist in this field. This can be performed at nominal cost and a formal report submitted with recommendations, budget costs, and evaluation of the thermal, structural, and mechanical condition of the equipment. This feasibility study will assist in determining the extent of efficiency improvement available with costs and projected savings. It can be stated that practically all cooling towers can be upgraded to perform at higher levels of efficiency which can provide a rapid, cost-effective payback. However, while all cooling tower systems might not provide such a dramatic cost payback as these case histories, the return of a customer's investment in upgrading his cooling tower can be a surprising factor of operation and should not be neglected

  20. Low Global Warming Potential Refrigerants for Commercial Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Vishaldeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Environmental concerns are driving regulations for the heating, ventilating, air-conditioning and refrigeration (HVAC&R) industry towards lower GWP alternatives to HFC refrigerants. Existing lower GWP refrigerant alternatives include hydrocarbons, such as propane (R-290) and isobutane (R-600a), as well as carbon dioxide (R-744), ammonia (R-717), and R-32. In addition, new lower GWP refrigerant alternatives are currently being developed by refrigerant manufacturers, including hydrofluoro-olefin (HFO) and unsaturated hydrochlorofluorocarbon (HCFO) refrigerants. The selection of an appropriate refrigerant for a given refrigeration application should be based on several factors, including the GWP of the refrigerant, the energy consumption of the refrigeration system over its operating lifetime, and leakage of refrigerant over the system lifetime. For example, focusing on energy efficiency alone may overlook the significant environmental impact of refrigerant leakage; while focusing on GWP alone might result in lower efficiency systems that result in higher indirect impact over the equipment lifetime. Thus, the objective of this Collaborative Research and Development Agreement (CRADA) between

  1. Mechanically-cooled germanium detector using two stirling refrigerators

    International Nuclear Information System (INIS)

    Katagiri, Masaki; Kobayashi, Yoshii; Takahashi, Koji

    1996-01-01

    In this paper, we present a developed mechanically-cooled germanium gamma-ray detector using Stirling refrigerators. Two Stirling refrigerators having cooling faculty of 1.5W at 80K were used to cool down a germanium detector element to 77K instead of a dewar containing liquid nitrogen. An 145cm 3 (56.0mmf x 59.1 mml) closed-end Ge(I) detector having relative detection efficiency of 29.4% was attached at the refrigerators. The size of the detector was 60cml x 15cmh x 15cmw. The lowest cooling temperature, 70K was obtained after 8 hours operation. The energy resolutions for 1.33MeV gamma-rays and for pulser signals were 2.43keV and 1.84keV at an amplifier shaping time of 2μsec, respectively

  2. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case

  3. Load leveling on industrial refrigeration systems

    Science.gov (United States)

    Bierenbaum, H. S.; Kraus, A. D.

    1982-01-01

    A computer model was constructed of a brewery with a 2000 horsepower compressor/refrigeration system. The various conservation and load management options were simulated using the validated model. The savings available for implementing the most promising options were verified by trials in the brewery. Result show that an optimized methodology for implementing load leveling and energy conservation consisted of: (1) adjusting (or tuning) refrigeration systems controller variables to minimize unnecessary compressor starts, (2) The primary refrigeration system operating parameters, compressor suction pressure, and discharge pressure are carefully controlled (modulated) to satisfy product quality constraints (as well as in-process material cooling rates and temperature levels) and energy evaluating the energy cost savings associated with reject heat recovery, and (4) a decision is made to implement the reject heat recovery system based on a cost/benefits analysis.

  4. Solar-powered cooling system

    Science.gov (United States)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  5. Application of Cascade Refrigeration System with Mixing Refrigerant in Cold Air Cutting

    Science.gov (United States)

    Yang, Y.; Tong, M. W.; Yang, G.; Wang, X. P.

    In the mechanical cutting process, the replacement of traditional cutting solution with cold air can avoid the pollution of environment. In order to high efficient the refrigerating device and flexible adjust the temperature of cold air, it is necessary to use cascade refrigeration system to supply cool quantity for the compressed air. The introduction of a two-component non-azeotropic mixing refrigerant into the cryogenic part of the cascade system, can effectively solve the problems of the system working at too high pressure and the volume expanding of refrigerant in case of the cascade refrigeration sets closed down. However, the filling ratio of mixing refrigerants impact on the relationships among the closing down pressure, refrigerating output and refrigerating efficiency. On the basis of computing and experiment, the optimal mixing ratio of refrigerant R22/R13 and a low temperature of -60° were obtained in this study. A cold air injecting device possessing high efficiency in energy saving has also been designed and manufactured. The cold air, generated from this cascade system and employed in a cutting process, takes good comprehensive effects on machining and cutting.

  6. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    Science.gov (United States)

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    2017-08-08

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  7. Fermilab tevatron five refrigerator system tests

    International Nuclear Information System (INIS)

    Rode, C.; Ferry, R.; Leiniger, M.; Makara, J.; Misek, J.; Mizicko, D.; Richied, D.; Theilacker, J.

    1982-01-01

    The Fermilab Tevatron refrigeration system is described with the layout illustrated. The compressor control loops, the refrigerator control loops, and magnet control loops (two per refrigerator) are described and each illustrated. The mobile purifier is described. A five refrigerator test is presented, using two compressor buildings, satellite refrigerator concept test and the test current to the writing. The configuration of the five refrigerator test is diagramed

  8. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb [CTA Architects Engineers, Boise, ID (United States); Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Arthur, Rob [CTA Architects Engineers, Boise, ID (United States); Heath, Richard [CTA Architects Engineers, Boise, ID (United States); Rono, James [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  9. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  10. Temperature and pressure control in the discharge of refrigeration systems cooled by shell and tube condensers; Control de presion y temperatura de descarga en sistemas de refrigeracion enfriados por condensadores de casco y tubo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Martinez, R. [Asociacion de Ingenieros Egresados de la Universidad Autonoma Metropolitana, Mexico D. F. (Mexico)

    1995-12-31

    In the selection of a refrigeration equipment, the evaporator and condenser load conditions must be perfectly known, that is, the amount of heat energy that we have to reject from our space to cool in base to the temperature and mass to refrigerate. This situation carries on to the selection of the adequate compressor. But nevertheless the temperature conditions of the environment play an important roll in the behavior of the entire refrigeration system, altering in many cases the working conditions of each one of the components and therefore the functioning of the refrigeration system. This paper presents a method for controlling the behavior of each one of the components of the refrigeration system that perform in accordance with their design characteristics. [Espanol] En la seleccion de un equipo de refrigeracion, se deben conocer perfectamente las condiciones de carga del evaporador y del condensador, es decir la cantidad de calor que debemos de eliminar de nuestro medio a refrigerar, en base a la temperatura y masa a refrigerar. Esta situacion conlleva a la eleccion del compresor adecuado. Mas sin embargo, las condiciones de temperatura ambiente, juegan un papel importante en el comportamiento de todo el sistema de refrigeracion, alterando en muchos casos las condiciones de trabajo de cada uno de los componentes y por ende el funcionamiento del sistema de refrigeracion. El presente trabajo presenta un metodo para controlar el comportamiento de cada uno de los componentes dentro del sistema de refrigeracion para que trabajen de acuerdo a su diseno.

  11. Temperature and pressure control in the discharge of refrigeration systems cooled by shell and tube condensers; Control de presion y temperatura de descarga en sistemas de refrigeracion enfriados por condensadores de casco y tubo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Martinez, R [Asociacion de Ingenieros Egresados de la Universidad Autonoma Metropolitana, Mexico D. F. (Mexico)

    1996-12-31

    In the selection of a refrigeration equipment, the evaporator and condenser load conditions must be perfectly known, that is, the amount of heat energy that we have to reject from our space to cool in base to the temperature and mass to refrigerate. This situation carries on to the selection of the adequate compressor. But nevertheless the temperature conditions of the environment play an important roll in the behavior of the entire refrigeration system, altering in many cases the working conditions of each one of the components and therefore the functioning of the refrigeration system. This paper presents a method for controlling the behavior of each one of the components of the refrigeration system that perform in accordance with their design characteristics. [Espanol] En la seleccion de un equipo de refrigeracion, se deben conocer perfectamente las condiciones de carga del evaporador y del condensador, es decir la cantidad de calor que debemos de eliminar de nuestro medio a refrigerar, en base a la temperatura y masa a refrigerar. Esta situacion conlleva a la eleccion del compresor adecuado. Mas sin embargo, las condiciones de temperatura ambiente, juegan un papel importante en el comportamiento de todo el sistema de refrigeracion, alterando en muchos casos las condiciones de trabajo de cada uno de los componentes y por ende el funcionamiento del sistema de refrigeracion. El presente trabajo presenta un metodo para controlar el comportamiento de cada uno de los componentes dentro del sistema de refrigeracion para que trabajen de acuerdo a su diseno.

  12. Indirect refrigeration systems with natural refrigerants

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Christensen, Kim Gardø; Jensen, Per Henrik

    1998-01-01

    Heat transfer for boiling and condensing carbon dioxide has been investigated.Heat transfer for carbon dioxide evaporating inside pipe has been measured and compared with Shah's correlation. The measured heat transfer coefficient is much higher than the value determined with the correlation.A shell......-and-tube heat exchanger with carbon dioxide on the shell side and flow ice inside the tubes has been used to investigate the heat transfer for condensing carbon dioxide.At leats is mentioned results obtained with a frozen food display case using carbone dioxide as refrigerant....

  13. Design of refrigeration system using refrigerant R134a for macro compartment

    Science.gov (United States)

    Rani, M. F. H.; Razlan, Z. M.; Shahriman, A. B.; Yong, C. K.; Harun, A.; Hashim, M. S. M.; Faizi, M. K.; Ibrahim, I.; Kamarrudin, N. S.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.

    2017-10-01

    The main objective of this study is to analyse and design an optimum cooling system for macro compartment. Current product of the refrigerator is not specified for single function and not compact in size. Hence, a refrigeration system using refrigerant R134a is aimed to provide instant cooling in a macro compartment with sizing about 150 × 150 × 250 mm. The macro compartment is purposely designed to fit a bottle or drink can, which is then cooled to a desired drinking temperature of about 8°C within a period of 1 minute. The study is not only concerned with analysing of heat load of the macro compartment containing drink can, but also focused on determining suitable heat exchanger volume for both evaporator and condenser, calculating compressor displacement value and computing suitable resistance value of the expansion valve. Method of optimization is used to obtain the best solution of the problem. Mollier diagram is necessary in the process of developing the refrigeration system. Selection of blower is made properly to allow air circulation and to increase the flow rate for higher heat transfer rate. Property data are taken precisely from thermodynamic property tables. As the main four components, namely condenser, compressor, evaporator and expansion valve are fully developed, the refrigeration system is complete.

  14. Cooling system for superconducting magnet

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  15. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    Science.gov (United States)

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  16. OPTIMAL SYSNTHESIS PROCESSES OF LOW-TEMPERATURE CONDENSATION ASSOCIATED OIL GAS PLANT REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2015-10-01

    Full Text Available Design of modern high-efficient systems is a key priority for the Energy Sector of Ukraine. The cooling technological streams of gas and oil refineries, including air coolers, water cooling and refrigeration systems for specific refrigerants are the objectives of the present study. Improvement of the refrigeration unit with refrigerant separation into fractions is mandatory in order to increase cooling capacity, lowering the boiling point of coolant and increasing the coefficient of target hydrocarbons extraction from the associated gas flow. In this paper it is shown that cooling temperature plays significant role in low-temperature condensation process. Two operation modes for refrigeration unit were proposed: permanent, in which the concentration of the refrigerant mixture does not change and dynamic, in which the concentration of refrigerant mixtures depends on the ambient temperature. Based on the analysis of exergy losses the optimal concentration of refrigerant mixtures propane/ethane for both modes of operation of the refrigeration unit has been determined. On the basis of the conducted pinch-analysis the modification of refrigeration unit with refrigerant separation into fractions was developed. Additional recuperative heat exchangers for utilization heat were added to the scheme. Several important measures to increase the mass flow rate of refrigerant through the second section of the refrigeration centrifugal compressor from 22.5 to 25 kg/s without violating the agreed operational mode of the compressor sections were implemented.

  17. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  18. High Efficiency, Low Emission Refrigeration System

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  19. Cooling of superconducting devices by liquid storage and refrigeration unit

    Science.gov (United States)

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  20. Review of SC/RF refrigeration systems

    International Nuclear Information System (INIS)

    Byrns, R.A.

    1990-01-01

    A short review is given of historical events in accelerator and cryogenic developments at both Stanford and Berkeley. Methods of refrigeration between 1.85 K and 4.5 K together with modern techniques and improvements are discussed. Where the decade of the 70's was the era of the screw compressor, the 80's can be considered that of the cold vacuum pump for superfluid cooling. Distribution methods are of major importance, and arguments can be made for bath or tube cooling, two-phase, thermo-syphon, supercritical or superfluid. System design affects reliability, safety and operating stability. Distribution costs and heat loads can be a large part of system totals. Some specific system descriptions are included. (author)

  1. Efficiency improvement of commercial refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Denecke, Julius [NTNU, Trondheim (Norway); Hafner, Armin [SINTEF Energy Research, Trondheim (Norway)

    2011-07-01

    This work presents a historical review of carbon dioxide refrigeration systems. Further a literature survey is carried out to get a status of existing refrigeration technology related to supermarkets. In the next step various energy saving options are stated. A heat recovery model, basing on a R744 booster refrigeration system is established and described. Simplified demand curves for refrigeration, air conditioning and heating will base this model to calculate different heat recovery layouts. Supermarket future trends will be considered and integrated in the calculation. Finally the calculated energy consumptions will be compared with real energy consumptions of selected supermarket refrigeration systems.

  2. Performance evaluation of integrated trigeneration and CO2 refrigeration systems

    International Nuclear Information System (INIS)

    Suamir, IN.; Tassou, S.A.

    2013-01-01

    Food retailing is one of the most energy intensive sectors of the food cold chain. Its environmental impacts are significant not only because of the indirect effect from CO 2 emissions at the power stations but also due to the direct effect arising from refrigerant leakage to the atmosphere. The overall energy efficiency of supermarkets can be increased by integrating the operation of CO 2 refrigeration and trigeneration systems. This paper compares three alternative schemes in a medium size supermarket. Experimental results and simulation studies have shown that the best scheme for energy and GHG emissions savings is the one where the cooling produced by the trigeneration system is used to condense the CO 2 fluid in the refrigeration system to ensure subcritical operation throughout the year. It is shown that this system can produce 30% energy savings and over 40% greenhouse gas emissions savings over conventional refrigeration and indoor environment control systems in supermarkets.

  3. 46 CFR 151.40-11 - Refrigeration systems.

    Science.gov (United States)

    2010-10-01

    ... compressors shall be such that the required cooling capacity of the system is maintained with one compressor inoperative. Portions of the system other than the compressors need not have standby capacity. ... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11...

  4. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  5. Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant

    International Nuclear Information System (INIS)

    Acuña, A.; Velázquez, N.; Cerezo, J.

    2013-01-01

    A diffusion absorption cooling system is analyzed to determine the appropriate fluid for the unit, based on the coefficient of performance (COP) and operating conditions, by comparing lithium nitrate (LiNO 3 ), sodium thiocyanate (NaSCN) and water (H 2 O) as absorbent substances and by using ammonia (NH 3 ) as the refrigerant. The presence of crystallization in the system is analyzed as a function of the generator and absorber temperatures. Additionally, the effects on the efficiency of the system from adding the inert gas helium (He) or hydrogen (H 2 ) are studied. A mathematical model is developed and compared to experimental studies reported in the literature. At an evaporator temperature of −15 °C, a generator temperature of 120 °C and absorber and condenser temperatures of 40 °C, the results show that the best performance is achieved by the NH 3 –LiNO 3 –He mixture, with a COP of 0.48. This mixture performs 27–46% more efficient than the NH 3 –NaSCN mixture. The NH 3 –H 2 O mixture is 52–69% less efficient than the NH 3 –LiNO 3 mixture. However, when the evaporator runs at 7.5 °C, the NH 3 –H 2 O–He mixture achieves a more efficient COP than does the NH 3 –LiNO 3 –He mixture, and the NH 3 –NaSCN–He and NH 3 –LiNO 3 –He mixtures achieve the same COP when the evaporator is at 10 °C. At temperatures below 7.5 °C, the NH 3 –NaSCN–He mixture achieves a higher COP than does the NH 3 –H 2 O–He mixture. The NH 3 –LiNO 3 mixture shows crystallization at higher temperatures in the generator than does the NH 3 –NaSCN mixture. Moreover, at the same evaporator temperature, the NH 3 –LiNO 3 mixture works at activation temperatures lower than does the NH 3 –NaSCN mixture. -- Highlights: ► We studied a diffusion absorption cooling system with different working mixtures. ► The NH 3 –LiNO 3 mixture showed more efficiency than NH 3 –H 2 O mixture and NH 3 –NaSCN mixture. ► The generator and absorber temperature

  6. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Todd

    2012-12-13

    of a 100 kW prototype data center installation of the refrigerant-based modular cooling technology were dramatic in terms of energy efficiency and the ability to cool high-heat-density equipment. The prototype data center installation consisted of 10 racks each loaded with 10 kW of high-heat-density IT equipment with the racks arranged in a standard hot-aisle/cold-aisle configuration with standard cabinet spacing. A typical chilled-water CRAC unit would require approximately 16 kW to cool such a heat load. In contrast, the refrigerant-based modular cooling technology required only 2.3 kW of power for the refrigerant pump and shelf-level fans, a reduction of 85 percent. Differences in hot-aisle and cold-aisle temperature were also substantially reduced, mitigating many issues that arise in purely air-based cooling systems, such as mixing of hot and cold air streams, or from placing high-heat-density equipment in close proximity. The technology is also such that it is able to retro-fit live equipment without service interruption, which is particularly important to the large installed ICT customer base, thereby providing a means of mitigating reliability and performance concerns during the installation, training and validation phases of product integration. Moreover, the refrigerant used in our approach, R134a, is a widely-used, non-toxic dielectric liquid which, unlike water, is non-conducting and non-corrosive and will not damage electronics in the case of a leak a triple-play win over alternative water-based liquid coolant technologies. Finally, through use of a pumped refrigerant, pressures are modest (~60 psi), and toxic lubricants and oils are not required, in contrast to compressorized refrigerant systems another environmental win. Project Activities - The ARCTIC project goal was to further develop and dramatically accelerate the commercialization of this game-changing, refrigerant-based, liquid-cooling technology and achieve a revolutionary increase in energy

  7. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  8. Refrigeration system with clearance seals

    International Nuclear Information System (INIS)

    Holland, N. J.

    1985-01-01

    In a refrigeration system such as a split Stirling system, fluid seals associated with the reciprocating displacer are virtually dragless clearance seals. Movement of the displacer relative to the pressure variations in the working volume of gas is retarded by a discrete braking element. Because it is not necessary that the brake providing any sealing action, the brake can be designed for greater durability and less dependence on ambient and operating temperatures. Similarly, the clearance seal can be formed of elements having low thermal expansion such that the seal is not temperature dependent. In the primary embodiments the braking element is a split friction brake

  9. Helium refrigeration system for BNL colliding beam accelerator

    International Nuclear Information System (INIS)

    Brown, D.P.; Farah, Y.; Gibbs, R.J.; Schlafke, A.P.; Schneider, W.J.; Sondericker, J.H.; Wu, K.C.

    1983-01-01

    A Helium Refrigeration System which will supply the cooling required for the Colliding Beam Accelerator at Brookhaven National Laboratory is under construction. Testing of the compressor system is scheduled for late 1983 and will be followed by refrigerator acceptance tests in 1984. The refrigerator has a design capacity of 24.8 kW at a temperature level near 4K while simultaneously producing 55 kW for heat shield loads at 55K. When completed, the helium refrigerator will be the world's largest. Twenty-five oil-injected screw compressors with an installed total of 23,250 horsepower will supply the gas required. One of the unique features of the cycle is the application of three centrifugal compressors used at liquid helium temperature to produce the low temperatures (2.5K) and high flow rates (4154 g/s) required for this service

  10. Exergoeconomic Assessment of Solar Absorption and Absorption–Compression Hybrid Refrigeration in Building Cooling

    Directory of Open Access Journals (Sweden)

    Yue Jing

    2018-02-01

    Full Text Available The paper mainly deals with the match of solar refrigeration, i.e., solar/natural gas-driven absorption chiller (SNGDAC, solar vapor compression–absorption integrated refrigeration system with parallel configuration (SVCAIRSPC, and solar absorption-subcooled compression hybrid cooling system (SASCHCS, and building cooling based on the exergoeconomics. Three types of building cooling are considered: Type 1 is the single-story building, type 2 includes the two-story and three-story buildings, and type 3 is the multi-story buildings. Besides this, two Chinese cities, Guangzhou and Turpan, are taken into account as well. The product cost flow rate is employed as the primary decision variable. The result exhibits that SNGDAC is considered as a suitable solution for type 1 buildings in Turpan, owing to its negligible natural gas consumption and lowest product cost flow rate. SVCAIRSPC is more applicable for type 2 buildings in Turpan because of its higher actual cooling capacity of absorption subsystem and lower fuel and product cost flow rate. Additionally, SASCHCS shows the most extensive cost-effectiveness, namely, its exergy destruction and product cost flow rate are both the lowest when used in all types of buildings in Guangzhou or type 3 buildings in Turpan. This paper is helpful to promote the application of solar cooling.

  11. General review of solar-powered closed sorption refrigeration systems

    International Nuclear Information System (INIS)

    Sarbu, Ioan; Sebarchievici, Calin

    2015-01-01

    Highlights: • Provide review of development in solar sorption refrigeration technologies. • Theoretical basis and applications of absorption and adsorption cycles are discussed. • Thermodynamic properties of most common working pairs have been reviewed. • Development of hybrid or thermal energy storage adsorption systems was explored. • A comparison between solar-powered absorption and adsorption systems was performed. - Abstract: The negative environmental impacts of burning fossil fuels have forced the energy research community seriously to consider renewable sources, such as naturally available solar energy. Thermally powered refrigeration technologies are classified into two categories: thermo-mechanical technology and sorption technology (open systems or closed systems). This paper provides a detailed review of the solar closed sorption (absorption and adsorption) refrigeration systems, which utilise working pairs (fluids). After an introduction of the basic principles of these systems, the history of development and recent advances in solar sorption refrigeration technologies are reported. The adsorption cooling typically has a lower heat source temperature requirement than the absorption cooling. Based on the coefficient of performance (COP), the absorption systems are preferred over the adsorption systems, and the higher temperature issues can be easily handled with solar adsorption systems. The thermodynamic properties of most common working fluids, as well as the use of ternary mixtures in solar-powered absorption systems, have been reviewed in this study. The paper also refers to new approaches to increase the efficiency and sustainability of the basic adsorption cycles, such as the development of hybrid or thermal energy storage adsorption systems. This research shows that solar-powered closed sorption refrigeration technologies can be attractive alternatives not only to serve the needs for air-conditioning, refrigeration, ice making, thermal

  12. Load management for refrigeration systems: Potentials and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Grein, Arne, E-mail: a.grein@tu-berlin.de [University of Technology Berlin, Institute for Energy Technology, Department of Energy Systems, Einsteinufer 25 (TA8), 10587 Berlin (Germany); Pehnt, Martin [Institute for Energy and Environmental Research Heidelberg (ifeu), Wilckensstr. 3, 69120 Heidelberg (Germany)

    2011-09-15

    As a strategy to deal with the increasing intermittent input of renewable energy sources in Germany, the adaptation of power consumption is complementary to power-plant regulation, grid expansion and physical energy storage. One demand sector that promises strong returns for load management efforts is cooling and refrigeration. In these processes, thermal inertia provides a temporal buffer for shifting and adjusting the power consumption of cooling systems. We have conducted an empirical investigation to obtain a detailed and time-resolved bottom-up analysis of load management for refrigeration systems in the city of Mannheim, Germany. We have extrapolated our results to general conditions in Germany. Several barriers inhibit the rapid adoption of load management strategies for cooling systems, including informational barriers, strict compliance with legal cooling requirements, liability issues, lack of technical experience, an inadequate rate of return and organizational barriers. Small commercial applications of refrigeration in the food-retailing and cold storage in hotels and restaurants are particularly promising starting points for intelligent load management. When our results are applied to Germany, suitable sectors for load management have theoretical and achievable potential values of 4.2 and 2.8 GW, respectively, amounting to about 4-6% of the maximum power demand in Germany. - Highlights: > Potential and barriers for implementation of load shifting for refrigeration. > Empirical investigation for time-resolved bottom-up analysis in Mannheim, Germany. > Suitable sectors and further recommendations for introducing load management.> Extrapolation of results from local to national level.

  13. Cooling transfer fluids: advantages, drawbacks, refrigerant circuit architecture; Les fluides frigoporteurs: avantages, inconvenients, apercu sur l`architecture des circuits frigoporteurs

    Energy Technology Data Exchange (ETDEWEB)

    Duminil, M. [Association Francaise du Froid (AFF), 75 - Paris (France)

    1997-12-31

    The advantages and inconvenients of indirect cooling systems are summarized: simplification of the cooling distribution from a single refrigerating unit, a potential for a larger range of refrigerants, cooling circuit size diminution, but energy consumption increase, lower evaporation temperature, etc. The various types and characteristics of single- and two-phase refrigerant and heat transfer fluids are described, and more especially two-phase liquid-vapour and liquid-solid fluids. Based on the example of a two-temperature-level refrigerating system in a supermarket, the general architecture of the cold distribution circuit and the architecture of the refrigerant circuit itself, are presented with their different types, involving direct or indirect, and centralized or semi-centralized systems

  14. Air cooling of refrigerating loops: 'dry-hybrid' systems; Refroidissement par air des circuits frigorifiques: les systemes ''secs hybrides''

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W. [Societe Jaggi-Gunter (Switzerland)

    2003-02-01

    Different type of cooling systems can be implemented on coldness production plants. The choice very often depends on the initial investment, but from a technical and economical point of view, this choice is not necessary the best solution. Thus, it can be useful to know the different existing systems and their exploitation costs with respect to the expected needs. A particular solution which uses a 'dry-hybrid' cooler is presented in this study: 1 - open-loop evaporative cooler; 2 - open-loop evaporative cooler with intermediate exchanger; 3 - close-loop evaporative cooler; 4 - dry-cooler; 5 - dry cooler with spraying in the air flow way; 6 - dry cooler with counterflow spraying; 7 - hybrid dry cooler; 8 - example of a realization in Germany: technical and economical value of the project, description of compared solutions and hypotheses, interpretation of results. (J.S.)

  15. Comparative performance analysis of ice plant test rig with TiO2-R-134a nano refrigerant and evaporative cooled condenser

    OpenAIRE

    Amrat Kumar Dhamneya; S.P.S. Rajput; Alok Singh

    2018-01-01

    The nanoparticle is used in chillers for increasing system performance. The increasing concentration of nanoparticles (TiO2) in refrigerant increases the performances of the system due decreasing compressor work done and enhance heat transfer rate. For hot and dry climate condition, performances of air-cooled condenser minimize, and C. O. P. decreases extensively in chillers due to heat transfer rate decreases in the condenser. In the condenser, nano-refrigerants are not cool at the desired l...

  16. POWER EFFICIENCY OPPORTUNITIES FOR INDUSTRIAL REFRIGERATION SYSTEM OF FOOD PROCESSING ENTERPRISE

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2016-12-01

    Full Text Available Rising prices on power supply are forcing business owners to search the ways of operating costs reducing. Refrigeration system in the food industry is a major source of power consumption. The utilization of cold accumulation systems allows reducing of refrigeration unit power consumption. In this paper the refrigeration system with a system of cold accumulation and dry cooling tower is considered. The possibility of power consumption reducing due to the organization of the enterprise refrigeration system operation process in the night period according to electricity multiple tariffs has been analyzed.

  17. Artificial neural network analysis of triple effect absorption refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Hajizadeh Aghdam, A. [Department of Mechanical Engineering, Islamic Azad University (Iran, Islamic Republic of)], email: a.hajizadeh@iaukashan.ac.ir; Nazmara, H.; Farzaneh, B. [Department of Mechanical Engineering, University of Tabriz (Iran, Islamic Republic of)], email: h.nazmara@nioec.org, email: b_farzaneh_ms@yahoo.com

    2011-07-01

    In this study, artificial neural networks are utilized to predict the performance of triple effect series and parallel flow absorption refrigeration systems, with lithium bromide/water as the working fluid. Important parameters such as high generator and evaporator temperatures were varied and their effects on the performance characteristics of the refrigeration unit were observed. Absorption refrigeration systems make energy savings possible because they can use heat energy to produce cooling, in place of the electricity used for conventional vapour compression chillers. In addition, non-conventional sources of energy (such as solar, waste heat, and geothermal) can be utilized as their primary energy input. Moreover, absorption units use environmentally friendly working fluid pairs instead of CFCs and HCFCs, which affect the ozone layer. Triple effect absorption cycles were analysed. Results apply for both series and parallel flow systems. A relative preference for parallel-flow over series-flow is also shown.

  18. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  19. Data-Driven Control of Refrigeration System

    DEFF Research Database (Denmark)

    Vinther, Kasper

    Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive and it is import......Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive...... traditionally are a pressure and a temperature sensor. In this thesis, a novel maximum slope-seeking (MSS) control method is developed. This has resulted in a control implementation, which successfully has been able to control the evaporator superheat in four widely different refrigeration system test...... problems. The method utilizes the qualitative nonlinearity in the system and harmonic analysis of a perturbation signal to reach an unknown, but suitable, operating point. Another important control task in refrigeration systems is to maintain the temperature of the refrigerated space or foodstuff within...

  20. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid

    International Nuclear Information System (INIS)

    Kim, Yoon Jo; Kim, Sarah; Joshi, Yogendra K.; Fedorov, Andrei G.; Kohl, Paul A.

    2012-01-01

    Thermodynamics of an ionic-liquid (IL) based absorption refrigeration system has been numerically analyzed. It provides an alternative to the normally toxic working fluids, such as the ammonia in conventional absorption systems. The use of ILs also eliminates crystallization and metal-compatibility problems of the water/LiBr system. Mixtures of refrigerants and imidazolium-based ILs are theoretically explored as the working fluid pairs in a miniature absorption refrigeration system, so as to utilize waste-heat to power a refrigeration/heat pump system for electronics cooling. A non-random two-liquid (NRTL) model was built and used to predict the solubility of the mixtures. Saturation temperatures at the evaporator and condenser were set at 25 °C and 50 °C, respectively, with the power dissipation of 100 W. Water in combination with [emim][BF 4 ] (1-ethyl-3-methylimidazolium tetrafluoroborate) gave the highest coefficient of performance (COP) around 0.9. The refrigerant/IL compatibility indicated by the circulation ratio, alkyl chain length of the IL, and thermodynamic properties of the refrigerants, such as latent heat of evaporation were proven to be important factors in determining the performance of the absorption system. The negative effect of high viscosity was mitigated by dilution of the IL with the refrigerant and the use of slightly larger microfluidic channel heat exchangers. -- Highlights: ► Mixtures of refrigerant/ionic-liquid are studied for absorption system. ► We carry out comprehensive theoretical thermodynamic analysis. ► The essential factors of refrigerant/IL affecting the performance are identified. ► Water/[emim][BF 4 ] showed the best performance of COP. ► The effects of high viscosity ILs on the system performance are not significant.

  1. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  2. Cogen-absorption plants for refrigeration purposes and turbine air inlet cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langreck, Juergen [Colibri bv (Netherlands)

    2000-04-01

    Most cogeneration systems produce power and heat but with absorption refrigeration plants (ARP) the products are power and 'cold'. An ARP driven by heat from a turbine exhaust can provide the cooling for the inlet air with very low consumption of electricity, consequently there is a significant increase in power output from the cogeneration unit. Two different ARP systems are currently available but the author describes only the ammonia-water system, which can achieve temperatures down to -60 degrees C. The article discusses the principle behind ARP, the capital cost and returns on investment, how the cogeneration plant is linked to the ARP, ARP for turbine inlet air cooling, and the potential applications of cogeneration-ARP.

  3. GreenChill Store Certification Protocol for Sub-Cooling Contained on Racks Separate from Refrigeration Equipment

    Science.gov (United States)

    Document describes the protocol used to determine the total load and refrigerant charge of stores that have placed all sub-cooling on a rack separate from all other commercial refrigeration equipment.

  4. Simulation of the Energy Saver refrigeration system

    International Nuclear Information System (INIS)

    Barton, H.R. Jr.; Nicholls, J.E.; Mulholland, G.T.

    1981-10-01

    The helium refrigeration for the Energy Saver is supplied by a Central Helium Liquefier and 24 Satellite Refrigerators installed over a 1-1/4 square mile area. An interactive, software simulator has been developed to calculate the refrigeration available from the cryogenic system over a wide range of operating conditions. The refrigeration system simulator incorporates models of the components which have been developed to quantitatively describe changes in system performance. The simulator output is presented in a real-time display which has been used to search for the optimal operating conditions of the Satellite-Central system, to examine the effect of an extended range of operating parameters and to identify equipment modifications which would improve the system performance

  5. Computer simulation with TRNSYS for a mobile refrigeration system incorporating a phase change thermal storage unit

    International Nuclear Information System (INIS)

    Liu, Ming; Saman, Wasim; Bruno, Frank

    2014-01-01

    Highlights: • A mobile refrigeration system incorporating phase change thermal storage was simulated using TRNSYS. • A TRNSYS component of a phase change thermal storage unit was created and linked to other components from TRNSYS library. • The temperature in the refrigerated space can be predicted using this TRNSYS model under various conditions. • A mobile refrigeration system incorporating PCM and an off-peak electric driven refrigeration unit is feasible. • The phase change material with the lowest melting temperature should be selected. - Abstract: This paper presents a new TRNSYS model of a refrigeration system incorporating phase change material (PCM) for mobile transport. The PCTSU is charged by an off-vehicle refrigeration unit and the PCM provides cooling when discharging and the cooling released is utilized to cool down the refrigerated space. The advantage of this refrigeration system compared to a conventional system is that it consumes less energy and produces significantly lower greenhouse gas emissions. A refrigeration system for a typical refrigerated van is modelled and simulations are performed with climatic data from four different locations. The main components of the TRNSYS model are Type 88 (cooling load estimation) and Type 300 (new PCTSU component), accompanied by other additional components. The results show that in order to maintain the temperature of the products at −18 °C for 10 h, a total of 250 kg and 390 kg of PCM are required for no door opening and 20 door openings during the transportation, respectively. In addition, a parametric study is carried out to evaluate the effects of location, size of the refrigerated space, number of door openings and melting temperature of the PCM on the thermal performance

  6. A Case Study of a Low Powervapour Compression Refrigeration System

    Science.gov (United States)

    Abinav, R.; Nambiar, G. K.; Sahu, Debjyoti

    2016-09-01

    Reported in this paper is a case study on a normal vapor compression refrigeration system which is expected to be run by photovoltaic panels to utilize minimum grid power. A small 120 W refrigerator is fabricated out of commercially available components and run by an inverter and battery connected to solar photovoltaic panel as well as grid. Temperature at several points was measured and the performance was evaluated. The Coefficient of performance (COP) to run such refrigerator is estimated after numerical simulation of major components namely, evaporator, condenser and a capillary tube. The simulation was done to obtain an effective cooling temperature and the results were compared with measured temperatures. Calculation proves to be in conformity with the actual model.

  7. Performance analysis for minimally nonlinear irreversible refrigerators at finite cooling power

    Science.gov (United States)

    Long, Rui; Liu, Zhichun; Liu, Wei

    2018-04-01

    The coefficient of performance (COP) for general refrigerators at finite cooling power have been systematically researched through the minimally nonlinear irreversible model, and its lower and upper bounds in different operating regions have been proposed. Under the tight coupling conditions, we have calculated the universal COP bounds under the χ figure of merit in different operating regions. When the refrigerator operates in the region with lower external flux, we obtained the general bounds (0 present large values, compared to a relative small loss from the maximum cooling power. If the cooling power is the main objective, it is desirable to operate the refrigerator at a slightly lower cooling power than at the maximum one, where a small loss in the cooling power induces a much larger COP enhancement.

  8. Theoretical Models for the Cooling Power and Base Temperature of Dilution Refrigerators

    CERN Document Server

    Wikus, Patrick

    2010-01-01

    He-3/He-4 dilution refrigerators are widely used for applications requiring continuous cooling at temperatures below approximately 300 mK. Despite of the popularity of these devices in low temperature physics, the thermodynamic relations underlying the cooling mechanism of He-3/He-4 refrigerators are very often incorrectly used. Several thermodynamic models of dilution refrigeration have been published in the past, sometimes contradicting each other. These models are reviewed and compared with each other over a range of different He-3 flow rates. In addition, a new numerical method for the calculation of a dilution refrigerator's cooling power at arbitrary flow rates is presented. This method has been developed at CERN's Central Cryogenic Laboratory. It can be extended to include many effects that cannot easily be accounted for by any of the other models, including the degradation of heat exchanger performance due to the limited number of step heat exchanger elements, which can be considerable for some design...

  9. Review of investigations in eco-friendly thermoacoustic refrigeration system

    Directory of Open Access Journals (Sweden)

    Raut Ashish S.

    2017-01-01

    Full Text Available To reduce greenhouse gas emissions, internationally research and development is intended to improve the performance of conventional refrigeration system also growth of new-fangled refrigeration technology of potentially much lesser ecological impact. This paper gives brief review of research and development in thermoacoustic refrigeration also the existing situation of thermoacoustic refrigeration system. Thermoacoustic refrigerator is a novel sort of energy conversion equipment which converts acoustic power into heat energy by thermoacoustic effect. Thermoacoustic refrigeration is an emergent refrigeration technology in which there are no moving elements or any environmentally injurious refrigerants during its working. The concept of thermoacoustic refrigeration system is explained, the growth of thermoacoustic refrigeration, various investigations into thermoacoustic refrigeration system, various optimization techniques to improve coefficient of performance, different stacks and resonator tube designs to improve heat transfer rate, various gases, and other parameters like sound generation have been reviewed.

  10. Refrigeration system having standing wave compressor

    Science.gov (United States)

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  11. Optimal Energy Consumption in Refrigeration Systems - Modelling and Non-Convex Optimisation

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Skovrup, Morten J.

    2012-01-01

    Supermarket refrigeration consumes substantial amounts of energy. However, due to the thermal capacity of the refrigerated goods, parts of the cooling capacity delivered can be shifted in time without deteriorating the food quality. In this study, we develop a realistic model for the energy...... consumption in super market refrigeration systems. This model is used in a Nonlinear Model Predictive Controller (NMPC) to minimise the energy used by operation of a supermarket refrigeration system. The model is non-convex and we develop a computational efficient algorithm tailored to this problem...

  12. Load management for refrigeration systems: Potentials and barriers

    International Nuclear Information System (INIS)

    Grein, Arne; Pehnt, Martin

    2011-01-01

    As a strategy to deal with the increasing intermittent input of renewable energy sources in Germany, the adaptation of power consumption is complementary to power-plant regulation, grid expansion and physical energy storage. One demand sector that promises strong returns for load management efforts is cooling and refrigeration. In these processes, thermal inertia provides a temporal buffer for shifting and adjusting the power consumption of cooling systems. We have conducted an empirical investigation to obtain a detailed and time-resolved bottom-up analysis of load management for refrigeration systems in the city of Mannheim, Germany. We have extrapolated our results to general conditions in Germany. Several barriers inhibit the rapid adoption of load management strategies for cooling systems, including informational barriers, strict compliance with legal cooling requirements, liability issues, lack of technical experience, an inadequate rate of return and organizational barriers. Small commercial applications of refrigeration in the food-retailing and cold storage in hotels and restaurants are particularly promising starting points for intelligent load management. When our results are applied to Germany, suitable sectors for load management have theoretical and achievable potential values of 4.2 and 2.8 GW, respectively, amounting to about 4-6% of the maximum power demand in Germany. - Highlights: → Potential and barriers for implementation of load shifting for refrigeration. → Empirical investigation for time-resolved bottom-up analysis in Mannheim, Germany. → Suitable sectors and further recommendations for introducing load management.→ Extrapolation of results from local to national level.

  13. Defrost Temperature Termination in Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

  14. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  15. Model Based Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth

    for automation of these procedures, that is to incorporate some "intelligence" in the control system, this project was started up. The main emphasis of this work has been on model based methods for system optimizing control in supermarket refrigeration systems. The idea of implementing a system optimizing...... control is to let an optimization procedure take over the task of operating the refrigeration system and thereby replace the role of the operator in the traditional control structure. In the context of refrigeration systems, the idea is to divide the optimizing control structure into two parts: A part...... optimizing the steady state operation "set-point optimizing control" and a part optimizing dynamic behaviour of the system "dynamical optimizing control". A novel approach for set-point optimization will be presented. The general idea is to use a prediction of the steady state, for computation of the cost...

  16. Comparative performance analysis of ice plant test rig with TiO2-R-134a nano refrigerant and evaporative cooled condenser

    Directory of Open Access Journals (Sweden)

    Amrat Kumar Dhamneya

    2018-03-01

    Full Text Available The nanoparticle is used in chillers for increasing system performance. The increasing concentration of nanoparticles (TiO2 in refrigerant increases the performances of the system due decreasing compressor work done and enhance heat transfer rate. For hot and dry climate condition, performances of air-cooled condenser minimize, and C. O. P. decreases extensively in chillers due to heat transfer rate decreases in the condenser. In the condenser, nano-refrigerants are not cool at the desired level, and the system was faulty. These drawbacks of the nano-particles mixed refrigerator have promoted the research and improving heat rejection rate in the condenser. In this article, vapour compression refrigeration system coupled with evaporative cooling pad, and nano-refrigerant, for improving the performance of the system in hot & dry weather is proposed and compared experimentally. Combined evaporative cooling system and ice plant test rig have been proposed for the appropriate heat rejection offered in the condenser due to a faulty system run at high pressure. The experimental investigations revealed that the performance characteristics of the evaporatively-cooled condenser are significantly enhanced. Maximum C.O.P. increases by about 51% in the hot and dry climate condition than the normal system.

  17. Hybrid control of the distributed refrigeration system

    DEFF Research Database (Denmark)

    Chen, L.; Wisniewski, R.

    2010-01-01

    consumption. The paper focuses on synchronization dynamics of the refrigeration system modeled as a piecewise-affine switched system. System behaviors are analyzed using chaos theory. The synchronization phenomenon is interpreted as a stable low-period orbit; if the system has a high-order periodic orbit...

  18. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system

    Directory of Open Access Journals (Sweden)

    Mishra Shubham

    2016-12-01

    Full Text Available Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%, which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle. Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.

  19. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system

    Science.gov (United States)

    Mishra, Shubham; Sarkar, Jahar

    2016-12-01

    Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene) is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP) for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%), which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle). Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.

  20. A new compressed air energy storage refrigeration system

    International Nuclear Information System (INIS)

    Wang Shenglong; Chen Guangming; Fang Ming; Wang Qin

    2006-01-01

    In this study, a new compressed air energy storage (CAES) refrigeration system is proposed for electrical power load shifting application. It is a combination of a gas refrigeration cycle and a vapor compression refrigeration cycle. Thermodynamic calculations are conducted to investigate the performance of this system. Economic analysis is performed to study the operating cost of the system, and comparison is made with a vapor compression refrigeration system and an ice storage refrigeration system. The results indicate that the CAES refrigeration system has the advantages of simple structure, high efficiency and low operating cost

  1. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  2. Energy analysis of a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch; Jakobsen, Arne; Rasmussen, Bjarne D.

    1999-01-01

    From 1995 to 1998, an energy test method for supermarket refrigeration systems was developed in a project financed by the Danish Energy Agency. The purpose of the energy test method is to provide the means for evaluating the energy efficiency of these systems. The test method requires measurements...... of air temperatures and energy consumption to be carried out on the selected supermarket refrigeration system. In addition to the measurements required by the method, more measurements of individual energy consumptions have been carried in the case described in this paper. The purpose of the additional...

  3. Systematic modelling and simulation of refrigeration systems

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1998-01-01

    The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose...... of the simulation, to select appropriate component models and to set up the equations in a well-arranged way. In this paper the outline of such a method is proposed and examples showing the use of this method for simulation of refrigeration systems are given....

  4. Review of magnetic refrigeration system as alternative to conventional refrigeration system

    Science.gov (United States)

    Mezaal, N. A.; Osintsev, K. V.; Zhirgalova, T. B.

    2017-10-01

    The refrigeration system is one of the most important systems in industry. Developers are constantly seeking for how to avoid the damage to the environment. Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials, MCE warms as the magnetic moments of the atom are aligned by the application of a magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle), where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. Many magnetic refrigeration prototypes with different designs and software models have been built in different parts of the world. In this paper, the authors try to shed light on the magnetic refrigeration and show its effectiveness compared with conventional refrigeration methods.

  5. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  6. Energy performance of supermarket refrigeration and air conditioning integrated systems working with natural refrigerants

    International Nuclear Information System (INIS)

    Cecchinato, Luca; Corradi, Marco; Minetto, Silvia

    2012-01-01

    The current trends in commercial refrigeration aim at reducing the synthetic refrigerant charge, either by minimising the internal volume of the circuit or by utilising natural refrigerants, and at energy saving. The energy efficiency of supermarkets can be improved by optimising components design, recovering thermal and refrigerating energy, adopting innovative technology solutions, integrating the HVAC system with medium temperature and low temperature refrigeration plants and, finally, reducing thermal loads on refrigerated cases. This study aims at investigating the performance of different lay-out and technological solutions where only natural refrigerants are used and at finding the potential for improving energy efficiency over the traditional systems in different climates. In the analysis, chillers and heat pumps working with ammonia or propane, medium temperature systems working with ammonia or propane and carbon dioxide as heat transfer fluid or with carbon dioxide as the refrigerant and low temperature systems working with carbon dioxide are considered and benchmarked with a state-of-the-art HFCs based plant. The most efficient investigated solution enables an annual energy saving higher than 15% with respect to the baseline solution for all the considered climates. - Highlights: ► Different natural refrigerants supermarket HVAC and R integrated systems are analysed. ► Some of the proposed solutions offer a significant benefit over the baseline one. ► Up to 18.7% energy saving is achieved in the considered climates. ► The refrigeration unit condensation by the AC chiller offers the poorest results.

  7. Control optimizations for heat recovery from CO2 refrigeration systems in supermarket

    International Nuclear Information System (INIS)

    Ge, Y.T.; Tassou, S.A.

    2014-01-01

    Highlights: • Application of supermarket energy control system model. • Heat recovery from CO 2 refrigeration system in supermarket space conditioning. • Effect of pressure controls of CO 2 refrigeration system on heat recovery potentials. • Control optimization of CO 2 refrigeration system for heat recovery in supermarket. - Abstract: A modern supermarket energy control system has a concurrent need for electricity, food refrigeration and space heating or cooling. Approximately 10% of this energy is for conventional gas-powered heating. In recent years, the use of CO 2 as a refrigerant in supermarket systems has received considerable attention due to its negligible contribution to direct greenhouse gas emissions and excellent thermophysical and heat transfer properties. CO 2 refrigeration systems also offer more compact component designs over a conventional HFC system and heat recovery potential from compressor discharge. In this paper, the heat recovery potential of an all-CO 2 cascade refrigeration system in a supermarket has been investigated using the supermarket simulation model “SuperSim” developed by the authors. It has been shown that at UK weather conditions, the heat recovery potential of CO 2 refrigeration systems can be increased by increasing the condenser/gas cooler pressure to the point where all the heat requirements are satisfied. However, the optimum level of heat recovery will vary during the year and the control system should be able to continuously optimize this level based on the relative cost of energy, i.e., gas and electricity

  8. Design and dynamic behaviour of a cold storage system combined with a solar powered thermoacoustic refrigerator

    International Nuclear Information System (INIS)

    Perier-Muzet, Maxime; Bedecarrats, Jean-Pierre; Stouffs, Pascal; Castaing-Lasvignottes, Jean

    2014-01-01

    A heat powered thermoacoustic refrigerator consists in a thermoacoustic engine that produces acoustic work utilizing heat, coupled to a thermoacoustic cooler that converts this acoustic energy into cooling effect. These machines have already proved their capability in laboratory or in space refrigeration. Previous studies have also demonstrated the possibility of using concentrated solar energy as thermal energy sources for low power heat driven thermoacoustic refrigerators. As other solar refrigeration systems, even if the cooling demand generally increases with the intensity of the solar radiation, one of the major difficulties is to insure a frigorific power supply when there is no, or low, solar radiation. The aim of this work is to study a kW scale solar thermoacoustic refrigerator capable to reach temperatures of the industrial refrigeration domain. This refrigerator is combined with a latent cold storage in order to guarantee a sufficient cooling capacity to face to refrigeration loads in spite of the production fluctuations. A description of the studied prototype is done and the model developed to describe the transient behaviour of the main components of this machine is introduced. The results obtained with a simulation of one week with real solar radiations are presented and the behaviour and the energetic performances of the entire system are analysed. Finally the impact of the sizing of the cold storage system is discussed. With the best storage design, the system is capable to supply a cooling power of 400 W at a temperature equal or lower than −20 °C with an average Coefficient Of Performance of the solar thermoacoustic refrigerator equal to 21%

  9. Simulation of absorption refrigeration system for automobile application

    Directory of Open Access Journals (Sweden)

    Ramanathan Anand

    2008-01-01

    Full Text Available An automotive air-conditioning system based on absorption refrigeration cycle has been simulated. This waste heat driven vapor absorption refrigeration system is one alternate to the currently used vapour compression refrigeration system for automotive air-conditioning. Performance analysis of vapor absorption refrigeration system has been done by developing a steady-state simulation model to find the limitation of the proposed system. The water-lithium bromide pair is used as a working mixture for its favorable thermodynamic and transport properties compared to the conventional refrigerants utilized in vapor compression refrigeration applications. The pump power required for the proposed vapor absorption refrigeration system was found lesser than the power required to operate the compressor used in the conventional vapor compression refrigeration system. A possible arrangement of the absorption system for automobile application is proposed.

  10. Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller

    International Nuclear Information System (INIS)

    Sun, Z.G.

    2008-01-01

    An integrated refrigeration system (IRS) with a gas engine, a vapor-compression chiller and an absorption chiller is set up and tested. The vapor-compression refrigeration cycle is operated directly by the gas engine. The waste heat from the gas engine operates the absorption refrigeration cycle, which provides additional cooling. The performance of the IRS is described. The cooling capacity of the IRS is about 596 kW, and primary energy ratio (PER) reaches 1.84 at air-conditioning rated conditions. The refrigerating capacity of the prototype increased and PER of prototype decreased with the increase of the gas engine speed. The gas engine speed was preferably regulated at part load condition in order to operate the prototype at high-energy efficiency. The refrigerating capacity and PER of the prototype increased with the increase of the outlet temperature of chilled water or the decrease of the inlet temperature of cooling water. The integrated refrigeration chiller in this work saves running costs as compared to the conventional refrigeration system by using the waste heat

  11. Solutions for Liquid Nitrogen Pre-Cooling in Helium Refrigeration Cycles

    CERN Document Server

    Wagner, U

    2000-01-01

    Pre-cooling of helium by means of liquid nitrogen is the oldest and one of the most common process features used in helium liquefiers and refrigerators. Its two principle tasks are to allow or increase the rate of pure liquefaction, and to permit the initial cool-down of large masses to about 80 K. Several arrangements for the pre-cooling process are possible depending on the desired application. Each arrangement has its proper advantages and drawbacks. The aim of this paper is to review the possible process solutions for liquid nitrogen pre-cooling and their particularities.

  12. Eco-Friendly Alternative Refrigeration Systems

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 10. Eco-Friendly Alternative Refrigeration Systems - Magnetic and ... Author Affiliations. S S Verma1. Deptartment of Physics, Sant Longowal Institute of Engineering and Technology Longowal, District Sangrur, Punjab 148 106, India.

  13. Eco-Friendly Alternative Refrigeration Systems

    Indian Academy of Sciences (India)

    frigerants in mechanical refrigeration system has become a subject of great ..... In 1823, Seebeck discovered that a voltage drop appears across a junction (i.e., a .... delta function in the transport distribution centered about 2-3. KT from the ...

  14. Helium refrigerator-liquefier system for MHD generator

    International Nuclear Information System (INIS)

    Akiyama, Y.; Ishii, H.; Mori, Y.; Yamamoto, M.; Wada, R.; Ando, M.

    1974-01-01

    MHD power generators have been investigated in the Electro-Technical Laboratory as one of the National Research and Development Programmes. A helium refrigerator-liquefier system has been developed to cool the superconducting magnet for a 1000 kW class MHD power generator. The turboexpander with low temperature gas bearings and an alternator had been developed for the MHD project at the Electro-Technical Laboratory previously. The liquefaction capacity is 250 iota/h and the refrigeration power is 2.9 kW at 20 K. The superconducting magnet is 50 tons and the cryostat has a liquid helium volume of 2700 iota. The evaporation rate is 60 to 80 iota/h. It takes, in all 2 to 3 weeks to fill the cryostat with liquid helium. (author)

  15. Improving the energy efficiency of industrial refrigeration systems

    International Nuclear Information System (INIS)

    Oh, Jin-Sik; Binns, Michael; Park, Sangmin; Kim, Jin-Kuk

    2016-01-01

    Various retrofit design options are available for improving the energy efficiency and economics of industrial refrigeration systems. This study considers a novel retrofit option using a mixed refrigerant (MR) in refrigeration cycles designed for use with a pure refrigerant (PR). In this way energy savings can be realized by switching refrigerants without requiring extensive and expensive reconfiguration of equipment. Hence, the aim here is to test the common thinking that equipment should always be extensively reconfigured when switching from pure to mixed refrigerants. To determine the most energy-efficient operating conditions for each refrigeration design an optimization framework is utilized linking a process simulator with an external optimization method. A case study is presented to demonstrate how the proposed process modeling and optimization framework can be applied and to illustrate the economic benefits of using the retrofit design options considered here. For the case considered in this paper, savings of shaft power required for the refrigeration cycle can be achieved from 16.3% to 27.2% when the pure refrigerant is replaced with mixed refrigerants and operating conditions are re-optimized. - Highlights: • Design methods for the design of refrigeration cycles in retrofit cases. • Consideration of mixed refrigerants to the existing multi-level pure-refrigerant cycles. • Optimization of refrigeration cycles with integrated use of a process simulator with an optimizer.

  16. Advanced refrigeration system for the Brookhaven superconducting cable project

    International Nuclear Information System (INIS)

    Jensen, J.E.

    1975-01-01

    A description is given of a basic supercritical refrigerator. The present status of the cable enclosure and the types of cooling schemes being considered are presented with some examples of laboratory results and computer analysis. (MOW)

  17. Dynamic simulation of variable capacity refrigeration systems under abnormal conditions

    International Nuclear Information System (INIS)

    Liang Nan; Shao Shuangquan; Tian Changqing; Yan Yuying

    2010-01-01

    There are often abnormal working conditions at evaporator outlet of a refrigeration system, such as two-phase state in transient process, and it is essential to investigate such transient behaviours for system design and control strategy. In this paper, a dynamic lumped parameter model is developed to simulate the transient behaviours of refrigeration system with variable capacity in both normal and abnormal working conditions. The appropriate discriminant method is adopted to switch the normal and abnormal conditions smoothly and to eliminate the simulated data oscillation. In order to verify the dynamic model, we built a test system with variable frequency compressor, water-cooling condenser, evaporator and electronic expansion valve. Calculated values from the mathematical model show reasonable agreement with the experimental data. The simulation results show that the transient behaviours of the variable capacity refrigeration system in the abnormal working conditions can be calculated reliably with the dynamic model when the compressor rotary speed or the opening of electronic expansion valve changes abruptly.

  18. Thermoeconomic Optimization of Cascade Refrigeration System Using Mixed Carbon Dioxide and Hydrocarbons at Low Temperature Circuit

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2016-12-01

    Full Text Available Many applications and industrial processes require very low cooling temperature, such as cold storage in the biomedical field, requiring temperature below -80 °C. However,single-cycle refrigeration systems can only achieve the effective cooling temperature of -40 °C and, also, the performance of the cycle will decrease drastically for cooling temperatures lower than -35°C. Currently, most of cascade refrigeration systems use refrigerants that have ozone depletion potential (ODP and global warming potential (GWP, therefore, in this study, a cascade system is simulated using a mixture of environmentally friendly refrigerants, namely, carbon dioxide and a hydrocarbon (propane, ethane or ethylene as the refrigerant of the low temperature circuit. A thermodynamic analysis is performed to determine the optimal composition of the mixture of carbon dioxide and hydrocarbons in the scope of certain operating parameters. In addition, an economic analysis was also performed to determine the annual cost to be incurred from the cascade refrigeration system. The multi-objective/thermoeconomic optimization points out optimal operating parameter values of the system, to addressing both exergy efficiency and its relation to the costs to be incurred.

  19. Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line

    Science.gov (United States)

    Gaul, Christopher J.

    2001-01-01

    The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.

  20. A dilution refrigerator combining low base temperature, high cooling power and low heat leak for use with nuclear cooling

    International Nuclear Information System (INIS)

    Bradley, D.I.; Guenault, A.M.; Keith, V.; Miller, I.E.; Pickett, G.R.; Bradshaw, T.W.; Locke-Scobie, B.G.

    1982-01-01

    The design philosophy, design, construction and performance of a dilution refrigerator specifically intended for nuclear cooling experiments in the submillikelvin regime is described. Attention has been paid from the outset to minimizing sources of heat leaks, and to achieving a low base temperature and relatively high cooling power below 10 mK. The refrigerator uses sintered silver heat exchangers similar to those developed at Grenoble. The machine has a base temperature of 3 mK or lower and can precool a copper nuclear specimen in 6.8 T to 8 mK in 70 h. The heat leak to the innermost nuclear stage is < 30 pW after only a few days' running. (author)

  1. Development and Analysis of Hybrid Thermoelectric Refrigerator Systems

    Science.gov (United States)

    Saifizi, M.; Zakaria, M. S.; Yaacob, Sazali; Wan, Khairunizam

    2018-03-01

    Thermoelectric module (TEM) is a type of solid-state devices which has the capability to maintain the accuracy of small temperature variation application. In this study, a hybrid thermoelectric refrigerator system is introduced by utilizing TEMs; direct and air to air thermoelectric heat pump to cool down and maintain low temperature for vaccines storage. Two different materials which are aluminum and stainless steel are used as container in hybrid thermoelectric refrigerator (HTER) configuration to investigate the response of every system in transient and steady state mode. A proper temperature sensor calibration technique is implemented to make certain real time data acquisition of the systems are not affected very much from the noise generated. From step response analysis, it is indicated that HTER I (aluminum) has rapid settling time from transient to steady state than HTER II (stainless steel) since aluminum has better thermal conductivity as compared to stainless steel. It is found that HTER I is better in cooling capability with the same input current instead of HTER II which required a longer time to achieve steady state mode. Besides, in Pseudo Random Binary Sequence (PRBS) response analysis injected to both systems shows HTER I is very sensitive to current input as the sequence length of HTER I is shorter than HTER II. However both systems depict the varying temperature in the range of 4 oC due to differences in thermal conductivity of container.

  2. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  3. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  4. Design and performance prediction of solar adsorption cooling for mobile vaccine refrigerator

    Science.gov (United States)

    Djubaedah, Euis; Taufan, Andi; Ratnasari, Nadhira; Fahrizal, Adjie; Hamidi, Qayyum; Nasruddin

    2017-03-01

    Adsorption cooling is a process that uses a drop-in pressure caused by the adsorption of adsorbate by adsorbent. Adsorption process creates a pressure drop which can bring down the temperature to the intended condition. This approach can be used in vaccine transportation as the vaccines need to be stored at low temperatures (2°C to 8°C for preserving vaccines). The pressure decrease can be obtained by adsorption water in zeolites and can also produce the temperature drop in the main chamber. The adsorption process of water will decrease until reaching saturation condition. Heat is needed to keep the system continuous as it starts a desorption process. From the simulation using MATLAB, it is found that the mobile vaccine refrigerator can reach the temperature of 2°C in 180 seconds with the amount of cooling power generated is up to 1530 W. The insulation can hold the allowable temperature range inside the vaccine cabin for 15.6795 hours.

  5. Model based control of refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sloth Larsen, L.F.

    2005-11-15

    The subject for this Ph.D. thesis is model based control of refrigeration systems. Model based control covers a variety of different types of controls, that incorporates mathematical models. In this thesis the main subject therefore has been restricted to deal with system optimizing control. The optimizing control is divided into two layers, where the system oriented top layers deals with set-point optimizing control and the lower layer deals with dynamical optimizing control in the subsystems. The thesis has two main contributions, i.e. a novel approach for set-point optimization and a novel approach for desynchronization based on dynamical optimization. The focus in the development of the proposed set-point optimizing control has been on deriving a simple and general method, that with ease can be applied on various compositions of the same class of systems, such as refrigeration systems. The method is based on a set of parameter depended static equations describing the considered process. By adapting the parameters to the given process, predict the steady state and computing a steady state gradient of the cost function, the process can be driven continuously towards zero gradient, i.e. the optimum (if the cost function is convex). The method furthermore deals with system constrains by introducing barrier functions, hereby the best possible performance taking the given constrains in to account can be obtained, e.g. under extreme operational conditions. The proposed method has been applied on a test refrigeration system, placed at Aalborg University, for minimization of the energy consumption. Here it was proved that by using general static parameter depended system equations it was possible drive the set-points close to the optimum and thus reduce the power consumption with up to 20%. In the dynamical optimizing layer the idea is to optimize the operation of the subsystem or the groupings of subsystems, that limits the obtainable system performance. In systems

  6. Cooling load and coefficient of performance optimizations for real air-refrigerators

    International Nuclear Information System (INIS)

    Tu Youming; Chen Lingen; Sun Fengrui; Wu Chih

    2006-01-01

    Based on a simple irreversible variable-temperature heat reservoir air (Brayton) refrigeration cycle model, a performance analysis and optimization of a real air refrigerator is carried out using finite-time thermodynamics. To maximize the cooling load and the coefficient of performance (COP) of the cycle, the allocation of a fixed total heat-exchanger inventory and thermal-capacity rate matching between the working fluid and heat reservoirs are optimized, respectively. The influences of pressure ratio, the total heat-exchanger inventory, the efficiencies of the compressor and expander, the thermal capacity rate of the working fluid and the ratio of the thermal-capacity rates of the heat reservoirs on the performance of the cycle are shown by numerical examples. The results obtained provide guidances for the design of practical air-refrigeration plants

  7. Helium refrigeration system for hydrogen liquefaction applications

    Science.gov (United States)

    Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.

    2017-02-01

    Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.

  8. Performance Assessment and Active System Monitoring for Refrigeration Systems

    DEFF Research Database (Denmark)

    Green, Torben

    to the refrigeration system, is to optimise the total cost of ownership, (TCO). However, directly measuring TCO provides some challenges. It can therefore be beneficial to divide TCO into performance criteria, which can be quantied and measured. For supermarket refrigeration systems the performance criteria can...... is measure by the switch frequency of the compressors in the refrigeration system. The reason is that excessive compressor switching will wear down the compressors too fast and thereby decrease the reliability of the system due to a higher demand for maintenance. The proposed performance function provides...

  9. Central magnetic cooling and refrigeration machines (chiller) and their assessment. A feasibility study - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egolf, P. W.; Gonin, C. [University of Applied Sciences of Western Switzerland, HEIG-VD, Yverdon-les Bains (Switzerland); Kitanovski, A. [University of Ljubljana, Ljubljana (Slovenia)

    2010-03-15

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a feasibility study made concerning magnetic cooling and refrigeration machines. This report presents a comprehensive thermodynamic and economic analysis of applications of rotary magnetic chillers. The study deals with magnetic chillers based on permanent magnets and superconducting magnets, respectively. The numerical design of permanent magnet assemblies with different magnetic flux densities is discussed. The authors note that superconducting magnetic chillers are feasible only in large-scale applications with over 1 MW of cooling power. This report describes new ideas for magnetic refrigeration technologies, which go beyond the state of the art. They show potential for a substantial reduction of costs and further improvements in efficiency. Rotary magnetic liquid chillers with 'wavy' structures and using micro tubes are discussed, as are superconducting magnetic chillers and future magneto-caloric technologies.

  10. The behaviour of a hybrid compressor and ejector refrigeration system with refrigerants 134a and 142b

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, J.I.; Best, R.; Estrada, C.A. [UNAM, Morelos (Mexico). Centro de Investigacion en Energia; Dorantes, R.J. [UAM Azcapotzalco, Reynosa Tamaulipas (Mexico). Dpto. de Energia

    2004-09-01

    A complete theoretical analysis on the thermodynamic behaviour of a HYbrid Compressor and Ejector Refrigeration System - HYCERS - is carried out. An ejector under optimum performance is employed. Two working fluids were selected: refrigerant 142b (HCFC 142b) which has shown very good characteristics in air conditioning applications of ejector systems and refrigerant 134a (HFC134a) which is widely used in refrigeration applications and readily available in most countries. The variation of the generator and condenser temperatures as well as the intercooler pressure were considered for an evaporator temperature of 10{sup o}C and a unitary cooling capacity of 1 kW. The ideal efficiency, the enthalpy-based coefficient of performance, the exergy efficiency and the supplied energy ratio are obtained. With this information, at a moderate condenser and generator temperature of 30 and 85{sup o}C, respectively, the HYCERS working with R134a had the best operation with a highest coefficient of performance of 0.48 and an exergy efficiency of 0.25. On the other hand, if a higher condenser temperature is imposed, the HYCERS with 142b had its best performance at a higher generator temperature. In selecting a working fluid the ejector subsystem behaviour is determinant in system performance. If a working fluid is badly selected, despite having high entrainment ratios, the system will not function properly. Therefore, the methodology here defined becomes an effective tool for selecting adequate working fluids and optimum system design conditions. Also, the employment of a unitary cooling load allows system scaling at any capacity as it increases linearly. (author)

  11. Experimental System of Solar Adsorption Refrigeration with Concentrated Collector.

    Science.gov (United States)

    Yuan, Z X; Li, Y X; Du, C X

    2017-10-18

    To improve the performance of solar adsorption refrigeration, an experimental system with a solar concentration collector was set up and investigated. The main components of the system were the adsorbent bed, the condenser, the evaporator, the cooling sub-system, and the solar collector. In the first step of the experiment, the vapor-saturated bed was heated by the solar radiation under closed conditions, which caused the bed temperature and pressure to increase. When the bed pressure became high enough, the bed was switched to connect to the condenser, thus water vapor flowed continually from the bed to the condenser to be liquefied. Next, the bed needed to cool down after the desorption. In the solar-shielded condition, achieved by aluminum foil, the circulating water loop was opened to the bed. With the water continually circulating in the bed, the stored heat in the bed was took out and the bed pressure decreased accordingly. When the bed pressure dropped below the saturation pressure at the evaporation temperature, the valve to the evaporator was opened. A mass of water vapor rushed into the bed and was adsorbed by the zeolite material. With the massive vaporization of the water in the evaporator, the refrigeration effect was generated finally. The experimental result has revealed that both the COP (coefficient of the performance of the system) and the SCP (specific cooling power of the system) of the SAPO-34 zeolite was greater than that of the ZSM-5 zeolite, no matter whether the adsorption time was longer or shorter. The system of the SAPO-34 zeolite generated a maximum COP of 0.169.

  12. Smart Cooling Controlled System Exploiting Photovoltaic Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Ahmad Atieh

    2018-03-01

    Full Text Available A smart cooling system to control the ambient temperature of a premise in Amman, Jordan, is investigated and implemented. The premise holds 650 people and has 14 air conditioners with the cooling capacity ranging from 3 to 5 ton refrigerant (TR each. The control of the cooling system includes implementing different electronics circuits that are used to sense the ambient temperature and humidity, count the number of people in the premise and then turn ON/OFF certain air conditioner(s. The data collected by different electronic circuits are fed wirelessly to a microcontroller, which decides which air conditioner will be turned ON/OFF, its location and its desired set cooling temperature. The cooling system is integrated with an on-grid solar photovoltaic energy system to minimize the operational cost of the overall cooling system.

  13. Modeling and calculation of open carbon dioxide refrigeration system

    International Nuclear Information System (INIS)

    Cai, Yufei; Zhu, Chunling; Jiang, Yanlong; Shi, Hong

    2015-01-01

    Highlights: • A model of open refrigeration system is developed. • The state of CO 2 has great effect on Refrigeration capacity loss by heat transfer. • Refrigeration capacity loss by remaining CO 2 has little relation to the state of CO 2 . • Calculation results are in agreement with the test results. - Abstract: Based on the analysis of the properties of carbon dioxide, an open carbon dioxide refrigeration system is proposed, which is responsible for the situation without external electricity unit. A model of open refrigeration system is developed, and the relationship between the storage environment of carbon dioxide and refrigeration capacity is conducted. Meanwhile, a test platform is developed to simulation the performance of the open carbon dioxide refrigeration system. By comparing the theoretical calculations and the experimental results, several conclusions are obtained as follows: refrigeration capacity loss by heat transfer in supercritical state is much more than that in two-phase region and the refrigeration capacity loss by remaining carbon dioxide has little relation to the state of carbon dioxide. The results will be helpful to the use of open carbon dioxide refrigeration

  14. Fault diagnosis and refrigerant leak detection in vapour compression refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Tassou, S.A.; Grace, I.N. [Brunel University, Uxbridge (United Kingdom). Department of Mechanical Engineering

    2005-08-01

    The environmental impact of refrigeration systems can be reduced by operation at higher efficiency and reduction of refrigerant leakage. Refrigerant loss contributes both directly and indirectly to global warming through inefficient system operation, increased power consumption and greenhouse gas emissions and higher maintenance costs. Existing sensor-based leak detection methods are limited by the inability to detect gradual leakage and the need for careful sensor location. There is a requirement for a real-time performance monitoring approach to leak detection and fault diagnosis which overcomes these disadvantages. This paper reports on the development of a fault diagnosis and refrigerant leak detection system based on artificial intelligence and real-time performance monitoring. The system has been used successfully to distinguish between faulty and fault free operation, steady-state and transient operation, leakage and over charge conditions. Work currently underway is aimed at testing additional fault conditions and establishing further rules to distinguish between these patterns. (author)

  15. Control Methods for Energy Management of Refrigeration Systems

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan

    is decreased as the method does not need an explicit model of the system and, at the same time, the desired load following performance is attained. Recent research findings indicate that the refrigeration system commonly employed in food transportation can account for 40% of the total greenhouse gas emissions...... from the corresponding vehicle engines. Finally, the problem of optimization of a hybrid transport refrigeration system is addressed here. The hybrid refrigeration system is made by the integration of conventional refrigeration technology with thermal energy storage devices....

  16. The effect of cool water pack preparation on vaccine vial temperatures in refrigerators.

    Science.gov (United States)

    Goldwood, Geneva; Diesburg, Steven

    2018-01-02

    Cool water packs are a useful alternative to ice packs for preventing unintentional freezing of vaccines during outreach in some situations. Current guidelines recommend the use of a separate refrigerator for cooling water packs from ambient temperatures to prevent possible heat degradation of adjacent vaccine vials. To investigate whether this additional equipment is necessary, we measured the temperatures that vaccine vials were exposed to when warm water packs were placed next to vials in a refrigerator. We then calculated the effect of repeated vial exposure to those temperatures on vaccine vial monitor status to estimate the impact to the vaccine. Vials were tested in a variety of configurations, varying the number and locations of vials and water packs in the refrigerator. The calculated average percentage life lost during a month of repeated warming ranged from 20.0% to 30.3% for a category 2 (least stable) vaccine vial monitor and from 3.8% to 6.0% for a category 7 (moderate stability) vaccine vial monitor, compared to 17.0% for category 2 vaccine vial monitors and 3.1% for category 7 vaccine vial monitors at a constant 5 °C. The number of vials, number of water packs, and locations of each impacted vial warming and therefore percentage life lost, but the vaccine vial monitor category had a higher impact on the average percentage life lost than any of the other parameters. The results suggest that damage to vaccines from repeated warming over the course of a month is not certain and that cooling water packs in a refrigerator where vaccines are being stored may be a useful practice if safe procedures are established. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures

    International Nuclear Information System (INIS)

    Wang, R.Z.; Xu, Z.Y.; Pan, Q.W.; Du, S.; Xia, Z.Z.

    2016-01-01

    Highlights: • Modular silica gel–water adsorption chiller was designed and tested. • Single/double effect LiBr–water absorption chiller was operated and tested. • 1.n effect LiBr–water absorption chiller was proposed, designed and tested. • CaCl_2/AC–ammonia adsorption refrigerator was introduced and tested. • NH_3–H_2O absorption ice maker with better internal heat recovery was introduced. - Abstract: Solar driven air conditioning systems can cope with solar collectors working in a wide range of temperatures. Sorption systems, including absorption and adsorption refrigeration systems, are among the best choices for solar cooling. Five systems including modular silica gel–water adsorption chiller, single/double effect LiBr–water absorption chiller, 1.n effect LiBr–water absorption chiller, CaCl_2/AC (activated carbon)–ammonia adsorption refrigerator, and the water–ammonia absorption ice maker with better internal heat recovery were presented. The above five sorption chillers/refrigerators work under various driven temperatures and fulfill different refrigeration demands. The thermodynamic design and system development of the systems were shown. All these systems have improvements in comparison with existing systems and may offer good options for high efficient solar cooling in the near future.

  18. Performance Analysis of Multipurpose Refrigeration System (MRS on Fishing Vessel

    Directory of Open Access Journals (Sweden)

    Ust Y.

    2016-04-01

    Full Text Available The use of efficient refrigerator/freezers helps considerably to reduce the amount of the emitted greenhouse gas. A two-circuit refrigerator-freezer cycle (RF reveals a higher energy saving potential than a conventional cycle with a single loop of serial evaporators, owing to pressure drop in each evaporator during refrigeration operation and low compression ratio. Therefore, several industrial applications and fish storage systems have been utilized by using multipurpose refrigeration cycle. That is why a theoretical performance analysis based on the exergetic performance coefficient, coefficient of performance (COP, exergy efficiency and exergy destruction ratio criteria, has been carried out for a multipurpose refrigeration system by using different refrigerants in serial and parallel operation conditions. The exergetic performance coefficient criterion is defined as the ratio of exergy output to the total exergy destruction rate (or loss rate of availability. According to the results of the study, the refrigerant R32 shows the best performance in terms of exergetic performance coefficient, COP, exergy efficiency, and exergy destruction ratio from among the other refrigerants (R1234yf, R1234ze, R404A, R407C, R410A, R143A and R502. The effects of the condenser, freezer-evaporator and refrigerator-evaporator temperatures on the exergetic performance coefficient, COP, exergy efficiency and exergy destruction ratios have been fully analyzed for the refrigerant R32.

  19. The maintenance record of the KSTAR helium refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Moon, K. M.; Joo, J. J.; Kim, N. W. [National Fusion Research Institute, Daejeon (Korea, Republic of); and others

    2013-12-15

    Korea Superconducting Tokamak Advanced Research (KSTAR) has a helium refrigeration system (HRS) with the cooling capacity of 9 kW at 4.5 K. Main cold components are composed of 300 tons of superconducting (SC) magnets, main cryostat thermal shields, and SC current feeder system. The HRS comprises six gas storage tanks, a liquid nitrogen tank, the room temperature compression sector, the cold box (C/B), the 1st stage helium distribution box (DB no.1), the PLC base local control system interconnected to central control tower and so on. Between HRS and cold components, there is another distribution box (DB#2) nearby the KSTAR device. The entire KSTAR device was constructed in 2007 and has been operated since 2008. This paper will present the maintenance result of the KSTAR HRS during the campaign and discuss the operation record and maintenance history of the KSTAR HRS.

  20. Design of an ejector cycle refrigeration system

    International Nuclear Information System (INIS)

    Grazzini, G.; Milazzo, A.; Paganini, D.

    2012-01-01

    Highlights: ► A design procedure is presented for an ejection refrigeration system. ► Properties of applicable operating fluids are presented and R245fa is selected. ► Real gas properties are used. ► The diffuser is designed with a profile that controls momentum change. ► Fluid friction is accounted for along all main components. - Abstract: A design procedure, based on a one-dimensional simulation, is presented for an ejection refrigeration system. Heat exchangers are included in the calculation, accounting for temperature differences between the fluids and for pressure losses. The ideal gas assumption, which is quite common in the literature concerning ejector systems, is avoided. Furthermore, the supersonic diffuser is designed with a continuous profile, without cylindrical piece, controlling the variation of momentum along the flow path and accounting for friction. At design conditions, this should reduce the irreversibility due to the normal shock. A comparison between different operating fluids is presented and R245fa is selected. The results of the design procedure and the expected performance, in terms of first and second law efficiency, are presented.

  1. Field measurements of supermarket refrigeration systems. Part I: Analysis of CO2 trans-critical refrigeration systems

    International Nuclear Information System (INIS)

    Sawalha, Samer; Karampour, Mazyar; Rogstam, Jörgen

    2015-01-01

    This study investigates the refrigeration performance of three CO 2 trans-critical solutions based on field measurements. The measurements are carried out in five supermarkets in Sweden. Using the field measurements, low and medium temperature level cooling capacities and COP's are calculated for ten-minute intervals, filtered and averaged to monthly values. The results indicate that the systems using trans-critical booster system with gas removal from the intermediate vessel have relatively the highest total COP. The reasons are higher evaporation temperatures, lower internal and external superheat and higher total efficiency of booster compressors. Another important factor is gas removal from the intermediate vessel which leads to higher COP of low temperature level. Comparing the older and newer installed systems, a trend in energy efficiency improvement has been seen. The study shows this improvement originates from both changes in the system design (e.g. two stage expansion) and components efficiency improvement (e.g. higher total efficiency of compressors - lower internal superheat and higher evaporation temperatures of cabinets). - Highlights: • Five Swedish supermarkets using three CO 2 refrigeration solutions are analyzed. • A trend of improvement in energy efficiency has been observed. • Parallel CO 2 system with indirect heat rejection offers the lowest energy efficiency. • CO 2 trans-critical booster with gas removal achieves up to 35% COP improvement

  2. Applicability of ASST-A helium refrigeration system for JLab End Station Refrigerator

    Science.gov (United States)

    Hasan, N.; Knudsen, P.; Ganni, V.

    2017-12-01

    The MØLLER experiment at Jefferson Lab (JLab) is a high power (5 kW) liquid hydrogen target scheduled to be operational in the 12 GeV-era. At present, cryogenic loads and targets at three of JLab’s four experimental halls are supported by the End Station Refrigerator (ESR) - a CTI/Helix 1.5 kW 4.5 K refrigerator. It is not capable of supporting the high power target load and a capacity upgrade of the ESR cryogenic system is essential. The ASST-A helium refrigeration system is a 4 kW 4.5 K refrigerator. It was designed and used for the Superconducting Super Collider Lab (SSCL) magnet string test and later obtained by JLab after the cancellation of that project. The modified ASST-A refrigeration system, which will be called ESR-II along with a support flow from JLab’s Central Helium Liquefier (CHL) is considered as an option for the End Station Refrigerator capacity upgrade. The applicability of this system for ESR-II under varying load conditions is investigated. The present paper outlines the findings of this process study.

  3. Optimization of a Two Stage Pulse Tube Refrigerator for the Integrated Current Lead System

    Science.gov (United States)

    Maekawa, R.; Matsubara, Y.; Okada, A.; Takami, S.; Konno, M.; Tomioka, A.; Imayoshi, T.; Hayashi, H.; Mito, T.

    2008-03-01

    Implementation of a conventional current lead with a pulse tube refrigerator has been validated to be working as an Integrated Current Lead (ICL) system for the Superconducting Magnetic Energy Storage (SMES). Realization of the system is primarily accounted for the flexibility of a pulse tube refrigerator, which does not posses any mechanical piston and/or displacer. As for an ultimate version of the ICL system, a High Temperature Superconducting (HTS) lead links a superconducting coil with a conventional copper lead. To ensure the minimization of heat loads to the superconducting coil, a pulse tube refrigerator has been upgraded to have a second cooling stage. This arrangement reduces not only the heat loads to the superconducting coil but also the operating cost for a SMES system. A prototype two-stage pulse tube refrigerator, series connected arrangement, was designed and fabricated to satisfy the requirements for the ICL system. Operation of the first stage refrigerator is a four-valve mode, while the second stage utilizes a double inlet configuration to ensure its confined geometry. The paper discusses the optimization of second stage cooling to validate the conceptual design

  4. Analysis of Synchronization of Supermarket Refrigeration System

    DEFF Research Database (Denmark)

    Zheng, Li; Larsen, Lars Finn Sloth; Izadi-Zamanabadi, Roozbeh

    2018-01-01

    Hybrid control has in the recent years drawn considerable attention in academia as it poses a large number of theoretical and computational challenges. The interested scientific community has proposed various methods to address some of the problems related to modeling and control of hybrid systems....... The conceptual validation of these methods has been by far illustrated through the use of typically simple academic examples. In this paper the hybrid systems is treated as a single directed topological space, and presents a refrigeration system as a benchmark that should be useful as a platform...... for the development of new ideas and a comparison of methods. Based on the model of this coupled hybrid system, we analyze the synchronization of the controllers in terms of the theories about topological space and Section Mapping....

  5. Materials used in refrigerated storage system

    Energy Technology Data Exchange (ETDEWEB)

    Abakians, H

    1970-09-01

    Applications of cryogenic technology have increased at a phenomenal rate during the past decade. With the installation of a number of refrigerated storage tanks in Iran, e.g., LPG storage at Bandar Mah Shahr and Kharg Is., and ammonia storage at Bandar Shahpour, it is appropriate to review the materials used in constructing low temperature storage systems. In order to have an economical fully refrigerated storage installation without assuming the risk of brittle fracture, appropriate notch-tough material should be selected for the important and highly stressed components. In general, the lower the operating temperature, the more expensive is the material to be used. Hence, care should be taken to select the required material in such a manner that it will be suitable for the operating temperature and not lower. The most economical materials for low temperatures are steels. Ordinary carbon steel can be used down to -20$F and the Killed carbon steel down to -50$F. Nickel steels (2 1/4%) can be used down to -75$ to 100$F, Nickel steels (3 1/2%) down to -150$F, and 9% nickel steels down to 1,320$F. Stainless and aluminum alloys can be used down to -423$F. Tabular data give some commonly used materials in low temperature and cryogenic services with their lowest allowable temperature, tensile strength, and relative cost.

  6. Split-Stirling Cryogenic Refrigerators For Detector Cooling

    Science.gov (United States)

    Lehrfeld, Daniel

    1983-08-01

    Unfortunately, for user and manufacturer both, the closed-cycle cryogenic cooler to date has deserved its reputation as the "weak-link" in IR systems. When the cooler requires service at intervals of a few hundred hours at best, the quality of the system it serves is unfairly diminished. This paper addresses technological advances in the art of Stirling-cycle coolers which will increasingly cause that image of military cryocoolers to change for the better. A family of split-cycle coolers designed for long MTBF and in the final stages of development is the focus of the discussion. Their technological evolution, from multi-year-MTBF satellite system Stirling coolers developed in the U.S., and the UA 7011 cooler (tne first all-linear, military, production cooler) developed in Holland, is explained. Three new machines are discussed. Both 1/4 watt and 1 watt (nominal capacity) at 80°K linear-resonant, free-dispLacer Stirling coolers designed for thousands of hours of service-free operation are examined. The third machine is an advanced 1/4 watt at 80°K Stirling cooler incorporating the same component improvements in its free-displacer while utilizing a crankshaft-driven compressor. All three are designed to be compatible with standard U.S. 60 element and 120/180 element detector/dewars. The technologies of linear-resonant compressor and free-displacer expanders as embodied in these machines is discussed in sufficient detail that the reasons for their superior performance will he clear.

  7. Experimental evaluation of SWCNT-water nanofluid as a secondary fluid in a refrigeration system

    International Nuclear Information System (INIS)

    Vasconcelos, Adriano Akel; Cárdenas Gómez, Abdul Orlando; Bandarra Filho, Enio Pedone; Parise, José Alberto Reis

    2017-01-01

    Highlights: • SWCNT-water nanofluid was used as secondary fluid for a refrigeration system. • For a given HTFS mass flow rate and inlet temperature, nanofluid performed better than base fluid. • Total power consumption was not significantly affected by volume concentration. • Nanoparticle volume fraction ranged from 0 to 0.21%. - Abstract: SWCNT-water (single walled carbon nanotube) nanofluid was tested as a secondary fluid for a 4–9 kW indirect vapor compression refrigeration system. The evaporator, with boiling refrigerant HCFC-22 extracting heat from the nanofluid, was of the brazed plate counter-flow type. A semi-hermetic compressor, an electronic expansion valve (EEV) and an air-cooled condenser were the other main components of the refrigeration cycle. Tests were carried out with the experimental apparatus operating over a range of different volumetric fractions of nanoparticles (0–0.21%) as well as nanofluid inlet temperatures (30–40 °C) and mass flow rates (40–80 g/s). Overall, the performance of the system working with nanofluid as a secondary fluid was superior to that where just the base fluid (i.e., pure water) circulated in the secondary fluid loop, at the same mass flow rate and inlet temperature. The enhanced thermal conductivity of the nanofluid is believed to be the main reason why the refrigeration system with the nanofluid loop, if compared to that with pure water, presented a higher refrigerating capacity.

  8. Numerical model for thermoeconomic diagnosis in commercial transcritical/subcritical booster refrigeration systems

    International Nuclear Information System (INIS)

    Ommen, Torben; Elmegaard, Brian

    2012-01-01

    Highlights: ► A transcritical booster refrigeration plant is modelled. ► We examine changes in cost flow at different operation parameters. ► The use of characteristic curves for diagnosis is studied. - Abstract: Transcritical/subcritical booster refrigeration systems are increasingly installed and used in Danish supermarkets. The systems operate in both transcritical and subcritical conditions dependent on the heat rejection performance and the ambient conditions. The plant consists of one refrigerant cycle supplying refrigerant for evaporators in both chilled and frozen display cases. In the paper, thermoeconomic theory is used to establish the cost of cooling at each individual temperature level based on operating costs. With a high amount of operating systems, faulty operation becomes an economic, and environmental, interest. A general solution for evaluation of these systems is considered, with the objective to reduce cost and power consumption of malfunctioning equipment in operation. An analysis of the use of thermoeconomic diagnosis methods is required, as these methods may prove applicable. To accommodate the analysis, a numerical model of a transcritical booster refrigeration plant is considered in this paper. Additionally the characteristic curves method is applied to the high pressure compressor unit of the refrigeration plant. The approach successfully determine whether an anomaly is intrinsic or induced in the component when no uncertainties are introduced in the steady state model.

  9. Modular Modelling and Simulation Approach - Applied to Refrigeration Systems

    DEFF Research Database (Denmark)

    Sørensen, Kresten Kjær; Stoustrup, Jakob

    2008-01-01

    This paper presents an approach to modelling and simulation of the thermal dynamics of a refrigeration system, specifically a reefer container. A modular approach is used and the objective is to increase the speed and flexibility of the developed simulation environment. The refrigeration system...

  10. Numerical approach to solar ejector-compression refrigeration system

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2016-01-01

    Full Text Available A model was established for solar ejector-compression refrigeration system. The influence of generator temperature, middle-temperature, and evaporator temperature on the performance of the refrigerant system was analyzed. An optimal generator temperature is found for maximal energy efficiency ratio and minimal power consumption.

  11. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  12. The control system of the ecological hybrid two stages refrigerating cycle

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The compression anticlockwise cycle is mostly used for refrigeration. However due to the environmental regulations, the use of classic refrigerants: F-gases is limited by international agreements. Therefore the combined compression-adsorption hybrid cycle with natural liquids: water/carbon dioxide working as the energy carriers is a promising solution. This allows to utilize the solar or waste energy for the refrigeration purpose. In this paper application of the solar collectors as the energy source for the adsorption cycle, coupled with the low temperature (LT refrigerating carbon dioxide compression cycle is shown. The control of the system is an essential issue to reduce the electric power consumption. The control of the solar heat supply and water sprayed cooling tower, for the adsorption cycle re-cooling, is presented in this paper. The designed control system and algorithm is related to the LT compression cycle, which operates according to the need of cold for the refrigeration chamber. The results of the laboratory investigations of the full system, showing the reduction of the energy consumption and maximum utilization of the solar heat for different control methods are presented.

  13. Active Sensor Configuration Validation for Refrigeration Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Blanke, Mogens; Niemann, Hans Henrik

    2010-01-01

    -diagnosis methods falling short on this problem, this paper suggests an active diagnosis procedure to isolate sensor faults at the commissioning stage, before normal operation has started. Using statistical methods, residuals are evaluated versus multiple hypothesis models in a minimization process to uniquely......Major faults in the commissioning phase of refrigeration systems are caused by defects related to sensors. With a number of similar sensors available that do not differ by type but only by spatial location in the plant, interchange of sensors is a common defect. With sensors being used quite...... differently by the control system, fault-finding is difficult in practice and defects are regularly causing commissioning delays at considerable expense. Validation and handling of faults in the sensor configuration are therefore essential to cut costs during commissioning. With passive fault...

  14. KSTAR Helium Refrigeration System Design and Manufacturing

    International Nuclear Information System (INIS)

    Dauguet, P.; Briend, P.; Abe, I.; Fauve, E.; Bernhardt, J.-M.; Andrieu, F.; Beauvisage, J.

    2006-01-01

    The tokamak developed in the KSTAR (Korean Superconducting Tokamak Advanced Research) project makes intensive use of superconducting magnets operated at 4.5 K. The cold components of the KSTAR tokamak require forced flow of supercritical helium for magnets/structure, boiling liquid helium for current leads, and gaseous helium for thermal shields. The cryogenic system will provide stable operation and full automatic control. A three-pressure helium cycle composed of six turbines has been customised design for this project. The '' design '' operating mode results with a system composed of a 9 kW refrigerator (including safety margin) and using gas and liquid storages for mass balancing. During Shot/Standby mode, the heat loads are highly time-dependent. A thermal damper is used to smooth these variations and will allow stable operation. (author)

  15. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator

    Science.gov (United States)

    Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon

    2018-04-01

    A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.

  16. Computer model of the refrigeration system of an ice rink

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedou, G.; Zmeureanu, R. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Giguere, D. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2008-07-01

    This paper presented a refrigeration system model of an existing ice rink using a component approach. The chillers, the ice-concrete slab and the controller were the 3 main components used in the simulations which were performed using both open and closed loop systems. The simulated ice rink refrigeration system was based on measurements taken in an existing indoor ice rink located in Montreal, Quebec. Measurements of the refrigeration system included electricity demand; heat flux on the ice sheet; exterior air temperature; ice temperature; return brine temperature; brine temperature at the pump; brine temperature at both evaporator exits; and refrigerant temperature and pressure at the expansion and condenser valve exits. Simulation results and measurements were found to be in good agreement. A computer model of the refrigeration system was developed using the TRNSYS 16 program. The refrigeration system was composed of 2 chillers using refrigerant R-22. The impact of heat recovery from the condensers on the energy demand for sanitary water heating was also estimated. The potential reduction of equivalent carbon dioxide emissions was calculated using the total equivalent warming impact (TEWI) criterion in an effort to estimate the refrigeration impact on global warming. 12 refs., 4 tabs., 12 figs.

  17. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  18. Design and Performance Analysis of a Biodiesel Engine Driven Refrigeration System for Vaccine Storage

    Directory of Open Access Journals (Sweden)

    K Kamsuk

    2013-06-01

    Full Text Available A compact, stand-alone, refrigeration module powered by a small biodiesel engine for vaccine storage in rural use was proposed. The engine was of single cylinder, four-stroke, directinjection with displacement of 0.296 cm3 and compression ratio of 20:1. The refrigeration system was modified from an automotive vapor compression system. The system performance was analytically investigated. From the simulation, it was found to have acceptable operation over a range of speeds and loads. Performance of the system in terms of fuel consumption and torque tended to decrease with an increase in engine speed. The modular system was able to operate at cooling loads above 4.6 kW, with proper speed ratio between the engine and the compressor. Overall, primary energy ratio of the refrigeration was found to be maximum at 0.54.

  19. Modelling of a chemisorption refrigeration and power cogeneration system

    International Nuclear Information System (INIS)

    Bao, Huashan; Wang, Yaodong; Roskilly, Anthony Paul

    2014-01-01

    Highlights: • An adsorption cogeneration was proposed and simulated for cooling and electricity. • A dynamic model was built and studied to demonstrate the variability of the system. • A dynamic model included the complex coupling of thermodynamic and chemical kinetic. • Mutual constrains between main components and optimisation methods were discussed. • The highest theoretical COP and exergy efficiency of cogeneration is 0.57 and 0.62. - Abstract: The present work for the first time explores the possibility of a small-scale cogeneration unit by combining solid–gas chemisorption refrigeration cycle and a scroll expander. The innovation in this work is the capability of producing refrigeration and electricity continuously and simultaneously without aggravating the energy scarcity and environmental impact. Individual modelling for each component, which has been validated by experimental data, was firstly investigated in order to identify the proper operation condition for the cogeneration mode achieving 1000 W power output. Subsequently, with the integrated modelling of two components the cogeneration performance was studied to demonstrate the viability of this concept. However, because of the mutual constraint between the chemisorption and the expansion when they link in series, the power output of the cogeneration mode was only around one third of the original expectation under the same condition identified in the individual modelling. Methods of improving the global performance including the selection of reactive mediums were also discussed and would be of referable value for the future practical investigation

  20. RESEARCH OF REFRIGERATION SYSTEMS FAILURES IN POLISH FISHING VESSELS

    Directory of Open Access Journals (Sweden)

    Waldemar KOSTRZEWA

    2013-07-01

    Full Text Available Temperature is a basic climatic parameter deciding about the quality change of fishing products. Time, after which qualitative changes of caught fish don’t exceed established, acceptable range, is above all the temperature function. Temperature reduction by refrigeration system of the cargo hold is a basic technical method, which allows extend transport time. Failures of refrigeration systems in fishing vessels have a negative impact on the environment in relation to harmful refrigerants emission. The paper presents the statistical analysis of failures occurred in the refrigeration systems of Polish fishing vessels in 2007‐2011 years. Analysis results described in the paper can be a base to draw up guidelines, both for designers as well as operators of the marine refrigeration systems.

  1. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  2. Supermarket Refrigeration System - Benchmark for Hybrid System Control

    DEFF Research Database (Denmark)

    Sloth, Lars Finn; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    This paper presents a supermarket refrigeration system as a benchmark for development of new ideas and a comparison of methods for hybrid systems' modeling and control. The benchmark features switch dynamics and discrete valued input making it a hybrid system, furthermore the outputs are subjected...

  3. Closed Cycle Solar Refrigeration with the Calcium Chloride System ...

    African Journals Online (AJOL)

    A closed cycle solid absorption intermittent refrigerator, using CaC12 absorbent and NH3 refrigerant, was constructed and tested to obtain the instantaneous and cumulative available overall COP. The combined collector/absorber/generator unit had double glazing of 1.14 m2 exposed areas. The system was fitted with a ...

  4. Cooling system for auxiliary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Maerker, W.; Mueller, K.; Roller, W.

    1981-01-01

    From the reactor auxiliary and ancillary systems of a nuclear facility heat has to be removed without the hazard arising that radioactive liquids or gases may escape from the safe area of the nuclear facility. A cooling system is described allowing at every moment to make available cooling fluid at a temperature sufficiently low for heat exchangers to be able to remove the heat from such auxiliary systems without needing fresh water supply or water reservoirs. For this purpose a dry cooling tower is connected in series with a heat exchanger that is cooled on the secondary side by means of a refrigerating machine. The cooling pipes are filled with a nonfreezable fluid. By means of a bypass a minimum temperature is guaranteed at cold weather. (orig.) [de

  5. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  6. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  7. Investigations of Heat Recovery in Different Refrigeration System Solutions in Supermarkets. Effsys2 project final report

    Energy Technology Data Exchange (ETDEWEB)

    Sawalha, Same; Chen, Yang

    2010-07-01

    Supermarkets are intensive energy consumers with constantly increasing number of installations. About 50 % of the energy consumption in the supermarket is absorbed by the refrigeration system to cover the cooling demands. Simultaneously, heating is needed in the supermarket where the rejected heat from the refrigeration system is usually higher than the needs. It is an interesting possibility to utilize the rejected heat from the refrigeration system to cover the heating needs in supermarkets. The objective of this project is to investigate the heat recovery performance of the new refrigeration system solutions in supermarket applications. The focus is on environmentally friendly systems with natural working fluids, mainly CO{sub 2} trans-critical systems. The project analyzes the temperature levels and capacities of rejected heat from different system solutions and investigates its matching with the heating needs in supermarkets. Using simulation tools this project also aims at defining the system solution/s which has good energy efficiency for simultaneous cooling and heat recovery.

  8. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  9. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S.

    2007-04-01

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method

  10. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Vineyard, Edward Allan [ORNL

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  11. Thermodynamic investigation of a booster-assisted ejector refrigeration system

    International Nuclear Information System (INIS)

    Zhao, Hongxia; Zhang, Ke; Wang, Lei; Han, Jitian

    2016-01-01

    Highlights: • COP based on thermal input increases with booster outlet pressure. • Both entrainment ratio and area ratio increase with booster outlet pressure. • COP based on work is larger than compressor-based refrigeration system. • An optimum booster outlet pressure obtains maximum COP based on work. • Exergy destruction occurs mainly in ejector, condenser, evaporator and generator. - Abstract: In order to improve performance of ejector refrigeration system, a booster is added before an ejector to enhance secondary flow pressure, which is called a booster assisted refrigeration system. Based on mass, momentum and energy conservation, a 1D model of ejector for optimal performance prediction was presented and validated with experimental data. A detailed study of working characteristics of the booster assisted ejector refrigeration system was carried out and compared against conventional ejector refrigeration system and compressor based refrigeration system, on the basis of first and second laws of thermodynamics. Effects of booster outlet pressure on COP_t_h based on thermal energy and COP_w based on work input, and also on entrainment ratio and area ratio of ejector were studied. The exergy destruction rates were also computed and analyzed for components of the booster-assisted ejector refrigeration system. Ways to reduce exergy destruction were discussed.

  12. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  13. Thermodynamic analysis of a novel energy-efficient refrigeration system subcooled by liquid desiccant dehumidification and evaporation

    International Nuclear Information System (INIS)

    She, Xiaohui; Yin, Yonggao; Zhang, Xiaosong

    2014-01-01

    Highlights: • An energy-efficient refrigeration system with a novel subcooling method is proposed. • Thermodynamic analysis is conducted to discuss the effects of operation parameters. • Two different utilization ways of condensation heat are compared. • The system achieves much higher COP, even higher than reverse Carnot cycle. • Suggested mass concentration for LiCl–H 2 O is around 32% at a typical case. - Abstract: A new energy-efficient refrigeration system subcooled by liquid desiccant dehumidification and evaporation was proposed in this paper. In the system, liquid desiccant system could produce very dry air for an indirect evaporative cooler, which would subcool the vapor compression refrigeration system to get higher COP than conventional refrigeration system. The desiccant cooling system can use the condensation heat for the desiccant regeneration. Thermodynamic analysis is made to discuss the effects of operation parameters (condensing temperature, liquid desiccant concentration, ambient air temperature and relative humidity) on the system performance. Results show that the proposed hybrid vapor compression refrigeration system achieves significantly higher COP than conventional vapor compression refrigeration system, and even higher than the reverse Carnot cycle at the same operation conditions. The maximum COPs of the hybrid systems using hot air and ambient air are 18.8% and 16.3% higher than that of the conventional vapor compression refrigeration system under varied conditions, respectively

  14. From Consumption to Prosumption - Operational Cost Optimization for Refrigeration System With Heat Waste Recovery

    DEFF Research Database (Denmark)

    Minko, Tomasz; Garcia, Jesus Lago; Bendtsen, Jan Dimon

    2017-01-01

    Implementation of liquid cooling transforms a refrigeration system into a combined cooling and heating system. Reclaimed heat can be used for building heating purposes or can be sold. Carbon dioxide based refrigeration systems are considered to have a particularly high potential for becoming ecient...... heat energy producers. In this paper a CO2 system that operates in the subcritical region is examined. Modelling approach is presented, and used for operation optimisation by way of non-linear model predictive control techniques. Assuming that the heat is sold when using both objective functions......, it turns out that the system have negative operational cost. In case when Cost Minimization objective function is used daily revenue is about 7:9 [eur], for Prosumption one it is 11:9 [eur]....

  15. Water cooling system for sintering furnaces of nuclear fuel pellets

    International Nuclear Information System (INIS)

    1996-01-01

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author)

  16. Development of 18 K helium refrigeration system for CERN

    CERN Document Server

    CERN. Geneva

    2004-01-01

    The Conseil Europeen pour Ia Recherche Nucleaire (CERN) placed an order for a 1.8 K helium refrigeration system with IHI for the Large Hadron Collider project in 1999. IHI formed a consortium with Linde Kryotechnik AG (Switzerland), which has long experience with helium refrigeration systems. IHI designed and manufactured cold compressors based on leading technologies and expertise for turbo machinery. The cold compressor has the highest efficiency in the world. This paper describes the 1.8 K helium refrigeration system and performance test results at CERN. (5 refs).

  17. Control Methods Utilizing Energy Optimizing Schemes in Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, L.S; Thybo, C.; Stoustrup, Jakob

    2003-01-01

    The potential energy savings in refrigeration systems using energy optimal control has been proved to be substantial. This however requires an intelligent control that drives the refrigeration systems towards the energy optimal state. This paper proposes an approach for a control, which drives th...... the condenser pressure towards an optimal state. The objective of this is to present a feasible method that can be used for energy optimizing control. A simulation model of a simple refrigeration system will be used as basis for testing the control method....

  18. Measured Performance of Four New 18 kW@4.5 K Helium Refrigerators for the LHC Cryogenic System

    CERN Document Server

    Gruehagen, Henning

    2005-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include four new 4.5 K-helium refrigerators, to cover part of the cooling needs of the LHC at the 4.5-20 K and 50-75 K levels. Two refrigerators are delivered by Air Liquide, France, and two by Linde Kryotechnik, Switzerland. During the last three years, all four refrigerators have been installed and commissioned at four different points along the LHC. The specified requirements of the refrigerators are presented, with special focus on the capacities at the various temperature levels. The capacities of the refrigerators were measured using a dedicated test cryostat, and the measured performance for all four installations is presented, and compared to the guaranteed performance in the original proposal of the suppliers. Finally, the process design of the two supplies is compared, and their differences and similarities briefly analysed.

  19. PROCESSES OF HEAT-MASS-TRANSFER IN APPARATUS OF SOLAR ABSORBING REFRIGERATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2014-12-01

    Full Text Available Ideology of development of the solar refrigeration systems and systems of air-conditioning, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution, is presented in the article. The processes of joint heat-mass-transfer are considered in the direct and indirect types of evaporated coolers taking into account the phenomenon of re-condensation of aquatic steams at the low temperature evaporated cooling of environments. The pre-liminary analysis of possibilities of the solar systems is executed as it applies in relation to the tasks of cooling of envi-ronments and air-conditioning systems.

  20. Emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Nobuaki.

    1993-01-01

    A reactor comprises a static emergency reactor core cooling system having an automatic depressurization system and a gravitationally dropping type water injection system and a container cooling system by an isolation condenser. A depressurization pipeline of the automatic depressurization system connected to a reactor pressure vessel branches in the midway. The branched depressurizing pipelines are extended into an upper dry well and a lower dry well, in which depressurization valves are disposed at the top end portions of the pipelines respectively. If loss-of-coolant accidents should occur, the depressurization valve of the automatic depressurization system is actuated by lowering of water level in the pressure vessel. This causes nitrogen gases in the upper and the lower dry wells to transfer together with discharged steams effectively to a suppression pool passing through a bent tube. Accordingly, the gravitationally dropping type water injection system can be actuated faster. Further, subsequent cooling for the reactor vessel can be ensured sufficiently by the isolation condenser. (I.N.)

  1. Cooling systems for waste heat. Cooling systems, review and selection criteria. Kuehlsysteme fuer Abwaerme. Kuehlsysteme, Ueberblick und Auswahlkriterien

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W. (Jaeggi, Wallisellen (Switzerland))

    1990-05-01

    In many areas of ventilation, air-conditioning and refrigeration engineering, chemical and process engineering and energy production waste heat occurs. If a reduction in energy losses or heat recovery is not possible waste heat has to be drawn off through cooling systems. For this the following systems can be used: dry cooling systems, dry cooler with spray system, open-cycle wet cooler, hybrid dry cooler, and closed-cycle wet cooler. Particularly hybrid cooling systems can give acceptable solutions when the results with other systems are only unsatisfactory. (BWI).

  2. Thermodynamic, Environmental and Economic Analyses of Solar Ejector Refrigeration System Application for Cold Storage

    Directory of Open Access Journals (Sweden)

    İbrahim ÜÇGÜL

    2009-02-01

    Full Text Available The refrigeration processes have been widely applied for especially in cold storages. In these plants, the systems working with compressed vapour cooling cycles have been used as a classical method. In general, electrical energy is used for compressing in these processes. Although, mainly the electricity itself has no pollution effect on the environment, the fossil fuels that are widely used to produce electricity in the most of the world, affect the nature terribly. In short, these refrigeration plants, because of the source of the electricity pollute the nature indirectly. However, for compression an ejector refrigeration system requires one of the important renewable energy sources with negligible pollution impact on the environment, namely solar energy from a thermal source. Thermodynamical, environmental and economical aspects of the ejector refrigeration system working with solar energy was investigated in this study. As a pilot case, apple cold storage plants widely used in ISPARTA city, which 1/5 th of apple production of TURKEY has been provided from, was chosen. Enviromental and economical advantages of solar ejector refrigeration system application for cold storage dictated by thermodynamic, economic and enviromental analyses in this research.

  3. Simulation on a proposed large-scale liquid hydrogen plant using a multi-component refrigerant refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Krasae-in, Songwut [Norwegian University of Science and Technology, Kolbjorn Hejes vei 1d, NO-7491 Trondheim (Norway); Stang, Jacob H.; Neksa, Petter [SINTEF Energy Research AS, Kolbjorn Hejes vei 1d, NO-7465 Trondheim (Norway)

    2010-11-15

    A proposed liquid hydrogen plant using a multi-component refrigerant (MR) refrigeration system is explained in this paper. A cycle that is capable of producing 100 tons of liquid hydrogen per day is simulated. The MR system can be used to cool feed normal hydrogen gas from 25 C to the equilibrium temperature of -193 C with a high efficiency. In addition, for the transition from the equilibrium temperature of the hydrogen gas from -193 C to -253 C, the new proposed four H{sub 2} Joule-Brayton cascade refrigeration system is recommended. The overall power consumption of the proposed plant is 5.35 kWh/kg{sub LH2}, with an ideal minimum of 2.89 kWh/kg{sub LH2}. The current plant in Ingolstadt is used as a reference, which has an energy consumption of 13.58 kWh/kg{sub LH2} and an efficiency of 21.28%: the efficiency of the proposed system is 54.02% or more, where this depends on the assumed efficiency values for the compressors and expanders. Moreover, the proposed system has some smaller-size heat exchangers, much smaller compressor motors, and smaller crankcase compressors. Thus, it could represent a plant with the lowest construction cost with respect to the amount of liquid hydrogen produced in comparison to today's plants, e.g., in Ingolstadt and Leuna. Therefore, the proposed system has many improvements that serve as an example for future hydrogen liquefaction plants. (author)

  4. Commissioning and operation of the CEBAF end station refrigeration system

    International Nuclear Information System (INIS)

    Arenius, D.; Bevins, B.; Chronis, W.C.; Ganni, V.

    1996-01-01

    The CEBAF End Station Helium Refrigerator (ESR) System provides refrigeration at 80 K, 20 K and 4.5 K to three End Station experimental halls. The facility consists of a two stage helium screw compressor system, 4.5 K refrigerator, cryogen distribution valve box, and transfer lines to the individual experimental halls. The 4.5 K cold box and compressors were originally part of the ESCAR 1500 W, 4 K refrigeration system at Lawrence Berkeley Laboratory which was first commissioned in 1977. The compressors, 4.5 K cold box, and control system design were modified to adapt the plant for the requirements of the CEBAF experimental halls. Additional subsystems of cryogen distribution, transfer lines, warm gas management, and computer control interface were added. This paper describes the major plant subsystems, modifications, operational experiences and performance

  5. An overview of adsorptive processes in refrigeration systems

    Directory of Open Access Journals (Sweden)

    Wolak Eliza

    2016-01-01

    Full Text Available Economic reasons and quest for new solutions based on recovering the energy have provoked an increase of interest in the adsorption technology in the refrigeration industry. The confirmation can be the fact that number of published research is on rise. Adsorption appliances may turn out to be an alternative to compression-type coolers. They use ecological chemical agents instead of substances which are aggressive and harmful to the environment. For regeneration of adsorptive refrigeration systems one can use cheap energy in a form of: industrial waste heat, energy of solar radiation and cheap electric power. The paper presents principles of operation as well as advantages and disadvantages of adsorptive refrigeration systems. Basing on literature the most frequently used adsorbent – adsorbate systems – which are employed in refrigeration industry – have been characterized. A review of construction solutions of systems on both laboratory and industrial scale has been made.

  6. Power Consumption in Refrigeration Systems - Modeling for Optimization

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Skovrup, Morten Juel

    2011-01-01

    Refrigeration systems consume a substantial amount of energy. Taking for instance supermarket refrigeration systems as an example they can account for up to 50−80% of the total energy consumption in the supermarket. Due to the thermal capacity made up by the refrigerated goods in the system...... there is a possibility for optimizing the power consumption by utilizing load shifting strategies. This paper describes the dynamics and the modeling of a vapor compression refrigeration system needed for sufficiently realistic estimation of the power consumption and its minimization. This leads to a non-convex function...... with possibly multiple extrema. Such a function can not directly be optimized by standard methods and a qualitative analysis of the system’s constraints is presented. The description of power consumption contains nonlinear terms which are approximated by linear functions in the control variables and the error...

  7. Advanced Supermarket Refrigeration/Heat Recovery Systems. Country Report, Denmark

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard; Christensen, K. G.

    Annex 26 is the first international project under the IEA Heat Pump Programme that links refrigeration and heat pump technology. Recovering heat from advanced supermarket refrigeration systems for space and water heating seems obvious and is beneficial for owners and operators. Because the great...... number of supermarkets that offer frozen and chilled food and further growth of this sector may be expected, the amount of energy used for refrigeration is enormous and will likely increase in the near future. Annex 26 analysed several advanced supermarket refrigeration systems and came to remarkable...... conclusions as far energy conservation and TEWI reduction is concerned. The conclusion justify that advanced supermarket systems with heat recovery should receive great attention and support. And there is still further research needed in several areas. The Annex also included a thorough system analyses...

  8. De-synchronization of the Distributed Refrigeration System

    DEFF Research Database (Denmark)

    Chen, Liang; Wisniewski, Rafal

    2010-01-01

    The supermarket refrigeration system typically has a distributed control structure, which simple and flexible, however, neglects interactions between its subsystems. Practice shows that these interactions lead to a synchronous operation of the display cases. It causes excessive wear...

  9. Automatic control study of the icing research tunnel refrigeration system

    Science.gov (United States)

    Kieffer, Arthur W.; Soeder, Ronald H.

    1991-01-01

    The Icing Research Tunnel (IRT) at the NASA Lewis Research Center is a subsonic, closed-return atmospheric tunnel. The tunnel includes a heat exchanger and a refrigeration plant to achieve the desired air temperature and a spray system to generate the type of icing conditions that would be encountered by aircraft. At the present time, the tunnel air temperature is controlled by manual adjustment of freon refrigerant flow control valves. An upgrade of this facility calls for these control valves to be adjusted by an automatic controller. The digital computer simulation of the IRT refrigeration plant and the automatic controller that was used in the simulation are discussed.

  10. 4 K to 20 K rotational-cooling magnetic refrigerator capable of 1-mW to >1-W operation

    International Nuclear Information System (INIS)

    Barclay, J.A.

    1980-02-01

    The low-temperature, magnetic entropy of certain single-crystal paramagnetic materials, such as DyPO 4 , changes dramatically as the crystal rotates in a magnetic field. A new magnetic refrigerator design based on the anisotropic nature of such materials is presented. The key advantages of the rotational-cooling concept are (1) a single, rotary motion is required, (2) magnetic field shaping is not a problem because the entire working material is in a constant field, and (3) the refrigerator can be smaller than comparable magnetic refrigerators because the working material is entirely inside the magnet at all times. The main disadvantage of the rotational-cooling concept is that small-dimension single crystals are required

  11. Experimental study on a resorption system for power and refrigeration cogeneration

    International Nuclear Information System (INIS)

    Jiang, L.; Wang, L.W.; Liu, C.Z.; Wang, R.Z.

    2016-01-01

    Energy conversion technologies, especially for power generation and refrigeration technologies driven by the low temperature heat, are gathering the momentum recently. This paper presents a novel resorption system for electricity and refrigeration cogeneraion. Compared with adsorption refrigeration system, resorption refrigeration is characterized as safety and simple structure since there is no ammonia liquid in the system. The cogeneration system is mainly composed of three HTS (high temperature salt) unit beds; three LTS (low temperature salts) unit beds, one expander, three ammonia valves, two oil valves, four water valves and connection pipes. Chemical working pair of MnCl 2 –CaCl 2 –NH 3 is selected. Since scroll expander is suitable for small type power generation system, it is chosen for expansion process. 4.8 kg MnCl 2 and 3.9 kg CaCl 2 impregnated in expanded natural graphite treated with sulfuric acid (ENG-TSA) are filled in the cogeneration system. Experimental results show that maximum cooling power 2.98 kW is able to be obtained while maximum shaft power is about 253 W with 82.3 W average value. The cogeneration system can be utilized for the heat source temperature lower than 170 °C. Total energy efficiency increases from 0.293 to 0.417 then decreases to 0.407 while exergy efficiency increases from 0.12 to 0.16. - Highlights: • A resorption system for power and refrigeration cogeneration is established and investigated. • ENG-TSA as the additive improves the heat and mass performance of composite adsorbent. • The highest shaft power and refrigeration power are 253 W and 2.98 kW, respectively. • Total energy efficiency of the system increases from 0.293 to 0.417 then decreases to 0.407.

  12. Analysis on energy saving potential of integrated supermarket HVAC and refrigeration systems using multiple subcoolers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China); Zhang, Chun-Lu [China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China)

    2010-02-15

    The paper presents a model-based analysis on the energy saving potential of supermarket HVAC (heating, ventilating, and air-conditioning) and refrigeration systems using multiple subcoolers among the high-temperature HVAC system, the medium-temperature refrigeration system, and the low-temperature refrigeration system. The principle of energy reduction is to have the higher COP (coefficient of performance) system generate more cooling capacity to increase the cooling capacity or reduce the power consumption of the lower COP system. The subcooler could be placed between the medium-temperature and low-temperature systems, between the high-temperature and medium-temperature systems, and between the high-temperature and low-temperature systems. All integration scenarios of adding one, two and three subcoolers have been investigated. The energy saving potential varies with the load ratio between high-, medium- and low-temperature systems, COP of three systems, and the ''on-off'' duty time of HVAC system. The optimal sequence of adding subcoolers is also proposed. (author)

  13. Using waste heat of ship as energy source for an absorption refrigeration system

    International Nuclear Information System (INIS)

    Salmi, Waltteri; Vanttola, Juha; Elg, Mia; Kuosa, Maunu; Lahdelma, Risto

    2017-01-01

    Highlights: • A steady-state thermodynamic model is developed for absorption refrigeration in a ship. • Operation profile of B.Delta37 bulk carrier is used as an initial data. • Suitability of water-LiBr and ammonia-water working pairs were validated. • Coefficient of performance (COP) was studied in ISO and tropical conditions. • Estimated energy savings were 47 and 95 tons of fuel every year. - Abstract: This work presents a steady-state thermodynamic model for absorption refrigeration cycles with water-LiBr and ammonia-water working pairs for purpose of application on a ship. The coefficient of performance was studied with different generator and evaporator temperatures in ISO and tropical conditions. Absorption refrigeration systems were examined using exhaust gases, jacket water, and scavenge air as energy sources. Optimal generator temperatures for different refrigerant temperatures were found using different waste heat sources and for the absorption cycle itself. Critical temperature values (where the refrigeration power drops to zero) were defined. All of these values were used in order to evaluate the cooling power and energy production possibilities in a bulk carrier. The process data of exhaust gases and cooling water flows in two different climate conditions (ISO and tropical) and operation profiles of a B. Delta37 bulk carrier were used as initial data in the study. With the case ship data, a theoretical potential of saving of 70% of the electricity used in accommodation (AC use) compressor in ISO conditions and 61% in tropical conditions was recognized. Those estimates enable between 47 and 95 tons of annual fuel savings, respectively. Moreover, jacket water heat recovery with a water-LiBr system has the potential to provide 2.2–4.0 times more cooling power than required during sea-time operations in ISO conditions, depending on the main engine load.

  14. Non-linear and adaptive control of a refrigeration system

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2011-01-01

    are capable of adapting to variety of systems. This paper proposes a novel method for superheat and capacity control of refrigeration systems; namely by controlling the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed......In a refrigeration process heat is absorbed in an evaporator by evaporating a flow of liquid refrigerant at low pressure and temperature. Controlling the evaporator inlet valve and the compressor in such a way that a high degree of liquid filling in the evaporator is obtained at all compressor...... capacities ensures a high energy efficiency. The level of liquid filling is indirectly measured by the superheat. Introduction of variable speed compressors and electronic expansion valves enables the use of more sophisticated control algorithms, giving a higher degree of performance and just as important...

  15. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  16. Thermodynamic, Environmental and Economic Analyses of Solar Ejector Refrigeration System Application for Cold Storage

    OpenAIRE

    İbrahim ÜÇGÜL

    2009-01-01

    The refrigeration processes have been widely applied for especially in cold storages. In these plants, the systems working with compressed vapour cooling cycles have been used as a classical method. In general, electrical energy is used for compressing in these processes. Although, mainly the electricity itself has no pollution effect on the environment, the fossil fuels that are widely used to produce electricity in the most of the world, affect the nature terribly. In short, these refrigera...

  17. Parametric analysis of an irreversible proton exchange membrane fuel cell/absorption refrigerator hybrid system

    International Nuclear Information System (INIS)

    Yang, Puqing; Zhang, Houcheng

    2015-01-01

    A hybrid system mainly consisting of a PEMFC (proton exchange membrane fuel cell) and an absorption refrigerator is proposed, where the PEMFC directly converts the chemical energy contained in the hydrogen into electrical and thermal energies, and the thermal energy is transferred to drive the bottoming absorption refrigerator for cooling purpose. By considering the existing irreversible losses in the hybrid system, the operating current density region of the PEMFC permits the absorption refrigerator to exert its function is determined and the analytical expressions for the equivalent power output and efficiency of the hybrid system under different operating conditions are specified. Numerical calculations show that the equivalent maximum power density and the corresponding efficiency of the hybrid system can be respectively increased by 5.3% and 6.8% compared to that of the stand-alone PEMFC. Comprehensive parametric analyses are conducted to reveal the effects of the internal irreversibility of the absorption refrigerator, operating current density, operating temperature and operating pressure of the PEMFC, and some integrated parameters related to the thermodynamic losses on the performance of the hybrid system. The model presented in the paper is more general than previous study, and the results for some special cases can be directly derived from this paper. - Highlights: • A CHP system composed of a PEMFC and an absorption refrigerator is proposed. • Current density region enables the absorption refrigerator to work is determined. • Multiple irreversible losses in the system are analytically characterized. • Maximum power density and corresponding efficiency can be increased by 5.3% and 6.8%. • Effects of some designing and operating parameters on the performance are discussed

  18. Effect of evaporator temperature on vapor compression refrigeration system

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A. Al-Rashed

    2011-12-01

    Full Text Available This paper presents a comparable evaluation of R600a (isobutane, R290 (propane, R134a, R22, for R410A, and R32 an optimized finned-tube evaporator, and analyzes the evaporator effect on the system coefficient of performance (COP. Results concerning the response of a refrigeration system simulation software to an increase in the amount of oil flowing with the refrigerant are presented. It is shown that there is optima of the apparent overheat value, for which either the exchanged heat or the refrigeration coefficient of performance (COP is maximized: consequently, it is not possible to optimize both the refrigeration COP and the evaporator effect. The obtained evaporator optimization results were incorporated in a conventional analysis of the vapor compression system. For a theoretical cycle analysis without accounting for evaporator effects, the COP spread for the studied refrigerants was as high as 11.7%. For cycle simulations including evaporator effects, the COP of R290 was better than that of R22 by up to 3.5%, while the remaining refrigerants performed approximately within a 2% COP band of the R22 baseline for the two condensing temperatures considered.

  19. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  20. Experimental analysis of a diffusion absorption refrigeration system used alternative energy sources

    International Nuclear Information System (INIS)

    Soezen, A.; Oezbas, E.

    2009-01-01

    The continuous-cycle absorption refrigeration device is widely used in domestic refrigerators, and recreational vehicles. It is also used in year-around air conditioning of both homes and larger buildings. The unit consists of four main parts the boiler, condenser, evaporator and the absorber. When the unit operates on kerosene or gas, the heat is supplied by a burner. This element is fitted underneath the central tube. When operating on electricity, the heat is supplied by an element inserted in the pocket. No moving parts are employed. The operation of the refrigerating mechanism is based on Dalton's law. In this study, experimental analysis was performed of a diffusion absorption refrigeration system (DARS) used alternative energy sources such as solar, liquid petroleum gas (LPG) sources. Two basic DAR cycles were set up and investigated: i) In the first cycle (DARS-1), the condensate is sub-cooled prior to the evaporator entrance by the coupled evaporator/gas heat exchanger similar with manufactured by Electrolux Sweden. ii) In the second cycle (DARS-2), the condensate is not sub-cooled prior to the evaporator entrance and gas heat exchanger is separated from the evaporator. (author)

  1. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  2. Next Generation Refrigeration Lubricants for Low Global Warming Potential/Low Ozone Depleting Refrigeration and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hessell, Edward

    2013-12-31

    The goal of this project is to develop and test new synthetic lubricants that possess high compatibility with new low ozone depleting (LOD) and low global warming potential (LGWP) refrigerants and offer improved lubricity and wear protection over current lubricant technologies. The improved compatibility of the lubricants with the refrigerants, along with improved lubricating properties, will resulted in lower energy consumption and longer service life of the refrigeration systems used in residential, commercial and industrial heating, ventilating and air-conditioning (HVAC) and refrigeration equipment.

  3. Theoretical analysis of ejector refrigeration system performance under overall modes

    International Nuclear Information System (INIS)

    Chen, Weixiong; Shi, Chaoyin; Zhang, Shuangping; Chen, Huiqiang; Chong, Daotong; Yan, Junjie

    2017-01-01

    Highlights: • Real gas theoretical model is used to get ejector performance at critical/sub-critical modes. • The model has a better accuracy against the experiment results compared to ideal gas model. • The overall performances of two refrigerants are analyzed based on the parameter analysis. - Abstract: The ejector refrigeration integrated in the air-conditioning system is a promising technology, because it could be driven by the low grade energy. In the present study, a theoretical calculation based on the real gas property is put forward to estimate the ejector refrigeration system performance under overall modes (critical/sub-critical modes). The experimental data from literature are applied to validate the proposed model. The findings show that the proposed model has higher accuracy compared to the model using the ideal gas law, especially when the ejector operates at sub-critical mode. Then, the performances of the ejector refrigeration circle using different refrigerants are analyzed. R290 and R134a are selected as typical refrigerants by considering the aspects of COP, environmental impact, safety and economy. Finally, the ejector refrigeration performance is investigated under variable operation conditions with R290 and R134a as refrigerants. The results show that the R290 ejector circle has higher COP under critical mode and could operate at low evaporator temperature. However, the performance would decrease rapidly at high condenser temperature. The performance of R134a ejector circle is the opposite, with relatively lower COP, and higher COP at high condenser temperature compared to R290.

  4. Refrigerant charge management in a heat pump water heater

    Science.gov (United States)

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  5. Rotary engine cooling system

    Science.gov (United States)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  6. Optimization Strategies for a Portable Thermoelectric Vaccine Refrigeration System in Developing Communities

    Science.gov (United States)

    Ohara, B.; Sitar, R.; Soares, J.; Novisoff, P.; Nunez-Perez, A.; Lee, H.

    2015-06-01

    The traditional approach to determine an optimum current for thermoelectric cooling assumes that a refrigeration chamber is insulated and has no thermal resistance to a thermoelectric module. As a result, minimum temperature occurs when Peltier cooling matches with parasitic heat transfer and Joule heating. In practical application, minimum temperature happens when heat addition from the environment is matched with heat extracted by a thermoelectric module, and the optimum current differs from that anticipated by the traditional approach. Hence, consideration for insulation and thermal resistances via thermoelectric module should be made to achieve desirable cooling performance/refrigeration temperature. This paper presents a modeling approach to determine the optimum current as well as the optimum geometry to power a small thermoelectric vaccine delivery system for developing communities under the World Health Organization requirements. The model is derived from three energy conservation equations for temperatures at both ends of the thermoelectric materials within a module, as well as the refrigeration chamber temperature. A prototype was built and demonstrated a minimum temperature of 3.4°C. With optimized module geometry, the system is estimated to reduce power consumption by over 50% while achieving twice the temperature difference.

  7. Computational Fluid Dynamics Analysis of an Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Kapilan N.

    2016-11-01

    Full Text Available The use of chlorofluorocarbon based refrigerants in the air-conditioning system increases the global warming and causes the climate change. The climate change is expected to present a number of challenges for the built environment and an evaporative cooling system is one of the simplest and environmentally friendly cooling system. The evaporative cooling system is most widely used in summer and in rural and urban areas of India for human comfort. In evaporative cooling system, the addition of water into air reduces the temperature of the air as the energy needed to evaporate the water is taken from the air. Computational fluid dynamics is a numerical analysis and was used to analyse the evaporative cooling system. The CFD results are matches with the experimental results.

  8. Advanced exergoeconomic analysis of the multistage mixed refrigerant systems

    International Nuclear Information System (INIS)

    Mehrpooya, Mehdi; Ansarinasab, Hojat

    2015-01-01

    Highlights: • Advanced exergoeconomic analysis is performed for mixed refrigerant systems. • Cost of investment is divided into avoidable/unavoidable and endogenous/exogenous. • Results show that interactions between the components is not considerable. - Abstract: Advanced exergoeconomic analysis is applied on three multi stage mixed refrigerant liquefaction processes. They are propane precooled mixed refrigerant, dual mixed refrigerant and mixed fluid cascade. Cost of investment and exergy destruction for the components with high inefficiencies are divided into avoidable/unavoidable and endogenous/exogenous parts. According to the avoidable exergy destruction cost in propane precooled mixed refrigerant process, C-2 compressor with 455.5 ($/h), in dual mixed refrigerant process, C-1 compressor with 510.8 ($/h) and in mixed fluid cascade process, C-2/1 compressor with 338.8 ($/h) should be considered first. A comparison between the conventional and advanced exergoeconomic analysis is done by three important parameters: Exergy efficiency, exergoeconomic factor and total costs. Results show that interactions between the process components are not considerable because cost of investment and exergy destruction in most of them are endogenous. Exergy destruction cost of the compressors is avoidable while heat exchangers and air coolers destruction cost are unavoidable. Investment cost of heat exchangers and air coolers are avoidable while compressor’s are unavoidable

  9. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  10. Cooling, freezing and heating with the air cycle: air as the ultimate green refrigerant

    NARCIS (Netherlands)

    Verschoor, M.J.E.

    2000-01-01

    Due to the recent concern about the damage that CFCs cause to the environment (ozone layer, global warming) and the absence of commonly acceptable alternative refrigerants, the search for alternative refrigeration concepts is going on. Air as refrigerant in the Joule-Brayton cycle (air cycle) is one

  11. ENERGY EFFICIENCY, ENERGY SAVING POTENTIAL AND ENVIRONMENTAL IMPACT RESEARCH OF LPG CARRIER REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    V. О. Bedrosov

    2016-12-01

    Full Text Available Nowadays energy efficiency improvement and global warming are issues of current interest because of the natural resources depletion and extreme climate change. Thus, the problem of formation of strict regulations regarding emissions into the air arises. This paper presents the study of cascade refrigeration system for re-condensing of associated petroleum gas during sea transportation for LPG carrier. The structural optimization has been performed. LPG gas carriers with 266 000 m3 ethane capacity require 15 MW cascade refrigeration system for re-condensing if the temperature in the coastal LPG storage is -70°C, and the temperature for transported Ethan is maintained at  -75°C. For current storage conditions the required system cooling capacity is only 1,078 MW intended for the heat gain rejection from the environment during Ethane transportation. The replacement of ozone-depleting refrigerant R22 to alternative agents: R407C, R404A, R402A, R717, R290, R1270 was estimated. The results of analysis have shown that the proposed improvements can be used to optimize the LPG carrier cascade refrigeration system

  12. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  13. Commissioning of a 20 K Helium Refrigeration System for NASA-JSC Chamber A

    Science.gov (United States)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center s Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  14. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  15. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  16. Potential Energy Savings in Refrigeration Systems Using Optimal Setpoints

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Slot; Thybo, Claus

    2004-01-01

    Energy efficiency of refrigeration systems has gradually been improved with help of control schemes utilizing the more flexible components. This paper proposes an approach in line with this trend, where a suboptimal condenser pressure is found in order to minimize the energy consumption. The obje......Energy efficiency of refrigeration systems has gradually been improved with help of control schemes utilizing the more flexible components. This paper proposes an approach in line with this trend, where a suboptimal condenser pressure is found in order to minimize the energy consumption....... The objective is to give an idea of how this optimization scheme works as well as to show what amount of energy it is possible to save. A steady state model of a simple refrigeration system will be used as a basis for the optimization....

  17. Simulation of an adsorption solar cooling system

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Bennacer, R.

    2011-01-01

    A more realistic theoretical simulation model for a tubular solar adsorption refrigerating system using activated carbon-methanol (AC/M) pair has been introduced. The mathematical model represents the heat and mass transfer inside the adsorption bed, the condenser, and the evaporator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. Furthermore, the local pressure, and local thermal conductivity variations in space and time inside the tubular reactor are investigated as well. A C++ computer program is written to solve the proposed numerical model using the finite difference method. The developed program covers the operations of all the system components along the cycle time. The performance of the tubular reactor, the condenser, and the evaporator has been discussed. Time allocation chart and switching operations for the solar refrigeration system processes are illustrated as well. The case studied has a 1 m 2 surface area solar flat plate collector integrated with a 20 stainless steel tubes containing the AC/M pair and each tube has a 5 cm outer diameter. In addition, the condenser pressure is set to 54.2 kpa. It has been found that, the solar coefficient of performance and the specific cooling power of the system are 0.211 and 2.326 respectively. In addition, the pressure distribution inside the adsorption bed has been found nearly uniform and varying only with time. Furthermore, the AC/M thermal conductivity is shown to be constant in both space and time.

  18. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  19. Comparative analysis of thermally activated, environmentally friendly cooling systems

    International Nuclear Information System (INIS)

    Gupta, Y.; Metchop, L.; Frantzis, A.; Phelan, P.E.

    2008-01-01

    This paper compares the relative performances of three different thermally activated, environmentally friendly cooling systems, e.g. a silica-gel-water adsorption system, a LiBr-H 2 O absorption system and a desiccant air system. The adsorption and absorption systems in the current study employ water as the refrigerant, while the desiccant system cools atmospheric air directly. Each of these systems can be utilized at relatively low heat source temperatures such as achieved by flat plate solar collectors, but it is unclear which of these systems is best suited to what range of heat source temperature. Our study explores answers to this question by generating quantitative results comparing their relative thermal performance, i.e. COP and refrigeration capacity, and a qualitative comparison based on the size, maturity of technology, safe operation etc. In order to provide a fair comparison between the fundamentally different systems, a UA (overall heat transfer coefficient multiplied by the heat transfer area) value of 1.0 kW deg. C -1 is considered for the heat exchanger that transfers heat from the supplied hot water. Furthermore, to compare systems of similar size, the mass of silica-gel in the adsorption and desiccant systems and the mass of LiBr-H 2 O solution in the absorption system were specified such that each system provides the same amount of refrigeration (8.0 kW) at a source temperature of 90 deg. C. It is found that the absorption and adsorption cooling systems have a higher refrigeration capacity at heat source temperatures below 90 deg. C, while the desiccant air system outperforms the others at temperatures above 90 deg. C

  20. Modeling Supermarket Refrigeration Systems for Supervisory Control in Smart Grid

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    A modular modeling approach of supermarket refrigeration systems (SRS) which is appropriate for smart grid control purposes is presented in this paper. Modeling and identification are performed by just knowing the system configuration and measured data disregarding the physical details. So...

  1. Modeling Supermarket Refrigeration Systems for Demand-Side Management

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    Modeling of supermarket refrigeration systems for supervisory control in the smart grid is presented in this paper. A modular modeling approach is proposed in which each module is modeled and identified separately. The focus of the work is on estimating the power consumption of the system while...

  2. Optimising performance in steady state for a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Green, Torben; Kinnaert, Michel; Razavi-Far, Roozbeh

    2012-01-01

    Using a supermarket refrigeration system as an illustrative example, the paper postulates that by appropriately utilising knowledge of plant operation, the plant wide performance can be optimised based on a small set of variables. Focusing on steady state operations, the total system performance...

  3. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  4. Emergency core cooling system

    International Nuclear Information System (INIS)

    Sato, Akira; Kobayashi, Masahide.

    1983-01-01

    Purpose: To enable a stable operation of an emergency core cooling system by preventing the system from the automatic stopping at an abnormally high level of the reactor water during its operation. Constitution: A pump flow rate signal and a reactor water level signal are used and, when the reactor water level is increased to a predetermined level, the pump flow rate is controlled by the reactor water level signal instead of the flow rate signal. Specifically, when the reactor water level is gradually increased by the water injection from the pump and exceeds a setting signal for the water level, the water level deviation signal acts as a demand signal for the decrease in the flow rate of the pump and the output signal from the water level controller is also decreased depending on the control constant. At a certain point, the output signal from the water level controller becomes smaller than the output signal from the flow rate controller. Thus, the output signal from the water level controller is outputted as the output signal for the lower level preference device. In this way, the reactor water level and the pump flow rate can be controlled within a range not exceeding the predetermined pump flow rate. (Horiuchi, T.)

  5. Performance comparison of a refrigerator system using R134a and hydrocarbon refrigerant (HCR134a) with different expansion devices

    Science.gov (United States)

    Aziz, A.; Izzudin; Mainil, A. K.

    2017-09-01

    The objective of this study is to compare the performance of refrigerator system using working fluid between R134a refrigerant and HCR134a as hydrocarbon refrigerant for substitution of R134a. The use of capillary tube (CT) 1.5 m with HCR134a showed that slightly better COP than among the others, due to the lower pressure of condenser, conversely thermostatic expansion valve (TEV) showed that better COP than among the others with R134a. COP of CT 1.25 m and CT 1.5 m using HCR134a increase about 42.89% and 18.09% compared to R134a, where the electric current of refrigerator system decrease about 11.63% and 10.98%. However, the COP of HCR134a with CT 2.7 m and TEV were obtained lower than R134a about 16.2% and 17.06% and the use of electric current is higher than R134a about 12.98% and 16.5%. The use of HCR134a provides a higher refrigeration effect than R134a about 66.71%-88.27% for various types of expansion devices. The results confirmed that HCR134a could be an alternative refrigerant for replacement of R134a refrigerant.

  6. A fault tolerant superheat control strategy for supermarket refrigeration systems

    DEFF Research Database (Denmark)

    Vinther, Kasper; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2013-01-01

    , based on a maximum slope-seeking control method and only a single temperature sensor, is developed to drive the evaporator outlet temperature to a level that gives a suitable superheat of the refrigerant. The FTC strategy requires no a priori system knowledge or additional hardware and functions...

  7. Thermoelectric refrigerator having improved temperature stabilization means

    International Nuclear Information System (INIS)

    Falco, C.M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized

  8. Optimization of a cascade refrigeration system using refrigerant C_3H_8 in high temperature circuits (HTC) and a mixture of C_2H_6/CO_2 in low temperature circuits (LTC)

    International Nuclear Information System (INIS)

    Nasruddin; Sholahudin, S.; Giannetti, N.; Arnas

    2016-01-01

    Highlights: • Multi-objective optimization is conducted in the cascade refrigeration system. • Combination of operating temperature and refrigerant performance has been studied. • Characteristic of C_3H_8 and a mixture of C_2H_6/CO_2 have been investigated. • Determining of CO_2 fraction to optimize refrigeration system has been done. - Abstract: This paper discusses the multi-objectives optimization of a cascade refrigeration system using refrigerant C_3H_8 in high temperature circuits (HTC) and a mixture of C_2H_6/CO_2 in low temperature circuits (LTC). The evaporator temperature, condenser temperature, C_2H_6/CO_2 mixture condensation temperature, cascade temperature differences, and the CO_2 mass fraction are chosen as the decision variables. Whereas cooling capacity, cold space temperature, and ambient temperature are taken as the constraints. The purpose of this research is to design a cascade refrigeration system whose optimum performance are defined in terms of economics and thermodynamics. Accordingly, there are two objective functions that should be simultaneously optimized including the total annual cost which consists of the capital and operational cost and the total exergy destruction of the system. To this aim, the optimum operating temperature of the system and CO_2 fraction should be determined so that the system has minimum exergy destruction and annual cost. Results show that, the optimum value of the decision variables for this system can be determined by trade-off between annual cost and exergy destruction.

  9. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  10. Numerical model for thermoeconomic diagnosis in commercial transcritical/subcritical booster refrigeration systems

    DEFF Research Database (Denmark)

    Ommen, Torben; Elmegaard, Brian

    2012-01-01

    cycle supplying refrigerant for evaporators in both chilled and frozen display cases. In the paper, thermoeconomic theory is used to establish the cost of cooling at each individual temperature level based on operating costs.With a high amount of operating systems, faulty operation becomes an economic......, and environmental, interest. A general solution for evaluation of these systems is considered, with the objective to reduce cost and power consumption of malfunctioning equipment in operation. An analysis of the use of thermoeconomic diagnosis methods is required, as these methods may prove applicable...

  11. 20 K Helium Refrigeration System for NASA-JSC Chamber-A

    Science.gov (United States)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhelef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope. The chamber previously and currently still has helium cryopumping panels (CPP) and LN2 shrouds used to create Low Earth Orbit environments. Now with the new refrigerator and new helium shrouds (45 x 65 ) the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Labs, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate a inverse coefficient of performance better than 70 W/W for a 18 KW load at 20 K (accounting for liquid nitrogen precooling power) that remains essentially constant down to 1/3 of this load. Even at 10 percent of the maximum capacity, the performance is better than 140 W/W at 20K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10kW at 15 K to 100 kW at 100K. The refrigerator is capable of operating at any load temperature from 15K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  12. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  13. A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Li, Y.H. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Li, D.; Zhang, J.P. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Xia, Y.Z. [Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China)

    2010-01-15

    As one kind of environmentally friendly refrigeration, the adsorption refrigeration has attracted many attentions in resent decades. This paper introduces the researches of adsorption refrigeration systems with the commonly used working pairs, advanced adsorption cycles, heat and mass transfer enhancement and attempts of adsorption refrigeration applications. Poor heat and mass transfer problem is a bottleneck to prevent the improvements of the adsorption refrigeration technique. Two ways to enhance the heat and mass transfer are discussed in this paper. The adsorption deterioration of adsorbent, another obstacle to physical adsorption refrigeration applications, is also pointed out. And the possible reasons and the possible methods are analyzed. (author)

  14. Performance evaluation of solar photovoltaic panel driven refrigeration system

    Science.gov (United States)

    Rajoria, C. S.; Singh, Dharmendra; Gupta, Pankaj Kumar

    2018-03-01

    The solar photovoltaic (PV) panel driven refrigeration system employs solar PV panel and play a vital role when combined with storage batteries. The variation in performance of solar PV panel driven refrigeration system has been experimentally investigated in this paper. The change in battery voltage is analyzed with respect to panel size. Different series and parallel combinations have been applied on four solar PV panels of 35W each to get 24V. With the above combination a current in the range of 3-5 ampere has been obtained depending upon the solar intensity. A refrigerator of 110 W and 50 liters is used in the present investigation which requires 0.80 ampere AC at 230 V. The required current and voltage has been obtained from an inverter which draws about 7 ampere DC from the battery bank at 24V. The compressor of the refrigerator consumed 110W which required a PV panel size of 176 W approximately. It is important to note that the compressor consumed about 300W for first 50 milliseconds, 130 W for next five seconds and gradually comes to 110 W in 65 seconds. Thus panel size should be such that it may compensate for the initial load requirement.

  15. Industrial trigeneration using ammonia-water absorption refrigeration systems (AAR)

    International Nuclear Information System (INIS)

    Colonna, Piero; Gabrielli, Sandro

    2003-01-01

    In many industrial processes there is a simultaneous need for electric power and refrigeration at low temperatures. Examples are in the food and chemical industries. Nowadays the increase in fuel prices and the ecological implications are giving an impulse to energy technologies that better exploit the primary energy source and integrated production of utilities should be considered when designing a new production plant. The number of so-called trigeneration systems installations (electric generator and absorption refrigeration plant) is increasing. If low temperature refrigeration is needed (from 0 to -40 deg. C), ammonia-water absorption refrigeration plants can be coupled to internal combustion engines or turbogenerators. A thermodynamic system study of trigeneration configurations using a commercial software integrated with specifically designed modules is presented. The study analyzes and compares heat recovery from the primary mover at different temperature levels. In the last section a simplified economic assessment that takes into account disparate prices in European countries compares conventional electric energy supply from the grid and optimized trigeneration plants in one test case (10 MW electric power, 7000 h/year)

  16. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  17. Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system

    International Nuclear Information System (INIS)

    Ji, Xu; Li, Ming; Fan, Jieqing; Zhang, Peng; Luo, Bin; Wang, Liuling

    2014-01-01

    Highlights: • New-structure finned-tube adsorption bed for enhancing heat and mass transfer. • Temperatures on different parts of the adsorption tubes differ little. • Maximum COP of 0.122 and maximum daily ice-making of 6.5 kg are achieved by experiments. • Cooling efficiency of system with valve control higher than that without valve control. - Abstract: A large-diameter aluminum-alloy finned-tube absorbent bed collector was designed and optimized by enhancing the heat and mass transfer in the collector. The collection efficiency of the adsorbent bed collector was between 31.64% and 42.7%, and the temperature distribution in the absorbent bed was relatively uniform, beneficial to adsorption/desorption of the adsorbate in the absorbent bed. A solar-powered solid adsorption refrigeration system with the finned-tube absorbent bed collector was built. Some experiments corresponding to the adsorption/desorption process with and without a valve control were conducted in four typical weather conditions: sunny with clear sky, sunny with partly cloudy sky, cloudy sky and overcast sky. Activated carbon–methanol was utilized as the working pair for adsorption refrigeration in the experiments. The experiments achieved the maximum COP of 0.122 and the maximum daily ice-making of 6.5 kg. Under the weather conditions of sunny with clear sky, sunny with partly cloudy sky, and cloudy sky, ice-making phenomenon were observed. Even in the overcast-sky weather condition, the cooling efficiency of the system still reached 0.039 when the total solar radiation was 11.51 MJ. The cooling efficiency of the solar-powered adsorption refrigeration system with a valve control in the adsorption/desorption process was significantly higher than that without a valve control

  18. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  19. Thermodynamic simulation of ammonia-water absorption refrigeration system

    Directory of Open Access Journals (Sweden)

    Sathyabhama A.

    2008-01-01

    Full Text Available The ammonia-water absorption refrigeration system is attracting increasing research interests, since the system can be powered by waste thermal energy, thus reducing demand on electricity supply. The development of this technology demands reliable and effective system simulations. In this work, a thermodynamic simulation of the cycle is carried out to investigate the effects of different operating variables on the performance of the cycle. A computer program in C language is written for the performance analysis of the cycle.

  20. Exergy analysis of single effect absorption refrigeration systems: The heat exchange aspect

    International Nuclear Information System (INIS)

    Joybari, Mahmood Mastani; Haghighat, Fariborz

    2016-01-01

    Highlights: • Exergy analysis of LiBr/H 2 O absorption systems with identical COP was carried out. • Exergy destruction rank: absorber followed by generator, condenser and evaporator. • Lower heat source and chilled water inlet temperature reduced exergy destruction. • Higher cooling water inlet temperature reduced exergy destruction. • Lower HTF mass flow rate increased exergy efficiency even for fixed system COP. - Abstract: The main limitation of conventional energy analysis for the thermal performance of energy systems is that this approach does not consider the quality of energy. On the other hand, exergy analysis not only provides information about the systems performance, but also it can specify the locations and magnitudes of losses. A number of studies investigated the effect of parameters such as the component temperature, and heat transfer fluid (HTF) temperature and mass flow rate on the exergetic performance of the same absorption refrigeration system; thus, reported different coefficient of performance (COP) values. However, in this study, the system COP was considered to remain constant during the investigation. This means comparing systems with different heat exchanger designs (based on HTF mass flow rate and temperature) having the same COP value. The effect of HTF mass flow rate and inlet temperature of the cooling water, chilled water and heat source on the outlet specific exergy and exergy destruction rate of each component was investigated. It was found that the lower HTF mass flow rate decreased exergy destruction of the corresponding component. Moreover, the lower temperature of heat source and chilled water inlet increased the system exergetic efficiency. That was also the case for the higher cooling water inlet temperature. Based on the analysis, since the absorber and condenser accounted for a large portion of the total exergy destruction, cooling tower modification with lower cooling water mass flow rate is recommended

  1. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Ken.

    1989-01-01

    In PWR type reactors, a cooling water spray portion of emergency core cooling pipelines incorporated into pipelines on high temperature side is protruded to the inside of an upper plenum. Upon rupture of primary pipelines, pressure in a pressure vessel is abruptly reduced to generate a great amount of steams in the reactor core, which are discharged at a high flow rate into the primary pipelines on high temperature side. However, since the inside of the upper plenum has a larger area and the steam flow is slow, as compared with that of the pipelines on the high temperature side, ECCS water can surely be supplied into the reactor core to promote the re-flooding of the reactor core and effectively cool the reactor. Since the nuclear reactor can effectively be cooled to enable the promotion of pressure reduction and effective supply of coolants during the period of pressure reduction upon LOCA, the capacity of the pressure accumulation vessel can be decreased. Further, the re-flooding time for the reactor is shortened to provide an effect contributing to the improvement of the safety and the reduction of the cost. (N.H.)

  2. Thermodynamic analysis and theoretical study of a continuous operation solar-powered adsorption refrigeration system

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.

    2013-01-01

    Due to the intermittent nature of the solar radiation, the day-long continuous production of cold is a challenge for solar-driven adsorption cooling systems. In the present study, a developed solar-powered adsorption cooling system is introduced. The proposed system is able to produce cold continuously along the 24-h of the day. The theoretical thermodynamic operating cycle of the system is based on adsorption at constant temperature. Both the cooling system operating procedure as well as the theoretical thermodynamic cycle are described and explained. Moreover, a steady state differential thermodynamic analysis is performed for all components and processes of the introduced system. The analysis is based on the energy conservation principle and the equilibrium dynamics of the adsorption and desorption processes. The Dubinin–Astakhov adsorption equilibrium equation is used in this analysis. Furthermore, the thermodynamic properties of the refrigerant are calculated from its equation of state. The case studied represents a water chiller which uses activated carbon–methanol as the working pair. The chiller is found to produce a daily mass of 2.63 kg cold water at 0 °C from water at 25 °C per kg of adsorbent. Moreover, the proposed system attains a cooling coefficient of performance of 0.66. - Highlights: • A new continuous operation solar-driven adsorption refrigeration system is introduced. • The theoretical thermodynamic cycle is presented and explained. • A complete thermodynamic analysis is performed for all components and processes of the system. • Activated carbon–methanol is used as the working pair in the case study

  3. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, G.A.

    1988-03-01

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  4. Energy analysis of alternative CO2 refrigeration system configurations for retail food applications in moderate and warm climates

    International Nuclear Information System (INIS)

    Tsamos, K.M.; Ge, Y.T.; Santosa, IDewa; Tassou, S.A.; Bianchi, G.; Mylona, Z.

    2017-01-01

    Highlights: • Alternative CO 2 refrigeration technologies are compared for temperate and warm climates. • The CO 2 booster system with parallel compression was found to be the most energy efficient system. • Parallel compression can offer efficiency advantages of 3.6% in moderate and 5.0% in warm climates. • Parallel compression in booster CO 2 systems is economically attractive in warm climates. - Abstract: Refrigeration systems are crucial in retail food stores to ensure appropriate merchandising of food products. This paper compares four different CO 2 refrigeration system configurations in terms of cooling performance, environmental impact, power consumption and annual running costs. The systems studied were the conventional booster refrigeration system with gas bypass (reference system), the all CO 2 cascade system with gas bypass, a booster system with a gas bypass compressor, and integrated cascade all CO 2 system with gas bypass compressor. The weather conditions of London, UK, and Athens, Greece, were used for the modelling of energy consumption and environmental impacts to represent moderate and warm climatic conditions respectively. The control strategies for the refrigeration systems were derived from experimental tests in the laboratory on a conventional booster refrigeration system. The results from the analysis showed that the CO 2 booster system with gas bypass compressor can provide best performance with 5.0% energy savings for the warm climate and 3.65% for the moderate climate, followed by the integrated cascade all CO 2 system with gas bypass compressor, with 3.6% and 2.1% savings over the reference system for the warm and moderate climates respectively.

  5. Anti-synchronizing control for supermarket refrigeration systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth; Thybo, Claus; Wisniewski, Rafal

    2007-01-01

    Abstract—A supermarket refrigeration system is a hybrid system with switched nonlinear dynamics and discrete-valued input variables such as opening/closing of valves and start/stop of compressors. Practical and simulation studies have shown that the use of distributed hysteresis controllers...... schemes of low complexity for desynchronizing the valve operations while improving performance. Simulation results indicate the potential increase in efficiency and reduction in wear comparing with traditional control schemes....

  6. Synchronization and Desynchronizing Control Schemes for Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth; Thybo, Claus Thybo; Izadi-Zamanabadi, Roozbeh

    2007-01-01

    A supermarket refrigeration system is a hybrid system with switched nonlinear dynamics and discrete-valued input variables such as opening/closing of valves and start/stop of compressors. Practical and simulation studies have shown that the use of distributed hysteresis controllers to operate...... complexity for desynchronizing the valve operations while improving performance. Simulation results indicate the potential increase in efficiency and reduction in wear comparing with traditional control schemes....

  7. Computational Model of a Biomass Driven Absorption Refrigeration System

    Directory of Open Access Journals (Sweden)

    Munyeowaji Mbikan

    2017-02-01

    Full Text Available The impact of vapour compression refrigeration is the main push for scientists to find an alternative sustainable technology. Vapour absorption is an ideal technology which makes use of waste heat or renewable heat, such as biomass, to drive absorption chillers from medium to large applications. In this paper, the aim was to investigate the feasibility of a biomass driven aqua-ammonia absorption system. An estimation of the solid biomass fuel quantity required to provide heat for the operation of a vapour absorption refrigeration cycle (VARC is presented; the quantity of biomass required depends on the fuel density and the efficiency of the combustion and heat transfer systems. A single-stage aqua-ammonia refrigeration system analysis routine was developed to evaluate the system performance and ascertain the rate of energy transfer required to operate the system, and hence, the biomass quantity needed. In conclusion, this study demonstrated the results of the performance of a computational model of an aqua-ammonia system under a range of parameters. The model showed good agreement with published experimental data.

  8. Magnon-driven quantum dot refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan, E-mail: jcchen@xmu.edu.cn

    2015-12-18

    Highlights: • A three-terminal quantum dot refrigerator is proposed. • The effects of magnetic field, applied voltage, and polarization are considered. • The region that the system can work as a refrigerator is determined. • Two different magnon-driven quantum dot refrigerators are compared. - Abstract: A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  9. Energy-efficiency-oriented cascade control for vapor compression refrigeration cycle systems

    International Nuclear Information System (INIS)

    Yin, Xiaohong; Wang, Xinli; Li, Shaoyuan; Cai, Wenjian

    2016-01-01

    The vapor compression refrigeration cycle (VCC) system plays an important role and accounts for a large proportion of energy consumption from the heating, ventilating, and air-conditioning (HVAC) system. The traditional control approaches, for example PID control method, however, cannot meet the cooling demands with the satisfactory energy efficiency as well. This paper presents a novel energy-efficiency-oriented cascade control strategy for the VCC systems to improve the energy efficiency and fulfill the cooling requirements of indoor occupants simultaneously. In outer loop, a mathematic model is developed to determine the set point of superheat by a PI controller based on the nonlinear correlation between cooling demands and superheat degree. In inner loop, the pressure difference and superheat degree of evaporator are controlled by a model predictive control (MPC) strategy to track the values which are determined in the outer loop, simultaneously to enhance system efficiency of the VCC systems. Simulation and experiments studies are carried out to show the effectiveness of this proposed cascade control strategy and the results indicate significant tracking performance and energy efficiency improvements on VCC system. Compared to other schemes, the proposed cascade control strategy can improve energy efficiency by up to 5.8%. - Highlights: • Energy-efficiency-oriented cascade control strategy for VCC system is presented. • The correlation between cooling requirements and superheat is analyzed. • A MPC-based controller is developed to maximize system energy efficiency. • Experimental results confirm the effectiveness of the proposed control strategy.

  10. Superconducting magnet cooling system

    Science.gov (United States)

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  11. Modelling and Multi-Variable Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Slot; Holm, J. R.

    2003-01-01

    In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static as the dyn......In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static...... as the dynamic behavior. Based on this model the effects of the cross couplings has been examined. The influence of the cross couplings on the achievable control performance has been investigated. A MIMO controller is designed and the performance is compared with the control performance achieved by using...

  12. Improving demand response potential of a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Pedersen, Rasmus; Schwensen, John; Biegel, Benjamin

    2017-01-01

    In a smart grid the load shifting capabilities of demand-side devices such as supermarkets are of high interest. In supermarkets this potential is represented by the ability to store energy in the thermal mass of refrigerated foodstuff. To harness the full load shifting potential we propose...... a method for estimating food temperature based on measurements of evaporator expansion valve opening degree. This method requires no additional hardware or system modeling. We demonstrate the estimation method on a real supermarket display case and the applicability of knowing food temperature is shown...... through tests on a full scale supermarket refrigeration system made available by Danfoss A/S. The conducted application test shows that feedback based on food temperature can increase the demand flexibility during a step by approx. 60 % the first 70 minutes and up to 100%over the first 150 minutes...

  13. Experimental Results of Integrated Refrigeration and Storage System Testing

    Science.gov (United States)

    Notardonato, W. U.; Johnson, W. L.; Jumper, K.

    2009-01-01

    Launch operations engineers at the Kennedy Space Center have identified an Integrated Refrigeration and Storage system as a promising technology to reduce launch costs and enable advanced cryogenic operations. This system uses a close cycle Brayton refrigerator to remove energy from the stored cryogenic propellant. This allows for the potential of a zero loss storage and transfer system, as well and control of the state of the propellant through densification or re-liquefaction. However, the behavior of the fluid in this type of system is different than typical cryogenic behavior, and there will be a learning curve associated with its use. A 400 liter research cryostat has been designed, fabricated and delivered to KSC to test the thermo fluid behavior of liquid oxygen as energy is removed from the cryogen by a simulated DC cycle cryocooler. Results of the initial testing phase focusing on heat exchanger characterization and zero loss storage operations using liquid oxygen are presented in this paper. Future plans for testing of oxygen densification tests and oxygen liquefaction tests will also be discussed. KEYWORDS: Liquid Oxygen, Refrigeration, Storage

  14. Influence of special attributes of zeotropic refrigerant mixtures on design and operation of vapour compression refrigeration and heat pump systems

    International Nuclear Information System (INIS)

    Rajapaksha, Leelananda

    2007-01-01

    The use of zeotropic refrigerant mixtures introduces a number of novel issues that affect the established design and operational practices of vapour compression systems used in refrigeration, air conditioning and heat pump applications. Two attributes; composition shift and temperature glide, associated with the phase changing process of zeotropic mixtures are the primary phenomena that bring in these issues. However, relevant researches are uncovering ways how careful system designs and selection of operational parameters allow improving the energy efficiency and the capacity of vapour compression refrigeration systems. Most of these concepts exploit the presence of composition shift and temperature glide. This paper qualitatively discusses how the mixture attributes influence the established heat exchanger design practices, performance and operation of conventional vapour compression systems. How the temperature glide and composition shift can be incorporated to improve the system performance and the efficiency are also discussed

  15. 5-year operation experience with the 1.8 K refrigeration units of the LHC cryogenic system

    CERN Document Server

    Ferlin, G; Claudet, S; Pezzetti, M

    2015-01-01

    Since 2009, the Large Hadron Collider (LHC) is in operation at CERN. The LHC superconducting magnets distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. The nominal operating temperature of 1.9 K is produced by eight 1.8-K refrigeration units based on centrifugal cold compressors (3 or 4 stages depending to the vendor) combined with warm volumetric screw compressors with sub-atmospheric suction. After about 5 years of continuous operation, we will present the results concerning the availability for the final user of these refrigeration units and the impact of the design choice on the recovery time after a system trip. We will also present the individual results for each rotating machinery in terms of failure origin and of Mean Time between Failure (MTBF), as well as the consolidations and upgrades applied to these refrigeration units.

  16. 5-year operation experience with the 1.8 K refrigeration units of the LHC cryogenic system

    Science.gov (United States)

    Ferlin, G.; Tavian, L.; Claudet, S.; Pezzetti, M.

    2015-12-01

    Since 2009, the Large Hadron Collider (LHC) is in operation at CERN. The LHC superconducting magnets distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. The nominal operating temperature of 1.9 K is produced by eight 1.8-K refrigeration units based on centrifugal cold compressors (3 or 4 stages depending to the vendor) combined with warm volumetric screw compressors with sub-atmospheric suction. After about 5 years of continuous operation, we will present the results concerning the availability for the final user of these refrigeration units and the impact of the design choice on the recovery time after a system trip. We will also present the individual results for each rotating machinery in terms of failure origin and of Mean Time between Failure (MTBF), as well as the consolidations and upgrades applied to these refrigeration units.

  17. Redundant cryorefrigerator system for a refrigerated superconductive magnet

    International Nuclear Information System (INIS)

    Ackermann, R.A.

    1992-01-01

    This patent describes a cryorefrigerator system for a refrigerated superconductive magnet. It comprises a mounting means rigidly attached to the magnet; at least two cryorefrigerator means mounted on the mounting means such that the cryorefrigerator means moves on the mounting means and at least one of the two cryorefrigerator means being substantially out of contact with the magnet; and an adjustment means rigidly attached to the cryorefrigerator means for moving the at least one of the cryorefrigerator means

  18. 46 CFR 154.1720 - Indirect refrigeration.

    Science.gov (United States)

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and Operating Requirements § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene...

  19. Air-cooled recirculation cooling systems. Technical and economic comparison; Luftgekuehlte Rueckkuehlsysteme. Technisch wirtschaftlicher Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Dierks, G. [Fa. Jaeggi/Guentner (Schweiz) AG, Trimbach (Switzerland)

    2000-03-01

    There are several air-cooled forced-circulation cooling systems for heat removal from refrigeration systems. Optimum solutions should not be selected on the basis of the cost factor alone; an integrative approach should be used instead. An exemplary investigation is presented. [German] Fuer die Waermeabfuhr aus kaeltetechnischen Anlagen stehen verschiedene luftgekuehlte, zwangsbelueftete Rueckkuehlsysteme zur Verfuegung. Die Auswahl des Systems ist oft von kurzfristigem Kostendenken gepraegt, was in technischer und wirtschaftlicher Hinsicht aber nicht immer der optimalen Loesung entspricht. Erst die genauere Kenntnis der verschiedenen Systeme und eine ganzheitliche Betrachtungsweise ermoeglichen die optimale Wahl fuer den einzelnen Fall. Die hier praesentierte Untersuchung wird anhand eines konkreten Falls dargestellt, wobei Preise und technische Produktdaten auf realen Anfragen beruhen. Der Autor ist um objetive Bewertung bemueht, der Leser moege aber selbst urteilen. (orig./AKF)

  20. Prediction and analysis of the seasonal performance of tri-generation and CO2 refrigeration systems in supermarkets

    International Nuclear Information System (INIS)

    Ge, Y.T.; Tassou, S.A.; Suamir, I.N.

    2013-01-01

    Highlights: ► Integration model of a trigeneration with CO 2 refrigeration systems in supermarket. ► Validation of the developed integration model with site and laboratory measurement. ► Application of the trigeneration system in power generation and space conditioning. ► Performance analysis and comparison of the integrated system in supermarket. - Abstract: A modern supermarket energy control system has a concurrent need for electricity, space heating or cooling, and food refrigeration. The power supply to the supermarket is primarily from the national grid, where losses in efficiency are due to the processes of energy conversion and transmission. Combined heat and power (CHP) offers the potential to locally produce electrical power and heating which could save energy and reduce CO 2 emissions in the long run. During the summer months, as the space heating requirement in a supermarket is relatively small, the energy efficiency of a CHP installation can be improved by using excess thermal energy to drive a sorption refrigeration system to provide space cooling or refrigeration. This process is also known as tri-generation. In recent years, the use of CO 2 as a refrigerant in supermarkets has received considerable attention due to its negligible contribution to direct greenhouse gas emissions and excellent thermophysical and heat transfer properties. Consequently, the application of a tri-generation system in a supermarket with CO 2 refrigeration merits further investigation. In this paper, to evaluate the performance of a tri-generation system in the supermarket, a previously tested 80 kWe microturbine device was applied into an operational supermarket to generate power and provide space heating and cooling through exhaust heat. The performance evaluation and comparison for this tri-generation application is based on the prediction from an integrated model of supermarket energy control, cascade CO 2 refrigeration and tri-generation systems. The results

  1. Performance of a compact solar absorption cooling system

    International Nuclear Information System (INIS)

    Mulyanef; Kamaruzzaman Sopian

    2006-01-01

    This paper describes the performance of a compact solar absorption system. Purpose of compact solar is collector, generator and condenser in one unit. At present, two types of absorption cooling systems are marketed: the lithium bromide-water system and the ammonia-water system. In the lithium bromide-water system, water vapor is the refrigerant and ammonia water system where ammonia is the refrigerant. In addition, the ammonia-water system requires higher generator temperature 120 o C to 150 o C than a flat-plate solar collector can provide without special techniques. The lithium bromide-water system operates satisfactorily at a generator temperature of 75 o C to 100 o C, achievable by a flat-plate collector. The lithium bromide-water system also has a higher COP than the ammonia-water system. The disadvantage of the lithium bromide-water systems is that the evaporators cannot operate at temperature below 0 o C since the refrigerant is water. The Coefficient of Performance (COP) system is 0.62 and the concentration of LiBr-H 2 O is 50%

  2. Emergency core cooling systems

    International Nuclear Information System (INIS)

    Kubokoya, Takashi; Okataku, Yasukuni.

    1984-01-01

    Purpose: To maintain the fuel soundness upon loss of primary coolant accidents in a pressure tube type nuclear reactor by injecting cooling heavy water at an early stage, to suppress the temperature of fuel cans at a lower level. Constitution: When a thermometer detects the temperature rise and a pressure gauge detects that the pressure for the primary coolants is reduced slightly from that in the normal operation upon loss of coolant accidents in the vicinity of the primary coolant circuit, heavy water is caused to flow in the heavy water feed pipeway by a controller. This enables to inject the heavy water into the reactor core in a short time upon loss of the primary coolant accidents to suppress the temperature rise in the fuel can thereby maintain the fuel soundness. (Moriyama, K.)

  3. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  4. Superfluid stirling refrigerator: A new method for cooling below 1 Kelvin

    International Nuclear Information System (INIS)

    Kotsubo, V.; Swift, G.W.

    1990-01-01

    We have invented and built a new type of cryocooler, which we call the superfluid Stirling refrigerator (SSR). The first prototype reached 0.6 K from a starting temperature of 1.2 K. The working fluid of the SSR is the 3 He solute in a superfluid 3 He-- 4 He solution. At low temperatures, the superfluid 4 He is in its quantum ground state, and therefore is thermodynamically inert, while the 3 He solute has the thermodynamic properties of a dense ideal gas. Thus, in principle, any refrigeration cycle that can use an ideal gas can also use the 3 He solute as working fluid. In our SSR prototype, bellows-sealed superleak pistons driven by a room-temperature camshaft work on the 3 He solute. Ultimately, we anticipate elimination of moving parts by analogy with pulse-tube refrigeration. 15 refs., 6 figs

  5. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Joudi, Khalid A.; Al-Amir, Qusay R.

    2014-01-01

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  6. Thermodynamic performance analysis of a vapor compression–absorption cascaded refrigeration system

    International Nuclear Information System (INIS)

    Jain, Vaibhav; Kachhwaha, S.S.; Sachdeva, Gulshan

    2013-01-01

    Highlights: • Study includes first and second law analysis with alternatives refrigerants. • Power consumption in cascaded system is 61% less than vapor compression system. • COP of compression system is improved by 155% with cascaded absorption system. • Condenser is more sensitive to external fluid temperature as compare to evaporator. - Abstract: In the present study, a thermodynamic model for cascaded vapor compression–absorption system (CVCAS) has been developed which consists of a vapor compression refrigeration system (VCRS) coupled with single effect vapor absorption refrigeration system (VARS). Based on first and second laws, a comparative performance analysis of CVCAS and an independent VCRS has been carried out for a design capacity of 66.67 kW. The results show that the electric power consumption in CVCAS is reduced by 61% and COP of compression section is improved by 155% with respect to the corresponding values pertaining to a conventional VCRS. However there is a trade-off between these parameters and the rational efficiency which is found to decrease to half of that for a VCRS. The effect of various operating parameters, i.e., superheating, subcooling, cooling capacity, inlet temperature and the product of effectiveness and heat capacitance of external fluids are extensively studied on the COP, total irreversibility and rational efficiency of the CVCAS. Besides, the performance of environment friendly refrigerants such as R410A, R407C and R134A is found to be almost at par with that of R22. Hence, all the alternative refrigerants selected herein can serve as potential substitutes for R22. Furthermore, it has been found that reducing the irreversibility rate of the condenser by one unit due to decrease in condenser temperature depicted approximately 3.8 times greater reduction in the total irreversibility rate of the CVCAS, whereas unit reduction in the evaporator’s irreversibility rate due to increase in evaporator temperature reduced

  7. A new type of liquid-3He target system using small mechanical refrigerators

    International Nuclear Information System (INIS)

    Kato, S.; Kobayashi, K.; Maruyama, K.; Okuno, H.; Konno, O.; Suda, T.; Maki, T.; Asami, H.; Koizumi, T.

    1991-04-01

    A new type of liquid- 3 He target has been developed for photoabsorption experiments at intermediate energies. Using the cooling power of liquid 4 He at reduced vapour pressure, 3 He gas is liquefied into a cylindrical target cell of 180 ml and is maintained at 2.0 K during the experiment. Evaporated 4 He gas is evacuated by a rotary pump and returned into the 4 He bath in the cryostat, where two small mechanical refrigerators with cooling capacities of 3 W at 4.3 K and 10 W at 20 K are operated for the purpose of 4 He recondensation. A maintenance-free operation of more than 1,000 hours has become possible by adopting the 4 He circulation system. (author)

  8. Modeling the dynamic response of pressures in a distributed helium refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, John Carl [Illinois Inst. of Technology, Chicago, IL (United States)

    1997-12-01

    A mathematical model is created of the dynamic response of pressures caused by flow inputs to an existing distributed helium refrigeration system. The dynamic system studied consists of the suction and discharge pressure headers and compressor portions of the refrigeration system used to cool the superconducting magnets of the Tevatron accelerator at the Fermi National Accelerator Laboratory. The modeling method involves identifying the system from data recorded during a series of controlled tests, with effort made to detect locational differences in pressure response around the four mile accelerator circumference. A review of the fluid mechanics associated with the system indicates linear time invariant models are suitable for the identification, particularly since the governing equations of one dimensional fluid flow are approximated by linear differential equations. An outline of the experimental design and the data acquisition system are given, followed by a detailed description of the modeling, which utilized the Matlab programming language and associated System Identification Toolbox. Two representations of the system are presented. One, a black box model, provides a multi-input, multi-output description assembled from the results of single input step function testing. This description indicates definite variation in pressure response with distance from the flow input location, and also suggests subtle differences in response with the input location itself. A second system representation is proposed which details the relation between continuous flow changes and pressure response, and provides explanation of a previously unappreciated pressure feedback internal to the system.

  9. Modeling the dynamic response of pressures in a distributed helium refrigeration system

    International Nuclear Information System (INIS)

    Brubaker, J.C.

    1997-12-01

    A mathematical model is created of the dynamic response of pressures caused by flow inputs to an existing distributed helium refrigeration system. The dynamic system studied consists of the suction and discharge pressure headers and compressor portions of the refrigeration system used to cool the superconducting magnets of the Tevatron accelerator at the Fermi National Accelerator Laboratory. The modeling method involves identifying the system from data recorded during a series of controlled tests, with effort made to detect locational differences in pressure response around the four mile accelerator circumference. A review of the fluid mechanics associated with the system indicates linear time invariant models are suitable for the identification, particularly since the governing equations of one dimensional fluid flow are approximated by linear differential equations. An outline of the experimental design and the data acquisition system are given, followed by a detailed description of the modeling, which utilized the Matlab programming language and associated System Identification Toolbox. Two representations of the system are presented. One, a black box model, provides a multi-input, multi-output description assembled from the results of single input step function testing. This description indicates definite variation in pressure response with distance from the flow input location, and also suggests subtle differences in response with the input location itself. A second system representation is proposed which details the relation between continuous flow changes and pressure response, and provides explanation of a previously unappreciated pressure feedback internal to the system

  10. PARAMETRIC STUDY OF ENERGY, EXERGY AND THERMOECONOMIC ANALYSES ON VAPOR-COMPRESSION SYSTEM CASCADED WITH LIBR/WATER AND NH3/WATER ABSORBTION CASCADE REFRIGERATION CYCLE

    Directory of Open Access Journals (Sweden)

    ahmet selim dalkilic

    2017-03-01

    Full Text Available Energy savings on cooling systems can be performed by using novel refrigeration cycles. For this aim, vapour compression-vapour absorption cascade refrigeration systems can be considered as substitute to single-stage vapour compression refrigeration systems. Renewable energy sources of geothermal and solar heat, waste heat of processes have been used by these cycles to provide cooling and they also require less electrical energy than vapour compression cycles having alternative refrigerants. In this study, a vapour compression (VC and vapour absorption (VA cascade systems are analysed with the second law analysis for varied cooling capacities. While lithium bromide-water and NH3/H2O are the working fluids in VA part, various refrigerants are used in VC section. The refrigerants of R134a and R600a, R410A and R407C are tested as drop in alternatives for R12 and R22, respectively. The effects of alteration in cooling capacity, superheating and sub cooling in VC part, temperature in the generator and absorber, and degree of overlap in cascade condenser in VA part on the coefficient of system performance are studied. Validation of the results have been performed by the values given in the literature. Improvement in COP of VC, VA and cascade system are obtained separately. According to the analyses, cascade systems’ COP values increase with increasing the temperatures of generator and evaporator and they also increase with decreasing the condenser and absorber temperatures. Moreover, the generator has the highest exergy destruction rates, second and third one were the condenser and absorber, respectively. Electricity consumption and payback period are also determined considering the various parameters of the study.

  11. Toward High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...

  12. Towards high performance in industrial refrigeration systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, R.; Niemann, Hans Henrik

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...

  13. Synchronization Analysis of the Supermarket Refrigeration System

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Chen, Liang; Larsen, Lars Finn Sloth

    2009-01-01

    is analyzed using the bifurcation and chaos theory. It is demonstrated that the system can have a complex chaotic behavior, which is far from the synchronization. This shows that making the system chaotic is a good choice for a de-synchronization strategy. The positive maximum Lyapunov exponent is usually...... taken as an indication of the existence of chaos. It is used in the paper as a measure of performance for the tendency of the system to synchronize, that is, the higher value of the maximum Lyapunov exponent the lower risk for synchronization....

  14. Desalination using spray tower and vapour compression refrigeration system

    International Nuclear Information System (INIS)

    Sathish Kumar, S.; Mani, A.

    2006-01-01

    A desalination system using a spray tower and Vapour Compression Refrigeration (VCR) system is proposed for obtaining fresh water from brackish water. In the spray tower, simultaneous heat and mass transfer take place between the brackish water and air, which results in the evaporation of the brackish water and humidification of the air. Fresh water is obtained from the humidified air by condensing the water vapour using a VCR system. Parametric studies were carried out to study the effect of various operational parameters on the fresh water production rate. (author)

  15. Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system

    International Nuclear Information System (INIS)

    Mohammadi, Amin; Kasaeian, Alibakhsh; Pourfayaz, Fathollah; Ahmadi, Mohammad Hossein

    2017-01-01

    Highlights: • Thermodynamic analysis of a hybrid CCHP system. • Sensitivity analysis is performed on the most important parameters of the system. • Pressure ratio and gas turbine inlet temperature are the most effective parameters. - Abstract: Hybrid power systems are gained more attention due to their better performance and higher efficiency. Widespread use of these systems improves environmental situation as they reduce the amount of fossil fuel consumption. In this paper a hybrid system composed of a gas turbine, an ORC cycle and an absorption refrigeration cycle is proposed as a combined cooling, heating and power system for residential usage. Thermodynamic analysis is applied on the system. Also a parametric analysis is carried out to investigate the effect of different parameters on the system performance and output cooling, heating and power. The results show that under design conditions, the proposed plant can produce 30 kW power, 8 kW cooling and almost 7.2 ton hot water with an efficiency of 67.6%. Moreover, parametric analysis shows that pressure ratio and gas turbine inlet temperature are the most important and influential parameters. After these two, ORC turbine inlet temperature is the most effective parameter as it can change both net output power and energy efficiency of the system.

  16. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  17. Forced draft wet cooling systems

    International Nuclear Information System (INIS)

    Daubert, A.; Caudron, L.; Viollet, P.L.

    1975-01-01

    The disposal of the heat released from a 1000MW power plant needs a natural draft tower of about 130m of diameter at the base, and 170m height, or a cooling system with a draft forced by about forty vans, a hundred meters in diameter, and thirty meters height. The plumes from atmospheric cooling systems form, in terms of fluid mechanics, hot jets in a cross current. They consist in complex flows that must be finely investigated with experimental and computer means. The study, currently being performed at the National Hydraulics Laboratory, shows that as far as the length and height of visible plumes are concerned, the comparison is favorable to some types of forced draft cooling system, for low and medium velocities, (below 5 or 6m/s at 10m height. Beyond these velocities, the forced draft sends the plume up to smaller heights, but the plume is generally more dilute [fr

  18. Experimental investigation on motive nozzle throat diameter for an ejector expansion refrigeration system

    International Nuclear Information System (INIS)

    Bilir Sag, Nagihan; Ersoy, H. Kursad

    2016-01-01

    Highlights: • Effects of nozzle throat diameter and its location on performance were investigated. • The nozzle has an optimum throat diameter under the experiment condition. • The maximum performance has been achieved by using optimum nozzle throat diameter. • The variation of nozzle throat diameter with condenser water inlet temperature was examined. • Motive nozzle has no optimum position in the ejector refrigeration system. - Abstract: In this study, ejector was used to reduce throttling losses in a vapour compression refrigeration system. Effects on system performance of throat diameter and position of motive nozzle of ejector were investigated experimentally. An ejector was designed based on the established mathematical model and manufactured. The experiments were carried out by using different primary nozzle throat diameters. The experiments were further conducted by changing condenser water inlet temperature, which is one of the external parameters. The experimental results of the ejector system and those of the classic system were compared under same external operating conditions and for the same cooling capacity. In order to obtain same external operating conditions in both systems, the inlet conditions of the brine supplied to the evaporator and inlet water conditions (flow rate and temperature) to the condenser were kept constant. Maximum performance was obtained when the primary nozzle throat diameter was 2.3 mm within the areas considered in this study. When compared, it was experimentally determined that the ejector system that uses the optimum motive nozzle throat diameter exhibits higher COP than the classic system by 5–13%. Furthermore, it was found that the variation of coefficient of performance based on position of motive nozzle in two-phase ejector expander refrigeration cycle is lower than 1%.

  19. TPX heating and cooling system

    International Nuclear Information System (INIS)

    Kungl, D.J.; Knutson, D.S.; Costello, J.; Stoenescu, S.; Yemin, L.

    1995-01-01

    TPX, while having primarily super-conducting coils that do not require water cooling, still has very significant water cooling requirements for the plasma heating systems, vacuum vessel, plasma facing components, diagnostics, and ancillary equipment. This is accentuated by the 1000-second pulse requirement. Two major design changes, which have significantly affected the TPX Heating and Cooling System, have been made since the conceptual design review in March of 1993. This paper will discuss these changes and review the current status of the conceptual design. The first change involves replacing the vacuum vessel neutron shielding configuration of lead/glass composite tile by a much simpler and more reliable borated water shield. The second change reduces the operating temperature of the vacuum vessel from 150 C to ≥50 C. With this temperature reduction, all in-vessel components and the vessel will be supplied by coolant at a common ≥50 C inlet temperature. In all, six different heating and cooling supply requirements (temperature, pressure, water quality) for the various TPX components must be met. This paper will detail these requirements and provide an overview of the Heating and Cooling System design while focusing on the ramifications of the TPX changes described above

  20. Cooling system for auxiliary reactor component

    International Nuclear Information System (INIS)

    Fujihira, Tomoko.

    1991-01-01

    A cooling system for auxiliary reactor components comprises three systems, that is, two systems of reactor component cooling water systems (RCCW systems) and a high pressure component cooling water system (HPCCW system). Connecting pipelines having partition valves are intervened each in a cooling water supply pipeline to an emmergency component of each of the RCCW systems, a cooling water return pipeline from the emmergency component of each of the RCCW systems, a cooling water supply pipeline to each of the emmergency components of one of the RCCW system and the HPCCW system and a cooling water return pipeline from each of the emmergency components of one of the RCCW system and the HPCCW system. With such constitution, cooling water can be supplied also to the emmergency components in the stand-by system upon periodical inspection or ISI, thereby enabling to improve the backup performance of the emmergency cooling system. (I.N.)

  1. Prediction of performance of a jet cooling system operating with pure refrigerants or non-azeotropic mixtures. Influence de la nature des fluides, purs ou en melanges non-azeotropiques, sur les performances d'une machine de climatisation a ejecto-compresseur

    Energy Technology Data Exchange (ETDEWEB)

    Dorantes, R; Lallemand, A [Centre National de la Recherche Scientifique (CNRS), 69 Villeurbanne (France). Centre de Thermique

    1995-01-01

    This paper investigates a simple model of an ejector-compression refrigeration cycle and its applications to air conditioning. The efficiency using either classical refrigerants (R11, R22, R114), other pure refrigerants (R123, R133a, R134a, R141b, R142b, R152a, RC318) or non-azeotropic mixtures is presented. The results suggest that, for different temperatures of the heat source and the heat sink, the entrainment ratio and the system efficiency depend mainly on the fluid type and the mixture composition. An exergetic analysis shows that the major part of the exergy destruction takes place in the ejector, but that the boiler and condenser exergetic losses are significant. (author)

  2. Refrigeration a history

    CERN Document Server

    Gantz, Carroll

    2015-01-01

    For thousands of years, humans coped with heat by harvesting and storing natural ice and devising natural cooling systems that utilized ventilation and evaporation. By the mid 1800s, people began developing huge refrigeration machines to manufacture ice. By the early 1900s, engineers developed electric domestic refrigerators, which by 1927 were affordable convenient household appliances. By then, an increasingly sophisticated public demanded more modern-looking appliances than engineers could produce, and a new breed of designers entered the manufacturing world to provide them. During the Depr

  3. OPTIONS FOR REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    Science.gov (United States)

    The report was prepared to assist personnel responsible for the design, construction, and maintenance of retail food refrigeration equipment in making knowledgeable decisions regarding the implementation of refrigerant-emissions-reducing practices and technologies. It characteriz...

  4. On subcooler design for integrated two-temperature supermarket refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [College of Mechanical Engineering, Tongji University, No. 4800, Cao An Highway, Shanghai 201804 (China)

    2011-01-15

    The energy saving opportunity of supermarket refrigeration systems using subcooler between the medium-temperature (MT) refrigeration system and the low-temperature (LT) refrigeration system has been identified in the previous work. This paper presents a model-based comprehensive analysis on the subcooler design. The optimal subcooling control is discussed as well. With optimal subcooler size and subcooling control, the maximum energy savings of integrated two-temperature supermarket refrigeration system using R404A or R134a as working fluid can achieve 27% or 20%, respectively. The load ratio of MT to LT system and the operating conditions have considerable impact on the energy savings. (author)

  5. The steady-state modeling and optimization of a refrigeration system for high heat flux removal

    International Nuclear Information System (INIS)

    Zhou Rongliang; Zhang Tiejun; Catano, Juan; Wen, John T.; Michna, Gregory J.; Peles, Yoav; Jensen, Michael K.

    2010-01-01

    Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.

  6. Performance analysis of a refrigeration system with parallel control of evaporation pressure

    International Nuclear Information System (INIS)

    Lee, Jong Suk

    2008-01-01

    The conventional refrigeration system is composed of a compressor, condenser, receiver, expansion valve or capillary tube, and an evaporator. The refrigeration system used in this study has additional expansion valve and evaporator along with an Evaporation Pressure Regulator(EPR) at the exit side of the evaporator. The two evaporators can be operated at different temperatures according to the opening of the EPR. The experimental results obtained using the refrigeration system with parallel control of evaporation pressure are presented and the performance analysis of the refrigeration system with two evaporators is conducted

  7. Simulation of Transcritical CO2 Refrigeration System with Booster Hot Gas Bypass in Tropical Climate

    Science.gov (United States)

    Santosa, I. D. M. C.; Sudirman; Waisnawa, IGNS; Sunu, PW; Temaja, IW

    2018-01-01

    A Simulation computer becomes significant important for performance analysis since there is high cost and time allocation to build an experimental rig, especially for CO2 refrigeration system. Besides, to modify the rig also need additional cos and time. One of computer program simulation that is very eligible to refrigeration system is Engineering Equation System (EES). In term of CO2 refrigeration system, environmental issues becomes priority on the refrigeration system development since the Carbon dioxide (CO2) is natural and clean refrigerant. This study aims is to analysis the EES simulation effectiveness to perform CO2 transcritical refrigeration system with booster hot gas bypass in high outdoor temperature. The research was carried out by theoretical study and numerical analysis of the refrigeration system using the EES program. Data input and simulation validation were obtained from experimental and secondary data. The result showed that the coefficient of performance (COP) decreased gradually with the outdoor temperature variation increasing. The results show the program can calculate the performance of the refrigeration system with quick running time and accurate. So, it will be significant important for the preliminary reference to improve the CO2 refrigeration system design for the hot climate temperature.

  8. Magnet/cryocooler integration for thermal stability in conduction-cooled systems

    Science.gov (United States)

    Chang, H.-M.; Kwon, K. B.

    2002-05-01

    The stability conditions that take into accounts the size of superconducting magnets and the refrigeration capacity of cryocoolers are investigated for the conduction-cooled systems without liquid cryogens. The worst scenario in the superconducting systems is that the heat generation in the resistive state exceeds the refrigeration, causing a rise in the temperature of the magnet winding and leading to burnout. It is shown by an analytical solution that in the continuously resistive state, the temperature may increase indefinitely or a stable steady state may be reached, depending upon the relative size of the magnet with respect to the refrigeration capacity of the cryocooler. The stability criteria include the temperature-dependent properties of the magnet materials and the refrigeration characteristics of the cryocooler. A useful graphical scheme is presented and the design of the stable magnet/cryocooler interface is demonstrated.

  9. Energy and exergy analyses of the diffusion absorption refrigeration system

    International Nuclear Information System (INIS)

    Yıldız, Abdullah; Ersöz, Mustafa Ali

    2013-01-01

    This paper describes the thermodynamic analyses of a DAR (diffusion absorption refrigeration) cycle. The experimental apparatus is set up to an ammonia–water DAR cycle with helium as the auxiliary inert gas. A thermodynamic model including mass, energy and exergy balance equations are presented for each component of the DAR cycle and this model is then validated by comparison with experimental data. In the thermodynamic analyses, energy and exergy losses for each component of the system are quantified and illustrated. The systems' energy and exergy losses and efficiencies are investigated. The highest energy and exergy losses occur in the solution heat exchanger. The highest energy losses in the experimental and theoretical analyses are found 25.7090 W and 25.4788 W respectively, whereas those losses as to exergy are calculated 13.7933 W and 13.9976 W. Although the values of energy efficiencies obtained from both the model and experimental studies are calculated as 0.1858, those values, in terms of exergy efficiencies are found 0.0260 and 0.0356. - Highlights: • The diffusion absorption refrigerator system is designed manufactured and tested. • The energy and exergy analyses of the system are presented theoretically and experimentally. • The energy and exergy losses are investigated for each component of the system. • The highest energy and exergy losses occur in the solution heat exchanger. • The energy and the exergy performances are also calculated

  10. System for cooling a cabinet

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a cooling system comprising an active magnetic regenerator having a cold side and a hot side, a hot side heat exchanger connected to the hot side of the magnetic regenerator, one or more cold side heat exchangers, and a cold store reservoir comprising a volume...

  11. Lamination cooling system formation method

    Science.gov (United States)

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  12. Mathematical Model of a Lithium-Bromide/Water Absorption Refrigeration System Equipped with an Adiabatic Absorber

    Directory of Open Access Journals (Sweden)

    Salem M. Osta-Omar

    2016-11-01

    Full Text Available The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator, the cooling capacity of the system, and the ratio of the solution mass flow rate at the circulation pump to that at the solution pump are used as input data. The model evaluates the thermodynamic properties of all state points, the heat transfer in each component, the various mass flow rates, and the coefficient of performance (COP of the cycle. The results are used to investigate the effect of key parameters on the overall performance of the system. For instance, increasing the generator temperatures and decreasing the adiabatic absorber temperatures can increase the COP of the cycle. The results of this mathematical model can be used for designing and sizing new LiBr/water absorption refrigeration systems equipped with an adiabatic absorber or for optimizing existing aforementioned systems.

  13. Operating Manual of Helium Refrigerator (Rev. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Song, K.M.; Son, S.H.; Kim, K.S.; Lee, S.K.; Kim, M.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    A helium refrigerator was installed as a supplier of 20K cold helium to the cryogenic distillation system of WTRF pilot plant. The operating procedures of the helium refrigerator, helium compressor and auxiliary apparatus are described for the safety and efficient operation in this manual. The function of the helium refrigerator is to remove the impurities from the compressed helium of about 250psig, to cool down the helium from ambient temperature to 20K through the heat exchanger and expansion engine and to transfer the cold helium to the cryogenic distillation system. For the smoothly operation of helium refrigerator, the preparation, the start-up, the cool-down and the shut-down of the helium refrigerator are described in this operating manual. (author). 3 refs., 14 tabs.

  14. Experimental Performance Investigation of New Low-GWP Refrigerants for Use in Two-Phase Evaporative Cooling of Electronics

    OpenAIRE

    Nicolette-Baker, Alexis; Garr, Elizabeth; Sathe, Abhijit; O'Shaughnessey, Steve

    2014-01-01

    With growing global warning concerns on the current breed of HFC refrigerants, a search for more environmentally-friendly fluids has already begun. Potential alternatives to replace R134a should have significantly lower global warming potential (GWP), operate at similar system pressures, and maintain all other advantages of R134a (non-flammability, dielectric properties, etc.). This study investigates four possible alternatives that have been identified by AHRI in its Low-GWP Alternative Refr...

  15. Exergeoconomic analysis and optimization of a novel cogeneration system producing power and refrigeration

    International Nuclear Information System (INIS)

    Akbari Kordlar, M.; Mahmoudi, S.M.S.

    2017-01-01

    Highlights: • A novel combined cooling and power cogeneration system is proposed. • Thermodynamic and exergoeconomic analyses are performed. • Optimizations are performed considering thermodynamics and economics. • An increase in turbine inlet pressure is in favor of the system performance. • Five parameters influence the total product unit cost. - Abstract: A novel combined cooling and power cogeneration system driven by geothermal hot water is proposed. The system, which is a combination of an organic Rankine cycle and an absorption refrigeration cycle, is analyzed and optimized from the viewpoints of thermodynamics and economics. The working fluid in organic Rankine cycle is ammonia and in the refrigeration cycle is an ammonia-water solution. Parametric studies are performed to identify decision parameters prior to optimization. In optimizing the system performance three design cases i.e. designs for maximum first law efficiency (case1), maximum second law efficiency (case2) and minimum total product unit cost (case3) are considered. The results show that the total products unit cost in case3 is around 20.4% and 24.3% lower than the corresponding value in case1 and 2, respectively. The lower product unit cost in case3 is accompanied with an expense of 10.21% and 4.5% reduction in the first and second law efficiencies, compared to case1 and 2, respectively. The results also indicate that concerning the costs associated with capital and exergy destruction costs of components, the priority of components for modifications are the turbine, condenser and absorber. The last component in this order are the two pumps in the system.

  16. Model Identification for Control of Display Units in Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Madsen, Henrik; Andersen, Philip Hvidthøft Delff

    in a supermarket refrigeration system. The grey-box modelling approach is adopted, using stochastic differential equations to define the dynamics of the model, combining prior knowledge of the physical system with data-driven modelling. Model identification is performed using the forward selection method...... model can contribute to the extension of the control capabilities of the entire supermarket refrigeration system....

  17. Theoretical study and design of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane and intended for cooling of gas transported in a gas-main pipeline

    KAUST Repository

    Petrenko, V.O.

    2011-11-01

    This paper describes the construction and performance of a novel combined system intended for natural gas transportation and power production, and for cooling of gas transported in a gas-main pipeline. The proposed system includes a gas turbine compressor, a combined electrogenerating plant and an ejector refrigeration unit operating with a hydrocarbon refrigerant. The combined electrogenerating plant consists of a high-temperature steam-power cycle and a low-temperature hydrocarbon vapor power cycle, which together comprise a binary vapor system. The combined system is designed for the highest possible effectiveness of power generation and could find wide application in gas-transmission systems of gas-main pipelines. Application of the proposed system would enable year-round power generation and provide cooling of natural gas during periods of high ambient temperature operation. This paper presents the main results of a theoretical study and design performance specifications of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane. © 2010 Elsevier Ltd and IIR. All rights reserved.

  18. The integration of cryogenic cooling systems with superconducting electronic systems

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  19. Simulation of the SSC refrigeration system using the ASPEN/SP process simulator

    International Nuclear Information System (INIS)

    Rasson, J.; Dweck, J.

    1990-01-01

    The SSC Magnet must be maintained at a superconducting temperature of 4 K. The proposed refrigeration cooling processes consist of fairly simple closed cycles which take advantage of the Joule-Thompson effect via a series of expansions and compressions of helium gas which has been precooled by liquid nitrogen. The processes currently under consideration consist of three cycles, the 20 K shield cooling, the 4.0 K helium refrigerator and the helium liquefier. The process units which are to be employed are compressors, turbines, expanders, mixers, flashes, two stream heat exchangers and multiple stream heat exchangers. The cycles are to be operated at or near steady state. Due to the large number of competing cooling sector designs to be considered and the high capital and operating costs of the proposed processes, the SSC Laboratory requires a software tool for the validation and optimization of the individual designs and for the performance of cost-benefit analyses among competing designs. Since these processes are steady state flow processes involving primarily standard unit operations, a decision was made to investigate the application of a commercial process simulator to the task. Several months of internal evaluations by the SSC Laboratory revealed that while the overall structure and calculation approach of a number of the commercial simulators were appropriate for this task, all were lacking essential capabilities in the areas of thermodynamic property calculations for cryogenic systems and modeling of complex, multiple stream heat exchangers. An acceptable thermodynamic model was provided and a series of simple, but three software vendors. Based on the results of the benchmark tests, the ASPEN/SP process simulator was selected for future modeling work. 2 refs., 4 figs

  20. Simulation of the SSC [Superconducting Super Collider] refrigeration system using the ASPEN/SP process simulator

    International Nuclear Information System (INIS)

    Rasson, J.; Dweck, J.

    1990-08-01

    The SSC Magnet must maintain at a super conducting temperature of 4 K. The proposed refrigeration cooling processes consist of fairly simple closed cycles which take advantage of the Joule-Thompson effect via a series of expansions and compressions of helium gas which has been precooled by liquid nitrogen. The processes currently under consideration consist of three cycles, the 20 K shield cooling, the 45 K helium refrigerator and the helium liquefier. The process units which are to be employed are compressors, turbines, expanders, mixers, flashes, two stream heat exchangers and multiple stream heat exchangers. The cycles are to be operated at or near steady state. Due to the large number of competing cooling sector designs to be considered and the high capital and operating costs of the proposed processes, the SSC Laboratory requires a software tool for the validation and optimization of the individual designs and for the performance of cost-benefit analyses among competing designs. Since these processes are steady state flow processes involving primarily standard unit operations, a decision was made to investigate the application of a commercial process simulator to the task. Several months of internal evaluations by the SSC Laboratory revealed that while the overall structure and calculation approach of number of the commercial simulators were appropriate for this task, all were lacking essential capabilities in the areas of thermodynamic property calculations for cryogenic systems and modeling of complex, multiple stream heat exchangers. An acceptable thermodynamics model was provided and a series of simple, but representative benchmark problems developed. The model and problems were provided to three software vendors. Based on the results of the benchmark test, the ASPEN/SP process simulator was selected for future modeling work

  1. Stirling Refrigerator

    Science.gov (United States)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  2. Profitability considerations for photovoltaics-based solar cooling systems; Wirtschaftlichkeitsbetrachtungen fuer photovoltaik-basierte solare Kuehlsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Kohlenbach, Paul [Beuth Hochschule fuer Technik, Berlin (Germany). Fachbereich VIII

    2016-07-01

    In the present article it is studied, under which boundary conditions the application of photovoltaics-based cooling systems is presently economically meaningful. A comparison with a net-drived cold-water set (100 kW{sub r} 5000 full hours/year) as reference system is made. As influence quantity the levelized cost of cooling energy (LCCE) is defined. Following options were studied: - PV system is directly conducted to the cooling facility by means of physical cable connection - PV system is separately fed into the current network and payed back via feeding compensation. Additionally sensitivity analyses of selected parameters on the refrigeration costs were studied.

  3. Mobile refrigeration system for precool and warm up of superconducting magnets

    Science.gov (United States)

    Gandla, S. K.; Longsworth, R. C.

    2017-12-01

    Conservation of helium has become more important in recent years due to global shortages in supply. Magnetic resonance imaging (MRI) superconducting magnets use approximately 20% of the world’s helium reserves in liquid form to cool down and maintain operating temperatures at 4 K. This paper describes a mobile cryogenic refrigeration system, which has been developed by Sumitomo (SHI) Cryogenics of America, Inc. to conserve helium by shipping MRI magnets warm and cooling them down or servicing them on site at a medical facility. The system can cool a typical magnet from room temperature to below 40K in less than a week. The system consists of four single stage Displex®-type Gifford-McMahon (GM) expanders in a cryostat with heat exchangers integrated on the cold ends that cool the helium gas, which is circulated in a closed-loop system through the magnet by a cryogenic fan. The system is configured with heaters on the heat exchangers to effectively warm up a magnet. The system includes a scroll vacuum pump, which is used to evacuate the helium circuit with or without the magnet and turbo pump to evacuate the cryostat. Vacuum-jacketed transfer lines connect the cryostat to the magnet. The system is designed with its own controller for continuous operation of precool, warm up and evacuation processes with automatic and manual controls. The cryostat, pumps and gas controls are mounted on a dewar cart. One compressor and the system controller are mounted on a compressor and control cart, and the other three compressors are mounted on separate carts.

  4. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Chul; Lee, Young Sub; Jung, Hoan Sung; Lim, In Chul [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power.

  5. Modeling Supermarket Refrigeration Systems for Demand-Side Management

    Directory of Open Access Journals (Sweden)

    Jakob Stoustrup

    2013-02-01

    Full Text Available Modeling of supermarket refrigeration systems for supervisory control in the smart grid is presented in this paper. A modular modeling approach is proposed in which each module is modeled and identified separately. The focus of the work is on estimating the power consumption of the system while estimating the cold reservoir temperatures as well. The models developed for each module as well as for the overall integrated system are validated by real data collected from a supermarket in Denmark. The results show that the model is able to estimate the actual electrical power consumption with a high fidelity. Moreover a simulation benchmark is introduced based on the produced model for demand-side management in smart grid. Finally, a potential application of the proposed benchmark in direct control of the power/energy consumption is presented by a simple simulation example.

  6. A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle

    Science.gov (United States)

    Tan, Hongbo; Shan, Siyu; Nie, Yang; Zhao, Qingxuan

    2018-06-01

    A new boil-off gas (BOG) re-liquefaction system for LNG carriers has been proposed to improve the system energy efficiency. Two cascade mixed refrigerant cycles (or dual mixed refrigerant cycle, DMR) are used to provide the cooling capacity for the re-liquefaction of BOG. The performance of the new system is analysed on the basis of the thermodynamic data obtained in the process simulation in Aspen HYSYS software. The results show that the power consumed in the BOG compressor and the high-temperature mixed refrigerant compressor could be saved greatly due to the reduced mass flow rates of the processed fluids. Assuming the re-liquefaction capacity of the investigated system is 4557.6 kg/h, it is found that the total power consumption can be reduced by 25%, from 3444 kW in the existing system to 2585.8 kW in the proposed system. The coefficient of performance (COP) of 0.25, exergy efficiency of 41.3% and the specific energy consumption (SEC) of 0.589 kWh/kg(LNG) could be achieved in the new system. It exhibits 33% of improvement in the COP and exergy efficiency in comparison with the corresponding values of the existing system. It indicates that employing the DMR based BOG re-liquefaction system could improve the system energy efficiency of LNG carriers substantially.

  7. Some comments about the comparison between a conventional and a solar powered absorption refrigeration system

    International Nuclear Information System (INIS)

    Corbella, O.D.; Garibotti, C.R.

    1983-08-01

    Two statements about the performance of solar refrigeration systems are discussed. First, concepts of efficiency and coefficient of performance are studied. Second, the influence of inflation and rise of fuel prices are considered, in relation to the comparison between solar and conventional refrigeration systems. (author)

  8. 46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.

    Science.gov (United States)

    2010-10-01

    ... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A... 46 Shipping 5 2010-10-01 2010-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154.1750 Section 154.1750 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK...

  9. CONCEPT OF AUTOMATIC CONTROL SYSTEM FOR IMPROVING THE EFFICIENCY OF THE ABSORPTION REFRIGERATING UNITS

    Directory of Open Access Journals (Sweden)

    O. Titlova

    2016-12-01

    Full Text Available The general concept of the automatic control systems constructing for increasing the efficiency of the artificial cold production process in the absorption refrigerating units is substantiated. The described automatic control systems provides necessary degree of the ammonia vapor purification from the water in all absorption refrigerating units modes and minimizes heat loss from the dephlegmator surface.

  10. Model-based predictive control scheme for cost optimization and balancing services for supermarket refrigeration Systems

    NARCIS (Netherlands)

    Weerts, H.H.M.; Shafiei, S.E.; Stoustrup, J.; Izadi-Zamanabadi, R.; Boje, E.; Xia, X.

    2014-01-01

    A new formulation of model predictive control for supermarket refrigeration systems is proposed to facilitate the regulatory power services as well as energy cost optimization of such systems in the smart grid. Nonlinear dynamics existed in large-scale refrigeration plants challenges the predictive

  11. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  12. Design and performance characteristics of solar adsorption refrigeration system using parabolic trough collector: Experimental and statistical optimization technique

    International Nuclear Information System (INIS)

    Abu-Hamdeh, Nidal H.; Alnefaie, Khaled A.; Almitani, Khalid H.

    2013-01-01

    Highlights: • The successes of using olive waste/methanol as an adsorbent/adsorbate pair. • The experimental gross cycle coefficient of performance obtained was COP a = 0.75. • Optimization showed expanding adsorbent mass to a certain range increases the COP. • The statistical optimization led to optimum tank volume between 0.2 and 0.3 m 3 . • Increasing the collector area to a certain range increased the COP. - Abstract: The current work demonstrates a developed model of a solar adsorption refrigeration system with specific requirements and specifications. The recent scheme can be employed as a refrigerator and cooler unit suitable for remote areas. The unit runs through a parabolic trough solar collector (PTC) and uses olive waste as adsorbent with methanol as adsorbate. Cooling production, COP (coefficient of performance, and COP a (cycle gross coefficient of performance) were used to assess the system performance. The system’s design optimum parameters in this study were arrived to through statistical and experimental methods. The lowest temperature attained in the refrigerated space was 4 °C and the equivalent ambient temperature was 27 °C. The temperature started to decrease steadily at 20:30 – when the actual cooling started – until it reached 4 °C at 01:30 in the next day when it rose again. The highest COP a obtained was 0.75

  13. Information technology equipment cooling system

    Science.gov (United States)

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  14. Thermodynamic and heat transfer analyses for R1234yf and R1234ze(E) as drop-in replacements for R134a in a small power refrigerating system

    International Nuclear Information System (INIS)

    Janković, Zvonimir; Sieres Atienza, Jaime; Martínez Suárez, José Antonio

    2015-01-01

    In this paper we present two different analyses of R1234yf and R1234ze(E) as drop-in replacements for R134a in a small power refrigeration system. The first analysis is based on equal evaporation and condensation temperatures before and after the refrigerant replacement. The second analysis is carried out for equal cooling medium conditions in the condenser, so that the transport properties and the heat transfer features in the condenser are considered for the three refrigerants. In order to perform the analyses, a simulation model was developed, that takes into account specific data, characteristics and dimensions of the main components of a small power refrigeration system. The model was validated with experimental data for R134a and later used to predict the behavior with R1234yf and R1234ze(E). Results show that different conclusions may be drawn if the drop-in analysis is carried out for equal condensation temperatures or for equal temperatures of the cooling medium in the condenser, as well as that these results are affected by the condenser design. In general, R1234yf seems as an adequate drop-in refrigerant for R134a, but R1234ze(E) may perform better when an overridden compressor can be used to match the refrigerating system cooling power. - Highlights: • Low GWP refrigerants R1234yf and R1234ze(E) are potential replacements for R134a. • Refrigerating system mathematical model to predict drop-in performance. • Drop-in analysis for the same evaporation and condensation temperatures. • Drop-in analysis for the same cooling medium temperatures. • Refrigerant heat transfer features have a great impact on the drop-in performance

  15. Data-Driven Predictive Direct Load Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Knudsen, Torben; Wisniewski, Rafal

    2015-01-01

    A predictive control using subspace identification is applied for the smart grid integration of refrigeration systems under a direct load control scheme. A realistic demand response scenario based on regulation of the electrical power consumption is considered. A receding horizon optimal control...... is proposed to fulfil two important objectives: to secure high coefficient of performance and to participate in power consumption management. Moreover, a new method for design of input signals for system identification is put forward. The control method is fully data driven without an explicit use of model...... against real data. The performance improvement results in a 22% reduction in the energy consumption. A comparative simulation is accomplished showing the superiority of the method over the existing approaches in terms of the load following performance....

  16. Experimental study of hybrid interface cooling system using air ventilation and nanofluid

    Science.gov (United States)

    Rani, M. F. H.; Razlan, Z. M.; Bakar, S. A.; Desa, H.; Wan, W. K.; Ibrahim, I.; Kamarrudin, N. S.; Bin-Abdun, Nazih A.

    2017-09-01

    The hybrid interface cooling system needs to be established to chill the battery compartment of electric car and maintained its ambient temperature inside the compartment between 25°C to 35°C. The air cooling experiment has been conducted to verify the cooling capacity, compressor displacement volume, dehumidifying value and mass flow rate of refrigerant (R-410A). At the same time, liquid cooling system is analysed theoretically by comparing the performance of two types of nanofluid, i.e., CuO + Water and Al2O3 + Water, based on the heat load generated inside the compartment. In order for the result obtained to be valid and reliable, several assumptions are considered during the experimental and theoretical analysis. Results show that the efficiency of the hybrid interface cooling system is improved as compared to the individual cooling system.

  17. Component-wise exergy and energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant

    Science.gov (United States)

    Gill, Jatinder; Singh, Jagdev

    2017-11-01

    In this work, the experimental examination was carried out using a mixture of R134a and LPG refrigerant (consisting of R134a and LPG in a proportion of 28:72 by weight) as a replacement for R134a in a vapor compression refrigeration system. Exergy and energy tests were carried out at different evaporator and condenser temperatures with controlled environmental conditions. The results showed that the exergy destruction in the compressor, condenser, evaporator, and a capillary tube of the R134a / LPG refrigeration system was found lower by approximately 11.13-3.41%, 2.24-3.43%, 12.02-13.47% and 1.54-5.61% respectively. The compressor exhibits the highest level of destruction, accompanied by a condenser, an evaporator and a capillary tube in refrigeration systems. The refrigeration capacity, COP and power consumption of the compressor of the R134a /LPG refrigeration system were detected higher and lower compared to the R134a refrigeration system by about 7.04-11.41%, 15.1-17.82%, and 3.83-8.08% respectively. Also, the miscibility of R134a and LPG blend with mineral oil discovered good. The R134a and LPG refrigerant mixture proposed in this study perform superior to R134a from component-wise exergy and energy analyses under similar experimental conditions.

  18. Component-wise exergy and energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant

    Science.gov (United States)

    Gill, Jatinder; Singh, Jagdev

    2018-05-01

    In this work, the experimental examination was carried out using a mixture of R134a and LPG refrigerant (consisting of R134a and LPG in a proportion of 28:72 by weight) as a replacement for R134a in a vapor compression refrigeration system. Exergy and energy tests were carried out at different evaporator and condenser temperatures with controlled environmental conditions. The results showed that the exergy destruction in the compressor, condenser, evaporator, and a capillary tube of the R134a / LPG refrigeration system was found lower by approximately 11.13-3.41%, 2.24-3.43%, 12.02-13.47% and 1.54-5.61% respectively. The compressor exhibits the highest level of destruction, accompanied by a condenser, an evaporator and a capillary tube in refrigeration systems. The refrigeration capacity, COP and power consumption of the compressor of the R134a /LPG refrigeration system were detected higher and lower compared to the R134a refrigeration system by about 7.04-11.41%, 15.1-17.82%, and 3.83-8.08% respectively. Also, the miscibility of R134a and LPG blend with mineral oil discovered good. The R134a and LPG refrigerant mixture proposed in this study perform superior to R134a from component-wise exergy and energy analyses under similar experimental conditions.

  19. Automotive exhaust gas flow control for an ammonia–water absorption refrigeration system

    International Nuclear Information System (INIS)

    Rêgo, A.T.; Hanriot, S.M.; Oliveira, A.F.; Brito, P.; Rêgo, T.F.U.

    2014-01-01

    A considerable part of the energy generated by an automotive internal combustion engine is wasted as heat in the exhaust system. This wasted heat could be recovered and applied to power auxiliary systems in a vehicle, contributing to its overall energy efficiency. In the present work, the experimental analysis of an absorption refrigeration system was performed. The exhaust system of an automotive internal combustion engine was connected to the generator element of an absorption refrigeration system. The performance of the absorption refrigerator was evaluated as a function of the supplied heat. The use of a control strategy for the engine exhaust gas mass flow rate was implemented to optimize the system. Exhaust gas flow was controlled by step-motor actuated valves commanded by a microcontroller in which a proportional-integral control scheme was implemented. Information such as engine torque, speed, key temperatures in the absorption cycle, as well as internal temperatures of the refrigerator was measured in a transient regime. The results indicated that the refrigeration system exhibited better performance when the amount of input heat is controlled based on the temperature of the absorption cycle generator. It was possible to conclude that, by dynamically controlling the amount of input heat, the utilisation range of the absorption refrigeration system powered by exhaust gas heat could be expanded in order to incorporate high engine speed operating conditions. - Highlights: •An absorption refrigerator was driven by automotive exhaust gas heat. •A system for controlling the refrigeration system heat input was developed. •Excessive exhaust gas heat leads to ineffective operation of the refrigerator. •Control of refrigerator's generator temperature led to better performance. •The use of exhaust gas was possible for high engine speeds

  20. Optimisation of Refrigeration System with Two-Stage and Intercooler Using Fuzzy Logic and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Bayram Kılıç

    2017-04-01

    Full Text Available Two-stage compression operation prevents excessive compressor outlet pressure and temperature and this operation provides more efficient working condition in low-temperature refrigeration applications. Vapor compression refrigeration system with two-stage and intercooler is very good solution for low-temperature refrigeration applications. In this study, refrigeration system with two-stage and intercooler were optimized using fuzzy logic and genetic algorithm. The necessary thermodynamic characteristics for optimization were estimated with Fuzzy Logic and liquid phase enthalpy, vapour phase enthalpy, liquid phase entropy, vapour phase entropy values were compared with actual values. As a result, optimum working condition of system was estimated by the Genetic Algorithm as -6.0449 oC for evaporator temperature, 25.0115 oC for condenser temperature and 5.9666 for COP. Morever, irreversibility values of the refrigeration system are calculated.

  1. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    International Nuclear Information System (INIS)

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system

  2. PERFORMANCE ANALYSIS OF VCR SYSTEM WITH VARYING THE DIAMETERS OF HELICAL CONDENSER COIL BY USING R-134A REFRIGERANT

    OpenAIRE

    R.Hussain Vali; P.Yagnasri; S.Naresh Kumar Reddy

    2016-01-01

    Vapor compression machine is a refrigerator in which the heat removed from the cold by evaporation of the refrigerant is given a thermal potential so that it can gravitate to a natural sink by compressing the vapor produced. Majority of the refrigerators works on the Vapor compression refrigeration system. The system consists of components like compressor, condenser, expansion valve and evaporator. The performance of the system depends on the performance of all the components of the system. ...

  3. Thermodynamic optimization of mixed refrigerant Joule- Thomson systems constrained by heat transfer considerations

    International Nuclear Information System (INIS)

    Hinze, J F; Klein, S A; Nellis, G F

    2015-01-01

    Mixed refrigerant (MR) working fluids can significantly increase the cooling capacity of a Joule-Thomson (JT) cycle. The optimization of MRJT systems has been the subject of substantial research. However, most optimization techniques do not model the recuperator in sufficient detail. For example, the recuperator is usually assumed to have a heat transfer coefficient that does not vary with the mixture. Ongoing work at the University of Wisconsin-Madison has shown that the heat transfer coefficients for two-phase flow are approximately three times greater than for a single phase mixture when the mixture quality is between 15% and 85%. As a result, a system that optimizes a MR without also requiring that the flow be in this quality range may require an extremely large recuperator or not achieve the performance predicted by the model. To ensure optimal performance of the JT cycle, the MR should be selected such that it is entirely two-phase within the recuperator. To determine the optimal MR composition, a parametric study was conducted assuming a thermodynamically ideal cycle. The results of the parametric study are graphically presented on a contour plot in the parameter space consisting of the extremes of the qualities that exist within the recuperator. The contours show constant values of the normalized refrigeration power. This ‘map’ shows the effect of MR composition on the cycle performance and it can be used to select the MR that provides a high cooling load while also constraining the recuperator to be two phase. The predicted best MR composition can be used as a starting point for experimentally determining the best MR. (paper)

  4. Solar thermally driven cooling systems: Some investigation results and perspectives

    International Nuclear Information System (INIS)

    Ajib, Salman; Günther, Wolfgang

    2013-01-01

    Highlights: ► Two types of solar thermally driven absorption refrigeration machines (ARMs) have been investigated. ► We investigated the influence of the operating conditions on the effectiveness of the ARMs. ► The influence of the flow rate of the work solution on the effectiveness of the ARMs has been tested. ► Two laboratory test plants have been built and tested under different operating conditions. - Abstract: A big increase in the number of solar thermal cooling installations and research efforts could be seen over the last years worldwide. Especially the producers of solar thermal collectors and systems have been looking for thermal chillers in the small capacity range to provide air conditioning for one or two family houses. Furthermore, many developments aim to increase the efficiency of the system and to decrease the specific costs of the produced refrigeration capacity. The growth in the use of solar thermal cooling systems amounted about 860% from 52 units in 2004 to 450 units in 2009 [1]. This tendency is expected to be continuously in the next years. The practical examinations on solar thermally driven absorption machines with refrigeration capacity of 15, 10 and 5 kW have shown that this technology has a good chance to be standardized and to replace partly the conventional one. These systems can save more primary energy at high fraction of solar thermally driving by suitable control and regulation of the system. The investing costs still higher as the conventional one, however, the operating costs are less than the conventional one. The Coefficient of Performance (COP) depends on the kind of the system, work temperatures and conditions as well as the refrigeration capacity of the systems. It lies between 0.4 and 1.2. In the framework of the research on this field, we built, tested and measured two prototypes. After measuring the first prototype, the chillers were redesigned to reduce internal heat losses and make the heat and mass transfer

  5. Experimental evaluation of R448A as R404A lower-GWP alternative in refrigeration systems

    International Nuclear Information System (INIS)

    Mota-Babiloni, Adrián; Navarro-Esbrí, Joaquín; Peris, Bernardo; Molés, Francisco; Verdú, Gumersindo

    2015-01-01

    Highlights: • R448A (GWP = 1273) is an A1 refrigerant proposed in DX supermarket refrigeration systems. • Performance of R448A and R404A is evaluated under different conditions. • R448A presents lower cooling capacity but higher COP than R404A. • The R448A maximum discharge temperature is always below 380 K. • R448A is more interesting at high condensing (ambient) temperatures. - Abstract: Due to the adoption of EU Regulation No 517/2014, R404A is going to be banned in Europe in most of refrigeration applications, in which is typically used, due to its very high GWP value, 3943. In this paper an experimental comparison between R404A and R448A, a non-flammable alternative with GWP of 1390, is presented. The experimental tests are intended to simulate typical freezing and conservation temperatures and different condensing conditions. Despite cooling capacity of R448A is slightly below that of R404A, R448A energy consumption is even smaller; and R448A COP is higher than that obtained using R404A. Hence, it can be concluded that R448A could be an energy efficient alternative to R404A with a GWP reduction of 70%. Compressor discharge temperature remains at non-dangerous levels.

  6. Performance study on a low-temperature absorption–compression cascade refrigeration system driven by low-grade heat

    International Nuclear Information System (INIS)

    Xu, Yingjie; Chen, Guangming; Wang, Qin; Han, Xiaohong; Jiang, Ning; Deng, Shiming

    2016-01-01

    Highlights: • An absorption–compression system for low-temperature is developed and analyzed. • Cooling capacity, compression power, and discharge temperature are all improved. • At −170 °C, giving 200 W low-grade cooling capacity, COP increases by 28.6%. • Simulation results are verified experimentally, showing good agreement. - Abstract: This paper presents a performance study on a low-temperature absorption–compression cascade refrigeration system (LACRS), which consists of an absorption subsystem (AS) and a vapor compression auto-cascade subsystem (CS). In the system, low-grade heat of AS is used to subcool the CS, which can obtain cold energy at −170 °C. A simulation study is carried out to investigate the effects of evaporating temperature and low-grade cooling capacity on system performance. The study results show that as low-grade cooling capacity from the AS is provided to the CS, high-grade cooling capacity increases, compressor power consumption decreases, and the COP of the CS therefore increases. Comparing with compression auto-cascade cycle, the largest COP improvement of LACRS is about 38%. The model is verified by experimental data. An additional high-grade cooling capacity is obtained experimentally at −170 °C. The study results presented in this paper not only demonstrate the excellent performance of the LACRS, but also provide important guidance to further system design, and practical application.

  7. Thermal and economical optimization of air conditioning units with vapor compression refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, S.; Malekmohammadi, H.R. [Iran University of Science and Technology, Tehran (Iran). Dept. of Mechanical Engineering

    2004-09-01

    A new method of thermal and economical optimum design of air conditioning units with vapor compression refrigeration system, is presented. Such a system includes compressor, condenser, evaporator, centrifugal and axial fans. Evaporator and condenser temperatures, their heating surface areas (frontal surface area and number of tubes), centrifugal and axial fan powers, and compressor power are among the design variables. The data provided by manufacturers for fan (volume flow rate versus pressure drop) and compressor power (using evaporator and condenser temperatures) was used to choose these components directly from available data for consumers. To study the performance of the system under various situations, and implementing the optimization procedure, a simulation program including all thermal and geometrical parameters was developed. The objective function for optimization was the total cost per unit cooling load of the system including capital investment for components as well as the required electricity cost. To find the system design parameters, this objective function was minimized by Lagrange multipliers method. The effects of changing the cooling load on optimal design parameters were studied. (author)

  8. Exergy Flows inside a One Phase Ejector for Refrigeration Systems

    Directory of Open Access Journals (Sweden)

    Mohammed Khennich

    2016-03-01

    Full Text Available The evaluation of the thermodynamic performance of the mutual transformation of different kinds of exergy linked to the intensive thermodynamic parameters of the flow inside the ejector of a refrigeration system is undertaken. Two thermodynamic metrics, exergy produced and exergy consumed, are introduced to assess these transformations. Their calculation is based on the evaluation of the transiting exergy within different ejector sections taking into account the temperature, pressure and velocity variations. The analysis based on these metrics has allowed pinpointing the most important factors affecting the ejector’s performance. A new result, namely the temperature rise in the sub-environmental region of the mixing section is detected as an important factor responsible for the ejector’s thermodynamic irreversibility. The overall exergy efficiency of the ejector as well as the efficiencies of its sections are evaluated based on the proposed thermodynamic metrics.

  9. Potential energy savings using dynamically optimizing control in refrigeration systems under daily variations in ambient temperature

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth; Thybo, Claus; Wisniewski, Rafal

    2007-01-01

    The objective of this study is to investigate the energy saving potential for refrigeration systems by refrigeration more at the colder night time than at the warmer day time. The potential is evaluated using an optimal control policy and illustrated on a simulation example. The results show...

  10. Experimental study on the Stirling refrigerator for cooling of infrared detector

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. J.; Hong, Y. J.; Kim, H. B.; Koh, D. Y. [Korea Institute of Machinery and Materials, Taejon (Korea, Republic of); Kim, J. H.; Yu, B. K. [Wooyoung, Seoul (Korea, Republic of)

    2001-07-01

    A Stirling cryocooler is relatively compact, reliable, commercially available, and uses helium as a working fluid. The FPFD Stirling cryocooler consists of two compressor pistons driven by linear motors which makes pressure waves and a pneumatically driven displacer piston with regenerator. A Free Piston and Free Displacer (FPFD) Stirling cryocooler for cooling infrared and cryo-sensors is currently under development at KIMM(Korea Institute of Machinery and Materials). In order to evaluate the feasibility of using a linear motor driving cryocooler, prototype Stirling cryocooler with a nominal cooling capacity of 0.5W at 80K was designed, fabricated and tested. The prototype has achieved no load temperature of 51K and cooling power of 0.33W.

  11. Experimental study on the Stirling refrigerator for cooling of infrared detector

    International Nuclear Information System (INIS)

    Park, S. J.; Hong, Y. J.; Kim, H. B.; Koh, D. Y.; Kim, J. H.; Yu, B. K.

    2001-01-01

    A Stirling cryocooler is relatively compact, reliable, commercially available, and uses helium as a working fluid. The FPFD Stirling cryocooler consists of two compressor pistons driven by linear motors which makes pressure waves and a pneumatically driven displacer piston with regenerator. A Free Piston and Free Displacer (FPFD) Stirling cryocooler for cooling infrared and cryo-sensors is currently under development at KIMM(Korea Institute of Machinery and Materials). In order to evaluate the feasibility of using a linear motor driving cryocooler, prototype Stirling cryocooler with a nominal cooling capacity of 0.5W at 80K was designed, fabricated and tested. The prototype has achieved no load temperature of 51K and cooling power of 0.33W

  12. Experimental study of refrigeration performance based on linear Fresnel solar thermal photovoltaic system

    Science.gov (United States)

    Song, Jinghui; Yuan, Hui; Xia, Yunfeng; Kan, Weimin; Deng, Xiaowen; Liu, Shi; Liang, Wanlong; Deng, Jianhua

    2018-03-01

    This paper introduces the working principle and system constitution of the linear Fresnel solar lithium bromide absorption refrigeration cycle, and elaborates several typical structures of absorption refrigeration cycle, including single-effect, two-stage cycle and double-effect lithium bromide absorption refrigeration cycle A 1.n effect absorption chiller system based on the best parameters was introduced and applied to a linear Fresnel solar absorption chiller system. Through the field refrigerator performance test, the results show: Based on this heat cycle design and processing 1.n lithium bromide absorption refrigeration power up to 35.2KW, It can meet the theoretical expectations and has good flexibility and reliability, provides guidance for the use of solar thermal energy.

  13. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  14. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  15. Simulations of floor cooling system capacity

    International Nuclear Information System (INIS)

    Odyjas, Andrzej; Górka, Andrzej

    2013-01-01

    Floor cooling system capacity depends on its physical and operative parameters. Using numerical simulations, it appears that cooling capacity of the system largely depends on the type of cooling loads occurring in the room. In the case of convective cooling loads capacity of the system is small. However, when radiation flux falls directly on the floor the system significantly increases productivity. The article describes the results of numerical simulations which allow to determine system capacity in steady thermal conditions, depending on the type of physical parameters of the system and the type of cooling load occurring in the room. Moreover, the paper sets out the limits of system capacity while maintaining a minimum temperature of the floor surface equal to 20 °C. The results are helpful for designing system capacity in different type of cooling loads and show maximum system capacity in acceptable thermal comfort condition. -- Highlights: ► We have developed numerical model for simulation of floor cooling system. ► We have described floor system capacity depending on its physical parameters. ► We have described floor system capacity depending on type of cooling loads. ► The most important in the obtained cooling capacities is the type of cooling loads. ► The paper sets out the possible maximum cooling floor system capacity

  16. 'TEWI' concept for estimation of the global warming from the refrigerating and air conditioning systems

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2002-01-01

    The most applied CFC refrigerants and their HFC alternatives. values of ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) of the most used refrigerants. natural working fluids and their properties. Montreal Protocol and Kyoto Protocol, illogical relations between them concerning to the HFC fluids. Confusion and polemics on the international level about the appliance of HFCs which, by the Kyoto Protocol, are liable to reduction. Introduction of the TEWI concept as a method for estimating the overall influence of refrigerating and air conditioning systems on the greenhouse effect: the direct emission (refrigerant leakage in the atmosphere) and indirect emission as a result of the electrical energy consumption. A demonstration of the TEWI concept on the concrete example in several variants. A discussion about the appliance of the TEWI concept. Meaning of the energy efficiency of the refrigerating systems (indirect CO 2 emission). One of the main measures: prevention of refrigerant leakage (direct CO 2 emission). A need of permanent education and training courses of the people who work on refrigerating and air conditioning systems. A necessity for constitution of an expert body in the country, preparation of a strategy to lay obligations on the new changes of the Kyoto Protocol and news on the world market. Introduction of country regulations, certification of the companies and people involved in refrigeration and air conditioning. (Author)

  17. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  18. An optimal power management system for a regenerative auxiliary power system for delivery refrigerator trucks

    International Nuclear Information System (INIS)

    Mohagheghi Fard, Soheil; Khajepour, Amir

    2016-01-01

    Highlights: • A new anti-idling system for refrigerator trucks is proposed. • This system enables regenerative braking. • An innovative two-level controller is proposed for the power management system. • A fast dynamic programming technique to find real-time SOC trajectory is proposed. • In addition to idling elimination, this system reduces fuel consumption. - Abstract: Engine idling of refrigerator trucks during loading and unloading contributes to greenhouse gas emissions due to their increased fuel consumption. This paper proposes a new anti-idling system that uses two sources of power, battery and engine-driven generator, to run the compressor of the refrigeration system. Therefore, idling can be eliminated because the engine is turned OFF and the battery supplies auxiliary power when the vehicle is stopped for loading or unloading. This system also takes advantage of regenerative braking for increased fuel savings. The power management of this system needs to satisfy two requirements: it must minimize fuel consumption in the whole cycle and must ensure that the battery has enough energy for powering the refrigeration system when the engine is OFF. To meet these objectives, a two-level controller is proposed. In the higher level of this controller, a fast dynamic programming technique that utilizes extracted statistical features of drive and duty cycles of a refrigerator truck is used to find suboptimal values of the initial and final SOC of any two consecutive loading/unloading stops. The lower level of the controller employs an adaptive equivalent fuel consumption minimization (A-ECMS) to determine the split ratio of auxiliary power between the generator and battery for each segment with initial and final SOC obtained by the high-level controller. The simulation results confirm that this new system can eliminate idling of refrigerator trucks and reduce their fuel consumption noticeably such that the cost of replacing components is recouped in a

  19. Optimal analysis of gas cooler and intercooler for two-stage CO2 trans-critical refrigeration system

    International Nuclear Information System (INIS)

    Li, Wenhua

    2013-01-01

    Highlights: • Simplified model for tube-fin gas cooler for CO 2 refrigeration system was presented and validated. • Several parameters were investigated using 1st law and 2nd law in component and system level. • Practical guidelines of optimum for tube-fin gas cooler and intercooler were proposed. - Abstract: Energy-based 1st law and exergy-based 2nd law are both employed in the paper to assess the optimal design of gas cooler and intercooler for two-stage CO 2 refrigeration system. A simplified mathematical model of the air-cooled coil is presented and validated against experimental data with good accuracy. The optimum circuit length under the influence of frontal air velocity and deep rows is investigated first. Thereafter, designed coil with optimum circuit length is further evaluated within the two-stage refrigeration system. It is found out the optimum point using 1st law does not coincide with the point using 2nd law in isolated component and the simulation results from isolated component by 2nd law are closer to system analysis. Results show optimum circuit length is much bigger for gas cooler than intercooler and the influence on the length from variation of frontal air velocity and deep rows may be neglected. There does exist optimum frontal air velocity which will decrease with more number of deep rows

  20. Performance measurement of a mini thermoacoustic refrigerator and associated drivers

    OpenAIRE

    Petrina, Denys E.

    2002-01-01

    Approved for public release; distribution is unlimited A miniature Thermoacoustic refrigerator is being developed to cool integrated circuits - which must sometimes operate at high temperatures nearing the upper threshold of their tolerance - to temperature spans more within the circuits' tolerable limits, without the need of the chemicals of a traditional refrigerating system. The development of an electrically powered acoustic driver that powers the thermoacoustic refrigerator is describ...

  1. Terminology for refrigerating machinery in 5 languages with definitions. CECOMAF terminology English, French, German, Italian and Spanish. Terminologie fuer kaeltetechnische Erzeugnisse in 5 Sprachen mit Definitionen. CECOMAF Terminologie English, Francais, Deutsch, Italiano, Espanol

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The dictionary covers the following topics: Directions for user, alphabetical list, subject index, main groups: Refrigerating systems and plants, compressors, heat exchangers and apparatus, control and safety devices, equipment for refrigerated storage and transport, refrigerators and refrigerated cabinets, special cooling and freezing equipment, miscellaneous; definitions for the above mentioned main groups, and corrections.

  2. Environmental effects of cooling systems

    International Nuclear Information System (INIS)

    1980-01-01

    Since the International Atomic Energy Agency published in 1974 Thermal Discharges at Nuclear Power Stations (Technical Reports Series No.155), much progress has been made in the understanding of phenomena related to thermal discharges. Many studies have been performed in Member States and from 1973 to 1978 the IAEA sponsored a co-ordinated research programme on 'Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations'. Seven laboratories from Canada, the Federal Republic of Germany, India and the United States of America were involved in this programme, and a lot of new information has been obtained during the five years' collaboration. The progress of the work was discussed at annual co-ordination meetings and the results are presented in the present report. It complements the previous report mentioned above as it deals with several questions that were not answered in 1974. With the conclusion of this co-ordinated programme, it is obvious that some problems have not yet been resolved and that more work is necessary to assess completely the impact of cooling systems on the environment. It is felt, however, that the data gathered here will bring a substantial contribution to the understanding of the subject

  3. Evaporative cooling enhanced cold storage system

    Science.gov (United States)

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  4. Vapor Compression Refrigeration System for Cold Storage on Spacecrafts, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is looking for a high efficiency long term food storage system for space crafts. Previous refrigerator/freezer systems developed for this application such as...

  5. A novel nuclear combined power and cooling system integrating high temperature gas-cooled reactor with ammonia–water cycle

    International Nuclear Information System (INIS)

    Luo, Chending; Zhao, Fuqiang; Zhang, Na

    2014-01-01

    Highlights: • We propose a novel nuclear ammonia–water power and cooling cogeneration system. • The high temperature reactor is inherently safe, with exhaust heat fully recovered. • The thermal performances are improved compared with nuclear combined cycle. • The base case attains an energy efficiency of 69.9% and exergy efficiency of 72.5%. • Energy conservation and emission reduction are achieved in this cogeneration way. - Abstract: A nuclear ammonia–water power and refrigeration cogeneration system (NAPR) has been proposed and analyzed in this paper. It consists of a closed high temperature gas-cooled reactor (HTGR) topping Brayton cycle and a modified ammonia water power/refrigeration combined bottoming cycle (APR). The HTGR is an inherently safe reactor, and thus could be stable, flexible and suitable for various energy supply situation, and its exhaust heat is fully recovered by the mixture of ammonia and water in the bottoming cycle. To reduce exergy losses and enhance outputs, the ammonia concentrations of the bottoming cycle working fluid are optimized in both power and refrigeration processes. With the HTGR of 200 MW thermal capacity and 900 °C/70 bar reactor-core-outlet helium, the system achieves 88.8 MW net electrical output and 9.27 MW refrigeration capacity, and also attains an energy efficiency of 69.9% and exergy efficiency of 72.5%, which are higher by 5.3%-points and 2.6%-points as compared with the nuclear combined cycle (NCC, like a conventional gas/steam power-only combined cycle while the topping cycle is a closed HTGR Brayton cycle) with the same nuclear energy input. Compared with conventional separate power and refrigeration generation systems, the fossil fuel saving (based on CH 4 ) and CO 2 emission reduction of base-case NAPR could reach ∼9.66 × 10 4 t/y and ∼26.6 × 10 4 t/y, respectively. The system integration accomplishes the safe and high-efficiency utilization of nuclear energy by power and refrigeration

  6. Development of a CO{sub 2} cooling system for the CBM silicon tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Rosado, Jorge; Degirmenciler, Burak; Heuser, Johann; Sturm, Christian [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Lymanets, Anton; Schmidt, Hans Rudolf [Eberhard Karls Universitaet Tuebingen (Germany)

    2015-07-01

    The demanding requirements of current high-energy physics experiments curiously bring back the idea of using a well-known and present refrigerant in nature: CO{sub 2}. As an outcome of previous studies and effort made within the current upgrade programs of detectors like ATLAS or CMS, this refrigerant is the optimum solution. Due to its highest volumetric heat transfer coefficient, it fulfills the requirements in this kind of detectors such as reduction of mass budget and the use of smaller diameter for cooling pipes. A two-phase (evaporative) CO{sub 2} cooling system is taken as the first choice to extract the 42 kW dissipated by the electronics of the Silicon Tracking System, the central detector of the CBM experiment at FAIR that will be installed in the gap of the 1 T super-conducting dipole magnet in a confined volume of 2 m{sup 3}. As a step towards the final design of this a cooling system, a 1 kW cooling unit called TRACI-XL was conceived at GSI in cooperation with CERN. This scaled prototype allows gaining insight into the behavior of the full system with valuable conclusions in terms of thermodynamics, process engineering and automation.

  7. Energetic, Exergetic and Exergoeconomic Analysis of CO2 Refrigeration Systems Operating in Hot Climates

    DEFF Research Database (Denmark)

    Gullo, Paride; Elmegaard, Brian; Cortella, Giovanni

    2015-01-01

    of the product of a R744 refrigeration solution with auxiliary compressor with those of a R744 conventional system, both of them operating in transcritical conditions. The results pointed out that the adoption of an auxiliary compressor resulted in an increase of the COP by approximately 18.7% over...... conditions. CO2 refrigeration system with parallel compression represents one of the solutions which have been proposed in the last few years in order to enhance the performance of a single-stage refrigeration system. The main target of this study is to compare the thermodynamic efficiency and the final cost...

  8. Triple-effect absorption refrigeration system with double-condenser coupling

    Science.gov (United States)

    DeVault, Robert C.; Biermann, Wendell J.

    1993-01-01

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  9. Analysis of a combined Rankine-vapour-compression refrigeration cycle

    International Nuclear Information System (INIS)

    Aphornratana, Satha; Sriveerakul, Thanarath

    2010-01-01

    This paper describes a theoretical analysis of a heat-powered refrigeration cycle, a combined Rankine-vapour-compression refrigeration cycle. This refrigeration cycle combines an Organic Rankine Cycle and a vapour-compression cycle. The cycle can be powered by low grade thermal energy as low as 60 deg. C and can produce cooling temperature as low as -10 deg. C. In the analysis, two combined Rankine-vapour-compression refrigeration cycles were investigated: the system with R22 and the system with R134a. Calculated COP values between 0.1 and 0.6 of both the systems were found.

  10. Analysis of synchronization in a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Leth, John-Josef; Rasmussen, Jakob Gulddahl

    2014-01-01

    increases both the energy consumption and the wear of components. Besides this practical importance, from the theoretical point of view, synchronization, likewise stability, Zeno phenomenon, and chaos, is an interesting dynamical phenomenon. The study of synchronization in the supermarket refrigeration...

  11. Zero-ODP Refrigerants for Low Tonnage Centrifugal Chiller Systems

    National Research Council Canada - National Science Library

    Gui, Fulin

    1996-01-01

    ..., HFC-236cb, HFC-236fa, HFC-245cb, and HFC-254cb, for centrifugal chiller applications. We took into account the thermodynamic properties of the refrigerant and aerodynamic properties of the impeller compression process to this evaluation...

  12. Current fluctuations in quantum absorption refrigerators

    Science.gov (United States)

    Segal, Dvira

    2018-05-01

    Absorption refrigerators transfer thermal energy from a cold bath to a hot bath without input power by utilizing heat from an additional "work" reservoir. Particularly interesting is a three-level design for a quantum absorption refrigerator, which can be optimized to reach the maximal (Carnot) cooling efficiency. Previous studies of three-level chillers focused on the behavior of the averaged cooling current. Here, we go beyond that and study the full counting statistics of heat exchange in a three-level chiller model. We explain how to obtain the complete cumulant generating function of the refrigerator in a steady state, then derive a partial cumulant generating function, which yields closed-form expressions for both the averaged cooling current and its noise. Our analytical results and simulations are beneficial for the design of nanoscale engines and cooling systems far from equilibrium, with their performance optimized according to different criteria, efficiency, power, fluctuations, and dissipation.

  13. Experimental study on an innovative multifunction heat pipe type heat recovery two-stage sorption refrigeration system

    International Nuclear Information System (INIS)

    Li, T.X.; Wang, R.Z.; Wang, L.W.; Lu, Z.S.

    2008-01-01

    An innovative multifunction heat pipe type sorption refrigeration system is designed, in which a two-stage sorption thermodynamic cycle based on two heat recovery processes was employed to reduce the driving heat source temperature, and the composite sorbent of CaCl 2 and activated carbon was used to improve the mass and heat transfer performances. For this test unit, the heating, cooling and heat recovery processes between two reactive beds are performed by multifunction heat pipes. The aim of this paper is to investigate the cycled characteristics of two-stage sorption refrigeration system with heat recovery processes. The two sub-cycles of a two-stage cycle have different sorption platforms though the adsorption and desorption temperatures are equivalent. The experimental results showed that the pressure evolutions of two beds are nearly equivalent during the first stage, and desorption pressure during the second stage is large higher than that in the first stage while the desorption temperatures are same during the two operation stages. In comparison with conventional two-stage cycle, the two-stage cycle with heat recovery processes can reduce the heating load for desorber and cooling load for adsorber, the coefficient of performance (COP) has been improved more than 23% when both cycles have the same regeneration temperature of 103 deg. C and the cooling water temperature of 30 deg. C. The advanced two-stage cycle provides an effective method for application of sorption refrigeration technology under the condition of low-grade temperature heat source or utilization of renewable energy

  14. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1998-03-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to thermophysical properties, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air conditioning and refrigeration equipment. It also references documents addressing compatibility of refrigerants and lubricants with other materials.

  15. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1999-01-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  16. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  17. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  18. Design and Thermodynamic Analysis of a Steam Ejector Refrigeration/Heat Pump System for Naval Surface Ship Applications

    Directory of Open Access Journals (Sweden)

    Cüneyt Ezgi

    2015-12-01

    Full Text Available Naval surface ships should use thermally driven heating and cooling technologies to continue the Navy’s leadership role in protecting the marine environment. Steam ejector refrigeration (SER or steam ejector heat pump (SEHP systems are thermally driven heating and cooling technologies and seem to be a promising technology to reduce emissions for heating and cooling on board naval surface ships. In this study, design and thermodynamic analysis of a seawater cooled SER and SEHP as an HVAC system for a naval surface ship application are presented and compared with those of a current typical naval ship system case, an H2O-LiBr absorption heat pump and a vapour-compression heat pump. The off-design study estimated the coefficient of performances (COPs were 0.29–0.11 for the cooling mode and 1.29–1.11 for the heating mode, depending on the pressure of the exhaust gas boiler at off-design conditions. In the system operating at the exhaust gas boiler pressure of 0.2 MPa, the optimum area ratio obtained was 23.30.

  19. Heat pipe as a cooling mechanism in an aeroponic system

    Energy Technology Data Exchange (ETDEWEB)

    Srihajong, N.; Terdtoon, P.; Kamonpet, P. [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand); Ruamrungsri, S. [Department of Horticulture, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200 (Thailand); Ohyama, T. [Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University (Japan)

    2006-02-01

    This paper presents an establishment of a mathematical model explaining the operation of an aeroponic system for agricultural products. The purpose is to study the rate of energy consumption in a conventional aeroponic system and the feasibility of employing a heat pipe as an energy saver in such a system. A heat pipe can be theoretically employed to remove heat from the liquid nutrient that flows through the growing chamber of an aeroponic system. When the evaporator of the heat pipe receives heat from the nutrient, the inside working fluid evaporates into vapor and flows to condense at the condenser section. The outlet temperature of the nutrient from the evaporator section is, therefore, decreased by the heat removal mechanism. The heat pipe can also be used to remove heat from the greenhouse by applying it on the greenhouse wall. By doing this, the nutrient temperature before entering into the nutrient tank decreases and the cooling load of evaporative cooling will subsequently be decreased. To justify the heat pipe application as an energy saver, numerical computations have been done on typical days in the month of April from which maximum heating load occurs and an appropriate heat pipe set was theoretically designed. It can be seen from the simulation that the heat pipe can reduce the electric energy consumption of an evaporative cooling and a refrigeration systems in a day by 17.19% and 10.34% respectively. (author)

  20. Materials and systems developments on solid absorption refrigeration with CaCl2·xNH3

    International Nuclear Information System (INIS)

    Iloeji, O.C.

    1995-10-01

    The paper presents some developments on the stabilization of CaCl 2 for use as a solid absorption material in refrigerators, the development of a refrigerator using the stabilized salt, and computer modelling of the refrigerator system. (author). 8 refs, 19 figs

  1. SBIR Grant:No-Vibration Agile Cryogenic Optical Refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard

    2013-04-09

    Optical refrigeration is currently the only all-solid-state cryocooling technology that has been demonstrated. Optical cryocoolers are devices that use laser light to cool small crystal or glass cooling elements. The cooling element absorbs the laser light and reradiates it at higher energy, an example of anti-Stokes fluorescence. The dif-ference between the energy of the outgoing and incoming light comes from the thermal energy of the cooling element, which in turn becomes colder. Entitled No-Vibration Agile Cryocoolers using Optical Refrigeration, this Phase I proposal directly addressed the continued development of the optical refrigerator components necessary to transition this scientific breakthrough into National Nu-clear Security Administration (NNSA) sensor applications in line with the objectives of topic 50b. ThermoDynamic Films LLC (TDF), in collaboration with the University of New Mexico (UNM), cooled an optical-refrigerator cooling element comprised of an ytterbium-doped yttrium lithium fluoride (Yb:YLF) crystal from room tempera-ture to 123 K with about 2% efficiency. This is the world record in optical refrigera-tion and an important step toward revolutionizing cryogenic systems for sensor ap-plications. During this period, they also designed and analyzed the crucial elements of a prototype optical refrigerator including the thermal link that connects the cool-ing element with the load.

  2. Operation of a forced two phase cooling system on a large superconducting magnet

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Eberhard, P.H.; Gibson, G.H.; Pripstein, M.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Van Slyke, H.

    1980-05-01

    This paper describes the operation of a forced two phase cooling system on a two meter diameter superconducting solenoid. The magnet is a thin high current density superconducting solenoid which is cooled by forced two phase helium in tubes around the coil. The magnet, which is 2.18 meters in diameter and 3.4 meters long, has a cold mass of 1700 kg. The two phase cooling system contains less than 300 liters of liquid helium, most of which is contained in a control dewar. This paper describes the operating characteristics of the LBL two phase forced cooling system during cooldown and warm up. The paper presents experimental data on operations of the magnet using either a helium pump or the refrigerator compressor to circulate two phase helium through the superconducting coil cooling tubes

  3. Comparison of a R744 cascade refrigeration system with R404A and R22 conventional systems for supermarkets

    International Nuclear Information System (INIS)

    Silva, Alessandro da; Pedone Bandarra Filho, Enio; Pontes Antunes, Arthur Heleno

    2012-01-01

    The present article focuses on the energy efficiency and climate performance of three different systems used in supermarket applications. The refrigeration systems consist of a cascade cycle (CO 2 /HFC-404A) – provide nominal refrigerating capacity – with carbon dioxide for subcritical operation and HFC-404A in the high stage temperature stage (pump circuit for normal refrigeration and direct expansion for deep-freezing), and also HFC-404A and HCFC-22 with direct expansion systems. The cascade system presented a lower refrigerant charge, 47 kg of both fluids, which represents less than a half of the refrigerant charge of the other systems. An important factor is the total GWP in case of leakage, where the impact in the atmosphere of the cascade system operating with CO 2 was much less than the two direct expansion systems.

  4. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  5. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2017-11-07

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  6. Dry and mixed air cooling systems

    International Nuclear Information System (INIS)

    Gutner, Gidali.

    1975-01-01

    The various dry air cooling systems now in use or being developed are classified. The main dimensioning parameters are specified and the main systems already built are given with their characteristics. The available data allow dry air cooling to be situated against the other cooling modes and so specify the aim of the research or currently developed works. Some systems at development stages are briefly described. The interest in mixed cooling (assisted draft) and the principal available systems is analyzed. A program of research is outlined [fr

  7. Performance Evaluation of a Solar Adsorption Refrigeration System with a Wing Type Compound Parabolic Concentrator

    OpenAIRE

    Umair, Muhammad; Akisawa, Atsushi; Ueda, Yuki

    2014-01-01

    Simulation study of a solar adsorption refrigeration system using a wing type compound parabolic concentrator (CPC) is presented. The system consists of the wing type collector set at optimum angles, adsorption bed, a condenser and a refrigerator. The wing type collector captures the solar energy efficiently in the morning and afternoon and provides the effective temperature for a longer period of time compared to that achieved by a linear collector. The objectives of the study were to evalua...

  8. Experimental Investigation of Air Conditioner using the Desiccant Cooling System in Equatorial Climates

    Directory of Open Access Journals (Sweden)

    Abdullah Kamaruddin

    2018-01-01

    Full Text Available Indonesia lies in the tropical climate which requires air conditioning to increase working productivity of the people. Up to now people are still using the compressive cooling system which uses Freon as the refrigerant, which have been known to have a negative environmental impact. Therefore, new cooling system which is environmentally friendly is now needed. Desiccant cooling system manipulates the humidity condition of outside air in such a way so that the final temperature should become at 25 °C and RH of 65 %. Since it does not require refrigerant, a desiccant cooling has the potential to be developed in a tropical country like Indonesia. In this study an experimental desiccant cooling system has been designed and constructed and tested under laboratory condition. Experimental results have shown that the resulting air temperature was 26.1 °C with RH of 55.6 %, and average cooling capacity was 0.425 kW. The COP was found to be 0.44.

  9. Grey-box Modeling for System Identification of Household Refrigerators: a Step Toward Smart Appliances

    DEFF Research Database (Denmark)

    Costanzo, Giuseppe Tommaso; Sossan, Fabrizio; Marinelli, Mattia

    2013-01-01

    units, which operation can be shifted within temperature and operational constraints. Even if the refrigerators are not intended to be used as smart loads, validated models are useful in predicting units consumption. This information can increase the optimality of the management of other flexible units......This paper presents the grey-box modeling of a vapor-compression refrigeration system for residential applications based on maximum likelihood estimation of parameters in stochastic differential equations. Models obtained are useful in the view of controlling refrigerators as flexible consumption...

  10. Control of Refrigeration Systems for Trade-off between Energy Consumption and Food Quality Loss

    DEFF Research Database (Denmark)

    Cai, Junping

    In supermarkets, control strategies determine both the energy consumption of refrigeration systems and the quality loss of refrigerated foodstuffs. The question is, what can be done to optimize the balance between quality loss and energy consumption? This thesis tries to answer this question...... by applying two main optimization strategies to traditional refrigeration systems. The first strategy is a new defrost-on-demand scheme, which based on an objective function between quality loss and energy consumption, continuously seeks an optimal time interval for defrosting in dynamic situation. The second...... strategy is through utilization of the thermal mass of the refrigerated foodstuffs, the day-night temperature variation and the capacity control of the compressor, to realize a trade-off between system energy consumption and food quality loss....

  11. Experimental investigation on an ammonia-water-lithium bromide absorption refrigeration system without solution pump

    International Nuclear Information System (INIS)

    Wu Tiehui; Wu Yuyuan; Yu Zhiqiang; Zhao Haichen; Wu Honglin

    2011-01-01

    Highlights: → An absorption refrigeration system with ternary solution of NH 3 -H 2 O-LiBr was set up. → Performance of the NH 3 -H 2 O-LiBr system without solution pump was firstly tested. → Generator pressure in NH 3 -H 2 O-LiBr system was lower than the one in NH 3 -H 2 O system. → The COP of the NH 3 -H 2 O-LiBr system was 51.89% larger than the NH 3 -H 2 O binary system. → The optimum mass fraction of LiBr of about 23% led to the largest COP of 0.401. -- Abstract: Experimental researches were carried out on a novel ammonia-water-lithium bromide ternary solution absorption refrigeration and air-conditioning system without solution pump and distillation equipments. The experiments were conducted by using three kinds of NH 3 -H 2 O binary solution and 17 kinds of ternary solution with difference in mass fraction of NH 3 and LiBr. The experimental results showed that the vapor pressure of the generator in the system would be lower than that of the generator in an ammonia-water absorption system. In above two situations the same ammonia mass fraction and the same solution temperature were kept. The amplitude of vapor pressure decrease of the system generator would be larger with the increase of the mass fraction of LiBr. The maximum amplitude of decrease would be of 50%. With the increase of the mass fraction of LiBr, the coefficient of performance (COP) of the system would be increased initially, and then decreased later when the mass fraction of LiBr exceeded a certain value. This value was about 23% for the solution with ammonia mass fraction of 50% and 55%, and about 30% for the solution with ammonia mass fraction of 60%. Compared with the ammonia-water system, the COP of the ternary solution system with the same mass fraction of ammonia would increase up to 30%. With the ammonia mass fraction of 60% and LiBr mass fraction of 30% applied, the COP of the ternary solution system was increased up to 0.401. It was 51.89% higher than that when binary

  12. A multi-stage traveling-wave thermoacoustically-driven refrigeration system operating at liquefied natural gas temperature

    Science.gov (United States)

    Luo, K.; Sun, D. M.; Zhang, J.; Shen, Q.; Zhang, N.

    2017-12-01

    This study proposes a multi-stage travelling-wave thermoacoustically refrigeration system (TAD-RS) operating at liquefied natural gas temperature, which consists of two thermoacoustic engines (TAE) and one thermoacoustic refrigerator (TAR) in a closed-loop configuration. Three thermoacoustic units connect each other through a resonance tube of small cross-sectional area, achieving “self-matching” for efficient thermoacoustic conversion. Based on the linear thermoacoustic theory, a model of the proposed system has been built by using DeltaEC program to show the acoustic field characteristics and performance. It is shown that with pressurized 5 MPa helium as working gas, the TAEs are able to build a stable and strong acoustic field with a frequency of about 85 Hz. When hot end temperature reaches 923 K, this system can provide about 1410 W cooling power at 110 K with an overall exergy efficiency of 15.5%. This study indicates a great application prospect of TAD-RS in the field of natural gas liquefaction with a large cooling capacity and simple structure.

  13. Experimental Validation of the Simulation Model of a DOAS Equipped with a Desiccant Wheel and a Vapor Compression Refrigeration System

    Directory of Open Access Journals (Sweden)

    Pedro J. Martínez

    2017-09-01

    Full Text Available A dedicated outdoor air system (DOAS can be designed to supply 100% of the outside air and meet the latent load of the room with dry air. The objectives of this study were to develop a model of a DOAS equipped with a desiccant wheel and a vapor-compression refrigeration system, build a prototype, validate the model with experimental data, and gain knowledge about the system operation. The test facility was designed with the desiccant wheel downstream of the cooling coil to take advantage of the operating principles of cooling coils and desiccants. A model of the DOAS was developed in the TRNSYS environment. The root mean standard error (RMSE was used for model validation by comparing the measured air and refrigerant properties with the corresponding calculated values. The results obtained with the developed model showed that the DOAS was able to maintain an indoor humidity ratio depending on outdoor conditions. Laboratory tests were also used to investigate the effect of changes in the regeneration air temperature and the process airflow rate on the process air humidity ratio at the outlet of the wheel. The results are consistent with the technical literature.

  14. Configuration optimization of series flow double-effect water-lithium bromide absorption refrigeration systems by cost minimization

    DEFF Research Database (Denmark)

    Mussati, Sergio F.; Cignitti, Stefano; Mansouri, Seyed Soheil

    2018-01-01

    An optimal process configuration for double-effect water-lithium bromide absorption refrigeration systems with series flow – where the solution is first passed through the high-temperature generator – is obtained by minimization of the total annual cost for a required cooling capacity. To this end......) takes place entirely at the high-temperature zone, and the sizes and operating conditions of the other process units change accordingly in order to meet the problem specification with the minimal total annual cost. This new configuration was obtained for wide ranges of the cooling capacity (150–450 k.......9%, respectively. Most importantly, the obtained optimal solution eliminates the low-temperature solution heat exchanger from the conventional configuration, rendering a new process configuration. The energy integration between the weak and strong lithium bromide solutions (cold and hot streams, respectively...

  15. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  16. Developments in power plant cooling systems

    International Nuclear Information System (INIS)

    Agarwal, N.K.

    1993-01-01

    A number of cooling systems are used in the power plants. The condenser cooling water system is one of the most important cooling systems in the plant. The system comprises a number of equipment. Plants using sea water for cooling are designed for the very high corrosion effects due to sea water. Developments are taking place in the design, materials of construction as well as protection philosophies for the various equipment. Power optimisation of the cycle needs to be done in order to design an economical system. Environmental (Protection) Act places certain limitations on the effluents from the plant. An attempt has been made in this paper to outline the developing trends in the various equipment in the condenser cooling water systems used at the inland as well as coastal locations. (author). 5 refs., 6 refs

  17. Space Station thermal storage/refrigeration system research and development

    Science.gov (United States)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    single centralized radiator system. As per the scope of work of this task, the applicability of refrigeration system tailored to meet the specialized requirements of storage of food and biological samples was investigated. The issues addressed were the anticipated power consumption and feasible designs and cycles for meeting specific storage requirements. Further, development issues were assessed related to the operation of vapor compression systems in micro-gravity addressing separation of vapor and liquid phases (via capillary systems).

  18. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  19. System technology improves the chances of solar cooling

    International Nuclear Information System (INIS)

    Schmid, W.

    2008-01-01

    This article takes a look at the increasing range of products on offer in the solar cooling area. Such an increase applies in particular to products in the low and medium power ranges under 30 kilowatts. Several hindrances to the expansion of the solar air-conditioning (SAC) market are named, both in the technological as well as in the operational area. The author states that a considerable amount of optimisation work is still to be done. Market offerings using absorption and adsorption techniques are examined, as are silica gel-based systems. Companies in the German-speaking parts of Europe active in the area are listed and their work is reviewed. The opinions of various experts that were presented at a congress on the subject are noted. Planning tools made available by the International Energy Agency's Task 38 'Solar air-conditioning and refrigeration' are mentioned.

  20. The development of air cooled condensation systems

    International Nuclear Information System (INIS)

    Bodas, J.

    1990-01-01

    EGI - Contracting/Engineering has had experience with the development of air cooled condensing systems since the 1950's. There are two accepted types of dry cooling systems,the direct and the indirect ones. Due to the fact that the indirect system has several advantages over the direct one, EGI's purpose was to develop an economic, reliable and efficient type of indirect cooling system, both for industrial and power station applications. Apart from system development, the main components of dry cooling plant have been developed as well. These are: the water-to-air heat exchangers; the direct contact (DC, or jet) condenser; the cooling water circulating pumps and recovery turbines; and the peak cooling/preheating units. As a result of this broad development work which was connected with intensive market activity, EGI has supplied about 50% of the dry cooling plants employed for large power stations all over the world. This means that today the cumulated capacity of power units using Heller type dry cooling systems supplied and contracted by EGI is over 6000 MW

  1. Experimental study on two-stage compression refrigeration/heat pump system with dual-cylinder rolling piston compressor

    International Nuclear Information System (INIS)

    Shuxue, Xu; Guoyuan, Ma

    2014-01-01

    A thermodynamically analytical model on the two-stage compression refrigeration/heat pump system with vapor injection was derived. The optimal volume ratio of the high-pressure cylinder to the low-pressure one has been discussed under both cooling and heating conditions. Based on the above research, the prototype was developed and its experimental setup established. A comprehensive experiments for the prototype have been conducted, and the results show that, compared with the single-stage compression heat pump system, the cooling capacity and cooling COP can increase 5%–15% and 10–12%, respectively. Also, the heating capacity with the evaporating temperature ranging from 0.3 to 3 °C is 92–95% of that under the rate condition with the evaporating temperature of 7 °C, and 58% when the evaporation temperature is between −28 °C and −24 °C. -- Highlights: • The volume ratio of the compressor is between 0.65 and 0.78 and the relative vapor injection mass ranges from 15% to 20%. • The cooling capacity and COP of the two-stage compression system can improve 5%–15% and 10%–12%. • The heating capacity can also be improved under low temperature condition

  2. Cycle performance of alternative refrigerants for domestic air-conditioning system based on a small finned tube heat exchanger

    International Nuclear Information System (INIS)

    Cheng, Song; Wang, Shuangfeng; Liu, Zhongmin

    2014-01-01

    In order to find alternative refrigerants which exhibit both favorable cycle performance and environmental friendliness, R32 and R290 were utilized to contrast to R22 and R410A as substitutes in the present study. The experiments were conducted with a 5 mm finned tube heat exchanger based on the enthalpy method in a small split household air conditioner. The results showed that in nominal cooling conditions, the COP R of R32 and R290 were 26.8% and 20.4% higher than R22, 7.3% and 2.1% higher than R410A. And in nominal heating conditions, the COP HR of R32 and R290 were both 11.0% higher than R22, 5.3% higher than R410A. The systems with R290 and R32 have similar capacities to that with R22 and R410A in heating mode, but a relatively huge difference of capacities in cooling mode. In consideration of charge amount, R290 could be considered as the most superior alternative refrigerant in air conditioners with the small finned tube heat exchanger. - Highlights: •Comparisons are made in the air conditioner system based on 5 mm tube fin heat exchanger. •The R22 system has a similar performance to others in heating mode while a huge difference in cooling mode. •The optimal charge of R290 is reduced with nearly no decline in the capacity and COP. •SLHX is attached to the system of R290 and successfully promote safety and capacity. •Heat loads are taken into account to evaluate the advantages and disadvantages of R290 and R32

  3. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    Science.gov (United States)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau

    2014-01-01

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.

  4. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    International Nuclear Information System (INIS)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau

    2014-01-01

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power

  5. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    Energy Technology Data Exchange (ETDEWEB)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S. [AL-AT, 2 rue de Clémencières, 38360 Sassenage (France); Baguer, G. M. Gistau [CRYOGUY, 44, chemin de la Buisse, 38330 Biviers (France)

    2014-01-29

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.

  6. Auto-refrigerating cascade for superconducting applications

    International Nuclear Information System (INIS)

    Forrest, S.M.; Hall, P.H.; Missimer, D.J.

    1987-01-01

    Extremely low temperatures, in the range of 230 to 90 K, are achieved in a single circuit compression refrigeration system operated by a conventional compressor. The system relies upon a series of intermediate cooling stages. The refrigerant is a mixture and the system employs fractional condensation, distillation, phase separation and intermediate heat transfer. Each stage includes the steps of withdrawing a portion of the liquid condensate from the compressed vapor-liquid refrigerant mixture which enters the stage. The withdrawn condensate is then throttled to a lower pressure and is mixed with the refrigerant being recycled to the compressor from the final evaporator. Evaporating the throttled condensate absorbs heat from and at least partially condenses the compressed uncondensed vapor in the compressed mixture

  7. Cooling system upon reactor isolation

    International Nuclear Information System (INIS)

    Yamamoto, Kohei; Oda, Shingo; Miura, Satoshi

    1992-01-01

    A water level indicator for detecting the upper limit value for a range of using a suppression pool and a thermometer for detecting the temperature of water at the cooling water inlet of an auxiliary device are disposed. When a detection signal is intaken and the water level in the suppression pool reach the upper limit value for the range of use, a secondary flow rate control value is opened and a primary flow rate control valve is closed. When the temperature of the water at the cooling water inlet of the auxiliary device reaches the upper limit value, the primary and the secondary flow rate control valves are opened. During a stand-by state, the first flow rate control valve is set open and the secondary flow rate control valve is set closed respectively. After reactor isolation, if a reactor water low level signal is received, an RCIC pump is actuated and cooling water is sent automatically under pressure from a condensate storage tank to the reactor and the auxiliary device requiring coolants by way of the primary flow rate control valve. Rated flow rate is ensured in the reactor and cooling water of an appropriate temperature can be supplied to the auxiliary device. (N.H.)

  8. Magnetic refrigeration system with separated inlet and outlet flow

    Energy Technology Data Exchange (ETDEWEB)

    Auringer, Jon Jay; Boeder, Andre Michael; Chell, Jeremy Jonathan; Leonard, John Paul; Zimm, Carl Bruno

    2017-06-14

    An active magnetic regenerative (AMR) refrigerator apparatus can include at least one AMR bed with a first end and a second end and a first heat exchanger (HEX) with a first end and a second end. The AMR refrigerator can also include a first pipe that fluidly connects the first end of the first HEX to the first end of the AMR bed and a second pipe that fluidly connects the second end of the first HEX to the first end of the AMR bed. The first pipe can divide into two or more sub-passages at the AMR bed. The second pipe can divide into two or more sub-passages at the AMR bed. The sub-passages of the first pipe and the second pipe can interleave at the AMR bed.

  9. Second law comparison of single effect and double effect vapour absorption refrigeration systems

    International Nuclear Information System (INIS)

    Gomri, Rabah

    2009-01-01

    In this paper a comparative study between single effect and double effect absorption refrigeration systems with identical cold output is carried out. Simulation results were used to study the influence of the various operating parameters on the performance coefficient, the thermal loads of the components, exergetic efficiency (rational efficiency) and the total change in exergy of the two systems. It is concluded that the COP of double effect system is approximately twice the COP of single effect system but the exergetic efficiency of double effect system increase slightly compared to the exergetic efficiency of single effect system. It is found that for each condenser and evaporator temperature, there is an optimum generator temperature where the total change in exergy of the single effect and double effect absorption refrigeration systems is minimum. At this point the COP and exergetic efficiency of the systems become maximum. In this study and when the evaporation temperature is varied from 4 deg. C to 10 deg. C, condenser and absorber temperatures are varied from 33 deg. C to 39 deg. C and generator (HPG) temperature is varied from 60 deg. C to 190 deg. C the maximum COP values of the single effect refrigeration systems are in the range of 0.73-0.79 and for double effect refrigeration systems are in the range of 1.22-1.42. The maximum exergetic efficiency values of the single effect refrigeration systems are in the range of 12.5-23.2% and for double effect refrigeration systems are in the range of 14.3-25.1%.

  10. Research and development of utilization technology of solar thermal system for industrial and other use. Development of system of advanced heat process type (chemical refrigeration and cold storage system using solar heat); Sangyoyo nado solar system jitsuyoka gijutsu kaihatsu. Advanced heat process gata system no kaihatsu (taiyonetsu reito reizo no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for chemical refrigeration and cold storage system using solar heat. The study on refrigeration materials are aimed at development of new hydrogen-occluding alloys which show good hydrogenation equilibrium characteristics and reactivity at temperature required for stand-alone refrigeration systems aided by solar heat, and still new hydrogen-occluding alloys operable at refrigeration temperature for lower-temperature systems. For the refrigeration materials capable of producing low-temperature heat of -10{degree}C at a regeneration temperature of 140{degree}C produced by solar heat, a La-Ni-Mn-Al alloy is selected for high-temperature use and a La-Y-Ni-Mn alloy for low-temperature use. The study on technology for refrigeration modules develops high-efficiency heat exchangers for refrigeration and regeneration, compatible with the hydrogen-occluding alloys. It also develops air-and water-cooling techniques for hydrogen-occluding alloys, where air is used as the heat source. The test apparatus is designed, installed and operated, to attain a low temperature of -10{degree}C or lower with a heat source of 140{degree}C and air heat source of 28{degree}C. 7 figs.

  11. Current status of development on superconducting magnetic energy storage systems and magnetic refrigeration

    International Nuclear Information System (INIS)

    Hirano, Naoki

    2010-01-01

    Superconducting magnetic energy storage (SMES) systems have excellent characteristics as energy-storage equipment in power systems such as high efficiency, quick response, and no deterioration in repetitive operations. There are many projects to develop SMES throughout the world. Since 1991, a national project by the Agency for Natural Resources and Energy Japan has been working to develop an SMES system to control power in power systems. Moreover, SMES has been developed to compensate for momentary voltage dips since 2003. To reduce energy consumption due to prolonged operating times, we developed energy-conserving electrical equipment incorporating refrigerating aggregates such as air conditioners. We conduced R and D to convert magnetic refrigeration and highly-efficient, energy-conserving/environmentally friendly technologies, to practical applications. The current status in the development of SMES to control power systems, bridging to deal with instantaneous voltage dips, and magnetic refrigeration technology will be explained in this paper. (author)

  12. Thermodynamic analysis of transcritical CO{sub 2} booster refrigeration systems in supermarket

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Y.T., E-mail: yunting.ge@brunel.ac.u [Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Tassou, S.A. [Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)

    2011-04-15

    Research highlights: {yields} The CO{sub 2} booster systems are widely applied in supermarket refrigeration. {yields} Control optimisation can improve the performance of the CO{sub 2} refrigeration systems. {yields} The effects of some important parameters on the system performance are examined. {yields} The optimal high-side pressure in the transcritical cycles is established and derived. -- Abstract: Due to less environmental impact, the CO{sub 2} booster refrigeration system has been widely applied in the modern supermarket as a substitute for the conventional R404A multiplex system. However, the performance efficiency of the CO{sub 2} system still requires further improvement in order to save energy; thus, one of the most efficient techniques would be to investigate and employ the optimal controls for refrigerant high side pressures at various operating states. In this paper, the possible parameters affecting system efficiency of the CO{sub 2} system in the transcritical cycle at a higher ambient air temperature are identified through thermodynamic analysis, but cannot be quantified mathematically because of the high non-linearity involved. Instead, sensitive analysis of the system by means of the thermodynamic model is used to examine the effects of parameters including high side refrigerant pressure, ambient air temperature, refrigerant intermediate pressure, and medium and low evaporating temperatures, superheating, effectiveness of suction line heat exchanger, and compressor efficiency on system performance. Consequently, the optimal high side pressure in the transcritical cycle is established and derived as a function of three important parameters consisting of ambient air temperature, the effectiveness of suction line heat exchanger and compressor efficiency. In addition, optimal operating parameters such as the intermediate pressure are also proposed to improve the system performance.

  13. Thermodynamic analysis of transcritical CO2 booster refrigeration systems in supermarket

    International Nuclear Information System (INIS)

    Ge, Y.T.; Tassou, S.A.

    2011-01-01

    Research highlights: → The CO 2 booster systems are widely applied in supermarket refrigeration. → Control optimisation can improve the performance of the CO 2 refrigeration systems. → The effects of some important parameters on the system performance are examined. → The optimal high-side pressure in the transcritical cycles is established and derived. -- Abstract: Due to less environmental impact, the CO 2 booster refrigeration system has been widely applied in the modern supermarket as a substitute for the conventional R404A multiplex system. However, the performance efficiency of the CO 2 system still requires further improvement in order to save energy; thus, one of the most efficient techniques would be to investigate and employ the optimal controls for refrigerant high side pressures at various operating states. In this paper, the possible parameters affecting system efficiency of the CO 2 system in the transcritical cycle at a higher ambient air temperature are identified through thermodynamic analysis, but cannot be quantified mathematically because of the high non-linearity involved. Instead, sensitive analysis of the system by means of the thermodynamic model is used to examine the effects of parameters including high side refrigerant pressure, ambient air temperature, refrigerant intermediate pressure, and medium and low evaporating temperatures, superheating, effectiveness of suction line heat exchanger, and compressor efficiency on system performance. Consequently, the optimal high side pressure in the transcritical cycle is established and derived as a function of three important parameters consisting of ambient air temperature, the effectiveness of suction line heat exchanger and compressor efficiency. In addition, optimal operating parameters such as the intermediate pressure are also proposed to improve the system performance.

  14. State-space modelling for the ejector-based refrigeration system driven by low grade energy

    International Nuclear Information System (INIS)

    Xue, Binqiang; Cai, Wenjian; Wang, Xinli

    2015-01-01

    This paper presents a novel global state-space model to describe the ejector-based refrigeration system, which includes the dynamics of the two heat exchangers and the static properties of ejector, compressor and expansion valve. Different from the existing methods, the proposed method introduces some intermediate variables into the dynamic modelling in developing reduced order models of the heat exchangers (evaporator and condenser) based on the Number of Transfer Units (NTU) method. This global model with fewer dimensions is much simpler and can be more convenient for the real-time control system design, compared with other dynamic models. Finally, the proposed state-space model has been validated by dynamic response experiments on the ejector-based refrigeration cycle with refrigerant R134a.The experimental results indicate that the proposed model can predict well the dynamics of the ejector-based refrigeration system. - Highlights: • A low-order state-space model of ejector-based refrigeration system is presented. • Reduced-order models of heat exchangers are developed based on NTU method. • The variations of mass flow rates are introduced in multiple fluid phase regions. • Experimental results show the proposed model has a good performance

  15. Thermodynamic analysis of hydrocarbon refrigerants-based ethylene BOG re-liquefaction system

    Science.gov (United States)

    Beladjine, Boumedienne M.; Ouadha, Ahmed; Addad, Yacine

    2016-09-01

    The present study aims to make a thermodynamic analysis of an ethylene cascade re-liquefaction system that consists of the following two subsystems: a liquefaction cycle using ethylene as the working fluid and a refrigeration cycle operating with a hydrocarbon refrigerant. The hydrocarbon refrigerants considered are propane (R290), butane (R600), isobutane (R600a), and propylene (R1270). A computer program written in FORTRAN is developed to compute parameters for characteristic points of the cycles and the system's performance, which is determined and analyzed using numerical solutions for the refrigerant condensation temperature, temperature in tank, and temperature difference in the cascade condenser. Results show that R600a gives the best performance, followed by (in order) R600, R290, and R1270. Furthermore, it is found that an increase in tank temperature improves system performance but that an increase in refrigerant condensation temperature causes deterioration. In addition, it is found that running the system at a low temperature difference in the cascade condenser is advantageous.

  16. Elastocaloric cooling materials and systems

    Science.gov (United States)

    Takeuchi, Ichiro

    2015-03-01

    We are actively pursuing applications of thermoelastic (elastocaloric) cooling using shape memory alloys. Latent heat associated with martensitic transformation of shape memory alloys can be used to run cooling cycles with stress-inducing mechanical drives. The coefficient of performance of thermoelastic cooling materials can be as high as 11 with the directly measured DT of around 17 °C. Depending on the stress application mode, the number of cycles to fatigue can be as large as of the order of 105. Efforts to design and develop thermoelastic alloys with long fatigue life will be discussed. The current project at the University of Maryland is focused on development of building air-conditioners, and at Maryland Energy and Sensor Technologies, smaller scale commercial applications are being pursued. This work is carried out in collaboration with Jun Cui, Yiming Wu, Suxin Qian, Yunho Hwang, Jan Muehlbauer, and Reinhard Radermacher, and it is funded by the ARPA-E BEETIT program and the State of Maryland.

  17. Superconducting tunnel-junction refrigerator

    International Nuclear Information System (INIS)

    Melton, R.G.; Paterson, J.L.; Kaplan, S.B.

    1980-01-01

    The dc current through an S 1 -S 2 tunnel junction, with Δ 2 greater than Δ 1 , when biased with eV 1 +Δ 2 , will lower the energy in S 1 . This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π* approx. Δ 1 /e. Tunneling calculations yield the cooling power P/sub c/, the electrical power P/sub e/ supplied by the bias supply, and the cooling efficiency eta=P/sub c//P/sub e/. The maximum cooling power is obtained for eV= +- (Δ 2 -Δ 1 ) and t 1 =T 1 /T/sub c/1 approx. 0.9. Estimates are made of the temperature difference T 2 -T 1 achievable in Al-Pb and Sn-Pb junctions with an Al 2 O 3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency eta approx. = Δ 1 /(Δ 2 -Δ 1 ) which can be compared with that available in an ideal Carnot refrigerator of eta=T 1 /(T 2 -T 1 ). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the A1 2 O 3 barrier in the Al-Pb and Sn-Pb systems

  18. Installation and Commissioning of the Helium Refrigeration System for the HANARO-CNS

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Young Ki; Wu, Sang Ik; Son, Woo Jung

    2009-11-01

    The cold neutron source (CNS), which will be installed in the vertical CN hole of the reflector tank at HANARO, makes thermal neutrons to moderate into the cold neutrons with the ranges of 0.1 ∼ 10 meV passing through a moderator at about 22K. A moderator to produce cold neutrons is liquid hydrogen, which liquefies by the heat transfer with cryogenic helium flowing from the helium refrigeration system. For the maintenance of liquid hydrogen in the IPA, the CNS system is mainly consisted of the hydrogen system to supply the hydrogen to the IPA, the vacuum system to keep the cryogenic liquid hydrogen in the IPA, and the helium refrigeration system to liquefy the hydrogen gas. The helium refrigeration system can be divided into two sections: one is the helium compression part from the low pressure gas to the high pressure gas and the other is the helium expansion part from the high temperature gas and pressure to low temperature and pressure gas by the expansion turbine. The helium refrigeration system except the warm helium pipe and the helium buffer tank has been manufactured by Linde Kryotechnik, AG in Switzerland and installed in the research reactor hall, HANARO. Other components have been manufactured in the domestic company. This technical report deals with the issues, its solutions, and other particular points while the helium refrigeration system was installed at site, verified its performance, and conducted its commissioning along the reactor operation. Furthermore, the operation procedure of the helium refrigeration system is included in here for the normal operation of the CNS

  19. Cooling Grapple System for FMEF hot cell

    International Nuclear Information System (INIS)

    Semmens, L.S.; Frandsen, G.B.; Tome, R.

    1983-01-01

    A Cooling Grapple System was designed and built to handle fuel assemblies within the FMEF hot cell. The variety of functions for which it is designed makes it unique from grapples presently in use. The Cooling Grapple can positively grip and transport assemblies vertically, retrieve assemblies from molten sodium where six inches of grapple tip is submerged, cool 7 kw assemblies in argon, and service an in-cell area of 372 m 2 (4000 ft 2 ). Novel and improved operating and maintenance features were incorporated in the design including a shear pin and mechanical catcher system to prevent overloading the grapple while allowing additional reaction time for crane shutdown

  20. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  1. Solar cooling systems. Classification and energetic evaluation; Solare Kuehlsysteme. Klassifizierung und energetische Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Jakob [Technische Univ. Bergakademie Freiberg (Germany); Hafner, Armin [SINTEF Energy Research, Trondheim (Norway); Eikevik, Trygve M. [NTNU, Trondheim (Norway)

    2012-07-01

    The investigation of alternative, sustainable concepts for cold production is worthwhile in times of increasing energy demand for cooling and air conditioning applications. Energy sources such as solar radiation can help to reduce the burden on the environment and energy networks. Solar electricity from photovoltaic cells or solar power from solar collectors can be used in refrigerating equipment (such as cold vapor compression chiller, absorption chiller, adsorption chillers, open systems, thermo-mechanical systems or ejector-based systems) are fed in order to produce the desired coldness. In many cases, the temporal coincidence of radiation supply and cooling requirements makes the solar cooling to a promising concept, especially at sites with a high solar radiation, large cooling demand, high energy prices, or insufficient access to public power grids. A model-based investigation of different solar cooling systems with an equivalent cooling capacity was carried out. The results show that the performance potential strongly depends on the selected technology and the site of the system. A balanced daily energy balance can be achieved with an appropriately dimensioned solar power plant with cooling concept. Depending on the system and interpretation, primary energy savings or a primary energy overhead can be achieved within a year in comparison to a conventional system.

  2. Energy and environmental performance assessment of R744 booster supermarket refrigeration systems operating in warm climates

    DEFF Research Database (Denmark)

    Gullo, Paride; Elmegaard, Brian; Cortella, Giovanni

    2016-01-01

    This paper presents a theoretical comparison among different commercial refrigeration systems in terms of annual energy consumption and environmental impact. Eight configurations were studied: a R744/R134a cascade refrigeration system (baseline), a conventional and an improved R744 booster system...... as on the running modes of a conventional European supermarket. A transition zone, which occurred between sub critical and transcritical operations, was adopted.The results showed that all the enhanced configurations may achieve a comparable energy saving to the one of the baseline in both the selected locations...

  3. Plant-wide dynamic and static optimisation of supermarket refrigeration systems

    DEFF Research Database (Denmark)

    Green, Torben; Izadi-Zamanabadi, Roozbeh; Razavi-Far, Roozbeh

    2013-01-01

    Optimising the operation of a supermarket refrigeration system under dynamic as well as steadystate conditions is addressedin thispaper. For thispurpose anappropriateperformance function that encompasses food quality, system efficiency, and also component reliability is established. The choice...... in the system. Simulation results is used to substantiate the suggestedmethodology....

  4. Dry cooling systems with plastic surfaces

    International Nuclear Information System (INIS)

    Roma, Carlo; Leonelli, Vincenzo

    1975-01-01

    Research and experiments made on dry cooling systems with plastic surfaces are described. The demonstration program planned in Italy for a 100Gcal/h dry cooling system is exposed, and an installation intended for a large 1300Mwe nuclear power station is described with reference to the assembly (exploitation and maintenance included). The performance and economic data relating to this installation are also exposed [fr

  5. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    Science.gov (United States)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  6. Optimization of distribution piping network in district cooling system using genetic algorithm with local search

    International Nuclear Information System (INIS)

    Chan, Apple L.S.; Hanby, Vic I.; Chow, T.T.

    2007-01-01

    A district cooling system is a sustainable means of distribution of cooling energy through mass production. A cooling medium like chilled water is generated at a central refrigeration plant and supplied to serve a group of consumer buildings through a piping network. Because of the substantial capital investment involved, an optimal design of the distribution piping configuration is one of the crucial factors for successful implementation of the district cooling scheme. In the present study, genetic algorithm (GA) incorporated with local search techniques was developed to find the optimal/near optimal configuration of the piping network in a hypothetical site. The effect of local search, mutation rate and frequency of local search on the performance of the GA in terms of both solution quality and computation time were investigated and presented in this paper

  7. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  8. Simulation of an air conditioning absorption refrigeration system in a co-generation process combining a proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pilatowsky, I.; Gamboa, S.A.; Rivera, W. [Centro de Investigacion en Energia - UNAM, Temixco, Morelos (Mexico); Romero, R.J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas - UAEM, Cuernavaca, Morelos (Mexico); Isaza, C.A. [Universidad Pontificia Bolivariana, Medellin (Colombia). Instituto de Energia y Termodinamica; Sebastian, P.J. [Centro de Investigacion en Energia - UNAM, Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad-UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico); Moreira, J. [Cuerpo Academico de Energia y Sustentabilidad-UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    In this work, a computer simulation program was developed to determine the optimum operating conditions of an air conditioning system during the co-generation process. A 1 kW PEMFC was considered in this study with a chemical/electrical theoretical efficiency of 40% and a thermal efficiency of 30% applying an electrical load of 100%. A refrigeration-absorption cycle (RAC) operating with monomethylamine-water solutions (MMA-WS), with low vapor generation temperatures (up to 80 C) is proposed in this work. The computer simulation was based on the refrigeration production capacity at the maximum power capacity of the PEMFC. Heat losses between the fuel cell and the absorption air conditioning system at standard operating conditions were considered to be negligible. The results showed the feasibility of using PEMFC for cooling, increasing the total efficiency of the fuel cell system. (author)

  9. Satellite refrigerator compressors with the oil and moisture removal systems

    International Nuclear Information System (INIS)

    Satti, J.A.

    1983-08-01

    There are twenty-eight compressors installed around the Main Accelerator Ring in seven locations. Drawing 9140-ME-129720 shows the piping and the components schematic for four Mycom compressor skids per building with each having an independent oil and moisture removal system. The Mycom skids each consist of an oil injected screw compressor of 750 SCFM capacity with a 350 hp motor, oil pump, oil cooler, and oil separator. Helium gas returning from the heat exchanger train is compressed from 1 atm to 20 atm in the compressor. The compressed gas is then passed through the three coalescer de-mister where oil mist is separated from the helium gas. The helium gas then flows through the charcoal adsorber and molecular sieve where any residual oil vapor and water vapor are removed. The final stage of purification is the final filter which removes any remaining particulates from the compressed helium gas. The end product of this system is compressed and purified helium gas ready to be cooled down to cryogenic temperatures

  10. Thermodynamic analysis of a new combined cooling and power system using ammonia–water mixture

    International Nuclear Information System (INIS)

    Wang, Jiangfeng; Wang, Jianyong; Zhao, Pan; Dai, Yiping

    2016-01-01

    Highlights: • A new combined cooling and power system is proposed. • Exergy destruction analysis is used to identify irreversibility of components in system. • Thermodynamic parameter analysis is performed for system. - Abstract: In order to achieve both power and cooling supply for users, a new combined cooling and power system using ammonia–water mixture is proposed to utilizing low grade heat sources, such as industrial waste heat, solar energy and geothermal energy. The proposed system combines a Kalina cycle and an ammonia–water absorption refrigeration cycle, in which the ammonia–water turbine exhaust is delivered to a separator to extract purer ammonia vapor. The purer ammonia vapor enters an evaporator to generate refrigeration output after being condensed and throttled. Mathematical models are established to simulate the combined system under steady-state conditions. Exergy destruction analysis is conducted to display the exergy destruction distribution in the system qualitatively and the results show that the major exergy destruction occurs in the heat exchangers. Finally a thermodynamic sensitivity analysis is performed and reveals that with an increase in the pressure of separator I or the ammonia mass fraction of basic solution, thermal efficiency and exergy efficiency of the system increase, whereas with an increase in the temperature of separator I, the ammonia–water turbine back pressure or the condenser II pressure, thermal efficiency and exergy efficiency of the system drop.

  11. Cooling performance of a vertical ground-coupled heat pump system installed in a school building

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yujin; Lee, Jae-Keun; Jeong, Young-Man; Koo, Kyung-Min [Department of Mechanical Engineering, Pusan National University, San 30, Jangjeon-Dong, Kumjung-Ku, Busan 609-735 (Korea); Lee, Dong-Hyuk; Kim, In-Kyu; Jin, Sim-Won [LG Electronics, 391-2 Gaeumjeong-dong, Changwon City, Gyeongnam (Korea); Kim, Soo H. [Department of Nanosystems and Nanoprocess Engineering, Pusan National University, San 30, Jangjeon-Dong, Kumjung-Ku, Busan 609-735 (Korea)

    2009-03-15

    This paper presents the cooling performance of a water-to-refrigerant type ground heat source heat pump system (GSHP) installed in a school building in Korea. The evaluation of the cooling performance has been conducted under the actual operation of GSHP system in the summer of year 2007. Ten heat pump units with the capacity of 10 HP each were installed in the building. Also, a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth was constructed for the GSHP system. To analyze the cooling performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the water temperature of inlet and outlet of the ground heat exchanger. Simultaneously, the cooling capacity and the input power were evaluated to determine the cooling performance of the GSHP system. The average cooling coefficient of performance (COP) and overall COP of the GSHP system were found to be {proportional_to}8.3 and {proportional_to}5.9 at 65% partial load condition, respectively. While the air source heat pump (ASHP) system, which has the same capacity with the GSHP system, was found to have the average COP of {proportional_to}3.9 and overall COP of {proportional_to}3.4, implying that the GSHP system is more efficient than the ASHP system due to its lower temperature of condenser. (author)

  12. 2016 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2016-01-01

    The following topics were dealt with: Large cryogenic facilities, relief valves, liquid helium, liquid-nitrogen and liquid hydrogen cooling, new concepts, foundations and materials of the heat-pump techniques, evaporation, phase-change materials, absorption, afterheat usage, ionic liquids, sorption, condensers, heat exchangers, back-cooling systems, refrigerants, caron dioxide, mobile applications, efficiency and optimization, air conditioning.

  13. Cryogenic refrigeration. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning cryogenic refrigeration or cryocooling. Design, development, testing, and evaluation of cryogenic cooling systems are discussed. Design applications in spacecraft, magnet cooling, superconductors, liquid fuel storage, radioastronomy, and medicine are presented. Material properties at cryogenic temperatures and cryogenic rocket propellants are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  14. Performance Monitoring in Supermarket Refrigeration Systems - Synchronisation of Refrigerated Display Cases

    DEFF Research Database (Denmark)

    Chen, Liang; Green, Torben; Sloth Larsen, Lars Finn

    2009-01-01

    Hybrid control has in the recent years drawn considerable attention in academia as it poses a large number of theoretical and computational challenges. The interested scientific community has proposed various methods to address some of the problems related to modeling and control of hybrid system...

  15. On the Trade-off between Energy Consumption and Food Quality Loss in Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    Cai, Junping; Jensen, Jørgen Bauck; Skogestad, Sigurd

    2008-01-01

    This paper studies the trade-off between energy consumption and food quality loss, at varying ambient conditions, in supermarket refrigeration systems. Compared with the traditional operation with pressure control, a large potential for energy savings without extra loss of food quality is demonst......This paper studies the trade-off between energy consumption and food quality loss, at varying ambient conditions, in supermarket refrigeration systems. Compared with the traditional operation with pressure control, a large potential for energy savings without extra loss of food quality...

  16. Inter-cooler in solar-assisted refrigeration system: Theory and experimental verification

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2015-01-01

    Full Text Available An inter-cooler in the solar-assisted refrigeration system was investigated experimentally and theoretically, and the theoretical prediction was fairly in good agreement with the experimental data. The influence of pipe diameter, tooth depth, and spiral angle of inter-cooler on the performance of the refrigerant system was analyzed. It was concluded that heat transfer is influenced deeply by the structure parameters of inter-cooler, and the heat transfer capacity increases with tooth depth and spiral angle increasing, and decreases with tooth apex angle increasing.

  17. Understanding aging in containment cooling systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1993-01-01

    A study has been performed to assess the effects of aging in nuclear power plant containment cooling systems. Failure records from national databases, as well as plant specific data were reviewed and analyzed to identify aging characteristics for this system. The predominant aging mechanisms were determined, along with the most frequently failed components and their associated failure modes. This paper discusses the aging mechanisms present in the containment spray system and the containment fan cooler system, which are two systems used to provide the containment cooling function. The failure modes, along with the relative frequency of each is also discussed

  18. New Protective Measures for Cooling Systems

    International Nuclear Information System (INIS)

    Carter, D. Anthony; Nonohue, Jonh M.

    1974-01-01

    Cooling water treatments have been updated and improved during the last few years. Particularly important are the nontoxic programs which conform plant cooling water effluents to local water quality standards without expenditures for capital equipment. The relationship between scaling and corrosion in natural waters has been recognized for many years. This relationship is the basis for the Langelier Saturation Index control method which was once widely applied to reduce corrosion in cooling water systems. It used solubility characteristics to maintain a very thin deposit on metal surfaces for preventing corrosion. This technique was rarely successful. That is, the solubility of calcium carbonate and most other inorganic salts depends on temperature. If good control exists on cold surfaces, excessive deposition results on the heat transfer tubes. Also, because water characteristic normally vary in a typical cooling system, precise control of scaling at both hot and cold surfaces is virtually impossible

  19. Cooling system with automated seasonal freeze protection

    Science.gov (United States)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing

    2016-05-24

    An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  20. Reliability analysis of air recirculation and refrigeration systems of Angra-1 reactor contaiment: a reevaluation

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Fleming, P.V.; Frutuoso e Melo, P.F.F.

    1983-01-01

    A realiability analysis of the air refrigeration and recirculation containment systems (ARRCS) of Angra-1 nuclear power plants, were done, aiming to evaluate the probabilities of occurence of a several accident. The systems were analysed for a 24 hours accident, including time failures and demand failures [pt

  1. Rust Inhibitor And Fungicide For Cooling Systems

    Science.gov (United States)

    Adams, James F.; Greer, D. Clay

    1988-01-01

    Mixture of benzotriazole, benzoic acid, and fungicide prevents growth of rust and fungus. Water-based cooling mixture made from readily available materials prevents formation of metallic oxides and growth of fungi in metallic pipes. Coolant remains clear and does not develop thick sludge tending to collect in low points in cooling systems with many commercial rust inhibitors. Coolant compatible with iron, copper, aluminum, and stainless steel. Cannot be used with cadmium or cadmium-plated pipes.

  2. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  3. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2018-01-30

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  4. Combination closed-cycle refrigerator/liquid-He4 cryostat for e- damage of bulk samples

    International Nuclear Information System (INIS)

    Johnson, E.C.

    1987-01-01

    A closed-cycle refrigerator/cryostat system for use in ultrasonic studies of electron irradiation damaged bulk specimens is described. The closed-cycle refrigerator provides a convenient means for long-term (several days) sample irradiation at low temperatures. A neon filled ''thermal diode'' is employed to permit efficient cooling, via liquid helium, of the sample below the base temperature of the refrigerator

  5. Theoretical study on the effect of operating conditions on performance of absorption refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Kaynakli, Omer; Kilic, Muhsin [Uludag University, Faculty of Engineering and Architecture, Department of Mechanical Engineering, TR-16059, Bursa (Turkey)

    2007-02-15

    In this study, a detailed thermodynamic analysis of the water/lithium bromide absorption refrigeration cycle is performed. The influences of operating temperature and effectiveness of heat exchanger on the thermal loads of components, coefficients of performance (COP{sub c}, COP) and efficiency ratio ({eta}) are investigated. It is concluded that the COP{sub c} and COP values increase with increasing generator and evaporator temperatures but decrease with increasing condenser and absorber temperatures. The {eta} value varies with these temperatures. Also, the effects of solution and refrigerant heat exchangers on the performance, efficiency ratio of the system and fluid temperatures are compared. As a result, it is found that the solution heat exchanger (SHE) has more effect on the investigated parameters than the refrigerant heat exchanger (RHE). While the SHE increases the COP value up to a maximum 44%, the RHE has an effect of only 2.8%. (author)

  6. A 300 W 18K refrigerator and distribution system for the CERN superconducting RF particle separator

    CERN Document Server

    Steel, A J; Clarke, M E

    1976-01-01

    The refrigerator employs gas lubricated expansion turbines in parallel, and has been designed for a capacity of 300 W at 1.8K and 2 kW below 80K. A low loss system distributes the refrigeration to two cryostats located 90 m apart. The plant may also be used to provide refrigeration or liquefaction at 4.4K. All expansion turbines are interchangeable and one can be switched between two temperature levels, thus giving the plant a capacity of about 150 l hr/sup -1/ when used as a liquefier with liquid nitrogen. Process optimisation has resulted in an extremely compact coldbox. The main features of plant design and control are described. (6 refs).

  7. Numerical modelling and analysis of a room temperature magnetic refrigeration system

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank

    This thesis presents a two-dimensional mathematical model of an Active Magnetic Regenerator (AMR) system which is used for magnetic refrigeration at room temperature. The purpose of the model is to simulate a laboratory-scale AMR constructed at Risø National Laboratory. The AMR model geometry....... The AMR performs a cyclic process, and to simulate the AMR refrigeration cycle the model starts from an initial temperature distribution in the regenerator and fluid channel and takes time steps forward in time until the cyclical steady-state is obtained. The model can therefore be used to study both...... transient and steady-state phenomena. The AMR performance can be evaluated in terms of the no-load temperature span as well as the refrigeration capacity and the COP. The AMR model was verified extensively and it was concluded that the model has energy conservation and that the solution is independent...

  8. Preoperational test report, recirculation condenser cooling systems

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  9. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  10. Cooling concepts for HTS components

    International Nuclear Information System (INIS)

    Binneberg, A.; Buschmann, H.; Neubert, J.

    1993-01-01

    HTS components require that low-cost, reliable cooling systems be used. There are no general solutions to such systems. Any cooling concept has to be tailored to the specific requirements of a system. The following has to he taken into consideration when designing cooling concepts: - cooling temperature - constancy and controllability of the cooling temperature - cooling load and refrigerating capacity - continuous or discontinuous mode - degree of automation - full serviceability or availability before evacuation -malfunctions caused by microphonic, thermal or electromagnetic effects -stationary or mobile application - investment and operating costs (orig.)

  11. Artificial neural network analysis of a refrigeration system with an evaporative condenser

    Energy Technology Data Exchange (ETDEWEB)

    Ertunc, H.M. [Department of Mechatronics Engineering, Kocaeli University, 41040 Kocaeli (Turkey); Hosoz, M. [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey)

    2006-04-01

    This paper describes an application of artificial neural networks (ANNs) to predict the performance of a refrigeration system with an evaporative condenser. In order to gather data for training and testing the proposed ANN, an experimental refrigeration system with an evaporative condenser was set up. Then, steady-state test runs were conducted varying the evaporator load, air and water flow rates passing through the condenser and both dry and wet bulb temperatures of the air stream entering the condenser. Utilizing some of the experimental data, an ANN model for the system based on standard backpropagation algorithm was developed. The ANN was used for predicting various performance parameters of the system, namely the condenser heat rejection rate, refrigerant mass flow rate, compressor power, electric power input to the compressor motor and the coefficient of performance. The ANN predictions usually agree well with the experimental values with correlation coefficients in the range of 0.933-1.000, mean relative errors in the range of 1.90-4.18% and very low root mean square errors. Results show that refrigeration systems, even complex ones involving concurrent heat and mass transfer such as systems with an evaporative condenser, can alternatively be modelled using ANNs within a high degree of accuracy. [Author].

  12. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T [National Institute for Materials Science, Tsukuba (Japan); Kamlya, K. [Japan Atomic Energy Agency, Naka (Japan); Utaki, T. [Osaka University, Osaka (Japan); Matsumoto, K. [Kanazawa University, Kanazawa (Japan)

    2013-06-15

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  13. Experimental investigation on the influence of EEV opening on the performance of transcritical CO2 refrigeration system

    International Nuclear Information System (INIS)

    Hou, Yu; Ma, Juanli; Liu, Changhai; Cao, Jing; Liu, Xiufang

    2014-01-01

    In order to investigate the influence of electronic expansion valve (EEV) opening on the performance of the transcritical CO 2 refrigeration system, an experimental test rig of the transcritical CO 2 system was built up. The system operation parameters such as temperature, pressure were measured with different EEV opening, when the inlet temperatures of the gas-cooler water and the evaporator water were set to 30 °C and 15 °C, respectively. The effects of EEV opening on the pressure, temperature and the performance of the system were studied in detail. The results demonstrate that the EEV opening has great effects on the discharge pressure of the compressor, gas-cooler outlet pressure, and the discharge temperature of the compressor. The compressor input power decreases with the increasing of EEV opening. The cooling capacity and the coefficient of performance (COP) of the system peaks at the EEV opening of 40% and 60%, respectively. - Highlights: •Influence of EEV opening on transcritical CO 2 system is investigated experimentally. •EEV opening has little effect on evaporating pressure. •EEV opening has great effects on discharge pressure and temperature of compressor. •Cooling capacity peaks at the EEV opening of 40%. •COP peaks at the EEV opening of 60%

  14. Analysis and hazard evaluation of heat-transfer fluids for the direct contact cooling system

    International Nuclear Information System (INIS)

    Hong, Joo Hi; Lee, Yeon Hee; Shin, You Hwan; Karng, Sarng Woo; Kim, Seo Young; Kim, Young Gil

    2006-01-01

    This paper discusses several low-temperature heat-transfer fluids, including water-based inorganic salt, organic salt, alcohol/glycol mixtures, silicones, and halogenated hydrocarbons in order to choose the best heat-transfer fluid for the newly designed direct contact refrigeration system. So, it contains a survey on commercial products such as propylene glycol and potassium formate as newly used in super market and food processing refrigeration. The stability of commercial fluids at the working temperature of -20 .deg. C was monitored as a function of time up to two months. And organic and inorganic compositions of candidate fluids were obtained by analytical instruments such as ES, XRF, AAS, ICP-AES, GC, and GC-MS. Analysis results indicate that commercial propylene glycol is very efficient and safe heat transfer fluids for the direct cooling system with liquid phase

  15. Fuzzy Control of Cold Storage Refrigeration System with Dynamic Coupling Compensation

    Directory of Open Access Journals (Sweden)

    Xiliang Ma

    2018-01-01

    Full Text Available Cold storage refrigeration systems possess the characteristics of multiple input and output and strong coupling, which brings challenges to the optimize control. To reduce the adverse effects of the coupling and improve the overall control performance of cold storage refrigeration systems, a control strategy with dynamic coupling compensation was studied. First, dynamic model of a cold storage refrigeration system was established based on the requirements of the control system. At the same time, the coupling between the components was studied. Second, to reduce the adverse effects of the coupling, a fuzzy controller with dynamic coupling compensation was designed. As for the fuzzy controller, a self-tuning fuzzy controller was served as the primary controller, and an adaptive neural network was adopted to compensate the dynamic coupling. Finally, the proposed control strategy was employed to the cold storage refrigeration system, and simulations were carried out in the condition of start-up, variable load, and variable degree of superheat, respectively. The simulation results verify the effectiveness of the fuzzy control method with dynamic coupling compensation.

  16. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  17. System for Cooling of Electronic Components

    Science.gov (United States)

    Vasil'ev, L. L.; Grakovich, L. P.; Dragun, L. A.; Zhuravlev, A. S.; Olekhnovich, V. A.; Rabetskii, M. I.

    2017-01-01

    Results of computational and experimental investigations of heat pipes having a predetermined thermal resistance and a system based on these pipes for air cooling of electronic components and diode assemblies of lasers are presented. An efficient compact cooling system comprising heat pipes with an evaporator having a capillary coating of a caked copper powder and a condenser having a developed outer finning, has been deviced. This system makes it possible to remove, to the ambient air, a heat flow of power more than 300 W at a temperature of 40-50°C.

  18. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  19. Eco-Friendly Alternative Refrigeration Systems -R-ES-O-N-A-N--CE ...

    Indian Academy of Sciences (India)

    An electrical signal may be converted to acoustical (i.e. ... Thermoacoustic Refrigeration System. In a simple ... Tc and rejecting Wclste heat power Qh to a heat sink at T h. •. In .... use where eco-friendliness, simplicity, reliability or low cost is.

  20. Model Predictive Control for Flexible Power Consumption of Large-Scale Refrigeration Systems

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Stoustrup, Jakob; Rasmussen, Henrik

    2014-01-01

    A model predictive control (MPC) scheme is introduced to directly control the electrical power consumption of large-scale refrigeration systems. Deviation from the baseline of the consumption is corresponded to the storing and delivering of thermal energy. By virtue of such correspondence...

  1. Model Predictive Control of Hybrid Thermal Energy Systems in Transport Refrigeration

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Alleyne, Andrew

    2015-01-01

    A predictive control scheme is designed to control a transport refrigeration system, such as a delivery truck, that includes a vapor compression cycle configured in parallel with a thermal energy storage (TES) unit. A novel approach to TES utilization is introduced and is based on the current...

  2. The Influence of the Density of Coconut Fiber as Stack in Thermo-Acoustics Refrigeration System

    Science.gov (United States)

    Hartulistiyoso, E.; Yulianto, M.; Sucahyo, L.

    2018-05-01

    An experimental study of using coconut fiber as stack with varying density in thermo-acoustics refrigeration system has been done. Stack is a device which is described as the “heart” in thermo-acoustics refrigeration system. The length of stack is a fix parameter in this experiment. The performance of the coconut fiber was evaluated from the density of stack (varied from 30%, 50% and 70%), position of stack (varied from 0 to 34 cm from the sound generator), and frequency of sound generator (varied from 150 Hz, 200Hz, 250Hz and 300Hz). The inside, outside, and environment temperatures were collected every second using Data Acquisition (DAQ). The result showed that the increase of stack density will increase the performance of thermo-acoustics refrigeration system. The higher density produced temperature differences in cold side and hot side of 5.4°C. In addition, the position of stack and frequency of sound generator have an important role in the performance of thermo-acoustics refrigeration system for all variations of the density.

  3. Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes

    International Nuclear Information System (INIS)

    Khan, Mohd Shariq; Lee, Sanggyu; Rangaiah, G.P.; Lee, Moonyong

    2013-01-01

    Highlights: • Practical method for finding optimum refrigerant composition is proposed for LNG plant. • Knowledge of boiling point differences in refrigerant component is employed. • Implementation of process knowledge notably makes LNG process energy efficient. • Optimization of LNG plant is more transparent using process knowledge. - Abstract: Mixed refrigerant (MR) systems are used in many industrial applications because of their high energy efficiency, compact design and energy-efficient heat transfer compared to other processes operating with pure refrigerants. The performance of MR systems depends strongly on the optimum refrigerant composition, which is difficult to obtain. This paper proposes a simple and practical method for selecting the appropriate refrigerant composition, which was inspired by (i) knowledge of the boiling point difference in MR components, and (ii) their specific refrigeration effect in bringing a MR system close to reversible operation. A feasibility plot and composite curves were used for full enforcement of the approach temperature. The proposed knowledge-based optimization approach was described and applied to a single MR and a propane precooled MR system for natural gas liquefaction. Maximization of the heat exchanger exergy efficiency was considered as the optimization objective to achieve an energy efficient design goal. Several case studies on single MR and propane precooled MR processes were performed to show the effectiveness of the proposed method. The application of the proposed method is not restricted to liquefiers, and can be applied to any refrigerator and cryogenic cooler where a MR is involved

  4. Slab cooling system design using computer simulation

    NARCIS (Netherlands)

    Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.

    2007-01-01

    For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for

  5. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain...

  6. Boiling of multicomponent working fluids used in refrigeration and cryogenic systems

    Science.gov (United States)

    Mogorychny, V. I.; Dolzhikov, A. S.

    2017-11-01

    Working fluids based on mixtures are widely used in cryogenic and refrigeration engineering. One of the main elements of low-temperature units is a recuperative heat exchanger where the return flow cools the direct (cold regeneration is carrying out) resulting in continuous boiling and condensation of the multicomponent working fluid in the channels. The temperature difference between the inlet and outlet of the heat exchanger can be more than 100K, which leads to a strong change in thermophysical properties along its length. In addition, the fraction of the liquid and vapor phases in the flow varies very much, which affects the observed flow regimes in the heat exchanger channels. At the moment there are not so many experimental data and analytical correlations that would allow to estimate the heat transfer coefficient during the flow of a two-phase mixture flow at low temperatures. The work is devoted to the study of the boiling process of multicomponent working fluids used in refrigeration and cryogenic engineering. The description of the method of determination of heat transfer coefficient during boiling of mixtures in horizontal heated channel is given as well as the design of the experimental stand allowing to make such measurements. This stand is designed on the basis of a refrigeration unit operating on the Joule-Thomson throttle cycle and makes it possible to measure the heat transfer coefficient with a good accuracy. Also, the calculated values of the heat transfer coefficient, obtained with the use of various correlations, are compared with the existing experimental data. Knowing of the heat transfer coefficient will be very useful in the design of heat exchangers for low-temperature units operating on a mixture refrigerant.

  7. The Performance of Rotary Magnetic Refrigerators with Layered Beds of LaFeSiH(Magnetic Cooling)

    OpenAIRE

    Steven, JACOBS; Steven, RUSSEK; Jon, AURINGER; Andre, BOEDER; Jeremy, CHELL; Lenny, KOMOROWSKI; John, LEONARD; Carl, ZIMM; Astronautics Technology Center; Astronautics Corporation; Astronautics Technology Center; Astronautics Technology Center; Astronautics Technology Center; Astronautics Technology Center; Astronautics Technology Center

    2013-01-01

    Astronautics Corporation has designed, constructed, and extensively tested two generations of magnetic refrigerators employing a rotary magnet-fixed bed architecture. This paper reviews and summarizes the performance of these prototypes. In particular, the testing on the 1st-generation prototype demonstrates the significant performance advantage associated with the use of layered beds of LaFeSiH, a magnetocaloric material with a sharp, first-order transition and a readily adjustable Curie tem...

  8. Passive cooling systems in power reactors

    International Nuclear Information System (INIS)

    Aharon, J.; Harrari, R.; Weiss, Y.; Barnea, Y.; Katz, M.; Szanto, M.

    1996-01-01

    This paper reviews several R and D activities associated with the subject of passive cooling systems, conducted by the N.R.C.Negev thermohydraulic group. A short introduction considering different types of thermosyphons and their applications is followed by a detailed description of the experimental work, its results and conclusions. An ongoing research project is focused on the evaluation of the external dry air passive containment cooling system (PCCS) in the AP-600 (Westinghouse advanced pressurized water reactor). In this context some preliminary theoretical results and planned experimental research are for the fature described

  9. Power plant cooling systems: trends and challenges

    International Nuclear Information System (INIS)

    Rittenhouse, R.C.

    1979-01-01

    A novel design for an intake and discharge system at the Belle River plant is described followed by a general discussion of water intake screens and porous dikes for screening fish and zooplankton. The intake system for the San Onofre PWR plant is described and the state regulations controlling the use of water for power plants is discussed. The use of sewage effluent as a source of cooling water is mentioned with reference to the Palo Verde plant. Progress in dry cooling and a new wet/dry tower due to be installed at the San Juan plant towards the end of this year, complete the survey

  10. Stochastic cooling system in COSY

    International Nuclear Information System (INIS)

    Brittner, P.; Hacker, H.U.; Prasuhn, D.; Schug, G.; Singer, H.; Spiess, W.; Stassen, R.

    1994-01-01

    The stochastic cooler system in COSY is designed for proton kinetic energies between 0.8 and 2.5 GeV. Fabrication of the mechanical parts of the system is going on. Test results of the prototype measurements as well as data of the active RF-compontens are presented. (orig.)

  11. Stochastic cooling system in COSY

    Energy Technology Data Exchange (ETDEWEB)

    Brittner, P [Forschungszentrum Juelich GmbH (Germany); Hacker, H U [Forschungszentrum Juelich GmbH (Germany); Prasuhn, D [Forschungszentrum Juelich GmbH (Germany); Schug, G [Forschungszentrum Juelich GmbH (Germany); Singer, H [Forschungszentrum Juelich GmbH (Germany); Spiess, W [Forschungszentrum Juelich GmbH (Germany); Stassen, R [Forschungszentrum Juelich GmbH (Germany)

    1994-09-01

    The stochastic cooler system in COSY is designed for proton kinetic energies between 0.8 and 2.5 GeV. Fabrication of the mechanical parts of the system is going on. Test results of the prototype measurements as well as data of the active RF-compontens are presented. (orig.)

  12. Adsorptive refrigeration system using a solar collector with a thermal insulating module; Sistema de refrigeracao adsortivo com a utilizacao de um coletor solar com anteparo otico

    Energy Technology Data Exchange (ETDEWEB)

    Gurgel, Jose Mauricio [Paraiba Univ., Joao Pessoa, PB (Brazil). Laboratorio de Energia Solar]. E-mail: gurgel@les.ufpb.br; Espinola Junior, Jose [Paraiba Univ., Joao Pessoa, PB (Brazil). Curso de Pos-Graduacao em Engenharia Mecanica; Andrade Filho, Luiz Simao [Paraiba Univ., Joao Pessoa, PB (Brazil). Centro de Tecnologia. Dept. de Tecnologia da Construcao Civil; Marcondes, Francisco [Paraiba Univ., Joao Pessoa, PB (Brazil). Escola de Engenharia. Dept. de Engenharia Mecanica

    2000-07-01

    The use of a solid adsorption cooling unit based on the binary silica gel/water couple constitute an very promising way to harness solar energy refrigeration purposes. Here is presented a mathematical model for the simulation of the system under several use conditions and it was shown coherent when compared with some experimental results. The several accomplished simulations showed the need to be projected a modulate reactor that can offer cooling easiness during the night period and shown the advantage of the use of an solar collector that can be easily opened and your thermal insulating module placed across the glass close the thermal radiation when the desorption process finish. The simulations results presented here shown an better COP for this configuration through an better cooling of the collector at night. (author)

  13. Thermal and hydraulic analyses of TFTR cooling water system and magnetic field coils

    International Nuclear Information System (INIS)

    Lee, A.Y.

    1975-10-01

    The TFTR toroidal field coils, ohmic heating, hybrid and equilibrium field coils are cooled by water from the machine area cooling water system. The system has the following major equipment and capacities: flow rate of 3600 gpm; ballast tank volume of 5500 gal; pumps of 70.4 m head; chiller refrigeration rating of 3300 tons and connecting pipe of 45.7 cm I.D. The performance of the closed loop system was analyzed and found to be adequate for the thermal loads. The field coils were analyzed with detailed thermal and hydraulic models, including a simulation of the complete water cooling loop. Under the nominal operating mode of one second of toroidal field flat top time and 300 seconds of pulse cycle time, the maximum temperature for the TF coils is 53 0 C; for the OH coils 46 0 C and for the EF coils 39 0 C, which are well below the coil design limit of 120 0 C. The maximum TF coil coolant temperature is 33 0 C which is below the coolant design limit of 100 0 C. The overall pressure loss of the system is below 6.89 x 10 5 Pa (100 psi). With the given chiller refrigeration capacity, the TF coils can be operated to yield up to 4 seconds of flat top time. The TF coils can be operated on a steady state basis at up to 20% of the pulsed duty design current rating of 7.32 kA/coil

  14. Atmospheric impacts of evaporative cooling systems

    International Nuclear Information System (INIS)

    Carson, J.E.

    1976-10-01

    The report summarizes available information on the effects of various power plant cooling systems on the atmosphere. While evaporative cooling systems sharply reduce the biological impacts of thermal discharges in water bodies, they create (at least, for heat-release rates comparable to those of two-unit nuclear generating stations) atmospheric changes. For an isolated site such as required for a nuclear power plant, these changes are rather small and local, and usually environmentally acceptable. However, one cannot say with certainty that these effects will remain small as the number of reactors on a given site increases. There must exist a critical heat load for a specific site which, if exceeded, can create its own weather patterns, and thus create inadvertent weather changes such as rain and snow, severe thunderstorms, and tornadoes. Because proven mathematical models are not available, it is not now possible to forecast precisely the extent and frequency of the atmospheric effects of a particular heat-dissipation system at a particular site. Field research on many aspects of cooling system operation is needed in order to document and quantify the actual atmospheric changes caused by a given cooling system and to provide the data needed to develop and verify mathematical and physical models. The more important topics requiring field study are plume rise, fogging and icing (from certain systems), drift emission and deposition rates, chemical interactions, cloud and precipitation formation and critical heat-release rates

  15. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237783; The ATLAS collaboration; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-01-01

    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  16. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  17. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  18. A control oriental model for combined compression-ejector refrigeration system

    International Nuclear Information System (INIS)

    Liu, Jiapeng; Wang, Lei; Jia, Lei; Li, Zhen; Zhao, Hongxia

    2017-01-01

    Highlights: • A control oriental model for combined compression-ejector refrigeration system is proposed. • The pressure pulsating phenomenon in the system is investigated based on the model. • The results show that the model can reflect the system performance under variable operating conditions. - Abstract: Combined compression-ejector refrigeration systems have attracted lots of attention in recent years. In order to improve the running stability of the complex refrigeration system, it is necessary to obtain a simple and accuracy mathematical model for system control. In this paper, a control oriental model for combined compression ejector system is proposed. By analyzing the inner relationship between compressor and ejector, a hybrid model is built based on thermodynamic principles and lumped parameter method. Comparing with traditional theoretical models, the model is more suitable for system control due to its simpler structure and less parameters. Then the pressure pulsating phenomenon inside the piping system between compressor and ejector is investigated based on the model. The effectiveness of the proposed model is validated by experimental data. It is shown that the model can reflect the system performance under variable operating conditions.

  19. Water cooling system for sintering furnaces of nuclear fuel pellets; Sistema de enfriamiento con agua para hornos de sinterizado de pastillas de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author).

  20. Decontamination of primary cooling system

    International Nuclear Information System (INIS)

    Morikawa, Yoshitake.

    1985-01-01

    Purpose: To effectively eliminate radioactivity accumulated in pipeways, equipments, etc in primary coolant circuits of BWR type power plants by utilizing ion displacement reactions. Method: The reactor pressure vessel is connected with a feedwater pipeway, steam pipeway and a recycling pipeway. The recycling pipeway is disposed with a recycling pump. A recycling by-pass line is branched from the recycling pipeway and disposed with a recycling system heat exchanger and chemical injection point. Water is filled in the primary coolant and heated 280 0 C. Then, while maintaining water at that temperature, non-radioactive cobalt ions are injected and circulated within the system, by which radioactivity accumulated in pipeways, equipments or the likes can effectively be removed. (Horiuchi, T.)

  1. Measurement of the cooling capacity of an RMC-Cryosystems Model LTS 4.5-025 closed-cycle helium refrigerator

    Science.gov (United States)

    De Zafra, R. L.; Mallison, W. H.; Emmons, L. K.; Koller, D.

    1991-01-01

    The cooling capacity of a recently purchased RMC-Cryosystems Model LTS 4.5-025 closed-cycle He refrigerator was measured over the range 4-35 K. It is found that the nominal cooling capacity of 250 mW is only met or exceeded over a narrow temperature range around 4.3 + or - 0.5 K, and that, above this range, there exists a considerable region of much lower cooling capacity, not exceeding about 100 mW. It is believed that this behavior results from use of a fixed-aperture Joule-Thompson expansion valve, and might be alleviated if the J-T valve could be adjusted to compensate for changing flow within the 5-20 K temperature range. Present performance may severely limit or prevent effective use in applications where an irreducible heat inflow exists which is greater than about 100 mW, yet substantially less than the quoted capacity at about 4 K.

  2. Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet

    Science.gov (United States)

    Park, Inmyong; Jeong, Sangkwon

    2017-12-01

    The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.

  3. Energy and exergy analysis of a double effect absorption refrigeration system based on different heat sources

    International Nuclear Information System (INIS)

    Kaynakli, Omer; Saka, Kenan; Kaynakli, Faruk

    2015-01-01

    Highlights: • Energy and exergy analysis was performed on double effect series flow absorption refrigeration system. • The refrigeration system runs on various heat sources such as hot water, hot air and steam. • A comparative analysis was carried out on these heat sources in terms of exergy destruction and mass flow rate of heat source. • The effect of heat sources on the exergy destruction of high pressure generator was investigated. - Abstract: Absorption refrigeration systems are environmental friendly since they can utilize industrial waste heat and/or solar energy. In terms of heat source of the systems, researchers prefer one type heat source usually such as hot water or steam. Some studies can be free from environment. In this study, energy and exergy analysis is performed on a double effect series flow absorption refrigeration system with water/lithium bromide as working fluid pair. The refrigeration system runs on various heat sources such as hot water, hot air and steam via High Pressure Generator (HPG) because of hot water/steam and hot air are the most common available heat source for absorption applications but the first law of thermodynamics may not be sufficient analyze the absorption refrigeration system and to show the difference of utilize for different type heat source. On the other hand operation temperatures of the overall system and its components have a major effect on their performance and functionality. In this regard, a parametric study conducted here to investigate this effect on heat capacity and exergy destruction of the HPG, coefficient of performance (COP) of the system, and mass flow rate of heat sources. Also, a comparative analysis is carried out on several heat sources (e.g. hot water, hot air and steam) in terms of exergy destruction and mass flow rate of heat source. From the analyses it is observed that exergy destruction of the HPG increases at higher temperature of the heat sources, condenser and absorber, and lower

  4. Method of fabricating a cooled electronic system

    Science.gov (United States)

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2014-02-11

    A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  5. Turbine airfoil with laterally extending snubber having internal cooling system

    Science.gov (United States)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  6. Design verification and acceptance tests of the ASST-A helium refrigeration system

    International Nuclear Information System (INIS)

    Ganni, V.; Apparao, T.V.V.R.

    1993-07-01

    Three similar helium refrigerator systems have been installed at the Superconducting Super Collider Laboratory (SSCL) N15 site; the ASST-A system, which will be used for the accelerator system's full cell string test; the N15-B system, which will be used for string testing in the tunnel; and a third plant, dedicated to magnet testing at the Magnet Testing Laboratory. The ASST-A and N15-B systems will ultimately be a part of the collider's N15 sector station equipment. Each of these three systems has many subsystems, but the design basis for the main refrigerator is the same. Each system has a guaranteed capacity of 2000 W of refrigeration and 20 g/s liquefaction at 4.5K. The testing and design verification of the ASST-A refrigeration system consisted of parametric tests on the compressors and the total system. A summary of the initial performance test data is given in this paper. The tests were conducted for two cases: in the first, all four compressors were operating; in the second, only one compressor in each stage was operating. In each case, tests were conducted in three modes of operation described later on. The process design basis supplied by the manufacturers and used in the design of the main components -- the compressor, and expanders and heat exchangers for the coldbox -- were used to reduce the actual test data using process simulation methodology. In addition, the test results and the process design submitted by the manufacturer were analyzed using exergy analysis. This paper presents both the process and the exergy analyses of the manufacturer's design and the actual test data for Case 1. The process analyses are presented in the form of T-S diagrams. The results of the exergy analyses comparing the exergy losses of each component and the total system for the manufacturer's design and the test data are presented in the tables

  7. Mechanical vapor compression refrigeration for low temperature industrial applications today

    International Nuclear Information System (INIS)

    Ferguson, J.E.

    1987-01-01

    If the super conductor industry settles out at a temperature of -100 0 F or above, mechanical refrigeration will be vying for the cooling business. Today there very definitely is a break point in the application of equipment at approximately -120 0 F or 189 0 K. Other technologies are generally utilized below this level. However, with market potential comes invention and breakthroughs in refrigeration can also occur. Today standard refrigeration systems are cost effective, reliable and produced in the millions for high temperature applications of +10 0 F to +40 0 F evaporator temperature. Lower temperatures require additional hardware, consume additional power and are produced today in limited quantities for special applications

  8. Liquid over-feeding air conditioning system and method

    Science.gov (United States)

    Mei, Viung C.; Chen, Fang C.

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  9. Liquid over-feeding air conditioning system and method

    Science.gov (United States)

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  10. Model calibration of a variable refrigerant flow system with a dedicated outdoor air system: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongsu [Mississippi State Univ., Starkville, MS (United States); Cox, Sam J. [Mississippi State Univ., Starkville, MS (United States); Cho, Heejin [Mississippi State Univ., Starkville, MS (United States); Im, Piljae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-16

    With increased use of variable refrigerant flow (VRF) systems in the U.S. building sector, interests in capability and rationality of various building energy modeling tools to simulate VRF systems are rising. This paper presents the detailed procedures for model calibration of a VRF system with a dedicated outdoor air system (DOAS) by comparing to detailed measured data from an occupancy emulated small office building. The building energy model is first developed based on as-built drawings, and building and system characteristics available. The whole building energy modeling tool used for the study is U.S. DOE’s EnergyPlus version 8.1. The initial model is, then, calibrated with the hourly measured data from the target building and VRF-DOAS system. In a detailed calibration procedures of the VRF-DOAS, the original EnergyPlus source code is modified to enable the modeling of the specific VRF-DOAS installed in the building. After a proper calibration during cooling and heating seasons, the VRF-DOAS model can reasonably predict the performance of the actual VRF-DOAS system based on the criteria from ASHRAE Guideline 14-2014. The calibration results show that hourly CV-RMSE and NMBE would be 15.7% and 3.8%, respectively, which is deemed to be calibrated. As a result, the whole-building energy usage after calibration of the VRF-DOAS model is 1.9% (78.8 kWh) lower than that of the measurements during comparison period.

  11. On synthesis and optimization of cooling water systems with multiple cooling towers

    CSIR Research Space (South Africa)

    Gololo, KV

    2011-01-01

    Full Text Available -1 On Synthesis and Optimization of Cooling Water Systems with Multiple Cooling Towers Khunedi Vincent Gololo?? and Thokozani Majozi*? ? Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa ? Modelling...

  12. Quantum heat engines and refrigerators: continuous devices.

    Science.gov (United States)

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  13. Dilution refrigeration with multiple mixing chambers

    International Nuclear Information System (INIS)

    Coops, G.M.

    1981-01-01

    A dilution refrigerator is an instrument to reach temperatures in the mK region in a continuous way. The temperature range can be extended and the cooling power can be enlarged by adding an extra mixing chamber. In this way we obtain a double mixing chamber system. In this thesis the theory of the multiple mixing chamber is presented and tested on its validity by comparison with the measurements. Measurements on a dilution refrigerator with a circulation rate up to 2.5 mmol/s are also reported. (Auth.)

  14. Slurry Ice as a Cooling System on 30 GT Fishing Vessel

    Directory of Open Access Journals (Sweden)

    Alam Baheramsyah

    2017-06-01

    Full Text Available Indonesia is the largest archipelago country in the world that has a sea area that is very spacious. Indonesian sea area is 5.8 million square kilometers and a coastline of 95 181 km has huge potential in the fisheries sector. In line with the need to further improve on the quality of the fish catch. One way to preserve fish is to use a slurry of ice. Slurry ice proved more effective preserving fishery products instead of using ice cubes. Ice slurry cooling system was designed and applied to the fishing vessel 30 GT. The cooling system uses a simple vapor compression system consists of five major components consisting of evaporator, condenser, compressor, and two pumps.In designing this system determined the type of refrigerant used in advance which type of refrigerant R-507a. Then do the design or selection of its main components. The design is only done on the evaporator. As for the other major components such as condensers, compressors, and pumps election in accordance with the specification of the power needed. After that dialakukan depiction of each system component. Then subsequently designing the laying of ice slurry cooling system components on a fishing vessel 30 GT.            Through calculations using simple thermodynamic equations obtained cooling load on this system amounted to 32.06 kW. Condenser with a power of 40 kW. Compressor with power 12 kW. Pump with capacity 10 m3 / h. With memepertimbangkan space left on the ship in the ice slurry system design on the main deck of the ship to the efficient use of space on board. The power requirements of the generator vessel increases due to the addition of ice slurry system components therefore do replacement generator into the generator with a power of 100 kW and penambahn fuel tank to 6,000 L.

  15. A Method for Online Steady State Energy Minimization with Application to Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Slot; Thybo, Claus; Stoustrup, Jakob

    2004-01-01

    Energy efficiency of refrigeration systems has gradually been improved with the help of control schemes utilizing the more flexible components; the efficiency is though yet far from optimal. The flexibility initiates a higher degree of freedom in choosing the operating set points while obtaining...... applies to a broader range of process systems where the lower level set-points (in the control hierarchy) can be chosen within a degree of freedom allowing an optimization of a steady state performance index....

  16. Energy-optimal speed control of fans and compressor in a refrigeration system

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.

    1998-01-01

    Use of variable speed compressors and variable speed fans for both the evaporator and the condenser makes the refrigeration system more flexible, adds to the degree of freedom of the control system and therefore makes it possible to (on-line) optimise the various speeds involved. Say, for example...... and therefore the achievement of the potential for energy saving. This control/optimisation problem is investigated using a steady-state simulation model....

  17. Emergency cooling system for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Murata, Ryoichi; Fujiwara, Toshikatsu.

    1980-01-01

    Purpose: To suitably cool liquid metal as coolant in emergency in a liquid metal cooled reactor by providing a detector for the pressure loss of the liquid metal passing through a cooling device in a loop in which the liquid metal is flowed and communicating the detector with a coolant flow regulator. Constitution: A nuclear reactor is stopped in nuclear reaction by control element or the like in emergency. If decay heat is continuously generated for a while and secondary coolant is insufficiently cooled with water or steam flowed through a steam and water loop, a cooler is started. That is, low temperature air is supplied by a blower through an inlet damper to the cooler to cool the secondary coolant flowed into the cooler through a bypass pipe so as to finally safely stop an entire plant. Since the liquid metal is altered in its physical properties by the temperature at this time, it is detected to regulate the opening of the valve of the damper according to the detected value. (Sekiya, K.)

  18. Stochastic cooling with a double rf system

    International Nuclear Information System (INIS)

    Wei, Jie.

    1992-01-01

    Stochastic cooling for a bunched beam of hadrons stored in an accelerator with a double rf system of two different frequencies has been investigated. The double rf system broadens the spread in synchrotron-oscillation frequency of the particles when they mostly oscillate near the center of the rf bucket. Compared with the ease of a single rf system, the reduction rates of the bunch dimensions are significantly increased. When the rf voltage is raised, the reduction rate, instead of decreasing linearly, now is independent of the ratio of the bunch area to the bucket area. On the other hand, the spread in synchrotron-oscillation frequency becomes small with the double rf system, if the longitudinal oscillation amplitudes of the particles are comparable to the dimension of the rf bucket. Consequently, stochastic cooling is less effective when the bunch area is close to the bucket area

  19. Low grade heat driven adsorption system for cooling and power generation using advanced adsorbent materials

    International Nuclear Information System (INIS)

    Al-Mousawi, Fadhel Noraldeen; Al-Dadah, Raya; Mahmoud, Saad

    2016-01-01

    Highlights: • Adsorption system based on water and advanced physical adsorbents has the potential of producing cooling and power. • Adding an expander to physisorption system enhances efficiency by up to 11%. • MIL101Cr MOF can produce 95 W/kg and 1357 W/kg of specific power and cooling. • AQSOA Z02 can produce 73 W/kg and 640 W/kg of specific power and cooling. - Abstract: Globally there is abundance of low grade heat sources (around 150 °C) from renewables like solar energy or from industrial waste heat. The exploitation of such low grade heat sources will reduce fossil fuel consumption and CO_2 emissions. Adsorption technology offers the potential of using such low grade heat to generate cooling and power. In this work, the effect of using advanced adsorbent materials like AQSOA-Z02 (SAPO-34) zeolite and MIL101Cr Metal Organic Framework (MOF) at various operating conditions on power and cooling performance compared to that of commonly used silica-gel was investigated using water as refrigerant. A mathematical model for a two bed adsorption cooling cycle has been developed with the cycle modified to produce power by incorporating an expander between the desorber and the condenser. Results show that it is possible to produce power and cooling at the same time without affecting the cooling output. Results also show that for all adsorbents used as the heat source temperature increases, the cooling effect and power generated increase. As for increasing the cold bed temperature, this will decrease the cooling effect and power output except for SAPO-34 which shows slightly increasing trend of cooling and power output. As the condenser cooling temperature increases, the cooling effect and power output will decrease while for the chilled water temperature, the cooling load and power generated increased as the temperature increased. The maximum values of average specific power generation (SP), specific cooling power (SCP) and cycle efficiency are 73 W

  20. World's first ejector cycle for mobile refrigerators to stop global warming

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Hirotsugu [Denso Corporation, Kariya (Japan); Gyoeroeg, Tibor [DENSO AUTOMOTIVE Deutschland GmbH, Eching (Germany)

    2010-07-01

    The development of energy-saving technologies is in great demand recently to stop global warming. We are committed to developing the Ejector Cycle as an energy-saving technology for refrigerators and air conditioners. The ejector, which is an energy-saving technological innovation, improves the efficiency of the refrigeration cycle by effectively using the expansion energy that is lost in the conventional vapor-compression cycle, and is applicable to almost all vapor-compression refrigerating air conditioners, thus improving the efficiency of the refrigeration cycle. Concerning the application of the Ejector Cycle in truck-transport refrigerators, we released Ejector Cycle products for large and medium-size freezer trucks, which have been favorably accepted by customers in 2003. Simultaneously we also developed the domestic water supply system using heat pump with natural refrigerant (CO{sub 2}). We developed a new Ejector Cycle, completed in 2007 a cool box which uses the refrigeration cycle of the mobile air-conditioning system to cool drinks and the commercial compact refrigerator. In 2008 a domestic water supply heat pump system using a heat pump with the natural refrigerant CO{sub 2} and the next-generation Ejector Cycle II that substantially improves performance was brought to the market. A new generation of Ejector Cycle is under development which will significantly improve the efficiency of mobile air conditioning systems (orig.)

  1. Model-Based Predictive Control Scheme for Cost Optimization and Balancing Services for Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    Weerts, Hermanus H. M.; Shafiei, Seyed Ehsan; Stoustrup, Jakob

    2014-01-01

    A new formulation of model predictive control for supermarket refrigeration systems is proposed to facilitate the regulatory power services as well as energy cost optimization of such systems in the smart grid. Nonlinear dynamics existed in large-scale refrigeration plants challenges the predictive...... control design. It is however shown that taking into account the knowledge of different time scales in the dynamical subsystems makes possible a linear formulation of a centralized predictive controller. A realistic scenario of regulatory power services in the smart grid is considered and formulated...... in the same objective as of cost optimization one. A simulation benchmark validated against real data and including significant dynamics of the system are employed to show the effectiveness of the proposed control scheme....

  2. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1996-04-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates. Citations in this report are divided into the following topics: thermophysical properties; materials compatibility; lubricants and tribology; application data; safety; test and analysis methods; impacts; regulatory actions; substitute refrigerants; identification; absorption and adsorption; research programs; and miscellaneous documents. Information is also presented on ordering instructions for the computerized version.

  3. Exergetic analysis of refrigeration system of the Pelletron-Linac particle accelerator of the University of Sao Paulo

    International Nuclear Information System (INIS)

    Oliveira Filho, O.B. de

    1993-01-01

    The Pelletron-Linac accelerator of the University of Sao Paulo will use the existing electrostatic Pelletron accelerator as an injector for the linear superconducting accelerator (Linac), to increase the acceleration of the particles. The Linac uses a forced flow circulation helium system to promote continuous refrigeration for long periods of time, at temperatures below or equal to 4,9 K. This paper shows the exergetic analysis of the Pelletron-linac refrigerator, identifying the main sources of irreversibilities and evaluating energetic consumption of the system. An exergy-enthalpy diagram for the helium shows the thermodynamic processes that take place in the refrigeration plant and the exergy losses. (author)

  4. Modeling and investigation of refrigeration system performance with two-phase fluid injection in a scroll compressor

    Science.gov (United States)

    Gu, Rui

    Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.

  5. New report reveals eco-efficiency of supermarket refrigeration systems. Refrigerant choice; Rapport onthult eco-effiency van supermarktkoelsystemen. Koudemiddelkeuze

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-11-15

    Ever since the EU has committed to cut greenhouse gas emissions by 20%, food retailers have been under enormous pressure to reduce their carbon footprint. Refrigeration is part of the solution, as it accounts for some 50% of the energy consumption in a typical store. A new report by the British environmental consultants SKM Enviros evaluates different refrigeration solutions. [Dutch] Sinds de EU heeft besloten de uitstoot van broeikasgassen met twintig procent terug te brengen, staan foodretailers onder enorme druk om hun ecologische 'footprint' te verminderen. Koeling is een onderdeel van de oplossing, omdat het circa vijftig procent van het energiegebruik in een gemiddelde winkel voor zijn rekening neemt. Een nieuw rapport van de Britse milieuconsultants SKM Enviros evalueert verschillende koeloplossingen.

  6. Impact of Demand Side Response on a Commercial Retail Refrigeration System

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Saleh

    2018-02-01

    Full Text Available The UK National Grid has placed increased emphasis on the development of Demand Side Response (DSR tariff mechanisms to manage load at peak times. Refrigeration systems, along with HVAC, are estimated to consume 14% of the UK’s electricity and could have a significant role for DSR application. However, characterized by relatively low individual electrical loads and massive asset numbers, multiple low power refrigerators need aggregation for inclusion in these tariffs. In this paper, the impact of the Demand Side Response (DSR control mechanisms on food retailing refrigeration systems is investigated. The experiments are conducted in a test-rig built to resemble a typical small supermarket store. The paper demonstrates how the temperature and pressure profiles of the system, the active power and the drawn current of the compressors are affected following a rapid shut down and subsequent return to normal operation as a response to a DSR event. Moreover, risks and challenges associated with primary and secondary Firm Frequency Response (FFR mechanisms, where the load is rapidly shed at high speed in response to changes in grid frequency, is considered. For instance, measurements are included that show a significant increase in peak inrush currents of approx. 30% when the system returns to normal operation at the end of a DSR event. Consideration of how high inrush currents after a DSR event can produce voltage fluctuations of the supply and we assess risks to the local power supply system.

  7. Design and Simulation of a Vapour Compression Refrigeration System Using Phase Change Material

    Directory of Open Access Journals (Sweden)

    Siddharth Raju

    2018-01-01

    Full Text Available The paper details the design and simulation of a solar powered vapour compression refrigeration system. The effect of a phase change material, in this case ice, on a vapour compression refrigeration system powered by solar panels is discussed. The battery and solar panels were sized to allow the system to function as an autonomous unit for a minimum of 12 hours. It was concluded that the presence of a phase change material in the refrigeration system caused a considerable increase in both the on and off time of the compressor. The ratio by which the on time increased was greater than the ratio by which the off time was increased. There was a 219% increase in the on time, a 139% increase in the compressor off time and a 3.5% increase in compressor work accompanied by a 5.5% reduction in COP. Thus, under conditions where there is enough load in the system to cause the initial on and off times of the compressor to be comparable, the presence of a phase change material may result in a greater on period than an off period for the compressor.

  8. Quantum refrigerators and the third law of thermodynamics.

    Science.gov (United States)

    Levy, Amikam; Alicki, Robert; Kosloff, Ronnie

    2012-06-01

    The rate of temperature decrease of a cooled quantum bath is studied as its temperature is reduced to absolute zero. The third law of thermodynamics is then quantified dynamically by evaluating the characteristic exponent ζ of the cooling process dT(t)/dt∼-T^{ζ} when approaching absolute zero, T→0. A continuous model of a quantum refrigerator is employed consisting of a working medium composed either by two coupled harmonic oscillators or two coupled two-level systems. The refrigerator is a nonlinear device merging three currents from three heat baths: a cold bath to be cooled, a hot bath as an entropy sink, and a driving bath which is the source of cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator. When optimized, both cases lead to the same exponent ζ, showing a lack of dependence on the form of the working medium and the characteristics of the drivers. The characteristic exponent is therefore determined by the properties of the cold reservoir and its interaction with the system. Two generic heat bath models are considered: a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi gas. The restrictions on the interaction Hamiltonian imposed by the third law are discussed. In the Appendices, the theory of periodically driven open systems and its implication for thermodynamics are outlined.

  9. Design of different types of indirect cooling systems in supermarkets - Comparison of energy use and costs

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline

    2007-08-15

    A case study has been performed comparing 11 different cases of indirect cooling systems in supermarkets. The influence of the selection of cooling-coil/heat exchanger design, display cabinets, type of secondary refrigerant, types of valves, types of pumps and type of system design has been investigated. The cases have been selected to be representative for a large number of supermarkets in Sweden. However, some of the cases are only hypothetical and do no not exist in reality so far. The results show that savings of both energy and money can be significant, by the selection of efficient components and system design. An iterative procedure, for finding the optimal operating point (liquid inlet temperature and liquid flow rate) is suggested. This procedure has been evaluated with good results

  10. Optimizing cooling systems in Egyptian arid urbans

    International Nuclear Information System (INIS)

    Medhat, Ahmed A.; Khalil, Essam E.

    2006-01-01

    Present study is devoted to climatic and site oriented investigations that were carried out in a new rural development in the Upper-Egypt. Bioclimatic classifications considered Upper Egypt region, near Sudan border, as a Hot and Dry climatic region. [1]. that is affected by solar heat intensities that can reach 900 W/m2 for a period ranged from 5-to-7 hours per day with the presence of study storms. Cooling season extends up to eight months per year having Upper-day-bulb temperature ranged from 400 degree centigrade - to - 470 degree centigrade while Lower-dry-bulb-temperature ranged from 280 degree centigrade - to - 320 degree centigrade with the relative humidity ranged from 10%-to-37% RH. [2]. Site surveys and field experimental and analyses of the commonly used cooling systems were investigated, evaluated and optimized for optimum indoor comfort conditions at efficient energy efficiency. [3]. Extensive analyses were performed based on Psychrometric formulae to evaluate the impact of energy consumptions related to different cooling systems such as direct expansion, chilled water, and evaporative systems. the present study enables the critical investigations of the influence of arid outdoor conditions and the required indoor thermal parameters on the energy efficiencies of HVAC-system. This work; focuses on the suggestion of suitable system that should be implemented by local energy codes in these arid urban.(Author)

  11. Using Acid Number as a Leading Indicator of Refrigeration and Air Conditioning System Performance

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Cartlidge; Hans Schellhase

    2003-07-31

    This report summarizes a literature review to assess the acidity characteristics of the older mineral oil and newer polyolester (POE) refrigeration systems as well as to evaluate acid measuring techniques used in other non-aqueous systems which may be applicable for refrigeration systems. Failure in the older chlorofluorocarbon/hydrochlorofluorocarbon (CFC/HCFC) / mineral oil systems was primarily due to thermal degradation of the refrigerant which resulted in the formation of hydrochloric and hydrofluoric acids. These are strong mineral acids, which can, over time, severely corrode the system metals and lead to the formation of copper plating on iron surfaces. The oil lubricants used in the older systems were relatively stable and were not prone to hydrolytic degradation due to the low solubility of water in oil. The refrigerants in the newer hydrofluorocarbon (HFC)/POE systems are much more thermally stable than the older CFC/HCFC refrigerants and mineral acid formation is negligible. However, acidity is produced in the new systems by hydrolytic decomposition of the POE lubricants with water to produce the parent organic acids and alcohols used to prepare the POE. The individual acids can therefore vary but they are generally C5 to C9 carboxylic acids. Organic acids are much weaker and far less corrosive to metals than the mineral acids from the older systems but they can, over long time periods, react with metals to form carboxylic metal salts. The salts tend to accumulate in narrow areas such as capillary tubes, particularly if residual hydrocarbon processing chemicals are present in the system, which can lead to plugging. The rate of acid production from POEs varies on a number of factors including chemical structure, moisture levels, temperature, acid concentration and metals. The hydrolysis rate of reaction can be reduced by using driers to reduce the free water concentration and by using scavenging chemicals which react with the system acids. Total acid

  12. Development of a measurement and control system for a 10 kW@20 K refrigerator based on Siemens PLC S7-300

    Science.gov (United States)

    Li, J.; Liu, L. Q.; Liu, T.; Xu, X. D.; Dong, B.; Lu, W. H.; Pan, W.; Wu, J. H.; Xiong, L. Y.

    2017-02-01

    A 10 kW@20 K refrigerator has been established by the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. A measurement and control system based on Siemens PLC S7-300 for this 10 kW@20 K refrigerator is developed. According to the detailed measurement requirements, proper sensors and transmitters are adopted. Siemens S7-300 PLC CPU315-2 PN/DP operates as a master station. Two sets of ET200M DP remote expand I/O, one power meter, two compressors and one vacuum gauge operate as slave stations. Profibus-DP field communication and Modbus communication are used between the master station and the slave stations in this control system. The upper computer HMI (Human Machine Interface) is compiled using Siemens configuration software WinCC V7.0. The upper computer communicates with PLC by means of industrial Ethernet. After commissioning, this refrigerator has been operating with a 10 kW of cooling power at 20 K for more than 72 hours.

  13. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    International Nuclear Information System (INIS)

    Aman, J.; Ting, D.S.-K.; Henshaw, P.

    2014-01-01

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  14. An active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Teo, H.G.; Lee, P.S.; Hawlader, M.N.A.

    2012-01-01

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  15. Numerical simulation and experimental results of horizontal tube falling film generator working in a NH3-LiNO3 absorption refrigeration system

    International Nuclear Information System (INIS)

    Herrera, J.V.; Garcia-Valladares, O.; Gomez, V.H.; Best, R.

    2010-01-01

    This paper describes the work made at the Centro de Investigacion en Energia in the development of an absorption refrigeration system for cooling and refrigeration applications with a capacity of 10 kW. The single effect unit utilizes ammonia-lithium nitrate as working pair and it is air cooled. The generator is a falling film type with horizontal tubes where the heating oil flows inside the tube bank and the ammonia-lithium nitrate solution flows as a falling film on the tube outside, where it is heated and ammonia vapor is generated. The generator consists of tree columns and four rows per column of horizontal tubes. The system was tested at controlled conditions with heating oil obtained from an electric resistance heating loop. A numerical model of the horizontal falling film generator was developed that divided the system into three different thermal elements: the flow inside the tube, the heat conduction in the tube wall and the falling film solution flow. The mathematical model was tested and validated with experimental data and a study of the influence of the heat transfer coefficient for ammonia-lithium nitrate solution in the numerical model was carried out. A comparison between experimental and numerical data for the heat flux in the system and the temperature profiles in the oil and solution flows shown a good degree of correlation.

  16. Emergency cooling system for the PHENIX reactor

    International Nuclear Information System (INIS)

    Megy, J.M.; Giudicelli, A.G.; Robert, E.A.; Crette, J.P.

    Among various engineered safeguards of the reactor plant, the authors describe the protective system designed to remove the decay heat in emergency, in case of complete loss of all normal decay heat removal systems. First the normal decay heat rejection systems are presented. Incidents leading to the loss of these normal means are then analyzed. The protective system and its constructive characteristics designed for emergency cooling and based on two independent and highly reliable circuits entirely installed outside the primary containment vessel are described

  17. Evaluation of Refrigerating and Air Conditioning Devices in Energy Cascade Systems under the Restriction of Carbon Dioxide Emissions

    Science.gov (United States)

    Shimazaki, Yoichi; Akisawa, Atsushi; Kashiwagi, Takao

    It is necessary to introduce energy cascade systems into the industrial sector in Japan to reduce carbon dioxide emissions. The aim of this study is to evaluate the refrigerating and air conditioning devices in cases of introducing both energy cascade systems and thermal recycling systems in industries located around urban areas. The authors have developed an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Limitation of carbon dioxide emissions results in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature one is shifted to refrigeration. It was found that increasing the amount of garbage combustor waste heat can reduce electric power for the turbo refrigerator by promoting waste heat driven ammonia absorption refrigerator.

  18. Evaluation of Variable Refrigerant Flow Systems Performance on Oak Ridge National Laboratory s Flexible Research Platform: Part 3 Simulation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Im, Piljae [ORNL; Cho, Heejin [Mississippi State University (MSU); Kim, Dongsu [Mississippi State University (MSU); Cox, Sam [Mississippi State University (MSU)

    2016-08-01

    This report provides second-year project simulation results for the multi-year project titled “Evaluation of Variable Refrigeration Flow (VRF) system on Oak Ridge National Laboratory (ORNL)’s Flexible Research Platform (FRP).”

  19. Analytical minimization of overall conductance and heat transfer area in refrigeration and heat pump systems and its numerical confirmation

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik; Ram Gopal, M.

    2007-01-01

    Minimization of heat exchanger area for a specified capacity is very important in the design of refrigeration and heat pump systems, yielding space, weight and cost benefits. In this study, minimization of overall conductance and total area per unit capacity of refrigeration and heat pump systems has been performed analytically. The analysis is performed for constant temperature heat sources and sinks considering both internal and external irreversibilities. Expressions are obtained for optimum hot and cold side refrigerant temperatures, conductance and heat exchanger area ratios. The analytical results have been confirmed by those obtained from a detailed numerical simulation of actual ammonia based refrigeration and heat pump systems, and good agreement is observed. Such theoretical models can be employed as simple yet effective design guidelines for real systems as demonstrated here

  20. Design, installation and operating experience of 20 photovoltaic medical refrigerator systems on four continents

    Science.gov (United States)

    Hein, G. F.

    1982-01-01

    The NASA Lewis Research Center in cooperation with the World Health Organization, U.S.A. I.D., the Pan American Health Organization and national government agencies in some developing countries sponsored the installation of twenty photovoltaic powered medical vaccine storage refrigerator-freezer (R/F) systems. The Solar Power Corporation was selected as the contractor to perform the design, development and installation of these twenty units. Solar Power's experiences are described herein.