WorldWideScience

Sample records for refrigeracion anexo 4c

  1. Anexo

    Directory of Open Access Journals (Sweden)

    Jaime Jaramillo Escobar

    2013-09-01

    Full Text Available Esta sección del Boletín tiene por objeto dar noticia de todos los libros colombianos que llegen a su conocimiento, se incluye aquí una breve mención de un volumen publicado por la Biblioteca Pública Piloto de Medellín en el 2010, con textos de algunos de los integrantes del Taller de poesía y creación literaria patrocinado por el Banco de la República.

  2. Anexos

    OpenAIRE

    Universidad Nacional, Colombia

    2010-01-01

    Lámina I: Cráneo número 1.-Masculino. Débilmente deformado en el sentido antero-posterior. Visto en sus cinco orientaciones; Lámina II: Cráneo número 2.-Masculino. Visto en sus cinco orientaciones; Lámina III: Cráneo número 3.-Femenino. Visto en sus cinco orientaciones; Lámina IV: Cráneo número 5.-Femenino. Visto en sus cinco orientaciones; Lámina V: Cráneo número 5.-Femenino. Visto en sus cinco orientaciones; Lámina VI: Cráneo número 9.-Niño. Visto en cuatro orientaciones.

  3. Industrial refrigeration by absorption/compression; Refrigeracion industrial por absorcion/compresion

    Energy Technology Data Exchange (ETDEWEB)

    Ayala Delgado, Ramon; Heard, Christopher Lionel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The use of the absorption/compression refrigeration in the industrial area is analyzed. It is estimated than in Mexico 50% of the food is wasted for lack of refrigeration in the producing centers and by the inefficient distribution system, as well as for the hot climate. The functioning of the absorption refrigeration and the hybrid system absorption/compression which can operate with the two thermodynamic cycles in variable proportions, depending on the specific application, looking for operational advantages and energy efficiency is described. This type of technology could be applied in Mexico due to the lack of industrial refrigeration and to the need of substituting compressors in some companies which have up to 20 years of use [Espanol] Se analiza el uso de la refrigeracion por absorcion/compresion en el area industrial. En Mexico se estima que se desperdicia el 50% de los alimentos por falta de refrigeracion en los centros productores y por el deficiente sistema de distribucion, asi como por el clima calido. Se describe el funcionamiento de la refrigeracion por absorcion y la refrigeracion por absorcion/compresion o sistema hibrido, el cual puede funcionar con los dos tipos de ciclos termodinamicos, en proporciones variables, dependiendo de la aplicacion especifica, buscando ventajas de operacion y eficiencia energetica. Este tipo de tecnologia podria aplicarse en Mexico debido a la falta de refrigeracion industrial y a la necesidad de sustituir compresores en algunas empresas los cuales tienen hasta 20 anos de uso

  4. Industrial refrigeration by absorption/compression; Refrigeracion industrial por absorcion/compresion

    Energy Technology Data Exchange (ETDEWEB)

    Ayala Delgado, Ramon; Heard, Christopher Lionel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The use of the absorption/compression refrigeration in the industrial area is analyzed. It is estimated than in Mexico 50% of the food is wasted for lack of refrigeration in the producing centers and by the inefficient distribution system, as well as for the hot climate. The functioning of the absorption refrigeration and the hybrid system absorption/compression which can operate with the two thermodynamic cycles in variable proportions, depending on the specific application, looking for operational advantages and energy efficiency is described. This type of technology could be applied in Mexico due to the lack of industrial refrigeration and to the need of substituting compressors in some companies which have up to 20 years of use [Espanol] Se analiza el uso de la refrigeracion por absorcion/compresion en el area industrial. En Mexico se estima que se desperdicia el 50% de los alimentos por falta de refrigeracion en los centros productores y por el deficiente sistema de distribucion, asi como por el clima calido. Se describe el funcionamiento de la refrigeracion por absorcion y la refrigeracion por absorcion/compresion o sistema hibrido, el cual puede funcionar con los dos tipos de ciclos termodinamicos, en proporciones variables, dependiendo de la aplicacion especifica, buscando ventajas de operacion y eficiencia energetica. Este tipo de tecnologia podria aplicarse en Mexico debido a la falta de refrigeracion industrial y a la necesidad de sustituir compresores en algunas empresas los cuales tienen hasta 20 anos de uso

  5. Anexo infográfico: La crisis de los refugiados

    OpenAIRE

    CIDOB,

    2016-01-01

    Anexo infográfico:1. Refugiados en el mundo según país de origen (2015)2. Refugiados en el mundo según país de acogida (2015)3. Principales países de destino de los refugiados en Europa (2015)4. Evolución de las solicitudes de asilo presentadas en la UE-28, (2005 - 2015, miles de personas)5. Resultado de las solicitudes de asilo en primera instancia. Rechazos y aceptaciones por tipo de estatuto, principales países de origen UE-28 (2016)6. Resultado de las solicitudes de asilo en primera insta...

  6. Tumores de los anexos oculares Ocular adnexa tumors

    Directory of Open Access Journals (Sweden)

    Clara G. Gómez Cabrera

    2001-12-01

    Full Text Available Se realizó un estudio retrospectivo de 211 pacientes, operados por presentar alguna tumoración de los anexos, con confirmación histológica en el período comprendido entre enero de 1993 hasta diciembre de 1997. El 53,5 % de los pacientes fueron del sexo femenino. El 48,4 % eran mestizos. El 13,3 % de los pacientes eran menores de 20 años, el 36 % entre 20 y 49 y el 50,7 % más de 50 años. El 61,1 % de los tumores se localizaron en los párpados. Los signos clínicos que prevalecieron fueron el aumento de volumen (56,9 %, aumento de la pigmentación (23,71 %, vascularización (21,8 % y ulceración (7,1 %. El 61,6 % de los casos fueron asintomáticos. Encontramos 14 tipos histológicos de tumores en los párpados y 15 en la conjuntiva. No encontramos diferencia significativa en cuanto a sexo y tipo de tumor. La raza mestiza presentó el mayor número de casos y el grupo de mayor incidencia fue el de pacientes mayores e iguales a 50 años de edad. Los párpados constituyeron la localización anatómica principal. El signo clínico más importante fue el aumento de volumen y la mayoría de los pacientes estaban asintomáticos. Los tumores palpebrales de mayor incidencia fueron los quistes de inclusión seguido por el carcinoma basocelular y el granuloma. En la conjuntiva se destacaron los nevus, el carcinoma espinocelular y el granuloma.A retrospective study of 211 patients that were operated on for presenting some adnexa tumors with histologic confirmation from January, 1993, to December, 1997, was made. 53.5 % of the patients were females. 48.4 % were black. 13.3 % were under 20, 36 % were between 20 and 49 and 50.7 % were over 50. 61.1 % of the tumors were localized in the eyelids. The prevailing clinical signs were volume increase (56.9 %, pigmentation increase (23.71 %, vascularization (21.8 % and ulceration (7.1 %. 61.6 % of the patients were asymptomatic. We found 14 histologic types of tumors in the eyelids and 15 in the conjunctiva

  7. Industrial refrigeration with high efficiency absorption; Refrigeracion industrial por absorcion de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Ayala Delgado, R.; Heard, C. L. [Instituto de Investigaciones Electricas, Cuernavaca, (Mexico); Pardubicki, J. [LAJ International, Mexico D. F. (Mexico)

    1995-12-31

    The absorption refrigeration ammonia-lithium nitrate offers great advantages compared with the mechanical compression refrigeration with ammonia as well as with the absorption ammonia-water refrigeration. With heat temperatures of 1000 to 1400 Celsius degrees, for instance low pressure steam the generation of cold at low temperatures (-100 to -200 Celsius degrees) is possible. The system has less components and is much less expensive than the ammonia-water equipment with a price very similar to the ammonia mechanical compression equipment. The equipment consists of five main heat exchangers and a solution pump, resulting in a high reliability of its operation, requiring a minimum maintenance. The operation cost depends directly of the cost of the energy source. In case of using residual heat the operation cost is only the maintenance cost. Nowadays the cost of the electric energy is below the production cost, which can be a short term situation. In time terms of the comparable useful life time of an absorption refrigeration system (in excess of 20 years), it is reasonable to think that the operation costs will be less than the operation costs of an equipment with mechanical compression. To this day it is available a demonstration unit to exhibit the system in industrial plants with different energy sources. [Espanol] La refrigeracion por absorcion amoniaco/nitrato de litio ofrece grandes ventajas comparada tanto con la refrigeracion por compresion mecanica con amoniaco como con la refrigeracion por absorcion amoniaco/agua. Este sistema es mas eficiente y sencillo que el sistema de amoniaco/agua. Con calor de temperatura (100 a 140 grados centigrados por ejemplo vapor de baja presion, se permite la generacion de frio a temperaturas bajas (-10 a -20 grados centigrados). El sistema tiene menos componentes y es mucho mas barato que equipo de amoniaco/agua con un precio muy similar a sistemas por compresion mecanica de amoniaco. El sistema consiste en cinco

  8. Industrial refrigeration with high efficiency absorption; Refrigeracion industrial por absorcion de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Ayala Delgado, R; Heard, C L [Instituto de Investigaciones Electricas, Cuernavaca, (Mexico); Pardubicki, J [LAJ International, Mexico D. F. (Mexico)

    1996-12-31

    The absorption refrigeration ammonia-lithium nitrate offers great advantages compared with the mechanical compression refrigeration with ammonia as well as with the absorption ammonia-water refrigeration. With heat temperatures of 1000 to 1400 Celsius degrees, for instance low pressure steam the generation of cold at low temperatures (-100 to -200 Celsius degrees) is possible. The system has less components and is much less expensive than the ammonia-water equipment with a price very similar to the ammonia mechanical compression equipment. The equipment consists of five main heat exchangers and a solution pump, resulting in a high reliability of its operation, requiring a minimum maintenance. The operation cost depends directly of the cost of the energy source. In case of using residual heat the operation cost is only the maintenance cost. Nowadays the cost of the electric energy is below the production cost, which can be a short term situation. In time terms of the comparable useful life time of an absorption refrigeration system (in excess of 20 years), it is reasonable to think that the operation costs will be less than the operation costs of an equipment with mechanical compression. To this day it is available a demonstration unit to exhibit the system in industrial plants with different energy sources. [Espanol] La refrigeracion por absorcion amoniaco/nitrato de litio ofrece grandes ventajas comparada tanto con la refrigeracion por compresion mecanica con amoniaco como con la refrigeracion por absorcion amoniaco/agua. Este sistema es mas eficiente y sencillo que el sistema de amoniaco/agua. Con calor de temperatura (100 a 140 grados centigrados por ejemplo vapor de baja presion, se permite la generacion de frio a temperaturas bajas (-10 a -20 grados centigrados). El sistema tiene menos componentes y es mucho mas barato que equipo de amoniaco/agua con un precio muy similar a sistemas por compresion mecanica de amoniaco. El sistema consiste en cinco

  9. Controlled environment laboratory for the energy certification of refrigeration and air conditioning systems; Laboratorio de ambiente controlado para la certificacion energetica de sistemas de refrigeracion y aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz, Juan Jose; Romero Paredes, Hernando; Dorantes, Ruben [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico)

    1999-07-01

    In this paper the general characteristics of the Controlled Environment Laboratory (CELAB) are described and some of the possible tests that could be performed in this device to evaluate the energy efficiency in air conditioning systems, domestic refrigeration and industrial refrigeration, as well as tests to evaluate the hydrothermal comfort in national populations, are presented. [Spanish] En este trabajo se describen las caracteristicas generales del Laboratorio de Ambiente Controlado (LAB), y se presentan algunas de las posibles pruebas que podran ser desarrolladas en este dispositivo para evaluar la eficiencia energetica en sistemas de aire acondicionado, refrigeracion domestica y refrigeracion industrial, asi como para pruebas para evaluar el confort hidrotermico en poblaciones nacionales.

  10. Caracterización clínica e histopatológica de los tumores de los anexos oculares

    Directory of Open Access Journals (Sweden)

    Karina Calzadilla Rodríguez

    Full Text Available Objetivo: determinar las características clínicas e histopatológicas de los tumores en los anexos oculares durante el período 2009 al 2010. Métodos: se realizó un estudio observacional descriptivo longitudinal retrospectivo en un grupo de 166 pacientes con diagnóstico de tumor de anexos oculares, escogidos en consulta de Oculoplastia en Holguín. Resultados: predominó la edad comprendida entre 41 a 50 años, con 37,35 %. El sexo más afectado fue el femenino con 53,61 %. La mayor cantidad de lesiones se encontró en los párpados de 114 pacientes. El tipo histológico mayormente identificado fue el nevus con 25,90 %, seguido por el carcinoma basal con 18,07 %. Se obtuvo una concordancia de 83,13 % entre el diagnóstico clínico y el histológico. Conclusiones: en los pacientes estudiados las lesiones tumorales de los anexos se expresan comúnmente en el sexo femenino con una edad riesgosa a partir de la cuarta década de la vida donde los parpados son los más susceptibles. El nevus y el carcinoma basocelular se comportaron como un problema de salud por su predominante frecuencia, con una buena utilidad del método clínico en su diagnóstico.

  11. Saving 50% of energy in air conditioning and refrigeration; 50% de ahorro de energia en aire acondicionado y refrigeracion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez De la Fuente, Rodolfo Javier [Instituto para la Proteccion Ambiental de Nuevo Leon-CAINTRA, Nuevo Leon (Mexico); Bolado Tamez, Jaime Antonio [Industrias AlEn S. A. de C. V., Monterrey (Mexico)

    1998-12-31

    Due to the fact that the air conditioning systems represent up to 70% of the energy consumption in our buildings, to the constant raise of the electric tariffs and to the increment of temperatures in Nuevo Leon State, as well as the restrictions on the use of some refrigerant fluids because of its potential damage to the ozone layer (Montreal Protocol) and the preferential use of refrigerants with low global heating potential (Kioto Protocol). The Camara de la Industria de la Transformacion de Nuevo Leon (Nuevo Leon`s Transformation Industry Chamber) through the Instituto para la Proteccion Ambiental de Nuevo Leon (Nuevo Leon`s Institute for Environmental Protection), create the program ECO-REFRIGERATION whose three missions are: Increase the efficiency of air conditioning and refrigeration equipment, promote the substitution of refrigerants and extend the benefits of these projects to the community in general. [Espanol] Debido a que los sistemas de climatizacion representan hasta el 70% de consumo energetico en nuestros inmuebles, al constante incremento de las tarifas electricas, el incremento de las temperaturas en Nuevo Leon, asi como la restriccion del uso de algunos refrigerantes por su potencial de dano de la capa de ozono (Protocolo de Montreal) y el uso preferente de refrigerantes con bajo potencial de calentamiento global (Protocolo de Kioto), la Camara de la Industria de la Transformacion de Nuevo Leon a traves del Instituto para la Proteccion Ambiental de Nuevo Leon crean el Programa ECO-REFRIGERACION cuyas tres misiones son: Incrementar la eficiencia de los equipos de aire acondicionado y refrigeracion, promover la sustitucion de refrigerantes y extender los beneficios de este proyecto a la comunidad en general.

  12. Saving 50% of energy in air conditioning and refrigeration; 50% de ahorro de energia en aire acondicionado y refrigeracion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez De la Fuente, Rodolfo Javier [Instituto para la Proteccion Ambiental de Nuevo Leon-CAINTRA, Nuevo Leon (Mexico); Bolado Tamez, Jaime Antonio [Industrias AlEn S. A. de C. V., Monterrey (Mexico)

    1999-12-31

    Due to the fact that the air conditioning systems represent up to 70% of the energy consumption in our buildings, to the constant raise of the electric tariffs and to the increment of temperatures in Nuevo Leon State, as well as the restrictions on the use of some refrigerant fluids because of its potential damage to the ozone layer (Montreal Protocol) and the preferential use of refrigerants with low global heating potential (Kioto Protocol). The Camara de la Industria de la Transformacion de Nuevo Leon (Nuevo Leon`s Transformation Industry Chamber) through the Instituto para la Proteccion Ambiental de Nuevo Leon (Nuevo Leon`s Institute for Environmental Protection), create the program ECO-REFRIGERATION whose three missions are: Increase the efficiency of air conditioning and refrigeration equipment, promote the substitution of refrigerants and extend the benefits of these projects to the community in general. [Espanol] Debido a que los sistemas de climatizacion representan hasta el 70% de consumo energetico en nuestros inmuebles, al constante incremento de las tarifas electricas, el incremento de las temperaturas en Nuevo Leon, asi como la restriccion del uso de algunos refrigerantes por su potencial de dano de la capa de ozono (Protocolo de Montreal) y el uso preferente de refrigerantes con bajo potencial de calentamiento global (Protocolo de Kioto), la Camara de la Industria de la Transformacion de Nuevo Leon a traves del Instituto para la Proteccion Ambiental de Nuevo Leon crean el Programa ECO-REFRIGERACION cuyas tres misiones son: Incrementar la eficiencia de los equipos de aire acondicionado y refrigeracion, promover la sustitucion de refrigerantes y extender los beneficios de este proyecto a la comunidad en general.

  13. Isolamento e caracterização de células-tronco mesenquimais derivadas de anexos fetais equinos

    OpenAIRE

    De Vita, Bruna [UNESP

    2011-01-01

    O interesse nas pesquisas com células-tronco obtidas dos anexos fetais de diversas espécies aumentou muito nas últimas décadas em virtude de serem fontes de células-tronco adultas com potencial de diferenciação em diversas linhagens celulares, sem riscos de desenvolvimento de tumores malignos ao serem transplantadas e com a vantagem de possibilitar bancos de armazenamento, no entanto, os estudos para espécie equina ainda são escassos. O objetivo deste trabalho foi isolar, caracterizar e difer...

  14. Temperature and pressure control in the discharge of refrigeration systems cooled by shell and tube condensers; Control de presion y temperatura de descarga en sistemas de refrigeracion enfriados por condensadores de casco y tubo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Martinez, R. [Asociacion de Ingenieros Egresados de la Universidad Autonoma Metropolitana, Mexico D. F. (Mexico)

    1995-12-31

    In the selection of a refrigeration equipment, the evaporator and condenser load conditions must be perfectly known, that is, the amount of heat energy that we have to reject from our space to cool in base to the temperature and mass to refrigerate. This situation carries on to the selection of the adequate compressor. But nevertheless the temperature conditions of the environment play an important roll in the behavior of the entire refrigeration system, altering in many cases the working conditions of each one of the components and therefore the functioning of the refrigeration system. This paper presents a method for controlling the behavior of each one of the components of the refrigeration system that perform in accordance with their design characteristics. [Espanol] En la seleccion de un equipo de refrigeracion, se deben conocer perfectamente las condiciones de carga del evaporador y del condensador, es decir la cantidad de calor que debemos de eliminar de nuestro medio a refrigerar, en base a la temperatura y masa a refrigerar. Esta situacion conlleva a la eleccion del compresor adecuado. Mas sin embargo, las condiciones de temperatura ambiente, juegan un papel importante en el comportamiento de todo el sistema de refrigeracion, alterando en muchos casos las condiciones de trabajo de cada uno de los componentes y por ende el funcionamiento del sistema de refrigeracion. El presente trabajo presenta un metodo para controlar el comportamiento de cada uno de los componentes dentro del sistema de refrigeracion para que trabajen de acuerdo a su diseno.

  15. Temperature and pressure control in the discharge of refrigeration systems cooled by shell and tube condensers; Control de presion y temperatura de descarga en sistemas de refrigeracion enfriados por condensadores de casco y tubo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Martinez, R [Asociacion de Ingenieros Egresados de la Universidad Autonoma Metropolitana, Mexico D. F. (Mexico)

    1996-12-31

    In the selection of a refrigeration equipment, the evaporator and condenser load conditions must be perfectly known, that is, the amount of heat energy that we have to reject from our space to cool in base to the temperature and mass to refrigerate. This situation carries on to the selection of the adequate compressor. But nevertheless the temperature conditions of the environment play an important roll in the behavior of the entire refrigeration system, altering in many cases the working conditions of each one of the components and therefore the functioning of the refrigeration system. This paper presents a method for controlling the behavior of each one of the components of the refrigeration system that perform in accordance with their design characteristics. [Espanol] En la seleccion de un equipo de refrigeracion, se deben conocer perfectamente las condiciones de carga del evaporador y del condensador, es decir la cantidad de calor que debemos de eliminar de nuestro medio a refrigerar, en base a la temperatura y masa a refrigerar. Esta situacion conlleva a la eleccion del compresor adecuado. Mas sin embargo, las condiciones de temperatura ambiente, juegan un papel importante en el comportamiento de todo el sistema de refrigeracion, alterando en muchos casos las condiciones de trabajo de cada uno de los componentes y por ende el funcionamiento del sistema de refrigeracion. El presente trabajo presenta un metodo para controlar el comportamiento de cada uno de los componentes dentro del sistema de refrigeracion para que trabajen de acuerdo a su diseno.

  16. Chromosome Conformation Capture on Chip (4C)

    DEFF Research Database (Denmark)

    Leblanc, Benjamin Olivier; Comet, Itys; Bantignies, Frédéric

    2016-01-01

    4C methods are useful to investigate dependencies between regulatory mechanisms and chromatin structures by revealing the frequency of chromatin contacts between a locus of interest and remote sequences on the chromosome. In this chapter we describe a protocol for the data analysis of microarray-...

  17. Energy saving in heat exchangers of industrial refrigeration systems; Ahorro de energia en intercambiadores de calor en los sistemas de refrigeracion industrial

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, A; Romero Paredes, Hernando; Ambriz, Juan Jose [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D. F. (Mexico)

    1994-12-31

    This paper presents the energy losses of the heat exchangers utilized in industrial refrigeration systems . The effects of the different scaling products on the heat transfer rates are presented and the energy not transferred because of them is evaluated. A simplified method for the evaluation is developed and applied to the evaporators and condensers more frequently employed in the industrial refrigeration systems. The internal and external heat transfer coefficients are evaluated in different types of heat exchangers. The energy losses as a function of the scale thickness on the heat exchanger is shown. [Espanol] El trabajo presenta las perdidas energeticas que se tienen en los intercambiadores de calor usados en los sistemas de refrigeracion industrial. Se presentan los efectos que tienen los diferentes incrustantes en las tasas de transferencia de calor y se evalua la energia que no se transfiere causada por aquellos. Se desarrolla un metodo simplificado de evaluacion y se aplica a los evaporadores y condensadores mas comunes empleados en los sistemas de refrigeracion industrial. Se evaluan los coeficientes internos y externos en diferentes tipos de intercambiadores. Se muestran las perdidas energeticas en funcion del espesor del incrustante en la pared del intercambiador.

  18. National potential of saving of electricity in domestic refrigeration; Potencial nacional de ahorro de electricidad en refrigeracion domestica

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo C, Fernando [Universidad Nacional Autonoma de Mexico (Mexico); Ambriz G, Juan Jose; Romero P, Hernando [Universidad Autonoma Metropolitana, (Mexico)

    2003-07-01

    In the present paper the evaluation of the potential of saving of electrical energy in Mexico is presented, by means of the substitution of old refrigerators of low efficiency by modern high efficiency ones. This potential is very ample, since the replacement of the old models by new follows a very slow curve, if the economic difficulties of the Mexican families are considered and that, on the other hand, the technology of the domestic refrigerators is so reliable that they have a very long life and they are not easily rejected. In field work have been found refrigerators operating with ages of more than 30 years and still 40. In Mexico, it is estimated that the refrigeration is responsible for around 29% of the of electricity consumption in homes settled in tempered climate and of 14 % in those of warm climate in which air conditioning is used. The proposal of this work is the organization of a governmental program of accelerated substitution of refrigerators that helps to acquire an efficient refrigerator and to reject the old ones. The results indicate that if a total renovation of the park of domestic refrigerators is made, the saving of electrical energy would reach the 5.2 TWh/a which represents the 44.5% of the total consumption of 11.7 TWh in a year. [Spanish] En el presente trabajo se presenta la evaluacion del potencial de ahorro de energia electrica en Mexico, mediante la substitucion de refrigeradores antiguos de baja eficiencia por modernos de alta eficiencia. Este potencial es muy amplio, ya que el reemplazo de los modelos viejos por nuevos sigue una curva muy lenta, si se consideran las dificultades economicas de las familias mexicanas y que, por otro lado, la tecnologia de los refrigeradores domesticos es tan confiable que tienen una vida muy larga y no se desechan facilmente. En trabajos de campo se han encontrado refrigeradores operando con edades de mas de 30 anos y aun 40. En Mexico, se estima que la refrigeracion es responsable de alrededor del

  19. Mushrooms preserved by the combined effect of refrigeration and gamma irradiation; Champinones conservados por el efecto combinado de refrigeracion e irradiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, A M; Bauza de Faliti, M; Bocklet, M F

    1991-12-31

    In this work, the combined effect of refrigeration and gamma irradiation on diverse physical parameters to be measured in mushrooms was studied. Mushrooms (Agaricus Campestris), `bisporus` variety, of closed cap, were used. From the treatments tested, it was concluded that 0.5 KGy is the most suitable dosis to delay elongation, cap opening, stem length and surface moss growth. (Author). [Espanol] En este trabajo se ha estudiado el efecto combinado de la refrigeracion y la irradiacion gamma sobre los diversos parametros fisicos medibles en el champinon. Se utilizaron hongos del genero Agaricus Campestris, variedad bisporus, de sombrero cerrado. De los tratamientos ensayados, se ha demostrado tener efecto util la dosis de 0,5 KGy ya que se logro retardar crecimiento, apertura del sombrero, largo del pie y desarrollo de mohos en superficie. (Autor).

  20. The use of absorption refrigeration systems in combined cycle power plants; Empleo de sistemas de refrigeracion por absorcion en plantas de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes, H.; Ambriz, J.J.; Vargas, M.; Godinez, M.; Gomez, F.; Valdez, L.; Pantoja, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Departamento de Ingenieria de Procesos e Hidraulica, Mexico D. F. (Mexico)

    1995-12-31

    Day after day the electric power generation tends to be done in the most efficient way in order to diminish the generation costs and the rate of environmental pollution per KWh generated. This paper discusses the application of absorption refrigeration systems for the cooling of the air entering the compressor of a gas turbine in a combined cycle, in order to increase the mass air flow and with it the turbine output. The flows with remanent energy content that are not used in a combined cycle can be used for the operation of the absorption refrigeration system. This way, the required thermal energy for the cooling system is free. With this system it is possible to raise the gas turbine generation output from 5% to 25%. [Espanol] La generacion electrica dia con dia pretende realizarse de la manera mas eficiente posible con el objeto de disminuir los costos de generacion y la tasa de contaminacion ambiental por Kwh generado. En el presente trabajo se introduce la aplicacion de sistemas de refrigeracion por absorcion para el enfriamiento del aire de entrada al compresor de la turbina de gas de un ciclo combinado, con el objeto de aumentar el flujo masico del aire y con ello la potencia de salida de la turbina. Las corrientes con contenido remanente de energia termica que no se usan en una planta de ciclo combinado pueden servir para operar el sistema de refrigeracion por absorcion. De esta manera, la energia termica requerida para el sistema de enfriamiento es gratuita. Con este sistema es posible incrementar la potencia de generacion de la turbina de gas de 5 a 25%.

  1. The use of absorption refrigeration systems in combined cycle power plants; Empleo de sistemas de refrigeracion por absorcion en plantas de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes, H; Ambriz, J J; Vargas, M; Godinez, M; Gomez, F; Valdez, L; Pantoja, G [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Departamento de Ingenieria de Procesos e Hidraulica, Mexico D. F. (Mexico)

    1996-12-31

    Day after day the electric power generation tends to be done in the most efficient way in order to diminish the generation costs and the rate of environmental pollution per KWh generated. This paper discusses the application of absorption refrigeration systems for the cooling of the air entering the compressor of a gas turbine in a combined cycle, in order to increase the mass air flow and with it the turbine output. The flows with remanent energy content that are not used in a combined cycle can be used for the operation of the absorption refrigeration system. This way, the required thermal energy for the cooling system is free. With this system it is possible to raise the gas turbine generation output from 5% to 25%. [Espanol] La generacion electrica dia con dia pretende realizarse de la manera mas eficiente posible con el objeto de disminuir los costos de generacion y la tasa de contaminacion ambiental por Kwh generado. En el presente trabajo se introduce la aplicacion de sistemas de refrigeracion por absorcion para el enfriamiento del aire de entrada al compresor de la turbina de gas de un ciclo combinado, con el objeto de aumentar el flujo masico del aire y con ello la potencia de salida de la turbina. Las corrientes con contenido remanente de energia termica que no se usan en una planta de ciclo combinado pueden servir para operar el sistema de refrigeracion por absorcion. De esta manera, la energia termica requerida para el sistema de enfriamiento es gratuita. Con este sistema es posible incrementar la potencia de generacion de la turbina de gas de 5 a 25%.

  2. Energy analysis of a solar advanced refrigeration system; Analisis energetico de un sistema de refrigeracion solar avanzado

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez Limon, Nicolas [Universidad Autonoma de Baja California (Mexico); Best y Brown, Roberto [Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico)

    2000-07-01

    In this article is presented a solar refrigeration system that integrates the more recent and important technological advances of the training solar systems (SCS) and of the advanced absorption units. An analysis and evaluation is made of the energy behavior of the absorption system with heat exchanger absorber-generator (GAX), air cooled and assisted by a hybrid power plant natural gas-solar. Given the characteristic of high not-linearity of the resulting system of occupations, the proposed methodology contemplates a calculation sequence for the external currents and an iterative procedure for the internal currents. The unit was designed with a capacity of 10.6 kw (3 tons.) of cooling and uses ammonia-water as working fluid. Giving priority to internal energy integration, an arrangement of the GAX cycle is proposed, that allows 19% of solar contribution at full load, being able to be greater at partial loads. In spite of using as cooling means air at 40 Celsius degrees with a relative humidity of 24%, a COP of 0.86 in the cooling mode was obtained and 1.86 in the heating mode, with an internal energy integration of 1013 kJ/min, 37% more of the energy that is supplied in the generator. The massic flow rates of the GAX cycle were compared with those of a basic cycle, resulting 73% and 62% lower for the circulation rate and for the flow rate, respectively. [Spanish] En este articulo se presenta un sistema de refrigeracion solar que integra los avances tecnologicos mas recientes e importantes de los sistemas de capacitacion solar (SCS) y de las unidades de absorcion avanzadas. Se realiza un analisis y evaluacion del comportamiento energetico del sistema de absorcion con intercambio de calor absorbedor-generador (GAX), enfriado por aire y asistido por una fuente de energia hibrida gas natural-solar. Dada la caracteristica de alta no-linealidad del sistema de ocupaciones resultante, la metodologia propuesta contempla una secuencia de calculo para las corrientes externas

  3. EL ESPACIO ANEXO ENTRE LO ARTIFICIAL Y LO NATURAL / The annexed space between the natural and the artificial

    Directory of Open Access Journals (Sweden)

    Juan José Tuset Davó

    2011-11-01

    Full Text Available RESUMEN En la ciudad contemporánea, lo público está perdiendo relevancia respecto a lo privado. Presenciamos, además, una insistencia en encontrar y recuperar el equilibrio entre ambos. Ante la pregunta de cuál es la forma adecuada que la arquitectura da a los espacios donde lo público encuentra su lugar, vemos que a lo largo de la modernidad, en las utopías socialistas del siglo XIX, en los experimentos de vivienda social europea, oculto en la ciudad suburbana norteamericana, en los revisionismos de los años 70 y en la nueva vivienda colectiva de los años 90, existen unos espacios anexos a la arquitectura que pretenden complementarla y corregir la progresiva sustitución de lo público por lo privado. Actualmente, el activismo pasivo urbano aprovecha cualquier oportunidad en la ciudad para reivindicar el encuentro colectivo. Este planteamiento radica en la firme voluntad de diseñar escenarios urbanos donde lo público encuentre acomodo. Para ello, la constitución del suelo como un plano moldeable acompañado por una cobertura arbórea nos ofrece las condiciones esenciales para que la gente se encuentre bien en un lugar. Entre lo artificial y lo natural, es posible pensar que hay un espacio anexo arquitectónico que se abre a los acontecimientos imprevistos para que tenga lugar otro sentido de lo público. SUMMARY In the contemporary city, what is public is losing importance with respect to what is private. Witness also, an insistence on finding and recovering the balance between them. The appropriate way that architecture makes spaces for what is public can be seen throughout modernity: in the socialist utopias of the nineteenth century; in the European social housing experiments; hidden in the North American suburban town; in the revisionism of the 70’s, and, in the new collective housing of the 90’s, there are spaces annexed to the architecture which are intended to complement and correct the progressive change from public to

  4. Estudio de la influencia de la refrigeracion con aire de forma natural e inducida en el comportamiento de instalaciones fotovoltaicas

    Science.gov (United States)

    Mazon Hernandez, Rocio

    panels are analysed to compare and select the best configuration. The presented research provides a deep knowledge of how they work as well as information and results for an improvement in future designs of building integrated photovoltaic systems. Este estudio se centra en analizar la influencia negativa de la temperatura en la produccion electrica de paneles fotovoltaicos al estar emplazados sobre cubierta de acero, como sucede en naves industriales y sobre un invernadero. Se estudian diferentes configuraciones que permitan refrigerar los paneles, reduciendo su temperatura y mejorar su rendimiento. Para abordar este problema, se han construido dos instalaciones experimentales, fieles a plantas solares en funcionamiento. Una instalacion engloba dos paneles fotovoltaicos sobre estructura fija al suelo. Uno de los paneles esta integrado sobre una superficie paralela y metalica. Entre ambas superficies existe un espacio que posibilita circular aire, permitiendo refrigerar el panel por conveccion natural, o conveccion forzada impulsando el aire con un ventilador. El otro panel, libre por su cara posterior y se ha considerado de referencia. Se ha estudiado el comportamiento del panel integrado sobre cubierta para diferentes secciones de aire y velocidades inducidas, comparandolo con el panel de referencia. Se ha desarrollado un modelo experimental que nos permite determinar la temperatura del panel en funcion de las variables que influyen en su refrigeracion. Adicionalmente, se han analizado los datos de una planta solar en funcionamiento, con paneles de igual caracteristicas, obteniendo correlaciones entre la temperatura del panel y las variables electricas y comparandolos con las obtenidas en la instalacion experimental. La segunda instalacion experimental reproduce parte de una instalacion solar sobre un invernadero, formada por cuatro paneles fotovoltaicos colocados sobre el plastico del invernadero, existiendo un canal divergente entre ambas superficies. Se estudia la

  5. Linfomas de la órbita y anexos oculares: Correlación clínico patológica de 25 casos

    Directory of Open Access Journals (Sweden)

    Erica A. Rojas Bilbao

    2010-08-01

    Full Text Available Se evaluaron las características clínicas, histológicas y la evolución de una cohorte de pacientes con linfomas de la órbita y anexos oculares. Entre 1995 y 2008 se estudiaron 25 casos de linfomas de la órbita y anexos oculares en un centro oncológico de referencia. En cada caso se analizó el inmunofenotipo usando un panel de anticuerpos monoclonales (CD45, CD20, CD3, CD5, CD23, BCL2, BCL6, BCL10, Ki67, CD30, CD15, BCL1, Kappa, Lambda, CD138. Las lesiones fueron evaluadas utilizando el sistema de clasificación de linfomas (OMS, 2008. Se analizaron 23 linfomas primarios y dos secundarios. Los subtipos histológicos fueron: 16 linfomas B de la zona marginal asociados a las mucosas (MALT, cuatro linfomas difusos de células grandes B, dos linfomas foliculares y un paciente con linfoma Hodgkin. De los 25 casos estudiados, 22 presentaron estadios localizados. El linfoma MALT fue el subtipo más frecuente. En este estudio se observó enfermedad localizada en la mayoría de los casos y con baja progresión a distancia.

  6. 4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments.

    Science.gov (United States)

    Raviram, Ramya; Rocha, Pedro P; Müller, Christian L; Miraldi, Emily R; Badri, Sana; Fu, Yi; Swanzey, Emily; Proudhon, Charlotte; Snetkova, Valentina; Bonneau, Richard; Skok, Jane A

    2016-03-01

    4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait") that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.

  7. Benchmark and physics testing of LIFE-4C. Summary

    International Nuclear Information System (INIS)

    Liu, Y.Y.

    1984-06-01

    LIFE-4C is a steady-state/transient analysis code developed for performance evaluation of carbide [(U,Pu)C and UC] fuel elements in advanced LMFBRs. This paper summarizes selected results obtained during a crucial step in the development of LIFE-4C - benchmark and physics testing

  8. Isomerisation of c4-c6 aldoses with zeolites

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to isomerization of C4-C6 aldoses to their corresponding C4-C6 ketoses. In particular, the invention concerns isomerization of C4-C6 aldoses over solid zeolite catalysts free of any metals other than aluminum, in the presence of suitable solvent(s) at suitable elevated...... temperatures. C6 and C5 aldose sugars such as glucose and xylose, which are available in large amounts from biomass precursors, are isomerized to fructose and xylulose respectively, in a one or two-step process over inexpensive commercially available zeolite catalysts, containing aluminum as the only metal...

  9. 4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments.

    Directory of Open Access Journals (Sweden)

    Ramya Raviram

    2016-03-01

    Full Text Available 4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait" that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.

  10. Hot pressing of B4C/SiC composites

    International Nuclear Information System (INIS)

    Sahin, F.C.; Turhan, E.; Yesilcubuk, S.A.; Addemir, O.

    2005-01-01

    B 4 C/SiC ceramic composites containing 10-20-30 vol % SiC were prepared by hot pressing method. The effect of SiC addition and hot pressing temperature on sintering behaviour and mechanical properties of hot pressed composites were investigated. Microstructures of hot pressed samples were examined by SEM technique. Three different temperatures (2100 deg. C, 2200 deg. C and 2250 deg. C) were used to optimize hot pressing temperature applying 100 MPa pressure under argon atmosphere during the sintering procedure. The highest relative density of 98.44 % was obtained by hot pressing at 2250 deg. C. However, bending strengths of B 4 C/SiC composite samples were lower than monolithic B 4 C in all experimental conditions. (authors)

  11. B{sub 4}C thin films for neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Hoeglund, Carina [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Birch, Jens; Jensen, Jens; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Andersen, Ken; Hall-Wilton, Richard [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, Thierry; Buffet, Jean-Claude; Correa, Jonathan; Esch, Patrick van; Guerard, Bruno; Piscitelli, Francesco [Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Khaplanov, Anton [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Vettier, Christian [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); European Synchrotron Radiation Facility, BP 220, FR-380 43 Grenoble Cedex 9 (France); Vollenberg, Wilhelmus [Vacuum, Surfaces and Coatings Group (TE/VSC), CERN, CH-1211 Geneva 23 (Switzerland)

    2012-05-15

    Due to the very limited availability of {sup 3}He, new kinds of neutron detectors, not based on {sup 3}He, are urgently needed. Here, we present a method to produce thin films of {sup 10}B{sub 4}C, with maximized detection efficiency, intended to be part of a new generation of large area neutron detectors. B{sub 4}C thin films have been deposited onto Al-blade and Si wafer substrates by dc magnetron sputtering from {sup nat}B{sub 4}C and {sup 10}B{sub 4}C targets in an Ar discharge, using an industrial deposition system. The films were characterized with scanning electron microscopy, elastic recoil detection analysis, x-ray reflectivity, and neutron radiography. We show that the film-substrate adhesion and film purity are improved by increased substrate temperature and deposition rate. A deposition rate of 3.8 A/s and substrate temperature of 400 deg. C result in films with a density close to bulk values and good adhesion to film thickness above 3 {mu}m. Boron-10 contents of almost 80 at. % are obtained in 6.3 m{sup 2} of 1 {mu}m thick {sup 10}B{sub 4}C thin films coated on Al-blades. Initial neutron absorption measurements agree with Monte Carlo simulations and show that the layer thickness, number of layers, neutron wavelength, and amount of impurities are determining factors. The study also shows the importance of having uniform layer thicknesses over large areas, which for a full-scale detector could be in total {approx}1000 m{sup 2} of two-side coated Al-blades with {approx}1 {mu}m thick {sup 10}B{sub 4}C films.

  12. 4C radio sources in clusters of galaxies

    International Nuclear Information System (INIS)

    McHardy, I.M.

    1979-01-01

    Observations of a complete sample of 4C and 4CT radio sources in Abell clusters with the Cambridge One-Mile telescope are analysed. It is concluded that radio sources are strongly concentrated towards the cluster centres and are equally likely to be found in clusters of any richness. The probability of a galaxy of a given absolute magnitude producing a source above a given luminosity does not depend on cluster membership. 4C and 4CT radio sources in clusters, selected at 178 MHz, occur preferentially in Bautz-Morgan (BM) class 1 clusters, whereas those selected at 1.4 GHz do not. The most powerful radio source in the cluster is almost always associated with the optically brightest galaxy. The average spectrum of 4C sources in the range 408 to 1407 MHz is steeper in BM class 1 than in other classes. Spectra also steepen with cluster richness. the morphology of 4C sources in clusters depends strongly on BM class and, in particular, radio-trail sources occur only in BM classes II, II-III and III. (author)

  13. Directional crystallization of B4C-NbB2 and B4C-MoB2 eutectic compositions

    International Nuclear Information System (INIS)

    Paderno, Varvara; Paderno, Y.B.; Filippov, Vladimir; Liashchenko, Alfred

    2004-01-01

    We studied the directional crystallization of different compositions in B 4 C-NbB 2 and B 4 C-MoB 2 systems. The eutectic compositions for both systems are evaluated. It is shown that in the first system the rod-like eutectic structure is formed, in second, the 'Chinese hieroglyphics'. In both cases high hardness and high microplasticity are observed, which are much more than for individual component phases. These compositions may be considered as a new kind of self-strengthening composite materials

  14. B4C control rod behavior during severe accident sequences

    International Nuclear Information System (INIS)

    Steinbrueck, M.

    2003-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) as well as the degradation of B 4 C control rod segments were investigated in the temperature range between 800 and 1600 deg C. Mass spectrometric gas analysis was used to determine oxidation rates in transient and isothermal tests. The oxidation kinetics of boron carbide are determined by the formation of a liquid boron oxide layer and its loss due to the reaction with surplus steam to form volatile boric acids and at temperatures above 1500 deg C by direct evaporation. Under these test conditions linear oxidation kinetics are established soon after oxidation has initiated. The oxidation kinetics are strongly influenced by the thermal-hydraulic boundary conditions, in particular by the steam flow rate. Only very low amounts of methane were ever produced in these tests. Enhanced degradation of B 4 C control rods starts with the rapid formation of eutectic melts in the systems B 4 C-stainless steel (SS) and SS-Zircaloy at temperatures above 1250 deg C. Initially, this melt is kept within a ZrO 2 scale externally formed at the Zircaloy guide tube. The absorber melt is rapidly oxidized after failure of the oxide shell and aggressively attacks adjacent fuel claddings. (author)

  15. An assessment of the MCNP4C weight window

    International Nuclear Information System (INIS)

    Culbertson, Christopher N.; Hendricks, John S.

    1999-01-01

    A new, enhanced weight window generator suite has been developed for MCNP version 4C. The new generator correctly estimates importances in either a user-specified, geometry-independent, orthogonal grid or in MCNP geometric cells. The geometry-independent option alleviates the need to subdivide the MCNP cell geometry for variance reduction purposes. In addition, the new suite corrects several pathologies in the existing MCNP weight window generator. The new generator is applied in a set of five variance reduction problems. The improved generator is compared with the weight window generator applied in MCNP4B. The benefits of the new methodology are highlighted, along with a description of its limitations. The authors also provide recommendations for utilization of the weight window generator

  16. La definición de usos del suelo en las cercanías de fallas geológicas: explicación del Protocolo Técnico del Decreto Ejecutivo 32967 - MINAE, Anexo 3

    OpenAIRE

    Allan Astorga-Gätgens

    2013-01-01

    Se realiza una explicación técnica sobre el Protocolo Técnico publicado como Decreto Ejecutivo (32967 - MINAE, Anexo 3). El Protocolo se refiere a la definición de los usos del suelo en las cercanías de fallas geológicas inactivas, activas y potencialmente activas. Aparte de aclarar la nomenclatura técnica, se explica el procedimiento que debe seguir el profesional en geología para establecer las eventuales zonas de seguridad que deben respetarse al momento de definir los usos del suelo, en p...

  17. Accelerator mass spectrometry analysis of "1"4C-oxaliplatin concentrations in biological samples and "1"4C contents in biological samples and antineoplastic agents

    International Nuclear Information System (INIS)

    Toyoguchi, Teiko; Kobayashi, Takeshi; Konno, Noboru; Shiraishi, Tadashi; Kato, Kazuhiro; Tokanai, Fuyuki

    2015-01-01

    Accelerator mass spectrometry (AMS) is expected to play an important role in microdose trials. In this study, we measured the "1"4C concentration in "1"4C-oxaliplatin-spiked serum, urine and supernatant of fecal homogenate samples in our Yamagata University (YU) – AMS system. The calibration curves of "1"4C concentration in serum, urine and supernatant of fecal homogenate were linear (the correlation coefficients were ⩾0.9893), and the precision and accuracy was within the acceptance criteria. To examine a "1"4C content of water in three vacuum blood collection tubes and a syringe were measured. "1"4C was not detected from water in these devices. The mean "1"4C content in urine samples of 6 healthy Japanese volunteers was 0.144 dpm/mL, and the intra-day fluctuation of "1"4C content in urine from a volunteer was little. The antineoplastic agents are administered to the patients in combination. Then, "1"4C contents of the antineoplastic agents were quantitated. "1"4C contents were different among 10 antineoplastic agents; "1"4C contents of paclitaxel injection and docetaxel hydrate injection were higher than those of the other injections. These results indicate that our quantitation method using YU-AMS system is suited for microdosing studies and that measurement of baseline and co-administered drugs might be necessary for the studies in low concentrations.

  18. Effect of the Ti/B4C mole ratio on the reaction products and reaction mechanism in an Al–Ti–B4C powder mixture

    International Nuclear Information System (INIS)

    Zhang, Jingjing; Lee, Jung-Moo; Cho, Young-Hee; Kim, Su-Hyeon; Yu, Huashun

    2014-01-01

    The effect of the Ti/B 4 C mole ratio on the fabrication behavior of Al composites is investigated using Al–Ti–B 4 C powder mixtures as reactants. The quick spontaneous infiltration (QSI) process combined with the combustion reaction and DTA analysis were used. According to the thermodynamic predictions, which are verified in the experimental results, TiB 2 is formed in all the samples whereas TiC is only formed in reactants with a Ti/B 4 C mole ratio of more than two. The C atoms from the reacted B 4 C do not move into TiC but instead they move into Al 3 BC or Al 4 C 3 when the Ti/B 4 C mole ratio is less than two. In addition, the reaction mechanism with a Ti/B 4 C mole ratio of 0.75 is investigated extensively. - Highlights: • The critical role of the Ti/B 4 C mole ratio on the reaction products of Al–Ti–B 4 C was studied using experiments. • The experimental results are also supported by thermodynamic calculations presented in this paper. • The reaction mechanism with a Ti/B 4 C mole ratio of 0.75 is investigated extensively

  19. A specific assay for quantification of human C4c by use of an anti-C4c monoclonal antibody

    DEFF Research Database (Denmark)

    Pilely, Katrine; Skjoedt, Mikkel-Ole; Nielsen, Christian

    2014-01-01

    a mouse monoclonal antibody (mAb) that is able to detect fluid phase C4c without interference from other products generated from the complement component C4. The C4c specific mAb was tested in different enzyme-linked immunosorbent assay (ELISA) combinations with various types of in vitro activated sera...

  20. Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites

    Science.gov (United States)

    Wang, Miao; Wang, Wen-xian; Chen, Hong-sheng; Li, Yu-li

    2018-03-01

    A Ni-B4C macroscopic diffusion welding couple and a Ni-15wt%B4C composite fabricated by spark plasma sintering (SPS) were used to understand the micro-scale diffusion bonding between metals and ceramics. In the Ni-B4C macroscopic diffusion welding couple a perfect diffusion welding joint was achieved. In the Ni-15wt%B4C sample, microstructure analyses demonstrated that loose structures occurred around the B4C particles. Energy dispersive X-ray spectroscopy analyses revealed that during the SPS process, the process of diffusion bonding between Ni and B4C particles can be divided into three stages. By employing a nano-indentation test, the room-temperature fracture toughness of the Ni matrix was found to be higher than that of the interface. The micro-diffusion bonding between Ni and B4C particles is quite different from the Ni-B4C reaction couple.

  1. Synthesis of [diene-"1"4C] curcumin at high specific activity

    International Nuclear Information System (INIS)

    Filer, Crist N.; Lacy, James M.; Wright, Christopher

    2016-01-01

    An efficient method is described to label curcumin with "1"4C at high specific activity. - Highlights: • This paper describes the synthesis of ["1"4C] Curcumin at the highest specific activity and total activity amount yet reported. • The "1"4C label was installed in the diene framework of Curcumin. • This paper also describes the characterization of ["1"4C] Curcumin by HPLC and mass spectrometry.

  2. File list: Oth.PSC.50.Kdm4c.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.Kdm4c.AllCell mm9 TFs and others Kdm4c Pluripotent stem cell SRX424007,S...RX424008 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.50.Kdm4c.AllCell.bed ...

  3. The effect of hydrogen on B4C coatings fabrication in inductively coupled plasma torch

    Directory of Open Access Journals (Sweden)

    Q. J. Guo

    2018-02-01

    Full Text Available Boron carbide (B4C coatings are prepared by an RF inductively coupled plasma (ICP torch with different amounts of hydrogen introduced into the sheath gas. The effects of the added hydrogen on the characteristics of the plasma are diagnosed by optical emission spectroscopy and high speed photography. The effects on the melting of B4C particles in the plasma are studied by scanning electron microscopy (SEM. The microstructure of the B4C coatings was determined with SEM imaging and x-ray diffraction analysis. The results show that adding hydrogen to the sheath gas leads to plasma contraction, which results in higher gas temperature of plasma. It also enhances B4C particles spheroidizing and improves the compactness of B4C coatings. Plasma processing does not change the main phase of boron carbide. The obtained results on B4C coatings on Cu substrates allows for improving the B4C coatings fabrication process.

  4. Pressure effect on structural, elastic, and thermodynamic properties of tetragonal B4C4

    Directory of Open Access Journals (Sweden)

    Baobing Zheng

    2015-03-01

    Full Text Available The compressibility, elastic anisotropy, and thermodynamic properties of the recently proposed tetragonal B4C4 (t-B4C4 are investigated under high temperature and high pressure by using of first-principles calculations method. The elastic constants, bulk modulus, shear modulus, Young’s modulus, Vickers hardness, Pugh’s modulus ratio, and Poisson’s ratio for t-B4C4 under various pressures are systematically explored, the obtained results indicate that t-B4C4 is a stiffer material. The elastic anisotropies of t-B4C4 are discussed in detail under pressure from 0 GPa to 100 GPa. The thermodynamic properties of t-B4C4, such as Debye temperature, heat capacity, and thermal expansion coefficient are investigated by the quasi-harmonic Debye model.

  5. Study on "1"4C content in post-irradiation graphite spheres of HTR-10

    International Nuclear Information System (INIS)

    Wang Shouang; Pi Yue; Xie Feng; Li Hong; Cao Jianzhu

    2014-01-01

    Since the production mechanism of the "1"4C in spherical fuel elements was similar to that of fuel-free graphite spheres, in order to obtain the amount of "1"4C in fuel elements and graphite spheres of HTR-10, the production mechanism of the "1"4C in graphite spheres was studied. The production sources of the "1"4C in graphite spheres and fuel elements were summarized, the amount of "1"4C in the post-irradiation graphite spheres was calculated, the decomposition techniques of graphite spheres were compared, and experimental methods for decomposing the graphite spheres and preparing the "1"4C sample were proposed. The results can lay the foundation for further experimental research and provide theoretical calculations for comparison. (authors)

  6. 32 CFR 1630.42 - Class 4-C: Alien or dual national.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Class 4-C: Alien or dual national. 1630.42... CLASSIFICATION RULES § 1630.42 Class 4-C: Alien or dual national. In Class 4-C shall be placed any registrant who... service in the United States. (b) Is an alien and who has departed from the United States prior to being...

  7. Heat release from B4C oxidation in steam and air

    International Nuclear Information System (INIS)

    Belovsky, L.

    1996-01-01

    BWR and some PWR cores contain boron carbide (B 4 C) as neutron absorber. During a severe accident, the B 4 C can potentially react with steam under release of heat and hydrogen. Although models for B 4 C oxidation already exist in MELCOR and SCDAP/RELAP5, a development of a new model for another computer code seems to be difficult due to a missing comprehensive description of the current modelling methodology and scarce experimental data. The aim of this paper is to highlight the key points of the B 4 C oxidation using the existing available experimental data and to perform a simple heat balance analysis of the B 4 C/steam and B 4 C/air chemical reactions. The analysis of literature data shows that the B 4 C oxidation phenomenon is qualitatively well described below 1000 deg. C. However, no reliable data exist for the reaction kinetics especially above this temperature. It was found that the experimental results strongly depend on the experimental arrangement. The reaction heats, calculated in this study, indicate that the B 4 C oxidation is an exothermic reaction, releasing more heat in air than in steam. The formation of boric acids from the boron oxide increases the heat release from B 4 C by ∼ 10%, in the worst case. Although the total heat, released in a PWR core from the B 4 C oxidation, is probably much smaller than the heat released from the Zr/steam reaction, it is not excluded that the B 4 C oxidation can locally contribute to the damage of the control elements due to local overheating. Modelling of these phenomena is, however, very difficult due to the complex geometry of the liquefied control elements and due to absence of suitable data on the reaction kinetics. (author). 25 refs, 2 figs, 3 tabs

  8. Characterization of NCAM expression and function in BT4C and BT4Cn glioma cells

    DEFF Research Database (Denmark)

    Andersson, A M; Moran, N; Gaardsvoll, H

    1991-01-01

    The neural cell adhesion molecule, NCAM, plays an important role in cell-cell adhesion. Therefore, we have studied NCAM expression in the glioma cell lines BT4C and BT4Cn. We demonstrate that the 2 cell lines differ in their metastatic ability; while BT4C cells have a very low capacity for produc...

  9. Synthesis and Electrochemical Properties of LiFePO4/C for Lithium Ion Batteries.

    Science.gov (United States)

    Gao, Hong; Wang, Jiazhao; Yin, Shengyu; Zheng, Hao; Wang, Shengfu; Feng, Chuanqi; Wang, Shiquan

    2015-03-01

    LiFePO4/C was prepared through a facile rheological phase reaction method by using Fe3(PO4)2, Li3PO4 · 8H2O, and glucose as reactants. The LiFePO4/C samples were characterized by X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The electrochemical properties of the samples were investigated. The results show that the LiFePO4/C samples have single-phase olivine-type structure, and their particles feature a spherical shape. The carbon coating on the particles of LiFePO4 is about 1.8% of the LiFePO4/C by weight. The particle size was distributed from 0.2 to 1 µm. The initial discharge capacity of LiFePO4/C reached 154 mA h/g at 0.1 C. The retained discharge capacity of LiFePO4/C was 152.9 mA h g(-1) after 50 cycles. The LiFePO4/C also showed better cycling performance than that of the bare LiPeO4 at a higher charge/discharge rate (1 C). The LIFePO4/C prepared in this way could be a promising cathode material for lithium ion battery application.

  10. (CH4)-C-14 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources

    DEFF Research Database (Denmark)

    Petrenko, V. V.; Smith, A. M.; Brook, E. J.

    2009-01-01

    by direct cosmogenic C-14 production in ice. C-14 of CO was measured to better understand this process and correct the sample (CH4)-C-14. Corrected results suggest that wetland sources were likely responsible for the majority of the Younger Dryas-Preboreal CH4 rise.......The cause of a large increase of atmospheric methane concentration during the Younger Dryas-Preboreal abrupt climatic transition (similar to 11,600 years ago) has been the subject of much debate. The carbon-14 (C-14) content of methane ((CH4)-C-14) should distinguish between wetland and clathrate...... contributions to this increase. We present measurements of (CH4)-C-14 in glacial ice, targeting this transition, performed by using ice samples obtained from an ablation site in west Greenland. Measured (CH4)-C-14 values were higher than predicted under any scenario. Sample (CH4)-C-14 appears to be elevated...

  11. Lesiones traumáticas de los anexos y del segmento anterior del ojo en los boxeadores Traumatic lesions of the adnexa and of the anterior segment of the eye in fighters

    Directory of Open Access Journals (Sweden)

    Agustín Fernández Sánchez

    2003-06-01

    Full Text Available Se realizó un estudio retrospectivo con una muestra de 71 boxeadores a los cuales se les examinaron las estructuras de referencia mediante oftalmoscopia directa y biomicroscopia ocular, antes de las 6 horas posteriores al término de sus peleas; donde se obtuvo como resultado que los anexos afectados fueron los párpados con 5 hematomas, 4 edemas y 1 excoriación; y la conjuntiva con 4 hiperemias y 8 hemorragias. En el segmento anterior del ojo sólo se afectó la córnea con 13 lesiones en total, divididas en 10 excoriaciones superficiales y 3 profundas. Las lesiones traumáticas predominantes en los anexos del ojo son las de los párpados y las de la conjuntiva y las del segmento anterior del ojo, las de la córnea. El ojo más afectado fue el izquierdo y las lesiones más frecuentes fueron en las categorías de 13 y 14, 17 y 18 y 19 y 34 años las corneales, las conjuntivales y la de los párpados, respectivamente.A retrospective study was carried out with a sample of 71 fighters, whose reference structures were examined by direct ophthalmoscopy and ocular biomicroscopy within the 6 hours following their fights. As a result, it was observed that the affected adnexa were the eyelids with 5 hematomas, 4 edemas and 1 excoriation; and the conjunctiva with 4 hyperemias and 8 hemorrhages. In the anteriro segment, only the cornea was affected with 13 lesions in all, divided into 10 superficial and 3 deep excoriations.The traumatic lesions prevailing in the adnexa of the eye are those of the eyelids and the conjunctiva, whereas the predominating traumatic lesions of the anterior segment of the eye are those of the cornea. The left eye was the most affected and the most frequent lesions were in the categories 13 and 14, 17 and 18 and 19 and 34 years old in the cornea, the conjunctiva and the eyelids, respectively.

  12. Linfomas de la órbita y anexos oculares: Correlación clínico patológica de 25 casos Orbital and ocular adnexal lymphomas: Clinico-pathological correlation in 25 cases

    Directory of Open Access Journals (Sweden)

    Erica A. Rojas Bilbao

    2010-08-01

    Full Text Available Se evaluaron las características clínicas, histológicas y la evolución de una cohorte de pacientes con linfomas de la órbita y anexos oculares. Entre 1995 y 2008 se estudiaron 25 casos de linfomas de la órbita y anexos oculares en un centro oncológico de referencia. En cada caso se analizó el inmunofenotipo usando un panel de anticuerpos monoclonales (CD45, CD20, CD3, CD5, CD23, BCL2, BCL6, BCL10, Ki67, CD30, CD15, BCL1, Kappa, Lambda, CD138. Las lesiones fueron evaluadas utilizando el sistema de clasificación de linfomas (OMS, 2008. Se analizaron 23 linfomas primarios y dos secundarios. Los subtipos histológicos fueron: 16 linfomas B de la zona marginal asociados a las mucosas (MALT, cuatro linfomas difusos de células grandes B, dos linfomas foliculares y un paciente con linfoma Hodgkin. De los 25 casos estudiados, 22 presentaron estadios localizados. El linfoma MALT fue el subtipo más frecuente. En este estudio se observó enfermedad localizada en la mayoría de los casos y con baja progresión a distancia.Clinical, histological features and outcome of a cohort of patients with orbital and adnexal lymphoproliferative tumors were evaluated. Twenty-five cases in an oncologic referral center from 1995 to 2008, were included in the study. Each case had detailed immunophenotypic analysis using a panel of monoclonal antibodies (CD45, CD20, CD3, CD5, CD23, BCL2, BCL6, BCL10, Ki67, CD30, CD15, BCL1, Kappa, Lambda, CD138. Lesions were classified by using WHO (2008 lymphomas classification. Twenty-three patients were found to have primary and two secondary lymphomas. Histological subtypes were: 16 patients with marginal zone B cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma, four diffuse large B cell lymphomas, two mantle cell lymphomas, two follicular lymphomas, and one Hodgkin lymphoma. Among the 25 patients studied, 22 had localized stage. Extranodal marginal zone lymphoma was the most frequent type of primary orbital

  13. Effects of B4C control rod degradation under severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Si-Won; Park, Sang-Gil; Han, Sang-Ku [Atomic Creative Technology Co., Daejeon (Korea, Republic of)

    2016-10-15

    Boron carbide (B4C) is widely used as absorber material in western boiling water reactor (BWR), some PWR, EPR and Russian RBMK and VVERs. B4C oxidation is one of the important phenomena of in-vessel. In the present paper, the main results and knowledge gained regarding the B4C control rod degradation from above mentioned experiments are reviewed and arranged to inform its significance on the severe accident consequences. In this paper, the role of B4C control rod oxidation and the subsequent degradation on the severe accident consequences is reviewed with available literature and report of previous experimental program regarding the B4C oxidation. From this review, it seems that the contribution of this B4C oxidation on the accident progression to the further severe accident situation is not negligible. For the future work, the extensive experimental data interpretation will be performed to assess quantitatively the effect of B4C oxidation and degradation on the various postulated severe accident conditions.

  14. Production and characterization of AA6061-B4C stir cast composite

    International Nuclear Information System (INIS)

    Kalaiselvan, K.; Murugan, N.; Parameswaran, Siva

    2011-01-01

    Highlights: → Stir casting of AA6061-B 4 C Composite. Color metallographic of composites → Enhanced wetting of B 4 C particles by K 2 TiF 6 flux. → Effect of B 4 C particles on mechanical properties of AA6061. -- Abstract: This work focuses on the fabrication of aluminum (6061-T6) matrix composites (AMCs) reinforced with various weight percentage of B 4 C particulates by modified stir casting route. The wettability of B 4 C particles in the matrix has been improved by adding K 2 TiF 6 flux into the melt. The microstructure and mechanical properties of the fabricated AMCs are analyzed. The optical microstructure and scanning electron microscope (SEM) images reveal the homogeneous dispersion of B 4 C particles in the matrix. The reinforcement dispersion has also been identified with X-ray diffraction (XRD). The mechanical properties like hardness and tensile strength have improved with the increase in weight percentage of B 4 C particulates in the aluminum matrix.

  15. Evaulation of B4C as an ablator material for NIF capsules. Revision 1

    International Nuclear Information System (INIS)

    Burnham, A.K.; Alford, C.S.; Makowiecki, D.M.; Dittrich, T.R.; Wallace, R.J.; Honea, E.C.; King, C.M.; Steinman, D.

    1997-01-01

    Boron carbide (B 4 C) is examined as a potential fuel container and ablator for implosion capsules on the National Ignition Facility (NIF). A capsule of pure B 4 C encasing a layer of solid DT implodes stably and ignites with anticipated NIF x-ray drives, producing 18 MJ of energy. Thin films of B 4 C were found to be resistant to oxidation and modestly transmitting in the infrared (IR), possibly enabling IR fuel characterization and enhancement for thin permeation barriers but not for full-thickness capsules. Polystyrene mandrels 0.5 mm in diameter were successfully coated with 0.15-2.0 micrometers of B 4 C. Thickness estimated from optical density agreed well with those measured by scanning electron microscopy (SEM). The B 4 C microstructure was columnar but finer than for Be made at the same conditions. B 4 C is a very strong material, with a fiber tensile strength capable of holding NIF fill pressures at room temperature, but it is also very brittle, and microscopic flaws or grain structure may limit the noncryogenic fill pressure. Argon (Ar) permeation rates were measured for a few capsules that had been further coated with 5 micrometers of plasma polymer. The B 4 C coatings tended to crack under tensile load. Some shells filled more slowly than they leaked, suggesting that the cracks open and close under opposite pressure loading. As observed earlier for Ti coatings, 0.15-micrometer layers of B 4 C had better gas retention properties than 2-micrometer layers, possibly because of fewer cracks. Permeation and fill strength issues for capsules with a full ablator thickness of B 4 C are unresolved. 21 refs., 6 figs

  16. Semaphorin 4C Protects against Allergic Inflammation: Requirement of Regulatory CD138+ Plasma Cells.

    Science.gov (United States)

    Xue, Di; Kaufman, Gabriel N; Dembele, Marieme; Beland, Marianne; Massoud, Amir H; Mindt, Barbara C; Fiter, Ryan; Fixman, Elizabeth D; Martin, James G; Friedel, Roland H; Divangahi, Maziar; Fritz, Jörg H; Mazer, Bruce D

    2017-01-01

    The regulatory properties of B cells have been studied in autoimmune diseases; however, their role in allergic diseases is poorly understood. We demonstrate that Semaphorin 4C (Sema4C), an axonal guidance molecule, plays a crucial role in B cell regulatory function. Mice deficient in Sema4C exhibited increased airway inflammation after allergen exposure, with massive eosinophilic lung infiltrates and increased Th2 cytokines. This phenotype was reproduced by mixed bone marrow chimeric mice with Sema4C deficient only in B cells, indicating that B lymphocytes were the key cells affected by the absence of Sema4C expression in allergic inflammation. We determined that Sema4C-deficient CD19 + CD138 + cells exhibited decreased IL-10 and increased IL-4 expression in vivo and in vitro. Adoptive transfer of Sema4c -/- CD19 + CD138 + cells induced marked pulmonary inflammation, eosinophilia, and increased bronchoalveolar lavage fluid IL-4 and IL-5, whereas adoptive transfer of wild-type CD19 + CD138 + IL-10 + cells dramatically decreased allergic airway inflammation in wild-type and Sema4c -/- mice. This study identifies a novel pathway by which Th2-mediated immune responses are regulated. It highlights the importance of plasma cells as regulatory cells in allergic inflammation and suggests that CD138 + B cells contribute to cytokine balance and are important for maintenance of immune homeostasis in allergic airways disease. Furthermore, we demonstrate that Sema4C is critical for optimal regulatory cytokine production in CD138 + B cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. Al/ B4C Composites with 5 and 10 wt% Reinforcement Content Prepared by Powder Metallurgy

    International Nuclear Information System (INIS)

    Yusof Abdullah; Mohd Reusmaazran Yusof; Azali Muhammad; Nadira Kamarudin; Wilfred Sylvester Paulus; Roslinda Shamsudin; Nasrat Hannah Shudin; Nurazila Mat Zali

    2012-01-01

    The preparation, physical and mechanical properties of Al/ B 4 C composites with 5 and 10 wt.% reinforcement content were investigated. In order to obtain the feedstock with a low powder loading, B 4 C mixtures containing fine powders were investigated to obtain the optimal particle packing. The experimental results indicated that the fine containing 5 and 10 wt.% particles are able to prepare the feedstock with a good flowability. The composites fabricated by powder metallurgy have low densities and homogeneous microstructures. Additionally there is no interface reaction observed between the reinforcement and matrix by XRD analysis. The hardness of Al/ B 4 C composites prepared by powder metallurgy was high. (Author)

  18. Study of influence content of TiB2 by reaction in situ B4C and TiC in mechanical properties on B4C ceramics

    International Nuclear Information System (INIS)

    Coelho, M.L. Ramos; Bressiani, J.C.; Gomide, R.G.; Andrade, F.A. de

    2012-01-01

    The low density of ceramic materials promoted a change in research lines in the defense field. Research efforts and development directed to obtaining products of high density sintered of Al2O3, SiC and B4C, using different routes, both traditional as innovative, led to promising initial results, which justify the convergence of skills for the consolidation of research lines and the nationalization that sintered components of B4C with characteristics and properties compatible with the technical requirements established for the ballistic application. The low density of boron carbide (2.52 g/cm 3 ) gives in the final product a weight approximately 30% lower than armor made of alumina (3.96 g/cm 3 ). (author)

  19. Structure, mechanical and magnetic properties of Al4C3 reinforced nickel matrix nanocomposites

    Science.gov (United States)

    Chaudhari, Alok Kumar; Singh, Dhananjay Kumar; Singh, V. B.

    2018-05-01

    A new type of nanocomposite, Ni-Al4C3 was prepared using Al4C3 as reinforcement by cathodic co-deposition at different current densities (1.0 to 5.0 A dm‑2) from a nickel acetate-N-methyl formamide (non-aqueous) bath. Influence of current density and incorporation of Al4C3 particles in nickel matrix on the structure and properties of the composite coatings was investigated. Surface morphology and composition of the deposits were determined by SEM and EDAX. Crystallographic structure and orientation of the electrodeposited Ni-Al4C3 composite were studied by x-ray diffraction. Compared to nickel metal, these nanocomposites exhibited finer grains, higher microhardness, improved corrosion resistance and enhanced soft magnetic properties. Composite deposited at higher current densities (>2 A dm‑2) shows mild texturing along (200) plane. The effect of heat treatment on the microstructure, texture and microhardness of the nanocomposites was also investigated.

  20. "1"4C ages and calendar years of Japanese swords measured with accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Nagata, Kazuhiro; Matsubara, Akihiro; Kokubu, Yoko; Nakamura, Toshio

    2016-01-01

    Steel of Japanese swords has been produced with Tatara process from iron sand and charcoal. Carbon dissolved in steel was absorbed from wooden charcoal fuel during the production of the steel. From the decay of "1"4C activity in the steel, the "1"4C age of Japanese sword can be determined. The "1"4C ages of 4 Japanese swords were measured with accelerator mass spectrometry and calibrated to calendar years. Each "1"4C age provided plural calendar year periods with definite probabilities, and one of the periods agreed with the production year of each sword that was determined from the sword master's name cut in the grip of his sword after taking the age range of charcoal used for steel production and usage for several generations of the same names of sword masters into account. (author)

  1. Heterogeneous free-surface profile of B4C polycrystal under shock compression

    International Nuclear Information System (INIS)

    Mashimo, T.; Uchino, M.

    1997-01-01

    Observations of the free-surface behavior under shock compression by the gapped-flat mirror method were performed on B 4 C and Si 3 N 4 ceramics to study their shock-yielding properties. Jagged profiles of the moving free-surface in the plastic region, with a special scale of about one mm and a maximum local displacement of a few 10s of μm, were observed for B 4 C polycrystals. Similar profiles for Si 3 N 4 polycrystals were smooth. Such profiles for B 4 C polycrystals were also observed in the elastic region. It is suggested that these observations reflect the heterogeneous nature of shock compression in solids, and further indicate that a macroscopic slip system plays an important role in the elastoplastic transition of B 4 C material under shock compression and decompression. copyright 1997 American Institute of Physics

  2. The superluminal radio source 4c 39. 25 as relativistic jet prototype. El cuasar superluminal 4C 93. 25 como prototipo de jet relativistia

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kinematic evolution of the superluminal radio source 4C 39.25 contains a bent relativistic jet which is misaligned relative to the observer near the core region, leading to a relatively low core brightness. (Author) 12 refs.

  3. TL and OSL studies of carbon doped magnesium aluminate (MgAl2O4:C)

    Science.gov (United States)

    Raj, Sanu S.; Mishra, D. R.; Soni, Anuj; Grover, V.; Polymeris, G. S.; Muthe, K. P.; Jha, S. K.; Tyagi, A. K.

    2016-10-01

    The MgAl2O4:C has been synthesized by using two different methods by electron gun and vacuum assisted melting of MgAl2O4 in presence of graphite. The MgAl2O4:C phosphor thus developed by these two different methods have similar types of the TL/OSL defects with multiple overlapping TL glow peaks from 100 °C to 400 °C. The Computerized Curve De-convolution Analysis (CCDA) has been used to measure TL parameters such as thermal trap depth, frequency factor and order of kinetic associated with charge transfer process in TL phenomenon. The investigated TL/OSL results show that these two methods of incorporating carbon in MgAl2O4 have generated closely resemble the defects of similar types in MgAl2O4:C lattice. However, the MgAl2O4:C synthesized by electron gun shows relatively larger concentration of the TL/OSL defects as compared to MgAl2O4:C synthesized using vacuum assisted melting method. The photo-ionization cross-section (PIC) associated with fastest OSL component of MgAl2O4: C is found to be ∼ 0.5 times than that of fastest OSL component of commercially available dosimetric grade α-Al2O3:C. The MgAl2O4:C thus developed shows good dynamic OSL dose linearity from few mGy to 1 Gy. This work reveals that MgAl2O4:C could be developed as potential tissue equivalent OSL / TL material.

  4. JACoW SIP4C/C++ at CERN - Status and lessons learned

    CERN Document Server

    Jensen, Steen; Dworak, Andrzej; Gourber-Pace, Marine; Hoguin, Frederic; Lauener, Joel; Locci, Frank; Sigerud, Katarina; Sliwinski, Wojciech

    2018-01-01

    After 4 years of promoting the Software Improvement Process for C/C++ (SIP4C/C++) initiative at CERN, we describe the current status for tools and procedures along with how they have been integrated into our environment. Based on feedback from four project teams, we present reasons for and against their adoption. Finally, we show how SIP4C/C++ has improved development and delivery processes as well as the first-line support of delivered products.

  5. Arcing at B4C-covered limiters exposed to a SOL-plasma

    International Nuclear Information System (INIS)

    Laux, M.; Schneider, W.; Wienhold, P.; Juettner, B.; Huber, A.; Balden, M.; Linke, J.; Kostial, H.; Mayer, M.; Rubel, M.; Herrmann, A.; Pospieszczyk, A.; Jachmich, S.; Schweer, B.; Hildebrandt, D.; Bolt, H.

    2003-01-01

    Plasma sprayed B 4 C-layers considered as wall coatings for the W7X stellarator have been studied during and after exposure to TEXTOR and after arcing experiments in vacuum. Arcing through the B 4 C layer occurred favoured by high power fluxes and not restricted to less stable phases. But this arcing implies an especially noisy scrape-off layer (SOL). Instead of moving retrograde in the external magnetic field, the arc spot on the B 4 C-layer sticks to the same location for its whole lifetime. Consequently, the arc erodes the entire B 4 C layer, finally burning down to the Cu substrate. In the neighbourhood of craters the surface contains Cu originating from those craters. This material, hauled to the surface by the arc, is subject to subsequent erosion, transport, and redeposition by the SOL-plasma. The behaviour of arcs on B 4 C is most probably caused by the peculiar temperature dependences of the electrical and heat conductivity of B 4 C

  6. Synthesis of spherical LiMnPO4/C composite microparticles

    International Nuclear Information System (INIS)

    Bakenov, Zhumabay; Taniguchi, Izumi

    2011-01-01

    Highlights: → We could prepare LiMnPO 4 /C composites by a novel preparation method. → The LiMnPO 4 /C composites were spherical particles with a mean diameter of 3.65 μm. → The LiMnPO 4 /C composite cathode exhibited 112 mAh g -1 at 0.05 C. → It also showed a good rate capability up to 5 C at room temperature and 55 o C. -- Abstract: Spherical LiMnPO 4 /C composite microparticles were prepared by a combination of spray pyrolysis and spray drying followed by heat treatment and examined as a cathode material for lithium batteries. The structure, morphology and electrochemical performance of the resulting spherical LiMnPO 4 /C microparticles were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electronic microscopy and standard electrochemical techniques. The final sample was identified as a single phase orthorhombic structure of LiMnPO 4 and spherical powders with a geometric mean diameter of 3.65 μm and a geometric standard deviation of 1.34. The electrochemical cells contained the spherical LiMnPO 4 /C microparticles exhibited first discharge capacities of 112 and 130 mAh g -1 at 0.05 C at room temperature and 55 o C, respectively. These also showed a good rate capability up to 5 C at room temperature and 55 o C.

  7. Chemical interaction of B4C, B, and C with Mo/Si layered structures

    International Nuclear Information System (INIS)

    Rooij-Lohmann, V. I. T. A. de; Veldhuizen, L. W.; Zoethout, E.; Yakshin, A. E.; Kruijs, R. W. E. van de; Thijsse, B. J.; Gorgoi, M.; Schaefers, F.; Bijkerk, F.

    2010-01-01

    To enhance the thermal stability, B 4 C diffusion barrier layers are often added to Mo/Si multilayer structures for extreme ultraviolet optics. Knowledge about the chemical interaction between B 4 C and Mo or Si, however is largely lacking. Therefore, the chemical processes during annealing up to 600 deg. C of a Mo/B 4 C/Si layered structure have been investigated in situ with hard x-ray photoelectron spectroscopy and ex situ with depth profiling x-ray photoelectron spectroscopy. Mo/B/Si and Mo/C/Si structures have also been analyzed as reference systems. The chemical processes in these systems have been identified, with two stages being distinguished. In the first stage, B and C diffuse and react predominantly with Mo. MoSi x forms in the second stage. If the diffusion barrier consists of C or B 4 C, a compound forms that is stable up to the maximum probed temperature and annealing time. We suggest that the diffusion barrier function of B 4 C interlayers as reported in literature can be caused by the stability of the formed compound, rather than by the stability of B 4 C itself.

  8. Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation.

    Directory of Open Access Journals (Sweden)

    Eugénie Ansseau

    Full Text Available Hundreds of double homeobox (DUX genes map within 3.3-kb repeated elements dispersed in the human genome and encode DNA-binding proteins. Among these, we identified DUX4, a potent transcription factor that causes facioscapulohumeral muscular dystrophy (FSHD. In the present study, we performed yeast two-hybrid screens and protein co-purifications with HaloTag-DUX fusions or GST-DUX4 pull-down to identify protein partners of DUX4, DUX4c (which is identical to DUX4 except for the end of the carboxyl terminal domain and DUX1 (which is limited to the double homeodomain. Unexpectedly, we identified and validated (by co-immunoprecipitation, GST pull-down, co-immunofluorescence and in situ Proximal Ligation Assay the interaction of DUX4, DUX4c and DUX1 with type III intermediate filament protein desmin in the cytoplasm and at the nuclear periphery. Desmin filaments link adjacent sarcomere at the Z-discs, connect them to sarcolemma proteins and interact with mitochondria. These intermediate filament also contact the nuclear lamina and contribute to positioning of the nuclei. Another Z-disc protein, LMCD1 that contains a LIM domain was also validated as a DUX4 partner. The functionality of DUX4 or DUX4c interactions with cytoplasmic proteins is underscored by the cytoplasmic detection of DUX4/DUX4c upon myoblast fusion. In addition, we identified and validated (by co-immunoprecipitation, co-immunofluorescence and in situ Proximal Ligation Assay as DUX4/4c partners several RNA-binding proteins such as C1QBP, SRSF9, RBM3, FUS/TLS and SFPQ that are involved in mRNA splicing and translation. FUS and SFPQ are nuclear proteins, however their cytoplasmic translocation was reported in neuronal cells where they associated with ribonucleoparticles (RNPs. Several other validated or identified DUX4/DUX4c partners are also contained in mRNP granules, and the co-localizations with cytoplasmic DAPI-positive spots is in keeping with such an association. Large muscle RNPs

  9. Tribomechanical behavior of B{sub 4}C{sub p} reinforced Al 359 composites

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Deivasigamani; Rathanasamy, Rajasekar [Kongu Engineering College, Tamil Nadu (India). Dept. of Mechanical Engineering; Subramanian, Mohan Kumar; Kaliyannan, Gobinath Velu [PAAVAI Engineering College, Tamil Nadu (India). Dept. of Mechatronics Engineering; Palaniappan, Sathish Kumar [Indian Institute of Technology, Kharagpur, West Bengal (India); Durairaj, Jayanth

    2017-03-01

    n the present investigation, the influence of B{sub 4}C{sub p} particles on the mechanical and tribological behavior of Al 359 composites has been studied. B{sub 4}C{sub p} particle reinforced Al 359 composite samples were prepared by stir casting process. Hardness, tensile strength and wear behavior of the composites were studied and compared with a control specimen. Hardness of B{sub 4}C{sub p} particles reinforced Al 359 matrix increases compared to base matrix due to the presence of the ceramic phase. Coefficient of friction considerably increases with up to 20 wt.-% addition of B{sub 4}C{sub p} in base matrix. Specimens were subjected to wear tests under different load conditions and the following five different wear mechanisms such as wear groove, abrasion, delamination, oxidation and plastic deformation were evaluated. The abrasion results prove the increase in wear resistance of B{sub 4}C{sub p} reinforced composites compared to a control specimen.

  10. Wetting of B4C, TiC and graphite substrates by molten Mg

    International Nuclear Information System (INIS)

    Zhang Dan; Shen Ping; Shi Laixin; Jiang Qichuan

    2011-01-01

    Highlights: → The wettability of TiC, B4C and C by molten Mg was determined using an improved sessile drop method. → A new method to evaluate the wetting behavior coupled with evaporation and reaction was proposed. → The bonding characteristics in the Mg/B4C, Mg/TiC and Mg/graphite systems were evaluated. - Abstract: The isotherm wetting of B 4 C, TiC and graphite substrates by molten Mg was studied in a flowing Ar atmosphere at 973-1173 K using an improved sessile drop method. The initial contact angles are in the ranges of 95-87 deg., 74-60 deg. and 142-124 deg., respectively, moderately depending on the temperature. All the systems are non-reactive in nature; however, the presence of impurity of free boron at the B 4 C surface gave rise to the chemical reaction with molten Mg and thus promoted the wettability to a certain degree. A new method was proposed to evaluate the wetting behavior coupled with evaporation and chemical reaction. Furthermore, based on the comparison of the work of adhesion and cohesion, the bonding in the Mg/B 4 C and Mg/TiC systems is presumably mainly chemical while that in the Mg/graphite system is physical.

  11. Interlayer growth in Mo/B4C multilayered structures upon thermal annealing

    International Nuclear Information System (INIS)

    Nyabero, S. L.; Kruijs, R. W. E. van de; Yakshin, A. E.; Zoethout, E.; Bosgra, J.; Loch, R. A.; Blanckenhagen, G. von; Bijkerk, F.

    2013-01-01

    Both multilayer period thickness expansion and compaction were observed in Mo/B 4 C multilayers upon annealing, and the physical causes for this were explored in detail. Using in situ time-dependent grazing incidence X-ray reflectometry, period changes down to picometer-scale were resolved. It was shown that the changes depend on the thickness of the B 4 C layers, annealing temperature, and annealing time. Although strong stress relaxation during annealing was observed, it was excluded as a cause for period expansion. Auger electron spectroscopy and wide angle X-ray diffraction measurements revealed the growth of interlayers, with associated period changes influenced by the supply of B and C atoms to the growing compound interlayers. For multilayers with a Mo thickness of 3 nm, two regimes were recognized, depending on the deposited B 4 C thickness: in multilayers with B 4 C ≤ 1.5 nm, the supply of additional Mo into the already formed MoB x C y interlayer was dominant and led to densification, resulting in period compaction. For multilayers with B 4 C ≥ 2 nm, the B and C enrichment of interlayers formed low density compounds and yielded period expansion.

  12. Collaborative Occupational Therapy: Teachers' Impressions of the Partnering for Change (P4C) Model.

    Science.gov (United States)

    Wilson, A L; Harris, S R

    2018-05-01

    Occupational therapists (OTs) often face barriers when trying to collaborate with teachers in school-based settings. Partnering for change (P4C), a collaborative practice model designed to support children with developmental coordination disorder, could potentially support all students with special needs. Therefore, the aim of this study was to explore how teachers experience OT services delivered using the P4C model to support children with a variety of special needs. P4C was implemented at one elementary school in Courtenay, British Columbia. Eleven teachers participated in two focus groups and a one-on-one interview to gather descriptive, qualitative data. Grounded theory techniques were used for data analysis. Four themes (collaborating in the thick of it all, learning and taking risks, managing limited time and resources, and appreciating responsive OT support) represented teachers' experiences of P4C. Teachers strongly preferred collaborative OT services based on the P4C model. Students with a variety of special needs were supported within their classrooms as teachers learned new strategies from the OT and found ways to embed these strategies into their daily routines.

  13. Wear behaviour of plasma-sprayed AlSi/B4C composite coatings

    International Nuclear Information System (INIS)

    Sarikaya, Ozkan; Anik, Selahaddin; Celik, Erdal; Okumus, S. Cem; Aslanlar, Salim

    2007-01-01

    This paper describes the wear behaviour of AlSi/B 4 C composite coatings with 0-25 wt% B 4 C particles for diesel engine motors. These coatings were successfully fabricated on AlSi substrates using an atmospheric plasma spray technique. The produced samples were characterized by means of an optical microscope, scanning electron microscope and microhardness tester. The obtained results pointed out that an increase of B 4 C particles in AlSi coatings was caused on the rising of the microhardness values and the decrease of the thermal expansion coefficient of the coatings. The friction and wear experiments were performed under dry conditions using a ball-on-dics configuration against WC/Co counter material for different loads. It was concluded that wear resistance of the coatings produced using B 4 C powders is greatly improved compared with the substrate material. The highest wear resistance of the coatings were also determined in the 20% B 4 C coating

  14. Hot pressing of B{sub 4}C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, F.C.; Turhan, E.; Yesilcubuk, S.A.; Addemir, O. [Ystanbul Technical University, Faculty of Chemistry and Metallurgy, Materials and Metallurgical Engineering Dept., Maslak-Ystanbul (Turkey)

    2005-07-01

    B{sub 4}C/SiC ceramic composites containing 10-20-30 vol % SiC were prepared by hot pressing method. The effect of SiC addition and hot pressing temperature on sintering behaviour and mechanical properties of hot pressed composites were investigated. Microstructures of hot pressed samples were examined by SEM technique. Three different temperatures (2100 deg. C, 2200 deg. C and 2250 deg. C) were used to optimize hot pressing temperature applying 100 MPa pressure under argon atmosphere during the sintering procedure. The highest relative density of 98.44 % was obtained by hot pressing at 2250 deg. C. However, bending strengths of B{sub 4}C/SiC composite samples were lower than monolithic B{sub 4}C in all experimental conditions. (authors)

  15. Interface interaction in the B4C/(Fe-B-C) system

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Mizrahi, I.; Froumin, N.; Hayun, S.; Dariel, M.P.; Frage, N.

    2008-01-01

    The wetting behavior in the B 4 C/(Fe-C-B) system was investigated in order to clarify the role of Fe additions on the sinterability of B 4 C. Iron and its alloys with C and B react with the boron carbide substrate and form a reaction zone consisting of a fine mixture of FeB and graphite. The apparent contact angles are relatively low for the alloys with a moderate concentration of the boron and carbon and allow liquid phase sintering to occur in the B 4 C-Fe mixtures. A dilatometric study of the sintering kinetics confirms that liquid phase sintering actually takes place and leads to improved mass transfer. A thermodynamic analysis of the ternary Fe-B-C system allows accounting for the experimental observations

  16. Inhibitor scaffold for the histone lysine demethylase KDM4C (JMJD2C)

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Clausen, Rasmus P; Kristensen, Jesper L

    2012-01-01

    The human histone demethylases of the KDM4 (JMJD2) family have been associated to diseases such as prostate and breast cancer, as well as X-linked mental retardation. Therefore, these enzymes are considered oncogenes and their selective inhibition might be a possible therapeutic approach to treat...... cancer. Here we describe a heterocyclic ring system library screened against the histone demethylase KDM4C (JMJD2C) in the search for novel inhibitory scaffolds. A 4-hydroxypyrazole scaffold was identified as an inhibitor of KDM4C; this scaffold could be employed in the further development of novel...... therapeutics, as well as for the elucidation of the biological roles of KDM4C on epigenetic regulation....

  17. Interface interaction in the B{sub 4}C/(Fe-B-C) system

    Energy Technology Data Exchange (ETDEWEB)

    Aizenshtein, M. [Department of Material Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel); NRC-Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Mizrahi, I.; Froumin, N.; Hayun, S.; Dariel, M.P. [Department of Material Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel); Frage, N. [Department of Material Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel)], E-mail: nfrage@bgu.ac.il

    2008-11-15

    The wetting behavior in the B{sub 4}C/(Fe-C-B) system was investigated in order to clarify the role of Fe additions on the sinterability of B{sub 4}C. Iron and its alloys with C and B react with the boron carbide substrate and form a reaction zone consisting of a fine mixture of FeB and graphite. The apparent contact angles are relatively low for the alloys with a moderate concentration of the boron and carbon and allow liquid phase sintering to occur in the B{sub 4}C-Fe mixtures. A dilatometric study of the sintering kinetics confirms that liquid phase sintering actually takes place and leads to improved mass transfer. A thermodynamic analysis of the ternary Fe-B-C system allows accounting for the experimental observations.

  18. In situ carbon coated LiFePO4/C microrods with improved lithium intercalation behavior.

    Science.gov (United States)

    Bhuvaneswari, D; Kalaiselvi, N

    2014-01-28

    LiFePO4/C microrods consisting of building blocks of interconnected nanoparticles surrounded by a thin and amorphous coating of carbon have been prepared by a customized hydrothermal method. Appreciable discharge capacity values of 168 mA h g(-1) at 0.1 C and 130 mA h g(-1) at 5 C rates have been exhibited by the currently synthesized LiFePO4/C cathode. The study enumerates the feasibility of exploiting the hydrothermal method to prepare an in situ carbon coated LiFePO4/C compound with tunable morphological properties and desirable electrochemical properties observed for up to 100 cycles at a 5 C rate.

  19. Application of full factorial design to study the tribological properties of AA6061-B4C and AA6061-B4C-MoS2 composites

    Directory of Open Access Journals (Sweden)

    Monikandan V. V.

    2018-03-01

    Full Text Available This study statistically analyzes the tribological properties of AA6061-10 wt. % B4C mono composite and AA6061-10 wt.% B4C-7.5 wt. % MoS2 hybrid composite. The tribological behavior of the composites was studied at atmospheric conditions using a pin-on-disk tribo-tester. The tribological experiments were conducted as per the full factorial design (FFD experimental scheme. The ANOVA analysis of the wear rate revealed that the three factors, A (MoS2 particles addition, B (applied load, and D (sliding distance presented the physical and statistical significance on the wear rate. The ANOVA analysis of the friction coefficient revealed that the factors B (applied load and C (sliding speed and interaction AB (interaction of MoS2 particles addition and applied load presented the physical and statistical significance on the friction coefficient. It is observed from the main effects plots of the wear rate and friction coefficient that the increase in the levels of factors B (applied load and D (sliding distance increased the wear rate and friction coefficient. However, the wear rate and friction coefficient decreased with the increase in the level of factor A (MoS2 particles addition.

  20. sup 1 sup 4 C dating of the Niya site in the Tarim Basin

    CERN Document Server

    Yonenobu, H

    2000-01-01

    The sup 1 sup 4 C ages were determined for wood samples collected from the Niya site in the Tarim Basin, China. The calendar sup 1 sup 4 C ages are the oldest in the northern part (800-100 cal BC) and the youngest (140-620 cal AD) in the southern part. The results suggest that ancient Niya had moved southward during the period of ca. 2300-1600 BP. The ages in the middle and the southern parts are consistent with the previous studies of old documents.

  1. Crystal structures of Er4Ni13C4 and UW4C4

    International Nuclear Information System (INIS)

    Khalili, M.M.; Bodak, O.I.; Marusin, E.P.; Pecharskaya, A.O.

    1990-01-01

    Crystal structures of Er 4 Ni 13 C 4 (1) (sp.gr. Cmmm, a=1.1975(4), b=1.1694(3), c=0.3856(1) nm, Z=2) and UW 4 C 4 (2) (sp.gr. P4/m, a=0.8328(8), c=0.31345(9) nm, Z=2), relating to new types are determined. Structural type (1) is a derivative of La 2 Ni 5 C 3 structure, structural type (2) is close to UCr 4 C 4 structure

  2. Effect of sintering temperature on the densification of B4C pellets

    International Nuclear Information System (INIS)

    Gomide, R.G.; Durazzo, M.; Riella, H.G.

    1990-01-01

    Boron is largely used in several types of nuclear reactors control and safety systems. In the majority of these applications sintered boron carbide pellets are used. Near stoichiometric B 4 C hardly densifies during pressureless sintering. As a starting point of an overall program to produce > 70% TD B 4 C pellets pressing parameters have been studied for further study of the influence of sintering temperature in the densification of this ceramic material. Dilatometric analyses show that sintering starts at 1760 0 C for the F 1200 ESK - type boron carbide powders. Moreover, the sintering experiments show that up to 92% TD pellets can be obtained. (author) [pt

  3. A study on martensitic structure in Fe-4Cr-0.4C steel

    International Nuclear Information System (INIS)

    Won, S.B.

    1980-01-01

    Morphology, dependence of prior austenite grain size and packet size upon austenitizing temperature, distribution of lath width, and habit plane of martensitic structure in Fe-4Cr-0.4C steel has been studied by optical microscopy and transmission electron microscopy. The results obtained are as follows. 1) Optical microstructures of martensitic Fe-4Cr-0.4C steel consist of lath martensite and lens martensite. Also the four types of morphology are observed by electron microscopy. The most common morphologies are a regular paralleled martensite and an irregular dovetailed lath martensite, while the remainder of microstructures consists mainly of groups of internally twinned martensite and autotempered laths. 2) Prior austenite grain size and packet size increased with austenizing temperature, and also the numbers of lath contained in a prior austenite grain or a packet are increased with austenizing temperature. 3) The mean width of lath in Fe-4Cr-0.4C steel is about 0.23μm and most of lath widths are below 0.5μm. 4) Martensite habit plane of Fe-4Cr-0.4C steel is nearly [110]α'. (author)

  4. Hypovalency--a kinetic-energy density description of a 4c-2e bond.

    Science.gov (United States)

    Jacobsen, Heiko

    2009-06-07

    A bond descriptor based on the kinetic energy density, the localized-orbital locator (LOL), is used to characterize the nature of the chemical bond in electron deficient multi-center bonds. The boranes B(2)H(6), B(4)H(4), B(4)H(10), [B(6)H(6)](2-), and [B(6)H(7)](-) serve as prototypical examples of hypovalent 3c-2e and 4c-2e bonding. The kinetic energy density is derived from a set of Kohn-Sham orbitals obtained from pure density functional calculations (PBE/TZVP), and the topology of LOL is analyzed in terms of (3,-3) attractors (Gamma). The B-B-B and B-H-B 3c-2e, and the B-B-H-B 4c-2e bonding situations are defined by their own characteristic LOL profiles. The presence of one attractor in relation to the three or four atoms that are engaged in electron deficient bonding provides sufficient indication of the type of 3c-2e or 4c-2e bond present. For the 4c-2e bond in [B(6)H(7)](-) the LOL analysis is compared to results from an experimental QTAIM study.

  5. Evaluation plan for a cardiological multi-media workstation (I4C project)

    NARCIS (Netherlands)

    Hofstede, J.W. van der; Quak, A.B.; Ginneken, A.M. van; Macfarlane, P.W.; Watson, J.; Hendriks, P.R.; Zeelenberg, C.

    1997-01-01

    The goal of the I4C project (Integration and Communication for the Continuity of Cardiac Care) is to build a multi-media workstation for cardiac care and to assess its impact in the clinical setting. This paper describes the technical evaluation plan for the prototype.

  6. Gaseous swelling of B4C and UO2 fuel: similarities and differences

    International Nuclear Information System (INIS)

    Evdokimov, I.; Khoruzhii, O.; Kourtchatov, S.; Likhanskii, V.; Matweev, L.

    2001-01-01

    A major factor limiting the resource of control rods (CRs) for WWER-1000 reactors is their radiation damage. Radiation induced embrittlement of the CRs cladding, core swelling and gaseous internal pressure in CRs result in mechanical core-cladding interaction. This work is devoted to the physical analysis of processes that control the structural changes in neutron absorber elements with B 4 C under irradiation in water reactors. Particularly, the analysis of mechanisms of the helium porosity formation in B 4 C is undertaken. In view of the deficiency of experimental data on the subject, a fruitful approach to the problem is a comparative analysis of the swelling mechanisms in B 4 C absorber and UO 2 fuel. Using this similarity a phenomenological model of fission gas behavior in boron carbide is proposed. The model predictions for radial profile of 10 B burnup under influence of thermal and epithermal neutrons are compared with experimental results. The main results show that despite the external similarity of the process of fission gas accumulation in UO 2 and in B 4 C, phenomenology of gaseous swelling is much different for the fuel and the CR core. The reason for that difference is the distinction of physical conditions in irradiated fuel and CR core

  7. Playing with Philosophy: Gestures, Life-Performance, P4C and an Art of Living

    Science.gov (United States)

    D'Olimpio, Laura; Teschers, Christoph

    2017-01-01

    It can hardly be denied that play is an important tool for the development and socialisation of children. In this article we argue that through dramaturgical play in combination with pedagogical tools such as the Community of Inquiry, in the tradition of Philosophy for Children (P4C), students can creatively think, reflect and be more aware of the…

  8. Nitridation and contrast of B4C/La interfaces and X-ray multilayer optics

    NARCIS (Netherlands)

    Tsarfati, T.; van de Kruijs, Robbert Wilhelmus Elisabeth; Zoethout, E.; Bijkerk, Frederik

    2010-01-01

    Chemical diffusion and interlayer formation in thin layers and at interfaces is of increasing influence in nanoscopic devices such as nano-electronics, magneto-optical storage and multilayer X-ray optics. We show that with the nitridation of reactive B4C/La interfaces, both the chemical and optical

  9. Characterization of Al–Al4C3 nanocomposites produced by mechanical milling

    International Nuclear Information System (INIS)

    Santos-Beltrán, A.; Goytia-Reyes, R.; Morales-Rodriguez, H.; Gallegos-Orozco, V.; Santos-Beltrán, M.; Baldenebro-Lopez, F.; Martínez-Sánchez, R.

    2015-01-01

    In this work, a mixture of Al–C–Al 4 C 3 nanopowder previously synthesized by mechanical milling and subsequent thermal treatment was used to reinforce the Al matrix. The nanocomposites were fabricated via high-energy ball milling and subsequent sintering process for different periods of time at 550 °C. Hardness and compression tests were performed to evaluate the mechanical properties of the nanocomposites in the as-milled and sintered conditions. According to the results the reinforcement located in the grain boundaries is responsible for the brittle behavior observed in the nanocomposites during the compression test. The combined effect of sintering and precipitation mechanisms produced an evident increase of the strength of the Al matrix at a relatively short sintering time. By using the Rietveld method the crystallite size and microstrain measurements were determined and correlated with the microhardness values. For the proper characterization of the nanoparticles present in the Al matrix, atomic force microscopy and high resolution electron microscopy were used. - Highlights: • Nanostructured Al 4 C 3 reinforcement was fabricated via mechanical milling and heat treatment. • We found a significant increase of the mechanical properties at short sintering times. • The formation of Al 4 C 3 with during sintering time restricted the excessive growth of the crystallite. • Al 4 C 3 located in the grain boundaries causes brittle fracture observed in compression tests. • There is a correlation between, crystallite size and microstrain values with microhardness

  10. Grazing incidence Fe-line telescopes using W/B4C multilayers

    DEFF Research Database (Denmark)

    Joensen, K. D.; Gorenstein, P.; Christensen, Finn Erland

    1995-01-01

    The loss of throughput observed at higher energies for traditional grazing-incidence X-ray telescopes coated with high-Z elements can be partly countered by employing multilayers on the outermost reflectors. Using 8-keV reflectivity data from a periodic W/B4C multilayer, the expected performance...

  11. Calendar Ageing of LiFePO4/C Batteries in the Second Life Applications

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel-Ioan; Kær, Søren Knudsen

    2017-01-01

    of the battery systems in the second life application are still unknown what brings significant economic risk and hinders second life battery usage. This work investigates the capacity and power degradation of the 2.5Ah nanophosphate LiFePO4/C cells under different the second life calendar ageing regimes....

  12. Soil Moisture Active Passive Mission L4_C Data Product Assessment (Version 2 Validated Release)

    Science.gov (United States)

    Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima; Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas

    2016-01-01

    The SMAP satellite was successfully launched January 31st 2015, and began acquiring Earth observation data following in-orbit sensor calibration. Global data products derived from the SMAP L-band microwave measurements include Level 1 calibrated and geolocated radiometric brightness temperatures, Level 23 surface soil moisture and freezethaw geophysical retrievals mapped to a fixed Earth grid, and model enhanced Level 4 data products for surface to root zone soil moisture and terrestrial carbon (CO2) fluxes. The post-launch SMAP mission CalVal Phase had two primary objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product pertaining to the validated release. The L4_C validated product release effectively replaces an earlier L4_C beta-product release (Kimball et al. 2015). The validated release described in this report incorporates a longer data record and benefits from algorithm and CalVal refinements acquired during the SMAP post-launch CalVal intensive period. The SMAP L4_C algorithms utilize a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily net ecosystem CO2 exchange (NEE) and component carbon fluxes for vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape freeze/thaw (FT) controls on GPP and respiration (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and

  13. X-ray and EPR study of reactions between B4C and TiO2

    International Nuclear Information System (INIS)

    Kakazey, M.; Vlasova, M.; Gonzalez-Rodriguez, J.G.; Dominguez-Patino, M.; Leder, R.

    2006-01-01

    X-ray diffraction and electron paramagnetic resonance (EPR) methods have been used to study the reaction process in a system of 95 wt.% of B 4 C + 5 wt.% TiO 2 . The addition of TiO 2 to B 4 C was effective in accelerating the removal of carbon inclusions. Two types of reactions between B 4 C and TiO 2 , starting at temperatures ∼1173 K, took place: (a) gas-transport exchange and (b) diffusion of Ti atoms into the B 4 C lattice. These reactions modify the number and type of donor centers in the B 4 C. The dependence of EPR line width on the number of donor centers in B 4 C (from conditions of sample treatment) is a useful method for investigating the formation of powders and ceramics based on B 4 C

  14. X-ray and EPR study of reactions between B{sub 4}C and TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kakazey, M. [CIICAP/FCQI, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos (Mexico)]. E-mail: kakazey@hotmail.com; Vlasova, M. [CIICAP/FCQI, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos (Mexico); Gonzalez-Rodriguez, J.G. [CIICAP/FCQI, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos (Mexico); Dominguez-Patino, M. [CIICAP/FCQI, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos (Mexico); Leder, R. [CIICAP/FCQI, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos (Mexico)

    2006-02-25

    X-ray diffraction and electron paramagnetic resonance (EPR) methods have been used to study the reaction process in a system of 95 wt.% of B{sub 4}C + 5 wt.% TiO{sub 2}. The addition of TiO{sub 2} to B{sub 4}C was effective in accelerating the removal of carbon inclusions. Two types of reactions between B{sub 4}C and TiO{sub 2}, starting at temperatures {approx}1173 K, took place: (a) gas-transport exchange and (b) diffusion of Ti atoms into the B{sub 4}C lattice. These reactions modify the number and type of donor centers in the B{sub 4}C. The dependence of EPR line width on the number of donor centers in B{sub 4}C (from conditions of sample treatment) is a useful method for investigating the formation of powders and ceramics based on B{sub 4}C.

  15. CODEX-B4C experiment. Core degradation test with boron carbide control rod

    International Nuclear Information System (INIS)

    Hozer, Z.; Nagy, I.; Windberg, P.; Balasko, M.; Matus, L.; Prokopiev, O.; Pinter, A.; Horvath, M.; Gyenes, Gy.; Czitrovszky, A.; Nagy, A.; Jani, P.

    2003-11-01

    The CODEX-B4C bundle test has been successfully performed on 25 th May 2001 in the framework of the COLOSS project of the EU 5 th FWP. The high temperature degradation of a VVER-1000 type bundle with B 4 C control rod was investigated with electrically heated fuel rods. The experiment was carried out according to a scenario selected in favour of methane formation. Degradation of control rod and fuel bundle took place at temperatures ∼2000 deg C, cooling down of the bundle was performed in steam atmosphere. The gas composition measurement indicated no methane production during the experiment. High release of aerosols was detected in the high temperature oxidation phase. The on-line measured data are collected into a database and are available for code validation and development. (author)

  16. CODEX-B4C experiment. Core degradation test with boron carbide control rod

    Energy Technology Data Exchange (ETDEWEB)

    Hozer, Z; Nagy, I; Windberg, P; Balasko, M; Matus, L; Prokopiev, O; Pinter, A; Horvath, M; Gyenes, Gy [KFKI Atomic Energy Research Institute, Budapest (Hungary); Czitrovszky, A; Nagy, A; Jani, P [Research Institute for Solid State Physics and Optics, Budapest (Hungary)

    2003-11-01

    The CODEX-B4C bundle test has been successfully performed on 25{sup th} May 2001 in the framework of the COLOSS project of the EU 5{sup th} FWP. The high temperature degradation of a VVER-1000 type bundle with B{sub 4}C control rod was investigated with electrically heated fuel rods. The experiment was carried out according to a scenario selected in favour of methane formation. Degradation of control rod and fuel bundle took place at temperatures {approx}2000 deg C, cooling down of the bundle was performed in steam atmosphere. The gas composition measurement indicated no methane production during the experiment. High release of aerosols was detected in the high temperature oxidation phase. The on-line measured data are collected into a database and are available for code validation and development. (author)

  17. Structural and electrochemical properties of Cl-doped LiFePO{sub 4}/C

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.S.; Zhang, Y.; Zhang, X.J.; Zhou, Z. [Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071 (China)

    2010-06-01

    Cl-doped LiFePO{sub 4}/C cathode materials were synthesized through a carbothermal reduction route, and the microstructure and electrochemical performances were systematically studied. Cl-doped LiFePO{sub 4}/C cathode materials presented a high discharge capacity of {proportional_to}90 mAh g{sup -1} at the rate of 20 C (3400 mA g{sup -1}) at room temperature. Electrochemical impedance spectroscopy and cyclic voltamperometry indicated the optimized electrochemical reaction and Li{sup +} diffusion in the bulk of LiFePO{sub 4} due to Cl-doping. The improved Li{sup +} diffusion capability is attributed to the microstructure modification of LiFePO{sub 4} via Cl-doping. (author)

  18. Microstructural analysis of aluminum oxide boron carbide (Al2 O3-B4 C)

    International Nuclear Information System (INIS)

    Oliveira, E.E.M.; Bressiani, Ana H.A.; Bressiani, J.C.

    1996-01-01

    The densification Al 2 O 3 -B 4 C of composite was accomplished under two conditions: I- tungsten resistance furnace in commercial argon atmosphere without gas treatment system.II- graphite resistance furnace in argon atmosphere with gas treatment for humidity removal. The sintering with gas treatment showed higher density and smaller loss of mass for all composition related to the sintering in tungsten resistance furnace without gas treatment system. Microstructural characterization also showed that grain growth of alumina matrix is greatly influenced by particle size and concentration of B 4 C. Samples sintered at temperatures higher than 1750 deg C without gas treatment presented the formation of phase Al 3 B O 6 which was identified by transmission electron microscopy. (author)

  19. Cr/B{sub 4}C multilayer mirrors: Study of interfaces and X-ray reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Burcklen, C.; Meltchakov, E.; Jérome, A.; Rossi, S. de; Delmotte, F. [Laboratoire Charles Fabry, Institut d' Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex (France); Soufli, R. [Laboratoire Charles Fabry, Institut d' Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex (France); Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Dennetiere, D.; Polack, F.; Capitanio, B.; Thomasset, M. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, BP 48F-91192 Gif sur Yvette Cedex (France); Gullikson, E. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720 (United States)

    2016-03-28

    We present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B{sub 4}C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B{sub 4}C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L{sub 2,3} absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (optical constants) values for Cr.

  20. Modeling of wear behavior of Al/B_4C composites produced by powder metallurgy

    International Nuclear Information System (INIS)

    Sahin, Ismail; Bektas, Asli; Guel, Ferhat; Cinci, Hanifi

    2017-01-01

    Wear characteristics of composites, Al matrix reinforced with B_4C particles percentages of 5, 10,15 and 20 produced by the powder metallurgy method were studied in this study. For this purpose, a mixture of Al and B_4C powders were pressed under 650 MPa pressure and then sintered at 635 C. The analysis of hardness, density and microstructure was performed. The produced samples were worn using a pin-on-disk abrasion device under 10, 20 and 30 N load through 500, 800 and 1200 mesh SiC abrasive papers. The obtained wear values were implemented in an artificial neural network (ANN) model having three inputs and one output using feed forward backpropagation Levenberg-Marquardt algorithm. Thus, the optimum wear conditions and hardness values were determined.

  1. Modeling of wear behavior of Al/B{sub 4}C composites produced by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Ismail; Bektas, Asli [Gazi Univ., Ankara (Turkey). Dept. of Industrial Design Engineering; Guel, Ferhat; Cinci, Hanifi [Gazi Univ., Ankara (Turkey). Dept. of Materials and Metallurgy Engineering

    2017-06-01

    Wear characteristics of composites, Al matrix reinforced with B{sub 4}C particles percentages of 5, 10,15 and 20 produced by the powder metallurgy method were studied in this study. For this purpose, a mixture of Al and B{sub 4}C powders were pressed under 650 MPa pressure and then sintered at 635 C. The analysis of hardness, density and microstructure was performed. The produced samples were worn using a pin-on-disk abrasion device under 10, 20 and 30 N load through 500, 800 and 1200 mesh SiC abrasive papers. The obtained wear values were implemented in an artificial neural network (ANN) model having three inputs and one output using feed forward backpropagation Levenberg-Marquardt algorithm. Thus, the optimum wear conditions and hardness values were determined.

  2. Characterization of Al–Al{sub 4}C{sub 3} nanocomposites produced by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Beltrán, A., E-mail: asantos@utchsur.edu.mx [Universidad Tecnológica de Chihuahua Sur, Carr. Chihuahua a Aldama km. 3 S/N, Col. Colinas del León, CP. 31313 Chihuahua, Chih. (Mexico); Goytia-Reyes, R. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico); Morales-Rodriguez, H.; Gallegos-Orozco, V. [Universidad Tecnológica de Chihuahua Sur, Carr. Chihuahua a Aldama km. 3 S/N, Col. Colinas del León, CP. 31313 Chihuahua, Chih. (Mexico); Santos-Beltrán, M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico); Baldenebro-Lopez, F. [Universidad Tecnológica de Chihuahua Sur, Carr. Chihuahua a Aldama km. 3 S/N, Col. Colinas del León, CP. 31313 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico)

    2015-08-15

    In this work, a mixture of Al–C–Al{sub 4}C{sub 3} nanopowder previously synthesized by mechanical milling and subsequent thermal treatment was used to reinforce the Al matrix. The nanocomposites were fabricated via high-energy ball milling and subsequent sintering process for different periods of time at 550 °C. Hardness and compression tests were performed to evaluate the mechanical properties of the nanocomposites in the as-milled and sintered conditions. According to the results the reinforcement located in the grain boundaries is responsible for the brittle behavior observed in the nanocomposites during the compression test. The combined effect of sintering and precipitation mechanisms produced an evident increase of the strength of the Al matrix at a relatively short sintering time. By using the Rietveld method the crystallite size and microstrain measurements were determined and correlated with the microhardness values. For the proper characterization of the nanoparticles present in the Al matrix, atomic force microscopy and high resolution electron microscopy were used. - Highlights: • Nanostructured Al{sub 4}C{sub 3} reinforcement was fabricated via mechanical milling and heat treatment. • We found a significant increase of the mechanical properties at short sintering times. • The formation of Al{sub 4}C{sub 3} with during sintering time restricted the excessive growth of the crystallite. • Al{sub 4}C{sub 3} located in the grain boundaries causes brittle fracture observed in compression tests. • There is a correlation between, crystallite size and microstrain values with microhardness.

  3. The 4C framework for making reasonable adjustments for people with learning disabilities.

    Science.gov (United States)

    Marsden, Daniel; Giles, Rachel

    2017-01-18

    Background People with learning disabilities experience significant inequalities in accessing healthcare. Legal frameworks, such as the Equality Act 2010, are intended to reduce such disparities in care, and require organisations to make 'reasonable adjustments' for people with disabilities, including learning disabilities. However, reasonable adjustments are often not clearly defined or adequately implemented in clinical practice. Aim To examine and synthesise the challenges in caring for people with learning disabilities to develop a framework for making reasonable adjustments for people with learning disabilities in hospital. This framework would assist ward staff in identifying and managing the challenges of delivering person-centred, safe and effective healthcare to people with learning disabilities in this setting. Method Fourth-generation evaluation, collaborative thematic analysis, reflection and a secondary analysis were used to develop a framework for making reasonable adjustments in the hospital setting. The authors attended ward manager and matron group meetings to collect their claims, concerns and issues, then conducted a collaborative thematic analysis with the group members to identify the main themes. Findings Four main themes were identified from the ward manager and matron group meetings: communication, choice-making, collaboration and coordination. These were used to develop the 4C framework for making reasonable adjustments for people with learning disabilities in hospital. Discussion The 4C framework has provided a basis for delivering person-centred care for people with learning disabilities. It has been used to inform training needs analyses, develop audit tools to review delivery of care that is adjusted appropriately to the individual patient; and to develop competencies for learning disability champions. The most significant benefit of the 4C framework has been in helping to evaluate and resolve practice-based scenarios. Conclusion Use of

  4. Preparation and electrochemical properties of LiFePO 4 /C ...

    Indian Academy of Sciences (India)

    A network structure, LiFePO4/C composite, was obtained using phenolic resin as carbon source. It possessed the highest specific surface area of 115.65 m2/g, exhibited the highest discharge capacity of 164.89 and 149.12 mAh/g at 0.1 C and 1 C rates, respectively. The discharge capacity was completely recovered when ...

  5. The study of variations and environmental applications "1"4C

    International Nuclear Information System (INIS)

    Simon, J.

    2010-01-01

    The primary aim of the presented thesis is to explain experimentally observed "1"4C variations in the outer atmosphere. Physical models have been developed to quantify directly immeasurable phenomena relevant in the field of radiocarbon dynamics. Namely atmospheric stability, "1"4C transport from the stratosphere to the lower troposphere and fossil carbon dioxide emissions to the atmosphere. Finally these models have been used as the pillars of the united theory of Δ"1"4C dynamics. Besides the presented main theoretical outputs, this thesis also provides couple of potentially implementable by-products. First of them is a method to evaluate so called 'equivalent mixing height' and turbulent diffusion coefficient using temporal changes of "2"2"2Rn concentration in the boundary layer of the atmosphere. The elaborated mathematical apparatus for the evaluation of aerosol scavenging by raindrops can be utilized in the models of pollutant dispersion. Information on turbulent diffusion coefficient at higher atmospheric levels is important for the models of stratospheric and ozonospheric dynamics. Nowadays, when one can measure and even feel the greenhouse effect consequences, the importance of an independent method for carbon dioxide fossil emissions assessment is obvious. Besides theoretical outcome, the thesis also presents experimental results. A network of CO_2 sampling sites has been established in Bratislava and the outskirts in the vicinity of the town. Together with mountain site Chopok the network brought a unique information on "1"4C distribution. Atmospheric measurements of "7Be and "2"2"2Rn activity are also presented here. Finally the PC codes have been developed to bridge a gap between experimental and theoretical results. (author)

  6. Effect of the Ti/B{sub 4}C mole ratio on the reaction products and reaction mechanism in an Al–Ti–B{sub 4}C powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingjing [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250100 (China); Light Metal Division, Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Lee, Jung-Moo, E-mail: jmoolee@kims.re.kr [Light Metal Division, Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Cho, Young-Hee; Kim, Su-Hyeon [Light Metal Division, Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Yu, Huashun [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250100 (China)

    2014-10-15

    The effect of the Ti/B{sub 4}C mole ratio on the fabrication behavior of Al composites is investigated using Al–Ti–B{sub 4}C powder mixtures as reactants. The quick spontaneous infiltration (QSI) process combined with the combustion reaction and DTA analysis were used. According to the thermodynamic predictions, which are verified in the experimental results, TiB{sub 2} is formed in all the samples whereas TiC is only formed in reactants with a Ti/B{sub 4}C mole ratio of more than two. The C atoms from the reacted B{sub 4}C do not move into TiC but instead they move into Al{sub 3}BC or Al{sub 4}C{sub 3} when the Ti/B{sub 4}C mole ratio is less than two. In addition, the reaction mechanism with a Ti/B{sub 4}C mole ratio of 0.75 is investigated extensively. - Highlights: • The critical role of the Ti/B{sub 4}C mole ratio on the reaction products of Al–Ti–B{sub 4}C was studied using experiments. • The experimental results are also supported by thermodynamic calculations presented in this paper. • The reaction mechanism with a Ti/B{sub 4}C mole ratio of 0.75 is investigated extensively.

  7. Structural modifications induced by ion irradiation and temperature in boron carbide B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Victor, G., E-mail: g.victor@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pipon, Y.; Bérerd, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); CEA-DEN, Saclay, 91191 Gif-sur-Yvette (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Djourelov, N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd, BG-1784 Sofia (Bulgaria); ELI-NP, IFIN-HH, 30 Reactorului Str, MG-6 Bucharest-Magurele (Romania); Miro, S. [CEA-DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Baillet, J. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pradeilles, N.; Rapaud, O.; Maître, A. [SPCTS, UMR CNRS 7315, Centre Européen de la céramique, University of Limoges (France); Gosset, D. [CEA, Saclay, DMN-SRMA-LA2M, 91191 Gif-sur-Yvette (France)

    2015-12-15

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B{sub 4}C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B{sub 4}C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (S{sub e} ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B{sub 4}C structure under irradiation.

  8. Structural modifications induced by ion irradiation and temperature in boron carbide B4C

    Science.gov (United States)

    Victor, G.; Pipon, Y.; Bérerd, N.; Toulhoat, N.; Moncoffre, N.; Djourelov, N.; Miro, S.; Baillet, J.; Pradeilles, N.; Rapaud, O.; Maître, A.; Gosset, D.

    2015-12-01

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B4C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B4C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (Se ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B4C structure under irradiation.

  9. Criticality Analysis Of TCA Critical Lattices With MNCP-4C Monte Carlo Calculation

    International Nuclear Information System (INIS)

    Zuhair

    2002-01-01

    The use of uranium-plutonium mixed oxide (MOX) fuel in electric generation light water reactor (PWR, BWR) is being planned in Japan. Therefore, the accuracy evaluations of neutronic analysis code for MOX cores have been employed by many scientists and reactor physicists. Benchmark evaluations for TCA was done using various calculation methods. The Monte Carlo become the most reliable method to predict criticality of various reactor types. In this analysis, the MCNP-4C code was chosen because various superiorities the code has. All in all, the MCNP-4C calculation for TCA core with 38 MOX critical lattice configurations gave the results with high accuracy. The JENDL-3.2 library showed significantly closer results to the ENDF/B-V. The k eff values calculated with the ENDF/B-VI library gave underestimated results. The ENDF/B-V library gave the best estimation. It can be concluded that MCNP-4C calculation, especially with ENDF/B-V and JENDL-3.2 libraries, for MOX fuel utilized NPP design in reactor core is the best choice

  10. Effects of V4c-ICL Implantation on Myopic Patients’ Vision-Related Daily Activities

    Directory of Open Access Journals (Sweden)

    Taixiang Liu

    2016-01-01

    Full Text Available The new type implantable Collamer lens with a central hole (V4c-ICL is widely used to treat myopia. However, halos occur in some patients after surgery. The aim is to evaluate the effect of V4c-ICL implantation on vision-related daily activities. This retrospective study included 42 patients. Uncorrected visual acuity (UCVA, best corrected visual acuity (BCVA, intraocular pressure (IOP, endothelial cell density (ECD, and vault were recorded and vision-related daily activities were evaluated at 3 months after operation. The average spherical equivalent was -0.12±0.33 D at 3 months after operation. UCVA equal to or better than preoperative BCVA occurred in 98% of eyes. The average BCVA at 3 months after operation was -0.03±0.07 LogMAR, which was significantly better than preoperative BCVA (0.08±0.10 LogMAR (P=0.029. Apart from one patient (2.4% who had difficulty reading computer screens, all patients had satisfactory or very satisfactory results. During the early postoperation, halos occurred in 23 patients (54.8%. However there were no significant differences in the scores of visual functions between patients with and without halos (P>0.05. Patients were very satisfied with their vision-related daily activities at 3 months after operation. The central hole of V4c-ICL does not affect patients’ vision-related daily activities.

  11. Is 4C+29.48 a γ-ray source?

    Science.gov (United States)

    Gabányi, K. É.; Frey, S.; An, T.

    2018-05-01

    Context. The Fermi Large Area Telescope revealed that the extragalactic γ-ray sky is dominated by blazars, active galactic nuclei (AGN) whose jet is seen at very small angle to the line of sight. To associate and then classify the γ-ray sources, data have been collected from lower frequency surveys and observations. Since those have superior angular resolution and positional accuracy compared to the γ-ray observations, some associations are not straightforward. Aims: The γ-ray source 3FGL J1323.0+2942 is associated with the radio source 4C+29.48 and classified as a blazar of unknown type, lacking optical spectrum and redshift. The higher-resolution radio data showed that 4C+29.48 comprises three bright radio-emitting features located within a 1'-diameter area. We aim to reveal their nature and pinpoint the origin of the γ-ray emission. Methods: We (re-)analyzed archival Very Large Array (VLA) and unpublished very long baseline interferometry (VLBI) observations conducted by the Very Long Baseline Array (VLBA) and the European VLBI Network of 4C+29.48. We also collected data form optical, infrared and X-ray surveys. Results: According to the VLBI data, the northernmost complex of 4C+29.48 contains a blazar with a high brightness temperature compact core and a steep-spectrum jet feature. The blazar is positionally coincident with an optical source at a redshift of 1.142. Its mid-infrared colors also support its association with a γ-ray emitting blazar. The two other radio complexes have steep radio spectra similar to AGN-related lobes and do not have optical or infrared counterparts in currently available surveys. Based on the radio morphology, they are unlikely to be related to the blazar. There is an optical source between the two radio features, also detected in infrared wavebands. We discuss the possibilities whether the two radio features are lobes of a radio galaxy, or gravitationally lensed images of a background source. Conclusions: We propose to

  12. Suitability of the Nanophosphate LiFePO4/C Battery Chemistry for the Fully Electric Vehicle

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2014-01-01

    , and intrinsic safety of the nanophosphate LiFePO4/C lithium ion chemistry make it possible to consider this chemistry for electric vehicle applications. This paper investigates the lifetime of the nanophosphate LiFePO4/C battery chemistry when it is used for full electrical vehicles. The investigation...... is used to study the capacity and power capability degradation behaviour of the tested nanophosphate LiFePO4/C battery for two electric vehicle operational scenarios....

  13. Lifetime Estimation of the Nanophosphate LiFePO4/C Battery Chemistry Used in Fully Electric Vehicles

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Stroe, Ana-Irina

    2015-01-01

    , and intrinsic safety of the nanophosphate LiFePO4/C Li-ion chemistry make it possible to consider this chemistry for electric vehicle (EV) applications. This paper investigates the lifetime of the nanophosphate LiFePO4/C battery chemistry when it is used for full electrical vehicles. The investigation...... is used to study the capacity and power capability degradation behavior of the tested nanophosphate LiFePO4/C battery for two EV operational scenarios....

  14. PARTICLE ACCELERATION AND MAGNETIC FIELD AMPLIFICATION IN THE JETS OF 4C74.26

    International Nuclear Information System (INIS)

    Araudo, A. T.; Blundell, K. M.; Bell, A. R.

    2015-01-01

    We model the multi-wavelength emission in the southern hotspot of the radio quasar 4C74.26. The synchrotron radio emission is resolved near the shock with the MERLIN radio-interferometer, and the rapid decay of this emission behind the shock is interpreted as the decay of the amplified downstream magnetic field as expected for small scale turbulence. Electrons are accelerated to only 0.3 TeV, consistent with a diffusion coefficient many orders of magnitude greater than in the Bohm regime. If the same diffusion coefficient applies to the protons, their maximum energy is only ∼100 TeV

  15. Sputtering characteristics of B4C-overlaid graphite for keV energy deuterium ion irradiation

    International Nuclear Information System (INIS)

    Gotoh, Y.; Yamaki, T.; Ando, T.; Jimbou, R.; Ogiwara, N.; Saidoh, M.; Teruyama, K.

    1992-01-01

    Two types of B 4 C-overlaid graphite (CFC), conversion and CVD B 4 C, together with bare CFC (PCC-2S) and/or HP B 4 C, were investigated with respect to erosion yields for 1 keV D + , D 2 /CD 4 TDS after 1 keV D + implantation, and thermal diffusivity/conductivity, in a temperature range from 300 to 1400 K. The erosion yields of both conversion and CVD B 4 C were found to be much lower than that of the bare CFC (PCC-2S), in both chemical sputtering (600-1100 K) and RES (1200-1400 K) temperature regions. The D 2 TDS peak of the conversion B 4 C was found to be located at nearly 200 K lower temperature than that of the bare CFC (PCC-2S), indicating much lower activation energy for detrapping/recombination of trapped D in the conversion B 4 C and in the CFC. The CD 4 TDS peak of the conversion B 4 C was found to be much weaker in intensity than that of the bare CFC (PCC-2S), in agreement with the present erosion yield results. Thermal diffusivities and conductivities of both the conversion B 4 C/PCC-2S and the CVD B 4 C, were measured to be nearly 1/10 of that of the bare CFC (PCC-2S), and to decrease with increasing temperatures. (orig.)

  16. Weldability of Al4C3-Al composites via diffusion welding technique

    International Nuclear Information System (INIS)

    Arik, Halil; Aydin, Mustafa; Kurt, Adem; Turker, Mehmet

    2005-01-01

    In this study, Al-Al 4 C 3 composites, produced by powder metallurgy in situ techniques, were joined by diffusion welding technique at 250 MPa pressure with various welding temperatures and durations. Microstructures and shear strengths of the joined areas were determined. Al powders were mixed with 2% carbon black and milled in a high energy ball mill (mechanical alloying) for up to 20 h. In order to obtain cylindrical blanks with 10 mm in diameter and 15 mm in height, powders were compacted in a single action press at 1000 MPa. Samples were sintered in Ar atmosphere at 650 deg C and metal matrix composite (MMC) containing 8% Al 4 C 3 particles were produced. Products were then joined to each other by using diffusion welding techniques. Scanning electron microscopy examination was carried out on the welded interfaces and shear tests were conducted to the sample interfaces to find out the effect of welding temperatures and duration on the weldability properties. It was found that high welding temperatures resulted in increase of both joined strength and shear properties. However, increase in welding duration did not make any detectable changes. Results indicated that MMC could be joined by diffusion welding technique successfully with the 88% strength of base material

  17. Prolonging hypothermic storage (4 C) of bovine embryos with fish antifreeze protein.

    Science.gov (United States)

    Ideta, Atsushi; Aoyagi, Yoshito; Tsuchiya, Kanami; Nakamura, Yuuki; Hayama, Kou; Shirasawa, Atsushi; Sakaguchi, Kenichiro; Tominaga, Naomi; Nishimiya, Yoshiyuki; Tsuda, Sakae

    2015-01-01

    Embryos obtained via superovulation are necessary for mammalian artificial reproduction, and viability is a key determinant of success. Nonfreezing storage at 4 C is possible, but currently used storage solutions can maintain embryo viability for only 24-48 h. Here we found that 10 mg/ml antifreeze protein (AFP) dissolved in culture medium 199 with 20% (v/v) fetal bovine serum and 25 mM HEPES could keep bovine embryos alive for 10 days at 4 C. We used a recombinant AFP isolated from the notched-fin eelpout (Zoarces elongatus Kner). Photomicroscopy indicated that the AFP-embryo interaction was enhanced at 37 C. Embryos pre-warmed with the AFP solution at 37 C for 60 min maintained high viability, whereas those that were not pre-warmed could live no longer than 7 days. Thus, short-term storage of bovine embryos was achieved by a combination of AFP-containing medium and controlled pre-warming.

  18. Modelling of the interactions between B4C and stainless steel at high temperatures

    International Nuclear Information System (INIS)

    Veshchunov, M.S.

    1995-01-01

    Results of detailed chemical-analytical examinations of B 4 C/stainless steel (s.s.) reaction couples obtained at temperatures of 1000, 1100 and 1200 C, and a theoretical model developed on the basis of these results, which describes the reaction layers growth kinetics, are presented. The examinations were carried out by AES and XMA methods to measure concentration profiles of different elements in the various phases and the thicknesses of the formed reaction layers as function of time to determine the growth kinetics. A new approach for modelling of diffusion mass transfer through a two-phase zone in multicomponent systems is further developed for the description of the growth kinetics of the reaction layer consisting of Me 2 B (Me≡Fe, Cr, Ni) precipitates in the stainless steel matrix. Diffusion coefficients of Cr in all phases of the reaction zone are calculated. These data together with the measured boundary concentrations of the elements allow the complete description of the B 4 C/s.s. interaction kinetics at the examined test temperatures by the proposed model. (orig.)

  19. Bulk Comptonization: new hints from the luminous blazar 4C+25.05

    Science.gov (United States)

    Kammoun, E. S.; Nardini, E.; Risaliti, G.; Ghisellini, G.; Behar, E.; Celotti, A.

    2018-01-01

    Blazars are often characterized by a spectral break at soft X-rays, whose origin is still debated. While most sources show a flattening, some exhibit a blackbody-like soft excess with temperatures of the order of ∼0.1 keV, similar to low-luminosity, non-jetted Seyferts. Here, we present the analysis of the simultaneous XMM-Newton and NuSTAR observations of the luminous flat-spectrum radio quasar 4C+25.05 (z = 2.368). The observed 0.3-30 keV spectrum is best described by the sum of a hard X-ray power law (Γ = 1.38_{-0.03}^{+0.05}) and a soft component, approximated by a blackbody with kT_BB = 0.66_{-0.04}^{+0.05} keV (rest frame). If the spectrum of 4C+25.05 is interpreted in the context of bulk Comptonization by cold electrons of broad-line region photons emitted in the direction of the jet, such an unusual temperature implies a bulk Lorentz factor of the jet of Γbulk ∼ 11.7. Bulk Comptonization is expected to be ubiquitous on physical grounds, yet no clear signature of it has been found so far, possibly due to its transient nature and the lack of high-quality, broad-band X-ray spectra.

  20. Characterization of B4C-composite-reinforced aluminum alloy composites

    Science.gov (United States)

    Singh, Ram; Rai, R. N.

    2018-04-01

    Dry sliding wear tests conducted on Pin-on-disk wear test machine. The rotational speed of disc is ranging from (400-600rpm) and under loads ranging from (30-70 N) the contact time between the disc and pin is constant for each pin specimen of composites is 15 minute. In all manufacturing industries the uses of composite materials has been increasing globally, In the present study, an aluminum 5083 alloy is used as the matrix and 5% of weight percentage of Boron Carbide (B4C) as the reinforcing material. The composite is produced using stir casting technique. This is cost effective method. The aluminum 5083 matrix can be strengthened by reinforcing with hard ceramic particles like silicon carbide and boron carbide. In this experiment, aluminum 5083 alloy is selected as one of main material for making parts of the ship it has good mechanical properties, good corrosion resistance and it is can welded very easily and does have good strength. The samples are tested for hardness and tensile strength. The mechanical properties like Hardness can be increased by reinforcing aluminum 5083alloy 5% boron carbide (B4C) particles and tensile strength. Finally the Scanning Electron Microscope (SEM) analysis and EDS is done, which helps to study topography of composites and it produces images of a sample by scanning it with a focused beam of electrons and the presence of composition found in the matrix.

  1. OEDGE modeling of the DIII-D double null (CH4)-C-13 puffing experiment

    International Nuclear Information System (INIS)

    Elder, J.D.; Wampler, W.R.; McLean, A.G.; Stangeby, P.C.; Allen, S.L.; Bray, B.D.; Brooks, N.H.; Leonard, A.W.; Unterberg, Ezekial A.; Watkins, J.G.

    2011-01-01

    Unbalanced double null ELMy H-mode configurations in DIII-D are used to simulate the situation in ITER high triangularity, burning plasma magnetic equilibria, where the second X-point lies close to the top of the vacuum vessel, creating a secondary divertor region at the upper blanket modules. The measured plasma conditions in the outer secondary divertor closely duplicated those projected for ITER. (CH4)-C-13 was injected into the secondary outer divertor to simulate sputtering there. The majority of the C-13 found was in the secondary outer divertor. This material migration pattern is radically different than that observed for main wall (CH4)-C-13 injections into single null configurations where the deposition is primarily at the inner divertor. The implications for tritium codeposition resulting from sputtering at the secondary divertor in ITER are significant since release of tritium from Be co-deposits at the main wall bake temperature for ITER, 240 degrees C, is incomplete. The principal features of the measured C-13 deposition pattern have been replicated by the OEDGE interpretive code.

  2. Inflation and monopoles in supersymmetric SU(4)c x SU(2)L x SU(2)R

    International Nuclear Information System (INIS)

    Jeannerot, R.; Khalil, S.; Lazarides, G.; Shafi, Q.

    2000-02-01

    We show how hybrid inflation can be successfully realized in a supersymmetric model with gauge group G PS = SU(4) c x SU(2) L x SU(2) R . By including a non-renormalizable superpotential term, we generate an inflationary valley along which G PS is broken to the standard model gauge group. Thus, catastrophic production of the doubly charged magnetic monopoles, which are predicted by the model, cannot occur at the end of inflation. The results of the cosmic background explorer can be reproduced with natural values (of order 10 -3 ) of the relevant coupling constant, and symmetry breaking scale of G PS close to 10 16 GeV. The spectral index of density perturbations lies between unity and 0.94. Moreover, the μ-term is generated via a Peccei-Quinn symmetry and proton is practically stable. Baryogenesis in the universe takes place via leptogenesis. The low deuterium abundance constraint on the baryon asymmetry, the gravitino limit on the reheat temperature and the requirement of almost maximal ν μ - ν τ mixing from SuperKamiokande can be simultaneously met with m νμ , m ντ and heaviest Dirac neutrino mass determined from the large angle MSW resolution of the solar neutrino problem, the SuperKamiokande results and SU(4) c symmetry respectively. (author)

  3. A group of neutronics calculations in the MNSR using the MCNP-4C code

    International Nuclear Information System (INIS)

    Khattab, K.; Sulieman, I.

    2009-11-01

    The MCNP-4C code was used to model the 3-D core configuration for the Syrian Miniature Neutron Source Reactor (MNSR). The continuous energy neutron cross sections were evaluated from ENDF/B-VI library to calculate the thermal and fast neutron fluxes in the MNSR inner and outer irradiation sites. The thermal fluxes in the MNSR inner irradiation sites were measured for the first time using the multiple foil activation method. Good agreements were noticed between the calculated and measured results. This model is used as well to calculate neutron flux spectrum in the reactor inner and outer irradiation sites and the reactor thermal power. Three 3-D neutronic models for the Syrian MNSR reactor using the MCNP-4C code were developed also to assess the possibility of fuel conversion from 89.87 % HEU fuel (UAl 4 -Al) to 19.75 % LEU fuel (UO 2 ). This model is used in this paper to calculate the following reactor core physics parameters: clean cold core excess reactivity, calibration of the control rod worth and calculation its shut down margin, calibration of the top beryllium shim plate reflector, axial neutron flux distributions in the inner and outer irradiation sites and the kinetics parameters ( ι p l and β e ff). (authors)

  4. Nest-like LiFePO4/C architectures for high performance lithium ion batteries

    International Nuclear Information System (INIS)

    Deng Honggui; Jin Shuangling; Zhan Liang; Qiao Wenming; Ling Licheng

    2012-01-01

    Highlights: ► Nest-like LiFePO 4 /C architectures (nest-like LPCs) were synthesized by solvothermal method. ► The microstructures of nest-like LPCs are very stable constructed by many nanosheets. ► The unique structures offer nest-like LPC electrode with high rate performance. ► The reversible capacity of nest-like LPCs electrode is as high as 120 mAh g −1 at 10 C. - Abstract: A novel kind of microsized nest-like LiFePO 4 /C architectures was synthesized by solvothermal method using inexpensive and stable Fe 3+ salt as iron source and ethylene glycol as mediate. A layer of carbon could be coated directly on the surface of LiFePO 4 crystals and the nest-like unique structures offer the cathode materials with high reversible capacity, excellent cycling stability and high rate performance. The reversible capacity can maintain 159 mAh g −1 at 0.1 C and 120 mAh g −1 at 10 C.

  5. On the Merging Cluster Abell 578 and Its Central Radio Galaxy 4C+67.13

    Science.gov (United States)

    Hagino, K.; Stawarz, Ł.; Siemiginowska, A.; Cheung, C. C.; Kozieł-Wierzbowska, D.; Szostek, A.; Madejski, G.; Harris, D. E.; Simionescu, A.; Takahashi, T.

    2015-06-01

    Here we analyze radio, optical, and X-ray data for the peculiar cluster Abell 578. This cluster is not fully relaxed and consists of two merging sub-systems. The brightest cluster galaxy (BCG), CGPG 0719.8+6704, is a pair of interacting ellipticals with projected separation ˜10 kpc, the brighter of which hosts the radio source 4C+67.13. The Fanaroff-Riley type-II radio morphology of 4C+67.13 is unusual for central radio galaxies in local Abell clusters. Our new optical spectroscopy revealed that both nuclei of the CGPG 0719.8+6704 pair are active, albeit at low accretion rates corresponding to the Eddington ratio ˜ {{10}-4} (for the estimated black hole masses of ˜ 3× {{10}8} {{M}⊙ } and ˜ {{10}9} {{M}⊙ }). The gathered X-ray (Chandra) data allowed us to confirm and to quantify robustly the previously noted elongation of the gaseous atmosphere in the dominant sub-cluster, as well as a large spatial offset (˜60 kpc projected) between the position of the BCG and the cluster center inferred from the modeling of the X-ray surface brightness distribution. Detailed analysis of the brightness profiles and temperature revealed also that the cluster gas in the vicinity of 4C+67.13 is compressed (by a factor of about ˜1.4) and heated (from ≃ 2.0 keV up to 2.7 keV), consistent with the presence of a weak shock (Mach number ˜1.3) driven by the expanding jet cocoon. This would then require the jet kinetic power of the order of ˜ {{10}45} erg s-1, implying either a very high efficiency of the jet production for the current accretion rate, or a highly modulated jet/accretion activity in the system. Based on service observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  6. A state-of-the-art report on the development of B{sub 4}C materials as neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Choong Hwan; Kim, Sun Jae; Park, Jee Yun; Kang, Dae Kab [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-01-01

    Boron of 10 atomic weight is one of the best neutron absorbing elements. Among the boron compounds, B{sub 4}C and its composites exhibit excellent material properties. Those materials absorb thermal and fast neutrons, are thermally and chemically very stable, and are very strong in mechanical properties. By neutron irradiation B-10 transforms into Li releasing one He atom. This He release causes swelling, cracking and fragmentation of B{sub 4}C bulks and results in degradation of the materials. The essence of technical developments of B{sub 4}C-based neutron absorbers is the minimization of the effects of He release, and this can be realized through microstructural optimizations of grain and porosity distributions. While pure B{sub 4}C is very difficult in sintering, new neutron absorbing materials of B{sub 4}C-cermets are being developed. B{sub 4}C-cermets are composite materials in which B{sub 4}C powders are dispersed in the metal matrix of Al or Cu. Those materials show easiness in sintering, mechanical forming, and B{sub 4}C content controlling. Neutron absorbing and shielding materials play an important role for the safety of reactor operations and environmental protections. Those materials are being used as monolithic pellets for control rods, burnable poison fuel rods, rack materials for spent fuel storages, shielding materials for shipping casks, and especially for shielding plates for liquid metal reactors. 37 figs., 12 tabs., 41 refs. (Author).

  7. Al-Si/B{sub 4}C composite coatings on Al-Si substrate by plasma spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, Ozkan [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Anik, Selahaddin [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Aslanlar, Salim [Sakarya University, Faculty of Technical Education, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Cem Okumus, S. [Sakarya University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Celik, Erdal [Dokuz Eylul University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Buca, Izmir 35160 (Turkey)]. E-mail: erdal.celik@deu.edu.tr

    2007-07-01

    Plasma-sprayed coatings of Al-Si/B{sub 4}C have been prepared on Al-Si piston alloys for diesel engine motors. The Al-Si/B{sub 4}C composite powders including 5-25 wt% B{sub 4}C were prepared by mixing and ball-milling processes. These powders were deposited on Al-Si substrate using an atmospheric plasma spray technique. The coatings have been characterised with respect to phase composition, microstructure, microhardness, bond strength and thermal expansion. It was found that Al, Si, B{sub 4}C and Al{sub 2}O{sub 3} phases were determined in the coatings with approximately 600 {mu}m thick by using X-ray diffraction analysis. Scanning electron microscope observation revealed that boron carbide particles were uniformly distributed in composite coatings and B{sub 4}C particles were fully wetted by Al-Si alloy. Also, no reaction products were observed in Al-Si/B{sub 4}C composite coatings. It was found that surface roughness, porosity, bond strength and thermal expansion coefficient of composite coatings decreased with increasing fraction of the boron carbide particle. It was demonstrated that the higher the B{sub 4}C content, the higher the hardness of coatings because the hardness of B{sub 4}C is higher than that of Al-Si.

  8. Grain refinement of AZ91D magnesium alloy by a new Mg–50%Al4C3 master alloy

    International Nuclear Information System (INIS)

    Liu, Shengfa; Chen, Yang; Han, Hui

    2015-01-01

    A novel and simple method for preparing Mg–50%Al 4 C 3 (hereafter in wt.%) master alloy has been developed by powder in-situ synthesis process under argon atmosphere. X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) results show the existence of Al 4 C 3 particles in this master alloy. After adding 1.8% Mg–50%Al 4 C 3 master alloy, the average grain size of α-Mg decreased from 360 μm to 154 μm. Based on the DTA test results and calculation of the planar disregistry between Al 4 C 3 and α-Mg, Al 4 C 3 particles located in the central regions of magnesium grains can act as the heterogeneous nucleus of primary α-Mg phase

  9. Ceramic composite resistors of B4C modified by TIO2 and glass phase

    International Nuclear Information System (INIS)

    Klimiec, E.; Zaraska, W.; Stobiecki, T.

    1998-01-01

    Technical progress in the manufacturing technology of composite materials resulted in arising of new generation of bulk resistors, resistant to high levels of overloads and high temperature. These resistors can be applied in extremely heavy working conditions, for instance in cooperation with ignition circuits. The resistors investigated in our research were performed on the basis of ceramic composite consisted of semiconductor boron carbide B 4 C as conductive phase, aluminium oxide Al 2 O 3 and non-alkali glass as insulators and titanium dioxide TiO 2 . The technological procedure of the fabrication of resistors and the results of the tests, such as temperature dependence of the electrical resistance exploitation trials, are presented. (author)

  10. Optimization of laser cladding of cold spray coatings with B4C and Ni powders

    Science.gov (United States)

    Fomin, V. M.; Golyshev, A. A.; Malikov, A. G.; Orishich, A. M.; Filippov, A. A.; Ryashin, N. S.

    2017-12-01

    In the present work, a combined method is considered for the production of a metal-matrix composite coating based on Ni and B4C. The coating is created by consistently applied methods: cold spray and laser cladding. The conditions of obtaining cermet layers are investigated depending on the parameters of laser cladding and cold spray. It is shown that the laser track structure significantly changes in accordance to the size of ceramic particles ranging 3-75 µm and its concentration. It is shown that the most perspective layers for additive manufacturing could be obtain from cold spray coatings with ceramic concentrations more than 50% by weight treated in the heat-conductivity laser mode.

  11. Geophysical investigation of trench 4, Burial Ground 218-W-4C, 200 west area

    International Nuclear Information System (INIS)

    Kiesler, J.P.

    1994-01-01

    This report contains the results of a geophysical investigation conducted to characterize Trench 4, located in Burial Ground 218-W-4C, 200 West Area. Trench 4 is where transuranic (TRU) waste is stored. The primary objective of these geophysical investigations was to determine the outer edges of the trench/modules and select locations for plate-bearing tests. The test locations are to be 5 to 8 ft. beyond the edges of the trench. Secondary objectives include differentiating between the different types of waste containers within a given trench, determining the amount of soil cover over the waste containers, and to locate the module boundaries. Ground-penetrating radar (GPR) and electromagnetic induction (EMI) were the methods selected for this investigation

  12. B4C solid target boronization of the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Cekic, M.; Fiksel, G.; Hokin, S.A.; Kendrick, R.D.; Prager, S.C.; Stoneking, M.R.

    1992-10-01

    A solid rod of hot-pressed boron carbide is being used as the source of boron during boronization of MST. The most striking result of this procedure is the reduction in oxygen contamination of the plasma (O III radiation, characteristic of oxygen at the edge, falls by about a factor of 3 after boronization.). The radiated power fraction drops to about half its initial value. Particle reflux from the wall is also lowered, making density control simpler. The rod (12.7 mm diameter) is inserted into the edge plasma of normal high-power RFP discharges. B 4 C is ablated from the surface of the rod and deposited in a thin film (a-B/C:H) on the walls and limiters. The energy flux carried by ''superthermal'' (not ''runaway'') electrons at the edge of MST appears to enhance the efficient, non-destructive ablation of the boron carbide rod

  13. Substrate- and Cofactor-independent Inhibition of Histone Demethylase KDM4C

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Lohse, Brian; Rand, Kasper Dyrberg

    2014-01-01

    Inhibition of histone demethylases has within recent years advanced into a new strategy for treating cancer and other diseases. Targeting specific histone demethylases can be challenging as the active sites of KDM1A-B and KDM-4A-D histone demethylases, respectively, are highly conserved. Most...... inhibitors developed up-to-date target either the cofactor- or substrate-binding sites of these enzymes, resulting in a lack of selectivity and off-target effects. This study describes the discovery of the first peptide-based inhibitors of KDM4 histone demethylases that do not share the histone peptide...... sequence, or inhibit through substrate competition. Through screening of DNA-encoded peptide libraries against KDM1 and -4 histone demethylases by phage display, two cyclic peptides targeting the histone demethylase KDM4C were identified and developed as inhibitors by amino acid replacement, truncation...

  14. Integral Field Spectroscopy of the Extended Emission-Line Region of 4C 37.43

    Science.gov (United States)

    Fu, Hai; Stockton, Alan

    2007-09-01

    We present Gemini integral field spectroscopy and Keck II long-slit spectroscopy of the extended emission-line region (EELR) around the quasar 4C 37.43. The velocity structure of the ionized gas is complex and cannot be explained globally by a simple dynamical model. The spectra from the clouds are inconsistent with shock or ``shock + precursor'' ionization models, but they are consistent with photoionization by the quasar nucleus. The best-fit photoionization model requires a low-metallicity [12+log(O/H)Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina). Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the financial support of the W. M. Keck Foundation.

  15. Personalized Information Management by Online Stores in 4C Model. Case Study

    Directory of Open Access Journals (Sweden)

    Kubicka Anna

    2016-01-01

    Full Text Available The increasing complexity of the business environment, growing knowledge requirements, development of information technologies, and competitiveness implies the need of implementation of information management systems. Moreover, welter of information about online customers, their individual behavior, and their expectations force entrepreneurs to manage information in a personalized way. Monitoring Internet users behavior, creating their profiles (based on data about age, sex, lifestyle, interests, family, work, etc., and controlling current traffic on the Web site give wide range of possibilities in creating a real model of potential customers preference and using it in online communication. This study concentrates on possibilities of using personalized communication in the information management by online stores in 4C model.

  16. LiFePO4/C nanocomposites for lithium-ion batteries

    Science.gov (United States)

    Eftekhari, Ali

    2017-03-01

    LiFePO4, as the most famous member of the family of olivine-type lithium transition metal phosphates, is one of the promising candidates for the cathodes of lithium-ion batteries. However, its battery performance is limited by its low electrical conductivity and slow Li solid-state diffusion. Various methods have been attempted to improve the battery performance of lithium iron phosphate. Among them, compositing the LiFePO4 with carbon nanomaterials seems to be the most promising, as it is facile and efficient. Carbon nanomaterials usually serve as a conductive agent to improve the electrical conductivity while increasing the material porosity in which the solid-state diffusion distances are significantly shortened. Owing to the popularity of various carbonaceous nanomaterials, there is no straightforward line of research for comparing the LiFePO4/C nanocomposites. This review aims to provide a general perspective based on the research achievements reported in the literature. While surveying the research findings reported in the literature, controversial issues are also discussed. The possible contribution of pseudocapacitance as a result of functionalized carbon or LiFePO4 lattice defects is described, since from a practical perspective, a LiFePO4/C electrode can be considered as a supercapacitor at high C rates (with a specific capacitance as large as 200 F g-1). The Li diffusion in LiFePO4 has not been well understood yet; while the Li diffusion within the LiFePO4 lattice seems to be quite fast, the peculiar interfacial electrochemistry of LiFePO4 slows down the diffusion within the entire electrode by a few orders of magnitude.

  17. Microstructural evolution and mechanical properties of Mg composites containing nano-B4C hybridized micro-Ti particulates

    International Nuclear Information System (INIS)

    Sankaranarayanan, S.; Sabat, R.K.; Jayalakshmi, S.; Suwas, S.; Gupta, M.

    2014-01-01

    In this work, the microstructural evolution and mechanical properties of extruded Mg composites containing micro-Ti particulates hybridized with varying contents of nano-B 4 C are investigated, and compared with Mg-5.6Ti. Microstructural characterization showed the presence of uniformly distributed micro-Ti particles embedded with nano-B 4 C particulates that resulted in significant grain refinement. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + x-B 4 C) BM hybrid composites showed that the addition of hybridized particle resulted in relatively more recrystallized grains, realignment of basal planes and extension of weak basal fibre texture when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated improved strength with ductility retention in Mg-(5.6Ti + x-B 4 C) BM hybrid composites. When compared to Mg-5.6Ti, the superior strength properties of the Mg-(5.6Ti + x-B 4 C) BM hybrid composites are attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles, better interfacial bonding between the matrix and the reinforcement particles and the matrix grain refinement achieved by nano-B 4 C addition. The ductility enhancement obtained in hybrid composites can be attributed to the fibre texture spread and favourable basal plane orientation achieved due to nano B 4 C addition. - Highlights: • Micro-Ti particulates are hybridized with varying weight fractions of nano-B 4 C. • The hybrid mixture was used as hybrid reinforcements in magnesium. • Microstructure and mechanical properties of Mg-(5.6Ti + x-B 4 C) BM are compared with Mg-5.6Ti. • Electron back scattered diffraction (EBSD) analysis conducted to study the microtexture evolution

  18. Calculation of the store house worker dose in a lost wax foundry using MCNP-4C

    International Nuclear Information System (INIS)

    Alegria, N.; Legarda, F.; Herranz, M.; Idoeta, R.

    2005-01-01

    Lost wax casting is an industrial process which permits the transmutation into metal of models made in wax. The wax model is covered with a siliceous shell of the required thickness and once this shell is built the set is heated and wax melted. Liquid metal is then cast into the shell replacing the wax. When the metal is cool, the shell is broken away in order to recover the metallic piece. In this process zircon sands are used for the preparation of the siliceous shell. These sands have varying concentrations of natural radionuclides: 238 U, 232 Th and 235 U together with their progenics. The zircon sand is distributed in bags of 50 kg, and 30 bags are on a pallet, weighing 1,500 kg. The pallets with the bags have dimensions 80 cm x 120 cm x 80 cm, and constitute the radiation source in this case. The only pathway of exposure to workers in the store house is external radiation. In this case there is no dust because the bags are closed and covered by plastic, the store house has a good ventilation rate and so radon accumulation is not possible. The workers do not touch with their hands the bags and consequently skin contamination will not take place. In this study all situations of external irradiation to the workers have been considered; transportation of the pallets from vehicle to store house, lifting the pallets to the shelf, resting of the stock on the shelf, getting down the pallets, and carrying the pallets to production area. Using MCNP-4C exposure situations have been simulated, considering that the source has a homogeneous composition, the minimum stock in the store house is constituted by 7 pallets, and the several distances between pallets and workers when they are at work. The photons flux obtained by MCNP-4C is multiplied by the conversion factor of Flux to Kerma for air by conversion factor to Effective Dose by Kerma unit, and by the number of emitted photons. Those conversion factors are obtained of ICRP 74 table 1 and table 17 respectively. This is

  19. Calculation of the store house worker dose in a lost wax foundry using MCNP-4C.

    Science.gov (United States)

    Alegría, Natalia; Legarda, Fernando; Herranz, Margarita; Idoeta, Raquel

    2005-01-01

    Lost wax casting is an industrial process which permits the transmutation into metal of models made in wax. The wax model is covered with a silicaceous shell of the required thickness and once this shell is built the set is heated and wax melted. Liquid metal is then cast into the shell replacing the wax. When the metal is cool, the shell is broken away in order to recover the metallic piece. In this process zircon sands are used for the preparation of the silicaceous shell. These sands have varying concentrations of natural radionuclides: 238U, 232Th and 235U together with their progenics. The zircon sand is distributed in bags of 50 kg, and 30 bags are on a pallet, weighing 1,500 kg. The pallets with the bags have dimensions 80 cm x 120 cm x 80 cm, and constitute the radiation source in this case. The only pathway of exposure to workers in the store house is external radiation. In this case there is no dust because the bags are closed and covered by plastic, the store house has a good ventilation rate and so radon accumulation is not possible. The workers do not touch with their hands the bags and consequently skin contamination will not take place. In this study all situations of external irradiation to the workers have been considered; transportation of the pallets from vehicle to store house, lifting the pallets to the shelf, resting of the stock on the shelf, getting down the pallets, and carrying the pallets to production area. Using MCNP-4C exposure situations have been simulated, considering that the source has a homogeneous composition, the minimum stock in the store house is constituted by 7 pallets, and the several distances between pallets and workers when they are at work. The photons flux obtained by MCNP-4C is multiplied by the conversion factor of Flux to Kerma for air by conversion factor to Effective Dose by Kerma unit, and by the number of emitted photons. Those conversion factors are obtained of ICRP 74 table 1 and table 17 respectively. This

  20. Carbonates in leaching reactions in context of "1"4C dating

    International Nuclear Information System (INIS)

    Michalska, Danuta; Czernik, Justyna

    2015-01-01

    Lime mortars as a mixture of binder and aggregate may contain carbon of various origins. If the mortars are made of totally burnt lime, radiocarbon dating of binder yields the real age of building construction. The presence of carbonaceous aggregate has a significant influence on the "1"4C measurements results and depending on the type of aggregate and fraction they may cause overaging. Another problem, especially in case of hydraulic mortars that continue to be chemically active for a very long time, is the recrystallization usually connected with rejuvenation of the results but also, depending on local geological structures, with so called reservoir effect yielding apparent ages. An attempt in separating the binder from other carbonaceous components successfully was made for samples from Israel by Nawrocka-Michalska et al. (2007). The same preparation procedure, after taking into account the petrographic composition, was used for samples coming from Poland, Nawrocka et al. (2009). To verify the procedure used previously for non-hydraulic samples determination an experimental tests on carbonaceous mortars with crushed bricks from Novae in Bulgaria were made. Additionally, to identify different carbonaceous structures and their morphology, a cathodoluminescence and scanning electron microscope with electron dispersive spectrometer were applied. The crushed bricks and brick dust used in mortars production process have been interpreted as an alternative use to other pozzolanic materials. The reaction between lime and pozzolanic additives take place easily and affects the rate and course of carbonates decomposition in orthophosphric acid, during the samples pretreatment for dating. The composition of the Bulgarian samples together with influence of climate conditions on mortar carbonates do not allow for making straightforward conclusions in chronology context, but gives some new guidelines in terms of hydraulic mortars application for dating. This work has mainly

  1. Comparison of microstructural and mechanical properties of Al–TiC, Al–B4C and Al–TiC–B4C composites prepared by casting techniques

    International Nuclear Information System (INIS)

    Mazaheri, Y.; Meratian, M.; Emadi, R.; Najarian, A.R.

    2013-01-01

    In the present work, production of Al–10%TiC, Al–10% B 4 C, Al–5%TiC–5%B 4 C (volume fraction) composites by casting techniques were studied. However, casting techniques suffers from poor incorporation and distribution of the reinforcement particles in the matrix. These problems become especially significant as the reinforcement size decreases due to greater agglomeration tendency and reduced wettability of the particles with the melt. Microstructure characterization of the composite samples was investigated by using scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffractometer (XRD).The results showed heat treatment of B 4 C particles and addition of TiC particles with the flux improved the wettability and incorporation of reinforcement particles into melt. Mechanical characterization of samples showed that maximum hardness had belonged to Al–5%TiC–5%B 4 C composite, maximum yield and tensile strength had belonged to Al–10%B 4 C composite and maximum elongation had belonged to Al–10%TiC composite. Furthermore, wear properties of composites revealed the better behavior for Al–B 4 C composite.

  2. A simulation of a pebble bed reactor core by the MCNP-4C computer code

    Directory of Open Access Journals (Sweden)

    Bakhshayesh Moshkbar Khalil

    2009-01-01

    Full Text Available Lack of energy is a major crisis of our century; the irregular increase of fossil fuel costs has forced us to search for novel, cheaper, and safer sources of energy. Pebble bed reactors - an advanced new generation of reactors with specific advantages in safety and cost - might turn out to be the desired candidate for the role. The calculation of the critical height of a pebble bed reactor at room temperature, while using the MCNP-4C computer code, is the main goal of this paper. In order to reduce the MCNP computing time compared to the previously proposed schemes, we have devised a new simulation scheme. Different arrangements of kernels in fuel pebble simulations were investigated and the best arrangement to decrease the MCNP execution time (while keeping the accuracy of the results, chosen. The neutron flux distribution and control rods worth, as well as their shadowing effects, have also been considered in this paper. All calculations done for the HTR-10 reactor core are in good agreement with experimental results.

  3. Analytical support for the B4C control rod test QUENCH-07

    International Nuclear Information System (INIS)

    Homann, C.; Hering, W.; Fernandez Benitez, J.A.; Ortega Bernardo, M.

    2003-04-01

    Degradation of B 4 C absorber rods during a beyond design accident in a nuclear power reactor may be a safety concern. Among others, the integral test QUENCH-07 is performed in the FZK QUENCH facility and supported by analytical work within the Euratom Fifth Framework Programme on Nuclear Fission Safety to get a more profound database. Since the test differed substantially from previous QUENCH tests, much more work had to be done for pretest calculations than usual to guarantee the safety of the facility and to derive the test protocol. Several institutions shared in this work with different computer code systems, as used for nuclear reactor safety analyses. Due to this effort, problems could be identified and solved, leading to several modifications of the originally planned test conduct, until a feasible test protocol could be derived and recommended. All calculations showed the same trends. Especially the high temperatures and hence the small safety margin for the facility were a concern. In this report, contributions of various authors, engaged in this work, are presented. The test QUENCH-07 and the related computational support by the engaged institutions were co-financed by the European Community under the Euratom Fifth Framework Programme on Nuclear Fission Safety 1998 - 2002 (COLOSS Project, contract No. FIKS-CT-1999-00002). (orig.)

  4. Analytical support for the B{sub 4}C control rod test QUENCH-07

    Energy Technology Data Exchange (ETDEWEB)

    Homann, C.; Hering, W. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Reaktorsicherheit]|[Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Programm Nukleare Sicherheitsforschung; Birchley, J. [Paul Scherrer Inst. (Switzerland); Fernandez Benitez, J.A.; Ortega Bernardo, M. [Univ. Politecnica de Madrid (Spain)

    2003-04-01

    Degradation of B{sub 4}C absorber rods during a beyond design accident in a nuclear power reactor may be a safety concern. Among others, the integral test QUENCH-07 is performed in the FZK QUENCH facility and supported by analytical work within the Euratom Fifth Framework Programme on Nuclear Fission Safety to get a more profound database. Since the test differed substantially from previous QUENCH tests, much more work had to be done for pretest calculations than usual to guarantee the safety of the facility and to derive the test protocol. Several institutions shared in this work with different computer code systems, as used for nuclear reactor safety analyses. Due to this effort, problems could be identified and solved, leading to several modifications of the originally planned test conduct, until a feasible test protocol could be derived and recommended. All calculations showed the same trends. Especially the high temperatures and hence the small safety margin for the facility were a concern. In this report, contributions of various authors, engaged in this work, are presented. The test QUENCH-07 and the related computational support by the engaged institutions were co-financed by the European Community under the Euratom Fifth Framework Programme on Nuclear Fission Safety 1998 - 2002 (COLOSS Project, contract No. FIKS-CT-1999-00002). (orig.)

  5. Fine Structure Study of the Plasma Coatings B4C-Ni-P

    Science.gov (United States)

    Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.

    2017-12-01

    The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.

  6. Monte Carlo simulation applied to radiosurgery narrow beams using MCNP-4C

    International Nuclear Information System (INIS)

    Chaves, A.; Lopes, M.C.; Oliveira, C.

    2001-01-01

    Dose measurements for the narrow photon beams used in radiosurgery are complicated by the lack of electron equilibrium which is a requirement namely for ionometric methods. To overcome this difficulty the use of different dosimetric supports is strongly recommended in order to appreciate the influence of each type of detector. Monte Carlo simulation is another kind of tool to assess the details of the energy deposition phenomena in such narrow photon beams. In this study output factors and depth dose calculated by the Monte Carlo MCNP-4C code are presented and compared with experimental data measured with a diode, a Markus chamber, a 0.125 cc thimble chamber and a Pinpoint chamber. Simulated energy spectra for narrow beams are also presented in order to compare them with the reference 10 cm x 10 cm beam field size and thus discuss the different contributions of the absorbed energy in water, in each case. A detailed analysis on the photon energy spectra showed a slight decrease on the photon mean energy that can be explained by the increased scattering inside the additional collimators. Calculated and measured depth doses curves are in good agreement for most of the collimators. For the two smallest collimators some differences have been pointed and explained according to the characteristics of the detectors (author)

  7. Shielding calculations for neutron calibration bunker using Monte Carlo code MCNP-4C

    International Nuclear Information System (INIS)

    Suman, H.; Kharita, M. H.; Yousef, S.

    2008-02-01

    In this work, the dose arising from an Am-Be source of 10 8 neutron/sec strength located inside the newly constructed neutron calibration bunker in the National Radiation Metrology Laboratories, was calculated using MCNP-4C code. It was found that the shielding of the neutron calibration bunker is sufficient. As the calculated dose is not expected to exceed in inhabited areas 0.183 μSv/hr, which is 10 times smaller than the regulatory dose constraints. Hence, it can be concluded that the calibration bunker can house - from the external exposure point of view - an Am-Be neutron source of 10 9 neutron/sec strength. It turned out that the neutron dose from the source is few times greater than the photon dose. The sky shine was found to contribute significantly to the total dose. This contribution was estimated to be 60% of the neutron dose and 10% of the photon dose. The systematic uncertainties due to various factors have been assessed and was found to be between 4 and 10% due to concrete density variations; 15% due to the dose estimation method; 4 -10% due to weather variations (temperature and moisture). The calculated dose was highly sensitive to the changes in source spectra. The uncertainty due to the use of two different neutron spectra is about 70%.(author)

  8. Evaluation of Tehran research reactor (TRR) control rod worth using MCNP4C computer code

    International Nuclear Information System (INIS)

    Hosseini, Mohammad; Vosoughi, Naser; Hosseini, Seyed Abolfazl

    2010-01-01

    The main objective of reactor control system is to provide a safe reactor starting up, operation and shutting down. Calculation or measurement of precise values of control rod worth is of great importance in Tehran Research Reactor (TRR), considering the fact that they are the only controlling tools in the reactor. In present paper, simulation of TRR in First Operation Cycle (FOC) and in cold and clean core for the calculation of total and integral worth of control nods is reported. MCNP4C computer code has been used for all simulation process. Two method have been used for control rods worth calculation in this paper, namely the direct approach and perturbation method. It is shown that while the direct approach is appropriate for worth calculation of both the shim and the regulating control rods, the perturbation method is just suitable for tiny reactivity changes, i.e. for small initial part of regulating rods. Results of simulation are compared with the reported data in Safety Analysis Report (SAR) of Tehran research reactor and showed satisfactory agreement. (author)

  9. Sintering of B{sub 4}C powder obtained by a modified carbo-thermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, R.M.; Kazumi, M.H.; Goncalves, D.P.; Melo, F.C.L. [Centro Tecnico Aeroespacial (CTA) - Instituto de Aeronautica e Espaco, Praca Marechal Eduardo Gomes, 50 Campus do CTA - Vila das Acacias, 12228-904 Sao Jose dos Campos-SP (Brazil)

    2005-07-01

    Boron carbide is one of the hardest materials and a highly refractory material that is of great interest for structural, electronic and nuclear applications. B{sub 4}C is commercially manufactured by the carbo-thermal reduction of a mixture of boron oxide (B{sub 2}O{sub 3}) in an batch electric arc furnace process. However the carbo-thermal reaction on the stoichiometric starting composition results an excess carbon residue because of the boron loss in the form of B{sub 2}O{sub 2}. Thus, a modified carbo-thermal reaction is applied with an excess B{sub 2}O{sub 3} to compensate the loss and to obtain stoichiometric powders. The aim of this work is to study the sinterability of this powder with the lower carbon residue acting as sintering additive. Pressureless sintering in the temperatures of 1900 deg. C/30 min and 2100 deg. C/30 min in argon atmosphere were applied. The synthesized powders were analysed by XRD and SEM. Density of 94% of theoretical density was achieved for sample prepared with the powder obtained with 50% B{sub 2}O{sub 3} excess synthesized at 1700 deg. C/15 min. (authors)

  10. Sintering of B4C powder obtained by a modified carbo-thermal reaction

    International Nuclear Information System (INIS)

    Rocha, R.M.; Kazumi, M.H.; Goncalves, D.P.; Melo, F.C.L.

    2005-01-01

    Boron carbide is one of the hardest materials and a highly refractory material that is of great interest for structural, electronic and nuclear applications. B 4 C is commercially manufactured by the carbo-thermal reduction of a mixture of boron oxide (B 2 O 3 ) in an batch electric arc furnace process. However the carbo-thermal reaction on the stoichiometric starting composition results an excess carbon residue because of the boron loss in the form of B 2 O 2 . Thus, a modified carbo-thermal reaction is applied with an excess B 2 O 3 to compensate the loss and to obtain stoichiometric powders. The aim of this work is to study the sinterability of this powder with the lower carbon residue acting as sintering additive. Pressureless sintering in the temperatures of 1900 deg. C/30 min and 2100 deg. C/30 min in argon atmosphere were applied. The synthesized powders were analysed by XRD and SEM. Density of 94% of theoretical density was achieved for sample prepared with the powder obtained with 50% B 2 O 3 excess synthesized at 1700 deg. C/15 min. (authors)

  11. Performance of the MTR core with MOX fuel using the MCNP4C2 code

    International Nuclear Information System (INIS)

    Shaaban, Ismail; Albarhoum, Mohamad

    2016-01-01

    The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U 3 O 8 &PuO 2 ) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U 3 O 8 -Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U 3 O 8 -Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with 235 U and the amount of loaded 235 U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. - Highlights: • Re-cycling of the ETRR-2 reactor by MOX fuel. • Increase the number of the neutronic traps from one neutronic trap to three neutronic trap. • Calculation of the criticality safety and neutronic parameters of the ETRR-2 reactor for the U 3 O 8 -Al original fuel and the MOX fuel.

  12. A hydrothermally synthesized LiFePO4/C composite with superior low-temperature performance and cycle life

    Science.gov (United States)

    Wu, Guan; Liu, Na; Gao, Xuguang; Tian, Xiaohui; Zhu, Yanbin; Zhou, Yingke; Zhu, Qingyou

    2018-03-01

    The LiFePO4/C composites have been successfully synthesized by a hydrothermal process, with the combined carbon sources of fructose and calcium lignosulfonate. The morphology and microstructure of LiFePO4/C were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The electrochemical properties were evaluated by the constant-current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The uniform carbon coating layer derived from calcium lignosulfonate can effectively improve the electronic conductivity, lithium-ion diffusivity and surface stability of the LiFePO4/C composites and prevent the side reactions between the LiFePO4 particles and electrolytes. The LiFePO4/C composites display excellent rate capability, superior cycle life and outstanding low temperature performance, which are promising for lithium-ion battery applications in electrical vehicles and electrical energy storage systems.

  13. Solvothermal synthesis and electrochemical performance of Li2MnSiO4/C cathode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Yan-Chao; Zhao, Shi-Xi; Zhai, Peng-Yuan; Li, Fang; Nan, Ce-Wen

    2014-01-01

    Highlights: • Li 2 MnSiO 4 /C nanocomposite has been synthesized by the solvothermal method. • The particles of Li 2 MnSiO 4 /C are much smaller and more uniform. • The presence of Ni improves discharge capacity of Li 2 MnSiO 4 /C cathode material. • The initial discharge capacity of Ni-modified Li 2 MnSiO 4 /C is 274.5 mAh g −1 at 25 °C. - Abstract: Orthorhombic structure Li 2 MnSiO 4 /C with Pmn2 1 space group is synthesized by the solvothermal method. Carbon coating and Ni 2+ doping are used to improve the electronic conductivity and the cycling performance of Li 2 MnSiO 4 cathode material, respectively. The particles of Li 2 MnSiO 4 /C are much smaller and more uniform than those of Li 2 MnSiO 4 due to the carbon coating. It is shown that Ni 2+ has been reduced into metal Ni during the synthesis process. The synthesized Ni-modified Li 2 MnSiO 4 /C (denoted as (LMS@Ni)/C) cathode material exhibits better electrochemical performance in comparison with Li 2 MnSiO 4 /C, attributing to higher lithium ion diffusion coefficient as well as electronic conductivity. The initial discharge capacity of (LMS@Ni)/C is 274.5 mA h g −1 and the reversible capacity after 20 cycles is 119.8 mA h g −1 at 25 °C

  14. Hot deformation behaviors and processing maps of B{sub 4}C/Al6061 neutron absorber composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu-Li [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Wen-Xian, E-mail: Wangwenxian@tyut.edu.cn [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Jun [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Department of Mechanical Engineering, Pennsylvania State University Erie, The Behrend College, Erie, PA 16563 (United States); Chen, Hong-Sheng [School of Materials Science and Engineering, Taiyuan University Of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-02-15

    In this study, the hot deformation behaviors of 30 wt.% B{sub 4}C/Al6061 neutron absorber composites (NACs) have been investigated by conducting isothermal compression tests at temperatures ranging from 653 K to 803 K and strain rates from 0.01 to 10 s{sup −1}. It was found that, during hot compression, the B{sub 4}C/Al6061 NACs exhibited a steady flow characteristic which can be expressed by the Zener-Hollomon parameter as a hyperbolic-sine function of flow stress. High average activation energy (185.62 kJ/mol) of B{sub 4}C/Al6061 NACs is noted in current study owing to the high content of B{sub 4}C particle. The optimum hot working conditions for B{sub 4}C/Al6061 NACs are found to be 760–803 K/0.01–0.05 s{sup −1} based on processing map and microstructure evolution. Typical material instabilities are thought to be attributed to void formation, adiabatic shear bands (ASB), particle debonding, and matrix cracking. Finally, the effect of the plastic deformation zones (PDZs) on the microstructure evolution in this 30 wt.% B{sub 4}C/Al6061 composite is found to be very important. - Highlights: •The hot deformation behavior of the 30 wt.% B{sub 4}C/Al6061 NACs was first analyzed. •The 3D efficiency map and the instability map are developed. •The optimum hot working conditions were identified and validated by SEM and TEM. •The hot deformation schematic diagram of 30 wt.% B{sub 4}C/Al6061 NACs is developed.

  15. Electrochemical properties of Li2 FeSiO4 /C nanocomposites prepared by sol-gel and hydrothermal methods

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O. D.; Naik, Vaman M.; Nazri, Gholam A.; Naik, Ratna

    Li2FeSiO4 is considered as potential cathode material for next generation lithium ion batteries because of its high specific theoretical capacity, low cost, and safety. However, it suffers from poor electronic conductivity and slow lithium ion diffusion in the solid phase. To address these issues, we have studied mesoporous Li2FeSiO4/C composites synthesized by sol-gel (SG) and hydrothermal (HT) methods using tri-block copolymer (P123) as carbon source and structure directing agent. The structure and morphology of the composites were characterized by XRD, SEM and TEM and the surface area and pore size distribution were measured by using N2 adsorption/desorption. Galvanostatic cycling, electrochemical impedance spectroscopy, and cyclic voltammetry were used to evaluate the electrochemical performance of the Li2FeSiO4/C composites. The Li2FeSiO4/C (HT) composites show a superior electrochemical performance compared to Li2FeSiO4/C (SG). At C/30 rate, the discharge capacity of Li2FeSiO4/C (HT) reached ~276 mAh/g in the 1.5-4.6 V window and shows better rate capability and stability at high rates. We attribute the improved electrochemical performance of Li2FeSiO4/C (HT) to its large surface area and reduced particle size. The details of the study will be presented.

  16. Progress on B4C control rod modeling in RELAP/SCDAPSIM with application to quench and Phebus

    International Nuclear Information System (INIS)

    Kawahara, Keisuke; Hohorst, Judith K.; Allison, Chris M.

    2014-01-01

    The RELAP/SCDAPSIM code is designed to predict the behavior of reactor systems during normal and accident conditions. RELAP/SCDAPSIM/MOD3.5 is an experimental version of the code with the most advanced fuel and severe accident behavior models and correlations. It includes modeling improvements that were specifically added to support (a) the ongoing experimental severe accident programs in Europe and Japan and (b) the analysis and assessment activities related to the accident at the Fukushima Daiichi NPS. One of the improved models describes the behavior of cylindrical B 4 C control rods used in selected PWR designs and in integral experiments used to assess the heating and melting of PWR, BWR, and VVER assemblies. It replaces an older model that was originally developed by the US Nuclear Regulatory Commission in the mid- 1980's. It includes a combination of new and improved models and correlations to more accurately describe (a) eutectic reactions between Zircaloy, B 4 C, and stainless steel, (b) oxidation for B 4 C, Zircaloy, and stainless steel, and (c) the effects of the gap between the Zircaloy guide tube and the stainless steel sheath surrounding B 4 C pellets used in many control rod designs. This paper will discuss the development of the new model and validation of the model using the PHEBUS B 4 C test, FPT-3, and the KIT quench experiments with a central B 4 C control rod. (authors)

  17. Role of manganese on the grain refining efficiency of AZ91D magnesium alloy refined by Al4C3

    International Nuclear Information System (INIS)

    Liu Shengfa; Zhang Yuan; Han Hui

    2010-01-01

    A novel Mg-50% Al 4 C 3 (hereafter in wt.%) master alloy has been developed by powder in situ synthesis process, the role of manganese on the grain refining efficiency of AZ91D magnesium alloy refined by this master alloy has been investigated. X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) results show the existence of Al 4 C 3 particles in this master alloy. After addition of 0.6% Al 4 C 3 or combined addition of 0.6% Al 4 C 3 and 0.27% Mn, the average grain size of AZ91D decreased dramatically from 360 μm to 210 μm, and from 360 μm to130 μm, respectively. However, no further refinement of grain size was achieved with additional amount of Mn exceeding 0.27% for AZ91D alloy refined by 0.6% Al 4 C 3 in the present investigation. Al-C-O-Mn-Fe-rich intermetallic particles with an Al-C-O-rich coating film, often observed in the central region of magnesium grains of the AZ91D alloy treated by the combination of Al 4 C 3 and Mn, are proposed to be the potent nucleating substrates for primary α-Mg.

  18. The rational use of energy in industrial refrigeration equipment through the appropriate selection of the refrigerant fluid as the working substance; Uso racional de la energia en equipos de refrigeracion industrial mediante la eleccion apropiada del refrigerante como sustancia de trabajo

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Z, Jesus [Instituto Mexicano del Petroleo, Mexico, D. F. (Mexico)

    1994-12-31

    This paper presents an analysis for diminishing the energy consumption in the industrial refrigeration equipment through the appropriate selection of the refrigerant fluid. The analysis shows the safety levels and the refrigerant toxicity, the construction advantages of the equipment, as well as the ecological impact derived from its utilization. By means of the liquid injection and the compression of the gas in two stages, a capacity increase is achieved and an energy demand reduction for the installation. Finally, an economical analysis is presented, comprising the equipment cost, operation, maintenance, consumption cost of the utilized fluids, etc. Demonstrating the selection of the working fluid employed. This analysis was made considering the PETROLEOS MEXICANOS installations. Nevertheless, this application can be adopted in any industrial installation for the rational energy use. Additionally the main advantages for the use of the proposed systems are shown, saving fuel expenses and increasing the thermal efficiency and diminishing the air pollution. [Espanol] Este trabajo presenta un analisis para disminuir el consumo de energia en los equipos de refrigeracion industrial mediante la seleccion apropiada del refrigerante. El analisis muestra los niveles de seguridad y toxicidad del refrigerante, las ventajas constructivas del equipo, asi como el impacto ecologico derivado de su empleo. Por la inyeccion de liquido y la compresion del gas en dos etapas, se logra un aumento de capacidad de enfriamiento y disminucion de la energia demandada por la instalacion. Finalmente un analisis economico se presenta, involucrando los gastos del equipo, operacion, mantenimiento, costos de consumos de fluidos utilizados, etc. Que demuestran la seleccion del fluido de trabajo utilizado. Este analisis fue hecho tomando en cuenta las instalaciones de Petroleos Mexicanos. No obstante, esta aplicacion puede ser adaptada en cualquier instalacion industrial para un uso racional de los

  19. Effect of microstructure on low temperature electrochemical properties of LiFePO4/C cathode material

    International Nuclear Information System (INIS)

    Zhao, Nannan; Zhi, Xiaoke; Wang, Li; Liu, Yanhui; Liang, Guangchuan

    2015-01-01

    Graphical abstract: The low temperature performance of Li-ion batteries and LiFePO 4 /C composites was discussed. A conclusion that cathode material is the main limitation for the low temperature performance was come up, by comparing the low temperature performance of 18650 Li-ion batteries with LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 and LiFePO 4 /C as cathode materials. The low temperature performance results indicate the LiFePO 4 /C microstructure is the main factor influencing the low temperature performance of LiFePO 4 . A new LiFePO 4 /C with pomegranate-like spherical structure was proposed in this paper, which shows superior low temperature performance, which can be attributed to its uniform fine primary particles and smaller primary particles. - Highlights: • Low temperature performance of Li-ion battery and LiFePO 4 /C composite was discussed. • Cathode material mainly decided the low temperature performance of Li-ion battery. • LiFePO 4 /C microstructure mainly affects its low temperature performance. • Pomegranate-like spherical structure LiFePO 4 /C has good low temperature performance. - Abstract: The low-temperature electrochemical performance of Li-ion batteries is mainly determined by the choice of cathode material, as evident from a comparison of the low-temperature electrochemical performance of the 18650 batteries with the LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , and LiFePO 4 /C as the cathode, respectively, at −20 °C. LiFePO 4 /C materials with different morphologies and microstructures were prepared by different methods. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), galvanostatic charge–discharge measurements and EIS. The low-temperature performance of the samples and those of the coin cells utilizing the materials as cathodes were measured. The results indicate that the microstructure of LiFePO 4 /C is a key factor determining the low

  20. g4c2c: A Model for Citizen Engagement at Arms’ Length from Government

    Directory of Open Access Journals (Sweden)

    Axel Bruns

    2011-03-01

    Full Text Available Normal 0 false false false EN-AU X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The recognition that Web 2.0 applications and social media sites will strengthen and improve interaction between governments and citizens has resulted in a global push into new e-democracy or Government 2.0 spaces. These typically follow government-to-citizen (g2c or citizen-to-citizen (c2c models, but both these approaches are problematic: g2c is often concerned more with service delivery to citizens as clients, or exists to make a show of ‘listening to the public’ rather than to genuinely source citizen ideas for government policy, while c2c often takes place without direct government participation and therefore cannot ensure that the outcomes of citizen deliberations are accepted into the government policy-making process. Building on recent examples of Australian Government 2.0 initiatives, we suggest a new approach based on government support for citizen-to-citizen engagement, or g4c2c, as a workable compromise, and suggest that public service broadcasters should play a key role in facilitating this model of citizen engagement.

  1. Calibration of a foot borne spectrometry system using the MCNP 4C code

    International Nuclear Information System (INIS)

    Nylen, T.; Agren, G.

    2004-01-01

    The increased interest for the cycling of radioactive Caesium in natural ecosystems has gained need for rapid and reliable methods to investigate the deposition density in natural soils. One commonly used method, soil sampling, is a good method that correctly used gives information of both the horizontal and vertical distribution of the desired nuclide. The main disadvantage is that the method is time consuming regarding sampling, preparation and measurements. An alternative method is the use of semiconductors or scintillation detectors in the field i.e. in cars, airplanes, or helicopters. Theses methods are rapid and integrate over large areas which gives a more reliable mean value provided that the operator has some basic knowledge about the depth distribution of the radio nuclides and bulk density in the soil. To be effective the systems are often connected to a GPS to give the exact coordinate for each measurement. In a situation where the area of interest is too large to cover by soil samples and measurements by airplane not will give a spatial resolution good enough, one feasible method is to use a foot borne gamma spectrometry system. The advantage of a foot borne system is that the operator can cover a quite large area within a few hours and that the method can detect small anomalies in the deposition field which may be difficult to discover with soil samples. This abstract describes the calibration of a foot borne gamma-spectrometry system carried in a back-pack and consisting of a NaI-detector, a GPS and a system for logging activity and position. The detector system and surroundings has been modeled in the Monte Carlo code MCNP 4C (Figure 1). The Monte Carlo method gives the possibility to study the influence of complex geometries that are difficult to create for a practical calibration using real activity. The results of the MCNP calibration model, has been compared to foot borne gamma-spectrometry field measurements in a Cs-137 deposition area. A

  2. ATM kinase sustains breast cancer stem-like cells by promoting ATG4C expression and autophagy.

    Science.gov (United States)

    Antonelli, Martina; Strappazzon, Flavie; Arisi, Ivan; Brandi, Rossella; D'Onofrio, Mara; Sambucci, Manolo; Manic, Gwenola; Vitale, Ilio; Barilà, Daniela; Stagni, Venturina

    2017-03-28

    The efficacy of Ataxia-Telangiectasia Mutated (ATM) kinase signalling inhibition in cancer therapy is tempered by the identification of new emerging functions of ATM, which suggests that the role of this protein in cancer progression is complex. We recently demonstrated that this tumor suppressor gene could act as tumor promoting factor in HER2 (Human Epidermal Growth Factor Receptor 2) positive breast cancer. Herein we put in evidence that ATM expression sustains the proportion of cells with a stem-like phenotype, measured as the capability to form mammospheres, independently of HER2 expression levels. Transcriptomic analyses revealed that, in mammospheres, ATM modulates the expression of cell cycle-, DNA repair- and autophagy-related genes. Among these, the silencing of the autophagic gene, autophagy related 4C cysteine peptidase (ATG4C), impairs mammosphere formation similarly to ATM depletion. Conversely, ATG4C ectopic expression in cells silenced for ATM expression, rescues mammospheres growth. Finally, tumor array analyses, performed using public data, identify a significant correlation between ATM and ATG4C expression levels in all human breast cancer subtypes, except for the basal-like one.Overall, we uncover a new connection between ATM kinase and autophagy regulation in breast cancer. We demonstrate that, in breast cancer cells, ATM and ATG4C are essential drivers of mammosphere formation, suggesting that their targeting may improve current approaches to eradicate breast cancer cells with a stem-like phenotype.

  3. Facile Synthesis of Bowl-Like LiFePO4/C Composite with High Rate-Performance

    Science.gov (United States)

    Jing, Peng; Yao, Lei; Xiang, Mingwu; Wang, Yan; Wu, Jinhua; Wang, Boya; Zhang, Yun; Wu, Hao; Liu, Heng

    2018-03-01

    Olivine-structured LiFePO4/C composites with high rate-performance were synthesized via an industrial spray-drying technique using a low cost Fe3O4 as iron source. The as-obtained LiFePO4/C exhibits a unique bowl-like morphology with a particle size of 2-5 μm in diameter. A continuous uniform carbon coating layer on the surface of LiFePO4/C cathodes promotes fast electron transport, whilst it guarantees the favorable electrochemical reaction. Especially the formation of porous structure leads to an average pore volume of 0.127 cm3 g-1 and a high specific surface area of 34.46 m2 g-1, which is conducive to facilitating the penetration of electrolyte and providing the more contact area of electrolyte with LiFePO4/C. As a result, the as-prepared LiFePO4/C cathode material delivers an outstanding discharge capacity of 102.1 mAh g-1, 94.2% of the initial capacity (108.3 mAh g-1), after 1000 cycles at 10 C. Even at an ultrahigh current rate of 50 C, it still shows an initial discharge capacity of 58 mAh g-1.

  4. Facile Synthesis of Bowl-Like LiFePO4/C Composite with High Rate-Performance

    Science.gov (United States)

    Jing, Peng; Yao, Lei; Xiang, Mingwu; Wang, Yan; Wu, Jinhua; Wang, Boya; Zhang, Yun; Wu, Hao; Liu, Heng

    2018-07-01

    Olivine-structured LiFePO4/C composites with high rate-performance were synthesized via an industrial spray-drying technique using a low cost Fe3O4 as iron source. The as-obtained LiFePO4/C exhibits a unique bowl-like morphology with a particle size of 2-5 μm in diameter. A continuous uniform carbon coating layer on the surface of LiFePO4/C cathodes promotes fast electron transport, whilst it guarantees the favorable electrochemical reaction. Especially the formation of porous structure leads to an average pore volume of 0.127 cm3 g-1 and a high specific surface area of 34.46 m2 g-1, which is conducive to facilitating the penetration of electrolyte and providing the more contact area of electrolyte with LiFePO4/C. As a result, the as-prepared LiFePO4/C cathode material delivers an outstanding discharge capacity of 102.1 mAh g-1, 94.2% of the initial capacity (108.3 mAh g-1), after 1000 cycles at 10 C. Even at an ultrahigh current rate of 50 C, it still shows an initial discharge capacity of 58 mAh g-1.

  5. The effect of synthesis parameters on the lithium storage performance of LiMnPO4/C

    International Nuclear Information System (INIS)

    Ramar, V.; Saravanan, K.; Gajjela, S.R.; Hariharan, S.; Balaya, P.

    2013-01-01

    Highlights: • An architecture featuring carbon coated, interconnected nano-grains was constructed with mesopores for LiMnPO 4 /C cathodes. • Mesoporous LiMnPO 4 /C delivers 140 mAh g −1 at 0.05 C, one of the best storage performances in galvanostatic charge/discharge mode. • Interdependence of storage performance on carbon, milling time, grain size, surface area, pore size and pore volume is elucidated. • Feasible full cell operation with Li 4 Ti 5 O 12 /C anode. -- Abstract: An architecture featuring carbon coated, interconnected nano-grains constructed with mesopores is developed for LiMnPO 4 cathode material. This architecture facilitates enhanced lithium ionic and electronic transports; favours improved lithium storage performance. Mesoporous LiMnPO 4 /C electrode delivers discharge capacity of 140 mAh g −1 at 0.05 C using galvanostatic cycling mode. This best electrochemical response of LiMnPO 4 /C at constant current mode is complemented by diffusion studies using cyclic voltammetry and impedance spectroscopy. Further, the interdependence of lithium storage performance on carbon content, milling time (2, 4, 6 and 10 h), grain size and porous characteristics (surface area, pore size and pore volume) is also discussed. Finally, the feasibility of LiMnPO 4 /C cathode is evaluated against Li 4 Ti 5 O 12 /C anode in a full cell

  6. Improved high-rate charge/discharge performances of LiFePO{sub 4}/C via V-doping

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.S.; Zhou, Z.; Xu, Z.G.; Wang, D.G.; Wei, J.P.; Bian, X.K.; Yan, J. [Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071 (China)

    2009-09-05

    V-doped LiFePO{sub 4}/C cathode materials were prepared through a carbothermal reduction route. The microstructure was characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The electrochemical Li{sup +} intercalation performances of V-doped LiFePO{sub 4}/C were compared with those of undoped one through galvanostatic intermittent titration technique, cyclic voltamperometry, and electrochemical impedance spectrum. V-doped LiFePO{sub 4}/C showed a high discharge capacity of {proportional_to}70 mAh g{sup -1} at the rate of 20 C (3400 mA g{sup -1}) at room temperature. The significantly improved high-rate charge/discharge capacity is attributed to the increase of Li{sup +} ion ''effective'' diffusion capability. (author)

  7. Wetting and interface interactions in the B4C/Al-Me (Me=Cu, Sn) systems

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Froumin, N.; Dariel, M.P.; Frage, N.

    2008-01-01

    The wettability of B 4 C in contact with non-carbide and non-boride forming liquid metals (such as Cu or Sn) has been the subject of several studies. These metals do not wet boron carbide unless a reactive element is added to the melt. The present study is concerned with the addition of Al which completes the series of reactive elements added to the non-wetting metals. While Si represents the elements that form stable carbides and Ti represents the elements that form stable borides, Al belongs to the group of elements that form ternary borocarbides. The wetting experiments in the B 4 C/(Me-Al, Me=Cu, Sn) systems have shown that a ternary product, namely Al 8 B 4 C 7 was formed at the interface and that wetting is governed by the thermodynamic properties of the binary liquid system

  8. Actions of a proline analogue, L-thiazolidine-4-carboxylic acid (T4C, on Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Anahí Magdaleno

    Full Text Available It is well established that L-proline has several roles in the biology of trypanosomatids. In Trypanosoma cruzi, the etiological agent of Chagas' disease, this amino acid is involved in energy metabolism, differentiation processes and resistance to osmotic stress. In this study, we analyzed the effects of interfering with L-proline metabolism on the viability and on other aspects of the T. cruzi life cycle using the proline analogue L- thiazolidine-4-carboxylic acid (T4C. The growth of epimastigotes was evaluated using different concentrations of T4C in standard culture conditions and at high temperature or acidic pH. We also evaluated possible interactions of this analogue with stress conditions such as those produced by nutrient starvation and oxidative stress. T4C showed a dose-response effect on epimastigote growth (IC(50 = 0.89+/-0.02 mM at 28 degrees C, and the inhibitory effect of this analogue was synergistic (p<0.05 with temperature (0.54+/-0.01 mM at 37 degrees C. T4C significantly diminished parasite survival (p<0.05 in combination with nutrient starvation and oxidative stress conditions. Pre-incubation of the parasites with L-proline resulted in a protective effect against oxidative stress, but this was not seen in the presence of the drug. Finally, the trypomastigote bursting from infected mammalian cells was evaluated and found to be inhibited by up to 56% when cells were treated with non-toxic concentrations of T4C (between 1 and 10 mM. All these data together suggest that T4C could be an interesting therapeutic drug if combined with others that affect, for example, oxidative stress. The data also support the participation of proline metabolism in the resistance to oxidative stress.

  9. Synthesis of LiFePO4/C cathode material from ferric oxide and organic lithium salts

    International Nuclear Information System (INIS)

    Shi Zhongqi; Huang Ming; Huai Yongjian; Lin Ziji; Yang Kerun; Hu Xuebu; Deng Zhenghua

    2011-01-01

    Research highlights: → LiFePO 4 can be synthesized from Fe 2 O 3 by a sequence of free-radical reactions. → Organic lithium salts can avoid the composition segregation of the precursor. → Low cost ferric oxide and environmentally friendly distilled water are used. - Abstract: LiFePO 4 /C cathode material has been simply synthesized via a modified in situ solid-state reaction route using the raw materials of Fe 2 O 3 , NH 4 H 2 PO 4 , Li 2 C 2 O 4 and lithium polyacrylate (PAALi). The sintering temperature of LiFePO 4 /C precursor is studied by thermo-gravimetric (TG)/differential thermal analysis (DTA). The physical properties of LiFePO 4 /C are then investigated through analysis using by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and the electrochemical properties are investigated by electrochemical impedance spectra (EIS), cyclic voltammogram (CV) and constant current charge/discharge test. The LiFePO 4 /C composite with the particle size of ∼200 nm shows better discharge capacity (156.4 mAh g -1 ) than bare LiFePO 4 (52.3 mAh g -1 ) at 0.2 C due to the improved electronic conductivity which is demonstrated by EIS. The as-prepared LiFePO 4 /C through this method also shows excellent high-rate characteristic and cycle performance. The initial discharge capacity of the sample is 120.5 mAh g -1 and the capacity retention rate is 100.6% after 50 cycles at 5 C rate. The results prove that the using of organic lithium salts can obtain a high performance LiFePO 4 /C composite.

  10. Synthesis of Co 2SnO 4@C core-shell nanostructures with reversible lithium storage

    Science.gov (United States)

    Qi, Yue; Du, Ning; Zhang, Hui; Wu, Ping; Yang, Deren

    This paper reports the synthesis of Co 2SnO 4@C core-shell nanostructures through a simple glucose hydrothermal and subsequent carbonization approach. The as-synthesized Co 2SnO 4@C core-shell nanostructures have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure Co 2SnO 4 nanocrystals. The carbon matrix has good volume buffering effect and high electronic conductivity, which may be responsible for the improved cyclic performance.

  11. Spectral characterisation of aperiodic normal-incidence Sb/B4C multilayer mirrors for the λ < 124 Å range

    Science.gov (United States)

    Vishnyakov, E. A.; Kopylets, I. A.; Kondratenko, V. V.; Kolesnikov, A. O.; Pirozhkov, A. S.; Ragozin, E. N.; Shatokhin, A. N.

    2018-03-01

    Three broadband aperiodic Sb/B4C multilayer mirrors were synthesised for the purposes of soft X-ray optics and spectroscopy in the wavelength range beyond the L-edge of Si (λ plasma radiation source and an electronic detector with a 2D spatial resolution (a CCD matrix with 13 × 13 μm sized pixels). The experimental spectra are compared with theoretical calculations. The effect of lower antimony and B4C layer densities on the reflection spectra is discussed.

  12. 3D organic Na4C6O6/graphene architecture for fast sodium storage with ultralong cycle life.

    Science.gov (United States)

    Gu, Jianan; Gu, Yue; Yang, Shubin

    2017-11-23

    Sodium-ion batteries (SIBs) have aroused increasing interest as one of the most promising replacements for lithium-ion batteries (LIBs). Here, a novel organic-inorganic 3D Na 4 C 6 O 6 -graphene architecture was successfully fabricated from commercial Na 2 C 6 O 6 and for the first time applied for sodium storage. Hence, the 3D Na 4 C 6 O 6 -graphene architecture exhibits a high reversible capacity, good cyclic performance and high-rate capability for sodium storage.

  13. Peculiar features of metallurgical processes at plasma-arc spraying of coatings, made of steel wire with powder fillers B4C and B4C+ZrO2

    Directory of Open Access Journals (Sweden)

    Георгій Михайлович Григоренко

    2016-11-01

    Full Text Available The interaction of metallurgical processes occurring in plasma-arc spraying between the steel shell and the carbide fillers of B4C and B4C cored wires with the addition of nanocrystalline ZrO2 powder has been analyzed. Iron-boron compounds alloyed with carbon are formed in ingots as a result of ferritiс coating of wire interacrion with fillers while the ferritic matrix contains boride and carboboride eutectics. Average microhardness of the carboboride compounds and the matrix is high – 17,78; 16,40 and 8,69; 9,95 GPa for the ingots with с B4C and B4C+ZrO2 respectively. The best quality coatings with low porosity (~1%, lamellar structure consisting of ferrite matrix reinforced with dispersed Fe borides, were obtained at a higher heat input (plasmatron current 240-250 A. The average amount of oxides in the coatings makes 15%. 0,5% addition of nanopowder ZrO2 accelerates dispersed iron-boron compounds forming, promotes their uniform distribution in the structure and improves coating microhardness up to 7,0 GPa. Application of the differential thermal analysis method to simulate the interaction processes between the steel shell and the filler during the heating of wire in the shielding gas makes it possible to promote formation of new phases (borides and carboborides of iron and to predict the phase composition of the coatings

  14. The Use of Spray-Dried Mn3O4/C Composites as Electrocatalysts for Li–O2 Batteries

    Directory of Open Access Journals (Sweden)

    Hong-Kai Yang

    2016-11-01

    Full Text Available The electrocatalytic activities of Mn3O4/C composites are studied in lithium–oxygen (Li–O2 batteries as cathode catalysts. The Mn3O4/C composites are fabricated using ultrasonic spray pyrolysis (USP with organic surfactants as the carbon sources. The physical and electrochemical performance of the composites is characterized by X-ray diffraction, scanning electron microscopy, particle size analysis, Brunauer–Emmett–Teller (BET measurements, elemental analysis, galvanostatic charge–discharge methods and rotating ring-disk electrode (RRDE measurements. The electrochemical tests demonstrate that the Mn3O4/C composite that is prepared using Trition X-114 (TX114 surfactant has higher activity as a bi-functional catalyst and delivers better oxygen reduction reaction (ORR and oxygen evolution reaction (OER catalytic performance in Li–O2 batteries because there is a larger surface area and particles are homogeneous with a meso/macro porous structure. The rate constant (kf for the production of superoxide radical (O2•− and the propylene carbonate (PC-electrolyte decomposition rate constant (k for M3O4/C and Super P electrodes are measured using RRDE experiments and analysis in the 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6/PC electrolyte. The results show that TX114 has higher electrocatalytic activity for the first step of ORR to generate O2•− and produces a faster PC-electrolyte decomposition rate.

  15. Low band gap and ionic bonding with charge transfer, threshold in the polymeric lithium fulleride Li(4)C(60)

    NARCIS (Netherlands)

    Macovez, Roberto; Savage, Rebecca; Schiessling, Joachim; Kamaras, Katalin; Rudolf, Petra; Venema, L.C.

    2008-01-01

    We demonstrate the growth of crystalline Li(4)C(60) films. The low-energy electron diffraction pattern of the films indicates the formation of polymer chains in the plane of the surface, consistent with the reported crystal structure. Electron energy loss and photoemission spectra identify the

  16. 75 FR 34434 - Request To Amend an Existing Order Under Section 4(c) of the Commodity Exchange Act Permitting...

    Science.gov (United States)

    2010-06-17

    ...) pursuant to Section 4(c) of the Act, (a) to permit the clearing of coffee, sugar, and cocoa OTC swap..., ``a * * * commodity swap,'' which latter term includes swaps on agricultural products. While the...(c) of the Act, ICE Clear could not engage in the clearing of OTC swap contracts in cocoa, sugar and...

  17. Synthesis and characterization of magnetically recyclable Ag nanoparticles immobilized on Fe3O4@C nanospheres with catalytic activity

    International Nuclear Information System (INIS)

    Li, Wei-hong; Yue, Xiu-ping; Guo, Chang-sheng; Lv, Jia-pei; Liu, Si-si; Zhang, Yuan; Xu, Jian

    2015-01-01

    Highlights: • Ag-loaded Fe 3 O 4 @C nanospheres were synthesized by a facile method. • The Fe 3 O 4 encapsulated mesoporous carbon was decorated with 10 nm Ag nanocrystals. • The as-prepared Ag-Fe 3 O 4 @C nanocomposite showed excellent catalytic activity. • The nanocomposite had convenient magnetic separability. - Abstract: A novel approach for the synthesis of Ag-loaded Fe 3 O 4 @C nanospheres (Ag-Fe 3 O 4 @C) was successfully developed. The catalysts possessed a carbon-coated magnetic core and grew active silver nanoparticles on the outer shell using hydrazine monohydrate as the AgNO 3 reductant in ethanol. The morphology, inner structure, and magnetic properties of the as-prepared composites were studied with transmission electron microscopy (TEM), X-ray powder diffraction (XRD), fourier translation infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. Catalytic activity was investigated by degrading rhodamine B (RhB) in the designed experiment. The obtained products were monodispersed and bifunctional with high magnetization, as well as exhibited excellent catalytic activity toward organic dye with 98% of RhB conversion within 20 min in the presence of NaBH 4 . The product also exhibited convenient magnetic separability and maintained high catalytic activity after six cycle runs

  18. Resonant soft x-ray reflectivity of Me/B4C multilayers near the boron K edge

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Schlemper, Christoph; Pietsch, Ullrich

    2010-09-01

    Energy dependence of the optical constants of boron carbide in the short period Ru/B4C and Mo/B4C multilayers (MLs) are evaluated from complete reflectivity scans across the boron K edge using the energy-resolved photon-in-photon-out method. Differences between the refractive indices of the B4Cmaterial inside and close to the surface are obtained from the peak profile of the first order ML Bragg peak and the reflection profile near the critical angle of total external reflection close to the surface. Where a Mo/B4C ML with narrow barrier layers appears as a homogeneous ML at all energies, a Ru/B4C ML exhibits another chemical nature of boron at the surface compared to the bulk. From evaluation of the critical angle of total external reflection in the energy range between 184 and 186 eV, we found an enriched concentration of metallic boron inside the Ru-rich layer at the surface, which is not visible in other energy ranges.

  19. The Effects oF 4C-ID Model Approach on Acquisition and Transfer of Knowledge about Electric Circuits

    Science.gov (United States)

    Melo, Mário; Miranda, Guilhermina Lobato

    2018-01-01

    This paper reports the first results of an experimental research, carried out in a private school with 9th grade students, where the 4C/ID-model was used for teaching and learning electric circuits. The authors describe the principles and features of the instructional model, that is suitability for the teaching and learning of complex knowledge…

  20. Synthesis and biological profiling of 6-or 7-(het)aryl-7-deazapurine 4 '-C-methylribonucleosides

    Czech Academy of Sciences Publication Activity Database

    Nauš, Petr; Caletková, Olga; Perlíková, Pavla; Poštová Slavětínská, Lenka; Tloušťová, Eva; Hodek, Jan; Weber, Jan; Džubák, P.; Hajdúch, M.; Hocek, Michal

    2015-01-01

    Roč. 23, č. 23 (2015), s. 7422-7438 ISSN 0968-0896 R&D Projects: GA ČR GAP207/11/0344 Institutional support: RVO:61388963 Keywords : nucleosides * 4 '-C-methyl-ribonucleosides * branched nucleosides * nucleoside antivirals * prodrugs Subject RIV: CC - Organic Chemistry Impact factor: 2.923, year: 2015

  1. 4Cin: A computational pipeline for 3D genome modeling and virtual Hi-C analyses from 4C data.

    Directory of Open Access Journals (Sweden)

    Ibai Irastorza-Azcarate

    2018-03-01

    Full Text Available The use of 3C-based methods has revealed the importance of the 3D organization of the chromatin for key aspects of genome biology. However, the different caveats of the variants of 3C techniques have limited their scope and the range of scientific fields that could benefit from these approaches. To address these limitations, we present 4Cin, a method to generate 3D models and derive virtual Hi-C (vHi-C heat maps of genomic loci based on 4C-seq or any kind of 4C-seq-like data, such as those derived from NG Capture-C. 3D genome organization is determined by integrative consideration of the spatial distances derived from as few as four 4C-seq experiments. The 3D models obtained from 4C-seq data, together with their associated vHi-C maps, allow the inference of all chromosomal contacts within a given genomic region, facilitating the identification of Topological Associating Domains (TAD boundaries. Thus, 4Cin offers a much cheaper, accessible and versatile alternative to other available techniques while providing a comprehensive 3D topological profiling. By studying TAD modifications in genomic structural variants associated to disease phenotypes and performing cross-species evolutionary comparisons of 3D chromatin structures in a quantitative manner, we demonstrate the broad potential and novel range of applications of our method.

  2. Comparing the Electrochemical Performance of LiFePO4/C Modified by Mg Doping and MgO Coating

    Directory of Open Access Journals (Sweden)

    Jianjun Song

    2013-01-01

    Full Text Available Supervalent cation doping and metal oxide coating are the most efficacious and popular methods to optimize the property of LiFePO4 lithium battery material. Mg-doped and MgO-coated LiFePO4/C were synthesized to analyze their individual influence on the electrochemical performance of active material. The specific capacity and rate capability of LiFePO4/C are improved by both MgO coating and Mg doping, especially the Mg-doped sample—Li0.985Mg0.015FePO4/C, whose discharge capacity is up to 163 mAh g−1, 145.5 mAh g−1, 128.3 mAh g−1, and 103.7 mAh g−1 at 1 C, 2 C, 5 C, and 10 C, respectively. The cyclic life of electrode is obviously increased by MgO surface modification, and the discharge capacity retention rate of sample LiFePO4/C-MgO2.5 is up to 104.2% after 100 cycles. Comparing samples modified by these two methods, Mg doping is more prominent on prompting the capacity and rate capability of LiFePO4, while MgO coating is superior in terms of improving cyclic performance.

  3. Preparation of V-Doped LiFePO4/C as the Optimized Cathode Material for Lithium Ion Batteries.

    Science.gov (United States)

    Sun, Pingping; Zhang, Haiyang; Shen, Kai; Fan, Qi; Xu, Qingyu

    2015-04-01

    LiFe1-x,Vx,PO4/C composites were synthesized by solid state reaction. The effect of carbon coating and V doping on the performance of LiFePO4 has been systematically investigated by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), charge/discharge and cyclic voltammetry (CV) measurement. The results show that carbon coating and proper amount of V incorporation do not significantly change the host crystal structure of LiFePO4, while the electrochemical performance of LiFePO4 can be significantly improved. Particularly, the LiFe0.96V0.04PO4/C exhibits the best performance with a specific discharge capacity of 105.5 mA h/g at 5.0 C, 90.3 mA h/g at 10 C and 66.7 mA h/g at 30 C with stable cycle performance, which is significantly improved compared with the pure LiFePO4/C. The cyclic voltammograms result reveals that V doping could decrease the resistance of LiFePO4/C composite electrode drastically and improve its reversibility.

  4. Rapid Polyol-Assisted Microwave Synthesis of Nanocrystalline LiFePO4/C Cathode for Lithium-Ion Batteries.

    Science.gov (United States)

    Paul, Baboo Joseph; Gim, Jihyeon; Baek, Sora; Kang, Jungwon; Song, Jinju; Kim, Sungjin; Kim, Jaekook

    2015-08-01

    Nanocrystalline LiFePO4/C has been synthesized under a very short period of time (90 sec) using a polyol-assisted microwave heating synthesis technique. The X-ray diffraction (XRD) data indicates that the rapidly synthesized materials correspond to phase pure olivine. Post-annealing of the as-prepared sample at 600 °C in argon atmosphere yields highly crystalline LiFePO4/C. The morphology of the samples studied using scanning electron microscopy (SEM) reveals the presence of secondary particles formed from aggregation of primary particles in the range of 30-50 nm. Transmission electron microscopy (TEM) images reveal a thin carbon layer coating on the surface of the primary particle. The charge/discharge studies indicate that the as-prepared and annealed LiFePO4/C samples delivered initial discharge capacities of 126 and 160 mA h g-1, respectively, with good capacity retentions at 0.05 mA cm-2 current densities. The post-annealing process indeed improves the crystallinity of the LiFePO4 nanocrystals, which enhances the electrode performance of LiFePO4/C.

  5. Facile preparation of magnetic mesoporous Fe_3O_4/C/Cu composites as high performance Fenton-like catalysts

    International Nuclear Information System (INIS)

    Li, Keyan; Zhao, Yongqin; Janik, Michael J.; Song, Chunshan; Guo, Xinwen

    2017-01-01

    Highlights: • Fe-Cu composites with different compositions were prepared by calcining tartrates. • Magnetic mesoporous Fe_3O_4/C/Cu was obtained by calcining tartrate under N_2. • Fe_3O_4/C/Cu exhibits excellent photo-Fenton catalytic activity and reusability. • The activity is due to the synergistic and photo-reduction effects of Fe and Cu. - Abstract: Fe-Cu composites with different compositions and morphologies were synthesized by a hydrothermal method combined with precursor thermal transformation. γ-Fe_2O_3/CuO and α-Fe_2O_3/CuO were obtained by calcining the Fe and Cu tartrates under air atmosphere at 350 °C and 500 °C, respectively, while Fe_3O_4/C/Cu was obtained by calcining the tartrate precursor under N_2 atmosphere at 500 °C. The Fe_3O_4/C/Cu composite possessed mesoporous structure and large surface area up to 133 m"2 g"−"1. The Fenton catalytic performance of Fe_3O_4/C/Cu composite was closely related to the Fe/Cu molar ratio, and only proper amounts of Fe and Cu exhibited a synergistic enhancement in Fenton catalytic activity. Cu inclusion reduced Fe"3"+ to Fe"2"+, which accelerated the Fe"3"+/Fe"2"+ cycles and favored H_2O_2 decomposition to produce more hydroxyl radicals for methylene blue (MB) oxidation. Due to the photo-reduction of Fe"3"+ and Cu"2"+, the Fenton catalytic performance was greatly improved when amending with visible light irradiation in the Fe_3O_4/C/Cu-H_2O_2 system, and MB (100 mg L"−"1) was nearly removed within 60 min. The Fe_3O_4/C/Cu composite showed good recyclability and could be conveniently separated by an applied magnetic field. Compared with conventional methods for mesoporous composite construction, the thermolysis method using mixed metal tartrates as precursors has the advantages of easy preparation and low cost. This strategy provides a facile, cheap and green method for the synthesis of mesoporous composites as excellent Fenton-like catalysts, without any additional reductants or organic

  6. NUCLEAR X-RAY PROPERTIES OF THE PECULIAR RADIO-LOUD HIDDEN AGN 4C+29.30

    International Nuclear Information System (INIS)

    Sobolewska, M. A.; Siemiginowska, Aneta; Migliori, G.; Evans, D.; Stawarz, Ł.; Jamrozy, M.; Cheung, C. C.

    2012-01-01

    We present results from a study of nuclear emission from a nearby radio galaxy, 4C+29.30, over a broad 0.5-200 keV X-ray band. This study used new XMM-Newton (∼17 ks) and Chandra (∼300 ks) data, and archival Swift/BAT data from the 58 month catalog. The hard (>2 keV) X-ray spectrum of 4C+29.30 can be decomposed into an intrinsic hard power law (Γ ∼ 1.56) modified by a cold absorber with an intrinsic column density N H,z ∼ 5 × 10 23 cm –2 , and its reflection (|Ω/2π| ∼ 0.3) from a neutral matter including a narrow iron Kα emission line at a rest-frame energy ∼6.4 keV. The reflected component is less absorbed than the intrinsic one with an upper limit on the absorbing column of N refl H,z 22 cm –2 . The X-ray spectrum varied between the XMM-Newton and Chandra observations. We show that a scenario invoking variations of the normalization of the power law is favored over a model with variable intrinsic column density. X-rays in the 0.5-2 keV band are dominated by diffuse emission modeled with a thermal bremsstrahlung component with temperature ∼0.7 keV, and contain only a marginal contribution from the scattered power-law component. We hypothesize that 4C+29.30 belongs to a class of 'hidden' active galactic nuclei containing a geometrically thick torus. However, unlike the majority of hidden AGNs, 4C+29.30 is radio-loud. Correlations between the scattering fraction and Eddington luminosity ratio, and between black hole mass and stellar velocity dispersion, imply that 4C+29.30 hosts a black hole with ∼10 8 M ☉ mass.

  7. Stability, elastic and magnetostrictive properties of γ-Fe{sub 4}C and its derivatives from first principles theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun; Wang, Zhe [Department of Physics, Xiangtan University, Xiangtan, 411105 Hunan (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics, Xiangtan University, Xiangtan, 411105 Hunan (China); Beijing Computational Science Reasearch Center, 100084 Beijing (China)

    2014-11-15

    Using the first-principles full-potential linearized augmented plane-wave method, we investigated the stability, elastic and magnetostrictive properties of γ-Fe{sub 4}C and its derivatives. From the formation energy, we show that the most preferable configuration for MFe{sub 3}C (M=Pd, Pt, Rh, Ir) is that the M atom occupies the corner 1a position rather than 3c position. These derivatives are ductile due to high B/G values except for IrFe{sub 3}C. The calculated tetragonal magnetostrictive coefficient λ{sub 001} value for γ-Fe{sub 4}C is −380 ppm, which is larger than the value of Fe{sub 83}Ga{sub 17} (+207 ppm). Due to the strong SOC coupling strength constant (ξ) of Pt, the calculated λ{sub 001} of PtFe{sub 3}C is −691 ppm, which is increased by 80% compared to that of γ-Fe{sub 4}C. We demonstrate the origin of giant magnetostriction coefficient in terms of electronic structures and their responses to the tetragonal lattice distortion. - Highlights: • The most preferable site for M atom of MFe{sub 3}C (M=Pd, Pt, Rh, Ir) is the corner position. • The magnetostrictive coefficient for γ-Fe{sub 4}C is −380 ppm, larger than the value of Fe{sub 83}Ga{sub 17}. • The calculated λ{sub 001} of PtFe{sub 3}C is −691 ppm, which is increased by 80% compared to that of γ-Fe{sub 4}C.

  8. Effect of microstructure on low temperature electrochemical properties of LiFePO{sub 4}/C cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nannan; Zhi, Xiaoke; Wang, Li; Liu, Yanhui; Liang, Guangchuan, E-mail: liangguangchuan@hebut.edu.cn

    2015-10-05

    Graphical abstract: The low temperature performance of Li-ion batteries and LiFePO{sub 4}/C composites was discussed. A conclusion that cathode material is the main limitation for the low temperature performance was come up, by comparing the low temperature performance of 18650 Li-ion batteries with LiMn{sub 2}O{sub 4}, LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} and LiFePO{sub 4}/C as cathode materials. The low temperature performance results indicate the LiFePO{sub 4}/C microstructure is the main factor influencing the low temperature performance of LiFePO{sub 4}. A new LiFePO{sub 4}/C with pomegranate-like spherical structure was proposed in this paper, which shows superior low temperature performance, which can be attributed to its uniform fine primary particles and smaller primary particles. - Highlights: • Low temperature performance of Li-ion battery and LiFePO{sub 4}/C composite was discussed. • Cathode material mainly decided the low temperature performance of Li-ion battery. • LiFePO{sub 4}/C microstructure mainly affects its low temperature performance. • Pomegranate-like spherical structure LiFePO{sub 4}/C has good low temperature performance. - Abstract: The low-temperature electrochemical performance of Li-ion batteries is mainly determined by the choice of cathode material, as evident from a comparison of the low-temperature electrochemical performance of the 18650 batteries with the LiMn{sub 2}O{sub 4}, LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2}, and LiFePO{sub 4}/C as the cathode, respectively, at −20 °C. LiFePO{sub 4}/C materials with different morphologies and microstructures were prepared by different methods. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), galvanostatic charge–discharge measurements and EIS. The low-temperature performance of the samples and those of the coin cells utilizing the materials as cathodes were measured. The results

  9. Glucose assisted synthesis of hollow spindle LiMnPO_4/C nanocomposites for high performance Li-ion batteries

    International Nuclear Information System (INIS)

    Fu, Xiaoning; Chang, Zhaorong; Chang, Kun; Li, Bao; Tang, Hongwei; Shangguan, Enbo; Yuan, Xiao-Zi; Wang, Haijiang

    2015-01-01

    Graphical abstract: Nano-sized hollow spindle LiMnPO_4 with a well-developed olivine-type structure exhibits a high specific capacity and cycling performance. - Highlights: • A pure and well-crystallized LiMnPO_4 are synthesized via a solution-phase method. • The LiMnPO_4/C composite constitutes highly and uniformly distributed hollow spindles. • The LiMnPO_4/C composite exhibits a high specific capacity and cycling performance. • The growth process of the hollow spindle LiMnPO_4 particles is revealed. - Abstract: Nano-sized hollow spindle LiMnPO_4 with a well-developed olivine-type structure was synthesized with the assistance of glucose in dimethyl sulfoxide (DMSO)/H_2O under ambient pressure and 108 °C. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images show that the LiMnPO_4 particles consist of hollow spindles with a mean width of 200 nm, length of 500-700 nm, and wall thickness of about 30-60 nm. The LiMnPO_4/C nanocomposite was obtained by sintering nano-sized LiMnPO_4 with glucose at 650 °C under an inert atmosphere for 4 h. With a coated carbon thickness of about 10 nm, the obtained composite maintained the morphology and size of the hollow spindle. The electrochemical tests show the specific capacity of LiMnPO_4/C nanocomposite is 161.8 mAh g"−"1 at 0.05C, 137.7 mAh g"−"1 at 0.1C and 110.8 mAh g"−"1 at 0.2 C. The retention of discharge capacity maintains 92% after 100 cycles at 0.2 C. After different rate cycles the high capacity of the LiMnPO_4/C nanocomposite can be recovered. This high performance is attributed to the composite material's hollow spindle structure, which facilitates the electrolyte infiltration, resulting in an increased solid-liquid interface. The carbon layer covering the hollow spindle also contributes to the high performance of the LiMnPO_4/C material as the carbon layer improves its electronic conductivity and the nano-scaled wall thickness decreases the paths of Li

  10. Synthesis of LiFePO{sub 4}/C cathode material from ferric oxide and organic lithium salts

    Energy Technology Data Exchange (ETDEWEB)

    Shi Zhongqi; Huang Ming [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Graduate School of Chinese Academy of Sciences, Beijing, 100039 (China); Huai Yongjian [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Graduate School of Chinese Academy of Sciences, Beijing, 100039 (China); China Aviation Lithium Battery Co., Ltd, Luoyang, Henan 471003 (China); Lin Ziji; Yang Kerun [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Graduate School of Chinese Academy of Sciences, Beijing, 100039 (China); Hu Xuebu [Department of Chemistry and Materials, Sichuan Normal University, Chengdu, Sichuan 610068 (China); Zhongke Laifang Power Science and Technology Co., Ltd., Chengdu, Sichuan 610041 (China); Deng Zhenghua, E-mail: zhdeng@cioc.ac.c [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Graduate School of Chinese Academy of Sciences, Beijing, 100039 (China); Zhongke Laifang Power Science and Technology Co., Ltd., Chengdu, Sichuan 610041 (China)

    2011-04-15

    Research highlights: {yields} LiFePO{sub 4} can be synthesized from Fe{sub 2}O{sub 3} by a sequence of free-radical reactions. {yields} Organic lithium salts can avoid the composition segregation of the precursor. {yields} Low cost ferric oxide and environmentally friendly distilled water are used. - Abstract: LiFePO{sub 4}/C cathode material has been simply synthesized via a modified in situ solid-state reaction route using the raw materials of Fe{sub 2}O{sub 3}, NH{sub 4}H{sub 2}PO{sub 4}, Li{sub 2}C{sub 2}O{sub 4} and lithium polyacrylate (PAALi). The sintering temperature of LiFePO{sub 4}/C precursor is studied by thermo-gravimetric (TG)/differential thermal analysis (DTA). The physical properties of LiFePO{sub 4}/C are then investigated through analysis using by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and the electrochemical properties are investigated by electrochemical impedance spectra (EIS), cyclic voltammogram (CV) and constant current charge/discharge test. The LiFePO{sub 4}/C composite with the particle size of {approx}200 nm shows better discharge capacity (156.4 mAh g{sup -1}) than bare LiFePO{sub 4} (52.3 mAh g{sup -1}) at 0.2 C due to the improved electronic conductivity which is demonstrated by EIS. The as-prepared LiFePO{sub 4}/C through this method also shows excellent high-rate characteristic and cycle performance. The initial discharge capacity of the sample is 120.5 mAh g{sup -1} and the capacity retention rate is 100.6% after 50 cycles at 5 C rate. The results prove that the using of organic lithium salts can obtain a high performance LiFePO{sub 4}/C composite.

  11. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2 particulates using SHS reactions of Ni-Ti-B4C and Ni-Ti-B4C-C systems during casting

    International Nuclear Information System (INIS)

    Yang Yafeng; Wang Huiyuan; Liang Yunhong; Zhao Ruyi; Jiang Qichuan

    2007-01-01

    Steel matrix composites locally reinforced with different molar ratios of in situ TiC/TiB 2 particulates (2:1, 1:1 and 1:2, respectively) have been fabricated successfully utilizing the self-propagating high-temperature synthesis (SHS) reactions of Ni-Ti-B 4 C and Ni-Ti-B 4 C-C systems during casting. Differential thermal analysis (DTA) and X-ray diffraction (XRD) results reveal that the exothermic reactions of the Ni-Ti-B 4 C and Ni-Ti-B 4 C-C systems proceed in such a way that Ni initially reacts with B 4 C and Ti to form Ni 2 B and Ti 2 Ni compounds, respectively, with heat evolution at 1037 deg. C; Subsequently, the external heat and the evolved heat from these exothermic reactions promote the reactions forming TiC and TiB 2 at 1133 deg. C. In the composites reinforced with 1:2 molar ratio of TiC/TiB 2 , almost all TiB 2 grains have clubbed structures, while TiC grains exhibit near-spherical morphologies. Furthermore, TiB 2 grain sizes decrease, with the increase of TiC content. In particular, in the composites reinforced with 2:1 molar ratio of TiC/TiB 2 , it is difficult to find the clubbed TiB 2 grains. Macro-pores and blowholes are absent in the local reinforcing region of the composites reinforced with 1:1 and 1:2 molar ratios of TiC/TiB 2 , while a few macro-pores can be observed in the composite reinforced with 2:1 molar ratio of TiC/TiB 2 . Moreover, the densities of the composites reinforced with 1:1 and 1:2 molar ratios of TiC/TiB 2 are higher than that of the composite reinforced with 2:1 molar ratio of TiC/TiB 2 . The composite reinforced with 1:2 molar ratio of TiC/TiB 2 has the highest hardness and the best wear resistance

  12. C9ORF72 G4C2-repeat expansion and frontotemporal dementia first reported case in Argentina.

    Science.gov (United States)

    Fernández Suarez, M; Surace, Ezequiel; Harris, P; Tapajoz, F; Sevlever, G; Allegri, R; Russo, G N

    2016-06-01

    We present a female patient aged 51 who developed behavioral disorders followed by cognitive impairment over 3 years. Neuropsychological, neuropsychiatric, and radiological features suggested a probable behavioral variant of frontotemporal dementia (bvFTD). A family history of amyotrophic lateral sclerosis and parkinsonism suggested the hexanucleotide repeat expansion G4C2 in C9ORF72 . We set up a two-step genotyping algorithm for the detection of the expansion using fragment-length analysis polymerase chain reaction (PCR) and repeat-primed PCR with fluorescent primers. We confirmed the presence of an expanded G4C2 allele in the patient. This represents the first documented case of bvFTD due to a C9ORF72 expansion in Argentina.

  13. Surface Nb-ALLOYING on 0.4C-13Cr Stainless Steel: Microstructure and Tribological Behavior

    Science.gov (United States)

    Yu, Shengwang; You, Kai; Liu, Xiaozhen; Zhang, Yihui; Wang, Zhenxia; Liu, Xiaoping

    2016-02-01

    0.4C-13Cr stainless steel was alloyed with niobium using double glow plasma surface alloying and tribological properties of Nb-alloyed steel such as hardness, friction and wear were measured. Effects of the alloying temperature on microstructure and the tribological behavior of the alloyed steel were investigated compared with untreated steel. Formation mechanisms of Nb-alloyed layers and increased wear resistance were also studied. The result shows that after surface Nb-alloying treatment, the 0.4C-13Cr steel exhibits a diffusion adhesion at the alloyed layer/substrate interface and improved tribological property. The friction coefficient of Nb-alloyed steel is decreased by about 0.3-0.45 and the wear rate after Nb-alloying is only 2-5% of untreated steel.

  14. Two-step infiltration of aluminum melts into Al-Ti-B4C-CuO powder mixture pellets

    Science.gov (United States)

    Zhang, Jingjing; Lee, Jung-Moo; Cho, Young-Hee; Kim, Su-Hyeon; Yu, Huashun

    2016-03-01

    Aluminum matrix composites with a high volume fraction of B4C and TiB2 were fabricated by a novel processing technique - a quick spontaneous infiltration process. The process combines a pressureless infiltration with the combustion reaction of Al-Ti-B4C-CuO in molten aluminum. The process is realized in a simple and economical way in which the whole process is performed in air in a few minutes. To verify the rapidity of the process, the infiltration kinetics was calculated based on the Washburn equation in which melt flows into a porous skeleton. However, there was a noticeable deviation from the calculated results with the experimental results. Considering the cross-sections of the samples at different processing times, a new infiltration model (two step infiltration) consisting of macro-infiltration and micro-infiltration is suggested. The calculated kinetics results in light of the proposed model agree well with the experimental results.

  15. Synthesis and characterization of LiFePO4/C cathode materials by sol-gel method.

    Science.gov (United States)

    Liu, Shuxin; Yin, Hengbo; Wang, Haibin; Wang, Hong

    2014-09-01

    The carbon coated LiFePO4 cathode materials (LiFePO4/C) were successfully synthesized by sol-gel method with glucose, citric acid and PEG-4000 as dispersant and carbon source, respectively. The microstructure and grain size of LiFePO4/C composite were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy. The results showed that the carbon source and calcination temperature had important effect on the graphitization degree of carbon; the carbon decomposed by citric acid had higher graphitization degree; with calcination temperature rising, the graphitization degree of carbon increased and the particles size increased. The graphitization degree and grain size were very important for improving the electrochemical performance of LiFePO4 cathode materials, according to the experimental results, the sample LFP-700 (LFP-C) which was synthesized with citric acid as dispersant at 700 degree C had lower polarization and larger discharge capacity.

  16. Role of biotransformation, sorption and mineralization of "1"4C-labelled sulfamethoxazole under different redox conditions

    International Nuclear Information System (INIS)

    Alvarino, T.; Nastold, P.; Suarez, S.; Omil, F.; Corvini, P.F.X.; Bouju, H.

    2016-01-01

    "1"4C-sulfamethoxazole biotransformation, sorption and mineralization was studied with heterotrophic and autotrophic biomass under aerobic and anoxic conditions, as well as with anaerobic biomass. The "1"4C-radiolabelled residues distribution in the solid, liquid and gas phases was closely monitored along a total incubation time of 190 h. Biotransformation was the main removal mechanism, mineralization and sorption remaining below 5% in all the cases, although the presence of a carbon source exerted a positive effect on the mineralization rate by the aerobic heterotrophic bacteria. In fact, an influence of the type of primary substrate and the redox potential was observed in all cases on the biotransformation and mineralization rates, since an enhancement of the removal rate was observed when an external carbon source was used as a primary substrate under aerobic conditions, while a negligible effect was observed under nitrifying conditions. In the liquid phases collected from all assays, up to three additional peaks corresponding to "1"4C-radiolabelled residues were detected. The highest concentration was observed under anaerobic conditions, where two radioactive metabolites were detected representing each around 15% of the total applied radioactivity after 180 h incubation. One of the metabolites detected under anoxic and anaerobic conditions, is probably resulting from ring cleavage of the isoxazole ring. - Highlights: • New procedure based on "1"4C to determine sulfamethoxazole (SMX) removal • Complete SMX mass balances in solid, liquid and gas phases • Quantification of SMX biotransformation, mineralization and sorption • Influence of the primary metabolism and redox potential on SMX removal • SMX metabolites have been detected and a possible chemical structure was proposed.

  17. On the preparation of fine V8C7-WC and V4C3-WC powders

    CSIR Research Space (South Africa)

    Osborne, C

    1997-01-01

    Full Text Available The aim of this work was to produce V8C7-WC and V4C3-WC powders with grain size between 1 and 2mu-m, as a first stage of the preparation of fine grained WC-VC-Co hardmetal. V8C7-WC powder was produced via two routes: starting from preformed V8C7...

  18. Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material

    International Nuclear Information System (INIS)

    Myung, Seung-Taek; Komaba, Shinichi; Hirosaki, Norimitsu; Yashiro, Hitoshi; Kumagai, Naoaki

    2004-01-01

    The electroactive LiFePO 4 /C nano-composite has been synthesized by an emulsion drying method. During burning-out the oily emulsion precipitates in an air-limited atmosphere at 300 deg. C, amorphous or low crystalline carbon was generated along with releasing carbon oxide gases, and trivalent iron as a cheap starting material was immediately reduced to the divalent one at this stage as confirmed by X-ray photoelectron spectroscopy, leading to a low crystalline LiFePO 4 /C composite. Heat-treatment of the low crystalline LiFePO 4 /C in an Ar atmosphere resulted in a well-ordered olivine structure, as refined by Rietveld refinement of the X-ray diffraction pattern. From secondary electron microscopic and scanning transmission electron microscopic observations with the corresponding elemental mapping images of iron and phosphorous, it was found that the LiFePO 4 powders are modified by fine carbon. The in situ formation of the nano-sized carbon during crystallization of LiFePO 4 brought about two advantages: (i) an optimized particle size of LiFePO 4 , and (ii) a uniform distribution of fine carbon in the product. These effects of the fine carbon on LiFePO 4 /C composite led to high capacity retention upon cycling at 25 and 50 deg. C and high rate capability, resulting from a great enhancement of electric conductivity as high as 10 -4 S cm -1 . That is, the obtained capacity was higher than 90 mAh (g-phosphate) -1 by applying a higher current density of about 1000 mA g -1 (11 C) at 50 deg. C

  19. Carbonate anion controlled growth of LiCoPO4/C nanorods and its improved electrochemical behavior

    International Nuclear Information System (INIS)

    Gangulibabu; Nallathamby, Kalaiselvi; Meyrick, Danielle; Minakshi, Manickam

    2013-01-01

    Highlights: ► Carbonate anion controlled growth of LiCoPO 4 nanorods has been prepared. ► Mixture of H 2 CO 3 + (NH 4 ) 2 CO 3 increases the CO 3 2− concentration and acts as an effective growth inhibitor. ► Heating the carbonate rich precursor in an inert atmosphere produces a Co 2 P phase that is conductive. ► Addition of super P carbon resulted in an amorphous carbon coating on LiCoPO 4 particles. ► LiCoPO 4 /C nanorods with a co-existence of Co 2 P exhibit excellent discharge capacity with retention on multiple cycling. -- Abstract: LiCoPO 4 /C nanocomposite with growth controlled by carbonate anions was synthesized via a unique solid-state fusion method. Carbonate anions in the form of H 2 CO 3 or a mixture of H 2 CO 3 + (NH 4 ) 2 CO 3 have been used as a growth inhibiting modifier to produce morphology controlled lithium cobalt phosphate. The presence of cobalt phosphide (Co 2 P) as a second phase improved the conductivity and electrochemical properties of the parent LiCoPO 4. The formation of Co 2 P is found to be achievable only in an inert atmosphere. Super P ® carbon (10 wt.%) provided an adherent carbon coating on pristine LiCoPO 4 resulting in the LiCoPO 4 /C composite cathode. This electrode exhibited enhanced electrochemical properties: capacity of 123 mAh g −1 with excellent capacity retention of 89% after 30 cycles, and reasonable rate capability of up to 5 C rate. The synergistic effect of carbonate anions and formation of Co 2 P under inert atmosphere has influenced the electrochemical behavior of LiCoPO 4 /C cathode through controlling the morphology and increasing the conductivity

  20. Hollow-Cuboid Li3VO4/C as High-Performance Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Changkun; Liu, Chaofeng; Nan, Xihui; Song, Huanqiao; Liu, Yaguang; Zhang, Cuiping; Cao, Guozhong

    2016-01-13

    Li3VO4 has been demonstrated to be a promising anode material for lithium-ion batteries with a low, safe voltage and large capacity. However, its poor electronic conductivity hinders its practical application particularly at a high rate. This work reports that Li3VO4 coated with carbon was synthesized by a one-pot, two-step method with F127 ((PEO)100-(PPO)65-(PEO)100) as both template and carbon source, yielding a microcuboid structure. The resulting Li3VO4/C cuboid shows a stable capacity of 415 mAh g(-1) at 0.5 C and excellent capacity stability at high rates (e.g., 92% capacity retention after 1000 cycles at 10 C = 4 A g(-1)). The lithiation/delithiation process of Li3VO4/C was studied by ex situ X-ray diffraction and Raman spectroscopy, which confirmed that Li3VO4/C underwent a reversible intercalation reaction during discharge/charge processes. The excellent electrochemical performance is attributed largely to the unique microhollow structure. The voids inside hollow structure can not only provide more space to accommodate volume change during discharge/charge processes but also allow the lithium ions insertion and extraction from both outside and inside the hollow structure with a much larger surface area or more reaction sites and shorten the lithium ions diffusion distance, which leads to smaller overpotential and faster reaction kinetics. Carbon derived from F127 through pyrolysis coats Li3VO4 conformably and thus offers good electrical conduction. The results in this work provide convincing evidence that the significant potential of hollow-cuboid Li3VO4/C for high-power batteries.

  1. High temperature tribological behaviour of carbon based (B{sub 4}C and DLC) coatings in sliding contact with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Gharam, A. Abou, E-mail: abougha@uwindsor.c [Mechanical Automotive and Materials Engineering Department, University of Windsor, Windsor, ON, N9B3P4 (Canada); Lukitsch, M.J.; Balogh, M.P. [Chemical Sciences and Materials Systems Laboratory, General Motors R and D Center, 30500 Mound Road, Warren, MI 48090-9055 (United States); Alpas, A.T. [Mechanical Automotive and Materials Engineering Department, University of Windsor, Windsor, ON, N9B3P4 (Canada)

    2010-12-30

    Carbon based coatings, particularly diamond-like carbon (DLC) films are known to resist aluminum adhesion and reduce friction at room temperature. This attractive tribological behaviour is useful for applications such as tool coatings used for aluminum forming and machining. However, for those operations that are performed at elevated temperatures (e.g. hot forming) or that generate frictional heat during contact (e.g. dry machining) the suitable coatings are required to maintain their tribological properties at high temperatures. Candidates for these demanding applications include boron carbide (B{sub 4}C) and DLC coatings. An understanding of the mechanisms of friction, wear and adhesion of carbon based coatings against aluminum alloys at high temperatures will help in designing coatings with improved high temperature tribological properties. With this goal in mind, this study focused on B{sub 4}C and a hydrogenated DLC coatings sliding against a 319 grade cast aluminum alloy by performing pin-on-disk experiments at temperatures up to 400 {sup o}C. Experimental results have shown that the 319 Al/B{sub 4}C tribosystem generated coefficient of friction (COF) values ranging between 0.42 and 0.65, in this temperature range. However, increased amounts of aluminum adhesion were detected in the B{sub 4}C wear tracks at elevated temperatures. Focused ion beam (FIB) milled cross sections of the wear tracks revealed that the coating failed due to shearing along the columnar grain boundaries of the coating. The 319 Al/DLC tribosystem maintained a low COF (0.15-0.06) from room temperature up to 200 {sup o}C. This was followed by an abrupt increase to 0.6 at 400 {sup o}C. The deterioration of friction behaviour at T > 200 {sup o}C was attributed to the exhaustion of hydrogen and hydroxyl passivants on the carbon transfer layer formed on the Al pin.

  2. Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites

    International Nuclear Information System (INIS)

    Kim, Jaewoo; Lee, Byung-Chul; Uhm, Young Rang; Miller, William H.

    2014-01-01

    Highlights: • Preparation of B 4 C and BN nanopowders using a simple ball milling process. • Homogeneous dispersion and strong adhesion of nano-B 4 C and -BN with polymer matrix. • Enhancement of mechanical properties of the nanocomposites compared to their micro counterparts. • Enhancement of thermal neutron attenuation of the nanocomposites. - Abstract: Nano-sized boron carbide (B 4 C) and boron nitride (BN) powder were prepared using ball milling. Micro- and milled nano-powders were melt blended with high density polyethylene (HDPE) using a polymer mixer followed by hot pressing to fabricate sheet composites. The tensile and flexural strengths of HDPE nanocomposites were ∼20% higher than their micro counterparts, while those for latter decreased compared to neat HDPE. Thermal neutrons attenuation of the prepared HDPE nanocomposites was evaluated using a monochromatic ∼0.025 eV neutron beam. Thermal neutron attenuation of the HDPE nanocomposites was greatly enhanced compared to their micro counterparts at the same B-10 areal densities. Monte Carlo n-Particles (MCNP) simulations based on the lattice structure modeling also shows the similar filler size dependent thermal neutron absorption

  3. Core-shell Ni0.5TiOPO4/C composites as anode materials in Li ion batteries

    International Nuclear Information System (INIS)

    Zhang, X.J.; Zhang, Y.; Zhou, Z.; Wei, J.P.; Essehli, R.; Bali, B. El

    2011-01-01

    Pristine Ni 0.5 TiOPO 4 was prepared via a traditional solid-state reaction, and then Ni 0.5 TiOPO 4 /C composites with core-shell nanostructures were synthesized by hydrothermally treating Ni 0.5 TiOPO 4 in glucose solution. X-ray diffraction patterns indicate that Ni 0.5 TiOPO 4 /C crystallizes in monoclinic P2 1 /c space group. Scanning electron microscopy and transmission electron microscopy show that the small particles with different sizes are coated with uniform carbon film of ∼3 nm in thickness. Raman spectroscopy also confirms the presence of carbon in the composites. Ni 0.5 TiOPO 4 /C composites presented a capacity of 276 mAh g -1 after 30 cycles at the current density of 42.7 mA g -1 , much higher than that of pristine Ni 0.5 TiOPO 4 (155 mAh g -1 ). The improved electrochemical performances can be attributed to the existence of carbon shell.

  4. Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries

    International Nuclear Information System (INIS)

    Zou, Hongli; Zhang, Guanghui; Shen, Pei Kang

    2010-01-01

    An intermittent microwave heating method was used to synthesize spherical LiFePO 4 /C in the presence of glucose as reductive agent and carbon source without the use of the inert gas in the oven processes. The FePO 4 was used as iron precursor to reduce the cost and three lithium salts of Li 2 CO 3 , LiOH and CH 3 COOLi were chosen for comparison of the resulting materials. The materials can be alternatively heated by this method at a temperature controllable mode for crystallization and phase transformation and to provide relaxation time for protecting particles growth. The X-ray diffraction and scanning electron microscope measurements confirmed that the LiFePO 4 /C is olivine structured with the average particle size of 50-100 nm. The spherical LiFePO 4 /C as cathode material showed better electrochemical performance in terms of the specific capacity and the cycling stability, which might be attributed to the highly crystallized phase, small particle distribution and improved conductivity by carbon connection.

  5. Progress in AMS measurement of "1"2"9I and "1"4C at CIAE

    International Nuclear Information System (INIS)

    Yang Xuran; Dong, K.J.; Shan, J.; He Ming; Xie, L.B.

    2013-01-01

    Twenty-four years have passed since the AMS was built at China Institute of Atomic Energy (CIAE) in 1989. We have measured "2"3"6U, "1"8"2Hf, "5"9Ni and other elements. Recently, the routine method of measuring the "1"2"9I concentration in air particle samples using AMS have been set up due to it has great advantages to measure long-lived radioisotopes. For the applications, "1"2"9I could be used for monitoring nuclear environment. "1"2"9I was collected in air particle samples after the accident of Fukushima nuclear power plant and measured at the China Institute of Atomic Energy (CIAE) by using AMS, the result show that "1"2"9I derived from FNPP accident had been arrived in Beijing early on March 26th and "1"2"9I concentration had been greatly increased relative to March 20th. On the other hand, a new system to measure "1"4C of AMS will be designed for the application in bio-medical science: urea breath test (UBT). UBT has been carried out widely by using carbon isotope of "1"3C and "1"4C, respectively, in the world. They are two tracers with different measurement methods but applied by the same principle. Optimizing UBT methods with using "1"4C is the priori for the diagnosis of helicobacter pylori in the future. (author)

  6. Reaction behavior between B{sub 4}C, 304 grade of stainless steel and Zircaloy at 1473 K

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Ryosuke [Institute of Multidisciplinary Research Advanced Material, Tohoku University, 1-1 Katahira 2, Aoba-ku, Sendai (Japan); Ueda, Shigeru, E-mail: tie@tagen.tohokku.ac.jp [Institute of Multidisciplinary Research Advanced Material, Tohoku University, 1-1 Katahira 2, Aoba-ku, Sendai (Japan); Kim, Sun-Joong [Dept. of Materials Science and Engineering, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of); Gao, Xu; Kitamura, Shin-ya [Institute of Multidisciplinary Research Advanced Material, Tohoku University, 1-1 Katahira 2, Aoba-ku, Sendai (Japan)

    2016-08-15

    For a better understanding of the decommissioning of the Fukushima-daiichi nuclear power plant, the melting behavior of the control blade and the channel box should be clarified. In Fukushima nuclear reactor, the channel box was made of Zircaloy-4, and the control rode is made of B{sub 4}C together with stainless steel cladding and sheath. In the study, the interaction among B{sub 4}C, stainless steel (SUS), and Zircaloy-4 was investigated at 1473 K in either argon or air atmosphere. In argon, Zircaloy is melted by the diffusion of elements from SUS, and SUS was melted at 1473 K by the diffusion of C and B. In air, SUS reacted with B{sub 2}O{sub 3} and formed an oxides melt firstly. Then, the oxidized Zircaloy contacted with this melt and fused. Moreover, the progress of core melting process during severe accident under different atmospheres was firstly discussed. - Highlights: • The interaction among the system of B{sub 4}C, grade 304 stainless steel and Zircaloy-4 were studied at 1473 K in Ar and air. • In argon, Zircaloy is melted by the diffusion of elements from SUS, and SUS was melted by the diffusion of C and B. • In air, SUS reacted with B{sub 2}O{sub 3} and formed an oxides melt. Then, the oxidized Zircaloy contacted with this melt and fused.

  7. Effect of sintering temperature on structure of C-B4C-SiC composites with silicon additive

    International Nuclear Information System (INIS)

    Wu Lijun; Academia Sinica, Shenyang; Huang Qizhong; Yang Qiaoqin; Zhao Lihu; Xu Zhongyu

    1996-01-01

    Carbon materials possess good electric conductivity, heat conductivity, corrosion-resistance, self-lubrication and hot-shocking resistance, and are easily machined. However, they have low mechanical strength, and are easily oxidized in air at high temperature. On the contrary, ceramic materials have high mechanical strength and hardness, and have good wear-resistance and oxidation-resistance. However, they have the shortages of poor thermal-shock resistance lubrication, and are difficult to machine. Therefore, carbon/ceramic composites with the advantages of both carbon and ceramic materials have been widely studied in the recent years. Huang prepared C-B 4 C-SiC composites with the free sintering method and the hot pressing method, and studied the effects of Si, Al, Al 2 O 3 , Ni and Ti additives on the properties of the composites. The results showed that these additives could improve the properties of the composites. Zhao et al. studies the structure of C-B 4 C-SiC composites with Si additive sintered at 2,000 C and found two c-center monoclinic phases. In this paper, the authors discussed the effect of the sintering temperature on the structure of C-B 4 C-SiC composites with Si additive by means of transmission electron microscope (TEM) and x-ray diffractometer (XRD)

  8. Enhancement of thermal neutron attenuation of nano-B{sub 4}C, -BN dispersed neutron shielding polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaewoo, E-mail: kimj@kaeri.re.kr [Nuclear Materials Research Division, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); WCI Quantum Beam based Radiation Research Center, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); Missouri University Research Reactor, University of Missouri-Columbia, Columbia, MO 65211 (United States); Lee, Byung-Chul [Nuclear Reactor Core Design Division, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); Uhm, Young Rang [Radioisotopes Research Division, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); Miller, William H. [Missouri University Research Reactor, University of Missouri-Columbia, Columbia, MO 65211 (United States)

    2014-10-15

    Highlights: • Preparation of B{sub 4}C and BN nanopowders using a simple ball milling process. • Homogeneous dispersion and strong adhesion of nano-B{sub 4}C and -BN with polymer matrix. • Enhancement of mechanical properties of the nanocomposites compared to their micro counterparts. • Enhancement of thermal neutron attenuation of the nanocomposites. - Abstract: Nano-sized boron carbide (B{sub 4}C) and boron nitride (BN) powder were prepared using ball milling. Micro- and milled nano-powders were melt blended with high density polyethylene (HDPE) using a polymer mixer followed by hot pressing to fabricate sheet composites. The tensile and flexural strengths of HDPE nanocomposites were ∼20% higher than their micro counterparts, while those for latter decreased compared to neat HDPE. Thermal neutrons attenuation of the prepared HDPE nanocomposites was evaluated using a monochromatic ∼0.025 eV neutron beam. Thermal neutron attenuation of the HDPE nanocomposites was greatly enhanced compared to their micro counterparts at the same B-10 areal densities. Monte Carlo n-Particles (MCNP) simulations based on the lattice structure modeling also shows the similar filler size dependent thermal neutron absorption.

  9. Learning Electrical Circuits: The Effects of the 4C-ID Instructional Approach in the Acquisition and Transfer of Knowledge

    Directory of Open Access Journals (Sweden)

    Mario Melo

    2015-07-01

    Full Text Available This study was designed to investigate the effects of two instructional approaches (4C-ID versus conventional on learners’ knowledge-acquisition and learning transfer of the electrical circuits content in Physics. Participants were 129 9th graders from a secondary school in Lisbon, M = 14.3 years, SD = 0.54. The participants were divided in two groups: an experimental group constituted three intact classes (n = 78; and a control group constituted two intact classes (n = 51. The experimental group was taught using a digital learning environment designed with the 4C-ID model principles while the control group learned the same contents through a conventional method. We assessed the students’ performance (knowledge-acquisition and transfer, the perceived cognitive load, and the instructional efficiency. Results indicated that the experimental group performed significantly better than the control group on a knowledge-acquisition test and in a learning transfer test. They also perceived a less cognitive load in the transfer test and the learning environment developed with the 4C-ID model proved to be more instructional efficient than the conventional method.

  10. Effect of CeO2-coating on the electrochemical performances of LiFePO4/C cathode material

    International Nuclear Information System (INIS)

    Yao Jingwen; Wu Feng; Qiu Xinping; Li Ning; Su Yuefeng

    2011-01-01

    Highlights: → The first study the effect of CeO 2 coating on LiFePO 4 /C at low temperature. → Coated cathode shows improved capacities at high rates and low temperature. → CeO 2 -coating decreases electrode polarization and increases charge-transfer reaction activity. - Abstract: The effect of CeO 2 coating on LiFePO 4 /C cathode material has been investigated. The crystalline structure and morphology of the synthesized powders have been characterized by XRD, SEM, TEM and their electrochemical performances both at room temperature and low temperature are evaluated by CV, EIS and galvanostatic charge/discharge tests. It is found that, nano-CeO 2 particles distribute on the surface of LiFePO 4 without destroying the crystal structure of the bulk material. The CeO 2 -coated LiFePO 4 /C cathode material shows improved lithium insertion/extraction capacity and electrode kinetics, especially at high rates and low temperature. At -20 deg. C, the CeO 2 -coated material delivers discharge capacity of 99.7 mAh/g at 0.1C rate and the capacity retention of 98.6% is obtained after 30 cycles at various charge/discharge rates. The results indicate that the surface treatment should be an effective way to improve the comprehensive properties of the cathode materials for lithium ion batteries.

  11. Mechanical performance optimization of neutron shielding material based on short carbon fiber reinforced B4C/epoxy resin

    International Nuclear Information System (INIS)

    Wang Peng; Tang Xiaobin; Chen Feida; Chen Da

    2013-01-01

    To satisfy engineering requirements for mechanics performance of neutron shielding material, short carbon fiber was used to reinforce the traditional containing B 4 C neutron shielding material and effects of fiber content, length and surface treatment to mechanics performance of material was discussed. Based on Americium-Beryllium neutron source, material's neutron shielding performance was tested. The result of experiment prove that tensile strength of material which the quality ratio of resin and fiber is 5:1 is comparatively excellent for 10wt% B 4 C of carbon fiber reinforced epoxy resin. The tensile properties of material change little with the fiber length ranged from 3-10 mm The treatment of fiber surface with silane coupling agent KH-550 can increase the tensile properties of materials by 20% compared with the untreated of that. A result of shielding experiment that the novel neutron shielding material can satisfy the neutron shielding requirements can be obtained by comparing with B 4 C/polypropylene materials. The material has good mechanical properties and wide application prospect. (authors)

  12. Effect of carbon source on the morphology and electrochemical performances of LiFePO4/C nanocomposites.

    Science.gov (United States)

    Liu, Shuxin; Wang, Haibin; Yin, Hengbo; Wang, Hong; He, Jichuan

    2014-03-01

    The carbon coated LiFePO4 (LiFePO4/C) nanocomposites materials were successfully synthesized by sol-gel method. The microstructure and morphology of LiFePO4/C nanocomposites were characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results showed that the carbon layers decomposed by different dispersant and carbon source had different graphitization degree, and the sugar could decompose to form more graphite-like structure carbon. The carbon source and heat-treatment temperature had some effect on the particle size and morphology, the sample LFP-S700 synthesized by adding sugar as carbon source at 700 degrees C had smaller particle size, uniform size distribution and spherical shape. The electrochemical behavior of LiFePO4/C nanocomposites was analyzed using galvanostatic measurements and cyclic voltammetry (CV). The results showed that the sample LFP-S700 had higher discharge specific capacities, higher apparent lithium ion diffusion coefficient and lower charge transfer resistance. The excellent electrochemical performance of sample LFP-S700 could be attributed to its high graphitization degree of carbon, smaller particle size and uniform size distribution.

  13. Impact of incorporation of chromium on electrochemical properties of LiFePO4/C for Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Naik Amol

    2015-12-01

    Full Text Available LiFe0.95Cr0.05PO4/C was successfully synthesized by one-step solid-state reaction using a single mode microwave reactor. The effect of incorporation of chromium on LiFePO4 lattice parameters was systematically investigated by X-ray diffraction. Surface analysis was done by scanning electron microscopy and transmission electron microscopy. The ratio of amorphous to graphitic carbon was determined from Raman spectroscopic data. The influence of chromium incorporation on electrochemical properties was studied by recording charge/discharge cycles combined with electrochemical impedance spectroscopy (EIS and cyclic voltammetry. It was found that Cr incorporation significantly enhanced the electrochemical performance of LiFePO4 at all current densities up to 10 C. LiFe0.95Cr0.05PO4/C prepared exhibited the best performance with an initial specific discharge capacity of 157.7, 144.8, 138.3, 131.0, 124.1 and 111.1 mAh·g−1 at 0.1 C, 0.5 C, 1.0 C, 2.0 C, 5 C and 10 C, respectively. The doped sample displayed excellent capacity retention, which was substantially superior than that of pristine LiFePO4/C at a higher current rate.

  14. Pepper pathogenesis-related protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signaling.

    Science.gov (United States)

    Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Xanthomonas campestris pv. vesicatoria (Xcv) type III effector AvrBsT triggers programmed cell death (PCD) and activates the hypersensitive response (HR) in plants. Here, we isolated and identified the plasma membrane localized pathogenesis-related (PR) protein 4c gene (CaPR4c) from pepper (Capsicum annuum) leaves undergoing AvrBsT-triggered HR cell death. CaPR4c encodes a protein with a signal peptide and a Barwin domain. Recombinant CaPR4c protein expressed in Escherichia coli exhibited cysteine protease-inhibitor activity and ribonuclease (RNase) activity. Subcellular localization analyses revealed that CaPR4c localized to the plasma membrane in plant cells. CaPR4c expression was rapidly and specifically induced by avirulent Xcv (avrBsT) infection. Transient expression of CaPR4c caused HR cell death in pepper leaves, which was accompanied by enhanced accumulation of H2 O2 and significant induction of some defense-response genes. Deletion of the signal peptide from CaPR4c abolished the induction of HR cell death, indicating a requirement for plasma membrane localization of CaPR4c for HR cell death. CaPR4c silencing in pepper disrupted both basal and AvrBsT-triggered resistance responses, and enabled Xcv proliferation in infected leaves. H2 O2 accumulation, cell-death induction, and defense-response gene expression were distinctly reduced in CaPR4c-silenced pepper. CaPR4c overexpression in transgenic Arabidopsis plants conferred greater resistance against infection by Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis. These results collectively suggest that CaPR4c plays an important role in plant cell death and defense signaling. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  15. The 4C model

    DEFF Research Database (Denmark)

    Knox, Jeanette Bresson Ladegaard

    2014-01-01

    Doctors and nurses at the neonatal intensive-care unit at The University Hospital, Rigshospitalet, in Copenhagen, Denmark regularly find themselves in ethically challenging and potentially distressing situations concerning the life of ill newborn babies. In collaboration with the neonatal intensive......-care unit, my project was to develop a method that could stimulate systematically dialogical moral inquiry within everyday clinical practice. My four months of ethnographic fieldwork at the neonatal intensive-care unit generated four fundamental themes that make up the scaffold of the developed model...... for ethical deliberation and decision making. The model is a reflective tool to be used by health care professionals in situ. It provides a structured and a systematic framework for dialogue that can clarify the obscurities of a case and give argumentative support for ethical decisions. This article explains...

  16. Superior electrode performance of LiFePO4/C composite prepared by an in situ polymerization restriction method

    International Nuclear Information System (INIS)

    Chen, Jian; Zou, Yong-Cun; Zhang, Feng; Zhang, Yuan-Chun; Guo, Fei-Fan; Li, Guo-Dong

    2013-01-01

    Highlights: ► LiFePO 4 /C composite was prepared by an in situ polymerization restriction method. ► The size of LiFePO 4 in the composite is effectively restricted. ► The high-rate capability and cycling performance of LiFePO 4 are enhanced greatly. -- Abstract: The LiFePO 4 /C composite is prepared by heating the mixture of resorcinol–formaldehyde gel and FePO 4 , synthesized by an in situ polymerization restriction method, and lithium acetate dihydrate in the atmosphere of nitrogen. The physical and electrochemical properties of the LiFePO 4 /C composite are investigated by X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and electrochemical measurements. The discharge capacity of LiFePO 4 is as high as 155.6 mA h g −1 in the first cycle at 0.5C, and it could remain 144.0 mA h g −1 after 50 cycles. Even at the high rates of 10C, 20C and 50C, the initial discharge capacities of the electrodes exhibit 115.6 mA h g −1 , 84.5 mA h g −1 and 67.8 mA h g −1 , and the electrodes deliver capacity retention of 89.5%, 90.9% and 85.7% after 1000 cycles, respectively. The outstanding electrochemical performance could be attributed to the small particle size and good electronic conductivity of the composite

  17. Excellent Temperature Performance of Spherical LiFePO4/C Composites Modified with Composite Carbon and Metal Oxides

    Directory of Open Access Journals (Sweden)

    Bao Zhang

    2014-01-01

    Full Text Available Nanosized spherical LiFePO4/C composite was synthesized from nanosized spherical FePO4·2H2O, Li2C2O4, aluminum oxide, titanium oxide, oxalic acid, and sucrose by binary sintering process. The phases and morphologies of LiFePO4/C were characterized using SEM, TEM, CV, EIS, EDS, and EDX as well as charging and discharging measurements. The results showed that the as-prepared LiFePO4/C composite with good conductive webs from nanosized spherical FePO4·2H2O exhibits excellent electrochemical performances, delivering an initial discharge capacity of 161.7 mAh·g−1 at a 0.1 C rate, 152.4 mAh·g−1 at a 1 C rate and 131.7 mAh·g−1 at a 5 C rate, and the capacity retention of 99.1%, 98.7%, and 95.8%, respectively, after 50 cycles. Meanwhile, the high and low temperature performance is excellent for 18650 battery, maintaining capacity retention of 101.7%, 95.0%, 88.3%, and 79.3% at 55°C, 0°C, −10°C, and −20°C by comparison withthat of room temperature (25°C at the 0.5 C rate over a voltage range of 2.2 V to 3.6 V, respectively.

  18. Optimization of Electrochemical Performance of LiFePO4/C by Indium Doping and High Temperature Annealing

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2017-10-01

    Full Text Available We have prepared nano-structured In-doped (1 mol % LiFePO4/C samples by sol–gel method followed by a selective high temperature (600 and 700 °C annealing in a reducing environment of flowing Ar/H2 atmosphere. The crystal structure, particle size, morphology, and magnetic properties of nano-composites were characterized by X-ray diffraction (XRD, scanning electron microsopy (SEM, transmission electron microscopy (TEM, and 57Fe Mössbauer spectroscopy. The Rietveld refinement of XRD patterns of the nano-composites were indexed to the olivine crystal structure of LiFePO4 with space group Pnma, showing minor impurities of Fe2P and Li3PO4 due to decomposition of LiFePO4. We found that the doping of In in LiFePO4/C nanocomposites affects the amount of decomposed products, when compared to the un-doped ones treated under similar conditions. An optimum amount of Fe2P present in the In-doped samples enhances the electronic conductivity to achieve a much improved electrochemical performance. The galvanostatic charge/discharge curves show a significant improvement in the electrochemical performance of 700 °C annealed In-doped-LiFePO4/C sample with a discharge capacity of 142 mAh·g−1 at 1 C rate, better rate capability (~128 mAh·g−1 at 10 C rate, ~75% of the theoretical capacity and excellent cyclic stability (96% retention after 250 cycles compared to other samples. This enhancement in electrochemical performance is consistent with the results of our electrochemical impedance spectroscopy measurements showing decreased charge-transfer resistance and high exchange current density.

  19. Excellent temperature performance of spherical LiFePO4/C composites modified with composite carbon and metal oxides.

    Science.gov (United States)

    Zhang, Bao; Zeng, Tao; Zhang, Jiafeng; Peng, Chunli; Zheng, Junchao; Chen, Guomin

    2014-01-01

    Nanosized spherical LiFePO4/C composite was synthesized from nanosized spherical FePO4 ·2H2O, Li2C2O4, aluminum oxide, titanium oxide, oxalic acid, and sucrose by binary sintering process. The phases and morphologies of LiFePO4/C were characterized using SEM, TEM, CV, EIS, EDS, and EDX as well as charging and discharging measurements. The results showed that the as-prepared LiFePO4/C composite with good conductive webs from nanosized spherical FePO4 ·2H2O exhibits excellent electrochemical performances, delivering an initial discharge capacity of 161.7 mAh·g(-1) at a 0.1 C rate, 152.4 mAh·g(-1) at a 1 C rate and 131.7 mAh·g(-1) at a 5 C rate, and the capacity retention of 99.1%, 98.7%, and 95.8%, respectively, after 50 cycles. Meanwhile, the high and low temperature performance is excellent for 18650 battery, maintaining capacity retention of 101.7%, 95.0%, 88.3%, and 79.3% at 55°C, 0°C, -10°C, and -20°C by comparison withthat of room temperature (25°C) at the 0.5 C rate over a voltage range of 2.2 V to 3.6 V, respectively.

  20. Comparison of MCNP4C and experimental results on neutron and gamma ray shielding effects for materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyoon Ho; Lee, Eun Ki [KEPRI, Taejon (Korea, Republic of)

    2004-07-01

    MCNP code is a general-purpose Monte Carlo radiation transport code that can numerically simulate neutron, photon, and electron transport. Increasing the speed of computing machine is making numerical transport simulation more attractive and has led to the widespread use of such code. This code can be used for general radiation shielding and criticality accident alarm system related dose calculations, so that the version 4C2 of this code was used to evaluate the shielding effect against neutron and gamma ray experiments. The Ueki experiments were used for neutron shielding effects for materials, and the Kansas State University (KSU) photon skyshine experiments of 1977 were tested for gamma ray shielding effects.

  1. S values at voxels level for 188Re and 90Y calculated with the MCNP-4C code

    International Nuclear Information System (INIS)

    Coca Perez, Marco Antonio; Torres Aroche, Leonel Alberto; Cornejo, Nestor; Martin Hernandez, Guido

    2003-01-01

    The main objective of this work was estimate the voxels S values for 188 Re at cubical geometry using the MCNP-4C code for the simulation of radiation transport and energy deposition. Mean absorbed dose to target voxels per radioactive decay in a source voxels were estimated and reported for 188 Re and Y 90 . A comparison of voxels S values computed with the MCNP code the data reported in MIRD pamphlet 17 for 90 Y was performed in order to evaluate our results

  2. The X-Ray Reflection Spectrum of the Radio-loud Quasar 4C 74.26

    DEFF Research Database (Denmark)

    Lohfink, Anne M.; Fabian, Andrew C.; Ballantyne, David R.

    2017-01-01

    of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our...... the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies....

  3. Interaction of a 29 MeV 3He particle beam with a Cl4C vapour target

    International Nuclear Information System (INIS)

    Lleo Morilla, A.

    1963-01-01

    The interactions of a 29 MeV 3 H e particles beam on a Cl 4 C vapour target have been studied using the photographic method. differential cross-sections for the Cl( 3 He, 3 He)Cl elastic scattering and 1 2C( 3 He, α) 1 1C pick-up reaction are shown; the corresponding angular distributions in the centre-of-mass system have been compared with the predictions of optical model and A.B.M. theories. (Author) 21 refs

  4. Pseudo-solid-solution CuCo2O4/C nanofibers as excellent anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Hang; Tang, Zhiyong; Zhang, Kang; Wang, Lei; Shi, Huimin; Zhang, Guanhua; Duan, Huigao

    2017-01-01

    Ternary transition metal oxides have received intense research interest as electrode materials for lithium ion batteries, due to their high specific capacity originating from the synergic effects of multiple metal active sites. Reducing the size of metal oxides nanoparticles and dispersing these nanoparticles in carbon matrix are considering effective strategies to improve the electrochemical performance of transition metal oxides. Ternary CuCo 2 O 4 nanoclusters ultra-uniformly dispersed in carbon nanofiber matrix forming a pseudo-solid-solution structure are successfully synthesized by a facile electrospinning method followed by an appropriate annealing process. As the anodic electrode for lithium ion batteries, the pseudo-solid-solution CuCo 2 O 4 /C electrode exhibits a high reversible specific capacity, improved rate capacity and excellent cycling stability. A discharge capacity of 865 mAh g −1 is obtained at the current density of 200 mA g −1 after 400 cycles. Surprisingly, the electrode still retains about 610 mAh g −1 after 800 cycles even at the current density of 600 mA g −1 . The superior lithium storage performance of the pseudo-solid-solution CuCo 2 O 4 /C composites is mainly attributed to the unique amorphous structure. The ultrafine CuCo 2 O 4 nanoclusters uniformly dispersed in carbon matrix can buffer the volume change and improve the conductivity of the metal oxide based electrode, guaranteeing the structure stability and fast electron transfer.

  5. Molecular dynamics simulation of nanoindentation of Fe{sub 3}C and Fe{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Saurav, E-mail: s.goel@qub.ac.uk [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast BT95AH (United Kingdom); Joshi, Suhas S. [Department of Mechanical Engineering, Indian Institute of Technology, Bombay 400076 (India); Abdelal, Gasser [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast BT95AH (United Kingdom); Agrawal, Anupam [Department of Business Administration, University of Illinois at Urbana Champaign, IL 61820 (United States)

    2014-03-01

    Study of nanomechanical response of iron carbides is important because presence of iron carbides greatly influences the performance and longevity of steel components. This work contributes to the literature by exploring nanoindentation of Fe{sub 3}C and tetrahedral-Fe{sub 4}C using molecular dynamics simulation. The chemical interactions of iron and carbon were described through an analytical bond order inter-atomic potential (ABOP) energy function. The indentations were performed at an indentation speed of 50 m/s and a repeat trial was performed at 5 m/s. Load–displacement (P–h) curve for both these carbides showed residual indentation depth and maximum indentation depth (h{sub f}/h{sub max}) ratio to be higher than 0.7 i.e. a circumstance where Oliver and Pharr method was not appropriate to be applied to evaluate the material properties. Alternate evaluation revealed Fe{sub 3}C to be much harder than Fe{sub 4}C. Gibbs free energy of formation and radial distribution function, coupled with state of the average local temperature and von Mises stresses indicate the formation of a new phase of iron-carbide. Formation of this newer phase was found to be due to deviatoric strain rather than the high temperature induced in the substrate during nanoindentation.

  6. Identification of multi-loci hubs from 4C-seq demonstrates the functional importance of simultaneous interactions.

    Science.gov (United States)

    Jiang, Tingting; Raviram, Ramya; Snetkova, Valentina; Rocha, Pedro P; Proudhon, Charlotte; Badri, Sana; Bonneau, Richard; Skok, Jane A; Kluger, Yuval

    2016-10-14

    Use of low resolution single cell DNA FISH and population based high resolution chromosome conformation capture techniques have highlighted the importance of pairwise chromatin interactions in gene regulation. However, it is unlikely that associations involving regulatory elements act in isolation of other interacting partners that also influence their impact. Indeed, the influence of multi-loci interactions remains something of an enigma as beyond low-resolution DNA FISH we do not have the appropriate tools to analyze these. Here we present a method that uses standard 4C-seq data to identify multi-loci interactions from the same cell. We demonstrate the feasibility of our method using 4C-seq data sets that identify known pairwise and novel tri-loci interactions involving the Tcrb and Igk antigen receptor enhancers. We further show that the three Igk enhancers, MiEκ, 3'Eκ and Edκ, interact simultaneously in this super-enhancer cluster, which add to our previous findings showing that loss of one element decreases interactions between all three elements as well as reducing their transcriptional output. These findings underscore the functional importance of simultaneous interactions and provide new insight into the relationship between enhancer elements. Our method opens the door for studying multi-loci interactions and their impact on gene regulation in other biological settings. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Mg doped Li2FeSiO4/C nanocomposites synthesized by the solvothermal method for lithium ion batteries.

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O D; Jagannath; Bashiri, Parisa; Nazri, G A; Naik, Vaman M; Naik, Ratna

    2017-10-14

    A series of porous Li 2 Fe 1-x Mg x SiO 4 /C (x = 0, 0.01, 0.02, 0.04) nanocomposites (LFS/C, 1Mg-LFS/C, 2Mg-LFS and 4Mg-LFS/C) have been synthesized via a solvo-thermal method using the Pluronic P123 polymer as an in situ carbon source. Rietveld refinement of the X-ray diffraction data of Li 2 Fe 1-x Mg x SiO 4 /C composites confirms the formation of the monoclinic P2 1 structure of Li 2 FeSiO 4 . The addition of Mg facilitates the growth of impurity-free Li 2 FeSiO 4 with increased crystallinity and particle size. Despite having the same percentage of carbon content (∼15 wt%) in all the samples, the 1Mg-LFS/C nanocomposite delivered the highest initial discharge capacity of 278 mA h g -1 (∼84% of the theoretical capacity) at the C/30 rate and also exhibited the best rate capability and cycle stability (94% retention after 100 charge-discharge cycles at 1C). This is attributed to its large surface area with a narrow pore size distribution and a lower charge transfer resistance with enhanced Li-ion diffusion coefficient compared to other nanocomposites.

  8. Mesoporous LiMnPO4/C nanoparticles as high performance cathode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Wen, Fang; Shu, Hongbo; Zhang, Yuanyuan; Wan, Jiajia; Huang, Weihua; Yang, Xiukang; Yu, Ruizhi; Liu, Li; Wang, Xianyou

    2016-01-01

    LiMnPO 4 has been considered as one of the most promising high voltage cathode materials for next-generation lithium ion batteries. However, LiMnPO 4 suffers from intrinsic drawbacks of extremely low electronic conductivity and ionic diffusivity between LiMnPO 4 /MnPO 4 . In this paper, mesoporous LiMnPO 4 nanoparticles are synthesized successfully via a facile glycine-assisted solvothermal rout. The as-prepared mesoporous LiMnPO 4 /C nanoparticles present well-defined abundant mesoporous structure (diameter of 3 ∼ 10 nm), uniform carbon layer (thickness of 3 ∼ 4 nm), high specific surface area (90.1 m 2 /g). As a result, the mesoporous LiMnPO 4 /C nanoparticles achieve excellent electrochemical performance as cathode materials for lithium ion batteries. It demonstrates a high discharge capacity of 167.7, 161.6, 156.4, 148.4 and 128.7 mAh/g at 0.1, 0.5, 1, 2 and 5C, and maintains a discharge capacity of 130.0 mAh/g after 100 cycles at 1C. The good electrochemical performance is attributed to its special interpenetrating mesoporous structure in LiMnPO 4 nanoparticles, which significantly enhances the ionic and electronic transport and additional capacitive behavior to compensate the sluggish kinetics.

  9. What is the mechanism of the OSO ring formation in sulfur tetroxide (SO4(C2v)) molecule?

    Science.gov (United States)

    Goodarzi, Moein; Vahedpour, Morteza; Solimannejad, Mohammad

    2012-06-01

    The mechanism of SO2 + O2 and O + SO3(D3h) reactions have been investigated at the MP2/6-31 + G(d) and CCSD(T)/cc-pV(Q + d)Z//MP2 levels on the triplet and singlet PESs. Although, no stable collision complexes have been found for the SO2 + O2(3∑g-), O(3P) + SO3(D3h) and O(1D) + SO3(D3h) reactions, 1IN(O2S-O2) has been considered on the singlet PES for the SO2 + O2(1Δg) reaction. The results show that there are no favorable paths for the OSO ring formation of SO4(C2v) in the atmospheric reactions of the SO2 + O2(3∑g-), SO2 + O2(1Δg) and O(3P) + SO3(D3h) while, the O(1D) + SO3(D3h) reaction can be suitable for the SO4(C2v) formation on the singlet PES.

  10. Surfactant-assisted mild solvothermal synthesis of nanostructured LiFePO4/C cathodes evidencing ultrafast rate capability

    International Nuclear Information System (INIS)

    Di Lupo, F.; Meligrana, G.; Gerbaldi, C.; Bodoardo, S.; Penazzi, N.

    2015-01-01

    Highlights: • Nanostructured LiFePO 4 /C by surfactant assisted solvothermal synthesis. • Novel and simple preparation method, with no critical parameters. • Noticeable stability, good capacity values and capacity retention after prolonged cycling. • Improved rate capability at a very high C-rate (100C). • High performance for the next generation of advanced high power Li-ion batteries. - Abstract: A surfactant-assisted solvothermal synthesis is hereby applied to produce carbon-coated LiFePO 4 /C nanostructured Li-ion battery cathodes. The use of different mixed alcohol/water solutions for the dissolution of a cationic surfactant is absolutely peculiar in this field and herewith exploited to tailor-make the properties of the active material particles (e.g., morphology and electrochemical behaviour). Thorough investigation is carried out by means of X-ray powder diffraction, scanning and transmission electron microscopy, cyclic voltammetry and constant current charge-discharge cycling. The best performing sample, obtained in a 20:80 w/w ethanol:water solution, demonstrates good specific capacity values, high Coulombic efficiency and rate capability, with stable behaviour upon long-term cycling even at ultrafast 100C discharge regime. This is definitely remarkable for a nanosized powder specifically conceived for high power applications obtained by means of low cost raw materials, simple and reliable procedures

  11. Evolução morfométrica dos anexos embrionários e fetais bovinos obtidos por monta natural, com 10 a 70 dias da gestação Biometrics evolution of the embryonic and fetal annexes in cows obtained by natural mating, at 10 to 70 days of gestation

    Directory of Open Access Journals (Sweden)

    Antônio C. de Assis Neto

    2009-10-01

    Full Text Available O período inicial da gestação de bovinos é caracterizado por grandes perdas embrionárias. Considerando a importância deste fator no âmbito da reprodução animal foram estudados os anexos embrionários e fetais bovinos fecundados por monta natural de 15-70 dias de gestação, com o objetivo de estabelecer parâmetros morfométricos da placenta na fase inicial da gestação. Com uso de um paquímetro foram realizadas mensurações do comprimento (crânio caudal, largura (latero lateral e altura (dorso ventral das membranas corioalantóide e amniótica. O início da formação dos cotilédones foi observado e quantificado, assim como, o peso placentário. O peso médio do saco gestacional aumentou com o evoluir da idade gestacional, entretanto, o crescimento foi acelerado a partir de 20-30 dias de gestação. O comprimento crânio caudal e dorso ventral da membrana corioalantóide e do âmnio apresentaram crescimento lento e gradual com o evoluir dos períodos gestacionais analisados. Com 30-40 dias de gestação, os primeiro cotilédones já eram visualizados e contatos com facilidade na superfície coriônica. Os períodos de crescimento coincidiram com os maiores índices de perdas gestacionais em bovinos. Os parâmetros aqui analisados poderão servir para futuras investigações dos anexos embrionários de organismos manipulados em laboratório.The main goal of this morphometrical study was to characterize the development of the extra-embryonic membranes of 15 to 70-day-old bovine embryos obtained by natural mating. With a millimeter paquimeter the cranio-caudal, latero-lateral and dorso-ventral measurements of chorion and amnion were determined. The development of the cotyledons and weight of the gestational sac were observed and quantified. The weight of the gestational sac increased during gestation; however, the growth was faster then 20 to 30 days. The cranial-caudal and dorsal-ventral length of the choriallantois and the amnion

  12. Processing and characterization of laser sintered hybrid B4C/cBN reinforced Ti-based metal matrix composite

    Science.gov (United States)

    Gupta, Ankit; Hussain, Manowar; Misra, Saurav; Das, Alok Kumar; Mandal, Amitava

    2018-06-01

    The purpose of this study is to make a boron carbide (B4C) and cubic boron nitride (cBN) reinforced Ti6Al4V metal matrix composites (MMC's) by direct metal laser sintering (DMLS) technique using the continuous wave (CW) SPI fiber laser and to check the feasibility of the formation of three dimensional objects by this process. For this study, the process parameters like laser power density (3.528-5.172 W/cm2 (×104), scanning speed (3500-4500 mm/min), composition of the reinforced materials B4C (5-25% by volume) and cBN (3% by volume) were taken as input variables and hatching gap (0.2 mm), spot diameter (0.4 mm), layer thickness (0.4 mm) were taken as constant. It was analyzed that surface characteristic, density and the mechanical properties of sintered samples were greatly influenced by varying the input process parameters. Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and X-Ray diffraction (XRD) were performed for microstructural analysis, elemental analysis, and recognition of intermetallic compounds respectively. Mechanical properties like micro-hardness & wear rate were examined by Vickers micro-hardness tester & pin on disc arrangement respectively. From hardness tests, it was observed that hardness property of the sintered specimens was increased as compared to the parent material. The XRD results show that there is a good affinity between Ti6Al4V-B4C-cBN to produce various intermetallic compounds which themselves enhance the mechanical properties of the samples. From FESEM analysis, we can conclude that there is a uniform distribution of reinforcements in the titanium alloy matrix. Furthermore, the coefficient of friction (COF) was characterized by the irregular pattern and it tends to decrease with an increase in the volume % of reinforcement. The results obtained in this work may be useful in preparing the MMC's with improved mechanical properties and overall characteristics.

  13. Paradoxical expression of INK4c in proliferative multiple myeloma tumors: bi-allelic deletion vs increased expression

    Directory of Open Access Journals (Sweden)

    Hanamura Ichiro

    2006-10-01

    Full Text Available Abstract Background A high proliferative capacity of tumor cells usually is associated with shortened patient survival. Disruption of the RB pathway, which is critically involved in regulating the G1 to S cell cycle transition, is a frequent target of oncogenic events that are thought to contribute to increased proliferation during tumor progression. Previously, we determined that p18INK4c, an essential gene for normal plasma cell differentiation, was bi-allelically deleted in five of sixteen multiple myeloma (MM cell lines. The present study was undertaken to investigate a possible role of p18INK4c in increased proliferation of myeloma tumors as they progress. Results Thirteen of 40 (33% human myeloma cell lines do not express normal p18INK4c, with bi-allelic deletion of p18 in twelve, and expression of a mutated p18 fragment in one. Bi-allelic deletion of p18, which appears to be a late progression event, has a prevalence of about 2% in 261 multiple myeloma (MM tumors, but the prevalence is 6 to10% in the 50 tumors with a high expression-based proliferation index. Paradoxically, 24 of 40 (60% MM cell lines, and 30 of 50 (60% MM tumors with a high proliferation index express an increased level of p18 RNA compared to normal bone marrow plasma cells, whereas this occurs in only five of the 151 (3% MM tumors with a low proliferation index. Tumor progression is often accompanied by increased p18 expression and an increased proliferation index. Retroviral-mediated expression of exogenous p18 results in marked growth inhibition in three MM cell lines that express little or no endogenous p18, but has no effect in another MM cell line that already expresses a high level of p18. Conclusion Paradoxically, although loss of p18 appears to contribute to increased proliferation of nearly 10% of MM tumors, most MM cell lines and proliferative MM tumors have increased expression of p18. Apart from a small fraction of cell lines and tumors that have inactivated

  14. MCNP4C2, Coupled Neutron, Electron Gamma 3-D Time-Dependent Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: MCNP is a general-purpose, continuous-energy, generalized geometry, time-dependent, coupled neutron-photon-electron Monte Carlo transport code system. MCNP4C2 is an interim release of MCNP4C with distribution restricted to the Criticality Safety community and attendees of the LANL MCNP workshops. The major new features of MCNP4C2 include: - Photonuclear physics; - Interactive plotting; - Plot superimposed weight window mesh; - Implement remaining macro-body surfaces; - Upgrade macro-bodies to surface sources and other capabilities; - Revised summary tables; - Weight window improvements. See the MCNP home page more information http://www-xdiv.lanl.gov/XCI/PROJECTS/MCNP with a link to the MCNP Forum. See the Electronic Notebook at http://www-rsicc.ornl.gov/rsic.html for information on user experiences with MCNP. 2 - Methods:MCNP treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces. Pointwise continuous-energy cross section data are used, although multigroup data may also be used. Fixed-source adjoint calculations may be made with the multigroup data option. For neutrons, all reactions in a particular cross-section evaluation are accounted for. Both free gas and S(alpha, beta) thermal treatments are used. Criticality sources as well as fixed and surface sources are available. For photons, the code takes account of incoherent and coherent scattering with and without electron binding effects, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. A very general source and tally structure is available. The tallies have extensive statistical analysis of convergence. Rapid convergence is enabled by a wide variety of variance reduction methods. Energy ranges are 0-60 MeV for neutrons (data generally only available up to

  15. On Parametrization of the Linear GL(4,C) and Unitary SU(4) Groups in Terms of Dirac Matrices

    Science.gov (United States)

    Red'Kov, Victor M.; Bogush, Andrei A.; Tokarevskaya, Natalia G.

    2008-02-01

    Parametrization of 4 × 4-matrices G of the complex linear group GL(4,C) in terms of four complex 4-vector parameters (k,m,n,l) is investigated. Additional restrictions separating some subgroups of GL(4,C) are given explicitly. In the given parametrization, the problem of inverting any 4 × 4 matrix G is solved. Expression for determinant of any matrix G is found: det G = F(k,m,n,l). Unitarity conditions G+ = G-1 have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups G1, G2, G3 - each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consis! ting of a product of a 3-parametric group isomorphic SU(2) and 1-parametric Abelian group. The Dirac basis of generators Λk, being of Gell-Mann type, substantially differs from the basis λi used in the literature on SU(4) group, formulas relating them are found - they permit to separate SU(3) subgroup in SU(4). Special way to list 15 Dirac generators of GL(4,C) can be used {Λk} = {μiÅνjÅ(μiVνj = KÅL ÅM )}, which permit to factorize SU(4) transformations according to S = eiaμ eibνeikKeilLeimM, where two first factors commute with each other and are isomorphic to SU(2) group, the three last ones are 3-parametric groups, each of them consisting of three Abelian commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices Λk permits to separate twenty 3-parametric subgroups in SU(4) isomorphic to SU(2); those subgroups might be used as bigger elementary blocks in constructing of a general transformation SU(4). It is shown how one can specify the present approach for the pseudounitary group SU(2,2) and SU(3,1).

  16. Recovery of avirulent, thermostable Newcastle disease virus strain NDV4-C from cloned cDNA and stable expression of an inserted foreign gene

    NARCIS (Netherlands)

    Zhang, X.; Liu, H.; Liu, P.; Peeters, B.P.H.; Zhao, C.; Kong, X.

    2013-01-01

    A reverse genetics system for thermostable Newcastle disease virus (NDV) is not currently available. In this study, we developed a reverse genetics system for the avirulent and thermostable NDV4-C strain. Successful recovery of NDV4-C was achieved by using either T7 RNA polymerase or cellular RNA

  17. A comparison study on the densification behavior and mechanical properties of gelcast vs conventionally formed B4C sintered conventionally and by microwaves

    International Nuclear Information System (INIS)

    Menchhofer, P.A.; Kiggans, J.O.; Morrow, M.S.; Schechter, D.E.

    1996-01-01

    The utilization of microwave energy for reaching high temperatures necessary to densify B 4 C powder is compared with conventional means of sintering by evaluating the mechanical properties after densification. Microwave energy has been shown to be an effective means for achieving high sintered densities, even though temperatures of ∼ 2,250 C are required. In this study, green preforms of B 4 C specimens were sintered by both conventional and microwave heating. This study also utilized an advanced forming method called ''Gelcasting'' developed at ORNL. Gelcasting is a fluid forming process whereby high solids suspensions of powders containing dissolved monomers are cast into a mold, then polymerized or ''gelled'' in situ. This investigation compares microstructures and mechanical properties of both Gelcast B 4 C and ''conventionally'' die-pressed B 4 C. The microstructures and final mechanical properties of B 4 C specimens are discussed

  18. Specially designed B4C/SnO2 nanocomposite for photocatalysis: traditional ceramic with unique properties

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Singh, Kulwinder; Singh, Bikramjeet; Kaur, Manpreet; Kaur, Manjot; Krishnan, Unni; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay

    2018-02-01

    Boron carbide: A traditional ceramic material shows unique properties when explored in nano-range. Specially designed boron-based nanocomposite has been synthesized by reflux method. The addition of SnO2 in base matrix increases the defect states in boron carbide and shows unique catalytic properties. The calculated texture coefficient and Nelson-Riley factor show that the synthesized nanocomposite has large number of defect states. Also this composite is explored for the first time for catalysis degradation of industrial used dyes. The degradation analysis of industrial pollutants such as Novacron red Huntsman (NRH) and methylene blue (MB) dye reveals that the composite is an efficient catalyst. Degradation study shows that 1 g/L catalyst concentration of B4C/SnO2 degrades NRH and MB dye up to approximately 97.38 and 79.41%, respectively, in 20 min under sunlight irradiation. This water-insoluble catalyst can be recovered and reused.

  19. Synthesis of the mevalonic acid labelled with "1"4C, "1"3C and "3H

    International Nuclear Information System (INIS)

    Rousseau, Bernard

    1982-01-01

    This thesis describes five new methods of synthesis of the (R,S) mevalonic acid adapted to the labelling with "1"4C and "1"3C in positions 4,5 or 5 or 3', or with tritium in position 3'. Three of them use the tri-oxa-2,4,10 adamantyl group as masked carboxyl function. The two others take benefit from the regioselectivity of the bis-hydro-boration of terminal acetylenics by the 9-borabicyclo [3-3-1]nonane. The acylation of the bis-trimethylsilyl lithiomalonate, and the chemistry of dithiannes are also involved. Acetylene and methyl iodide labelled with isotopes are used as cheap base products [fr

  20. S values at voxels level for 188Re and 90Y calculated with the MCNP-4C code

    International Nuclear Information System (INIS)

    Coca, M.A.; Torres, L.A.; Cornejo, N.; Martin, G.

    2008-01-01

    Full text: MIRD formalism at voxel level has been suggested as an optional methodology to perform internal radiation dosimetry calculation during internal radiation therapy in Nuclear Medicine. Voxel S values for Y 90 , 131 I, 32 P, 99m Tc and 89 Sr have been published to different sizes. Currently, 188 Re has been proposed as a promising radionuclide for therapy due to its physical features and availability from generators. The main objective of this work was to estimate the voxel S values for 188 Re at cubical geometry using the MCNP-4C code for the simulations of radiation transport and energy deposition. Mean absorbed dose to target voxels per radioactive decay in a source voxel were estimated and reported for 188 Re and Y 90 . A comparison of voxel S values computed with the MCNP code and the data reported in MIRD Pamphlet 17 for 90 Y was performed in order to evaluate our results. (author)

  1. Real forms of complex quantum anti-de-Sitter algebra Uq(Sp(4;C)) and their contraction schemes

    International Nuclear Information System (INIS)

    Lukierski, J.; Nowicki, A.; Ruegg, H.

    1991-01-01

    We describe four types of inner involutions of the Cartan-Weyl basis providing (for vertical strokeqvertical stroke=1 and q real) three types of real quantum Lie algebras: U q (O(3, 2)) (quantum D=4 anti-de-Sitter), U q (O(4, 1)) (quantum D=4 de-Sitter) and U q (O(5)). We give also two types of inner involutions of the Cartan-Chevalley basis of U q (Sp(4; C)) which cannot be extended to inner involutions of the Cartan-Weyl basis. We outline twelve contraction schemes for quantum D=4 anti-de-Sitter algebra. All these contractions provide four commuting translation generators, but only two (one for vertical strokeqvertical stroke=1, the second for q real) lead to the quantum Poincare algebra with an undeformed space rotation O(3) subalgebra. (orig.)

  2. Investigation on the Self-discharge of the LiFePO4/C nanophosphate battery chemistry at different conditions

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2014-01-01

    Lithium ion batteries with iron phosphate cathodes are gradually improving in their performance and gaining importance, and are more and more considered for new applications. Different aspects of this chemistry were studied in numerous publications; however, very little research was devoted...... to detailed empirical investigations in order to find out how self-discharge of this chemistry depends on different storing conditions. Precise knowledge about the level of the self-discharge of lithium ion battery cells is very important for improving the performance of the battery management system since...... it allows also for more precise determination of the actual battery SOC after prolonged storage. In this paper the self-discharge of the nanophosphate LiFePO4/C is studied at different temperature, SOC conditions and at different SOH levels of the battery. Moreover, cell to cell differences in self...

  3. Improved battery performance using Pd nanoparticles synthesized on the surface of LiFePO4/C by ultrasound irradiation

    Science.gov (United States)

    Saliman, Muhammad Ali; Okawa, Hirokazu; Takai, Misaki; Ono, Yuki; Kato, Takahiro; Sugawara, Katsuyasu; Sato, Mineo

    2016-07-01

    LiFePO4 has been attracting interest as a cathode material for Li-ion batteries due to its high energy density, low cost, and eco-friendliness. The electrochemical performance of LiFePO4 is limited because it exhibits low Li-ion diffusivity and low electronic conductivity. Numerous solutions have been considered, such as carbon coating, which is widely known to improve the electronic conductivity of LiFePO4. The deposition of metal nanoparticles (NPs) on the surface of carbon-coated LiFePO4 further enhances the electronic conductivity. In this study, we deposited Pd NPs onto the surface of LiFePO4/C and investigated the resulting electrochemical performance. Sonochemical synthesis was used to prepare the metal NPs; the procedure did not require any surfactants and the reaction was rapid.

  4. Reactivity and neutron flux measurements in IPEN/MB-01 reactor with B4C burnable poison

    International Nuclear Information System (INIS)

    Fer, Nelson Custodio; Moreira, Joao Manoel Losada

    2000-01-01

    Burnable poison rods, made of B 4 C- Al 2 O 3 pellets with 5.01 mg/cm 3 10 B concentration, have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. Several core parameters which are affected by the burnable poisons rods have been measured. The principal results, for the situation in which the burnable poison rods are located near the absorber rods of a control rod, are they cause a 29% rod worth shadowing, a reduction of 39% in the local void coefficient of reactivity, a reduction of 4.8% in the isothermal temperature coefficient of reactivity, and a reduction of 9% in the thermal neutron flux in the region where the burnable poison rods are located. These experimental results will be used for the validation of burnable poison calculation methods in the CTMSP. (author)

  5. Developing Critical Thinking of Middle School Students using Problem Based Learning 4 Core Areas (PBL4C) Model

    Science.gov (United States)

    Haridza, R.; E Irving, K.

    2017-02-01

    Traditional methods such as rote learning and memorization in teaching science create passive students in science classrooms. The impact of this continuous action for many decades is inactive learners who cannot develop higher order thinking skills. Based on the performance test, students’ critical thinking skill in Public Middle School 3 Pontianak was in low level although their achievement score were higher than school standards. The purpose of this study is to develop critical thinking skills of middle school students using Problem Based Learning 4 Core Areas (PBL4C). The design of this research is classroom action research with two cycles. Data has been collected using observation checklist, rating scale, self and peer assessment. Research findings reveal that students experience development from 11.11% to 88.45% in identifying the problem correctly, 37.03% to 76.92% for sub skills distinguish knowledge and opinion, 18.51% to 65.38% for sub skills providing possible solution, 22.22% to 69.23% for sub skills making decision, and 11.11% to 69.23% for sub skills identifying the impact of the implementation of their solution. In conclusion, the findings indicate that development of students’ critical thinking skills occurs when PBL4C model applied in science classroom. These findings suggest that teachers should act as facilitator in a classroom as well as should provide meaningful learning resources that can benefit students’ critical thinking skills. On the other hand, students should practice constantly to offer a sharp, accurate and appropriate solution.

  6. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C

    Energy Technology Data Exchange (ETDEWEB)

    Ay, M R [Department of Physics and Nuclear Sciences, AmirKabir University of Technology, Tehran (Iran, Islamic Republic of); Shahriari, M [Department of Nuclear Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Sarkar, S [Department of Medical Physics, Tehran University of Medical Science, Tehran (Iran, Islamic Republic of); Adib, M [TPP Co., GE Medical Systems, Iran Authorized Distributor, Tehran (Iran, Islamic Republic of); Zaidi, H [Division of Nuclear Medicine, Geneva University Hospital, 1211 Geneva (Switzerland)

    2004-11-07

    The general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) was used for the simulation of x-ray spectra in diagnostic radiology and mammography. The electrons were transported until they slow down and stop in the target. Both bremsstrahlung and characteristic x-ray production were considered in this work. We focus on the simulation of various target/filter combinations to investigate the effect of tube voltage, target material and filter thickness on x-ray spectra in the diagnostic radiology and mammography energy ranges. The simulated x-ray spectra were compared with experimental measurements and spectra calculated by IPEM report number 78. In addition, the anode heel effect and off-axis x-ray spectra were assessed for different anode angles and target materials and the results were compared with EGS4-based Monte Carlo simulations and measured data. Quantitative evaluation of the differences between our Monte Carlo simulated and comparison spectra was performed using student's t-test statistical analysis. Generally, there is a good agreement between the simulated x-ray and comparison spectra, although there are systematic differences between the simulated and reference spectra especially in the K-characteristic x-rays intensity. Nevertheless, no statistically significant differences have been observed between IPEM spectra and the simulated spectra. It has been shown that the difference between MCNP simulated spectra and IPEM spectra in the low energy range is the result of the overestimation of characteristic photons following the normalization procedure. The transmission curves produced by MCNP4C have good agreement with the IPEM report especially for tube voltages of 50 kV and 80 kV. The systematic discrepancy for higher tube voltages is the result of systematic differences between the corresponding spectra.

  7. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C

    Science.gov (United States)

    Ay, M. R.; Shahriari, M.; Sarkar, S.; Adib, M.; Zaidi, H.

    2004-11-01

    The general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) was used for the simulation of x-ray spectra in diagnostic radiology and mammography. The electrons were transported until they slow down and stop in the target. Both bremsstrahlung and characteristic x-ray production were considered in this work. We focus on the simulation of various target/filter combinations to investigate the effect of tube voltage, target material and filter thickness on x-ray spectra in the diagnostic radiology and mammography energy ranges. The simulated x-ray spectra were compared with experimental measurements and spectra calculated by IPEM report number 78. In addition, the anode heel effect and off-axis x-ray spectra were assessed for different anode angles and target materials and the results were compared with EGS4-based Monte Carlo simulations and measured data. Quantitative evaluation of the differences between our Monte Carlo simulated and comparison spectra was performed using student's t-test statistical analysis. Generally, there is a good agreement between the simulated x-ray and comparison spectra, although there are systematic differences between the simulated and reference spectra especially in the K-characteristic x-rays intensity. Nevertheless, no statistically significant differences have been observed between IPEM spectra and the simulated spectra. It has been shown that the difference between MCNP simulated spectra and IPEM spectra in the low energy range is the result of the overestimation of characteristic photons following the normalization procedure. The transmission curves produced by MCNP4C have good agreement with the IPEM report especially for tube voltages of 50 kV and 80 kV. The systematic discrepancy for higher tube voltages is the result of systematic differences between the corresponding spectra.

  8. Investigation on femto-second laser irradiation assisted shock peening of medium carbon (0.4% C) steel

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Jyotsna Dutta, E-mail: jyotsna@metal.iitkgp.ernet.in [Dept. of Metal. & Maters. Eng., I. I. T., Kharagpur, WB 721302 (India); Gurevich, Evgeny L., E-mail: gurevich@lat.rub.de [Ruhr-Universität Bochum, Ls. Laseranwendungstechnik, Universitätsstr. 150, 44801 Bochum (Germany); Kumari, Renu, E-mail: renumetalbit@gmail.com [Dept. of Metal. & Maters. Eng., I. I. T., Kharagpur, WB 721302 (India); Ostendorf, Andreas, E-mail: andreas.ostendorf@ruhr-uni-bochum.de [Ruhr-Universität Bochum, Ls. Laseranwendungstechnik, Universitätsstr. 150, 44801 Bochum (Germany)

    2016-02-28

    Graphical abstract: - Highlights: • Peening effect of 0.4% C steel by femtosecond laser irradiation. • Microstructural investigation of the irradiated surface. • Residual stress decreased from 152 MPa to 140 MPa to −330 MPa by laser processing. • Decreased wear depth to a maximum of four times as compared to as-received substrate. • Mechanism of wear for both as-received and laser processed surface were established. - Abstract: In the present study, the effect of femtosecond laser irradiation on the peening behavior of 0.4% C steel has been evaluated. Laser irradiation has been conducted with a 100 μJ and 300 fs laser with multiple pulses under varied energy. Followed by laser irradiation, a detailed characterization of the processed zone was undertaken by scanning electron microscopy, and X-ray diffraction technique. Finally, the residual stress distribution, microhardness and wear resistance properties of the processed zone were also evaluated. Laser processing leads to shock peening associated with plasma formation and its expansion, formation of martensite and ferrito–pearlitic phase in the microstructure. Due to laser processing, there is introduction of residual stress on the surface which varies from high tensile (140 MPa) to compressive (−335 MPa) as compared to 152 MPa of the substrate. There is a significant increase in microhardness to 350–500 VHN as compared to 250 VHN of substrate. The fretting wear behavior against hardened steel ball shows a significant reduction in wear depth due to laser processing. Finally, a conclusion of the mechanism of wear has been established.

  9. The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice.

    Science.gov (United States)

    Wang, Jun; Zeng, Xuan; Tian, Dongsheng; Yang, Xiaobei; Wang, Lanlan; Yin, Zhongchao

    2018-03-30

    Transcription activator-like effector (TALE)-dependent dominant disease resistance (R) genes in plants, also referred to as executor R genes, are induced on infection by phytopathogenic bacteria of the genus Xanthomonas harbouring the corresponding TALE genes. Unlike the traditional R proteins, the executor R proteins do not determine the resistance specificity and may function broadly in different plant species. The executor R gene Bs4C-R in the resistant genotype PI 235047 of the pepper species Capsicum pubescens (CpBs4C-R) confers disease resistance to Xanthomonas campestris pv. vesicatoria (Xcv) harbouring the TALE genes avrBsP/avrBs4. In this study, the synthetic genes of CpBs4C-R and two other Bs4C-like genes, the susceptible allele in the genotype PI585270 of C. pubescens (CpBs4C-S) and the CaBs4C-R homologue gene in the cultivar 'CM334' of Capsicum annum (CaBs4C), were characterized in tobacco (Nicotiana benthamiana) and rice (Oryza sativa). The Bs4C genes induced cell death in N. benthamiana. The functional Bs4C-eCFP fusion proteins were localized to the endoplasmic reticulum (ER) membrane in the leaf epidermal cells of N. benthamiana. The Xa10 promoter-Bs4C fusion genes in transgenic rice conferred strain-specific disease resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight in rice, and were specifically induced by the Xa10-incompatible Xoo strain PXO99 A (pHM1avrXa10). The results indicate that the Bs4C proteins from pepper species function broadly in rice and the Bs4C protein-mediated cell death from the ER is conserved between dicotyledonous and monocotyledonous plants, which can be utilized to engineer novel and enhanced disease resistance in heterologous plants. © 2018 TEMASEK LIFE SCIENCES LABORATORY. MOLECULAR PLANT PATHOLOGY © 2018 JOHN WILEY & SONS LTD.

  10. Physical Properties of Phase Pure 4C Pyrrhotite (Fe7S8) during its Low Temperature Besnus Transition

    Science.gov (United States)

    Volk, M.; Feinberg, J. M.; McCalla, E.; Leighton, C.; Voigt, B.

    2017-12-01

    Of all magnetic minerals that play a role in recording terrestrial and extraterrestrial magnetic fields, the low temperature phase transition of monoclinic Fe7S8 is the least well understood. At room temperature an array of ordered vacancies gives rise to ferrimagnetism in pyrrhotite. The mineral's physical properties change dramatically at ≈30 K during what is known as the Besnus transition. The mechanism driving these changes, however, is not fully understood. Several explanations have been proposed, including changes in crystalline anisotropy, a transformation of the crystal symmetry, and magnetic interactions within in a two-phase (4C/5C*) system among them. To better understand the transition we studied magnetic, electric and structural properties as well as the heat capacity of a large, phase pure monoclinic crystal (Fe6.8±0.1S8). The single-phase sample shows a clear peak at 32 K in the heat capacity associated with a second order phase transition. Zero field cooling of 2.5 T saturating isothermal remanent magnetizations acquired at 300 and 20 K, as well electrical conductivity exhibit sudden changes between 30-33 K. Susceptibility shows a secondary peak within the same temperature interval. These phenomena can be related to the peak in heat capacity, indicating that the changes are related to the phase transition. In-field measurements show that the magnetic and electric transitions are mildly field dependent. Repeated measurements on different instruments show that the transition temperature for susceptibility is 1 K higher when measured parallel to the crystallographic c-axis as compared to within the c-plane. Similar trends could be found in magnetoresistivity, which is negative (≈ -2%) in the c-plane and larger and positive (≈ 5%) along the c-axis. While this comprehensive data set is not able to unambiguously explain the mechanism driving the transition, it indicates the coupling of structural and magnetocrystalline properties and suggests that

  11. ZZ MCNPDATA, Standard Neutron, Photon and Electron Data Libraries for MCNP-4C and MCB1C

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description: These cross-section libraries are released by the Diagnostics Applications Group, X-5, at Los Alamos National Laboratory for use with the MCNP Monte Carlo code package. This release includes all of the X-5 distributed neutron data libraries, the photon libraries MCPLIB1 and MCPLIB02, the electron libraries EL1 and EL03, an updated XSDIR file, and information files Readme.txt and Readme e ndf60.txt. This release is intended to completely replace previous RSICC releases DLC-105, DLC-181, and DLC-189 as well as the cross sections previously included with CCC-200/MCNP4A, and will be updated as new libraries become available. The README file provides information regarding each data library of this release. Additional documentation for some of the individual libraries and example SPECS files for use with MAKXSF are also provided. The XSDIR file is specific to this release and may not work with previous packages. Currently the neutron data library ENDF60 (based on ENDF/B-VI, up through and including release 2) is the default library for continuous-energy neutron transport. Additionally, the libraries MCPLIB02 and EL03 are the default libraries for photon and electron transport respectively. More information on the data libraries contained in this release is available in Appendix G of the MCNP4C manual. 2 - Description of program or function: ZZ-MCB-DLC200 contains the same cross section tables as the DLC-0200/03 package for the MCNP-4C code, except that the installation procedures are adapted to the MCB1C code system (NEA 1643/01). 3 - Application of the data: DLC-200/MCNPDATA is for use with Version 4C and later of the MCNP transport code. This data library provides a comprehensive set of cross sections for a wide range of radiation transport applications using the Monte Carlo code package CCC-700/MCNP4C. See Appendix G of the MCNP report LA-13709-M for information on the libraries and how to select specific nuclides for use in MCNP. 4 - Source and scope

  12. Heat-treatment, microstructure and mechanical properties of experimental high strength Fe--4Cr--0.4C steels

    International Nuclear Information System (INIS)

    Narasimha Rao, B.V.; Miller, R.W.; Thomas, G.

    1975-12-01

    The treatments involve high temperature (1100 0 C) austenitizing during the first solution treatment followed by either interrupted quenching (Ms-Mf range) or isothermal transformation to produce lower bainite. Finally, the steels are given a 900 0 C grain refinement treatment. Lower bainite was obtained by isothermally transforming austenite just above the Ms temperature. Tempering after the martensitic and bainitic treatments was also done in an attempt to improve the toughness of the material. The strength and toughness properties of as-quenched martensitic structures are somewhat superior while these properties of lower bainitic structures are comparable to those of a plain 0.4C steel. The properties of the nearly 100 percent bainite structure were unaffected by the cooling rate from the transformation temperature. Elimination of intergranular cracking produced toughness properties in quenched and tempered martensites which are far superior to those of lower bainite at the same strength level. It has also been shown that the toughness properties of as-quenched double-treated steels are superior to single treated steels. The chromium appeared to have a strong influence on the nature and morphology of carbides, as the bainitic as well as the martensitic structures showed marked temper resistance in the tempering range 200 to 500 0 C

  13. Permanent Mold Casting of JIS-AC4C Aluminum Alloy Using a Low-Temperature Mold

    International Nuclear Information System (INIS)

    Yamagata, Hiroshi; Nikawa, Makoto

    2011-01-01

    Permanent mold casting using mold temperatures below 200 deg. C was conducted to obtain a high-strength, thin-walled casting. Al-7.36 mass% Si -0.18 Cu- 0.27Mg-0.34Fe alloy JIS-AC4C was cast using a bottom pouring cast plan. The product had a rectangular tube shape (70 mm W x 68 mm D x 180 mm H) with wall thicknesses of 1, 3 and 5 mm. The effect of heat insulation at the melt path was compared when using a sand runner insert and when using a steel runner insert as well as a powder mold release agent. Fine microstructures were observed in the casting. The smaller the thickness, the higher the hardness with smaller secondary dendrite arm spacing (SDAS). However, the hardness and the SDAS were unaffected by the mold temperature. It was proposed that the avoidance of the formation of primary α dendrite at the melt path generates a higher strength casting with adequate mold filling.

  14. Synthesis and antimicrobial evaluation of some new pyrazole, pyrazoline and chromeno[3,4-c]pyrazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Abunada, Nada M.; Miqdad, Omar A. [Al-Aqsa University, Gaza (Palestinian Territory, Occupied). Faculty of Applied Sciences. Dept. of Chemistry; Hassaneen, Hamdi M. [Cairo University, Cairo (Egypt). Faculty of Science. Dept. of Chemistry; Samaha, Ahmed S. M. Abu [Al-Aqsa University, Gaza (Palestinian Territory, Occupied). Faculty of Applied Sciences. Dept. of Biology

    2009-07-01

    Some new pyrazole-5-carbonitrile derivatives 8,9 and pyrazole-5-carboxamide 13 were synthesized by the cycloaddition reaction of nitrilimines 3,4 to alpha-cyanocinnamonitriles 5a-f and alpha-cyanocinnamamide 12a,b respectively. On the other hand 3,4 add to ethyl alpha-cyanocinnamate 14a-f to give ethyl 2-pyrazoline-5-carboxylate derivatives 15,16. Also, cycloaddition of 3,4 to 3-cyanocoumarin 19a or 3-phenylsulphonylcoumarin 19b or 3-bromocoumarin 19c give chromeno[3,4-c]pyrazol-4(3H)-one derivatives 20. In the same direction, the cycloaddition of 3,4 to 3-acetylcoumarin 22 and 3-benzoylcoumarin 23 gives the corresponding dihydrochromeno[3,4-]pyrazol-4(3H)-one 24 and 25 respectively. Oxidation of 24 and 25 give 20. Most of the prepared compounds showed good to moderate antibacterial and antifungal activities. (author)

  15. GB - a preliminary linking code between MCNP4C and Origen2.1 - DEN/UFMG version

    International Nuclear Information System (INIS)

    Campolina, Daniel; Pereira, Claubia; Veloso, Maria Auxiliadora Fortini; Cavatoni, Andre

    2009-01-01

    Nowadays it is possible to perform burnup simulation in a detailed 3D geometry and a continuous energy description by the Monte Carlo method. This paper describes an initial project to create and verify a connection code to link Origen2.1 (Oak Ridge National Laboratory) and MCNP4C (Los Alamos National Laboratory). Essentially the code includes point depletion capability to the MCNP code. The incorporation of point depletion capability is explicit and can be summarized by three steps: 1-Monte Carlo determines reaction rates, 2-the reaction rates are used to determine microscopic cross sections for depletion equations, 3-solution of depletion equations (given by Origen2.1) determines number densities for next MCNP step. To evaluate the initial version of the program, we focused on comparing the results with one of the major Monte Carlo burnup codes: MCNPX version 2.6.0. The input files for all codes share the same MCNP geometry, nuclear data library and core thermal power. While simulating 75 time steps at 800 kw of a Heat Pipe Power System model, we have found that the codes generate very similar results. The neutron flux and criticality value of the core agree, especially in the begin of burnup when the influence of fission products are not very considerable. The small difference encountered was probably caused by the difference in the number of isotopes considered in the transport models (89 MCNPX x 25 GB (author)

  16. Stable carbon isotope analysis of fluvial sediment fluxes over two contrasting C(4) -C(3) semi-arid vegetation transitions.

    Science.gov (United States)

    Puttock, Alan; Dungait, Jennifer A J; Bol, Roland; Dixon, Elizabeth R; Macleod, Christopher J A; Brazier, Richard E

    2012-10-30

    Globally, many drylands are experiencing the encroachment of woody vegetation into grasslands. These changes in ecosystem structure and processes can result in increased sediment and nutrient fluxes due to fluvial erosion. As these changes are often accompanied by a shift from C(4) to C(3) vegetation with characteristic δ(13) C values, stable isotope analysis provides a promising mechanism for tracing these fluxes. Input vegetation, surface sediment and fluvially eroded sediment samples were collected across two contrasting C(4) -C(3) dryland vegetation transitions in New Mexico, USA. Isotope ratio mass spectrometric analyses were performed using a Carlo Erba NA2000 analyser interfaced to a SerCon 20-22 isotope ratio mass spectrometer to determine bulk δ(13) C values. Stable isotope analyses of contemporary input vegetation and surface sediments over the monitored transitions showed significant differences (p fluvially eroded sediment from each of the sites, with no significant variation between surface sediment and eroded sediment values. The significant differences in bulk δ(13) C values between sites were dependent on vegetation input. Importantly, these values were robustly expressed in fluvially eroded sediments, suggesting that stable isotope analysis is suitable for tracing sediment fluxes. Due to the prevalent nature of these dryland vegetation transitions in the USA and globally, further development of stable isotope ratio mass spectrometry has provided a valuable tool for enhanced understanding of functional changes in these ecosystems. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Using MCNP-4C code for design of the thermal neutron beam for neutron radiography at the MNSR

    International Nuclear Information System (INIS)

    Shaaban, I.

    2009-11-01

    Studies were carried out for determination of the parameters of a thermal neutron beam at the MNSR reactor (MNSR-30 kW) for neutron radiography in the vertical beam port by using the MCNP-4C (Monte Carlo Neutron - Photon transport). Thermal, epithermal and fast neutron energy ranges were selected as 10 keV respectively. To produce a good neutron beam in terms of intensity and quality, several materials Lead (Pb), Bismuth (Bi), Borated polyethelyene and Alumina Oxide (Al 2 O 3 ) were used as neutron and photon filters. Based on the current design, the L/D of the facility ranges between 125, 110 and 90. The thermal neutron flux at the beam exit is 1.436x10 5 n/cm2 .s ,1.843x10 5 n/cm2 .s and 2.845x10 5 n/cm2 .s respectively, middots with a Cd-ratio of ∼ 2.829, 2.766, 3.191 for the L/D = 125, 110, 90 respectively. The estimated values for gamma doses are 6.705x10 -2 Rem/h and 1.275x10 -1 Rem/h and 2.678x10 -1 Rem/ h with bismuth. The divergent angle of the collimator is 1.348 degree - 2.021 degree. Such neutron beams, if built into the Syrian MNSR reactor, could support the application of NRG in Syria. (author)

  18. The X-Ray Reflection Spectrum of the Radio-loud Quasar 4C 74.26

    DEFF Research Database (Denmark)

    Lohfink, Anne M.; Fabian, Andrew C.; Ballantyne, David R.

    2017-01-01

    The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of t...... the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.......The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity...... of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our...

  19. Transcription elongation factors are involved in programming hormone production in pituitary neuroendocrine GH4C1 cells.

    Science.gov (United States)

    Fujita, Toshitsugu; Piuz, Isabelle; Schlegel, Werner

    2010-05-05

    Transcription elongation of many eukaryotic genes is regulated. Two negative transcription elongation factors, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) are known to stall collaboratively RNA polymerase II promoter proximally. We discovered that DSIF and NELF are linked to hormone expression in rat pituitary GH4C1 cells. When NELF-E, a subunit of NELF or Spt5, a subunit of DSIF was stably knocked-down, prolactin (PRL) expression was increased both at the mRNA and protein levels. In contrast, stable knock-down of only Spt5 abolished growth hormone (GH) expression. Transient NELF-E knock-down increased coincidentally PRL expression and enhanced transcription of a PRL-promoter reporter gene. However, no direct interaction of NELF with the PRL gene could be demonstrated by chromatin immuno-precipitation. Thus, NELF suppressed PRL promoter activity indirectly. In conclusion, transcription regulation by NELF and DSIF is continuously involved in the control of hormone production and may contribute to neuroendocrine cell differentiation. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Enhanced electrochemical properties of F-doped Li2MnSiO4/C for lithium ion batteries

    Science.gov (United States)

    Wang, Chao; Xu, Youlong; Sun, Xiaofei; Zhang, Baofeng; Chen, Yanjun; He, Shengnan

    2018-02-01

    The Li2MnSiO4 as a novel cathode material for lithium ion batteries, performs high specific capacity, high thermal stability, low cost and etc. However, it suffers from relatively low electronic conductivity and lithium ion diffusion rate. Herein, we successfully introduce fluorine to Li2MnSiO4 (Li2MnSiO4-xFx, x = 0.00, 0.01, 0.03 and 0.05) to overcome these obstacles. The results show that F doping not only enlarges the lattice parameters but also decreases the particle size, synergistically improving the lithium ion diffusion of Li2MnSiO4. Moreover, F doping increase electronic conductivity of Li2MnSiO4/C by inhibiting the formation of C-O bonds in the carbon layers. Meanwhile, F doping improves the crystallinity and stabilizes the crystal structure of Li2MnSiO4. Finally, the Li2MnSiO3.97F0.03/C with the best electrochemical performances delivers the initial specific discharge capacity of 279 mA h g-1 at 25mA g-1 current density from 1.5 V to 4.8 V. Also, it maintains a higher capacity (201 mA h g-1) than F-free Li2MnSiO4 (145 mA h g-1) after 50 cycles.

  1. The X-Ray Reflection Spectrum of the Radio-Loud Quasar 4C 74.26

    Science.gov (United States)

    Lohfink, Ann M.; Fabian, Andrew C.; Ballantyne, David R.; Boggs, S. E.; Boorman, Peter; Christensen, F. E.; Craig, W. W.; Farrah, Duncan; Garcia, Javier; Hailey, C. J.; hide

    2017-01-01

    The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cutoff of -183+3551 keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed, with an inner radius of Rin4180 Rg. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.

  2. Neutronic analysis for core conversion (HEU–LEU of the low power research reactor using the MCNP4C code

    Directory of Open Access Journals (Sweden)

    Aldawahra Saadou

    2015-06-01

    Full Text Available Comparative studies for conversion of the fuel from HEU to LEU in the miniature neutron source reactor (MNSR have been performed using the MCNP4C code. The HEU fuel (UAl4-Al, 90% enriched with Al clad and LEU (UO2 12.6% enriched with zircaloy-4 alloy clad cores have been analyzed in this study. The existing HEU core of MNSR was analyzed to validate the neutronic model of reactor, while the LEU core was studied to prove the possibility of fuel conversion of the existing HEU core. The proposed LEU core contained the same number of fuel pins as the HEU core. All other structure materials and dimensions of HEU and LEU cores were the same except the increase in the radius of control rod material from 0.195 to 0.205 cm and keeping the outer diameter of the control rod unchanged in the LEU core. The effective multiplication factor (keff, excess reactivity (ρex, control rod worth (CRW, shutdown margin (SDM, safety reactivity factor (SRF, delayed neutron fraction (βeff and the neutron fluxes in the irradiation tubes for the existing and the potential LEU fuel were investigated. The results showed that the safety parameters and the neutron fluxes in the irradiation tubes of the LEU fuels were in good agreements with the HEU results. Therefore, the LEU fuel was validated to be a suitable choice for fuel conversion of the MNSR in the future.

  3. [Laser Raman spectral investigations of the carbon structure of LiFePO4/C cathode material].

    Science.gov (United States)

    Yang, Chao; Li, Yong-Mei; Zhao, Quan-Feng; Gan, Xiang-Kun; Yao, Yao-Chun

    2013-10-01

    In the present paper, Laser Raman spectral was used to study the carbon structure of LiFePO4/C positive material. The samples were also been characterized by X-ray diffraction (XRD), scanning electron microscope(SEM), selected area electron diffraction (SEAD) and resistivity test. The result indicated that compared with the sp2/sp3 peak area ratios the I(D)/I(G) ratios are not only more evenly but also exhibited some similar rules. However, the studies indicated that there exist differences of I(D)/ I(G) ratios and sp2/sp3 peak area ratios among different points in the same sample. And compared with the samples using citric acid or sucrose as carbon source, the sample which was synthetized with mixed carbon source (mixed by citric acid and sucrose) exhibited higher I(D)/I(G) ratios and sp2/sp3 peak area ratios. Also, by contrast, the differences of I(D)/I(G) ratios and sp2/sp3 peak area ratios among different points in the same sample are less than the single carbon source samples' datas. In the scanning electron microscopy (sem) and transmission electron microscopy (sem) images, we can observed the uneven distributions of carbon coating of the primary particles and the secondary particles, this may be the main reason for not being uniform of difference data in the same sample. The obvious discreteness will affect the normal use of Raman spectroscopy in these tests.

  4. Synthesis and characterization of nano-Li1.95FeSiO4/C composite as cathode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang Xiaobing; Chen Honghui; Zhou Shibiao; Chen Yuandao; Yang Jifeng; Ren Yurong; Wang Haiyan; Qu Meizhen; Pan Zhonglai; Yu Zuolong

    2012-01-01

    Li 1.95 FeSiO 4 /C and Li 2 FeSiO 4 /C composites were synthesized by a traditional solid-state reaction method and then discussed comparatively through the results of X-ray diffraction (XRD), scanning electron microscopy (SEM), the Brunauer–Emmet–Teller (BET) method, the charge–discharge test and electrochemical impedance spectra measurement, respectively. The results demonstrated that the Li 1.95 FeSiO 4 /C composite could exhibit much better battery performance in terms of the discharge capacity, cycling stability and rate capability in comparison with the Li 2 FeSiO 4 /C composite. At 0.2C and 5C, it delivered a discharge capacity of 142 mAh g −1 and 93 mAh g −1 , respectively, and after 100 cycles at 1C, 95.1% of its initial capacity was retained.

  5. First-principles investigation of neutron-irradiation-induced point defects in B4C, a neutron absorber for sodium-cooled fast nuclear reactors

    Science.gov (United States)

    You, Yan; Yoshida, Katsumi; Yano, Toyohiko

    2018-05-01

    Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.

  6. Highly efficient and porous TiO{sub 2}-coated Ag@Fe{sub 3}O{sub 4}@C-Au microspheres for degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Mao, E-mail: shenmao19820808@163.com; Chen, Suqing, E-mail: 465060605@qq.com; Jia, Wenping, E-mail: tzcjwp@tzc.edu.cn [Taizhou University, College of Pharmaceutical and Chemical Engineering (China); Fan, Guodong, E-mail: fangd@sust.edu.cn [Shan xi University of Science and Technology, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education (China); Jin, Yanxian, E-mail: shirleyj@tzc.edu.cn; Liang, Huading, E-mail: shanjian8208@163.com [Taizhou University, College of Pharmaceutical and Chemical Engineering (China)

    2016-12-15

    In this paper, we reported a novel hierarchical porous Ag@Fe{sub 3}O{sub 4}@C-Au@TiO{sub 2} core@shell microspheres with a highly photocatalytic activity and magnetically separable properties. The synthesis method is included of a Fe{sub 3}O{sub 4} magnetic embedded Ag core (Ag@Fe{sub 3}O{sub 4}), an interlayer of carbon modified by PEI to form sufficient amounts of amine functional groups (Ag@Fe{sub 3}O{sub 4}@C-PEI), the grafting of Au nanoparticles on the surface of Ag@Fe{sub 3}O{sub 4}@C-PEI (Ag@Fe{sub 3}O{sub 4}@C-Au), and an ordered porous TiO{sub 2} structured shell. As an example of the applications, the photocatalytic activities of the samples were investigated by the reduction of Rhodamine B (RhB) under visible-light irradiation. The results show that the porous Ag@Fe{sub 3}O{sub 4}@C-Au@TiO{sub 2} core@shell microspheres display higher adsorption and photocatalytic activities compared to the pure porous TiO{sub 2} and Ag@Fe{sub 3}O{sub 4}@C@TiO{sub 2} microspheres, which are attributed to the local surface plasmon resonance (LSPR) by the Ag and Au nanoparticles and the high specific surface area.

  7. In-situ generation of Li2FeSiO4/C nanocomposite as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Yi, Jin; Hou, Meng-yan; Bao, Hong-liang; Wang, Cong-xiao; Wang, Jian-qiang; Xia, Yong-yao

    2014-01-01

    Highlights: • A Li 2 FeSiO 4 /C nanocomposite is prepared via thermal vapor deposition technology. • The Li 2 FeSiO 4 /C nanocomposite is free from impurity and coated with carbon layer. • The Li 2 FeSiO 4 /C nanocomposite exhibits good rate capability and cycling stability. • Lithium benzoate serves as both lithium and carbon sources. - Abstract: A Li 2 FeSiO 4 /C nanocomposite is prepared via solvothermal method in combination with carbon coating technology. The as-prepared Li 2 FeSiO 4 /C nanocomposite is a single phase Li 2 FeSiO 4 with nano-tickness coated carbon layer and connected by the mutual cross-linked carbon conductive matrix. As cathode material for lithium ion battery, the composite delivers a discharge capacity of 154 mAh g −1 at 1 C and exhibits good rate capability with a discharge capacity of 106 mAh g −1 at the rate of 10 C, which is ascribed to the small particle size and enhanced electronic conductivity using carbon coating technology. The as-prepared Li 2 FeSiO 4 /C nanocomposite also behaves a good cycling stability with capacity retention of over 100 cycles

  8. Optimized synthesis of nano-sized LiFePO4/C particles with excellent rate capability for lithium ion batteries

    International Nuclear Information System (INIS)

    Liu, Houbin; Miao, Cui; Meng, Yan; He, Yan-Bing; Xu, Qiang; Zhang, Xinhe; Tang, Zhiyuan

    2014-01-01

    Olivine-type LiFePO 4 /C composite with excellent rate capability and cycling stability is synthesized by an optimized ethylene glycol assisted solution-phase method. In an attempt to improve the electrochemical performance, the size of LiFePO 4 /C particle is reduced by optimizing the reaction time and temperature. The results show that the LiFePO 4 /C synthesized at 130 °C for 5 h consists of well-distributed nano-particles of size about 50 nm in diameter and 100 nm in length, which is uniformly coated with a carbon layer about 3.0 nm in thickness. The material synthesized at 130 °C exhibits the least charge-transfer resistance than the LiFePO 4 /C synthesized at 120 and 140 °C. The specific capacity of optimized LiFePO 4 /C at discharge rate of 0.1 C can reach to 166.5 mAhg −1 , nearly to the theoretical capacity. Even at high rate of 5, 10, 20 and 30 C, the specific capacities of 132.3, 120.4, 97.3 and 66.6 mAhg −1 are achieved, respectively, with no significant capacity fading after 100 cycles. This is a promising method used in industrialization to synthesize LiFePO 4 /C composite with excellent performance

  9. Characterization of Carbon-Contaminated B4C-Coated Optics after Chemically Selective Cleaning with Low-Pressure RF Plasma.

    Science.gov (United States)

    Moreno Fernández, H; Rogler, D; Sauthier, G; Thomasset, M; Dietsch, R; Carlino, V; Pellegrin, E

    2018-01-22

    Boron carbide (B 4 C) is one of the few materials that is expected to be most resilient with respect to the extremely high brilliance of the photon beam generated by free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at light source facilities, B 4 C-coated optics are subject to ubiquitous carbon contaminations. Carbon contaminations represent a serious issue for the operation of FEL beamlines due to severe reduction of photon flux, beam coherence, creation of destructive interference, and scattering losses. A variety of B 4 C cleaning technologies were developed at different laboratories with varying success. We present a study regarding the low-pressure RF plasma cleaning of carbon contaminated B 4 C test samples via inductively coupled O 2 /Ar, H 2 /Ar, and pure O 2 RF plasma produced following previous studies using the same ibss GV10x downstream plasma source. Results regarding the chemistry, morphology as well as other aspects of the B 4 C optical coating before and after the plasma cleaning are reported. We conclude that among the above plasma processes only plasma based on pure O 2 feedstock gas exhibits the required chemical selectivity for maintaining the integrity of the B 4 C optical coatings.

  10. Monte Carlo simulation for treatment planning optimization of the COMS and USC eye plaques using the MCNP4C code

    International Nuclear Information System (INIS)

    Jannati Isfahani, A.; Shokrani, P.; Raisali, Gh.

    2010-01-01

    Ophthalmic plaque radiotherapy using I-125 radioactive seeds in removable episcleral plaques is often used in management of ophthalmic tumors. Radioactive seeds are fixed in a gold bowl-shaped plaque and the plaque is sutured to the scleral surface corresponding to the base of the intraocular tumor. This treatment allows for a localized radiation dose delivery to the tumor with a minimum target dose of 85 Gy. The goal of this study was to develop a Monte Carlo simulation method for treatment planning optimization of the COMS and USC eye plaques. Material and Methods: The MCNP4C code was used to simulate three plaques: COMS-12mm, COMS-20mm, and USC ≠9 with I-125 seeds. Calculation of dose was performed in a spherical water phantom (radius 12 mm) using a 3D matrix with a size of 12 voxels in each dimension. Each voxel contained a sphere of radius 1 mm. Results: Dose profiles were calculated for each plaque. Isodose lines were created in 2 planes normal to the axes of the plaque, at the base of the tumor and at the level of the 85 Gy isodose in a 7 day treatment. Discussion and Conclusion: This study shows that it is necessary to consider the following tumor properties in design or selection of an eye plaque: the diameter of tumor base, its thickness and geometric shape, and the tumor location with respect to normal critical structures. The plaque diameter is selected by considering the tumor diameter. Tumor thickness is considered when selecting the seed parameters such as their number, activity and distribution. Finally, tumor shape and its location control the design of following parameters: the shape and material of the plaque and the need for collimation.

  11. BINARY BLACK HOLES, GAS SLOSHING, AND COLD FRONTS IN THE X-RAY HALO HOSTING 4C+37.11

    Energy Technology Data Exchange (ETDEWEB)

    Andrade-Santos, Felipe; Bogdán, Ákos; Forman, William R.; Jones, Christine; Murray, Stephen S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Romani, Roger W. [Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States); Taylor, Greg B. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Zavala, Robert T. [US Naval Observatory, Flagstaff Station, 10391 W. Naval Observatory Road, Flagstaff, AZ 86001 (United States)

    2016-07-20

    We analyzed deep Chandra ACIS-I exposures of the cluster-scale X-ray halo surrounding the radio source 4C+37.11. This remarkable system hosts the closest resolved pair of super-massive black holes and an exceptionally luminous elliptical galaxy, the likely product of a series of past mergers. We characterize the halo with r {sub 500} ∼ 0.95 Mpc, M {sub 500} = 2.5 ± 0.2 × 10{sup 14} M {sub ⊙}, kT = 4.6 ± 0.2 keV, and a gas mass of M {sub g,500} = 2.2 ± 0.1 × 10{sup 13} M {sub ⊙}. The gas mass fraction within r {sub 500} is f {sub g} = 0.09 ± 0.01. The entropy profile shows large non-gravitational heating in the central regions. We see several surface brightness jumps, associated with substantial temperature and density changes but approximate pressure equilibrium, implying that these are sloshing structures driven by a recent merger. A residual intensity image shows a core spiral structure closely matching that seen in the Perseus cluster, although at z = 0.055 the spiral pattern is less distinct. We infer that the most recent merger occurred 1–2 Gyr ago and that the event that brought the two observed super-massive black holes to the system core is even older. Under this interpretation, the black hole binary pair has, unusually, remained at a parsec-scale separation for more than 2 Gyr.

  12. Investigation of Anisotropy Caused by Cylinder Applicator on Dose Distribution around Cs-137 Brachytherapy Source using MCNP4C Code

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2011-06-01

    Full Text Available Introduction: Brachytherapy is a type of radiotherapy in which radioactive sources are used in proximity of tumors normally for treatment of malignancies in the head, prostate and cervix. Materials and Methods: The Cs-137 Selectron source is a low-dose-rate (LDR brachytherapy source used in a remote afterloading system for treatment of different cancers. This system uses active and inactive spherical sources of 2.5 mm diameter, which can be used in different configurations inside the applicator to obtain different dose distributions. In this study, first the dose distribution at different distances from the source was obtained around a single pellet inside the applicator in a water phantom using the MCNP4C Monte Carlo code. The simulations were then repeated for six active pellets in the applicator and for six point sources.  Results: The anisotropy of dose distribution due to the presence of the applicator was obtained by division of dose at each distance and angle to the dose at the same distance and angle of 90 degrees. According to the results, the doses decreased towards the applicator tips. For example, for points at the distances of 5 and 7 cm from the source and angle of 165 degrees, such discrepancies reached 5.8% and 5.1%, respectively.  By increasing the number of pellets to six, these values reached 30% for the angle of 5 degrees. Discussion and Conclusion: The results indicate that the presence of the applicator causes a significant dose decrease at the tip of the applicator compared with the dose in the transverse plane. However, the treatment planning systems consider an isotropic dose distribution around the source and this causes significant errors in treatment planning, which are not negligible, especially for a large number of sources inside the applicator.

  13. Correlation between isothermal expansion and functional properties change of the Fe81B13Si4C2 amorphous alloy

    Directory of Open Access Journals (Sweden)

    Kalezić-Glišović A.

    2009-01-01

    Full Text Available The structural changes effect on functional properties of ribbon shaped samples of the Fe81B13Si4C2 amorphous alloy during annealing process was investigated in this paper. Differential scanning calorimetry method has shown that this alloy crystallizes in one stage, in temperature range from room temperature up to 700°C. Structural relaxation process was investigated by sensitive dilatation method in nonisothermal and isothermal conditions. It has been shown that structural relaxation process occurs in two stages by measuring thermal expansion at constant temperatures of t1=420°C, t2 = 440°C and t3 = 460°C. The first stage is characterized by linear logarithmic dependence of thermal expansion upon time at constant temperature. The second stage of structural relaxation process is characterized by linear dependence of isothermal expansion upon the square root of process time. These results imply that the first stage of structural relaxation process is a rapid kinetic process, while the second stage of structural relaxation process is a slow diffusion process. The rate constants k11 = 2,27⋅10- 3 s-1, k12 = 2,79⋅10-3 s-1, k13 = 3,6⋅10-3 s-1, k21 = 0,67⋅10-4 s-1, k22 = 3,72⋅10-4 s-1, k23 = 21,53⋅10-4 s-1 and activation energies E1 = 48,64 kJ/mol and E2 = 366, 23 kJ/mol were determined for both stages of structural relaxation process. The distinct correlation between structural relaxation process and magnetic susceptibility relative change was determined by thermomagnetic measurements. It has been shown that magnetic susceptibility can be increased by up to 80%, by convenient annealings after structural relaxation process, at magnetic field intensity of 8 kA/m.

  14. OPTICAL CONSTANTS AND BAND STRENGTHS OF CH4:C2H6 ICES IN THE NEAR- AND MID-INFRARED

    International Nuclear Information System (INIS)

    Molpeceres, Germán; Ortigoso, Juan; Escribano, Rafael; Maté, Belén; Satorre, Miguel Angel; Millán, Carlos

    2016-01-01

    We present a spectroscopic study of methane–ethane ice mixtures. We have grown CH 4 :C 2 H 6 mixtures with ratios 3:1, 1:1, and 1:3 at 18 and 30 K, plus pure methane and ethane ices, and have studied them in the near-infrared (NIR) and mid-infrared (MIR) ranges. We have determined densities of all species mentioned above. For amorphous ethane grown at 18 and 30 K we have obtained a density of 0.41 and 0.54 g cm −3 , respectively, lower than a previous measurement of the density of the crystalline species, 0.719 g cm −3 . As far as we know this is the first determination of the density of amorphous ethane ice. We have measured band shifts of the main NIR methane and ethane features in the mixtures with respect to the corresponding values in the pure ices. We have estimated band strengths of these bands in the NIR and MIR ranges. In general, intensity decay in methane modes was detected in the mixtures, whereas for ethane no clear tendency was observed. Optical constants of the mixtures at 30 and 18 K have also been evaluated. These values can be used to trace the presence of these species in the surface of trans-Neptunian objects. Furthermore, we have carried out a theoretical calculation of these ice mixtures. Simulation cells for the amorphous solids have been constructed using a Metropolis Monte Carlo procedure. Relaxation of the cells and prediction of infrared spectra have been carried out at density functional theory level.

  15. The nature of the Syntaxin4 C-terminus affects Munc18c-supported SNARE assembly.

    Directory of Open Access Journals (Sweden)

    Asma Rehman

    Full Text Available Vesicular transport of cellular cargo requires targeted membrane fusion and formation of a SNARE protein complex that draws the two apposing fusing membranes together. Insulin-regulated delivery and fusion of glucose transporter-4 storage vesicles at the cell surface is dependent on two key proteins: the SNARE integral membrane protein Syntaxin4 (Sx4 and the soluble regulatory protein Munc18c. Many reported in vitro studies of Munc18c:Sx4 interactions and of SNARE complex formation have used soluble Sx4 constructs lacking the native transmembrane domain. As a consequence, the importance of the Sx4 C-terminal anchor remains poorly understood. Here we show that soluble C-terminally truncated Sx4 dissociates more rapidly from Munc18c than Sx4 where the C-terminal transmembrane domain is replaced with a T4-lysozyme fusion. We also show that Munc18c appears to inhibit SNARE complex formation when soluble C-terminally truncated Sx4 is used but does not inhibit SNARE complex formation when Sx4 is C-terminally anchored (by a C-terminal His-tag bound to resin, by a C-terminal T4L fusion or by the native C-terminal transmembrane domain in detergent micelles. We conclude that the C-terminus of Sx4 is critical for its interaction with Munc18c, and that the reported inhibitory role of Munc18c may be an artifact of experimental design. These results support the notion that a primary role of Munc18c is to support SNARE complex formation and membrane fusion.

  16. Synthesis of LiFePO4/C composites based on natural iron stone using a sol gel method

    Science.gov (United States)

    Angela, Riyan; Islam, Humaatul; Sari, Vamellia; Latif, Chaironi; Zainuri, Mochamad; Pratapa, Suminar

    2017-01-01

    Synthesis of LiFePO4/C composites has been carried out using a sol gel method. The Fe precursor was made from a natural iron stone of Tanah Laut, South Kalimantan, while the other raw materials were commercial Li2CO3 powder and NH4H2PO4 powder with HCl and water as solvents. Citric acid was used as the carbon source in the synthesis. This study used a molar ratio of 1:1:2 for Li:Fe:P with variation of added citric acid of 1.5 and 2.5 g. The solutions were dried in air at 100°C. The dried powders were characterized using DSC-TGA and then calcined at 600 and 700°C under argon environment for 10 hours. The calcined powders were characterized by X-ray diffractometry (XRD), scanning electron microscopy-energy dispersive x-ray (SEM-EDX), and LCR meter. It was found that the samples contained LiFePO4 as the dominant phase and LiFeP2O7 and Fe2O3 as secondary phases. The analysis showed that the addition of citric acid influenced the electronic conductivity of the composites. A Rietveld relative weight fraction of up to 94.7% was achieved in the synthesis at temperature 600°C. The LFP/C sample exhibited electronic conductivity of 4.56×10-3 Scm-1 which was six times of that of the pure LFP.

  17. The fate of atmospheric phosgene and the stratospheric chlorine loadings of its parent compounds: CCl4, C2Cl4, C2HCL3, CH3CCl3, and CHCl3

    Science.gov (United States)

    Kindler, T. P.; Chameides, W. L.; Wine, P. H.; Cunnold, D. M.; Alyea, F. N.; Franklin, J. A.

    1995-01-01

    A study of the tropospheric and stratospheric cycles of phosgene is carried out to determine its fate and ultimate role in controlling the ozone depletion potentials of its parent compounds. Tropospheric phosgene is produced from the OH-initiated oxidation of C2Cl4, CH3CCl3, CHCl3, and C2HCl3. Simulations using a two-dimensional model indicate that these processes produce about 90 pptv/yr of tropospheric phosgene with an average concentration of about 18 pptv, in reasonable agreement with observations. We estimate a residence time of about 70 days for tropospheric phosgene, with the vast majority being removed by hydrolysis in cloudwater. Only about 0.4% of the phosgene produced in the troposphere avoids wet removal and is transported to the stratosphere, where its chlorine can be released to participate in the catalytic destruction of ozone. Stratospheric phosgene is produced from the photochemical degradation of CCl4, C2Cl4, CHCl3, and CH3CCl3 and is removed by photolysis and downward transport to the troposphere. Model calculations, in good agreement with observations, indicate that these processes produce a peak stratospheric concentration of about 25-30 pptv at an altitude of about 25 km. In contrast to tropospheric phosgene, stratospheric phosgene is found to have a lifetime against photochemical removal of the order of years. As a result, a significant portion of the phosgene that is produced in the stratosphere is ultimately returned to the troposphere, where it is rapidly removed by clouds. This phenomenon effectively decreases the amount of reactive chlorine injected into the stratosphere and available for ozone depletion from phosgene's parent compounds. A similar phenomenon due to the downward transport of stratospheric COFCl produced from CFC-11 is estimated to cause a 7% decrease in the amount of reactive chlorine injected into the stratosphere from this compound. Our results are potentially sensitive to a variety of parameters, most notably the rate

  18. {sup 10}B areal density: A novel approach for design and fabrication of B{sub 4}C/6061Al neutron absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuli [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Wenxian, E-mail: wangwenxian@tyut.edu.cn [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Jun [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Mechanical Engineering, Pennsylvania State University Erie, The Behrend College, Erie, PA 16563 (United States); Chen, Hongsheng [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Peng [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-04-15

    In this paper, a novel approach to evaluate the neutron shielding performance of a boron-containing neutron absorbing material was proposed for the first time through the establishment of a direct relationship between {sup 10}B areal density ({sup 10}BAD) of the material and its neutron absorption ratio. It is found when the {sup 10}BAD of a material is greater than 0.034 g/cm{sup 2}, the material will achieve a good neutron shielding performance. Based on this proposed approach, B{sub 4}C/6061Al composite plates with different B{sub 4}C content (10 wt%, 20 wt%, 30 wt%) were successfully fabricated using vacuum hot pressing followed by hot-extrusion. The characteristics of the B{sub 4}C/Al interface were studied in details using transmission electron microscopy (TEM), and the effects of B{sub 4}C particle content on microstructure and mechanical properties of the Al matrix were investigated. Through current studies, B{sub 4}C/6061Al composite plates possessing good neutron shielding performance and tensile strength are found to be able to be fabricated using either 20 wt% of B{sub 4}C content with a plate thickness of 4.5 mm or 30 wt% B{sub 4}C content with a plate thickness of 3 mm. - Graphical abstract: In this paper, a novel approach to evaluate the neutron shielding ability of a boron-containing neutron shielding material was proposed for the first time through the establishment of a direct relationship between {sup 10}B area density ({sup 10}BAD) of the material and its neutron shielding ratio. - Highlights: •{sup 10}BAD was proposed to evaluate the boron-containing neutron absorber material’s neutron shielding performance. •The direct relationship between the {sup 10}BAD and neutron shielding performance was firstly established. •TEM analysis of the composites reveals that an amorphous layer exists at the Al/B{sub 4}C interface. •Suitable B{sub 4}C contents and thickness for the fabrication of B{sub 4}C/6061A1 NAC plate were given in the

  19. Analysis of solar refrigeration; Analisis de la refrigeracion solar

    Energy Technology Data Exchange (ETDEWEB)

    Monne, C.; Gonzalez, F.; Guallar, J.; Lozano, M. A.

    2004-07-01

    The present article describes the software developed under EES (Engineering Equation Solver) (F-Chart Software, 2004), directed at the analysis of the absorption chillers with solar energy. The program has been designed to be used like laboratory practices by the students of Industrial Engineering, within the subject of Renewable Energies. (Author)

  20. Accumulation of Sellafield-derived radiocarbon ("1"4C) in Irish Sea and West of Scotland intertidal shells and sediments

    International Nuclear Information System (INIS)

    Tierney, Kieran M.; Muir, Graham K.P.; Cook, Gordon T.; MacKinnon, Gillian; Howe, John A.; Heymans, Johanna J.; Xu, Sheng

    2016-01-01

    The nuclear energy industry produces radioactive waste at various stages of the fuel cycle. In the United Kingdom, spent fuel is reprocessed at the Sellafield facility in Cumbria on the North West coast of England. Waste generated at the site comprises a wide range of radionuclides including radiocarbon ("1"4C) which is disposed of in various forms including highly soluble inorganic carbon within the low level liquid radioactive effluent, via pipelines into the Irish Sea. This "1"4C is rapidly incorporated into the dissolved inorganic carbon (DIC) reservoir and marine calcifying organisms, e.g. molluscs, readily utilise DIC for shell formation. This study investigated a number of sites located in Irish Sea and West of Scotland intertidal zones. Results indicate "1"4C enrichment above ambient background levels in shell material at least as far as Port Appin, 265 km north of Sellafield. Of the commonly found species (blue mussel (Mytilus edulis), common cockle (Cerastoderma edule) and common periwinkle (Littorina littorea)), mussels were found to be the most highly enriched in "1"4C due to the surface environment they inhabit and their feeding behaviour. Whole mussel shell activities appear to have been decreasing in response to reduced discharge activities since the early 2000s but in contrast, there is evidence of continuing enrichment of the carbonate sediment component due to in-situ shell erosion, as well as indications of particle transport of fine "1"4C-enriched material close to Sellafield. - Highlights: • We measure "1"4C activity in shells and sediment at sites on the UK west coast. • Mussel shell activity varies in response to average "1"4C discharges from Sellafield. • Shell activities reflect species feeding habits and ecological niche. • NE Irish Sea inorganic sediment activity will gradually increase. • Increases in sediment activity will occur at remote sites on the Scottish west coast.

  1. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B{sub 4}C)

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Ali [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Abdollahi, Alireza, E-mail: alirezaabdollahi1366@gmail.com [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Biukani, Hootan [Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-25

    In the current research, aluminum based hybrid composite reinforced with boron carbide (B{sub 4}C) and carbon nanotubes (CNTs) was produced by powder metallurgy method. creep behavior, wear resistance, surface roughness, and hardness of the samples were investigated. To prepare the samples, Al 5083 powder was milled with boron carbide particles and carbon nanotubes using planetary ball mill under argon atmosphere with ball-to-powder weight ratio of 10:1 for 5 h. Afterwards, the milled powders were formed by hot press process at 380{sup °}C and then were sintered at 585{sup °}C under argon atmosphere for 2 h. There was shown to be an increase in hardness values of composite with an increase in B{sub 4}C content. The micrograph of worn surfaces indicate a delamination mechanism due to the presence of CNTs and abrasion mechanism in composite containing 10 vol.%B{sub 4}C. Moreover, it was shown that increasing B{sub 4}C content increases the wear resistance by 3 times under a load of 20 N and 10 times under a load of 10 N compared to CNTs-reinforced composite. surface roughness of the composite containing 5 vol.%CNT has shown to be more than other samples. The results of creep test showed that adding carbon nanotubes increases creep rate of Al 5083 alloy; however, adding B{sub 4}C decreases its creep rate. - Highlights: • Al 5083/(CNTs + B{sub 4}C) hybrid composite was produced by powder metallurgy method. • Creep behavior, wear resistance, surface roughness, and Hardness of samples were investigated. • Addition of CNTs to Al 5083 matrix reduces alloy hardness, wear resistance and creep strength. • By addition of B{sub 4}C and composite hybridization, creep strength and wear resistance increased. • Surface roughness of Al-5 vol.%CNT has shown to be more than other samples.

  2. Evaluation of dose equivalent to the people accompanying patients in diagnostic radiology using MCNP4C Monte Carlo code

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Faghihi, R.; Sina, S.; Zehtabian, M.

    2007-01-01

    Complete text of publication follows. Objective: X rays used in diagnostic radiology contribute a major share to population doses from man-made sources of radiation. In some branches of radiology, it is necessary that another person stay in the imaging room and immobilize the patient to carry out radiological operation. ICRP 70 recommends that this should be done by parents or accompanying nursing or ancillary personnel and not in any case by radiation workers. Methods: Dose measurements were made previously using standard methods employing LiF TLD-100 dosimeters. A TLD card was installed on the main trunk of the body of the accompanying people where the maximum dose was probable. In this research the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) is used to calculate the equivalent dose to the people accompanying patients exposed to radiation scattered from the patient (Without protective clothing). To do the simulations, all components of the geometry are placed within an air-filled box. Two homogeneous water phantoms are used to simulate the patient and the accompanying person. The accompanying person leans against the table at one side of the patient. Finally in case of source specification, only the focus of the X-ray tube is modelled, i.e. as a standard MCNP point source emitting a cone of photons. Photon stopping material is used as a collimator model to reduce the circular cross section of the cone to a rectangle. The X-ray spectra to be used in the MCNP simulations are generated with spectrum generator software, taking the X-ray voltage and all filtration applied in the clinic as input parameters. These calculations are done for different patient sizes and for different radiological operations. Results: In case of TL dosimetry, for a group of 100 examinations, the dose equivalents ranged from 0.01 μsv to 0.13 msv with the average of 0.05 msv. The results are seen to be in close agreement with Monte Carlo simulations

  3. TiO2 nanosheets decorated with B4C nanoparticles as photocatalysts for solar fuel production under visible light irradiation

    Science.gov (United States)

    Zhang, Xiaojie; Yang, Jipeng; Cai, Tiancong; Zuo, Guoqiang; Tang, Changqing

    2018-06-01

    Boron carbide (B4C) nanoparticles-decorated anatase titanium dioxide (TiO2) nanosheets photocatalysts were synthesized by a hydrothermal method in the presence of hydrofluoric acid and characterized by field emission scanning electron microscope, high-resolution transmission electron microscope, UV-vis diffuse reflectance spectra, photoluminescence spectra, etc. With metallic Pt nanoparticles as a co-catalyst, the as-synthesized B4C/TiO2 composites were evaluated using photocatalytic CO2 or H2O reduction to solar fuels such as methane and hydrogen. Under either simulated sunlight or visible light irradiation, coupling p-type B4C with n-type anatase TiO2 significantly improved the photocatalytic performance. Both photoluminescence and transient photocurrent measurements indicated that the interfacial coupling effect between B4C and anatase TiO2 could significantly promote photo-excited charges separations. On the basis of measurements and literatures, a possible mechanism of excited charges transfer at the B4C-anatase TiO2 heterojunction interface during irradiation was deduced.

  4. Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al–B4C composite material via hot isostatic pressing

    International Nuclear Information System (INIS)

    Park, Jin-Ju; Hong, Sung-Mo; Lee, Min-Ku; Rhee, Chang-Kyu; Rhee, Won-Hyuk

    2015-01-01

    Highlights: • 6061Al–B 4 C neutron shielding composites are fabricated by sintering and HIP. • HIP process improves the wettability of B 4 C particles into 6061Al matrix. • Neutron attenuation performance can be enhanced by application of HIP process. - Abstract: Sandwich type of 6061Al–B 4 C composite plates, which are used as a thermal neutron absorber for spent nuclear fuel pool storage rack, were fabricated using two different consolidation ways as sintering and hot isostatic pressing (HIP) processes and their thermal neutron shielding efficiency was investigated as a function of B 4 C concentration ranging from 0 to 40 wt.%. For this purpose, two respective inner core compaction parts of sintered and HIPped neutron absorbing composite materials were first produced and then cladded them between two outer plates by HIP process. The application of HIP process provided not only a lead of excellent interfacial adhesion due to the improved wettability but also an enhancement of thermal neutron shielding efficiency owing to the more uniform dispersion of B 4 C particles

  5. In situ XANES studies of TiO{sub 2}/Fe{sub 3}O{sub 4}-C during photocatalytic degradation of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, T.-F.; Hsiung, T.-L. [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wang, James [Department of Biomedical Engineering, University of Southern California, Los Angeles 90007 (United States); Huang, C.-H. [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Paul Wang, H., E-mail: wanghp@mail.ncku.edu.t [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Sustainable Environmental Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2010-07-21

    Mainly anatase and Fe{sub 3}O{sub 4} in the magnetic photocatalysts (TiO{sub 2} on Fe{sub 3}O{sub 4}-C core-shell nanoparticles (TiO{sub 2}/Fe{sub 3}O{sub 4}-C)) are observed by X-ray powder diffraction (XRD) spectroscopy. The Ti K-edge least-square fitted XANES spectra of the TiO{sub 2}/Fe{sub 3}O{sub 4}-C photocatalyst indicate that the main titanium species are nanosize TiO{sub 2} (9 nm) (77%) and bulky TiO{sub 2} (23%). Speciation of titanium in the TiO{sub 2}/Fe{sub 3}O{sub 4}-C during photocatalytic degradation of 100 ppm of trichloroethylene (TCE) has also been studied by in situ X-ray absorption near-edge structural (XANES) spectroscopy. TiO{sub 2} is not perturbed during the course of photocatalysis. However, it is worth to note that during photocatalytic degradation of TCE, about 33% of FeO and 67% of Fe{sub 3}O{sub 4} are observed in the photocatalyst. It seems that the carbon layer on the TiO{sub 2}/Fe{sub 3}O{sub 4}-C photocatalysts can reduce the possibility for photoexcited electron-hole recombination as usually found on the relatively narrow bandgap of ferric oxide during photocatalysis.

  6. Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries

    Science.gov (United States)

    Jiang, H. R.; Shyy, W.; Wu, M. C.; Wei, L.; Zhao, T. S.

    2017-10-01

    The potential of B4C as a metal-free catalyst for vanadium redox reactions is investigated by first-principles calculations. Results show that the central carbon atom of B4C can act as a highly active reaction site for redox reactions, due primarily to the abundant unpaired electrons around it. The catalytic effect is then verified experimentally by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests, both of which demonstrate that B4C nanoparticles can enhance the kinetics for both V2+/V3+ and VO2+/VO2+ redox reactions, indicating a bi-functional effect. The B4C-nanoparticle-modified graphite felt electrodes are finally prepared and tested in vanadium redox flow batteries (VRFBs). It is shown that the batteries with the prepared electrodes exhibit energy efficiencies of 88.9% and 80.0% at the current densities of 80 and 160 mA cm-2, which are 16.6% and 18.8% higher than those with the original graphite felt electrodes. With a further increase in current densities to 240 and 320 mA cm-2, the batteries can still maintain energy efficiencies of 72.0% and 63.8%, respectively. All these results show that the B4C-nanoparticle-modified graphite felt electrode outperforms existing metal-free catalyst modified electrodes, and thus can be promising electrodes for VRFBs.

  7. Tailored surface structure of LiFePO4/C nanofibers by phosphidation and their electrochemical superiority for lithium rechargeable batteries.

    Science.gov (United States)

    Lee, Yoon Cheol; Han, Dong-Wook; Park, Mihui; Jo, Mi Ru; Kang, Seung Ho; Lee, Ju Kyung; Kang, Yong-Mook

    2014-06-25

    We offer a brand new strategy for enhancing Li ion transport at the surface of LiFePO4/C nanofibers through noble Li ion conducting pathways built along reduced carbon webs by phosphorus. Pristine LiFePO4/C nanofibers composed of 1-dimensional (1D) LiFePO4 nanofibers with thick carbon coating layers on the surfaces of the nanofibers were prepared by the electrospinning technique. These dense and thick carbon layers prevented not only electrolyte penetration into the inner LiFePO4 nanofibers but also facile Li ion transport at the electrode/electrolyte interface. In contrast, the existing strong interactions between the carbon and oxygen atoms on the surface of the pristine LiFePO4/C nanofibers were weakened or partly broken by the adhesion of phosphorus, thereby improving Li ion migration through the thick carbon layers on the surfaces of the LiFePO4 nanofibers. As a result, the phosphidated LiFePO4/C nanofibers have a higher initial discharge capacity and a greatly improved rate capability when compared with pristine LiFePO4/C nanofibers. Our findings of high Li ion transport induced by phosphidation can be widely applied to other carbon-coated electrode materials.

  8. Mass Production of LiFePO4/C Powders by Large Type Spray Pyrolysis Apparatus and Its Application to Cathode for Lithium Ion Battery

    Directory of Open Access Journals (Sweden)

    Shinsuke Akao

    2010-01-01

    Full Text Available Spherical LiFePO4/C powders were successfully produced at a rate of 100 g/h using a large type spray pyrolysis apparatus. Organic compounds such as citric acid and sucrose were used as carbon sources. Scanning electron microscopy observation showed that they had a spherical morphology with nonaggregation. X-ray diffraction analysis revealed that the olivine phase was obtained by heating at 600∘C under argon (95%/hydrogen (5% atmosphere. The chemical composition of LiFePO4/C powders was in good agreement with that of the starting solution. Electrochemical measurement revealed that the use of citric acid was most effective in ensuring a high rechargeable capacity and cycle stability. The rechargeable capacity of the LiFePO4/C cathode obtained using citric acid was 155 mAh/g at a discharge rate of 1 C. Because of the good discharge capacity of the LiFePO4/C cathode, it exhibited excellent cycle stability after 100 cycles at each discharge rate. Moreover, this high cycle stability of the LiFePO4/C cathode was maintained even at 50∘C.

  9. 64 kDa protein is a candidate for a thyrotropin-releasing hormone receptor in prolactin-producing rat pituitary tumor cells (GH4C1 cells)

    International Nuclear Information System (INIS)

    Wright, M.; Hogset, A.; Alestrom, P.; Gautvik, K.M.

    1988-01-01

    A thyrotropin-releasing hormone (TRH) binding protein of 64 kDa has been identified by covalently crosslinking [ 3 H]TRH to GH4C1 cells by ultraviolet illumination. The crosslinkage of [ 3 H]TRH is UV-dose dependent and is inhibited by an excess of unlabeled TRH. A 64 kDa protein is also detected on immunoblots using an antiserum raised against GH4C1 cell surface epitopes. In a closely related cell line (GH12C1) which does not bind [ 3 H]TRH, the 64 kDa protein cannot be demonstrated by [ 3 H]TRH crosslinking nor by immunoblotting. These findings indicate that the 64 kDa protein is a candidate for a TRH-receptor protein in GH4C1 cells

  10. Optimization of friction and wear behaviour of Al7075-Al2O3-B4C metal matrix composites using Taguchi method

    Science.gov (United States)

    Dhanalakshmi, S.; Mohanasundararaju, N.; Venkatakrishnan, P. G.; Karthik, V.

    2018-02-01

    The present study deals with investigations relating to dry sliding wear behaviour of the Al 7075 alloy, reinforced with Al2O3 and B4C. The hybrid composites are produced through Liquid Metallurgy route - Stir casting method. The amount of Al2O3 particles is varied as 3, 6, 9, 12 and 15 wt% and the amount of B4C is kept constant as 3wt%. Experiments were conducted based on the plan of experiments generated through Taguchi’s technique. A L27 Orthogonal array was selected for analysis of the data. The investigation is to find the effect of applied load, sliding speed and sliding distance on wear rate and Coefficient of Friction (COF) of the hybrid Al7075- Al2O3-B4C composite and to determine the optimal parameters for obtaining minimum wear rate. The samples were examined using scanning electronic microscopy after wear testing and analyzed.

  11. Influence of B4C-doping and high-energy ball milling on phase formation and critical current density of (Bi,Pb)-2223 HTS

    Science.gov (United States)

    Margiani, N. G.; Mumladze, G. A.; Adamia, Z. A.; Kuzanyan, A. S.; Zhghamadze, V. V.

    2018-05-01

    In this paper, the combined effects of B4C-doping and planetary ball milling on the phase evolution, microstructure and transport properties of Bi1.7Pb0.3Sr2Ca2Cu3Oy(B4C)x HTS with x = 0 ÷ 0.125 were studied through X-ray diffraction (XRD), scanning electron microscopy (SEM), resistivity and critical current density measurements. Obtained results have shown that B4C additive leads to the strong acceleration of high-Tc phase formation and substantial enhancement in Jc. High-energy ball milling seems to produce a more homogeneous distribution of refined doped particles in the (Bi,Pb)-2223 HTS which results in an improved intergranular flux pinning and better self-field Jc performance.

  12. Effects of B4C Addition on the Laser Beam Welding Characteristics of Al/SiC MMCs Produced By P/M

    Directory of Open Access Journals (Sweden)

    Serdar KARAOĞLU

    2011-01-01

    Full Text Available Fusion weldability characteristics of metal matrix composites (MMC produced by powder metallurgy (P/M are usually insufficient due to unwanted micro-structural changes that occur during welding. This study aims to investigate the effects of B4C addition as reinforcement on the weld quality of Al/SiC MMCs. After the production of Al/SiC MMCs by P/M with or without the addition of B4C, laser beam welding (LBW characteristics of the materials were investigated by focusing on the integrity of the welds. Optical microscopy (OM, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX were utilized for the characterization of the welds. Results show that Al/SiC MMCs produced by P/M can not be easily welded by LBW, but weldability characteristics of the material can be improved by the addition of B4C.

  13. Preparation and characteristics of epoxy/clay/B4C nanocomposite at high concentration of boron carbide for neutron shielding application

    Science.gov (United States)

    Kiani, Mohammad Amin; Ahmadi, Seyed Javad; Outokesh, Mohammad; Adeli, Ruhollah; Mohammadi, Aghil

    2017-12-01

    In this research, the characteristics of the prepared samples in epoxy matrix by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), as well as scanning electron microscope (SEM) are evaluated. Meanwhile, the obtained mechanical properties of the specimen are investigated. Thermogravimetric analysis (TGA) is also employed to evaluate the thermal degradation of manufactured nanocomposites. The thermal neutron absorption properties of nanocomposites containing 3 wt% of montmorillonite nanoclay (closite30B) have been studied experimentally, using an Am-Be point source. Mechanical tests reveal that the higher B4C concentrations, the more tensile strengths, but lower Young's modulus in all samples under consideration. TGA analysis also shows that thermal stability of the nanocomposite, increases in presence of B4C. Finally, neutron absorption analysis shows that increasing the B4C concentration leads to a nonlinearly build-up of neutron absorption cross section.

  14. Friction Stir Welding of Al-B4C Composite Fabricated by Accumulative Roll Bonding: Evaluation of Microstructure and Mechanical Behavior

    Science.gov (United States)

    Moradi Faradonbeh, Alireza; Shamanian, Morteza; Edris, Hossein; Paidar, Moslem; Bozkurt, Yahya

    2018-02-01

    In this investigation, friction stir welding (FSW) of Al-B4C composite fabricated by 10 cycles accumulative roll bonding was conducted. In order to investigate the influences of pin geometry on microstructure and mechanical properties, four different pin geometries (cylindrical, square, triangular and hexagonal) were selected. It was found that FSW parameters had a major effect on the fragmentation and distribution of reinforcement particles in stir zone. When the tool travel speed was increased, the distribution of B4C particles was become gradually uniform in the aluminum matrix. The effect of tool rotational speed on the peak temperature was determined to be greater than the tool travel speed. The attained data of tensile properties and microhardness tests showed that the tool travel speed had bilateral effect on the tensile strength. The maximum tensile joint efficiency was obtained as 238% for FSWed of Al-2%B4C composite to annealed base Al sheet.

  15. XCAMS: The compact "1"4C accelerator mass spectrometer extended for "1"0Be and "2"6Al at GNS Science, New Zealand

    International Nuclear Information System (INIS)

    Zondervan, A.; Hauser, T.M.; Kaiser, J.; Kitchen, R.L.; Turnbull, J.C.; West, J.G.

    2015-01-01

    Highlights: • We review the performance of a 0.5 MV AMS system for "1"0Be, "1"4C, and "2"6Al. • We identify the limiting factors to "1"0Be machine blank and detection efficiency. • We discuss an AMS data reduction method that accounts for non-Poisson uncertainty. - Abstract: A detailed description is given of the 0.5 MV tandem accelerator mass spectrometry (AMS) system for "1"0Be, "1"4C, "2"6Al, installed in early 2010 at GNS Science, New Zealand. Its design follows that of previously commissioned Compact "1"4C-only AMS (CAMS) systems based on the Pelletron tandem accelerator. The only basic departure from that design is an extension of the rare-isotope achromat with a 45° magnet and a two-anode gas-ionisation detector, to provide additional filtering for "1"0Be. Realised performance of the three AMS modes is discussed in terms of acceptance-test scores, "1"4C Poisson and non-Poisson errors, and "1"0Be detection limit and sensitivity. Operational details and hardware improvements, such as "1"0Be beam transport and particle detector setup, are highlighted. Statistics of repeat measurements of all graphitised "1"4C calibration cathodes since start-up show that 91% of their total uncertainty values are less than 0.3%, indicating that the rare-isotope beamline extension has not affected precision of "1"4C measurement. For "1"0Be, the limit of detection in terms of the isotopic abundance ratio "1"0Be/"9Be is 6 × 10"−"1"5 at at"−"1 and the total efficiency of counting atoms in the sample cathode is 1/8500 (0.012%).

  16. 3-O-sulfated heparan sulfate recognized by the antibody HS4C3 contributes [corrected] to the differentiation of mouse embryonic stem cells via fas signaling.

    Directory of Open Access Journals (Sweden)

    Kazumi Hirano

    Full Text Available Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs.

  17. 3-O-sulfated heparan sulfate recognized by the antibody HS4C3 contributes [corrected] to the differentiation of mouse embryonic stem cells via fas signaling.

    Science.gov (United States)

    Hirano, Kazumi; Sasaki, Norihiko; Ichimiya, Tomomi; Miura, Taichi; Van Kuppevelt, Toin H; Nishihara, Shoko

    2012-01-01

    Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs) is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS) chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs) and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH) of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs.

  18. Microstructure and electrical properties of slug-type resistors based on B4C and TiC - ESCA - XPS and impedance spectroscopy investigations

    International Nuclear Information System (INIS)

    Klimiec, E.; Zaraska, W.; Stobiecki, T.; Bak, W.; Starzyk, F.

    2000-01-01

    The microstructure and electrical properties of slug-type resistors based on B 4 C and TiC were investigated. From XPS measurements was deducted that Ti in TiO 2 is in intermediate oxidation number between Ti +4 and Ti +3 . The impedance of both type of resistors is independent on frequency in the range from 10 3 to 10 4 Hz, only very subtle differences above 10 4 Hz are observed. The metallic type conductivity in TiC and semiconducting in B 4 C was established. (author)

  19. Gamma ray shielding study of barium-bismuth-borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Reza; Yousefinia, Hassan [Nuclear Fuel Cycle Research School (NFCRS), Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Moghaddam, Alireza Khorrami [Radiology Department, Paramedical Faculty, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)

    2017-02-15

    In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and 10th value layer values of barium-bismuth-borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium-bismuth-borosilicate glasses have good gamma ray shielding properties from the shielding point of view.

  20. Gamma Ray Shielding Study of Barium–Bismuth–Borosilicate Glasses as Transparent Shielding Materials using MCNP-4C Code, XCOM Program, and Available Experimental Data

    Directory of Open Access Journals (Sweden)

    Reza Bagheri

    2017-02-01

    Full Text Available In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and 10th value layer values of barium–bismuth–borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium–bismuth–borosilicate glasses have good gamma ray shielding properties from the shielding point of view.

  1. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian; Song, Xin; Thomas, Simil; Kan, Zhipeng; Cruciani, Federico; Laquai, Fré dé ric; Bredas, Jean-Luc; Beaujuge, Pierre

    2017-01-01

    limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell

  2. The effect of strontium on the microstructure, porosity and tensile properties of A356-10%B4C cast composite

    International Nuclear Information System (INIS)

    Lashgari, H.R.; Emamy, M.; Razaghian, A.; Najimi, A.A.

    2009-01-01

    This study was undertaken to investigate the effect of different concentrations of strontium (0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5% and 1%) on the microstructure, porosity content and tensile properties of A356-10%B 4 C particulate metal matrix composite. In this work, the matrix alloy and composite were characterized by optical microscope, scanning electron microscope equipped with EDS and XRD. The composite ingots were made by stir casting process. The results showed that the addition of 0.03%Sr strongly modified silicon eutectic phase in A356 monolithic alloy, but 0.5%Sr was needed to complete the modification of A356-10%B 4 C composite. Results also demonstrated that Sr addition increases shrinkage porosity and generates new intermetallics in the microstructure. Further investigations on tensile tests revealed optimum strontium levels for improving tensile properties. In the point of fracture behavior of the composite, modified specimens with 0.2%Sr showed broken B 4 C particles and acceptable cohesion between B 4 C and matrix.

  3. Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356-10%B4C cast composites

    International Nuclear Information System (INIS)

    Lashgari, H.R.; Zangeneh, Sh.; Shahmir, H.; Saghafi, M.; Emamy, M.

    2010-01-01

    In present paper, an attempt was made to examine the influence of T6 heat treatment (solution treatment at 540 o C for 5 h, quenching in hot water and artificial aging at 170 o C for 8 h) on the microstructure, tensile properties and dry sliding wear behavior of A356-10%B 4 C cast composites. The composite ingots were made by stir casting process. In this work, the matrix alloy and composite were characterized by optical microscope, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, tensile tests and conventional pin-on-disk experiment. The obtained results showed that in Al-B 4 C composite, T6 treatment was a dominant factor on the hardness improvement in comparison with hardness increasing due to the addition of B 4 C hard particles. In addition, T6 treatment can contribute to the strong bonding between B 4 C and matrix alloy and also it can change eutectic silicon morphology from acicular to near spherical. This case can lead to higher strength and wear properties of heat treated metal matrix composites in comparison with unheat treated state. Observation of worn surfaces indicated detachment of mechanically mixed layer which can primarily due to the delamination wear mechanism under higher applied load.

  4. Coatings synthesised by the pulsed laser ablation of a B{sub 4}C/W{sub 2}B{sub 5} ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Tadadjeu Sokeng, I., E-mail: ifriky@tlabs.ac.za [Department of Electrical, Electronics and Computer Engineering, French South African Institute of Technology/Cape Peninsula University of Technology, Bellville campus, PO Box 1906, Bellville, 7530 (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Ngom, B.D. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Laboratoire de Photonique et de Nanofrabrication, Groupes de physique du Solide et Sciences des Matriaux (GPSSM), Facult des sciences et Techniques Universit Cheikh Anta Diop de Dakar (UCAD), B.P. 25114 Dakar, Fann Dakar (Senegal); Msimanga, M. [iThemba LABS Gauten, Private Bag 11, WITS 2050 Johannesburg (South Africa); Nuru, Z.Y.; Kotsedi, L.; Maaza, M. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Van Zyl, R.R. [Department of Electrical, Electronics and Computer Engineering, French South African Institute of Technology/Cape Peninsula University of Technology, Bellville campus, PO Box 1906, Bellville, 7530 (South Africa)

    2015-10-30

    A pellet of B{sub 4}C/W{sub 2}B{sub 5} ceramic composite was characterised and subjected to pulsed laser ablation for the deposition of coatings on corning glass substrates. We reports an attempt to produce coatings from B{sub 4}C/W{sub 2}B{sub 5} by pulsed laser deposition (PLD). The thermal, electric and mechanical properties of B{sub 4}C/W{sub 2}B{sub 5} suggest that coatings synthesised from this composite can be used for space applications. The samples were characterised using X-ray Diffraction, Atomic Force Microscopy and Heavy Ion Elastic Recoil Detection Analysis. The characterisation of the samples deposited on soda lime corning glass showed that the laser energy used in this PLD was enough to obtain non amorphous coatings formed by some alteration of the tungsten carbide crystal lattice at room temperature, and that there was no stoichiometry transfer as would be expected from PLD. The coating also showed space applicable features worth investigating. - Highlights: • B{sub 4}C/W{sub 2}B{sub 5} ceramic composite was ablated for deposition on corning glass subtrates. • Non-amorphous coating was obtained at room temperature. • There was no stoichiometry transfer as would be expected from Pulsed Laser Deposition.

  5. Effect of synthesizing method on the properties of LiFePO4/C composite for rechargeable lithium-ion batteries

    Science.gov (United States)

    Yoon, Man-Soon; Islam, Mobinul; Park, Young Min; Ur, Soon-Chul

    2013-03-01

    Olivine-type LiFePO4/C cathode materials are fabricated with FePO4 powders that are pre-synthesized by two different processes from iron chloride solution. Process I is a modified precipitation method which is implemented by the pH control of a solution using NH4OH to form FePO4 precipitates at room temperature. Process II is a conventional precipitation method, of which H3PO4 (85%) solution is gradually added to a FeCl3 solution during the process to maintain a designated mole ratio. The solution is subsequently aged at 90°C in a water bath until FePO4 precipitates appear. In order to synthesize LiFePO4/C composites, each batch of FePO4 powders is then mixed with pre-milled lithium carbonate and glucose (8 wt. %) as a carbon source in a ball-mill. The structural characteristics of both LiFePO4/C composites fabricated using iron phospates from two different routes have been examined employing XRD and SEM. The modified precipitation process is considered to be a relatively simple and effective process for the preparation of LiFePO4/C composites owing to their excellent electrochemical properties and rate capabilities.

  6. Monodisperse porous LiFePO4/C microspheres derived by microwave-assisted hydrothermal process combined with carbothermal reduction for high power lithium-ion batteries

    Science.gov (United States)

    Chen, Rongrong; Wu, Yixiong; Kong, Xiang Yang

    2014-07-01

    A microwave-assisted hydrothermal approach combined with carbothermal reduction has been developed to synthesize monodisperse porous LiFePO4/C microspheres, which possess the diameter range of 1.0-1.5 μm, high tap density of ∼1.3 g cm-3, and mesoporous characteristic with Brunauer-Emmett-Teller (BET) surface area of 30.6 m2 g-1. The obtained microspheres show meatball-like morphology aggregated by the carbon-coated LiFePO4 nanoparticles. The electrochemical impedance spectra (EIS) results indicate that carbon coating can effectively enhance both of the electronic and ionic conductivities for LiFePO4/C microspheres. The Li-ion diffusion coefficient of the LiFePO4/C microspheres calculated from the cyclic voltammetry (CV) curves is ∼6.25 × 10-9 cm2 s-1. The electrochemical performance can achieve about 100 and 90 mAh g-1 at 5C and 10C charge/discharge rates, respectively. As cathode material, the as-prepared LiFePO4/C microspheres show excellent rate capability and cycle stability, promising for high power lithium-ion batteries.

  7. Thieno[3,4-c]pyrrole-4,6-dione-3,4-difluorothiophene Polymer Acceptors for Efficient All-Polymer Bulk Heterojunction Solar Cells

    KAUST Repository

    Liu, Shengjian

    2016-09-16

    Branched-alkyl-substituted poly(thieno[3,4-c]pyrrole-4,6-dione-alt-3,4-difluorothiophene) (PTPD[2F]T) can be used as a polymer acceptor in bulk heterojunction (BHJ) solar cells with a low-band-gap polymer donor (PCE10) commonly used with fullerenes. The

  8. Convenient synthesis of magnetically recyclable Fe{sub 3}O{sub 4}@C@CdS photocatalysts by depositing CdS nanocrystals on carbonized ferrocene

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan [Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Xie, Jianjian [Department of Materials Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Zhang, Yong; Qiao, Ru [Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Li, Sheng [Department of Materials Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Li, Zhengquan, E-mail: zqli@zjnu.edu.cn [Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Department of Materials Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China)

    2015-10-15

    Development of magnetic visible-light-driven photocatalysts is desirable to the practical application of photocatalyts for collection and recycling use. Here we present a facile approach to synthesize Fe{sub 3}O{sub 4}@C@CdS magnetic photocatalysts which can avoid multi-step preparation process. Through one-step solvothermal carbonization of ferrocene, the produced carbon-coated Fe{sub 3}O{sub 4} clusters can serve as both magnetic cores and deposition substrates for in situ generating crystalline CdS nanocrystals on them by rapid microwave irradiation. The prepared Fe{sub 3}O{sub 4}@C@CdS nanoparticles exhibit a uniform core–shell structure and display good photocatalytic activity and recyclability in the degradation of organic dyes. These magnetic photocatalysts may find potential application in wastewater treatment for the future environment remedy. - Highlights: • A rapid strategy is presented to obtain multifunctional core–shell nanostructures. • Magnetic visible-light-driven Fe{sub 3}O{sub 4}@C@CdS nanophotocatalysts are synthesized. • Carbonized ferrocene can provide both magnetic cores and good deposition substrate. • Photocatalytic and recyclable properties of Fe{sub 3}O{sub 4}@C@CdS nanoparticles are explored.

  9. Syntheses of two potential dopamine D{sub 4} receptor radioligands: {sup 18}F labelled chromeno[3,4-c]pyridin-5-ones

    Energy Technology Data Exchange (ETDEWEB)

    Gu-Cai Li; Duan-Zhi Yin; Ming-Wei Wang; Deng-Feng Cheng; Yong-Xian Wang [Research Center of Radiopharmaceuticals, Shanghai Inst. of Applied Physics, Chinese Academy of Sciences, Shanghai, SH (China)

    2006-07-01

    The dopamine D{sub 4} receptor is hypothesized to relate with the pathophysiology and pharmacotherapy of schizophrenia while its level in brain regions is much lower and to date no suitable tracer is available for the study of D{sub 4} receptor in vivo. Therefore, selective imaging agents for the D{sub 4} subtype are badly needed. Based on the structure-activity analysis of chromeno[3,4-c]pyridin-5-ones as dopamine D{sub 4} receptor ligands, two fluorine-18 labelled chromeno[3,4-c] pyridin-5-one derivatives, 3-(4-[{sup 18}F]fluorobenzyl)-8-hydroxy-1,2,3,4-tetrahydrochromeno[3,4-c]pyridin-5-one and 3-(4-[{sup 18}F]fluorobenzyl)-8,9-dimethoxy-1,2,3,4-tetrahydrochromeno[3,4-c]pyridin-5-one were synthesized through a two-step one-pot method. Their radiochemical yields were around 19.7% (decay-corrected) and radiochemical purities were higher than 95% with specific activities of about 120 GBq/{mu}mol. (orig.)

  10. Low-Temperature Oxidation of H2/CH4/C2H6/Ethanol/DME: Experiments and Modelling at High Pressures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob M.; Glarborg, Peter

    2015-01-01

    The main aim of this work was to measure the oxidation characteristics of H2, CH4, C2H6, DME,and ethanol at high pressures (20—100 bar) and low to intermediate temperatures (450—900K) in a laminar flow reactor. Furthermore, a detailed chemical kinetic model was sought to address the oxidation of ...

  11. Eerstejaars zicht geven op hun latere beroep: herontwerp van propedeuse Facility management met behulp van het 4C-ID model

    NARCIS (Netherlands)

    Hoogveld, Bert; Steinen, Hennie

    2010-01-01

    Redesign of preparatory higher professional bachelor curriculum facility management applying 4C-ID instructional design methodology. Reference please cite as: Hoogveld, A. W. M., & Steinen, H. (2008). Eerstejaars zicht geven op hun latere beroep: herontwerp van propedeuse Facility management met

  12. Rational design and synthesis of yolk-shell ZnGa2O4@C nanostructure with enhanced lithium storage properties

    Science.gov (United States)

    Han, Nao; Xia, Yuguo; Han, Yanyang; Jiao, Xiuling; Chen, Dairong

    2018-03-01

    The ability to create hybrid nanostructure with synergistic effect and confined morphology to achieve high performance and long-term stability is high desirable in lithium ion batteries. Although transition metal oxides as anode material reveal high theoretical capacities, the significant volume changes during repeated lithium insertion and extraction cause pulverization of electrode materials, resulting in rapid fade in capacity. Herein, yolk-shell nanostructure of ZnGa2O4 encapsulated by amorphous carbon is rationally designed and synthesized through two-step surface coating followed by thermal treatment and etching process. It is noteworthy that ZnGa2O4@C with yolk-shell structure is superior to pristine ZnGa2O4 and ZnGa2O4@C with core-shell structure in term of lithium storage. The stable reversible capacity of yolk-shell ZnGa2O4@C can be retained at 657.2 mAh g-1 at current density of 1 A g-1 after completion of 300 cycles, which also reveals superior rate performance. The appropriate carbon shell and void space involved in the yolk-shell structure are considered to be the crucial factor in accommodating volume expansion as well as preserving the structural integrity of yolk-shell ZnGa2O4@C.

  13. Analysis of B4C influences on thermodynamic properties and phase separation of molten corium with ionic liquid U-Zr-Fe-O-B-C-FPs database

    International Nuclear Information System (INIS)

    Fukasawa, Masanori; Tamura, Shigeyuki; Saito, Masaki

    2009-01-01

    Boron carbide influences on thermodynamic properties and phase separation of molten corium such as liquidus temperature were estimated with our U-Zr-Fe-O-B-C-FPs thermodynamic database. The liquidus temperature of the oxide for the typical corium was estimated to increase by a hundred degrees with B 4 C addition when the corium included up to 10 wt% Fe. On the other hand, the liquidus temperature was hardly changed when the corium included 50 wt% Fe. The interaction temperature between the steel and the corium with B 4 C was estimated at 1130 K. We define the interaction temperature as the lowest temperature where the solid Fe and the liquid phase of a corium are in equilibrium, at which interactions such as microstructure change of the vessel were observed in test studies. Although it is 180 K lower than that without B 4 C, the estimated temperature is still over 200 K higher than the criterion temperature where the vessel loses its structural strength, which has been used in the feasibility evaluation of the in-vessel retention. Other thermodynamic influences of B 4 C were also estimated as not having a negative impact on the in-vessel retention. (author)

  14. Synthesis of carbon-coated magnetic nanocomposite (Fe3O4@C) and its application for sulfonamide antibiotics removal from water.

    Science.gov (United States)

    Bao, Xiaolei; Qiang, Zhimin; Chang, Jih-Hsing; Ben, Weiwei; Qu, Jiuhui

    2014-05-01

    The occurrence of antibiotics in the environment has recently raised serious concerns regarding their potential threat to human health and aquatic ecosystem. A new magnetic nanocomposite, Fe3O4@C (Fe3O4 coated with carbon), was synthesized, characterized, and then applied to remove five commonly-used sulfonamides (SAs) from water. Due to its combinational merits of the outer functionalized carbon shell and the inner magnetite core, Fe3O4@C exhibited a high adsorption affinity for selected SAs and a fast magnetic separability. The adsorption kinetics of SAs on Fe3O4@C could be expressed by the pseudo second-order model. The adsorption isotherms were fitted well with the Dual-mode model, revealing that the adsorption process consisted of an initial partitioning stage and a subsequent hole-filling stage. Solution pH exerted a strong impact on the adsorption process with the maximum removal efficiencies (74% to 96%) obtained at pH 4.8 for all selected SAs. Electrostatic force and hydrogen bonding were two major driving forces for adsorption, and electron-donor-acceptor interactions may also make a certain contribution. Because the synthesized Fe3O4@C showed comprehensive advantages of high adsorptivity, fast magnetic separability, and prominent reusability, it has potential applications in water treatment. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  15. A novel method for preparing pomegranate-structured FePO4/C composite materials as cathode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Hao, Guan-nan; Zhang, Hao; Chen, Xiao-Hong; Cao, Gao-Ping; Yang, Yusheng

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► We designed and synthesized a pomegranate-structured FePO 4 /C composite. ► We used a combination of electrospinning and solid-state reaction for preparation. ► We showed how the performance of pomegranate-structured FePO 4 is highly enhanced. -- Abstract: A pomegranate-structured FePO 4 /C composite was synthesized via a combination of electrospinning and high temperature reaction using micron-level FePO 4 and polyacrylonitrile (PAN). Systematic studies on synthesis, modification, and characterization of FePO 4 /C composites were conducted. The FePO 4 /C composites delivered a specific discharge capacity of 109 mAh g −1 at 0.2 C and 39 mAh g −1 at 10 C, which were comparable with the reported nanometer-level FePO 4 . We demonstrated that the three-dimensional net-like structure covered by porous carbon layers could highly enhance the electrochemical performance of FePO 4 .

  16. A novel method for preparing pomegranate-structured FePO{sub 4}/C composite materials as cathode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Guan-nan [Research Institute of Chemical Defense, Beijing 100191 (China); State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Hao, E-mail: dr.h.zhang@hotmail.com [Research Institute of Chemical Defense, Beijing 100191 (China); Chen, Xiao-Hong [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Cao, Gao-Ping; Yang, Yusheng [Research Institute of Chemical Defense, Beijing 100191 (China)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► We designed and synthesized a pomegranate-structured FePO{sub 4}/C composite. ► We used a combination of electrospinning and solid-state reaction for preparation. ► We showed how the performance of pomegranate-structured FePO{sub 4} is highly enhanced. -- Abstract: A pomegranate-structured FePO{sub 4}/C composite was synthesized via a combination of electrospinning and high temperature reaction using micron-level FePO{sub 4} and polyacrylonitrile (PAN). Systematic studies on synthesis, modification, and characterization of FePO{sub 4}/C composites were conducted. The FePO{sub 4}/C composites delivered a specific discharge capacity of 109 mAh g{sup −1} at 0.2 C and 39 mAh g{sup −1} at 10 C, which were comparable with the reported nanometer-level FePO{sub 4}. We demonstrated that the three-dimensional net-like structure covered by porous carbon layers could highly enhance the electrochemical performance of FePO{sub 4}.

  17. Hydrothermal synthesis of LiMn{sub 2}O{sub 4}/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Yue Hongjun [State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Huang Xingkang [State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Fujian Nanping Nanfu Battery Company, Limited, Nanping 353000 (China); Lv Dongping [State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang Yong [State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)], E-mail: yyang@xmu.edu.cn

    2009-09-30

    A spinel LiMn{sub 2}O{sub 4}/C composite was synthesized by hydrothermally treating a precursor of manganese oxide/carbon (MO/C) composite in 0.1 M LiOH solution at 180 deg. C for 24 h, where the precursor was prepared by reducing potassium permanganate with acetylene black (AB). The AB in the precursor serves as the reducing agent to synthesize the LiMn{sub 2}O{sub 4} during the hydrothermal process; the excess of AB remains in the hydrothermal product, forming the LiMn{sub 2}O{sub 4}/C composite, where the remaining AB helps to improve the electronic conductivity of the composite. The contact between LiMn{sub 2}O{sub 4} and C in our composite is better than that in the physically mixed LiMn{sub 2}O{sub 4}/C material. The electrochemical performance of the LiMn{sub 2}O{sub 4}/C composite was investigated; the material delivered a high capacity of 83 mAh g{sup -1} and remained 92% of its initial capacity after 200 cycles at a current density of 2 A g{sup -1}, indicating its excellent rate capability as well as good cyclic performance.

  18. Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability.

    Science.gov (United States)

    Zhang, Qian; Huang, Shao-Zhuan; Jin, Jun; Liu, Jing; Li, Yu; Wang, Hong-En; Chen, Li-Hua; Wang, Bin-Jie; Su, Bao-Lian

    2016-05-16

    A highly crystalline three dimensional (3D) bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite constructed by nanoparticles in the range of 50~100 nm via a rapid microwave assisted solvothermal process followed by carbon coating have been synthesized as cathode material for high performance lithium-ion batteries. The abundant 3D macropores allow better penetration of electrolyte to promote Li(+) diffusion, the mesopores provide more electrochemical reaction sites and the carbon layers outside LiFePO4 nanoparticles increase the electrical conductivity, thus ultimately facilitating reverse reaction of Fe(3+) to Fe(2+) and alleviating electrode polarization. In addition, the particle size in nanoscale can provide short diffusion lengths for the Li(+) intercalation-deintercalation. As a result, the 3D macro-mesoporous nanosized LiFePO4/C electrode exhibits excellent rate capability (129.1 mA h/g at 2 C; 110.9 mA h/g at 10 C) and cycling stability (87.2% capacity retention at 2 C after 1000 cycles, 76.3% at 5 C after 500 cycles and 87.8% at 10 C after 500 cycles, respectively), which are much better than many reported LiFePO4/C structures. Our demonstration here offers the opportunity to develop nanoscaled hierarchically porous LiFePO4/C structures for high performance lithium-ion batteries through microwave assisted solvothermal method.

  19. Fabrication, structure, and properties of Fe{sub 3}O{sub 4}-C encapsulated with YVO{sub 4}:Eu{sup 3+} composites

    Energy Technology Data Exchange (ETDEWEB)

    Shi Jianhui; Tong Lizhu; Liu Deming; Yang Hua, E-mail: huayang86@sina.com [Jilin University, College of Chemistry (China)

    2012-03-15

    The use of carbon shells offers many advantages in surface coating or surface modification due to their surface with activated carboxyl and carbonyl groups. In this study, the Fe{sub 3}O{sub 4}-C-YVO{sub 4}:Eu{sup 3+} composites were prepared through a simple sol-gel process. Reactive carbon interlayer was introduced as a key component, which separates lanthanide-based luminescent component from the magnetite, more importantly, it effectively prevent oxidation of the Fe{sub 3}O{sub 4} core during the whole preparation process. The morphology, structure, magnetic, and luminescent properties of the composites were characterized by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction, X-ray photoelectron spectra, VSM, and photoluminescent spectrophotometer. As a result, the Fe{sub 3}O{sub 4}-C/YVO{sub 4}:Eu{sup 3+} composites with well-crystallized and core-shell structure were prepared and the YVO{sub 4}:Eu{sup 3+} luminescent layer decorating the Fe{sub 3}O{sub 4}-C core-shell microspheres are about 10 nm. In addition, the Fe{sub 3}O{sub 4}-C-YVO{sub 4}:Eu{sup 3+} composites have the excellent magnetic and luminescent properties, which allow them great potential for bioapplications such as magnetic bioseparation, magnetic resonance imaging, and drug/gene delivery.

  20. Facile preparation of magnetic mesoporous Fe{sub 3}O{sub 4}/C/Cu composites as high performance Fenton-like catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Keyan; Zhao, Yongqin [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Janik, Michael J. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Song, Chunshan [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Guo, Xinwen, E-mail: guoxw@dlut.edu.cn [State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2017-02-28

    Highlights: • Fe-Cu composites with different compositions were prepared by calcining tartrates. • Magnetic mesoporous Fe{sub 3}O{sub 4}/C/Cu was obtained by calcining tartrate under N{sub 2}. • Fe{sub 3}O{sub 4}/C/Cu exhibits excellent photo-Fenton catalytic activity and reusability. • The activity is due to the synergistic and photo-reduction effects of Fe and Cu. - Abstract: Fe-Cu composites with different compositions and morphologies were synthesized by a hydrothermal method combined with precursor thermal transformation. γ-Fe{sub 2}O{sub 3}/CuO and α-Fe{sub 2}O{sub 3}/CuO were obtained by calcining the Fe and Cu tartrates under air atmosphere at 350 °C and 500 °C, respectively, while Fe{sub 3}O{sub 4}/C/Cu was obtained by calcining the tartrate precursor under N{sub 2} atmosphere at 500 °C. The Fe{sub 3}O{sub 4}/C/Cu composite possessed mesoporous structure and large surface area up to 133 m{sup 2} g{sup −1}. The Fenton catalytic performance of Fe{sub 3}O{sub 4}/C/Cu composite was closely related to the Fe/Cu molar ratio, and only proper amounts of Fe and Cu exhibited a synergistic enhancement in Fenton catalytic activity. Cu inclusion reduced Fe{sup 3+} to Fe{sup 2+}, which accelerated the Fe{sup 3+}/Fe{sup 2+} cycles and favored H{sub 2}O{sub 2} decomposition to produce more hydroxyl radicals for methylene blue (MB) oxidation. Due to the photo-reduction of Fe{sup 3+} and Cu{sup 2+}, the Fenton catalytic performance was greatly improved when amending with visible light irradiation in the Fe{sub 3}O{sub 4}/C/Cu-H{sub 2}O{sub 2} system, and MB (100 mg L{sup −1}) was nearly removed within 60 min. The Fe{sub 3}O{sub 4}/C/Cu composite showed good recyclability and could be conveniently separated by an applied magnetic field. Compared with conventional methods for mesoporous composite construction, the thermolysis method using mixed metal tartrates as precursors has the advantages of easy preparation and low cost. This strategy provides a facile

  1. Synthesis and structural stability of Cr-doped Li2MnSiO4/C cathode materials by solid-state method

    Science.gov (United States)

    Cheng, Hong-Mei; Zhao, Shi-Xi; Wu, Xia; Zhao, Jian-Wei; Wei, Lei; Nan, Ce-Wen

    2018-03-01

    The crystal structure of the Li2MnSiO4 cathode material would collapse during the charge and discharge process because of that the Mn-O coordination polyhedron changed from [MnO4] into [MnO6] in the process of Mn+2 to Mn+4, but the Cr element could remain [CrO4] crystal ligand from Cr+2 to Cr+4, so Cr element substitution was used to improve the structural stability of the Li2MnSiO4 cathode material. In this work, Li2Mn1-xCrxSiO4/C nanocomposites were synthesized by solid-state method. XRD, SEM and TEM observations show that the as-prepared Li2Mn1-xCrxSiO4/C materials presents an orthorhombic crystal structure (S.G. Pmn21), the particle size of Li2Mn1-xCrxSiO4/C powder ranges from 50 to 100 nm. The XRD and XPS results indicate that Cr+2 is successfully doped into Li2MnSiO4 lattice and has well compatibility with Li2MnSiO4. The electrochemical results display that Li2Mn92.5%Cr7.5%SiO4/C exhibits significantly enhanced cycle stability and discharge capability. The initial discharge capacity of the Li2Mn92.5%Cr7.5%SiO4/C sample is 255 mAh g-1, and the discharge capacity was still about 60 mAh g-1 after 50 cycles. Furthermore, the XRD patterns, TEM images and Raman analysis reveal that the Cr doping enhances the structural stability of Li2Mn1-xCrxSiO4/C and improves the electrochemical activity of the cathode. Thus, the Li2Mn92.5%Cr7.5%SiO4/C have shown potential applications for lithium ion batteries.

  2. Synthesis and electrochemical performance of Li2FeSiO4/C/carbon nanosphere composite cathode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Yang, Jinlong; Kang, Xiaochun; Hu, Lin; Gong, Xue; He, Daping; Peng, Tao; Mu, Shichun

    2013-01-01

    Highlights: •The Li 2 FeSiO 4 /C/CNS was prepared by effective double-carbon composite route. •The CNS as the conductivity belt connects the Li 2 FeSiO 4 /C particles. •The samples have a high capacity and excellent cyclic and rate performance. -- Abstract: Li 2 FeSiO 4 /C/carbon nanosphere (CNS) composites as cathode materials for lithium-ion batteries were synthesized by a simple hydro-chemical method. The double-carbon structural design of glucose pyrolysis-carbon (C) and CNS improved electrochemical performance of the composite where the CNS can build conductivity belts to connect the Li 2 FeSiO 4 /C particles and to favor electronic transmission. The exchange current density and the diffusion coefficient of lithium ions with the composite were 0.208 mA cm −2 and 1.06E−11 cm 2 S −1 , respectively, which were much larger than that of conventional Li 2 FeSiO 4 /C composite cathode materials (i = 0.131 mA cm −2 , D Li = 4.69E−12 cm 2 S −1 ). The electrochemical test results showed that the discharge capacity of 164.7 mA h g −1 could be obtained, and especially, after 60 cycles, 98.4% of the initial discharge capacity remained at 0.1 C of galvanostatic discharge in the potential range of 1.5–4.8 V (vs. Li/Li + ). In addition, the discharge capacity of 92.4 mA h g −1 at 5 C was easily recovered to 159.8 mA h g −1 at 0.1 C

  3. Superior performance of LiFePO{sub 4}/C with porous structure synthesized by an in situ polymerization restriction method for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian, E-mail: chemcj@126.com [Department of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Zhao, Na [Department of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Li, Guo-Dong, E-mail: lgd@jlu.edu.cn [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Guo, Fei-Fan [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Wang, Xiaofeng; Jia, Tiekun; Zhao, Junwei; Zhao, Yinggang; Wang, Xiaolin; Wan, Lin [Department of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023 (China)

    2016-09-01

    A porous LiFePO{sub 4}/C nanocomposite was synthesized by an in situ polymerization restriction method. The obtained product possessed higher surface area and abundant pore structure. The physical and electrochemical properties of the LiFePO{sub 4}/C composite were investigated by X-ray diffraction, thermogravimetry analysis, nitrogen adsorption–desorption measurement, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and electrochemical measurements. Electrochemical test indicated that the discharge capacity of LiFePO{sub 4}/C was as high as 156.1 mAh g{sup −1} in the first cycle at 0.5C and 145.2 mAh g{sup −1} after 50 cycles. The initial discharge capacities of the electrodes exhibited 126.3 mAh g{sup −1}, 108.6 mAh g{sup −1}, 82.5 mAh g{sup −1} and 62.8 mAh g{sup −1} at the high rates of 5C, 10C, 20C and 50C. The discharge capacity retentions after 500 cycles were 94.4%, 90.6%, 87.8% and 90.9% of the initial discharge capacity at rates of 5C, 10C, 20C and 50C, respectively. - Highlights: • The LiFePO{sub 4}/C composite was prepared by an in situ polymerization restriction method. • The crystallite growth of LiFePO{sub 4} can be effectively restricted and conductivity can be improved. • The LiFePO{sub 4}/C electrode shows excellent rate capability and cyclic performance.

  4. Dry sliding tribological behavior and mechanical properties of Al2024–5 wt.%B4C nanocomposite produced by mechanical milling and hot extrusion

    International Nuclear Information System (INIS)

    Abdollahi, Alireza; Alizadeh, Ali; Baharvandi, Hamid Reza

    2014-01-01

    Highlights: • Nanostructured Al2024 and Al2024–B 4 C nanocomposite prepared via mechanical milling. • The milled powders formed by hot pressing and then exposed to hot extrusion. • Tribological behavior and mechanical properties of samples were investigated. • Al2024–B 4 C nanocomposite showed a better wear resistance and mechanical properties. - Abstract: In this paper, tribological behavior and mechanical properties of nanostructured Al2024 alloy produced by mechanical milling and hot extrusion were investigated before and after adding B 4 C particles. Mechanical milling was used to synthesize the nanostructured Al2024 in attrition mill under argon atmosphere up to 50 h. A similar process was used to produce Al2024–5 wt.%B 4 C composite powder. The milled powders were formed by hot pressing and then were exposed to hot extrusion in 750 °C with extrusion ratio of 10:1. To study the microstructure of milled powders and hot extruded samples, optical microscopy, transmission electron microscopy and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS) were used. The mechanical properties of samples were also compared together using tension, compression and hardness tests. The wear properties of samples were studied using pin-on-disk apparatus under a 20 N load. The results show that mechanical milling decreases the size of aluminum matrix grains to less than 100 nm. The results of mechanical and wear tests also indicate that mechanical milling and adding B 4 C particles increase strength, hardness and wear resistance of Al2024 and decrease its ductility remarkably

  5. The low temperature electrochemical performances of LiFePO4/C/graphene nanofiber with 3D-bridge network structure

    International Nuclear Information System (INIS)

    Xie, Dong; Cai, Guanglan; Liu, Zhichao; Guo, Ruisong; Sun, Dandan; Zhang, Chao; Wan, Yizao; Peng, Jianhong; Jiang, Hong

    2016-01-01

    Highlights: • Highly conductive graphene nanofibers were introduced into the LiFePO 4 /C matrix. • Graphene nanofiber modification improved the discharge capacity at low temperatures. • Graphene nanofiber reduced the polarization of the electrodes at low temperatures. • Modified electrodes exhibited decreased charge-transfer resistance. • Graphene nanofiber modified samples exhibited higher diffusion coefficient of lithium ions. - Abstract: Three-dimensionally assembled LiFePO 4 /C/graphene nanofiber composites were successfully prepared via a suspension mixing method followed by heat-treatment at 400 °C. A faster electron transfer, lower electrochemical polarization as well as higher diffusion coefficient of Li + are obtained with the assistance of graphene nanofibers. The 5 wt% graphene nanofibers modified electrode (G-5) delivers the best electrochemical kinetics including the lowest charge transfer resistance and highest diffusion coefficient of Li + at 0 °C and −20 °C, respectively. Likewise, the G-5 exhibits the highest charge-discharge capability and the most stable cycling performance at low operation temperatures compared with those of LiFePO 4 /C, 3 wt% and 7 wt% graphene nanofibers modified LiFePO 4 /C (G-3 and G-7) composites. The G-5 electrode shows a capacity of 92.8 mAh g −1 with 92.0% capacity retention after 200 cycles at 1C at −20 °C. The reasons for the significant improvement of the low operation temperatures electrochemical performances can be ascribed to the enhanced conductivity and reduced agglomeration of pristine particles due to the introduction of graphene nanofibers. These excellent low temperature performances show that graphene nanofibers modified LiFePO 4 /C electrodes are promising cathode candidates for lithium-ion batteries applications at low temperatures.

  6. Calcium cation enhanced cathode/electrolyte interface property of Li2FeSiO4/C cathode for lithium-ion batteries with long-cycling life

    Science.gov (United States)

    Qu, Long; Li, Mingtao; Tian, Xiaolu; Liu, Pei; Yi, Yikun; Yang, Bolun

    2018-03-01

    Currently, the cycle performance at low rate is one of the most critical factor for realizing practical applications of Li2FeSiO4/C as a cathode of the lithium-ion batteries. To meet this challenge, calcium (Ca)-doped Li2FeSiO4/C is prepared by using the sol-gel method with soluble Li, Fe, Si and Ca sources. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy measurements are carried out to determine the crystal structures, morphologies, particle sizes and chemical valence states of the resulting products. Rietveld refinement confirms that Ca-doped Li2FeSiO4 has a monoclinic P21/n structure and that a Ca cation occupies the Fe site in the Li2FeSiO4 lattice. The grain size of Ca-doped Li2FeSiO4 is approximately 20 nm and the nanoparticles are interconnected tightly with amorphous carbon layer. As a cathode material for the lithium-ion batteries, Li2Fe0.97Ca0.03SiO4/C delivers a high discharge capacity of 186 mAh g-1 at a 0.5 C rate. Its capacity retention after the 100th cycle reaches 87%, which increases by 25 percentage points compared with Li2FeSiO4/C. The Li2Fe0.97Ca0.03SiO4/C cathode exhibits good rate performance, with corresponding discharge capacities of 170, 157, 144 and 117 mAh g-1 at 1 C, 2 C, 5 C and 10 C rates, respectively. In summary, the improvement of the electrochemical performance can be attributed to a coefficient of the strengthened crystal structure stability during Li+ deintercalation-intercalation and restrained side reactions between electrode and electrolyte.

  7. Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Yang; Zhang, Min; Li, Ying; Hu, Yemin; Zhu, Mingyuan; Jin, Hongming; Li, Wenxian

    2015-01-01

    Graphical abstract: Nano-sized LiFePO4/C composite with core-shell structure was fabricated via a well-designed approach as cathode material forlithium ion battery. The nano-sized LiFePO4/C composite with whole carbon shell coating layer showed an excellent electrical performance. - Abstract: Nano-sized composite with LiFePO 4 -core and carbon-shell was synthesized via a facile route followed by heat treatment at 650 °C. X-ray diffraction (XRD) shows that the core is well crystallized LiFePO 4 . The electron microscopy (SEM and TEM) observations show that the core-shell structured LiFePO 4 /C composite coating with whole carbon shell layer of ∼2.8 nm, possesses a specific surface area of 51 m 2 g −1 . As cathode material for lithium ion battery, the core-shell LiFePO 4 /C composite exhibits high initial capacity of 161 mAh g −1 at 0.1 C, excellent high-rate discharge capacity of 135 mAh g −1 at 5 C and perfect cycling retention of 99.6% at 100 th cycle. All these promising results should be contributed to the core-shell nanostructure which prevents collapse of the particle structure in the long-term charge and discharge cycles, as well as the large surface area of the nano-sized LiFePO 4 /C composite which enhances the electronic conductivity and shortens the distance of lithium ion diffusion

  8. Development and characterization of La/B{sub 4}C multilayer systems as X-ray mirrors in the energy range 100-200 eV; Entwicklung und Charakterisierung von La/B{sub 4}C-Multischichtsystemen als Roentgenspiegel im Energiebereich 100-200 eV

    Energy Technology Data Exchange (ETDEWEB)

    Hendel, Stefan

    2009-01-15

    The main topics of this thesis are the development and characterization of La/B{sub 4}C multilayer systems. For this these materials were evaluated and characterized for the applied electron-beam evaporation. For the monitoring of the evaporation process two separate in-situ layer thicknesses were available. For periodic multilayer systems the X-ray reflectometry used for Mo/Si multilayers was accepted. Because of the change from Mo/Si on La/B{sub 4}C the driving of the evaporation process had to be material-conditionedly further developed and optimized. For the fabrication of aperiodic La/B{sub 4}C multilayer systems additionally an in-situ ellipsometer was taken into operation. Furthermore a decreasement of the interface roughnesses and by this following increasement of the reflectivities of La/B{sub 4}C multilayers by polishing of the single layers with accelerated ions during the fabrication shall be studied. The fabricated multilayers are characterized and evaluated concerning roughnesses, reflectivities, ans spectral band width. [German] Im Mittelpunkt dieser Arbeit stehen die Entwicklung und Charakterisierung von La/B{sub 4}C-Multischichtsystemen. Dazu wurden diese Materialien fuer die verwendete Elektronenstrahlverdampfung evaluiert und charakterisiert. Fuer die Ueberwachung des Aufdampfprozesses standen zwei separate In-situ Schichtdickenkontrollen zur Verfuegung. Fuer periodische Multischichtsysteme wurde die fuer Mo/Si-Multischichten genutzte Roentgenreflektometrie uebernommen. Aufgrund des Wechsels von Mo/Si auf La/B{sub 4}C musste materialbedingt die Steuerung des Verdampfungsprozesses weiterentwickelt und optimiert werden. Fuer die Herstellung aperiodischer La/B{sub 4}C-Multischichtsysteme wurde zusaetzlich ein In-situ Ellipsometer in Betrieb genommen. Des Weiteren soll eine Senkung der Grenzflaechenrauigkeiten und damit einhergehende Erhoehung der Reflektivitaeten von La/B{sub 4}C-Multischichten durch das Polieren mit beschleunigten Ionen der

  9. Characterization and electrochemical performances of MoO2 modified LiFePO4/C cathode materials synthesized by in situ synthesis method

    International Nuclear Information System (INIS)

    He, Jichuan; Wang, Haibin; Gu, Chunlei; Liu, Shuxin

    2014-01-01

    Graphical abstract: The MoO 2 modified LiFePO 4 /C cathode materials were synthesized by in situ synthesis method. MoO 2 can sufficiently coat on the LiFePO 4 /C particles surface and does not alter LiFePO 4 crystal structure, and the adding of MoO 2 decreases the particles size and increases the tap density of cathode materials. The existence of MoO 2 improves electrochemical performance of LiFePO 4 cathode materials in specific capability and lithium ion diffusion and charge transfer resistance of cathode materials. - Highlights: • The MoO 2 modified LiFePO 4 /C cathode materials were synthesized by in situ synthesis method. • The existence of MoO 2 decreases the particles size and increases the tap density of cathode materials. • MoO 2 can sufficiently coat on the surface of LiFePO 4 /C cathode materials. • The existence of MoO 2 enhanced electrochemical performance of LiFePO 4 /C cathode materials. - Abstract: The MoO 2 modified LiFePO 4 /C cathode materials were synthesized by in situ synthesis method. Phase compositions and microstructures of the products were characterized by X-ray powder diffraction (XRD), SEM, TEM and EDS. Results indicate that MoO 2 can sufficiently coat on the LiFePO 4 surface and does not alter LiFePO 4 crystal structure, the existence of MoO 2 decreases the particles size and increases the tap density of cathode materials. The electrochemical behavior of cathode materials was analyzed using galvanostatic measurement, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that the existence of MoO 2 improves electrochemical performance of LiFePO 4 cathode materials in specific capability and lithium ion diffusion and charge transfer resistance. The initial charge–discharge specific capacity and apparent lithium ion diffusion coefficient increase, the charge transfer resistance decreases with MoO 2 content and maximizes around the MoO 2 content is 5 wt%. It has been had further proved that

  10. Laser cladding Ni-base composite coating on titanium alloy with pre-placed B4C+NiCoCrAlY

    International Nuclear Information System (INIS)

    Qingwu Meng; Lin Geng; Zhenzhu Zheng

    2005-01-01

    Using a CO 2 laser, a process of cladding Ni-base composite coating on Ti6Al4V with pre-placed B 4 C and NiCoCrAlY was studied. A good metallurgical bonding coating without cracks and pores was obtained in reasonable ratio of components and low energy laser process. Morphology and microstructure of the coating were analyzed with OM, XRD, SEM and EDS. It is certain that there was a reaction between B 4 C and Ti during in-situ producing TiB 2 and TiC. The Ni-base composite coating is strengthened with TiB 2 and TiC reinforcement phases. Vickers hardness tester measured that the average microhardness of the coating is HV1200 and it is 3.5 times of the Ti6Al4V substrate. The high hard coating containing several reinforcement phases greatly enhances wear resistance of titanium alloy. (orig.)

  11. Storage of the complement components C4, C3, and C 3-activator in the human liver as PAS-negative globular hyaline bodies.

    Science.gov (United States)

    Storch, W; Riedel, H; Trautmann, B; Justus, J; Hiemann, D

    1982-01-01

    Liver biopsies of a 58-year-old clinically healthy patient with a hepatomegaly and intracisternal PAS-negative globular hyaline bodies were immunofluorescent-optically examined for the content of the complement components C 1 q, C 4, C 9, C 1-inactivator, C 3-activator. Further examinations were performed for fibrinogen, IgG, IgA, IgM, IgD, IgE, L-chain (type chi and lambda), alpha 1-antitrypsin, alpha 1-fetoprotein, alpha 1- and alpha 2-glycoprotein, cholinesterase, ceruloplasmin, myoglobin, hemopexin, HBsAg and HBsAg. Th inclusion bodies reacted with antisera against the complement components C 4, C 3 and C 3-activator, as also identified by double immunofluorescence. Probably this is a disturbance of the protein metabolism of the liver cell with abnormal complement storage in the presence of normal total complement and normal complement components in the serum.

  12. Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru/B4C multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Panzner, Tobias; Schlemper, Christoph; Morawe, Christian; Pietsch, Ullrich

    2009-12-10

    Soft-x-ray Bragg reflection from two Ru/B4C multilayers with 10 and 63 periods was used for independent determination of both real and imaginary parts of the refractive index n = 1 -{delta} + i{beta} close to the boron K edge ({approx}188 eV). Prior to soft x-ray measurements, the structural parameters of the multilayers were determined by x-ray reflectometry using hard x rays. For the 63-period sample, the optical properties based on the predictions made for elemental boron major deviations were found close to the K edge of boron for the 10-period sample explained by chemical bonding of boron to B4C and various boron oxides.

  13. Cyanoacetanilides intermediates in heterocyclic synthesis. Part 6: Preparation of some hitherto unknown 2-oxopyridine, bipyridine, isoquinoline and chromeno[3,4-c]pyridine containing sulfonamide moiety

    Directory of Open Access Journals (Sweden)

    Yousry A. Ammar

    2014-11-01

    Full Text Available Treatment of cyanoacetanilide derivative 1 with tetracyanoethylene (2 in dioxane/triethylamine furnished 2-pyridone derivative 6. Aminopyridine 9 was obtained by cyclization of compound 1 with ketene dithioacetal 7/EtONa. Cyclocondensation of 1 with malononitrile and/or acetylacetone (1:1 M ratio gave pyridine derivatives 11 and 13. Ternary condensation of compound 1, aliphatic aldehydes and malononitrile (1:1:1 M ratio yielded the 2-pyridones 20a and b. Bipyridines 22a–c were prepared by refluxing of compound 21 with active methylene reagents. Cyclization of chromene derivatives 24 and 28 with malononitrile produced the novel chromeno[3,4-c]pyridine 26 and pyrano[3′,2′:6,7]chromeno[3,4-c]pyridine 29.

  14. Investigation of the microstructure of Ni and B4C ceramic-metal mixtures obtained by cold spray coating and followed by laser cladding

    Science.gov (United States)

    Filippov, A. A.; Fomin, V. M.; Orishich, A. M.; Malikov, A. G.; Ryashin, N. S.; Golyshev, A. A.

    2017-10-01

    In the present work, a combined method is considered for the production of a metal-matrix composite coating based on Ni and B4C. The coating is created by consistently applied methods: cold spray and laser cladding. Main focus of this work aimed to microstructure of coatings, element content and morphology of laser tracks. At this stage, the authors focused on the interaction of the laser unit with the substance without affecting the layer-growing technology products. It is shown that coating has deformed particles of nickel and the significantly decreased content of ceramic particles B4C after cold spray. After laser cladding there are no boundaries between nickel and dramatically changes in ceramic particles.

  15. Nanostructured Al/Al4C3 composites reinforced with graphite or fullerene and manufactured by mechanical milling and spark plasma sintering

    International Nuclear Information System (INIS)

    Robles Hernández, F.C.; Calderon, H.A.

    2012-01-01

    Highlights: ► Fullerene mix (C 60 + C 70 + soot) is effective to manufacture nanostructured Al/Al 4 C 3 . ► Carbon in the fullerene mix is more reactive with Al that that present in graphite. ► A complete transformation of carbon into Al 4 C 3 is observed in the Al/fullerene. ► Milling and sintering conditions preserve the nanostructured nature of the composites. ► Hardness improvement: 375% Al/graphite and 582% for Al/fullerene composites. - Abstract: Nanostructured Al matrix composites with reinforcements of graphite or fullerene (C 60 + C 70 + soot) have been produced by mechanical milling and spark plasma sintering (SPS). X-ray diffraction and transmission electron microscopy show that C 60 + C 70 withstand longer mechanical milling/alloying times than graphite. Fullerene is a good control agent during mechanical alloying resulting in a denser Al/fullerene composite when compared to the Al/graphite one. A refinement mechanism that takes place during mechanical alloying of fullerene and graphite is experimentally found and correspondingly discussed. Such a mechanism plays a major role in the amorphization of graphite. The larger surface area of the fullerene mix after milling promotes a better interaction with Al and hence allows its complete transformation into Al 4 C 3 during the SPS process. The sintered products show an increase in hardness for the Al/fullerene composite of 6 times and only 4 times for the Al/graphite composite. The SPS technique shows to be an excellent method to transform the fullerene into Al 4 C 3 while preserving its nanostructured nature.

  16. Structural Evolution and Electrochemical Performance of Li2MnSiO4/C Nanocomposite as Cathode Material for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Min Wang

    2014-01-01

    Full Text Available High capacity Li2MnSiO4/C nanocomposite with good rate performance was prepared via a facile sol-gel method using ascorbic acid as carbon source. It had a uniform distribution on particle size of approximately 20 nm and a thin outlayer of carbon. The galvanostatic charge-discharge measurement showed that the Li2MnSiO4/C electrode could deliver an initial discharge capacity of 257.1 mA h g−1 (corresponding to 1.56 Li+ at a current density of 10 mA g−1 at 30°C, while the Li2MnSiO4 electrode possessed a low capacity of 25.6 mA h g−1. Structural amorphization resulting from excessive extraction of Li+ during the first charge was the main reason for the drastic capacity fading. Controlling extraction of Li+ could inhibit the amorphization of Li2MnSiO4/C during the delithiation, contributing to a reversible structural change and good cycling performance.

  17. Enhanced electrochemical performance of nano-sized LiFePO4/C synthesized by an ultrasonic-assisted co-precipitation method

    International Nuclear Information System (INIS)

    Liu Youyong; Cao Chuanbao

    2010-01-01

    A simple and effective method, the ultrasonic-assisted co-precipitation method, was employed to synthesize nano-sized LiFePO 4 /C. A glucose solution was used as the carbon source to produce in situ carbon to improve the conductivity of LiFePO 4 . Ultrasonic irradiation was adopted to control the size and homogenize the LiFePO 4 /C particles. The sample was characterized by X-ray powder diffraction, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). FE-SEM and TEM show that the as-prepared sample has a reduced particle size with a uniform size distribution, which is around 50 nm. A uniform amorphous carbon layer with a thickness of about 4-6 nm on the particle surface was observed, as shown in the HRTEM image. The electrochemical performance was demonstrated by the charge-discharge test and electrochemical impedance spectra measurements. The results indicate that the nano-sized LiFePO 4 /C presents enhanced discharge capacities (159, 147 and 135 mAh g -1 at 0.1, 0.5 and 2 C-rate, respectively) and stable cycling performance. This study offers a simple method to design and synthesis nano-sized cathode materials for lithium-ion batteries.

  18. Synthesis of flower-like LiMnPO4/C with precipitated NH4MnPO4·H2O as precursor

    International Nuclear Information System (INIS)

    Liu Jiali; Hu Dongge; Huang Tao; Yu Aishui

    2012-01-01

    Highlights: ► Flower-like NH 4 MnPO 4 ·H 2 O is obtained by novel precipitating method. ► It is used as the precursor to synthesize LiMnPO 4 /C. ► Subsequent heat treatment would not destroy the precursor morphology. ► As-prepared LiMnPO 4 /C showed discharge capacity of 85 mAh/g at 0.05 C. - Abstract: Ammonium magnesium phosphate monohydrate (NH 4 MnPO 4 ·H 2 O) precursor was prepared by a novel precipitating process with manganese citrate complexes as intermediate. The morphology of the precursor observed by Scanning Electron Microscope (SEM) was flower-like which was self-assembled by plate-like particles. Further analysis by X-ray diffraction (XRD) revealed that the lattice of the plate crystal was orientated along (0 1 0) plane. By solid-state reaction of the precursor, with lithium acetate and glucose as carbon source, pure olivine structured LiMnPO 4 /C composite was obtained and meanwhile, the original flower-like morphology could be retained.

  19. Synthesis and electrochemical characterization of mesoporous Li2FeSiO4/C composite cathode material for Li-ion batteries

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O. D.; Bazzi, Khadije; Nazri, Gholam-Abbas; Naik, Vaman M.; Naik, Ratna

    2015-03-01

    Lithium iron silicate (Li2FeSiO4) has the potential as cathode for Li ion batteries due to its high theoretical capacity (~ 330 mAh/g) and improved safety. The application of Li2FeSiO4 as cathode material has been challenged by its poor electronic conductivity and slow lithium ion diffusion in the solid phase. In order to solve these problems, we have synthesized mesoporous Li2FeSiO4/C composites by sol-gel method using the tri-block copolymer (P123) as carbon source. The phase purity and morphology of the composite materials were characterized by x-ray diffraction, SEM and TEM. The XRD pattern confirmed the formation of ~ 12 nm size Li2FeSiO4 crystallites in composites annealed at 600 °C for 6 h under argon atmosphere. The electrochemical properties are measured using the composite material as positive electrode in a standard coin cell configuration with lithium as the active anode and the cells were tested using AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The Li2FeSiO4/C composites showed a discharge capacity of ~ 240 mAh/g at a rate of C/30 at room temperature. The effect of different annealing temperature and synthesis time on the electrochemical performance of Li2FeSiO4/C will be presented.

  20. Solvothermal synthesis of Mg-doped Li2FeSiO4/C nanocomposite cathode materials for lithium-ion batteries

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O. D.; Naik, V. M.; Nazri, G. A.; Naik, R.

    Lithium transition metal orthosilicates, such as Li2FeSiO4 and Li2MnSiO4, as cathode material have attracted much attention lately due to their high theoretical capacity ( 330 mAh/g), low cost, and environmental friendliness. However, they suffer from poor electronic conductivity and slow lithium ion diffusion in the solid phase. Several cation-doped orthosilicates have been studied to improve their electrochemical performance. We have synthesized partially Mg-substituted Li2Mgx Fe1-x SiO4-C, (x = 0.0, 0.01, 0.02, and 0.04) nano-composites by solvothermal method followed by annealing at 600oC in argon flow. The structure and morphology of the composites were characterized by XRD, SEM and TEM. The surface area and pore size distribution were measured by using N2 adsorption/desorption curves. The electrochemical performance of the Li2MgxFe1-x SiO4-C composites was evaluated by Galvanostatic cycling against metallic lithium anode, electrochemical impedance spectroscopy, and cyclic voltammetry. Li2Mg0.01Fe0.99SiO4-C sample shows a capacity of 278 mAh/g (at C/30 rate in the 1.5-4.6 V voltage window) with an excellent rate capability and stability, compared to the other samples. We attribute this observation to its higher surface area, enhanced electronic conductivity and higher lithium ion diffusion coefficient.

  1. Growth of highly mesoporous CuCo2O4@C core-shell arrays as advanced electrodes for high-performance supercapacitors

    Science.gov (United States)

    Yan, Hailong; Lu, Yang; Zhu, Kejia; Peng, Tao; Liu, Xianming; Liu, Yunxin; Luo, Yongsong

    2018-05-01

    A series of CuCo2O4 nanostructures with different morphologies were prepared by a hydrothermal method in combination with thermal treatment. The morphology, structure and composition were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. As the electrode materials for supercapacitors, CuCo2O4 nanoneedles delivered the highest specific capacitance compared with other CuCo2O4 nanostructures. Electrochemical performance measurements demonstrate that the carbon layer can improve the electrochemical stability of CuCo2O4 nanoneedles. The CuCo2O4@C electrode exhibits a high specific capacitance of 1432.4 F g-1 at a current density of 1 A g-1, with capacitance retention of 98.2% after 3000 circles. These characteristics of CuCo2O4@C composite are mainly due to the unique one dimensional needle-liked architecture and the conducting carbon, which provide a faster ion/electron transfer rate. These excellent performances of the CuCo2O4@C electrode confirmed the material as a positive electrode for hybrid supercapacitor application.

  2. Pyro-Synthesis of Nanostructured Spinel ZnMn2O4/C as Negative Electrode for Rechargeable Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Alfaruqi, Muhammad Hilmy; Rai, Alok Kumar; Mathew, Vinod; Jo, Jeonggeun; Kim, Jaekook

    2015-01-01

    ZnMn 2 O 4 /C nanoparticles are synthesized by one step polyol assisted pyro-synthesis for use as the anode in rechargeable lithium ion batteries without any post heat treatment. The as-prepared ZnMn 2 O 4 /C is tetragonal with a spherical particle size in the range of 10–30 nm. Electrochemical measurements were performed using the as-prepared powders as the active material for a lithium-ion cell. The nanoparticle electrode delivered an initial charge capacity of 666.1 mAh g −1 and exhibited a capacity retention of ∼81% (539.4 mAh g −1 ) after 50 cycles. The capacity enhancement in the as-prepared ZnMn 2 O 4 /C may be explained on the basis of the polyol medium that enables to develop a sufficient carbon network that can act as electrical conduits during electrochemical reactions. The carbon network appears to enhance the particle-connectivity and hence improve the electronic conductivities

  3. A Tri-modal 2024 Al -B4C composites with super-high strength and ductility: Effect of coarse-grained aluminum fraction on mechanical behavior

    Directory of Open Access Journals (Sweden)

    Alireza Abdollahi

    2014-12-01

    Full Text Available In this study, ultrafine grained 2024 Al alloy based B4C particles reinforced composite was produced by mechanical milling and hot extrusion. Mechanical milling was used to synthesize the nanostructured Al2024 in attrition mill under argon atmosphere up to 50h. A similar process was used to produce Al2024-5%wt. B4C composite powder. To produce trimodal composites, milled powders were combined with coarse grained aluminum in 30 and 50 wt% and then were exposed to hot extrusion at 570°C. The microstructure of hot extruded samples were studied by optical microscope, Transmission electron microscope (TEM and scanning electron microscope (SEM equipped with EDS spectroscopy. The mechanical properties of samples were compared by using tensile, compression and hardness tests. The results showed that the strength, after 50 h milling and addition of 5wt% B4C, increased from 340 to 582 MPa and the hardness increased from 87 HBN to 173 HBN, but the elongation decreased from 14 to 0.5%. By adding the coarse-grained aluminum powder, the strength and hardness decreased slightly, but the increases in return. Ductility increase is the result of increase in dislocation movements and strength increase is the result of restriction in plastic deformation by nanostructured regions. Furthermore, the strength and hardness of trimodal composites were higher, but their ductility was lower.

  4. Comparison of surgical time and IOP spikes with two ophthalmic viscosurgical devices following Visian STAAR (ICL, V4c model insertion in the immediate postoperative period

    Directory of Open Access Journals (Sweden)

    Ganesh S

    2016-01-01

    Full Text Available Sri Ganesh, Sheetal BrarDepartment of Phaco and Refractive Surgeries, Nethradhama Superspeciality Eye Hospital, Bangalore, IndiaPurpose: To compare the effect of two ocular viscosurgical devices (OVDs on intraocular pressure (IOP and surgical time in immediate postoperative period after bilateral implantable collamer lens (using the V4c model implantation.Methods: A total of 20 eligible patients were randomized to receive 2% hydroxypropylmethylcellulose (HPMC in one eye and 1% hyaluronic acid in fellow eye. Time taken for complete removal of OVD and total surgical time were recorded. At the end of surgery, IOP was adjusted between 15 and 20 mmHg in both the eyes.Results: Mean time for complete OVD evacuation and total surgical time were significantly higher in the HPMC group (P=0.00. Four eyes in the HPMC group had IOP spike, requiring treatment. IOP values with noncontact tonometry at 1, 2, 4, 24, and 48 hours were not statistically significant (P>0.05 for both the groups.Conclusion: The study concluded that 1% hyaluronic acid significantly reduces total surgical time, and incidence of acute spikes may be lower compared to 2% HPMC when used for implantable collamer lens (V4c model.Keywords: OVD, hyaluronic acid, ICL, V4c, IOP spikes

  5. Calculation of the power distribution in the fuel rods of the low power research reactor using the MCNP4C code

    International Nuclear Information System (INIS)

    Dawahra, S.; Khattab, K.

    2011-01-01

    Highlights: → The MCNP4C code was used to calculate the power distribution in 3-D geometry in the MNSR reactor. → The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. → The minimum power was found in the fuel ring number 9 and was 79.9 W. → The total power in the total fuel rods was 30.9 kW. - Abstract: The Monte Carlo method, using the MCNP4C code, was used in this paper to calculate the power distribution in 3-D geometry in the fuel rods of the Syrian Miniature Neutron Source Reactor (MNSR). To normalize the MCNP4C result to the steady state nominal thermal power, the appropriate scaling factor was defined to calculate the power distribution precisely. The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. The minimum power was found in the fuel ring number 9 and was 79.9 W. The total power in the total fuel rods was 30.9 kW. This result agrees very well with nominal power reported in the reactor safety analysis report which equals 30 kW. Finally, the peak power factors, which are defined as the ratios between the maximum to the average and the maximum to the minimum powers were calculated to be 1.18 and 1.31 respectively.

  6. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    Science.gov (United States)

    Liu, Yang; Zhang, Jieyu; Li, Ying; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Hu, Pengfei; Chou, Shulei; Wang, Guoxiu

    2017-01-01

    To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG) as the solvent medium and cetyltrimethylammonium bromide (CTAB) as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C), good high-rate discharge capacity (118 mAh g−1 at 10 C), and fine cycling stability (99.2% after 200 cycles at 0.1 C). The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure. PMID:29099814

  7. Increasing the Affinity Between Carbon-Coated LiFePO4/C Electrodes and Conventional Organic Electrolyte by Spontaneous Grafting of a Benzene-Trifluoromethylsulfonimide Moiety.

    Science.gov (United States)

    Delaporte, Nicolas; Perea, Alexis; Lebègue, Estelle; Ladouceur, Sébastien; Zaghib, Karim; Bélanger, Daniel

    2015-08-26

    The grafting of benzene-trifluoromethylsulfonimide groups on LiFePO4/C was achieved by spontaneous reduction of in situ generated diazonium ions of the corresponding 4-amino-benzene-trifluoromethylsulfonimide. The diazotization of 4-amino-benzene-trifluoromethylsulfonimide was a slow process that required a high concentration of precursors to promote the spontaneous grafting reaction. Contact angle measurements showed a hydrophilic surface was produced after the reaction that is consistent with grafting of benzene-trifluoromethylsulfonimide groups. Elemental analysis data revealed a 2.1 wt % loading of grafted molecules on the LiFePO4/C powder. Chemical oxidation of the cathode material during the grafting reaction was detected by X-ray diffraction and quantified by inductively coupled plasma atomic emission spectrometry. Surface modification improves the wettability of the cathode material, and better discharge capacities were obtained for modified electrodes at high C-rate. In addition, electrochemical impedance spectroscopy showed the resistance of the modified cathode was lower than that of the bare LiFePO4/C film electrode. Moreover, the modified cathode displayed superior capacity retention after 200 cycles of charge/discharge at 1 C.

  8. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-11-01

    Full Text Available To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG as the solvent medium and cetyltrimethylammonium bromide (CTAB as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C, good high-rate discharge capacity (118 mAh g−1 at 10 C, and fine cycling stability (99.2% after 200 cycles at 0.1 C. The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure.

  9. The effect of composition on stability ("1"4C activity) of soil organic matter fractions from the albic and black soils

    International Nuclear Information System (INIS)

    Jin, Jie; Sun, Ke; Wang, Ziying; Han, Lanfang; Wu, Fengchang; Xing, Baoshan

    2016-01-01

    The importance of the composition of soil organic matter (SOM) for carbon (C) cycling is still under debate. Here a single soil source was used to examine the specific influence of its composition on stability ("1"4C activity) of SOM fractions while constraining other influential C turnover factors such as mineral, climate and plant input. The following SOM fractions were isolated from two soil samples: four humic acids, two humins, non-hydrolyzable carbon, and the demineralized fraction. We examined the isotope ratios of SOM fractions in relation to composition (such as aliphatic and aromatic C content) using solid state "1"3C nuclear magnetic resonance (NMR) and thermal analysis. The Δ"1"4C values of the fractions isolated from both an albic soil (SOMs-A) and a black soil (SOMs-B) correlated negatively with their peak temperature of decomposition and the temperature where half of the total heat of reaction was evolved, implying a potential link between thermal and biogeochemical stability of SOM fractions. Aryl C contents of SOMs-A determined using "1"3C NMR varied inversely with δ"1"5N values and directly with δ"1"3C values, suggesting that part of aryl C of SOMs-A might be fire-derived. The Δ"1"4C values of SOMs-A correlated positively with aliphatic C content and negatively with aromatic C content. We therefore concluded that fire-derived aromatic C in SOMs-A appeared to be more stable than microbially-derived aliphatic C. The greater decomposition of SOMs-B fractions weakened the relationship of their Δ"1"4C values with alkyl and aryl C contents. Hence, the role of the composition of SOM fractions in regulating stability might be dependent on the source of specific C forms and their stage of decomposition. - Highlights: • The effect of composition on stability of SOM fractions (SOMs) was examined. • There was a potential link between thermal and biological stability of SOMs. • Fire-derived aromatic C was likely more stable than microbial

  10. Study of the rearrangement of N-alkylaniline to p-aminoalkylbencene. I. N-ethyl-l-{sup 1}4C-aniline; Estudio de la transposicion de N-alquilanilinas A p-Aminoalquilbenceno mediante {sup 1}4C

    Energy Technology Data Exchange (ETDEWEB)

    Molera, M J; Gamboa, J M; Val Cob, M del

    1961-07-01

    The rearrangement of N-ethylaniline to p-aminoethylbenzene has been studied over the temperature range 200-300 degree centigrade using different catalysts: Cl{sub 2}Co, Cl{sub 2}Zn, Cl{sub 2}Ni, Cl{sub 3}Al, Cl{sub 2}Cd and Br H.N-ethyl-1-{sup 1}4C-aniline has been synthesized from ethyl-1-{sup 1}4C-iodide and aniline and its rearrangement to p-aminoethyl-benzene proves that the ethyl group does not rearrange itself during the reaction. A scheme for the degradation of both the N-ethyl-1-{sup 1}4C aniline and the p-aminoethylbenzene produces is described. (Author) 14 refs.

  11. Circulating filarial antigen in the hydrocele fluid from individuals living in a bancroftian filariasis area - Recife, Brazil: detected by the monoclonal antibody Og4C3-assay

    Directory of Open Access Journals (Sweden)

    Abraham Rocha

    2004-02-01

    Full Text Available The purpose of this study was to examine the circulating filarial antigen (CFA detected by the monoclonal antibody (mAb Og4C3-ELISA in paired samples of serum and hydrocele fluid from 104 men with hydrocele, living in an endemic area of Wuchereria bancrofti. Nocturnal blood specimens were filtered and examined for microfilariae (MF and ultrasound was used in order to identify the presence of adult worms (the filaria dance sign - FDS in the lymphatic vessels of the scrotal area. Four groups were selected according to their parasitological status: group I - 71 MF- and FDS-; group II - 21 MF+ and FDS+; group III - 10 MF- and FDS+ and group IV- 2 MF+ and FDS-. CFA was identified simultaneously (fluid and serum in 11 (15.5%, 21 (100%, 3 (30%, and 1 (50% in groups I, II, III, and IV, respectively. In despite of high CFA+ level (antigen Og4C3 units/ml, the Geometrical Mean (GM = 2696 in the sera of these 36/104 paired samples, when compared to the hydrocele fluid, (GM = 1079, showed a very good correlation between the CFA level in the serum and CFA level in the fluid (r = 0.731. CFA level in the serum of the 23 microfilaremics (groups II and IV was extremely high (GM = 4189 and was correlated with MF density (r = 0.442. These findings report for the first time the potential alternative use of the hydrocele fluid to investigate CFA using the mAb Og4C3-ELISA.

  12. Fast sol-gel synthesis of LiFePO{sub 4}/C for high power lithium-ion batteries for hybrid electric vehicle application

    Energy Technology Data Exchange (ETDEWEB)

    Beninati, Sabina; Damen, Libero; Mastragostino, Marina [University of Bologna, Department of Metal Science, Electrochemistry and Chemical Techniques, Via San Donato 15, 40127 Bologna (Italy)

    2009-12-01

    LiFePO{sub 4}/C of high purity grade was successfully synthesized by microwave accelerated sol-gel synthesis and showed excellent electrochemical performance in terms of specific capacity and stability. This cathode material was characterized in battery configuration with a graphite counter electrode by USABC-DOE tests for power-assist hybrid electric vehicle. It yielded a non-conventional Ragone plot that represents complexity of battery functioning in power-assist HEV and shows that the pulse power capability and available energy of such a battery surpasses the DOE goal for such an application. (author)

  13. C20H4(C4F8)3: a fluorine-containing annulated corannulene that is a better electron acceptor than C60.

    Science.gov (United States)

    Kuvychko, Igor V; Dubceac, Cristina; Deng, Shihu H M; Wang, Xue-Bin; Granovsky, Alexander A; Popov, Alexey A; Petrukhina, Marina A; Strauss, Steven H; Boltalina, Olga V

    2013-07-15

    At sixes and sevens: The reaction of corannulene with 35 equivalents of 1,4-C4F8I2 is an efficient and a relatively selective process that yields two main products in which six H atoms are substituted with three C4F8 moieties that form six- and seven-membered rings. Low-temperature photoelectron spectroscopy showed the electron affinity of the major isomer (shown) exceeds that of C60 (2.74±0.02 and 2.689±0.008 eV, respectively). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A chiral mixed carboxylate, [Nd4(H2O)2(OOC(CH2)3COO)4(C2O4)2], exhibiting NLO properties

    International Nuclear Information System (INIS)

    Vaidhyanathan, R.; Natarajan, Srinivasan; Rao, C.N.R.

    2004-01-01

    Reaction of a mixture of neodymium carbonate, HCl, oxamic acid and glutaric acid under hydrothermal conditions gives rise to a new mixed carboxylate of neodymium, [Nd 4 (H 2 O) 2 (OOC(CH 2 ) 3 COO) 4 (C 2 O 4 ) 2 ], I. The structure, determined using single crystal X-ray diffraction, comprises a helical column formed by the grafting of the oxalate unit on to helical NdO 9 chains, cross-linked by the glutarate anions. It is noteworthy that the pitch of the helix is equivalent to the length of the oxalate unit. Furthermore, I shows about 1.1 times the SHG activity of urea

  15. A systematic expression analysis implicates Plexin-B2 and its ligand Sema4C in the regulation of the vascular and endocrine system.

    Science.gov (United States)

    Zielonka, Matthias; Xia, Jingjing; Friedel, Roland H; Offermanns, Stefan; Worzfeld, Thomas

    2010-09-10

    Plexins serve as receptors for semaphorins and play important roles in the developing nervous system. Plexin-B2 controls decisive developmental programs in the neural tube and cerebellum. However, whether Plexin-B2 also regulates biological functions in adult nonneuronal tissues is unknown. Here we show by two methodologically independent approaches that Plexin-B2 is expressed in discrete cell types of several nonneuronal tissues in the adult mouse. In the vasculature, Plexin-B2 is selectively expressed in functionally specialized endothelial cells. In endocrine organs, Plexin-B2 localizes to the pancreatic islets of Langerhans and to both cortex and medulla of the adrenal gland. Plexin-B2 expression is also detected in certain types of immune and epithelial cells. In addition, we report on a systematic comparison of the expression patterns of Plexin-B2 and its ligand Sema4C, which show complementarity or overlap in some but not all tissues. Furthermore, we demonstrate that Plexin-B2 and its family member Plexin-B1 display largely nonredundant expression patterns. This work establishes Plexin-B2 and Sema4C as potential regulators of the vascular and endocrine system and provides an anatomical basis to understand the biological functions of this ligand-receptor pair. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Measurements and Monte-Carlo simulations of the particle self-shielding effect of B4C grains in neutron shielding concrete

    Science.gov (United States)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Llamas-Jansa, I.; Kazi, S.; Bentley, P. M.

    2018-06-01

    A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 Å neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.

  17. Characterization and electrochemical properties of high tap-density LiFePO4/C cathode materials by a combination of carbothermal reduction and molten salt methods

    International Nuclear Information System (INIS)

    Fey, George Ting-Kuo; Lin, Yi-Chuan; Kao, Hsien-Ming

    2012-01-01

    Olivine-structured LiFePO 4 cathode materials were prepared via a combination of carbothermal reduction (CR) and molten salt (MS) methods. To enhance the powder's tap density, the LiFePO 4 /C composite was pressed into pellets and then sintered for at least 1 h at 1028 K in the reaction environment of KCl molten salts. The use of molten salt can effectively influence unit cell volume, morphology and tap density of particles, and consequently change the electrochemical performance of LiFePO 4 /C. The composites were characterized in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy and tap density testing. The final product with high tap density of 1.50 g cm −3 contains 4.58 wt% carbon and exhibits good discharge capacity of 141 mAh g −1 at a 0.2 C-rate in the potential range of 2.8–4.0 V.

  18. Online coupling of pure O_2 thermo-optical methods – "1"4C AMS for source apportionment of carbonaceous aerosols

    International Nuclear Information System (INIS)

    Agrios, Konstantinos; Salazar, Gary; Zhang, Yan-Lin; Uglietti, Chiara; Battaglia, Michael; Luginbühl, Marc; Ciobanu, Viorela Gabriela; Vonwiller, Matthias; Szidat, Sönke

    2015-01-01

    This paper reports on novel separation methods developed for the direct determination of "1"4C in organic carbon (OC) and elemental carbon (EC), two sub-fractions of total carbon (TC) of atmospheric air particulate matter. Until recently, separation of OC and EC has been performed off-line by manual and time-consuming techniques that relied on the collection of massive CO_2 fractions. We present here two on-line hyphenated techniques between a Sunset OC/EC analyzer and a MICADAS (MIni radioCArbon DAting System) accelerator mass spectrometer (AMS) equipped with a gas ion source. The first implementation facilitates the direct measurement in the low sample size range (<10 μg C) with high throughput on a routine basis, while the second explores the potential for a continuous-flow real-time CO_2 gas feed into the ion source. The performance achieved with reference materials and real atmospheric samples will be discussed to draw conclusions on the improvement offered in the field of "1"4C aerosol source apportionment.

  19. Effect of Cutting Parameters on Thrust Force and Surface Roughness in Drilling of Al-2219/B4C/Gr Metal Matrix Composites

    Science.gov (United States)

    Ravindranath, V. M.; Basavarajappa, G. S. Shiva Shankar S.; Suresh, R.

    2016-09-01

    In aluminium matrix composites, reinforcement of hard ceramic particle present inside the matrix which causes tool wear, high cutting forces and poor surface finish during machining. This paper focuses on effect of cutting parameters on thrust force, surface roughness and burr height during drilling of MMCs. In the present work, discuss the influence of spindle speed and feed rate on drilling the pure base alloy (Al-2219), mono composite (Al- 2219+8% B4C) and hybrid composite (Al-2219+8%B4C+3%Gr). The composites were fabricated using liquid metallurgy route. The drilling experiments were conducted by CNC machine with TiN coated HSS tool, M42 (Cobalt grade) and carbide tools at various spindle speeds and feed rates. The thrust force, surface roughness and burr height of the drilled hole were investigated in mono composite and hybrid composite containing graphite particles, the experimental results show that the feed rate has more influence on thrust force and surface roughness. Lesser thrust force and discontinuous chips were produced during machining of hybrid composites when compared with mono and base alloy during drilling process. It is due to solid lubricant property of graphite which reduces the lesser thrust force, burr height and lower surface roughness. When machining with Carbide tool at low feed and high speeds good surface finish was obtained compared to other two types of cutting tool materials.

  20. Equivalent chain lengths of all C4-C23 saturated monomethyl branched fatty acid methyl esters on methylsilicone OV-1 stationary phase.

    Science.gov (United States)

    Kubinec, Róbert; Blaško, Jaroslav; Górová, Renáta; Addová, Gabriela; Ostrovský, Ivan; Amann, Anton; Soják, Ladislav

    2011-04-01

    Isomer mixtures of monomethyl branched saturated C7-C23 fatty acid methyl esters (FAME) were prepared by performing a methylene insertion reaction to the straight chain FAME and this study model was completed by using commercially available standards of C4-C7 FAME. The equivalent chain lengths (ECL) of all 220 C4-C23 monomethyl branched FAME on OV-1 stationary phase were measured, achieving an average repeatability of ±0.0004 ECL units. The monomethyl branched FAME was identified by GC on the basis of regularity of the fractional chain lengths (FCL) dependence on the number of carbon atoms (C(z)) of individual homologous series of methyl 2-, 3-, …, 21-FAME. The prediction of retention of the first homologues, having the new position of methyl group beginning at higher carbon atoms number, and analogously for the second, third, fourth, and other members of the homologous series, allowed the dependence FCL=f(C(z)) for the first and subsequent members of beginning homologous of monomethyl derivatives of FAME. The identification was confirmed by mass spectrometry. All of the methyl isomers of FAME, which could not be completely separated by gas chromatography due to having a methyl group in surroundings of the middle of the carbon chain, were resolved by mass spectrometry using deconvolution in a SIM-mode. Measured gas chromatographic and mass spectrometric data were applied for identification of the monomethyl branched saturated FAME in tongue coating. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C

    Directory of Open Access Journals (Sweden)

    Xi-yu Liu

    2017-01-01

    Full Text Available Aims. Latent autoimmune diabetes in adults (LADA is an autoimmune disease of which the mechanism is not clear. Emerging evidence suggests that histone methylation contributes to autoimmunity. Methods. Blood CD4+ T lymphocytes from 26 LADA patients and 26 healthy controls were isolated to detect histone H3 lysine 4 and H3 lysine 9 methylation status. Results. Reduced global H3 lysine 9 methylation was observed in LADA patients’ CD4+ T lymphocytes, compared to healthy controls (P < 0.05. H3 lysine 4 methylation was not statistically different. The reduced H3 lysine 9 methylation was associated with GADA titer but not correlated with glycosylated hemoglobin (HbA1c. When the LADA patient group was divided into those with complication and those without, relatively reduced global H3 lysine 9 methylation was observed in LADA patients with complication (P < 0.05. The expression of histone methyltransferase SUV39H2 for H3 lysine 9 methylation was downregulated in LADA patients, and the expression of histone demethylase KDM4C which made H3 lysine 9 demethylation was upregulated. Conclusion. The reduction of histone H3 lysine 9 methylation which may due to the downregulation of methyltransferase SUV39H2 and the upregulation of demethylase KDM4C was found in CD4+ T lymphocytes of LADA patients.

  2. Proton-induced nanorod melting in a coating obtained from the pulsed laser ablation of W{sub 2}B{sub 5}/B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Tadadjeu Sokeng, I., E-mail: ifriky@tlabs.ac.za [Department of Electrical, Electronics and Computer Engineering, French South African Institute of Technology/Cape Peninsula University of Technology, Bellville Campus, PO Box 1906, Bellville 7530 (South Africa); Electron Microscopy Unit, University of the Western Cape, Private bag x17, Bellville 7535 (South Africa); Ngom, B.D. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Laboratoire de Photonique et de Nanofrabrication, Groupes de physique du Solide et Sciences des Matriaux (GPSSM), Facult des sciences et Techniques, Universit Cheikh Anta Diop de Dakar (UCAD), B.P. 25114 Dakar-Fann, Dakar (Senegal); Cummings, F. [Electron Microscopy Unit, University of the Western Cape, Private bag x17, Bellville 7535 (South Africa); Kotsedi, L. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Msimanga, M. [iThemba LABS Gauten, Private Bag 11, WITS 2050, Johannesburg (South Africa); Maaza, M. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); and others

    2015-02-01

    Highlights: • Coatings from ablated B{sub 4}C/W{sub 2}B{sub 5} were irradiated with 900 keV protons. • Nanorod clusters were observed to melt and disperse. • Uniformly shaped nanorods were observed to grow. • Lateral diffusion of energy and lateral dispersion of matter were observed. - Abstract: Coatings obtained from pulsed laser ablated W{sub 2}B{sub 5}/B{sub 4}C were irradiated with 900keV protons at fluences ranging from about 1×10{sup 15}protons/cm{sup 2} to about 4×10{sup 15}protons/cm{sup 2}. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to study the resulting structural effects. Clusters of nanorods were observed to disperse and reduce in number with increase in proton fluence. The atomic percentage of constituent elements were observed to vary with proton fluence, both within the nanorods and the film floor. Our results show that the structural effect of proton irradiation on the coating is lateral dispersion of matter.

  3. In situ synthesis and formation mechanism of ZrC and ZrB2 by combustion synthesis from the Co-Zr-B4C system

    Directory of Open Access Journals (Sweden)

    Mengxian Zhang

    2015-09-01

    Full Text Available ZrC-ZrB2-based composites were prepared by combustion synthesis (CS reaction from 10 wt.% to 50 wt.% Co-Zr-B4C powder mixtures. With increasing Co contents, the particle sizes of near-spherical ZrC and platelet-like ZrB2 decreased from 1 μm to 0.5 μm and from 5 μm to 2 μm, respectively. In addition, the formation mechanism of ZrC and ZrB2 was explored by the phase transition and microstructure evolution on the combustion wave quenched sample in combination with differential scanning calorimeter analysis. The results showed that the production of ZrC was ascribed to the solid-solid reaction between Zr and C and the precipitation from the Co-Zr-B-C melt, while ZrB2 was prepared from the saturated liquid. The low B concentration in the Co-Zr-B-C liquid and high cooling rate during the CS process led to the presence of Co2B and ZrCo3B2 in the composites. The addition of Co in the Co-Zr-B4C system not only prevented ZrC and ZrB2 particulates from growing, but also promoted the occurrence of ZrC-ZrB2-forming reaction.

  4. Conductive additive content balance in Li-ion battery cathodes: Commercial carbon blacks vs. in situ carbon from LiFePO{sub 4}/C composites

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, Veronica; Goni, Aintzane; Muro, Izaskun Gil de; Rojo, Teofilo [Departamento de Quimica Inorganica, Universidad del Pais Vasco UPV/EHU, P.O. Box. 644, 48080, Bilbao (Spain); de Meatza, Iratxe; Bengoechea, Miguel [Energy Department, CIDETEC-IK4, P Miramon 196, Parque Tecnologico de San Sebastian, 20009, San Sebastian (Spain); Cantero, Igor [Departamento I+D+i Nuevas Tecnologias, CEGASA, Artapadura, 11, 01013 Vitoria-Gasteiz (Spain)

    2010-11-15

    Two samples of commercial conducting carbon black and the carbon generated in situ during LiFePO{sub 4}/C composite synthesis from citric acid are studied, with the aim of finding out whether carbon from the composite can fulfil the same function as carbon black in the electrode blend for a Li-ion battery. For this purpose, the carbon samples are analyzed by several techniques, such as X-ray diffraction, Raman spectroscopy, transmission electron microscopy, granulometry, BET specific area and conductivity measurements. Different cathode compositions and component proportions are tested for pellet and cast electrodes. Electrochemical results show that a moderate reduction of commercial carbon black content in both kinds of cathodes, by adding more LiFePO{sub 4}/C composite, enhanced the electrochemical behaviour by around 10%. In situ generated carbon can partially replace commercial conducting carbon black because its high specific surface probably enhances electrolyte penetration into the cathode, but it is always necessary to maintain a minimum amount of carbon black that provides better conductivity in order to obtain a good electrochemical response. (author)

  5. DXRaySMCS: a user-friendly interface developed for prediction of diagnostic radiology X-ray spectra produced by Monte Carlo (MCNP-4C) simulation.

    Science.gov (United States)

    Bahreyni Toossi, M T; Moradi, H; Zare, H

    2008-01-01

    In this work, the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of X-ray spectra in diagnostic radiology. The electron's path in the target was followed until its energy was reduced to 10 keV. A user-friendly interface named 'diagnostic X-ray spectra by Monte Carlo simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user-friendly interface for: (i) modifying the MCNP input file, (ii) launching the MCNP program to simulate electron and photon transport and (iii) processing the MCNP output file to yield a summary of the results (relative photon number per energy bin). In this article, the development and characteristics of DXRaySMCS are outlined. As part of the validation process, output spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study.

  6. Novel "203" type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: Synthesis, and enhanced microwave absorption properties

    Science.gov (United States)

    Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2018-06-01

    It is widely recognized that constructing multiple interface structures to enhance interface polarization is very good for the attenuation of electromagnetic (EM) wave. Here, a novel "203" type of heterostructured nanohybrid consisting of two-dimensional (2D) MoS2 nanosheets, zero-dimensional (0D) Fe3O4 nanoparticles and three-dimensional (3D) carbon layers was elaborately designed and successfully synthesized by a two-step method: Fe3O4 nanoparticles were deposited onto the surface of few-layer MoS2 nanosheets by a hydrothermal method, followed by the carbonation process by a chemical vapor deposition method. Compared to that of "20" type MoS2-Fe3O4, the as-prepared heterostructured "203" type MoS2-Fe3O4-C ternary nanohybrid exhibited remarkably enhanced EM and microwave absorption properties. And the minimum reflection loss (RL) value of the obtained MoS2-Fe3O4-C ternary nanohybrid could reach -53.03 dB at 14.4 GHz with a matching thickness of 7.86 mm. Moreover, the excellent EM wave absorption property of the as-prepared ternary nanohybrid was proved to be attributed to the quarter-wavelength matching model. Therefore, a simple and effective route was proposed to produce MoS2-based mixed-dimensional van der Waals heterostructure, which provided a new platform for the designing and production of high performance microwave absorption materials.

  7. Tribological properties of B{sub 4}C-TiB{sub 2}-TiC-Ni cermet coating produced by HVOF

    Energy Technology Data Exchange (ETDEWEB)

    Rafiei, Mahdi [Islamic Azad Univ., Najafabad (Iran, Islamic Republic of). Dept. of Materials Engineering; Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of). Depr. of Materials Engineering; Shamanian, Morteza; Salehi, Mehdi [Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of). Depr. of Materials Engineering; Mostaan, Hossein [Arak Univ., Arak (Iran, Islamic Republic of). Dept. of Materials and Metallurgical Engineering

    2017-08-15

    In this study, B{sub 4}C-TiB{sub 2}-TiC-Ni coating was sprayed on the surface of 4130 steel by high velocity oxy-fuel torch. The tribological behavior of samples was studied by ball on disk wear testing. Structural evolution of the coating was analyzed by X-ray diffractometry. The microstructure of the coating, wear track and Al{sub 2}O{sub 3} ball was investigated by scanning electron microscopy, field emission scanning electron microscopy and optical microscopy. Elemental analysis of the wear track was done by energy dispersive X-ray spectroscopy. It was found that a cermet coating containing B{sub 4}C, TiB{sub 2}, TiC and Ni phases with good bonding to the 4130 steel substrate with no sign of any cracking or pores was formed. The wear mechanism of the composite coating was delamination. The friction coefficient of samples was decreased with increasing load because of higher frictional heat and creation of more oxide islands.

  8. Preparation of Fe(3)O(4)@C@CNC multifunctional magnetic core/shell nanoparticles and their application in a signal-type flow-injection photoluminescence immunosensor.

    Science.gov (United States)

    Chu, Chengchao; Li, Meng; Li, Long; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2013-11-01

    We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng·mL-1 concentration range, with a detection limit of 1.8 pg·mL-1.

  9. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries

    Science.gov (United States)

    Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing

    2017-09-01

    3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).

  10. Synthesis of high-performance Li2FeSiO4/C composite powder by spray-freezing/freeze-drying a solution with two carbon sources

    Science.gov (United States)

    Fujita, Yukiko; Iwase, Hiroaki; Shida, Kenji; Liao, Jinsun; Fukui, Takehisa; Matsuda, Motohide

    2017-09-01

    Li2FeSiO4 is a promising cathode active material for lithium-ion batteries due to its high theoretical capacity. Spray-freezing/freeze-drying, a practical process reported for the synthesis of various ceramic powders, is applied to the synthesis of Li2FeSiO4/C composite powders and high-performance Li2FeSiO4/C composite powders are successfully synthesized by using starting solutions containing both Indian ink and glucose as carbon sources followed by heating. The synthesized composite powders have a unique structure, composed of Li2FeSiO4 nanoparticles coated with a thin carbon layer formed by the carbonization of glucose and carbon nanoparticles from Indian ink. The carbon layer enhances the electrochemical reactivity of the Li2FeSiO4, and the carbon nanoparticles play a role in the formation of electron-conducting paths in the cathode. The composite powders deliver an initial discharge capacity of 195 and 137 mAh g-1 at 0.1 C and 1 C, respectively, without further addition of conductive additive. The discharge capacity at 1 C is 72 mAh g-1 after the 100th cycle, corresponding to approximately 75% of the capacity at the 2nd cycle.

  11. Stem/Progenitor Cell Proteoglycans Decorated with 7-D-4, 4-C-3 and 3-B-3(-) Chondroitin Sulphate Motifs Are Morphogenetic Markers Of Tissue Development.

    Science.gov (United States)

    Hayes, Anthony J; Smith, Susan M; Caterson, Bruce; Melrose, James

    2018-06-11

    This study reviewed the occurrence of chondroitin sulphate (CS) motifs 4-C-3, 7-D-4 and 3-B-3(-) which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulphation motifs 7-D-4, 4-C-3 and 3-B-3 (-) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  12. Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors

    Science.gov (United States)

    Xu, Xuena; Niu, Feier; Zhang, Dapeng; Chu, Chenxiao; Wang, Chunsheng; Yang, Jian; Qian, Yitai

    2018-04-01

    Lithium-ion capacitors, as a hybrid electrochemical energy storage device, realize high specific energy and power density within one device, thus attracting extensive attention. Here, hierarchically porous Li3VO4/C nanocomposite is prepared by a solvo-thermal reaction, followed with a post-annealing process. This composite has macropores at the center and mesopores in the wall, thus effectively promoting electrolyte penetration and structure stability upon cycling simultaneously. Compared to mesoporous Li3VO4, the enhanced rate capability and specific capacity of hierarchically porous Li3VO4/C indicate the synergistic effect of mesopores and macropores. Inspired by these results, this composite is coupled with mesoporous carbon (CMK-3) for lithium-ion capacitors, generating a specific energy density of 105 Wh kg-1 at a power density of 188 W kg-1. Even if the power density increases to 9.3 kW kg-1, the energy density still remains 62 Wh kg-1. All these results demonstrate the promising potential of hierarchically porous Li3VO4 in lithium ion capacitors.

  13. Calculation of the power distribution in the fuel rods of the low power research reactor using the MCNP4C code

    International Nuclear Information System (INIS)

    Dawahra, S.; Khattab, K.

    2012-01-01

    The Monte Carlo method, using the MCNP4C code, was used in this paper to calculate the power distribution in 3-D geometry in the fuel rods of the Syrian Miniature Neutron Source Reactor (MNSR). To normalize the MCNP4C result to the steady state nominal thermal power, the appropriate scaling factor was defined to calculate the power distribution precisely. The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. The minimum power was found in the fuel ring number 9 and was 79.9 W. The total power in the total fuel rods was 30.9 k W. This result agrees very well with nominal power reported in the reactor safety analysis report which equals 30 k W. Finally, the peak power factors, which are defined as the ratios between the maximum to the average and the maximum to the minimum powers were calculated to be 1.18 and 1.31 respectively. (author)

  14. Complexing Agents on Carbon Content and Lithium Storage Capacity of LiFePO4/C Cathode Synthesized via Sol-Gel Approach

    Directory of Open Access Journals (Sweden)

    C. Guan

    2016-01-01

    Full Text Available Olivine-structured LiFePO4 faces its intrinsic challenges in terms of poor electrical conductivity and lithium-ion diffusion capability for application to lithium-ion batteries. Cost-effective sol-gel approach is advantageous to in situ synthesize carbon-coated LiFePO4 (LiFePO4/C which can not only improve electronic conductivity but also constrain particle size to nanometer scale. In this study, the key parameter is focused on the choice and amount of chelating agents in this synthesis route. It was found that stability of complexing compounds has significant impacts on the carbon contents and electrochemical properties of the products. At the favorable choice of precursors, composition, and synthesis conditions, nanocrystalline LiFePO4/C materials with appropriate amount of carbon coating were successfully obtained. A reversible capacity of 162 mAh/g was achieved at 0.2C rate, in addition to good discharge rate capability.

  15. Sliding-wear resistance of pure near fully-dense B4C under lubrication with water, diesel fuel, and paraffin oil

    DEFF Research Database (Denmark)

    Ortiz, Angel L.; Leal, Victor Manuel Candelario; Borrero-López, Oscar

    2017-01-01

    The sliding-wear resistance of pure near fully-dense B4C is investigated, and the wear mode/mechanisms identified, under lubrication with water, diesel fuel, and paraffin oil. It is found that the wear is mild in the three cases, with specific wear rates (SWRs) of 10−16–10−17 m3/N m. Nonetheless......, the wear resistance of the B4C ceramic is one order of magnitude greater under oil lubrication (1016 N m/m3) than under water lubrication (1015 N m/m3), and twice as great for the specific case of paraffin oil than diesel fuel, attributable to the lubricant’s viscosity. It is also found that the wear mode...... is always abrasion, and that the wear mechanisms are plastic deformation and localized fracture with grain pullout. However, in agreement with the macro-wear data, the severity of the wear damage is lower under lubrication with paraffin oil, followed by diesel fuel, and lastly water. Finally...

  16. Synergetic Fe substitution and carbon connection in LiMn1−xFexPO4/C cathode materials for enhanced electrochemical performances

    International Nuclear Information System (INIS)

    Yan, Su-Yuan; Wang, Cheng-Yang; Gu, Rong-Min; Sun, Shuai; Li, Ming-Wei

    2015-01-01

    Highlights: • LiMn 0.6 Fe 0.4 PO 4 /C cathode material shows enhanced rate capability. • The Fe doped in the partial Mn sites could significantly facilitate the Li ions transfer. • The enhanced Li + ions diffusion contributes to the optimized rate capability of LiMn 0.6 Fe 0.4 PO 4 . • ACM carbonization forms well carbon coating and a 3D carbon network structure. - Abstract: To enhance the rate and cyclic performances of LiMnPO 4 cathode material for lithium-ion batteries, Mn is partially substituted with Fe, and LiMn 1−x Fe x PO 4 (x = 0.2, 0.3, 0.4, 0.5) solid solutions are synthesized and investigated. Amphiphilic carbonaceous material (ACM) forms well carbon coating and connects the LiMn 1−x Fe x PO 4 crystallites by a three-dimensional (3D) carbon network. The synergetic Fe substitution and carbon connection obviously improve the samples’ rate capacities and cyclic stability. The optimized LiMn 0.6 Fe 0.4 PO 4 /C sample delivers discharge capacities of 160 mA h g −1 at 0.05 C, 148 mA h g −1 at 1 C, and 115 mA h g −1 at 20 C. All samples have well capacity retention (>92%) after 50 charge/discharge cycles at 1 C. The enhanced electrochemical properties are mainly attributed to the improvement of Li ion and electron transport in the LiMn 1−x Fe x PO 4 /C samples, respectively mainly resulting from their modified crystal structures caused by Fe substitution and the 3D carbon coating/connection originating from ACM carbonization. LiMn 1−x Fe x PO 4 materials exhibit two discharge plateaus at ∼4.0 and ∼3.5 V (vs. Li + /Li), whose heights respectively reflect the redox potentials of Mn 3+ /Mn 2+ and Fe 3+ /Fe 2+ couples. The plateaus’ lengths correspond to the Mn/Fe ratio in LiMn 1−x Fe x PO 4 and are affected by the kinetic behavior of samples. Though the ∼4.0 V plateau shrinks with increasing discharge rate, the ∼3.5 V plateau may slightly elongate. Moreover, the Fe substituted in the partial Mn sites could significantly improve

  17. 1,4-Dimethyl-3-phenyl-3H-pyrazolo[3,4-c]isoquinolin-5(4H-one

    Directory of Open Access Journals (Sweden)

    Giuseppe Daidone

    2008-05-01

    Full Text Available The title compound, C18H15N3O, is the product of the thermal decomposition of the diazonium salt derived from 2-amino-N-methyl-N-(3-methyl-1-phenyl-1H-pyrazol-5-ylbenzamide. It is characterized by a trans orientation of the methyl groups with respect to the tricyclic ring system. The molecule has a nearly planar phenylpyrazolo[3,4-c]isoquinolin-5-one system, the largest deviation from the mean plane being 0.066 (2 Å for the O atom. The dihedral angle between the phenyl substituent and the heterotricycle is 67 (1°. The packing is stabilized by C—H...N hydrogen-bond interactions, with the formation of molecular chains along the c axis.

  18. Solid-state synthesis of uniform Li2MnSiO4/C/graphene composites and their performance in lithium-ion batteries

    Science.gov (United States)

    Gong, Huaxu; Zhu, Yongchun; Wang, Linlin; Wei, Denghu; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Uniform nanospherical Li2MnSiO4/C/graphene composites have been obtained by polyethylene glycol-600 (PEG-600) assisted solid-state reaction using spherical SiO2 as precursor, and heat treatment with the mixed carbon sources (glucose, cellulose acetate and graphene oxide). The transmission electron microscope (TEM) images show that Li2MnSiO4 nanospheres with size of 50 nm are embedded in the three-dimensional (3D) nest-like carbon network. Electrochemical measurements reveal that the composites exhibit first discharge capacity of 215.3 mAh g-1 under 0.05 C, together with a stable discharge capacity of 175 mAh g-1 after 40 cycles. The 3D carbon network and the carbon layer (amorphous carbon and graphene) are favorable for improving the electrochemical performance.

  19. Principles of Structure and Phase Composition Formation in Composite Master Alloys of the Al-Ti-B/B4c Systems Used for Aluminum Alloy Modification

    Science.gov (United States)

    Zhukov, I. A.; Promakhov, V. V.; Matveev, A. E.; Platov, V. V.; Khrustalev, A. P.; Dubkova, Ya. A.; Vorozhtsov, S. A.; Potekaev, A. I.

    2018-03-01

    The principles of formation of structure and properties of materials produced by self-propagating hightemperature synthesis (SHS) from the Al-Ti-B/B4C powder systems are identified. It is shown that the SHSmaterials produced from the Al-Ti-B powder systems consist of a TiAl intermetallic matrix with inclusions of titanium diboride particles. It is found out that an introduction of 1 wt.% of TiB2 particles into the melt of the AD35 aluminum alloy allows reducing the grain size from 620 to 220 μm and gives rise to an increase in the ultimate tensile strength of as-cast specimens from 100 to 145 MPa and in the plasticity from 7 to 9%.

  20. Optimization of a divided wall column for the separation of C4-C6 normal paraffin mixture using Box-Behnken design

    Directory of Open Access Journals (Sweden)

    Sangal Vikas K.

    2013-01-01

    Full Text Available In the present study, simulation of a divided wall column (DWC was carried out to study the product quality and energy efficiency as a function of reflux rate, liquid spilt and vapour split for the separation of C4-C6 normal paraffin ternary mixture. Rigorous simulation of the DWC was carried out using Multifrac model of ASPEN Plus software. Box-Behnken design (BBD was used for the optimization of parameters and to evaluate the effects and interaction of the process parameters such as reflux rate (r, liquid split (l and vapour split (v. It was found that the number of simulation runs reduced significantly for the optimization of DWC by BBD. Optimization by BBD under response surface methodology (RSM vividly underscores interactions between variables and their effects. The predictions agree well with the results of the rigorous simulation.

  1. Calculations of the thermal and fast neutron fluxes in the Syrian miniature neutron source reactor using the MCNP-4C code.

    Science.gov (United States)

    Khattab, K; Sulieman, I

    2009-04-01

    The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron fluxes in the inner and outer irradiation sites of MNSR. The thermal fluxes in the MNSR inner irradiation sites were also measured experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation sites to measure the thermal neutron flux and the epithermal index in each site. The calculated and measured results agree well.

  2. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian, E-mail: pnavarre@vtr.ne [Universidad de Chile, Santiago (Chile). Facultad de Ciencias Quimicas y Farmaceuticas. Lab. de Sintesis Organica y Fisicoquimica; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J. [Universidad de Chile, Santiago (Chile). Fac. de Ciencias Quimicas y Farmaceuticas. Lab. de Bioelectroquimica

    2010-07-01

    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  3. 4C理论在网络营销中的应用解析%Analysis of the Application of 4C Theory in Internet Marketing

    Institute of Scientific and Technical Information of China (English)

    刘生慧

    2012-01-01

    4C理论是在现代经济形势下以消费者为导向的网络营销理念,主要涉及消费者、成本、便利和沟通四个要素。4C理论可以给网络营销计划的制定、执行和完善带来较为全面的、系统的指导,有利于建立良好的网络营销策略。%4C theory is a consumer-oriented internet marketing concept in the modern economic situation,including consumer,cost,convenience and communication.it can be used to direct the development,implementation and improvement of the internet marketing project comprehensively and systematically,so that the favorable internet marketing strategy can be constructed.

  4. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    International Nuclear Information System (INIS)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J.

    2010-01-01

    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  5. Dosimetry analysis of distributions radials dose profiles of {sup 90}Sr + {sup 90}Y beta therapy applicators using the MCNP-4C code and radio chromium films; Analise dosimetrica de perfis de distribuicoes radias de doses relativas de um aplicador de betaterapia de {sup 90}Sr + {sup 90}Y utilizando o codigo MCNP-4C e filmes radiocromicos

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Talita S.; Yoriyaz, Helio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fernandes, Marco A.R., E-mail: tasallesc@gmail.co [UNESP, Botucatu, SP (Brazil). Faculdade de Medicina. Servico de Radioterapia; Louzada, Mario J.Q. [UNESP, Aracatuba, SP (Brazil). Curso de Medicina Veterinaria

    2011-07-01

    Although they are no longer manufactured, the applicators of {sup 90}Sr + {sup 90}Y acquired in the decades of 1990 are still in use, by having half-life of 28.5 years. These applicators have calibration certificate given by their manufacturers, where few have been re calibrated. Thus it becomes necessary to accomplish thorough dosimetry of these applicators. This paper presents a dosimetric analysis distribution radial dose profiles for emitted by an {sup 90}Sr + {sup 90}Y beta therapy applicator, using the MCNP-4C code to simulate the distribution radial dose profiles and radio chromium films to get them experimentally . The results with the simulated values were compared with the results of experimental measurements, where both curves show similar behavior, which may validate the use of MCNP-4C and radio chromium films for this type of dosimetry. (author)

  6. Dosimetry analysis of distribution radial dose profiles of {sup 90}Sr + {sup 90}Y beta therapy applicators using the MCNP-4C code and radio chromium films; Analise dosimetrica de perfis de distribuicoes radiais de doses relativas de um aplicador de betaterapia de {sup 90}Sr + {sup 90}Y utilizando o codigo MCNP-4C e filmes radiocromicos

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, T.S.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fernandes, M.A.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac. de Medicina. Servico de Radioterapia; Louzada, M.J.Q. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Aracatuba, SP (Brazil). Curso de Medicina Veterinaria

    2010-07-01

    Although they are no longer manufactured, the applicators of {sup 90}Sr +{sup 90}Y acquired in the decades of 1990 are still in use, by having half-life of 28.5 years. These applicators have calibration certificate given by their manufacturers, where few have been recalibrated. Thus it becomes necessary to accomplish thorough dosimetry of these applicators. This paper presents a dosimetric analysis distribution radial dose profiles for emitted by an {sup 90}Sr+{sup 90}Y beta therapy applicator, using the MCNP-4C code to simulate the distribution radial dose profiles and radiochromium films to get them experimentally . The results with the simulated values were compared with the results of experimental measurements, where both curves show similar behavior, which may validate the use of MCNP-4C and radiochromium films for this type of dosimetry. (author)

  7. Computational analysis of Bangladesh 3 MW TRIGA research reactor using MCNP4C, JENDL-3.3 and ENDF/B-Vl data libraries

    International Nuclear Information System (INIS)

    Huda, M.Q.

    2006-01-01

    The three-dimensional continuous energy Monte Carlo code MCNP4C was used to develop a versatile and accurate full-core model of the 3 MW TRIGA MARK II research reactor at Atomic Energy Research Establishment, Savar, Dhaka, Bangladesh. The model represents in detail all components of the core with literally no physical approximation. All fresh fuel and control elements as well as the vicinity of the core were precisely described. Validation of the JENDL-3.3 and ENDF/BVI continuous energy cross-section data for MCNP4C was performed against some well-known benchmark lattices. For TRIGA analysis, data from JENDL-3.3 and ENDF/B-VI in combination with the JENDL-3.2 and ENDF/B-V data files (for nat Zr, nat Mo, nat Cr, nat Fe, nat Ni, nat Si, and nat Mg) at 300 K evaluations were used. Full S(α, β) scattering functions from ENDF/B-V for Zr in ZrH, H in ZrH and water molecule, and for graphite were used in both cases. The validation of the model was performed against the criticality and reactivity benchmark experiments of the TRIGA reactor. There is ∼20.0% decrease of thermal neutron flux occurs when the thermal library is removed during the calculation. Effect of erbium isotope that is present in the TRIGA fuel was also studied. In addition to the effective multiplication values, the well-known integral parameters: δ 28 , δ 25 , ρ 25 , and C * were calculated and compared for both JENDL3.3 and ENDF/B-VI libraries and were found to be in very good agreement. Results are also reported for most of the analyses performed by JENDL-3.2 and ENDF/B-V data libraries

  8. Relationship between HCO_3"- concentration to weight of C_6H_6 of environmental isotop "1"4C analysis and its relationship with sampling in the field

    International Nuclear Information System (INIS)

    Satrio; Rasi Prasetio

    2016-01-01

    It has been done the groundwater sampling process of deep aquifer in Jakarta and surrounding areas for the analysis of environmental isotope "1"4C. Groundwater sampling was preceded by calculating the concentration of HCO_3"- (bicarbonate ion) through titration in the field. The number of repetitions of sampling is determined by the concentration data of HCO_3"- which obtained. The Repetition of this sampling will determine the acquisition of a solution of C_6H_6 (benzene) during the synthesis process benzene. In the field, the sampling is done by extracting of 60 liters of water to precipitate BaCO_3. The sampling process is repeated based on data from the bicarbonate ion concentration. The purpose of this study to determine the relationship between the concentration of HCO_3"- to the weights C_6H_6 which obtained in the analysis of environmental isotope "1"4C and evaluate the number of repetitions of the sampling that should be done. Based on the analysis of titration in the field, shows that concentration HCO_3"- ranged between 180 - 600 ppm with the acquisition of benzene between 1.84 to 4.5 grams. There is a strong relationship between the concentration of HCO_3"- and C_6H_6 weights obtained in the process of synthesis of benzene with a correlation of about 0.900. This correlation can be improved by measuring the concentration of HCO_3"- in advance in the laboratory tend to be more accurate than in the field. (author)

  9. Barriers and opportunities for improving energy efficiency in the social housing sector: Case study of E4C's Division of Housing and Mental Health

    Science.gov (United States)

    Marchand-Smith, Patrick

    Energy efficiency improvements in the social housing sector have the potential to produce a range of environmental and social benefits. These improvements can be produced through retrofits that deliver energy savings or new construction built to a high standard of energetic efficiency. However, implementation of these approaches is hindered by economic and organizational constraints affecting the agencies that provide society with social housing and the governments that support the provision of these services. This thesis builds on the work of other researchers studying these constraints by supplying an in-depth case study from Alberta and a discussion based on its findings. The case study focuses on E4C, a social service agency with several housing projects. Overall, findings matched important themes identified in the academic literature. The in-depth nature of the case study added additional insight to many of these themes. Most barriers are economic in nature and related to a lack of sufficient funding or the up-front costs of energy-saving retrofits. The recommendations presented are based on consideration of the multiple barriers and opportunities faced. Most of these require a considerable investment of time on the part of agencies and would be followed up by capital investments to implement energy-saving changes. Therefore it is important to note that the most significant barrier is commitment, which is one of E4C's central values. This thesis showed that commitment cannot exceed capacity to act. Greater commitment on the part of governments, agencies or society at large could have significant impacts in improving the energy efficiency of buildings in the Albertan, and Canadian, social housing sector.

  10. `Zwicky's Nonet': a compact merging ensemble of nine galaxies and 4C 35.06, a peculiar radio galaxy with dancing radio jets

    Science.gov (United States)

    Biju, K. G.; Bagchi, Joydeep; Ishwara-Chandra, C. H.; Pandey-Pommier, M.; Jacob, Joe; Patil, M. K.; Kumar, P. Sunil; Pandge, Mahadev; Dabhade, Pratik; Gaikwad, Madhuri; Dhurde, Samir; Abraham, Sheelu; Vivek, M.; Mahabal, Ashish A.; Djorgovski, S. G.

    2017-10-01

    We report the results of our radio, optical and infrared studies of a peculiar radio source 4C 35.06, an extended radio-loud active galactic nucleus (AGN) at the centre of galaxy cluster Abell 407 (z = 0.047). The central region of this cluster hosts a remarkably tight ensemble of nine galaxies, the spectra of which resemble those of passive red ellipticals, embedded within a diffuse stellar halo of ˜1 arcmin size. This system (named 'Zwicky's Nonet') provides unique and compelling evidence for a multiple-nucleus cD galaxy precursor. Multifrequency radio observations of 4C 35.06 with the Giant Meterwave Radio Telescope (GMRT) at 610, 235 and 150 MHz reveal a system of 400-kpc scale helically twisted and kinked radio jets and outer diffuse lobes. The outer extremities of jets contain extremely steep-spectrum (spectral index -1.7 to -2.5) relic/fossil radio plasma with a spectral age of a few ×(107-108) yr. Such ultra-steep spectrum relic radio lobes without definitive hotspots are rare and they provide an opportunity to understand the life cycle of relativistic jets and physics of black hole mergers in dense environments. We interpret our observations of this radio source in the context of growth of its central black hole, triggering of its AGN activity and jet precession, all possibly caused by galaxy mergers in this dense galactic system. A slow conical precession of the jet axis due to gravitational perturbation between interacting black holes is invoked to explain the unusual jet morphology.

  11. Interface-modulated fabrication of hierarchical yolk-shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage

    Institute of Scientific and Technical Information of China (English)

    Yuzhu Wu; Jiashen Meng; Qi Li; Chaojiang Niu; Xuanpeng Wang; Wei Yang; Wei Li; Liqiang Mai

    2017-01-01

    Transition-metal oxides (TMOs) have gradually attracted attention from researchers as anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) because of their high theoretical capacity.However,their poor cycling stability and inferior rate capability resulting from the large volume variation during the lithiation/sodiation process and their low intrinsic electronic conductivity limit their applications.To solve the problems of TMOs,carbon-based metal-oxide composites with complex structures derived from metal-organic frameworks (MOFs) have emerged as promising electrode materials for LIBs and SIBs.In this study,we adopted a facile interface-modulated method to synthesize yolk-shell carbon-based Co3O4 dodecahedrons derived from ZIF-67 zeolitic imidazolate frameworks.This strategy is based on the interface separation between the ZIF-67 core and the carbon-based shell during the pyrolysis process.The unique yolk-shell structure effectively accommodates the volume expansion during lithiation or sodiation,and the carbon matrix improves the electrical conductivity of the electrode.As an anode for LIBs,the yolk-shell Co3O4/C dodecahedrons exhibit a high specific capacity and excellent cycling stability (1,100 mAh·g-1 after 120 cycles at 200 mA·g-1).As an anode for SIBs,the composites exhibit an outstanding rate capability (307 mAh·g-1 at 1,000 mA·g-1 and 269 mAh·g-1 at 2,000 mA·g-1).Detailed electrochemical kinetic analysis indicates that the energy storage for Li+ and Na+ in yolk-shell Co3O4/C dodecahedrons shows a dominant capacitive behavior.This work introduces an effective approach for fabricating carbonbased metal-oxide composites by using MOFs as ideal precursors and as electrode materials to enhance the electrochemical performance of LIBs and SIBs.

  12. DXRaySMCS. First user friendly interface developed for prediction of diagnostic radiology X-ray spectra produced by Monte Carlo (MCNP-4C) simulation in Iran

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Zare, H.; Moradi Faradanbe, H.

    2008-01-01

    An accurate knowledge of the output energy spectra of an x-ray tube is essential in many areas of radiological studies. It forms the basis of almost all image quality simulations and enable system designers to predict patient dose more accurately. Many radiological physics problems that can be solved by Monte Carlo simulation methods require an x-ray spectra as input data. Computer simulation of x-ray spectra is one of the most important tools for investigation of patient dose and image quality in diagnostic radiology systems. In this work the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of x-ray spectra in diagnostic radiology, Electron's path in the target was followed until it's energy was reduced to 10 keV. A user friendly interface named 'Diagnostic X-ray Spectra by Monte Carlo Simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user friendly interface for modifying the MCNP input file, launching the MCNP program to simulate electron and photon transport and processing the MCNP output file to yield a summary of the results (Relative Photon Number per Energy Bin). In this article the development and characteristics of DXRaySMCS are outlined. As part of the validation process, out put spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study. (author)

  13. Development of surface functionalized ZnO-doped LiFePO4/C composites as alternative cathode material for lithium ion batteries

    Science.gov (United States)

    Saroha, Rakesh; Panwar, Amrish K.; Sharma, Yogesh; Tyagi, Pawan K.; Ghosh, Sudipto

    2017-02-01

    Surface modified olivine-type LiFePO4/C-ZnO doped samples were synthesized using sol-gel assisted ball-milling route. In this work, the influence of ZnO-doping on the physiochemical, electrochemical and surface properties such as charge separation at solid-liquid interphase, surface force gradient, surface/ionic conductivity of pristine LiFePO4/C (LFP) has been investigated thoroughly. Synthesized samples were characterized using X-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. All the synthesized samples were indexed to the orthorhombic phase with Pnma space group. Pristine LiFePO4 retain its structure for higher ZnO concentrations (i.e. 2.5 and 5.0 wt.% of LFP). Surface topography and surface force gradient measurements by EFM revealed that the kinetics of charge carriers, e-/Li+ is more in ZnO-doped LFP samples, which may be attributed to diffusion or conduction process of the charges present at the surface. Among all the synthesized samples LFP/C with 2.5 wt.% of ZnO (LFPZ2.5) displays the highest discharge capacity at all C-rates and exhibit excellent rate performance. LFPZ2.5 delivers a specific discharge capacity of 164 (±3) mAh g-1 at 0.1C rate. LFPZ2.5 shows best cycling performance as it provides a discharge capacity of 135 (±3) mAh g-1 at 1C rate and shows almost 95% capacity retention after 50 charge/discharge cycles. Energy density plot shows that LFPZ2.5 offers high energy and power density measured at high discharge rates (5C), proving its usability for hybrid vehicles application.

  14. Synthesis and structure of the extended phosphazane ligand [(1,4-C6H4){N(μ-PN(t)Bu)2N(t)Bu}2](4).

    Science.gov (United States)

    Sevilla, Raquel; Less, Robert J; García-Rodríguez, Raúl; Bond, Andrew D; Wright, Dominic S

    2016-02-07

    The reaction of the phenylene-bridged precursor (1,4-C6H4)[N(PCl2)2]2 with (t)BuNH2 in the presence of Et3N gives the new ligand precursor (1,4-C6H4)[N(μ-N(t)Bu)2(PNH(t)Bu)2]2, deprotonation of which with Bu2Mg gives the novel tetraanion [(1,4-C6H4){N(μ-N(t)Bu)2(PN(t)Bu)2}2](4-).

  15. Predictive role of the overexpression for CXCR4, C-Met, and VEGF-C among breast cancer patients: A meta-analysis.

    Science.gov (United States)

    Wang, Fang; Li, Shanshan; Zhao, Yueguang; Yang, Kunxian; Chen, Minju; Niu, Heng; Yang, Jingyu; Luo, Ying; Tang, Wenru; Sheng, Miaomiao

    2016-08-01

    The overexpression of CXCR4, C-Met and VEGF-C present widely in breast tumors, they may be markers of resistance to treatment. However, the studies are still controversial. Thus, this meta-analysis aims to research the relationship between the overexpression of CXCR4, C-Met, VEGF-C and clinical prognosis among breast cancer patients. PubMed and EMBASE databases were searched for eligible literature. The outcomes of interest were progression-free survival (PFS), relapse-free survival (RFS) and overall survival (OS). All tests of statistical significance were two sided. A total of 7830 patients from 28 eligible studies were assessed. The overexpression of the CXCR4 and C-Met both implied significantly worse PFS compared with normal expression [HR = 2.56, 95% CI = 1.34-4.91, P = 0.005; and HR = 1.63 95% CI = 1.20-2.22, P = 0.002]. Meanwhile, if patients had high expression of CXCR4, they would have worse OS [HR = 2.56 95% CI = 1.52-4.31, P = 0.000]. However, the overexpression of C-Met did not relate to OS for breast cancer patients [HR = 1.16, 95% CI = 0.69-1.95, P = 0.570]. Meanwhile, no statistically significant different was observed with respect to PFS and OS between VEGF-C overexpression and normal expression [HR = 0.99, 95% CI = 0.64-1.52, P = 0.968; and HR = 0.76, 95% CI = 0.43-1.33, P = 0.333]. Our meta-analysis showed that CXCR4 and C-Met were efficient prognostic factors for breast cancer. Nevertheless, highly expressing VEGF-C was not related to progression-free survival and overall survival. Due to the small samples and insufficient date, further studies should be conducted to clarify the association between the overexpression of CXCR4 or C-Met or VEGF-C and the prognosis about breast cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Development of surface functionalized ZnO-doped LiFePO{sub 4}/C composites as alternative cathode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Saroha, Rakesh [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Panwar, Amrish K., E-mail: amrish.phy@dce.edu [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Sharma, Yogesh [Department of Physics, IIT Roorkee, Roorkee, Uttarakhand 247667 (India); Tyagi, Pawan K. [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Ghosh, Sudipto [Department of Metallurgical & Materials Engineering, IIT Kharagpur, West Bengal 721302 (India)

    2017-02-01

    Highlights: • Pristine LFP and ZnO-doped LFP/C samples have been synthesized using sol-gel assisted ball milling route. • Electronic conductivity of pristine LFP increases to 10{sup 2}-10{sup 3} orders of magnitude for ZnO doped LFP/C samples. • AFM results indicate the presence of more volumetric charge density at the surface for ZnO-doped LFP/C sample. • LFPZ2.5 shows best cycling and rate performances among all the prepared samples. • Lithium ion diffusion coefficient increases significantly. - Abstract: Surface modified olivine-type LiFePO{sub 4}/C-ZnO doped samples were synthesized using sol-gel assisted ball-milling route. In this work, the influence of ZnO-doping on the physiochemical, electrochemical and surface properties such as charge separation at solid-liquid interphase, surface force gradient, surface/ionic conductivity of pristine LiFePO{sub 4}/C (LFP) has been investigated thoroughly. Synthesized samples were characterized using X-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. All the synthesized samples were indexed to the orthorhombic phase with Pnma space group. Pristine LiFePO{sub 4} retain its structure for higher ZnO concentrations (i.e. 2.5 and 5.0 wt.% of LFP). Surface topography and surface force gradient measurements by EFM revealed that the kinetics of charge carriers, e{sup −}/Li{sup +} is more in ZnO-doped LFP samples, which may be attributed to diffusion or conduction process of the charges present at the surface. Among all the synthesized samples LFP/C with 2.5 wt.% of ZnO (LFPZ2.5) displays the highest discharge capacity at all C-rates and exhibit excellent rate performance. LFPZ2.5 delivers a specific discharge capacity of 164 (±3) mAh g{sup −1} at 0.1C rate. LFPZ2.5 shows best cycling performance as it provides a discharge capacity of 135 (±3) mAh g{sup −1} at 1C rate and shows almost 95% capacity retention after 50 charge/discharge cycles. Energy

  17. Rapid preparation of high electrochemical performance LiFePO4/C composite cathode material with an ultrasonic-intensified micro-impinging jetting reactor.

    Science.gov (United States)

    Dong, Bin; Huang, Xiani; Yang, Xiaogang; Li, Guang; Xia, Lan; Chen, George

    2017-11-01

    A joint chemical reactor system referred to as an ultrasonic-intensified micro-impinging jetting reactor (UIJR), which possesses the feature of fast micro-mixing, was proposed and has been employed for rapid preparation of FePO 4 particles that are amalgamated by nanoscale primary crystals. As one of the important precursors for the fabrication of lithium iron phosphate cathode, the properties of FePO 4 nano particles significantly affect the performance of the lithium iron phosphate cathode. Thus, the effects of joint use of impinging stream and ultrasonic irradiation on the formation of mesoporous structure of FePO 4 nano precursor particles and the electrochemical properties of amalgamated LiFePO 4 /C have been investigated. Additionally, the effects of the reactant concentration (C=0.5, 1.0 and 1.5molL -1 ), and volumetric flow rate (V=17.15, 51.44, and 85.74mLmin -1 ) on synthesis of FePO 4 ·2H 2 O nucleus have been studied when the impinging jetting reactor (IJR) and UIJR are to operate in nonsubmerged mode. It was affirmed from the experiments that the FePO 4 nano precursor particles prepared using UIJR have well-formed mesoporous structures with the primary crystal size of 44.6nm, an average pore size of 15.2nm, and a specific surface area of 134.54m 2 g -1 when the reactant concentration and volumetric flow rate are 1.0molL -1 and 85.74mLmin -1 respectively. The amalgamated LiFePO 4 /C composites can deliver good electrochemical performance with discharge capacities of 156.7mAhg -1 at 0.1C, and exhibit 138.0mAhg -1 after 100 cycles at 0.5C, which is 95.3% of the initial discharge capacity. Copyright © 2017. Published by Elsevier B.V.

  18. Synthesis, Characterization, Antimicrobial and Antioxidant Activities of The Homocyclotrimer Of 4-Oxo-4h-Thieno[3,4-C]Chromene-3-Diazonium Sulfate.

    Science.gov (United States)

    Sopbue Fondjo, Emmanuel; Sorel, Djeukoua Dimo Kamal; Jean-de-Dieu, Tamokou; Joseph, Tsemeugne; Sylvian, Kouamo; Doriane, Ngouanet; Rodolphe, Chouna Jean; Pepin, Nkeng-Efouet-Alango; Jules-Roger, Kuiate; Arnaud, Ngongang Ndjintchui; Lucas, Sondengam Beibam

    2016-01-01

    The in situ formed 4-oxo-4H-thieno[3,4-c]chromene-3-diazonium sulfate (5) in the coupling reactions involving the parent 2-aminothiophene (4) and various phenolic and arylamines' couplers, readily undergoes homocyclotrimerization at low temperature to afford in fairly good yield the first ever reported eighteen member ring heteroaromatic holigomer 6. Compound 6 was fully characterized by its elemental analysis, IR, UV-Vis, (1)H-NMR, (13)C-NMR and HRMS spectral data. The HMBC and HSQC techniques were used to ascertain the structural assignments. A comparative study on the antimicrobial and antioxidant activities of compounds 3, 4 and 6 was carried out to assess the SAR due to the transformations (from 3 to 6 via 4) on the tested compounds. It was found that compounds 6 and 4 were respectively the most active compounds against bacteria (MIC = 32-64 μg/ml) and yeasts (MIC = 16-64 μg/ml). Compound 6 also showed high radical-scavenging activities and ferric reducing power when compared with vitamin C and BHT used as reference antioxidants.

  19. Synthesis, Characterization, and Antimicrobial Activity of a Novel Trisazo Dye from 3-Amino-4H-thieno[3,4-c][1]benzopyran-4-one

    Science.gov (United States)

    Tsemeugne, Joseph; Rohand, Taoufik; Ngongang, Arnaud Djintchui; Sondengam, Beibam Luc

    2018-01-01

    A new trisazo dye has been synthesized by coupling the diazonium ion of 3-amino-4H thieno[3,4-c][1]benzopyran-4-one with 2-tert-butyl-4-methoxyphenol. The newly prepared trisazo dye was characterized by its physical, elemental, and spectroscopic data. 2D-NMR (COSY, HSQC, and HMBC) techniques were used to secure the structural assignments. The new trisazo dye (compound 7) along with precursors 3, 4, and 6 was screened by microdilution susceptibility assay for antibacterial and antifungal activities towards eight bacterial strains and three yeasts selected on the basis of their relevance as human pathogens. The results showed that compound 7 (MIC = 2–128 μg/mL) was the most active as compared with its precursors. The most resistant microorganisms were V. cholerae NB2 and V. cholerae SG24, whereas the most sensitive microorganism was C. neoformans. The overall results of this study indicated that compound 7 had the greatest potential value against both yeasts and multidrug-resistant bacteria, so further investigation is warranted. PMID:29484208

  20. Synthesis, Characterization, Antimicrobial and Antioxidant Activities of The Homocyclotrimer Of 4-Oxo-4h-Thieno[3,4-C]Chromene-3-Diazonium Sulfate

    Science.gov (United States)

    Sopbue Fondjo, Emmanuel; Sorel, Djeukoua Dimo Kamal; Jean-de-Dieu, Tamokou; Joseph, Tsemeugne; Sylvian, Kouamo; Doriane, Ngouanet; Rodolphe, Chouna Jean; Pepin, Nkeng-Efouet-Alango; Jules-Roger, Kuiate; Arnaud, Ngongang Ndjintchui; Lucas, Sondengam Beibam

    2016-01-01

    The in situ formed 4-oxo-4H-thieno[3,4-c]chromene-3-diazonium sulfate (5) in the coupling reactions involving the parent 2-aminothiophene (4) and various phenolic and arylamines’ couplers, readily undergoes homocyclotrimerization at low temperature to afford in fairly good yield the first ever reported eighteen member ring heteroaromatic holigomer 6. Compound 6 was fully characterized by its elemental analysis, IR, UV-Vis, 1H-NMR, 13C-NMR and HRMS spectral data. The HMBC and HSQC techniques were used to ascertain the structural assignments. A comparative study on the antimicrobial and antioxidant activities of compounds 3, 4 and 6 was carried out to assess the SAR due to the transformations (from 3 to 6 via 4) on the tested compounds. It was found that compounds 6 and 4 were respectively the most active compounds against bacteria (MIC = 32-64 μg/ml) and yeasts (MIC = 16–64 μg/ml). Compound 6 also showed high radical-scavenging activities and ferric reducing power when compared with vitamin C and BHT used as reference antioxidants. PMID:27583034

  1. Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chang Zhaorong; Lv Haojie; Tang Hongwei; Li Huaji; Yuan Xiaozi; Wang Haijiang

    2009-01-01

    To achieve a high-energy-density lithium electrode, high-density LiFePO 4 /C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO 4 as a precursor, glucose as a C source, and Li 2 CO 3 as a Li source, in a pipe furnace under an atmosphere of 5% H 2 -95% N 2 . The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO 4 /carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO 4 /carbon composite powder with a carbon content of 7% reached 1.80 g m -3 . The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g -1 , respectively, with a volume capacity of 300.6 mAh cm -3 , at a 0.1C rate. At a rate of 5C, the LiFePO 4 /carbon composite shows a high discharge capacity of 98.3 mAh g -1 and a volume capacity of 176.94 mAh cm -3 .

  2. Using cyclopenta[2,1-b:3,4-c']dithiophene-4-one as a building block for low-bandgap conjugated copolymers applied in solar cells.

    Science.gov (United States)

    Zhang, Wei; Cao, Jiamin; Liu, Ying; Xiao, Zuo; Zhu, Weiguo; Zuo, Qiqun; Ding, Liming

    2012-09-26

    A novel electron-accepting unit cyclopenta[2,1-b:3,4-c']dithiophene-4-one (CPDTO-c'), which is an isomer of CPDTO-b' was developed. CPDTO-c' can be incorporated into the D-A backbone through 5, 7 positions. The 2 position of CPDTO-c' can be easily functionalized with an electron-withdrawing chain. By copolymerizing CPDTO-c' with four different donor units: benzo[1,2-b:4,5-b']dithiophene (BDT), dithieno[3,2-b:2',3'-d]silole (DTS), carbazole, and fluorene, four new conjugated copolymers P1-P4 were obtained. All these polymers have good solubility and low-lying HOMO energy levels (-5.41 ∼ -5.92 eV). Among them, P1 and P2 exhibit broad absorption and narrow optical bandgaps of 1.91 and 1.72 eV, respectively. Solar cells based on P1/PC(71) BM afforded a PCE up to 2.72% and a high V(oc) up to ∼0.9 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Investigation of the Effects of Tissue Inhomogeneities on the Dosimetric Parameters of a Cs-137 Brachytherapy Source using the MCNP4C Code

    Directory of Open Access Journals (Sweden)

    Mehdi Zehtabian

    2010-09-01

    Full Text Available Introduction: Brachytherapy is the use of small encapsulated radioactive sources in close vicinity of tumors. Various methods are used to obtain the dose distribution around brachytherapy sources. TG-43 is a dosimetry protocol proposed by the AAPM for determining dose distributions around brachytherapy sources. The goal of this study is to update this protocol for presence of bone and air inhomogenities.  Material and Methods: To update the dose rate constant parameter of the TG-43 formalism, the MCNP4C simulations were performed in phantoms composed of water-bone and water-air combinations. The values of dose at different distances from the source in both homogeneous and inhomogeneous phantoms were estimated in spherical tally cells of 0.5 mm radius using the F6 tally. Results: The percentages of dose reductions in presence of air and bone inhomogenities for the Cs-137 source were found to be 4% and 10%, respectively. Therefore, the updated dose rate constant (Λ will also decrease by the same percentages.   Discussion and Conclusion: It can be easily concluded that such dose variations are more noticeable when using lower energy sources such as Pd-103 or I-125.

  4. SPRINT 4 C, instant programming system. Part I: the language; Part II: the system (implemented on the CAE 90-40)

    International Nuclear Information System (INIS)

    Cavadia, Izvoras Cristian

    1969-01-01

    SPRINT 4 C is an original system intended for real-time operation on present day computers. It takes into account the specific properties of this kind of process and may be used without any special programming knowledge. Man and machine are continuously interacting since after each statement the system is executing all the computations made possible by the current set of previously introduced definitions. Syntax and semantic errors are detected as soon as they appear. The incorrect statement is eliminated, thus allowing for corrections or improvements. The computation is evolutive, i. e. all the already existing expressions, and/or all those to be defined later, may be used to create new structures. The statements may be read in through the typewriter, the card reader or the paper tape reader attached to the computer, the results being printed on the typewriter or on the line printer. The I/O device connections are possible at any time by means of typed commands. The two modes: 'parameter modification' and 'computation proceeding' allow the user to study the mathematical structure behaviour for different sets of data and then to go on developing the structure by adding new expressions. (author) [fr

  5. A star-forming shock front in radio galaxy 4C+41.17 resolved with laser-assisted adaptive optics spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Steinbring, Eric, E-mail: Eric.Steinbring@nrc-cnrc.gc.ca [National Research Council Canada, Victoria, BC V9E 2E7 (Canada)

    2014-07-01

    Near-infrared integral-field spectroscopy of redshifted [O III], Hβ, and optical continuum emission from the z = 3.8 radio galaxy 4C+41.17 is presented, obtained with the laser-guide-star adaptive optics facility on the Gemini North telescope. Employing a specialized dithering technique, a spatial resolution of 0.''10, or 0.7 kpc, is achieved in each spectral element, with a velocity resolution of ∼70 km s{sup –1}. Spectra similar to local starbursts are found for bright knots coincident in archival Hubble Space Telescope ( HST) rest-frame ultraviolet images, which also allows a key line diagnostic to be mapped together with new kinematic information. There emerges a clearer picture of the nebular emission associated with the jet in 8.3 GHz and 15 GHz Very Large Array maps, closely tied to a Lyα-bright shell-shaped structure seen with HST. This supports a previous interpretation of that arc tracing a bow shock, inducing ∼10{sup 10–11} M {sub ☉} star formation regions that comprise the clumpy broadband optical/ultraviolet morphology near the core.

  6. Modeling the effect in of criticality from changes in key parameters for small High Temperature Nuclear Reactor (U-BatteryTM) using MCNP4C

    International Nuclear Information System (INIS)

    Pauzi, A M

    2013-01-01

    The neutron transport code, Monte Carlo N-Particle (MCNP) which was wellkown as the gold standard in predicting nuclear reaction was used to model the small nuclear reactor core called U -battery TM, which was develop by the University of Manchester and Delft Institute of Technology. The paper introduces on the concept of modeling the small reactor core, a high temperature reactor (HTR) type with small coated TRISO fuel particle in graphite matrix using the MCNPv4C software. The criticality of the core were calculated using the software and analysed by changing key parameters such coolant type, fuel type and enrichment levels, cladding materials, and control rod type. The criticality results from the simulation were validated using the SCALE 5.1 software by [1] M Ding and J L Kloosterman, 2010. The data produced from these analyses would be used as part of the process of proposing initial core layout and a provisional list of materials for newly design reactor core. In the future, the criticality study would be continued with different core configurations and geometries.

  7. Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells

    KAUST Repository

    Yang, Fan

    2017-08-15

    We report a systematic study of the efficiency limitations of non-fullerene organic solar cells that exhibit a small energy loss (Eloss) between the polymer donor and the non-fullerene acceptor. To clarify the impact of Eloss on the performance of the solar cells, three thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers (PTPD3T, PTPD2T, and PTPDBDT) are employed as the electron donor, which all have complementary absorption spectra compared with the ITIC acceptor. The corresponding photovoltaic devices show that low Eloss (0.54 eV) in PTPDBDT:ITIC leads to a high open-circuit voltage (Voc) of 1.05 V, but also to a small quantum efficiency, and in turn photocurrent. The high Voc or small energy loss in the PTPDBDT-based solar cells is a consequence of less non-radiative recombination, whereas the low quantum efficiency is attributed to the unfavorable micro-phase separation, as confirmed by the steady-state and time-resolved photoluminescence experiments, grazing-incidence wide-angle X-ray scattering, and resonant soft X-ray scattering (R-SoXS) measurements. We conclude that to achieve high performance non-fullerene solar cells, it is essential to realize a large Voc with small Eloss while simultaneously maintaining a high quantum efficiency by manipulating the molecular interaction in the bulk-heterojunction.

  8. The MCNP-4C2 design of a two element photon/electron dosemeter that uses magnesium/copper/phosphorus doped lithium fluoride.

    Science.gov (United States)

    Eakins, J S; Bartlett, D T; Hager, L G; Molinos-Solsona, C; Tanner, R J

    2008-01-01

    The Health Protection Agency is changing from using detectors made from 7LiF:Mg,Ti in its photon/electron personal dosemeters, to 7LiF:Mg,Cu,P. Specifically, the Harshaw TLD-700H card is to be adopted. As a consequence of this change, the dosemeter holder is also being modified not only to accommodate the shape of the new card, but also to optimize the photon and electron response characteristics of the device. This redesign process was achieved using MCNP-4C2 and the kerma approximation, electron range/energy tables with additional electron transport calculations, and experimental validation, with different potential filters compared; the optimum filter studied was a polytetrafluoroethylene disc of diameter 18 mm and thickness 4.3 mm. Calculated relative response characteristics at different angles of incidence and energies between 16 and 6174 keV are presented for this new dosemeter configuration and compared with measured type-test results. A new estimate for the energy-dependent relative light conversion efficiency appropriate to the 7LiF:Mg,Cu,P was also derived for determining the correct dosemeter response.

  9. Small Molecules Derived from Thieno[3,4-c]pyrrole-4,6-dione (TPD) and Their Use in Solution Processed Organic Solar Cells.

    Science.gov (United States)

    Garcias-Morales, Cesar; Romero-Borja, Daniel; Maldonado, José-Luis; Roa, Arián E; Rodríguez, Mario; García-Merinos, J Pablo; Ariza-Castolo, Armando

    2017-09-30

    In this work, microwave synthesis, chemical, optical and electrochemical characterization of three small organic molecules, TPA-TPD , TPA-PT-TPD and TPA-TT-TPD with donor-acceptor structure and their use in organic photovoltaic cells are reported. For the synthesis, 5-(2-ethylhexyl)-4 H -thieno[3,4- c ]pyrrole-4,6(5 H )-dione was used as electron withdrawing fragment while the triphenylamine was used as electron donating fragment. Molecular electronic geometry and electronic distribution density were established by density functional theory (DFT) calculations and confirmed by optical and chemical characterization. These molecules were employed as electron-donors in the active layer for manufacturing bulk heterojunction organic solar cells, where [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) was used as electron-acceptor. As cathode, Field's metal (FM), an eutectic alloy (Bi/In/Sn: 32.5%, 51%, and 16.5%, respectively) with a melting point above 62 °C, was easily deposited by drop casting under vacuum-free process and at air atmosphere. Prepared devices based on TPA-TPD :PC71BM (1:4 w / w ratio) presented a large V OC = 0.97 V, with J SC = 7.9 mA/cm², a FF = 0.34, then, a power conversion efficiency (PCE) of 2.6%.

  10. Reactivity determination of the Al2O3-B4C burnable poison as a function of its concentration in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Giada, Marino Reis

    2005-01-01

    Burnable poison rods made of Al 2 O 3 -B 4 C pellets with different concentrations of 10 B have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. The experiments evaluated the reactivity of the burnable poison rods as a function of the 10 B concentration, and the shadowing effect on the control rod reactivity worth as a function of the distance between the burnable position rods and the control rod. The results showed that the burnable poison rods have a non-linear behavior as function of the 10 B concentration, starting to reach an asymptotic value for concentrations higher than 7 g/cm 3 of 10 B. The shadowing effect on the control rods was substantial. When the burnable poison rods were beside the control rod, its reactivity worth decreased as much as 30 %, and when they were 10,5 cm distant, the control rod worth decreased by 7 %. The MCNP results for the burnable poison reactivity effects agreed within experimental errors with the measured values. (author)

  11. Synthesis, Characterization, and Antimicrobial Activity of a Novel Trisazo Dye from 3-Amino-4H-thieno[3,4-c][1]benzopyran-4-one

    Directory of Open Access Journals (Sweden)

    Joseph Tsemeugne

    2018-01-01

    Full Text Available A new trisazo dye has been synthesized by coupling the diazonium ion of 3-amino-4H thieno[3,4-c][1]benzopyran-4-one with 2-tert-butyl-4-methoxyphenol. The newly prepared trisazo dye was characterized by its physical, elemental, and spectroscopic data. 2D-NMR (COSY, HSQC, and HMBC techniques were used to secure the structural assignments. The new trisazo dye (compound 7 along with precursors 3, 4, and 6 was screened by microdilution susceptibility assay for antibacterial and antifungal activities towards eight bacterial strains and three yeasts selected on the basis of their relevance as human pathogens. The results showed that compound 7 (MIC = 2–128 μg/mL was the most active as compared with its precursors. The most resistant microorganisms were V. cholerae NB2 and V. cholerae SG24, whereas the most sensitive microorganism was C. neoformans. The overall results of this study indicated that compound 7 had the greatest potential value against both yeasts and multidrug-resistant bacteria, so further investigation is warranted.

  12. Design of a hybrid gas proportional counter with CdTe guard counters for sup 1 sup 4 C dating system

    CERN Document Server

    Zhang, L; Hinamoto, N; Nakazawa, M; Yoshida, K

    2002-01-01

    Nowadays uniform, low-cost and large-size compound semiconductor detectors are available up to several square centimeters. We are trying to combine this technology with conventional gas detectors to upgrade an anticoincidence type proportional counter, Oeschger-type thin wall counter of 2.2 l, used for a sup 1 sup 4 C dating facility at the University of Tokyo. In order to increase the ratio of the signal to the background for smaller quantity of samples less than 1 g, an effective approach is to minimize the detector volume at higher gas pressure. However, the anticoincidence function suffers from such a small volume. Therefore we designed a new active wall gas counter of 0.13 l counting volume using CdTe compound semiconductor detectors as the wall of the gas proportional counter to perform anticoincidence. Simulation study showed that at noise thresholds less than 70 keV, the wall counters can reject above 99.8% of events arising from outer gamma rays. Measured noise levels of CdTe detectors were smaller t...

  13. Superior lithium-ion insertion/extraction properties of a novel LiFePO4/C/graphene material used as a cathode in aqueous solution.

    Science.gov (United States)

    Duan, Wenyuan; Zhao, Mingshu; Shen, Junfang; Zhao, Suixin; Song, Xiaoping

    2017-09-28

    Herein, olivine LiFePO 4 covered with graphene and carbon layers is prepared via a sol-gel method, followed by calcination, and the resultant composite is used as a cathode material in aqueous rechargeable lithium-ion batteries (ARLBs). The phase structure and morphology of the composite are characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and specific surface area analysis (BET). The ARLB system is fabricated using LiFePO 4 /C/graphene as the cathode and a zinc anode in 1 mol L -1 ZnSO 4 ·7H 2 O and saturated LiNO 3 aqueous solution without dissolved oxygen, which delivers a capacity of 153 mA h g -1 at 0.5C rate. Even at a 50C rate, it maintains a capacity of 95 mA h g -1 after 200 cycles. The excellent rate capabilities show that this cathode material exhibits good electrochemical performance and this novel ARLB has great potential in the fields of energy storage and high power sources.

  14. Self-Assembly of Antisite Defectless nano-LiFePO4 @C/Reduced Graphene Oxide Microspheres for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Hongbin; Liu, Lijia; Wang, Runwei; Yan, Xiao; Wang, Ziqi; Hu, Jiangtao; Chen, Haibiao; Jiang, Shang; Ni, Ling; Qiu, Hailong; Tang, Haitong; Wei, Yingjin; Zhang, Zongtao; Qiu, Shilun; Pan, Feng

    2018-05-18

    LiFePO 4 @C/reduced graphene oxide (rGO) hierarchical microspheres with superior electrochemical activity and a high tap density were first synthesized by using a Fe 3+ -based single inorganic precursor (LiFePO 4 OH@RF/GO; RF=resorcinol-formaldehyde, GO=graphene oxide) obtained from a template-free self-assembly synthesis followed by direct calcination. The synthetic process requires no physical mixing step. The phase transformation pathway from tavorite LiFePO 4 OH to olivine LiFePO 4 upon calcination was determined by means of the in situ high-temperature XRD technique. Benefitting from the unique structure of the material, these microspheres can be densely packed together, giving a high tap density of 1.3 g cm -3 , and simultaneously, defectless LiFePO 4 primary nanocrystals modified with a highly conductive surface carbon layer and ultrathin rGO provide good electronic and ionic kinetics for fast electron/Li + ion transport. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Performance limitations in thieno[3,4-c]pyrrole-4,6-dione-based polymer:ITIC solar cells

    KAUST Repository

    Yang, Fan; Qian, Deping; Balawi, Ahmed Hesham; Wu, Yang; Ma, Wei; Laquai, Fré dé ric; Tang, Zheng; Zhang, Fengling; Li, Weiwei

    2017-01-01

    We report a systematic study of the efficiency limitations of non-fullerene organic solar cells that exhibit a small energy loss (Eloss) between the polymer donor and the non-fullerene acceptor. To clarify the impact of Eloss on the performance of the solar cells, three thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers (PTPD3T, PTPD2T, and PTPDBDT) are employed as the electron donor, which all have complementary absorption spectra compared with the ITIC acceptor. The corresponding photovoltaic devices show that low Eloss (0.54 eV) in PTPDBDT:ITIC leads to a high open-circuit voltage (Voc) of 1.05 V, but also to a small quantum efficiency, and in turn photocurrent. The high Voc or small energy loss in the PTPDBDT-based solar cells is a consequence of less non-radiative recombination, whereas the low quantum efficiency is attributed to the unfavorable micro-phase separation, as confirmed by the steady-state and time-resolved photoluminescence experiments, grazing-incidence wide-angle X-ray scattering, and resonant soft X-ray scattering (R-SoXS) measurements. We conclude that to achieve high performance non-fullerene solar cells, it is essential to realize a large Voc with small Eloss while simultaneously maintaining a high quantum efficiency by manipulating the molecular interaction in the bulk-heterojunction.

  16. Interaction of a 29 MeV 3{sup H}e particle beam with a Cl{sub 4}C vapour target; Interacciones de He{sup 3} de 29 MeV en un blanco de Cl{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Lleo Morilla, A

    1963-07-01

    The interactions of a 29 MeV 3{sup H}e particles beam on a Cl{sub 4}C vapour target have been studied using the photographic method. differential cross-sections for the Cl({sup 3}He, {sup 3}He)Cl elastic scattering and {sup 1}2C({sup 3}He, {alpha}){sup 1}1C pick-up reaction are shown; the corresponding angular distributions in the centre-of-mass system have been compared with the predictions of optical model and A.B.M. theories. (Author) 21 refs.

  17. Extracting performance of cesium by 25,27-bis (2-propyloxy) calix[4]-26,28-crown-6 (iPr-C[4]C-6) in n-octanol

    International Nuclear Information System (INIS)

    Jianchen Wang; Xiaowen Zhu; Chongli Song

    2005-01-01

    In this work, the extraction of cesium (Cs + ) in nitric acid and in a simulated high level liquid waste (HLLW) by iPr-C[4]C-6 was investigate in the dilluent n-octanol. The slope of the extractant dependency equals 1, indicating that the complex has 1:1[Cs + .iPr-C[4]C-6]Cs + to ligand. 0.025mol/L iPr-C[4]C-6 in n-octanol (abbreviated to iPr-C[4]C-6-n-octanol) has a stronger extracting ability to Cs when acidities are between 1.0mol/L and 4.0mol/L. The stripping properties of Cs loading in 0.025mol/L iPr-C[4]C-6-n-octanol was studied. Cs loading in iPr-C[4]C-6-n-octanol can be stripped easily into the aqueous phase because the distribution ratios of Cs are lower than 0.5 when pH is between 2 and 10 in the aqueous phase. On above basis, the better parameters were selected and the cold cascade test for removing Cs from the simulated HLLW was investigated on miniature centrifugal contactors. The results of the test are attractive. The removing ratio of Cs from the simulated HLLW is 99.5% and the stripping ratio of Cs loading in 0.025mol/L iPr-C[4]C-6-n-octanol is 99.2%. The results show that 0.025mol/L iPr-C[4]C-6-n-octanol is an effective process for removing Cs from HLLW. (author)

  18. Synthesis of superior fast charging-discharging nano-LiFePO4/C from nano-FePO4 generated using a confined area impinging jet reactor approach.

    Science.gov (United States)

    Liu, Xiao-min; Yan, Pen; Xie, Yin-Yin; Yang, Hui; Shen, Xiao-dong; Ma, Zi-Feng

    2013-06-14

    LiFePO4/C nanocomposites with excellent electrochemical performance is synthesized from nano-FePO4, generated by a novel method using a confined area impinging jet reactor (CIJR). When discharged at 80 C (13.6 Ag(-1)), the LiFePO4/C delivers a discharge capacity of 95 mA h g(-1), an energy density of 227 W h kg(-1) and a power density of 34 kW kg(-1).

  19. Beyond 3 Au from the Sun: the Hypervolatiles CH4, C2H6, and CO in the Distant Comet C2006 W3 (Christensen)

    Science.gov (United States)

    Bonev, Boncho P.; Villanueva, Geronimo L.; Disanti, Michael A.; Boehnhardt, Hermann; Lippi, Manuela; Gibb, Erika L.; Paganini, Lucas; Mumma, Michael J.

    2017-01-01

    Comet C/2006 W3 (Christensen) remained outside a heliocentric distance (Rh) of 3.1 au throughout its apparition, but it presented an exceptional opportunity to directly sense a suite of molecules released from its nucleus. The Cryogenic Infrared Echelle Spectrograph at ESO-VLT detected infrared emissions from the three hypervolatiles (CO, CH4, and C2H6) that have the lowest sublimation temperatures among species that are commonly studied in comets by remote sensing. Even at Rh 3.25 au, the production rate of each molecule exceeded those measured for the same species in a number of other comets, although these comets were observed much closer to the Sun. Detections of CO at Rh = 3.25, 4.03, and 4.73 au constrained its post-perihelion decrease in production rate, which most likely dominated the outgassing. At 3.25 au, our measured abundances scaled as CO/CH4/C2H6 approx. = 100/4.4/2.1. The C2H6/CH4 ratio falls within the range of previously studied comets at Rh the nucleus of 67P/Churyumov-Gerasimenko conducted at a very similar Rh (3.15 au). The independent detections of H2O (Herschel Space Observatory) and CO (this work) imply a coma abundance H2O/CO approx. = 20% in C/2006 W3 near Rh = 5 au. All these measurements are of high value for constraining models of nucleus sublimation (plausibly CO-driven) beyond Rh = 3au, where molecular detections in comets are still especially sparse.

  20. Effect of carbon coating on cycle performance of LiFePO4/C composite cathodes using Tween80 as carbon source

    International Nuclear Information System (INIS)

    Huang, You-Guo; Zheng, Feng-Hua; Zhang, Xiao-Hui; Li, Qing-Yu; Wang, Hong-Qiang

    2014-01-01

    Highlights: • The Tween80 addition could enhance cycle stability of LiFePO 4 material. • The FTIR spectrum confirms Tween80 surfactant can bond with LiFePO 4 particles. • Some chemical bonds between material and carbon layer still exist after sintering. - Abstract: The influence of carbon coating on the cycle performance of LiFePO 4 /C composite cathodes using polyoxyethylenesorbitan monooleate (Tween80) as carbon source against lithium metal foil anode for Li-ion batteries was investigated in this paper. According to Infrared spectrum analysis (FTIR), the Tween80 surfactant molecules bond to the surface of LiFePO 4 and form an adsorption layer, which contribute to the formation of a homogeneous carbon layer tightly coating on the surface of LiFePO 4 particles in the process of sintering, due to a strong binding force provided by surface chemical bonds. The transmission electron microscopy (TEM) shows that the carbon layer around LiFePO 4 using Tween80 as carbon source still coating on the surface of LiFePO 4 after 200 cycles at 5 C rate while the carbon layer shed from the surface of LiFePO 4 using glucose as carbon source. As a result, the carbon-coated LiFePO 4 using Tween80 as carbon source exhibits much higher capacity retention than the sample using glucose as carbon source. Electrochemical impedance measurement (EIS) reveals that the carbon-coated LiFePO 4 electrode using Tween80 surfactant has a lower charge transfer resistance than the electrode using glucose as carbon source electrode after 100 and 200 cycles at 5 C rate

  1. Synthesis and characterization of high-density LiFePO{sub 4}/C composites as cathode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chang Zhaorong [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China)], E-mail: czr_56@163.com; Lv Haojie; Tang Hongwei; Li Huaji [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Yuan Xiaozi; Wang Haijiang [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC, V6T 1W5 (Canada)

    2009-08-01

    To achieve a high-energy-density lithium electrode, high-density LiFePO{sub 4}/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO{sub 4} as a precursor, glucose as a C source, and Li{sub 2}CO{sub 3} as a Li source, in a pipe furnace under an atmosphere of 5% H{sub 2}-95% N{sub 2}. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO{sub 4}/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO{sub 4}/carbon composite powder with a carbon content of 7% reached 1.80 g m{sup -3}. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g{sup -1}, respectively, with a volume capacity of 300.6 mAh cm{sup -3}, at a 0.1C rate. At a rate of 5C, the LiFePO{sub 4}/carbon composite shows a high discharge capacity of 98.3 mAh g{sup -1} and a volume capacity of 176.94 mAh cm{sup -3}.

  2. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian

    2017-04-20

    While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all-polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low-bandgap polymer donor commonly used with fullerenes (PBDT-TS1; taken as a model system). In this material set, the introduction of a third electron-deficient motif, namely 2,1,3-benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (Eopt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow-gap P2TPDBT[2F]T analog (Eopt = 1.7 eV) used as fullerene alternative yields high open-circuit voltages (VOC) of ≈1.0 V, notable short-circuit current values (JSC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all-polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.

  3. Marked Consequences of Systematic Oligothiophene Catenation in Thieno[3,4-c]pyrrole-4,6-dione and Bithiopheneimide Photovoltaic Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nanjia; Guo, Xugang; Ponce Ortiz, Rocio; Harschneck, Tobias; Manley, Eric F.; Lou, Sylvia J.; Hartnett, Patrick E.; Yu, Xinge; Horwitz, Noah E.; Mayorga Burrezo, Paula; Aldrich, Thomas J.; Lopez Navarrete, Juan T.; Wasielewski, Michael R.; Chen, Lin X.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.

    2015-10-07

    As effective building blocks for high-mobility transistor polymers, oligothiophenes are receiving attention for polymer solar cells (PSCs) because the resulting polymers can effectively suppress charge recombination. Here we investigate two series of in-chain donor-acceptor copolymers, PTPDnT and PBTInT, based on thieno[3,4-c]pyrrole-4,6-dione (TPD) or bithiopheneimide (BTI) as electron acceptor units, respectively, and oligothiophenes (nTs) as donor counits, for high-performance PSCs. Intramolecular S···O interaction leads to more planar TPD polymer backbones, however backbone torsion yields greater open-circuit voltages for BTI polymers. Thiophene addition progressively raises polymer HOMOs but marginally affects their band gaps. FT-Raman spectra indicate that PTPDnT and PBTInT conjugation lengths scale with nT catenation up to n = 3 and then saturate for longer oligomer. Furthermore, the effects of oligothiophene alkylation position are explored, revealing that the alkylation pattern greatly affects film morphology and PSC performance. The 3T with “outward” alkylation in PTPD3T and PBTI3T affords optimal π-conjugation, close stacking, long-range order, and high hole mobilities (0.1 cm2/(V s)). These characteristics contribute to the exceptional ~80% fill factors for PTPD3T-based PSCs with PCE = 7.7%. The results demonstrate that 3T is the optimal donor unit among nTs (n = 1-4) for photovoltaic polymers. Grazing incidence wide-angle X-ray scattering, transmission electron microscopy, and time-resolved microwave conductivity measurements reveal that the terthiophene-based PTPD3T blend maintains high crystallinity with appreciable local mobility and long charge carrier lifetime. These results provide fundamental materials structure-device performance correlations and suggest guidelines for designing oligothiophene-based polymers with optimal thiophene catenation and appropriate alkylation pattern to maximize PSC performance.

  4. Microstructures and Surface Stabilities of {Ni-0.4C-6Ta- xCr, 0 ≤ x ≤ 50 Wt Pct} Cast Alloys at High Temperature

    Science.gov (United States)

    Berthod, Patrice

    2018-06-01

    Nickel-based cast alloys rich in chromium and reinforced by TaC carbides are potentially very interesting alloys for applications at elevated temperatures. Unfortunately, unlike cobalt-chromium and iron-chromium alloys, it is difficult to obtain exclusively TaC as primary carbides in Ni-Cr alloys. In alloys containing 30 wt pct Cr tantalum, carbides coexist with chromium carbides. The latter tend to weaken the alloy at elevated temperatures because they become rapidly spherical and then quickly lose their reinforcing effect. In this work, we attempted to stabilize TaC as a single carbide phase by testing different chromium contents in the [0, 50 wt pct] range. Six alloys containing 0.4C and 6Ta, weight contents corresponding to equivalent molar contents, were elaborated by foundry, and their as-cast microstructures were characterized. Samples of all alloys were exposed to 1127 °C and 1237 °C for 24 hours to characterize their stabilized microstructures. The surface fractions of chromium carbides and tantalum carbides were measured by image analysis, and their evolutions vs the chromium content were studied. For the chosen C and Ta contents, it appears that obtaining TaC only is possible by decreasing the chromium content to 10 wt pct. At the same time, TaC fractions are unfortunately too low because a large portion of tantalum integrates into the solid solution in the matrix. A second consequence is a critical decrease in oxidation resistance. Other possible methods to stabilize TaC as a single carbide are evocated, such as the simultaneous increase in Ta and decrease in chromium from 30 wt pct Cr.

  5. SU-E-T-212: Comparison of TG-43 Dosimetric Parameters of Low and High Energy Brachytherapy Sources Obtained by MCNP Code Versions of 4C, X and 5

    Energy Technology Data Exchange (ETDEWEB)

    Zehtabian, M; Zaker, N; Sina, S [Shiraz University, Shiraz, Fars (Iran, Islamic Republic of); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, Nevada (United States)

    2015-06-15

    Purpose: Different versions of MCNP code are widely used for dosimetry purposes. The purpose of this study is to compare different versions of the MCNP codes in dosimetric evaluation of different brachytherapy sources. Methods: The TG-43 parameters such as dose rate constant, radial dose function, and anisotropy function of different brachytherapy sources, i.e. Pd-103, I-125, Ir-192, and Cs-137 were calculated in water phantom. The results obtained by three versions of Monte Carlo codes (MCNP4C, MCNPX, MCNP5) were compared for low and high energy brachytherapy sources. Then the cross section library of MCNP4C code was changed to ENDF/B-VI release 8 which is used in MCNP5 and MCNPX codes. Finally, the TG-43 parameters obtained using the MCNP4C-revised code, were compared with other codes. Results: The results of these investigations indicate that for high energy sources, the differences in TG-43 parameters between the codes are less than 1% for Ir-192 and less than 0.5% for Cs-137. However for low energy sources like I-125 and Pd-103, large discrepancies are observed in the g(r) values obtained by MCNP4C and the two other codes. The differences between g(r) values calculated using MCNP4C and MCNP5 at the distance of 6cm were found to be about 17% and 28% for I-125 and Pd-103 respectively. The results obtained with MCNP4C-revised and MCNPX were similar. However, the maximum difference between the results obtained with the MCNP5 and MCNP4C-revised codes was 2% at 6cm. Conclusion: The results indicate that using MCNP4C code for dosimetry of low energy brachytherapy sources can cause large errors in the results. Therefore it is recommended not to use this code for low energy sources, unless its cross section library is changed. Since the results obtained with MCNP4C-revised and MCNPX were similar, it is concluded that the difference between MCNP4C and MCNPX is their cross section libraries.

  6. Crystal structure and thermochemical properties of n-decylammonium ethyl sulfate (C10H21NH3SO4C2H5)(s)

    International Nuclear Information System (INIS)

    Zhang, Li-Jun; Di, You-Ying; Dou, Jian-Min

    2013-01-01

    Graphical abstract: Crystal structure of n-decylammonium ethyl sulfate was determined by X-ray crystallography. Lattice potential energy and molar volume of the solid compound and its anion were respectively obtained. Molar enthalpies of dissolution of the compound at different concentrations were measured by an isoperibol solution–reaction calorimeter. According to the Pitzer’s electrolyte solution theory, molar enthalpy of dissolution of the compound at infinite dilution and Pitzer parameters were obtained. The values of apparent relative molar enthalpies of the title compound and relative partial molar enthalpies of the solute and the solvent at different concentrations were derived. Finally, enthalpies of hydration of the compound and its anion were calculated. Highlights: ► Crystal structure of n-decylammonium ethyl sulfate was determined. ► Lattice potential energy was calculated. ► Molar enthalpy of dissolution at infinite dilution was determined. ► Enthalpies of hydration of the compound and its anion were derived. - Abstract: Crystal structure of n-decylammonium ethyl sulfate was determined by X-ray crystallography. Lattice potential energy and molar volume of the solid compound and its anion were respectively obtained. Ionic radius of the anion was calculated from the corresponding effective volume of the anion. Molar enthalpies of dissolution of the compound at different concentrations m /(mol · kg –1 ) were measured by an isoperibol solution–reaction calorimeter at T = 298.15 K. According to the Pitzer’s electrolyte solution theory, molar enthalpy of dissolution of the compound at infinite dilution (Δ sol H m ∞ ) was determined to be (21.284 ± 0.042) kJ·mol –1 , and enthalpy of hydration of the anion SO 4 C 2 H 5 − was calculated to be ΔH – = −340.68 kJ·mol –1 . The values of apparent relative molar enthalpies ( Φ L) of the title compound and relative partial molar enthalpies (L 2 ¯ and L 1 ¯ ) of the solute and

  7. Photoelectron spectroscopy of B4O4−: Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters

    International Nuclear Information System (INIS)

    Tian, Wen-Juan; Chen, Qiang; Ou, Ting; Li, Si-Dian; Zhao, Li-Juan; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin

    2015-01-01

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B 4 O 4 0/− clusters. The measured PES spectra of B 4 O 4 − exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of C s B 4 O 4 − ( 2 A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D 2h B 4 O 4 − ( 2 B 2g ) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B 2 O 2 core bonded with terminal BO and/or BO 2 groups. The same Y-shaped and rhombic structures are also located for the B 4 O 4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B 4 O 4 0/− clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B 4 O 4 0/− clusters. This work is the first experimental study on a molecular system with an o-bond

  8. Photoelectron spectroscopy of B4O4-: Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters

    Science.gov (United States)

    Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian

    2015-04-01

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O40/- clusters. The measured PES spectra of B4O4- exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4- (2A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4- (2B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O40/- clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O40/- clusters. This work is the first experimental study on a molecular system with an o-bond.

  9. Photoelectron spectroscopy of B4O4 (-): Dual 3c-4e π hyperbonds and rhombic 4c-4e o-bond in boron oxide clusters.

    Science.gov (United States)

    Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian

    2015-04-07

    Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O4 (0/-) clusters. The measured PES spectra of B4O4 (-) exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4 (-) ((2)A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4 (-) ((2)B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O4 (0/-) clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O4 (0/-) clusters. This work is the first experimental study on a molecular system with an o-bond.

  10. Evaluating the use of PAO (4 cSt polyalphaoelfin) oil instead of DOP (di-octyl phthalate) oil for measuring the aerosol capture of nuclear canister filters

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-18

    This document details the distinction between using PAO (4 cSt polyalphaoelfin) oil instead of DOP (di-octyl phthalate) oil for measuring the aerosol capture of filters. This document is developed to justify the use of PAO rather than DOP for evaluating the performance of filters in the SAVY 4000 and Hagan containers. The design criteria (Anderson et al, 2012) for purchasing SAVY 4000 containers and the Safety Analysis Report for the SAVY 4000 Container Series specified that the filter must “capture greater than 99.97% of 0.45 μm mean diameter dioctyl phthalate (DOP) aerosol at the rated flow with a DOP concentration of 65±15 micrograms per liter.”This corresponds to a leakage percent of 0.03% (3.0x10-2). The density of DOP oil is 985 kg/m3 and the density of PAO oil is 819 kg/m3. ATI Test Inc measured the mass mean diameter of aerosol distributions produced by a single Laskin type III-A nozzle operating at a 20 psig air pressure as 0.563 μm for DOP oil and 0.549 μm for PAO oil. (See Appendix A.) For both types of oil in this document, the single fiber method calculated the leakage percent to be 4.4x10-5 for DOP oil and 4.7x10-5 for PAO oil. Although the percent error between these two quantities is 7.7%, these calculated leakage percent values are more than two orders of magnitude less than the criterion specified in the SAVY canister SAR. As a point of reference, the photometer used to measure the SAVY canister filter performance cannot resolve values for the leakage percent below 1.0x10-5. Additionally, over a range of particle sizes from 0.01 μm to 3.0 μm, there was less than 4.0x10-5 error between the calculated filter efficiency for the two types of oil at any particular particle size diameter. In conclusion, the difference between using DOP and PAO for testing SAVY canister filters is of inconsequential concern.

  11. Photo-induced current and its degradation in Al{sub 4}C{sub 3}/Al{sub 2}O{sub 3} (0001) grown by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dohyung, E-mail: kim@ee.tokushima-u.ac.jp [Graduate School of Advanced Technology and Science, The University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506 (Japan); Onishi, Yuya; Oki, Ryuji [Graduate School of Advanced Technology and Science, The University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506 (Japan); Sakai, Shiro [Institute of Technology Science, The University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506 (Japan)

    2014-04-30

    Al{sub 4}C{sub 3} layers have been grown on Al{sub 2}O{sub 3} (0001) by metalorganic chemical vapor deposition. Trimethylaluminum and methane were used as source materials for aluminum and carbon, respectively. Depending on the growth conditions, the growth rate was significantly changed. The most suitable growth temperature was 1150 °C. Fresh samples had a yellowish color. Peaks at 32 and 35° observed by 2θ–ω mode X-ray diffraction scans confirmed the presence of hexagonal Al{sub 4}C{sub 3}. Experiments detected photo-induced current (PIC). PIC measured at 30 V dc was observed at Al{sub 4}C{sub 3}/Al{sub 2}O{sub 3} (0001) at the 10 nA scale. PIC in Al{sub 4}C{sub 3} increased with a decrease in the irradiated wavelength. This phenomenon was also observed in absorption coefficient experiments. It was also verified that the electrical conductivity of Al{sub 4}C{sub 3} significantly deteriorated due to oxidation. PIC was also continuously reduced during Al{sub 4}C{sub 3} oxidation. After a certain period of time, it was observed that the Al{sub 4}C{sub 3} layer separated from the Al{sub 2}O{sub 3} (0001) substrate. These results suggest that PIC can be useful in photodetectors that can be used in vacuum or in other gases that do not contain oxygen. - Highlights: • Al{sub 4}C{sub 3} layers had been grown on Al{sub 2}O{sub 3} (0001) by metalorganic chemical vapor deposition. • The growth rate abruptly increased above the temperature of 1100 °C. • Photo-induced current (PIC) was observed when the light was incident of the devices. • PIC was unrelated to the presence of a metal–semiconductor junction. • PIC was decreased during Al{sub 4}C{sub 3} oxidation process.

  12. Comparison of aggregation behaviors between ionic liquid-type imidazolium gemini surfactant [C12-4-C12im]Br2 and its monomer [C12mim]Br on silicon wafer.

    Science.gov (United States)

    Ao, Mingqi; Xu, Guiying; Pang, Jinyu; Zhao, Taotao

    2009-09-01

    The aggregation of ionic liquid-type imidazolium gemini surfactant [C(12)-4-C(12)im]Br(2) on silicon wafer, which is compared with its monomer [C(12)mim]Br, have been studied. AFM morphology images and contact angle measurements suggest that the aggregations of [C(12)-4-C(12)im]Br(2) and [C(12)mim]Br on silicon wafer follow different mechanisms. Below the critical surface aggregation concentrations (CSAC), both surfactant molecules are adsorbed with their hydrophobic tails facing the air. But above the CSAC, [C(12)-4-C(12)im]Br(2) molecules finally form a bilayer structure with hydrophilic head groups facing the air, whereas [C(12)mim]Br molecules form a multilayer structure, and with increasing its concentration, the layer numbers increase with the hydrophobic chains and hydrophilic head groups facing the air by turns. Besides, the watery wettability of [C(12)-4-C(12)im]Br(2)-treated silica surface is lower than that of [C(12)mim]Br at the concentration of 5.0 cmc, and the infrared spectroscopy suggests that the poorer watery wettability of [C(12)-4-C(12)im]Br(2) may be relative to the less-ordered packing of methylene chains inside the aggregate. These different aggregation behaviors for the two surfactants ascribe to the different molecular structures and electrostatic interactions. This work would have certain theoretical guidance meaning on the modification of solid surface.

  13. Metal-Organic Framework-Derived Reduced Graphene Oxide-Supported ZnO/ZnCo2O4/C Hollow Nanocages as Cathode Catalysts for Aluminum-O2 Batteries.

    Science.gov (United States)

    Liu, Yisi; Jiang, Hao; Hao, Jiayu; Liu, Yulong; Shen, Haibo; Li, Wenzhang; Li, Jie

    2017-09-20

    Aluminum-air battery is a promising candidate for large-scale energy applications because of its low cost and high energy density. Remarkably, tremendous efforts have been concentrated on developing efficient and stable cathode electrocatalysts toward the oxygen reduction reaction. In this work, a hydrothermal-calcination approach was utilized to prepare novel reduced graphene oxide (rGO)-supported hollow ZnO/ZnCo 2 O 4 nanoparticle-embedded carbon nanocages (ZnO/ZnCo 2 O 4 /C@rGO) using a zeolitic imidazolate framework (ZIF-67)/graphene oxide/zinc nitrate composite as the precursor. The ZnO/ZnCo 2 O 4 /C@rGO hybrid exhibits remarkable electrocatalytic performance for oxygen reduction reaction under alkaline conditions and superior stability and methanol tolerance to those of the commercial Pt/C catalyst. Furthermore, novel and simple Al-air coin cells were first fabricated using the hybrid materials as cathode catalysts under ambient air conditions to further investigate their catalytic performance. The coin cell with the ZnO/ZnCo 2 O 4 /C@rGO cathode catalyst displays a higher open circuit voltage and discharge voltage and more sluggish potential drop than those of the cell with the ZnO/ZnCo 2 O 4 /C cathode catalyst, which confirms that rGO can enhance the electrocatalytic activity and stability of the catalyst system. The excellent electrocatalytic performance of the ZnO/ZnCo 2 O 4 /C@rGO hybrid is attributed to the prominent conductivity and high specific surface area resulting from rGO, the more accessible catalytic active sites induced by the unique porous hollow nanocage structure, and synergic covalent coupling between rGO sheets and ZnO/ZnCo 2 O 4 /C nanocages.

  14. Promoting Ti{sub 4}C{sub 2}S{sub 2} strain induced precipitation during asymmetrical hot rolling to improve r value and advantaged texture in Ti stabilized IF steel

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Futao, E-mail: dongft@sina.com [College of Metallurgy and Energy, Hebei United University, Tangshan 063000 (China); Xue, Fei [College of Electrical Engineering, Hebei United University, Tangshan 063000 (China); Du, Linxiu; Liu, Xianghua [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China)

    2015-01-25

    Highlights: • We study Ti{sub 4}C{sub 2}S{sub 2} strain induced precipitation in Ti stabilized IF steel. • The PTT diagram is obtained by plotting 1/A{sub r}–time curves. • Hot rolling at the nose of P{sub s} line effectively promotes Ti{sub 4}C{sub 2}S{sub 2} precipitation. • Annealed sheet with promoted Ti{sub 4}C{sub 2}S{sub 2} exhibits higher r value and stronger γ fiber texture. • Adverse impact of tiny TiC has been significantly mitigated. - Abstract: The kinetic of Ti{sub 4}C{sub 2}S{sub 2} strain induced precipitation in a Ti stabilized IF steel was investigated using two stage interrupted compression test with high true strain (0.5). The PTT (precipitation–time–temperature) diagram was obtained by plotting 1/A{sub r}–time curves. TEM (transmission electron microscopy) observation confirmed that the evolution of Ti{sub 4}C{sub 2}S{sub 2} precipitate in the quenched samples of thermal simulation is in good agreement with the PTT diagram. Hot strips were produced at three different rolling temperatures with high strain and slight shear deformation. It was found that hot rolling at the nose temperature of the P{sub s} line of the PTT diagram can effectively promote the precipitation of Ti{sub 4}C{sub 2}S{sub 2} and retard the precipitation of TiC. Cold rolled and annealed sheets from hot strip containing higher volume fraction of Ti{sub 4}C{sub 2}S{sub 2} exhibited higher r value and stronger γ fiber texture with equal {1 1 1}〈1 1 2〉 and {1 1 1}〈1 1 0〉 components. By contrast, cold rolled and annealed sheets from hot strips containing lower volume fraction of Ti{sub 4}C{sub 2}S{sub 2} represented lower r values and weaker γ fiber texture with significant drops from {1 1 1}〈1 1 2〉 to {1 1 1}〈1 1 0〉 component.

  15. Ordering effects in benzo[1,2-b:4,5-b']difuran-thieno[3,4-c]pyrrole-4,6- dione polymers with >7% solar cell efficiency

    KAUST Repository

    Warnan, Julien; Cabanetos, Clement; El Labban, Abdulrahman; Hansen, Michael Ryan; Tassone, Christopher J.; Toney, Michael F.; Beaujuge, Pierre

    2014-01-01

    Benzo[1,2-b:4,5-b']difuran-thieno[3,4-c]pyrrole-4,6-dione (PBDFTPD) polymers prepared by microwave-assisted synthesis can achieve power conversion efficiencies (PCEs) >7% in bulk-heterojunction solar cells with phenyl-C61/71-butyric acid methyl

  16. Aggregation behavior of gemini pyrrolidine-based ionic liquids 1,1'-(butane-1,4-diyl)bis(1-alkylpyrrolidinium) bromide ([C(n)py-4-C(n)py][Br2]) in aqueous solution.

    Science.gov (United States)

    Zhang, Shaohua; Yan, Han; Zhao, Mingwei; Zheng, Liqiang

    2012-04-15

    Three gemini pyrrolidine-based ionic liquids, 1,1'-(butane-1,4-diyl)bis(1-alkylpyrrolidinium) bromide ([C(n)py-4-C(n)py][Br(2)], n=10, 12, 14), were synthesized. Their aggregation behavior in aqueous solution was systematically investigated by surface tension, electrical conductivity, and steady-state fluorescence. Compared with their corresponding monomers, N-alkyl-N-methylpyrrolidinium bromide (C(n)MPB), [C(n)py-4-C(n)py][Br(2)], have higher surface activity. The special structure of [C(n)py-4-C(n)py][Br(2)] that has a spacer in their hydrophilic head groups results in a lower surface excess concentration (Γ(max)) and a larger molecular cross-sectional area (A(min)). Electrical conductivity studies show a lower degree of counter-ion binding to the aggregates. A smaller aggregation number (N(agg)) is observed by the pyrene fluorescence quenching method. A series of thermodynamic parameters (ΔG(agg)(0),ΔH(agg)(0),-TΔS(agg)(0)) of aggregation derived from electrical conductivity indicate that the aggregation of [C(n)py-4-C(n)py][Br(2)] is enthalpy-driven, while aggregation of C(n)MPB is entropy-driven at low temperatures but enthalpy-driven at high temperatures. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Technical Report Series on Global Modeling and Data Assimilation. Volume 42; Soil Moisture Active Passive (SMAP) Project Calibration and Validation for the L4_C Beta-Release Data Product

    Science.gov (United States)

    Koster, Randal D. (Editor); Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima (Editor); Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas

    2015-01-01

    During the post-launch Cal/Val Phase of SMAP there are two objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements according to the Cal/Val timeline. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product specifically for the beta release. The beta-release version of the SMAP L4_C algorithms utilizes a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily NEE and component carbon fluxes, particularly vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (<10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape FT controls on GPP and Reco (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and underlying freeze/thaw and soil moisture constraints to these processes, 2) documenting primary connections between terrestrial water, energy and carbon cycles, and 3) improving understanding of terrestrial carbon sink activity in northern ecosystems.

  18. A comparison of MCNP4C electron transport with ITS 3.0 and experiment at incident energies between 100 keV and 20 MeV: influence of voxel size, substeps and energy indexing algorithm

    International Nuclear Information System (INIS)

    Schaart, Dennis R.; Jansen, Jan Th.M.; Zoetelief, Johannes; Leege, Piet F.A. de

    2002-01-01

    The condensed-history electron transport algorithms in the Monte Carlo code MCNP4C are derived from ITS 3.0, which is a well-validated code for coupled electron-photon simulations. This, combined with its user-friendliness and versatility, makes MCNP4C a promising code for medical physics applications. Such applications, however, require a high degree of accuracy. In this work, MCNP4C electron depth-dose distributions in water are compared with published ITS 3.0 results. The influences of voxel size, substeps and choice of electron energy indexing algorithm are investigated at incident energies between 100 keV and 20 MeV. Furthermore, previously published dose measurements for seven beta emitters are simulated. Since MCNP4C does not allow tally segmentation with the *F8 energy deposition tally, even a homogeneous phantom must be subdivided in cells to calculate the distribution of dose. The repeated interruption of the electron tracks at the cell boundaries significantly affects the electron transport. An electron track length estimator of absorbed dose is described which allows tally segmentation. In combination with the ITS electron energy indexing algorithm, this estimator appears to reproduce ITS 3.0 and experimental results well. If, however, cell boundaries are used instead of segments, or if the MCNP indexing algorithm is applied, the agreement is considerably worse. (author)

  19. Electron-deficient N-alkyloyl derivatives of thieno[3,4-c]pyrrole-4,6-dione yield efficient polymer solar cells with open-circuit voltages > 1 v

    KAUST Repository

    Warnan, Julien; Cabanetos, Clement; Bude, Romain; El Labban, Abdulrahman; LI, LIANG; Beaujuge, Pierre

    2014-01-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors yield some of the highest open-circuit voltages (V OC, ca. 0.9 V) and fill factors (FF, ca. 70%) in conventional bulk-heterojunction (BHJ) solar cells

  20. Linear side chains in benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c] pyrrole-4,6-dione polymers direct self-assembly and solar cell performance

    KAUST Repository

    Cabanetos, Clement; El Labban, Abdulrahman; Bartelt, Jonathan A.; Douglas, Jessica D.; Mateker, William R.; Frechet, Jean; McGehee, Michael D.; Beaujuge, Pierre

    2013-01-01

    role that linear side-chain substituents play in poly(benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers for bulk heterojunction (BHJ) solar cell applications. We show that replacing branched side chains by linear ones

  1. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kazumi [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Van Kuppevelt, Toin H. [Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 280 P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Nishihara, Shoko, E-mail: shoko@soka.ac.jp [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan)

    2013-01-18

    Highlights: ► Fas transcript increases during the transition from the naïve to the primed state. ► 3OST-5 transcript, the HS4C3 epitope synthesis gene, increases during the transition. ► Fas signaling regulates the transition from the naïve to the primed state. ► HS4C3-binding epitope regulates the transition from the naïve to the primed state. ► Fas signaling is regulated by the HS4C3 epitope during the transition. -- Abstract: The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope

  2. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Van Kuppevelt, Toin H.; Nishihara, Shoko

    2013-01-01

    Highlights: ► Fas transcript increases during the transition from the naïve to the primed state. ► 3OST-5 transcript, the HS4C3 epitope synthesis gene, increases during the transition. ► Fas signaling regulates the transition from the naïve to the primed state. ► HS4C3-binding epitope regulates the transition from the naïve to the primed state. ► Fas signaling is regulated by the HS4C3 epitope during the transition. -- Abstract: The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope

  3. Polystyrene-template-assisted synthesis of Li3VO4/C/rGO ternary composite with honeycomb-like structure for durable high-rate lithium ion battery anode materials

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Jiaqi; Huang, Jingxin; Huang, Jianxing; Zeng, Jing; Zhao, Jinbao

    2017-01-01

    Highlights: •Li 3 VO 4 /C/rGO ternary composite with honeycomb-like structure is prepared by taking advantage of spray drying method and polystyrene (PS) soft template. •Li 3 VO 4 /C/rGO composite electrode possesses rapid Li + ions intercalation kinetics and good structure integrity. •Li 3 VO 4 /C/rGO composite exhibits outstanding high-rate performance and long cycle-life (the high reversible capacity of 312 mAh g −1 can be maintained after 1000 cycles at 10C). -- Abstract: Li 3 VO 4 /C/rGO (HC-LVO/C/G) ternary composite with honeycomb-like structure is successfully prepared through a simple spray drying method with polystyrene (PS) microspheres as soft template. In this characteristic structure, carbon-coated Li 3 VO 4 nanoparticles are well wrapped by rGO sheets and uniformly distributed within the honeycomb-like micrometer-sized clusters. The double coating layers of amorphous carbon and rGO can avoid the direct exposure of Li 3 VO 4 nanoparticles to the electrolyte and enhance the electronic conductivity. Meanwhile, the honeycomb-like structure can shorten the diffusion paths of Li + ions and favors the relaxation of the strain/stress during cycling. The resultant HC-LVO/C/G composite exhibits significantly improved high-rate performance and long cycle-life (the high reversible capacity of 312 mAh g −1 can be maintained after 1000 cycles at 10 C) compared with the contrastive Li 3 VO 4 /C composite synthesized by a typical solid-state reaction method.

  4. MF59- and Al(OH3-adjuvanted Staphylococcus aureus (4C-Staph vaccines induce sustained protective humoral and cellular immune responses, with a critical role for effector CD4 T cells at low antibody titers.

    Directory of Open Access Journals (Sweden)

    Elisabetta eMonaci

    2015-09-01

    Full Text Available Staphylococcus aureus (S. aureus is an important opportunistic pathogen that may cause invasive life-threatening infections like sepsis and pneumonia. Due to increasing antibiotic-resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell deficient mice, we demonstrated that both T and B cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen.

  5. A facile synthesis of Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C composites as cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Rong; Wang, Liqing; Deng, Kunfa; Lv, Mengni; Xu, Yunhua

    2016-01-01

    The novel Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C has been successfully synthesized by a feasible solution process in ternary system. The spherical carbon-coated composites are obtained using a heat treatment in the presence of sucrose. X-ray diffraction (XRD) diffractogram displays that the Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C crystallized in an orthorhombic structure with a space group of Pmn21. The energy-dispersive X-ray spectroscopy mappings indicate that Fe, Mn and Ni elements are distributed homogenously in Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C nano-spherical particle with size less than 50 nm. The lithium storage capacity and cycling performance of the Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C presents good results when tested as cathode materials in lithium cells at room temperature. It delivers an initial discharge capacity of 181.4 mAh g"−"1 and a discharge capacity of 172.9 mAh g"−"1 after 20 cycles at 0.1C in the voltage range of 1.5–4.6V. Furthermore, it also exhibits an excellent rate capability with a capacity under different current densities of about 144.0 mAh g"−"1 (0.2 C), 117.9 mAh g"−"1 (0.5 C), 106.1 mAh g"−"1 (1 C), respectively and a good capacity cycling maintenance of 153.7 mAh g"−"1 after 60 cycles. Above results indicate that the spherical Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C becomes a very promising candidate for cathode material in lithium-ion batteries. - Highlights: • Li_2Fe_1_/_3Mn_1_/_3Ni_1_/_3SiO_4/C was obtained by solution process in a ternary system. • The material was pure phase ternary solid solution with tetrahedral morphology. • The spherical particle size was less than 50 nm with graphitized carbon coating. • The nanocomposite revealed high discharge capacity and excellent rate capability.

  6. Controllable synthesis of a monophase nickel phosphide/carbon (Ni{sub 5}P{sub 4}/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi; Tu, Jiang-Ping; Xiong, Qin-Qin; Mai, Yong-Jin; Zhang, Jun; Qiao, Yan-Qiang; Wang, Xiu-Li; Gu, Chang-Dong [State Key Laboratory of Silicon Materials and Department of Materials, Science and Engineering, Zhejiang University, Hangzhou, 310027 (China); Xiang, Jia-Yuan [Narada Power Source Co. Ltd., Hangzhou, 311105 (China); Mao, Scott X. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2012-09-25

    A monophase nickel phosphide/carbon (Ni{sub 5}P{sub 4}/C) composite with a thin carbon shell is controllably synthesized via the two-step strategy of a wet-chemistry reaction and a solid-state reaction. In this fabrication, the further diffusion of phosphorus atoms in the carbon shell during the solid-state reaction can be responsible for a chemical transformation from a binary phase of Ni{sub 5}P{sub 4}-Ni{sub 2}P to monophase Ni{sub 5}P{sub 4}. Galvanostatic charge-discharge measurements indicate that the Ni{sub 5}P{sub 4}/C composite exhibits a superior, high rate capacity and good cycling stability. About 76.6% of the second capacity (644.1 mA h g{sup -1}) can be retained after 50 cycles at a 0.1 C rate. At a high rate of 3 C, the specific capacity of Ni{sub 5}P{sub 4}/C is still as high as 357.1 mA h g{sup -1}. Importantly, the amorphous carbon shell can enhance the conductivity of the composite and suppress the aggregation of the active particles, leading to their structure stability and reversibility during cycling. As is confirmed from X-ray-diffraction analysis, no evident microstructural changes occur upon cycling. These results reveal that highly crystalline Ni{sub 5}P{sub 4}/C is one of the most promising anode materials for lithium-ion batteries. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Susceptibility of Meningococcal Strains Responsible for Two Serogroup B Outbreaks on U.S. University Campuses to Serum Bactericidal Activity Elicited by the MenB-4C Vaccine.

    Science.gov (United States)

    Rossi, Raffaella; Beernink, Peter T; Giuntini, Serena; Granoff, Dan M

    2015-12-01

    In 2013 and 2014, two U.S. universities had meningococcal serogroup B outbreaks (a total of 14 cases) caused by strains from two different clonal complexes. To control the outbreaks, students were immunized with a serogroup B meningococcal vaccine (Novartis) that was not yet licensed in the United States. The vaccine (referred to as MenB-4C) contains four components capable of eliciting bactericidal activity. Both outbreak strains had high expression levels of two of the vaccine antigens (subfamily B factor H binding protein [FHbp] and neisserial heparin binding antigen [NHba]); the university B outbreak strain also had moderate expression of a third antigen, NadA. We investigated the bactericidal activity of sera from mice immunized with FHbp, NHba, or NadA and sera from MenB-4C-immunized infant macaques and an adult human. The postimmunization bactericidal activity of the macaque or human serum against isolates from university B with FHbp identification (ID) 1 that exactly matched the vaccine FHbp sequence variant was 8- to 21-fold higher than that against isolates from university A with FHbp ID 276 (96% identity to the vaccine antigen). Based on the bactericidal activity of mouse antisera to FHbp, NadA, or NHba and macaque or human postimmunization serum that had been depleted of anti-FHbp antibody, the bactericidal activity against both outbreak strains largely or entirely resulted from antibodies to FHbp. Thus, despite the high level of strain expression of FHbp from a subfamily that matched the vaccine antigen, there can be large differences in anti-FHbp bactericidal activity induced by MenB-4C vaccination. Further, strains with moderate to high NadA and/or NHba expression can be resistant to anti-NadA or anti-NHba bactericidal activity elicited by MenB-4C vaccination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. In situ synthesis of TiB2-TiC particulates locally reinforced medium carbon steel-matrix composites via the SHS reaction of Ni-Ti-B4C system during casting

    International Nuclear Information System (INIS)

    Wang, H.Y.; Huang, L.; Jiang, Q.C.

    2005-01-01

    The fabrication of medium carbon steel-matrix composites locally reinforced with in situ TiB 2 -TiC particulates using self-propagating high-temperature synthesis (SHS) reaction of Ni-Ti-B 4 C system during casting was investigated. X-ray diffraction (XRD) results reveal that the exotherm of 1042 deg. C initiated by heat release of the solid state reaction in the differential thermal analysis (DTA) curve is an incomplete reaction in Ni-Ti-B 4 C system. As-cast microstructures of the in situ processed composites reveal a relatively uniform distribution of TiB 2 -TiC particulates in the locally reinforced regions. Furthermore, the particulate size and micro-porosity in the locally reinforced regions are significantly decreased with the increasing of the Ni content in the preforms. For a Ni content of 30 and 40 wt.%, near fully dense composites locally reinforced with in situ TiB 2 and TiC particulates can be fabricated. Although most of fine TiB 2 and TiC particulates which form by the reaction-precipitation mechanism during SHS reaction are present in the locally reinforced region, some large particulates which form by the nucleation-growth mechanism during solidification are entrapped inside the Fe-rich region located in the reinforcing region or inside the matrix region nearby the interface between matrix and reinforcing region. The hardness of the reinforcing region in the composite is significantly higher than that of the unreinforced medium carbon steel. Furthermore, the hardness values of the composites synthesized from 30 to 40 wt.% Ni-Ti-B 4 C systems are higher than those of the composites synthesized from 10 to 20 wt.% Ni-Ti-B 4 C systems

  9. Synthesis, structure and electronic configuration of [Rh{sub 6}Te{sub 8}(PPh{sub 3}){sub 6}].4C{sub 6}H{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Guenther; Balmer, Markus [Marburg Univ. (Germany). Fachbereich Chemie; Dehnen, Stefanie [Marburg Univ. (Germany). Fachbereich Chemie and Wissenschaftliches Zentrum fuer Materialwissenschaften

    2016-08-01

    [Rh{sub 6}Te{sub 8}(PPh{sub 3}){sub 6}].4C{sub 6}H{sub 6}, the first compound with a molecular Chevrel-type [Rh{sub 6}Te{sub 8}] cluster core has been synthesized and structurally characterized. By means of quantum chemical calculation, the close relationship of its electronic configuration to that of the lighter homologue has been demonstrated. The different crystal solvent content prevents an isostructural crystallization.

  10. The microstructures and mechanical properties of Al-15Si-2.5Cu-0.5Mg/(wt%)B{sub 4}C composites produced through hot pressing technique and subjected to hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, Alpay, E-mail: alpiozer@gmail.com

    2016-11-01

    In this study, B{sub 4}C (5, 10, and 15 wt%) particle-reinforced Ecka Alumix 231{sup ®} aluminum matrix composites were produced through the hot pressing technique. Some of these samples were subjected to hot extrusion as a secondary treatment at 4:1 ratio at a temperature of 555 °C. The obtained samples were subjected to density measurement, hardness test, microstructure analysis, and three-point bending test, and their fracture surfaces were examined. A density of over 99% was found in the samples. Al-rich solid solution and primary Si, CuAl{sub 2}, Al{sub 2}CuMg, and Mg{sub 2}Si phases in the microstructure were determined through X-ray diffraction analysis. Grain sizes were found to be 20 μm and 2 μm in the microstructures of the samples produced through hot pressing technique and of those subjected to additional hot extrusion, respectively. High hardness values were obtained in the samples subjected to hot extrusion. In these samples, wt% B{sub 4}C particle ratio and transverse rupture strength increased considerably. Furthermore, the highest compressive strain value was obtained in the 10 wt% B{sub 4}C particle-reinforced composites subjected to hot extrusion. - Highlights: • Liquid phase formed at the temperature of hot pressing and hot extrusion. • In the samples, over 99.19% density was obtained. • Average matrix grain size was measured to be 2 μm through hot extrusion. • As wt% B{sub 4}C ratio increased, transverse rupture strength values increased. • High compressive strain values were obtained in the hot extrusion samples.

  11. Selection and Performance-Degradation Modeling of LiMO2/Li4Ti5O12 and LiFePO4/C Battery Cells as Suitable Energy Storage Systems for Grid Integration With Wind Power Plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2014-01-01

    Advances in the development of energy storage technologies are making them attractive for grid integration together with wind power plants. Thus, the new system, the virtual power plant, is able to emulate the characteristics of today’s conventional power plants. However, at present, energy stora......-degradation models were developed for the two most suitable Li–ion chemistries for the primary frequency regulation service: LiMO2 /Li4Ti5O12 and LiFePO4/C....

  12. Synthesis and electrochemical characterization of LiCo_1_/_3Fe_2_/_3PO_4/C composite using nano CoFe_2O_4 as precursor

    International Nuclear Information System (INIS)

    Wu, Kaipeng; Hu, Guorong; Du, Ke; Peng, Zhongdong; Cao, Yanbing

    2015-01-01

    LiCo_1_/_3Fe_2_/_3PO_4/C composite was synthesized by a solid state method with CoFe_2O_4 as the precursor and glucose as the carbon source. The composite consists of homogeneous Co–Fe distributed LiCo_1_/_3Fe_2_/_3PO_4 with its particles covered by nano-carbon layers, which could prevent the growth of the particles as well as form a fast path for electronic transmission during charging and discharging process. It shows excellent electrochemical performance as the cathode for lithium-ion batteries, which delivers discharge capacities of 154.6, 152.9, 135.4, 122.3, 105.2 and 91.3 mAh g"−"1 at 0.05, 0.1, 0.5, 1, 2 and 5 C, respectively, and retains 94.6% of its initial discharge capacity after 30 cycles at 5 C. - Highlights: • Nano CoFe_2O_4 was prepared by a co-precipitation method. • LiCo_1_/_3Fe_2_/_3PO_4/C composite was synthesized using nano CoFe_2O_4 as a precursor. • Homogeneous Co–Fe distributed LiCo_1_/_3Fe_2_/_3PO_4 is obtained. • LiCo_1_/_3Fe_2_/_3PO_4/C composite exhibits a quite good electrochemical performance.

  13. Charge transfer processes in collisions of H+ ions with H2, D2, CO, CO2 CH4, C2H2, C2H6 and C3H8 molecules below 10 keV

    International Nuclear Information System (INIS)

    Kusakabe, T.; Buenker, R.J.; Kimura, M.

    2002-01-01

    Charge transfer processes resulting from collisions of H + ions with H 2 , D 2 , CO, CO 2 CH 4 , C 2 H 2 , C 2 H 6 and C 3 H 8 molecules have been investigated in the energy range of 0.2 to 4.0 keV experimentally and theoretically. The initial growth rate method was employed in the experiment for studying the dynamics and cross sections. Theoretical analysis based on a molecular-orbital expansion method for H 2 , D 2 , CO, CH 4 and C 2 H 2 targets was also carried out. The present results for the H 2 , CO and CO 2 molecules by H + impact are found to be in excellent accord with most of previous measurements above 1 keV, but they show some differences below this energy where our result displays a stronger energy-dependence. For CH 4 , C 2 H 2 , C 2 H 6 and C 3 H 8 targets, both experimental and theoretical results indicate that if one assumes vibrationally excited molecular ions (CH 4 + , C 2 H 2 + , C 2 H 6 + and C 3 H 8 + ) formed in the exit channel, then charge transfer processes sometimes become more favorable since these vibrationally excited fragments meet an accidental resonant condition. This is a clear indication of the role of vibrational excited states for charge transfer, and is an important realization for general understanding. (author)

  14. New system of cooling download Arrocampo. Project TEVA; Nuevos sistema refrigeracion descarga Arrocampo. Proyecto TEVA

    Energy Technology Data Exchange (ETDEWEB)

    Puerta Munoz, S.

    2012-07-01

    Project TEVA The new system is basically a mechanical forced-cooling tower, a system of pumping water from Arrocampo, pipes and valves supply a collection basin water tower, a channel to drain the existing auxiliary spillway own shot dam and a new power line from the Central.

  15. Experimental installation of refrigeration solar-first results; Instalacion experimental de refrigeracion solar-primeros resultados

    Energy Technology Data Exchange (ETDEWEB)

    Moone, C.; Guallar, J.; Alonso, S.; Palacin, F.

    2008-07-01

    In this article they are and the first results of an installation of solar refrigeration composed by a field of flat solar collector are analysed and absorption chillers of simple effect (BrLi-H{sub 2}O), used to give cold to a gymnasium of the university sport pavilion. The data correspond to the registered experimental values during the summer of 2007 (months of June, Julio and August). (Author)

  16. La refrigeracion nocturna en edificios de oficinas optimizacion del sistema mecanico

    NARCIS (Netherlands)

    Lain, M.; Hensen, J.L.M.

    2007-01-01

    En muchas ocasiones se ha tratado sobre la necesidad de optimizar el sistema mecánico nocturno de refrigeración. En este documento se trata de la utilización de simulaciones por ordenador tanto para el apoyo al diseño de un edificio nuevo y desarrollo de un sistema HVAC, como para la optimización de

  17. Unitary tridiagonalization in M(4, C)

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Abstract. A question of interest in linear algebra is whether all n × n complex matrices can be unitarily ... passing, we also provide another elementary proof for the n = 3 case. 2. Some Lemmas. We need ... also use the letter A to denote the unique linear transformation determined by the matrix. A = [aij ] (satisfying Aej = ∑n.

  18. Structure and electrochemical performances of LiFe{sub 1−2x}Ti{sub x}PO{sub 4}/C cathode doped with high valence Ti{sup 4+} by carbothermal reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chang-ling, E-mail: clfanhd@yahoo.com.cn [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Han, Shao-chang [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Li, Ling-fang [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); College of Mechanical Engineering, Hunan University of Art and Science, Changde 415000 (China); Bai, Yong-mei [Equipment Manufacturing College, Hebei University of Engineering, Handan 056038 (China); Zhang, Ke-he; Chen, Jin; Zhang, Xiang [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2013-11-05

    Highlights: •LiFePO{sub 4}/C and LiFe{sub 1−2x}Ti{sub x}PO{sub 4}/C are prepared by carbothermal reduction method. •Phenol–formaldehyde resin is used as reducing agent and carbon source. •Mechanism of carbothermal reduction reaction is presented on the basis of TG–DSC. •The electrochemical performances of samples are systematically investigated. -- Abstract: LiFePO{sub 4}/C (LFPC) and LiFe{sub 1−2x}Ti{sub x}PO{sub 4}/C (LFTPC) were prepared by carbothermal reduction method using FePO{sub 4}·2H{sub 2}O as iron source and phenol–formaldehyde resin as reducing agent and carbon source. Different ratios of TiO{sub 2} (IV) with high valence and small radius were applied to dope LiFePO{sub 4} to enhance its electrochemical performances. Results show that LFPC and LFTPC are synthesized successfully by carbothermal reduction method. The optimal carbon content in LFPC is 5 wt.% and its discharge capacity at 0.1 C is 150.8 mA h g{sup −1}. The crystallite structure of LFTPC becomes stable. They possess the smaller particle size compared with LiFePO{sub 4}. LFTPC-2 possesses the best C-rate and cycle performances among all the samples. Its discharge capacities at 0.1 C, 1 C and 3 C are 132.7 mA h g{sup −1}, 98.7 mA h g{sup −1} and 83.1 mA h g{sup −1}. The discharge curve can maintain its stable and flat platform of 3.3 V at 3 C. The electronic conductivity of LFTPC, which is coated with carbon and doped with Ti, can reach ∼10{sup −4} S cm{sup −1}. The charge transfer resistance of LFTPC-2 is 33.68 Ω, which is much lower than that of other samples.

  19. Semiconducting perovskites (2-XC6H4C2H4NH3)2SnI4 (X = F, Cl, Br): steric interaction between the organic and inorganic layers.

    Science.gov (United States)

    Xu, Zhengtao; Mitzi, David B; Dimitrakopoulos, Christos D; Maxcy, Karen R

    2003-03-24

    Two new semiconducting hybrid perovskites based on 2-substituted phenethylammonium cations, (2-XC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) (X = Br, Cl), are characterized and compared with the previously reported X = F compound, with a focus on the steric interaction between the organic and inorganic components. The crystal structure of (2-ClC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) is solved in a disordered subcell [C2/m, a = 33.781(7) A, b = 6.178(1) A, c = 6.190(1) A, beta = 90.42(3)(o), and Z = 2]. The structure is similar to the known (2-FC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) structure with regard to both the conformation of the organic cations and the bonding features of the inorganic sheet. The (2-BrC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) system adopts a fully ordered monoclinic cell [P2(1)/c, a = 18.540(2) A, b = 8.3443(7) A, c = 8.7795(7) A, beta = 93.039(1)(o), and Z = 2]. The organic cation adopts the anti conformation, instead of the gauche conformation observed in the X = F and Cl compounds, apparently because of the need to accommodate the additional volume of the bromo group. The steric effect of the bromo group also impacts the perovskite sheet, causing notable distortions, such as a compressed Sn-I-Sn bond angle (148.7(o), as compared with the average values of 153.3 and 154.8(o) for the fluoro and chloro compounds, respectively). The optical absorption features a substantial blue shift (lowest exciton peak: 557 nm, 2.23 eV) relative to the spectra of the fluoro and chloro compounds (588 and 586 nm, respectively). Also presented are transport properties for thin-film field-effect transistors (TFTs) based on spin-coated films of the two hybrid semiconductors.

  20. Synthesis and pharmacological properties of new derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones.

    Science.gov (United States)

    Sladowska, Helena; Sabiniarz, Aleksandra; Sapa, Jacek; Filipek, Barbara

    2009-01-01

    Synthesis of 2-(2-hydroxy-3-amino)propyl derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (24-35) is described. The chlorides used in the above synthesis exist mainly in the cyclic forms (18, 20-23). Only chloride with benzhydryl substituent at the nitrogen atom of piperazine has the chain structure (19). Among the studied imides the most active analgesics in the "writhing" syndrome test proved to be compounds 30 and 31 (with LD50 > 2000 mg/kg) containing 4-benzylpiperidino group. Furthermore, all imides suppressed significantly spontaneous locomotor activity of mice.

  1. Ordering effects in benzo[1,2-b:4,5-b']difuran-thieno[3,4-c]pyrrole-4,6- dione polymers with >7% solar cell efficiency

    KAUST Repository

    Warnan, Julien

    2014-05-15

    Benzo[1,2-b:4,5-b\\']difuran-thieno[3,4-c]pyrrole-4,6-dione (PBDFTPD) polymers prepared by microwave-assisted synthesis can achieve power conversion efficiencies (PCEs) >7% in bulk-heterojunction solar cells with phenyl-C61/71-butyric acid methyl ester (PCBM). In "as-cast" PBDFTPD-based devices solution-processed without a small-molecule additive, high PCEs can be obtained in spite of the weak propensity of the polymers to self-assemble and form π-aggregates in thin films. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Experimental studies of collisions of excited Li(4p) atoms with C2H4, C2H6, C3H8 and theoretical interpretation of the Li-C2H4 system

    International Nuclear Information System (INIS)

    Semmineh, Natenael; Bililign, Solomon; Hagebaum-Reignier, Denis; Jeung, Gwang-Hi

    2009-01-01

    Collisions of excited Li(4p) states with C 2 H 4 , C 2 H 6 and C 3 H 8 are studied experimentally using far-wing scattering state spectroscopy techniques. High-level ab initio quantum mechanical studies of the Li-C 2 H 4 system are conducted to explain the results of the experiment for this system. The recent and present works indicate that knowledge of the internal structure of the perturber (C 2 H 4 , C 2 H 6 and C 3 H 8 ) is essential to fully understand the interaction between the metal and the hydrocarbon molecules. The ab initio calculation shows that the Li(4d) (with little probability under the experimental conditions) and the Li(4p) can be formed directly through the laser pumping. It also shows that the Li(4s) and Li(3d) states can be formed through an electronic diabatic coupling involving a radiationless process. However, the Li(3p), Li(3s) and Li(2p) states can only be formed through a secondary diabatic coupling which is a much less probable process than the primary one. The calculation limited to two C 2v sections of the potential energy surfaces (PESs) shows peculiar multi-state crossings that we have never seen in other lithium complexes we studied

  3. VLBI observations of the quasars CTD20 (0234+285), OJ248 (0827+243), and 4C19.44 (1354+195), and the millimeter-x-ray connection

    International Nuclear Information System (INIS)

    Marscher, A.P.; Broderick, J.J.

    1983-01-01

    We have obtained limited VLBI data on the quasars CTD20, OJ248, and 4C19.44 at 2.8 cm. CTD20 was also observed at 6 and 18 cm. All three sources contain multicomponent structure, and rather large fractions of the 2.8-cm flux densities arise in unresolved regions. All of the radio flux density of CTD20 originates in compact components. 4C19.44 is dominated at low frequencies by a steep-spectrum component which exceeds about 7 mas in size. Above 2 GHz the spectrum is flat and variable owing to several compact components. CTD20 and OJ248 belong to a sample of millimeter-excess quasars which were shown by Owen, Helfand, and Spangler to have highly predictable ratios of 90 GHz to 2-keV flux densities. A self-Compton explanation of this relationship is supported by the existence of unresolved radio components. However, the rapid 90-GHz variability of OJ248 and other quasars with strong millimeter emission should destroy the observed tight correlation except under special circumstances. A synchrotron origin of the radio-to-x-ray emission requires that any variations in the radio should be time delayed relative to the x ray

  4. Ionizing radiation and legislation for personnel - Annex B; Radiacoes ionizantes e legislacao para trabalhadores - Anexo B

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Jose Ubiratan [Instituto de Radioprotecao e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes

    2013-11-15

    This annex B presents a chronological approach on the set of laws related to the ionizing radiation personnel. This paper aims to discuss and clarify the main concepts that constitute the current legislation, pointing the scope of each, as well as its ambiguities or inaccuracies. The consequences of those issues discussed are easily noticeable related to difficulties in legal, administrative and human resource management, when seeking their efficient application. We also discuss issues associated with the extent and frequency of the gradient of risk in 5, 10 and 20%, models for assessing potential exposure in a risk area, dose calculation and criteria for defining benefits and framework for irradiation, bonus for activity, special retirement and period of vacations for personnel occupationally exposed within Unified Legal System (Regime Juridico Unico) and the Consolidation of Labor Laws (CLT)

  5. Modelling of HTR (High Temperature Reactor Pebble-Bed 10 MW to Determine Criticality as A Variations of Enrichment and Radius of the Fuel (Kernel With the Monte Carlo Code MCNP4C

    Directory of Open Access Journals (Sweden)

    Hammam Oktajianto

    2014-12-01

    Full Text Available Gas-cooled nuclear reactor is a Generation IV reactor which has been receiving significant attention due to many desired characteristics such as inherent safety, modularity, relatively low cost, short construction period, and easy financing. High temperature reactor (HTR pebble-bed as one of type of gas-cooled reactor concept is getting attention. In HTR pebble-bed design, radius and enrichment of the fuel kernel are the key parameter that can be chosen freely to determine the desired value of criticality. This paper models HTR pebble-bed 10 MW and determines an effective of enrichment and radius of the fuel (Kernel to get criticality value of reactor. The TRISO particle coated fuel particle which was modelled explicitly and distributed in the fuelled region of the fuel pebbles using a Simple-Cubic (SC lattice. The pebble-bed balls and moderator balls distributed in the core zone using a Body-Centred Cubic lattice with assumption of a fresh fuel by the fuel enrichment was 7-17% at 1% range and the size of the fuel radius was 175-300 µm at 25 µm ranges. The geometrical model of the full reactor is obtained by using lattice and universe facilities provided by MCNP4C. The details of model are discussed with necessary simplifications. Criticality calculations were conducted by Monte Carlo transport code MCNP4C and continuous energy nuclear data library ENDF/B-VI. From calculation results can be concluded that an effective of enrichment and radius of fuel (Kernel to achieve a critical condition was the enrichment of 15-17% at a radius of 200 µm, the enrichment of 13-17% at a radius of 225 µm, the enrichments of 12-15% at radius of 250 µm, the enrichments of 11-14% at a radius of 275 µm and the enrichment of 10-13% at a radius of 300 µm, so that the effective of enrichments and radii of fuel (Kernel can be considered in the HTR 10 MW. Keywords—MCNP4C, HTR, enrichment, radius, criticality 

  6. Radiochemical synthesis of 3-(4-[18F] Fluorophenyl)-8-hydroxy-1, 2, 3, 4-tetrahydrochromeno [3, 4-c] pyridin-5-one: A putative dopamine D$4 receptor PET imaging agent

    International Nuclear Information System (INIS)

    Li, G.C.; Yin, D.Z.; Wang, M.W.; Cheng, D.F.; Wang, Y.X.

    2005-01-01

    Introduction: The dopamine D 4 receptor has lately received increasing interest since it has been hypothesized to be involved in the pathology and pharmacotherapy of schizophrenia. While this receptor is expressed in lower density in various extrastriatal brain regions and its distribution is still unclear due to the lack of suitable imaging agent and its level change in schizophrenia is controversial. Herein, based on the structure-activity analysis of chromeno[3, 4-c]pyridine- 5-ones as potential dopamine D 4 receptor ligands, a putative D 4 subtype positron emission tomography (PET) radioligand, 3-(4-[ 18 F]fluorophenyl)-8-hydroxy-1, 2, 3, 4-tetrahydrochromeno [3, 4-c]pyridin-5-one ([ 18 F]FHTP), was designed and synthesized. Methods: The radiochemical synthesis route was shown in Figure 1. [ 18 F]Fluoride was produced with a Cyclone-30 (IBA, Belgium) by 18 O(p, n) 18 F reaction using enriched 18 O-H 2 O and eluted from a Dowex 1-X8 anion-exchange column with aqueous potassium carbonate (20 mg/mL). 4-[ 18 F]Fluorobenzaldehyde was prepared according to the method reported by Alan A. Wilson and et al.. Then, 8-hydroxy-1, 2, 3, 4-tetrahydrochromeno [3, 4-c]pyridin-5-one, sodium cyanoborohydride, methanol and acetic acid were added to the dry residue, The mixture was then sealed and heated at 120 degree C for 12 min. At the end of the reaction, the mixture was cooled, diluted with ethyl acetate and washed with water. The extracted organic layer was passed through a small anhydrous magnesium sulfate column. After removal of the solvents in the mixture at 50 degree C under a stream of nitrogen, the obtained residue was redissolved in methanol and purified with a semi-preparative HPLC system, then the desired product was collected. Results: The radiochemical synthesis of [ 18 F]FHTP took around 110 min at EOS with an overall radiochemical yield 19% (decay-corrected) and its radiochemical purity was higher than 95%. Conclusion: A presumed dopamine D 4 receptor PET

  7. The human polynucleotide kinase/phosphatase (hPNKP) inhibitor A12B4C3 radiosensitizes human myeloid leukemia cells to Auger electron-emitting anti-CD123 111In-NLS-7G3 radioimmunoconjugates

    International Nuclear Information System (INIS)

    Zereshkian, Arman; Leyton, Jeffrey V.; Cai, Zhongli; Bergstrom, Dane; Weinfeld, Michael; Reilly, Raymond M.

    2014-01-01

    Introduction: Leukemia stem cells (LSCs) are believed to be responsible for initiating and propagating acute myeloid leukemia (AML) and for causing relapse after treatment. Radioimmunotherapy (RIT) targeting these cells may improve the treatment of AML, but is limited by the low density of target epitopes. Our objective was to study a human polynucleotide kinase/phosphatase (hPNKP) inhibitor that interferes with DNA repair as a radiosensitizer for the Auger electron RIT agent, 111 In-NLS-7G3, which recognizes the CD123 + /CD131 - phenotype uniquely displayed by LSCs. Methods: The surviving fraction (SF) of CD123 + /CD131 - AML-5 cells exposed to 111 In-NLS-7G3 (33–266 nmols/L; 0.74 MBq/μg) or to γ-radiation (0.25-5 Gy) was determined by clonogenic assays. The effect of A12B4C3 (25 μmols/L) combined with 111 In-NLS-7G3 (16–66 nmols/L) or with γ-radiation (0.25–2 Gy) on the SF of AML-5 cells was assessed. The density of DNA double-strand breaks (DSBs) in the nucleus was measured using the γ-H2AX assay. Cellular dosimetry was estimated based on the subcellular distribution of 111 In-NLS-7G3 measured by cell fractionation. Results: Binding of 111 In-NLS-7G3 to AML-5 cells was reduced by 2.2-fold in the presence of an excess (1 μM) of unlabeled NLS-7G3, demonstrating specific binding to the CD123 + /CD131 - epitope. 111 In-NLS-7G3 reduced the SF of AML-5 cells from 86.1 ± 11.0% at 33 nmols/L to 10.5 ± 3.6% at 266 nmols/L. Unlabeled NLS-7G3 had no significant effect on the SF. Treatment of AML-5 cells with γ-radiation reduced the SF from 98.9 ± 14.9% at 0.25 Gy to 0.03 ± 0.1% at 5 Gy. A12B4C3 combined with 111 In-NLS-7G3 (16–66 nmols/L) enhanced the cytotoxicity up to 1.7-fold compared to treatment with radioimmunoconjugates alone and was associated with a 1.6-fold increase in DNA DSBs in the nucleus. A12B4C3 enhanced the cytotoxicity of γ-radiation (0.25–0.5 Gy) on AML-5 cells by up to 1.5-fold, and DNA DSBs were increased by 1.7-fold. Exposure to

  8. Specific primary ionization induced by minimum ionizing electrons in CH4, C2H6, C3H8, i-C4H10, Ar, DME,TEA and TMAE

    International Nuclear Information System (INIS)

    Melamud, G.; Breskin, A.; Chechik, R.; Pansky, A.

    1992-10-01

    Specific primary ionization induced by minimum ionizing electrons has been measured in several gases and vapors. Charges deposited by β-electrons in a low pressure gas, were collected, amplified by a multistep gaseous electron multiplier and counted. The high counting efficiency of the multiplier provided results of systematically higher values as compared to existing data. The respective values of the specific primary ionization in CH 4 C 2 H 6 , C 3 H 8 ,i-C 4 H 10 , Argon, Dimethylether, Triethylamine and Tetrakis(dimethylamino) ethylene are: 0.034, 0.065, 0.095, 0.12, 0.03, 0.082, 0.0195 and 0.370 clusters/cm*Torr. We present the experimental method and discuss the results and their accuracy. (authors)

  9. Comprehensive methods to enhance the electrochemical performances of LiFe0.94Mg0.03Cu0.03PO4/C cathode for lithium ion batteries

    International Nuclear Information System (INIS)

    Fan, Chang-ling; Zhang, Ke-he; Han, Shao-chang

    2013-01-01

    Graphical abstract: Relationships between the conductivities of LFPC-2 cathode and the volume percentages of AB (a) and PAn (b). - Highlights: • LiFe 0.94 Mg 0.03 Cu 0.03 PO 4 /C is synthesized by adding glucose with two-step method. • Conductive polymer polyaniline is used to replace acetylene black. • The content of conductive additive is optimized by the percolation theory. • LFPC-2 cathode containing polyaniline possesses the excellent performance. - Abstract: Comprehensive methods were utilized to improve the electrochemical performances of LiFe 0.94 Mg 0.03 Cu 0.03 PO 4 /C (LFPC) composite cathode. Experimental results show that LFPC-2, prepared by adding glucose in two steps, possesses the effective incorporated of doping ions and well-distributed pyrolysis carbon. It possesses higher conductivity and discharge capacity. The percolation theory analysis shows that the conductivity of LFPC-2 cathode film reaches its maximum value at the mass content of 15 wt.%. The replacement of acetylene black with polyaniline can greatly improve the electrochemical performances of LFPC-2 cathode. Its discharge capacity is 85.3 mAh g −1 and its potential platform is as high as 3.2 V at the current density of 850 mA g −1 when 15 wt.% polyaniline is used. The cycle performance of LFPC-2 is improved when polyaniline is used as conductive additives. And the change of charge transfer resistance of LFPC-2 cathode containing polyaniline is very small after 24 cycles

  10. Microsphere LiFe{sub 0.5}Mn{sub 0.5}PO{sub 4}/C composite as high rate and long-life cathode material for lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chun-Chen, E-mail: ccyang@mail.mcut.edu.tw [Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC (China); Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC (China); Chen, Wei-Houng [Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC (China)

    2016-04-15

    LiFe{sub 0.5}Mn{sub 0.5}PO{sub 4}/C composite material (denoted as SP-LFMP/C) with macro/nano hierarchical porous structure by adding the composite carbon source (i.e., 100 nm polystyrene sphere and 300 nm carbon sphere) is fabricated via a spray dry process. The SP-LFMP/C composite exhibits a 3D hierarchical structure with a high surface area (34.63 m{sup 2} g{sup −1}) and a wide pore size distribution (2–100 nm). The characteristic properties of the samples are examined using X-ray diffraction, micro-Raman spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. The SP-LFMP/C composite achieves discharge capacities of 161, 160, 157, 146, 137, and 115 mAh g{sup −1} at 0.2, 0.5, 1, 3, 5, and 10 C, respectively. Moreover, the SP-LFMP/C material also exhibits excellent cycling performance and stability at 55 °C during the 300 cycle test. These results indicate that the SP-LFMP/C cathode material is an excellent candidate for application in high-energy Li-ion batteries. - Highlights: • A microsphere LiFe{sub 0.5}Mn{sub 0.5}PO{sub 4}/C composite is prepared by a spray drying process. • The composite material shows a mesoporous 3D structure with a high surface area. • The SP-LFMP composite exhibits excellent high rate capability. • The SP-LFMP/C composite shows much higher tap density of 1.33 g cm{sup −3}.