Reflexogenic relaxation gastroduodenography by the acupuncture method
Rabkin, I.Kh.; Tsibulyak, V.N.; Mnatsakyan, K.A.; Kondorskaya, I.L.; Galkina, T.V.
The communication is based upon the results of x-ray examination of the stomach and duodenum in 63 patients with stenoses of the pyloroduodenal zone, cicatrical deformities of the duodenal bulb, bulbar ulcer, duodenal organic lesions, and functional stenosis of the loop. First a routine X-ray examination of the stomach and duodenum was performed using barium-water mixture, then followed acupuncture aimed at hypotension in the definite points of the floor of the auricle where branches of the vagus innervating the stomach and duodenum are located. As distinct from pharmacological relaxation this method produces a purpose-oriented selective effect.
Reflexogenic relaxation gastroduodenography by the acupuncture method
Rabkin, I.Kh.; Tsibulyak, V.N.; Mnatsakyan, K.A.; Kondorskaya, I.L.; Galkina, T.V.
1985-01-01
The communication is based upon the results of x-ray examination of the stomach and duodenum in 63 patients with stenoses of the pyloroduodenal zone, cicatrical deformities of the duodenal bulb, bulbar ulcer, duodenal organic lesions, and functional stenosis of the loop. First a routine X-ray examination of the stomach and duodenum was performed using barium-water mixture, than followed acupuncture aimed at hypotension in the definite points of the floor of the auricle where branches of the vagus innervating the stomach and duodenum are located. As distinct from pharmacological relaxation this method produces a purpose-oriented selective effect
1987-01-01
Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.
... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...
Mechanical relaxation in glasses
Hiki, Y.
2004-01-01
The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other
Relaxation characteristics of hastelloy X
Suzuki, Kazuhiko
1980-02-01
Relaxation diagrams of Hastelloy X (relaxation curves, relaxation design diagrams, etc.) were generated from the creep constitutive equation of Hastelloy X, using inelastic stress analysis code TEPICC-J. These data are in good agreement with experimental relaxation data of ORNL-5479. Three typical inelastic stress analyses were performed for various relaxation behaviors of the high-temperature structures. An attempt was also made to predict these relaxation behaviors by the relaxation curves. (author)
TEACHING NEUROMUSCULAR RELAXATION.
NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.
THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…
Relaxation of Anisotropic Glasses
Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar
2004-01-01
. When the load was removed at room temperature a permanent optical anisotropy (birefringence) was observed only perpendicular to cylinder axis and the pressure direction indicating complete elimination of thermal stresses. Relaxation of structural anisotropy was studied from reheating experiments using...... the energy release, thermo-mechanical and optical relaxation behaviour are drawn....
Relaxation techniques for stress
... raise your heart rate. This is called the stress response. Relaxation techniques can help your body relax and lower your blood pressure ... also many other types of breathing techniques you can learn. In many cases, you do not need much ... including those that cause stress. Meditation has been practiced for thousands of years, ...
The relaxation time approximation
Gairola, R.P.; Indu, B.D.
1991-01-01
A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs
Relaxed Binaural LCMV Beamforming
Koutrouvelis, A.; Hendriks, R.C.; Heusdens, R.; Jensen, Jesper Rindom
2017-01-01
In this paper, we propose a new binaural beamforming technique, which can be seen as a relaxation of the linearly constrained minimum variance (LCMV) framework. The proposed method can achieve simultaneous noise reduction and exact binaural cue preservation of the target source, similar to the
... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...
Experiments in paramagnetic relaxation
Lijphart, E.E.
1976-01-01
This thesis presents two attempts to improve the resolving power of the relaxation measurement technique. The first attempt reconsiders the old technique of steady state saturation. When used in conjunction with the pulse technique, it offers the possibility of obtaining additional information about the system in which all-time derivatives are zero; in addition, non-linear effects may be distinguished from each other. The second attempt involved a systematic study of only one system: Cu in the Tutton salts (K and Rb). The systematic approach, the high accuracy of the measurement and the sheer amount of experimental data for varying temperature, magnetic field and concentration made it possible in this case to separate the prevailing relaxation mechanisms reliably
Relaxation from particle production
Hook, Anson; Marques-Tavares, Gustavo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States)
2016-12-20
We consider using particle production as a friction force by which to implement a “Relaxion” solution to the electroweak hierarchy problem. Using this approach, we are able to avoid superplanckian field excursions and avoid any conflict with the strong CP problem. The relaxation mechanism can work before, during or after inflation allowing for inflationary dynamics to play an important role or to be completely decoupled.
Magnetic relaxation in anisotropic magnets
Lindgård, Per-Anker
1971-01-01
The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...... or longitudinal relaxation function depending on the sign of the axial anisotropy....
Momentum constraint relaxation
Marronetti, Pedro
2006-01-01
Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature A ij -tilde, generated by a vector potential w i , as outlined by York. The components of w i are relaxed to solve approximately the momentum constraint equations, slowly pushing the evolution towards the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that it effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly
Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics
Dewar, R. L.; Yoshida, Z.; Bhattacharjee, A.; Hudson, S. R.
2015-12-01
> Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor relaxation model for formation of macroscopically self-organized plasma equilibrium states, all these constraints are relaxed save for the global magnetic fluxes and helicity. A Lagrangian variational principle is presented that leads to a new, fully dynamical, relaxed magnetohydrodynamics (RxMHD), such that all static solutions are Taylor states but also allows state with flow. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-region relaxed magnetohydrodynamics (MRxMHD) is developed.
Tangarife, Walter; Tobioka, Kohsaku; Ubaldi, Lorenzo; Volansky, Tomer
2018-02-01
The cosmological relaxation of the electroweak scale has been proposed as a mechanism to address the hierarchy problem of the Standard Model. A field, the relaxion, rolls down its potential and, in doing so, scans the squared mass parameter of the Higgs, relaxing it to a parametrically small value. In this work, we promote the relaxion to an inflaton. We couple it to Abelian gauge bosons, thereby introducing the necessary dissipation mechanism which slows down the field in the last stages. We describe a novel reheating mechanism, which relies on the gauge-boson production leading to strong electro-magnetic fields, and proceeds via the vacuum production of electron-positron pairs through the Schwinger effect. We refer to this mechanism as Schwinger reheating. We discuss the cosmological dynamics of the model and the phenomenological constraints from CMB and other experiments. We find that a cutoff close to the Planck scale may be achieved. In its minimal form, the model does not generate sufficient curvature perturbations and additional ingredients, such as a curvaton field, are needed.
Relaxed states with plasma flow
Avinash, K.; Taylor, J.B.
1991-01-01
In the theory of relaxation, a turbulent plasma reaches a state of minimum energy subject to constant magnetic helicity. In this state the plasma velocity is zero. Attempts have been made by introducing a number of different constraints, to obtain relaxed states with plasma flow. It is shown that these alternative constraints depend on two self-helicities, one for ions, and one for electrons. However, whereas there are strong arguments for the effective invariance of the original magnetic-helicity, these arguments do not apply to the self-helicities. Consequently the existence of relaxed states with flow remains in doubt. (author)
Relaxed states of tokamak plasmas
Kucinski, M.Y.; Okano, V.
1993-01-01
The relaxed states of tokamak plasmas are studied. It is assumed that the plasma relaxes to a quasi-steady state which is characterized by a minimum entropy production rate, compatible with a number of prescribed conditions and pressure balance. A poloidal current arises naturally due to the anisotropic resistivity. The minimum entropy production theory is applied, assuming the pressure equilibrium as fundamental constraint on the final state. (L.C.J.A.)
Negative magnetic relaxation in superconductors
Krasnoperov E.P.
2013-01-01
Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.
Relaxation effects in ferrous complexes
Nicolini, C.; Mathieu, J.P.; Chappert, J.
1976-01-01
The slow relaxation mechanism of the Fe 2+ ion in the tri-fluorinated TF(acac) and hexafluorinated HF(acac) complexes of Fe(II) acetylacetonate was investigated. The 300K and 77K Moessbauer spectra for TF(acac) consist in a slightly asymmetric quadrupole doublet. On the contrary, at 4.2K the higher energy line is strongly widened; that is typical of a slowing down in the electron relaxation frequency [fr
Peeling mode relaxation ELM model
Gimblett, C. G.
2006-01-01
This paper discusses an approach to modelling Edge Localised Modes (ELMs) in which toroidal peeling modes are envisaged to initiate a constrained relaxation of the tokamak outer region plasma. Relaxation produces both a flattened edge current profile (which tends to further destabilise a peeling mode), and a plasma-vacuum negative current sheet which has a counteracting stabilising influence; the balance that is struck between these two effects determines the radial extent (rE) of the ELM relaxed region. The model is sensitive to the precise position of the mode rational surfaces to the plasma surface and hence there is a 'deterministic scatter' in the results that has an accord with experimental data. The toroidal peeling stability criterion involves the edge pressure, and using this in conjunction with predictions of rE allows us to evaluate the ELM energy losses and compare with experiment. Predictions of trends with the edge safety factor and collisionality are also made
Relaxation properties in classical diamagnetism
Carati, A.; Benfenati, F.; Galgani, L.
2011-06-01
It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.
Onsager relaxation of toroidal plasmas
Samain, A.; Nguyen, F.
1997-01-01
The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author)
Anisotropic spin relaxation in graphene
Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.
2008-01-01
Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular
Stochastic and Chaotic Relaxation Oscillations
Grasman, J.; Roerdink, J.B.T.M.
1988-01-01
For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a
Tensions relaxation in Zircaloy-4
Cuniberti, A.M.; Picasso, A.C.
1990-01-01
Traction and stress relaxation studies were performed on polycrystalline Zry-4 at room temperature. The effect of loading velocity on the plastic behaviour of the material is discussed, analysing log σ vs. log dε/dt at different deformation levels. The contribution introduced by the testing machine was taken into account in data evaluation. (Author). 7 refs., 3 figs., 3 tabs
Sleep, Stress & Relaxation: Rejuvenate Body & Mind
Sleep, Stress & Relaxation: Rejuvenate Body & Mind; Relieve Stress; best ways to relieve stress; best way to relieve stress; different ways to relieve stress; does smoking relieve stress; does tobacco relieve stress; how can I relieve stress; how can you relieve stress; how do I relieve stress; reduce stress; does smoking reduce stress; how can I reduce stress; how to reduce stress; reduce stress; reduce stress levels; reducing stress; smoking reduce stress; smoking reduces stress; stress reducing techniques; techniques to reduce stress; stress relief; best stress relief; natural stress relief; need stress relief; relief for stress; relief from stress; relief of stress; smoking and stress relief; smoking for stress relief; smoking stress relief; deal with stress; dealing with stress; dealing with anger; dealing with stress; different ways of dealing with stress; help dealing with stress; how to deal with anger; how to deal with stress; how to deal with stress when quitting smoking; stress management; free stress management; how can you manage stress; how do you manage stress; how to manage stress; manage stress; management of stress; management stress; managing stress; strategies for managing stress; coping with stress; cope with stress; copeing with stress; coping and stress; coping skills for stress; coping strategies for stress; coping strategies with stress; coping strategy for stress; coping with stress; coping with stress and anxiety; emotional health; emotional health; emotional health article; emotional health articles; deep relaxation; deep breathing relaxation techniques; deep muscle relaxation; deep relaxation; deep relaxation meditation; deep relaxation technique; deep relaxation techniques; meditation exercises; mindful exercises; mindful meditation exercises; online relaxation exercises; relaxation breathing exercises; relaxation exercise; relaxation exercises; stress relaxation; methods of relaxation for stress; relax stress; relax techniques stress
Relaxation Techniques to Manage IBS Symptoms
... for 15–20 seconds and then begin again. Progressive Muscle Relaxation This method of relaxation focuses on ... helpful, please consider supporting IFFGD with a small tax- deductible donation. Make Donation Adapted from IFFGD Publication # ...
Relaxation and Distraction in Experimental Desensitization.
Weir, R. O.; Marshall, W. L.
1980-01-01
Compared experimental desensitization with a procedure that replaced relaxation with a distraction task and with an approach that combined both relaxation and distraction. Desensitization generally was more effective than the other two procedures. (Author)
Relaxation as a Factor in Semantic Desensitization
Bechtel, James E.; McNamara, J. Regis
1975-01-01
Relaxation and semantic desensitization were used to alleviate the fear of phobic females. Results showed that semantic desensitization, alone or in combination with relaxation, failed to modify the evaluative meanings evoked by the feared object. (SE)
Plasmon-mediated energy relaxation in graphene
Ferry, D. K. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706 (United States); Somphonsane, R. [Department of Physics, King Mongkut' s Institute of Technology, Ladkrabang, Bangkok 10520 (Thailand); Ramamoorthy, H.; Bird, J. P. [Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260-1500 (United States)
2015-12-28
Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.
Nonlinear Relaxation in Population Dynamics
Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo
We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.
Structural relaxation: low temperature properties
Cruz, F. de la
1984-01-01
We discuss the changes in transport and superconducting properties of amorphous Zr 70 Cu 30 , induced by thermal relaxation. The experimental results are used to investigate the relation between the microscopic parameters and the observed physical properties. It is shown that the density of eletronic states determines the shift Tc as well as the variation of the electrical resistivity. It is necessary to assume strong hybridization between s and d bands to understand the eletrodynamic response of the superconductor. (Author) [pt
The Effects of Suggestibility on Relaxation.
Rickard, Henry C.; And Others
1985-01-01
Selected undergraduates (N=32) on the basis of Creative Imagination Scale scores and randomly assigned high and low suggestibility subjects to progressive relaxation (PR) and suggestions of relaxation (SR) training modes. Results revealed a significant pre-post relaxation effect, and main efffects for both suggestibility and training mode. (NRB)
Relaxed Poisson cure rate models.
Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N
2016-03-01
The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arresting relaxation in Pickering Emulsions
Atherton, Tim; Burke, Chris
2015-03-01
Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.
Vibrational relaxation in OCS mixtures
Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.
1976-01-01
Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)
Spies, G.O.; Lortz, D.; Kaiser, R.
2001-01-01
Taylor's theory of relaxed toroidal plasmas (states of lowest energy with fixed total magnetic helicity) is extended to include a vacuum between the plasma and the wall. In the extended variational problem, one prescribes, in addition to the helicity and the magnetic fluxes whose conservation follows from the perfect conductivity of the wall, the fluxes whose conservation follows from the assumption that the plasma-vacuum interface is also perfectly conducting (if the wall is a magnetic surface, then one has the toroidal and the poloidal flux in the vacuum). Vanishing of the first energy variation implies a pressureless free-boundary magnetohydrostatic equilibrium with a Beltrami magnetic field in the plasma, and in general with a surface current in the interface. Positivity of the second variation implies that the equilibrium is stable according to ideal magnetohydrodynamics, that it is a relaxed state according to Taylor's theory if the interface is replaced by a wall, and that the surface current is nonzero (at least if there are no closed magnetic field lines in the interface). The plane slab, with suitable boundary conditions to simulate a genuine torus, is investigated in detail. The relaxed state has the same double symmetry as the vessel if, and only if, the prescribed helicity is in an interval that depends on the prescribed fluxes. This interval is determined in the limit of a thin slab
Regularized Label Relaxation Linear Regression.
Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu
2018-04-01
Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.
Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng
2017-08-01
Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.
Sandpile model for relaxation in complex systems
Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.
1997-10-01
The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)
The relationships between suggestibility, influenceability, and relaxability.
Polczyk, Romuald; Frey, Olga; Szpitalak, Malwina
2013-01-01
This research explores the relationships between relaxability and various aspects of suggestibility and influenceability. The Jacobson Progressive Muscle Relaxation procedure was used to induce relaxation. Tests of direct suggestibility, relating to the susceptibility of overt suggestions, and indirect suggestibility, referring to indirect hidden influence, as well as self-description questionnaires on suggestibility and the tendency to comply were used. Thayer's Activation-Deactivation Adjective Check List, measuring various kinds of activation and used as a pre- and posttest, determined the efficacy of the relaxation procedure. Indirect, direct, and self-measured suggestibility proved to be positively related to the ability to relax, measured by Thayer's subscales relating to emotions. Compliance was not related to relaxability. The results are discussed in terms of the aspects of relaxation training connected with suggestibility.
Compaction and relaxation of biofilms
Valladares Linares, R.
2015-06-18
Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more
Ultrasonic relaxations in borate glasses
D'Angelo, G.; Tripodo, G.; Carini, G.; Cosio, E.; Bartolotta, A.; Di Marco, G.
2004-01-01
The attenuation and velocity of ultrasonic waves of frequencies in the range from 10 to 70 MHz have been measured in M 2 O-B 2 O 3 borate glasses (M: Li or Ag) as a function of temperature between 15 and 350 K. The velocity of sound waves decreases with increasing temperature in all the glasses, the decrease as the temperature is increased is larger in glasses containing silver than in those with lithium. A broad relaxation peak characterises the attenuation behaviour of the lithium and silver borate glasses at temperatures below 100 K and is paralleled by a corresponding dispersive behaviour of the sound velocity. Above 100 K, the ultrasonic velocity shows a nearly linear behaviour regulated by the vibrational anharmonicity, which decreases with increasing content of modifier oxide and is smaller in lithium than in silver borates. These results suggest that the relaxation of structural defects and the anharmonicity of borate glasses are strongly affected by two parameters: the number of bridging bonds per network forming ion and the polarising power of network modifier ions which occupy sites in the existing interstices
Statistical mechanics of violent relaxation
Shu, F.H.
1978-01-01
We reexamine the foundations of Lynden-Bell's statistical mechanical discussion of violent relaxation in collisionless stellar systems. We argue that Lynden-Bell's formulation in terms of a continuum description introduces unnecessary complications, and we consider a more conventional formulation in terms of particles. We then find the exclusion principle discovered by Lynden-Bell to be quantitatively important only at phase densities where two-body encounters are no longer negligible. Since the edynamical basis for the exclusion principle vanishes in such cases anyway, Lynden-Bell statistics always reduces in practice to Maxwell-Boltzmann statistics when applied to stellar systems. Lynden-Bell also found the equilibrium distribution function generally to be a sum of Maxwellians with velocity dispersions dependent on the phase density at star formation. We show that this difficulty vanishes in the particulate description for an encounterless stellar system as long as stars of different masses are initially well mixed in phase space. Our methods also demonstrate the equivalence between Gibbs's formalism which uses the microcanonical ensemble and Boltzmann's formalism which uses a coarse-grained continuum description. In addition, we clarify the concept of irreversible behavior on a macroscopic scale for an encounterless stellar system. Finally, we comment on the use of unusual macroscopic constraints to simulate the effects of incomplete relaxation
Chopin, C.; Spanjaard, D.; Hartmann-Boutron, F.
1975-01-01
Previous perturbation treatments of paramagnetic relaxation effects in γγ PAC were limited to the case of very short electronic relaxation times. This limitation is circumvented by invoking a new perturbation theory recently elaborated by Hirst and others for handling relaxation effects in Moessbauer spectra. Under the assumption of spherical electronic relaxation the perturbation factors are computed as functions of certain relaxation parameters which are directly related to the microscopic relaxation Hamiltonian. The results are compared to those of the stochastic theory of Scherer and Blume [fr
Cross relaxation in nitroxide spin labels
Marsh, Derek
2016-01-01
Cross relaxation, and mI-dependence of the intrinsic electron spin-lattice relaxation rate We, are incorporated explicitly into the rate equations for the electron-spin population differences that govern the saturation behaviour of 14N- and 15N-nitroxide spin labels. Both prove important in spin......-label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We, the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from...... the hyperfine line pumped or observed follows directly from solution of the rate equations including cross relaxation, even when the intrinsic spin-lattice relaxation rate We is mI-dependent....
Structural relaxation in annealed hyperquenched basaltic glasses
Guo, Xiaoju; Mauro, John C.; Potuzak, M.
2012-01-01
The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses....
Dielectric Relaxation of Water: Theory and Experiment
Adhikari, Narayan Prasad; Paudyal, Harihar; Johri, Manoj
2010-06-01
We have studied the hydrogen bond dynamics and methods for evaluation of probability and relaxation time for hydrogen bond network. Further, dielectric relaxation time has been calculated by using a diagonalization procedure by obtaining eigen values (inverse of relaxation time) of a master equation framed on the basis of Fokker-Planck equations. Microwave cavity spectrometer has been described to make measurements of relaxation time. Slater's perturbation equations are given for the analysis of the data. A comparison of theoretical and experimental data shows that there is a need for improvements in the theoretical model and experimental techniques to provide exact information about structural properties of water. (author)
Pair plasma relaxation time scales.
Aksenov, A G; Ruffini, R; Vereshchagin, G V
2010-04-01
By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.
Relaxing Chosen-Ciphertext Security
Canetti, Ran; Krawczyk, Hugo; Nielsen, Jesper Buus
2003-01-01
Security against adaptive chosen ciphertext attacks (or, CCA security) has been accepted as the standard requirement from encryption schemes that need to withstand active attacks. In particular, it is regarded as the appropriate security notion for encryption schemes used as components within...... general protocols and applications. Indeed, CCA security was shown to suffice in a large variety of contexts. However, CCA security often appears to be somewhat too strong: there exist encryption schemes (some of which come up naturally in practice) that are not CCA secure, but seem sufficiently secure...... “for most practical purposes.” We propose a relaxed variant of CCA security, called Replayable CCA (RCCA) security. RCCA security accepts as secure the non-CCA (yet arguably secure) schemes mentioned above; furthermore, it suffices for most existing applications of CCA security. We provide three...
Scheufele, Peter
1999-01-01
...) suggested that stress management techniques have specific effects A compromise position suggests that the specific effects of relaxation techniques are superimposed upon a general relaxation response...
Relaxation property of the fractional Brownian particle
Wang Litan; Lung, C.W.
1988-08-01
Dynamic susceptibility of a diffusion system associated with the fractional Brownian motion (fBm) was examined for the fractal property of the Non-Debye relaxation process. The comparisons between fBm and other approaches were made. Anomalous diffusion and the Non-Debye relaxation processes were discussed with this approach. (author). 8 refs, 1 fig
Lifshitz quasinormal modes and relaxation from holography
Sybesma, Watse|info:eu-repo/dai/nl/369283074; Vandoren, Stefan|info:eu-repo/dai/nl/304830739
2015-01-01
We obtain relaxation times for field theories with Lifshitz scaling and with holographic duals Einstein-Maxwell-Dilaton gravity theories. This is done by computing quasinormal modes of a bulk scalar field in the presence of Lifshitz black branes. We determine the relation between relaxation time and
Superparamagnetic relaxation of weakly interacting particles
Mørup, Steen; Tronc, Elisabeth
1994-01-01
The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...
Models of Flux Tubes from Constrained Relaxation
tribpo
J. Astrophys. Astr. (2000) 21, 299 302. Models of Flux Tubes from Constrained Relaxation. Α. Mangalam* & V. Krishan†, Indian Institute of Astrophysics, Koramangala,. Bangalore 560 034, India. *e mail: mangalam @ iiap. ernet. in. † e mail: vinod@iiap.ernet.in. Abstract. We study the relaxation of a compressible plasma to ...
Superparamagnetic relaxation in alpha-Fe particles
Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley
1998-01-01
The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies...
Baryogenesis via Elementary Goldstone Higgs Relaxation
Gertov, Helene; Pearce, Lauren; Sannino, Francesco
2016-01-01
We extend the relaxation mechanism to the Elementary Goldstone Higgs framework. Besides studying the allowed parameter space of the theory we add the minimal ingredients needed for the framework to be phenomenologically viable. The very nature of the extended Higgs sector allows to consider very ...... but radiatively generated, it is possible to generate the observed matter-antimatter asymmetry via the relaxation mechanism....
Stress relaxation under cyclic electron irradiation
Bystrov, L.N.; Reznitskij, M.E.
1990-01-01
The kinetics of deformation process in a relaxating sample under 2 MeV electron cyclic irradiation was studied experimentally. The Al-Mg alloys with controllable and different (in dislocation density precipitate presence and their character) structure were used in experiments. It was established that after the beam was switched on the deformation rate increased sharply and then, during prolonged irradiation, in a gradual manner. After the switching-off the relaxation rate decreases by jumps up to values close to extrapolated rates of pre-radiation relaxation. The exhibition of these effects with radiation switching-off and switchin-on is dependent on the initial rate of thermal relaxation, the test temperature, the preliminary cold deformation and the dominating deformation dislocation mechanism. The preliminary cold deformation and test temperature elevation slightly decrease the effect of instantaneous relaxation acceleration with the irradiation switch-on. 17 refs., 5 figs
Relaxation dynamics following transition of solvated electrons
Barnett, R.B.; Landman, U.; Nitzan, A.
1989-01-01
Relaxation dynamics following an electronic transition of an excess solvated electron in clusters and in bulk water is studied using an adiabatic simulation method. In this method the solvent evolves classically and the electron is constrained to a specified state. The coupling between the solvent and the excess electron is evaluated via the quantum expectation value of the electron--water molecule interaction potential. The relaxation following excitation (or deexcitation) is characterized by two time scales: (i) a very fast (/similar to/20--30 fs) one associated with molecular rotations in the first solvation shell about the electron, and (ii) a slower stage (/similar to/200 fs), which is of the order of the longitudinal dielectric relaxation time. The fast relaxation stage exhibits an isotope effect. The spectroscopical consequences of the relaxation dynamics are discussed
Anomalous enthalpy relaxation in vitreous silica
Yue, Yuanzheng
2015-01-01
scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hyperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....
Vibrational and Rotational Energy Relaxation in Liquids
Petersen, Jakob
Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...
Cross-relaxation solid state lasers
Antipenko, B.M.
1989-01-01
Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated
Magnetic Resonance Fingerprinting with short relaxation intervals.
Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter
2017-09-01
The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially
Ngai, K. L.; Paluch, M.
2017-12-01
Successful thermodynamic scaling of the structural alpha-relaxation time or transport coefficients of glass-forming liquids determined at various temperatures T and pressures P means the data conform to a single function of the product variable TVgamma, where V is the specific volume and gamma is a material specific constant. In the past two decades we have witnessed successful TVgamma-scaling in many molecular, polymeric, and even metallic glass-formers, and gamma is related to the slope of the repulsive part of the intermolecular potential. The advances made indicate TVgamma-scaling is an important aspect of the dynamic and thermodynamic properties of glass-formers. In this paper we show the origin of TVgamma-scaling is not from the structural alpha-relaxation time. Instead it comes from its precursor, the Johari-Goldstein beta-relaxation or the primitive relaxation of the Coupling Model and their relaxation times or tau_0 respectively. It is remarkable that all relaxation times are functions of TVgamma with the same gama, as well as the fractional exponent of the Kohlrausch correlation function of the structural alpha-relaxation. We arrive at this conclusion convincingly based on corroborative evidences from a number of experiments and molecular dynamics simulations performed on a wide variety of glass-formers and in conjunction with consistency with the predictions of the Coupling Model.
Relaxing a large cosmological constant
Bauer, Florian; Sola, Joan; Stefancic, Hrvoje
2009-01-01
The cosmological constant (CC) problem is the biggest enigma of theoretical physics ever. In recent times, it has been rephrased as the dark energy (DE) problem in order to encompass a wider spectrum of possibilities. It is, in any case, a polyhedric puzzle with many faces, including the cosmic coincidence problem, i.e. why the density of matter ρ m is presently so close to the CC density ρ Λ . However, the oldest, toughest and most intriguing face of this polyhedron is the big CC problem, namely why the measured value of ρ Λ at present is so small as compared to any typical density scale existing in high energy physics, especially taking into account the many phase transitions that our Universe has undergone since the early times, including inflation. In this Letter, we propose to extend the field equations of General Relativity by including a class of invariant terms that automatically relax the value of the CC irrespective of the initial size of the vacuum energy in the early epochs. We show that, at late times, the Universe enters an eternal de Sitter stage mimicking a tiny positive cosmological constant. Thus, these models could be able to solve the big CC problem without fine-tuning and have also a bearing on the cosmic coincidence problem. Remarkably, they mimic the ΛCDM model to a large extent, but they still leave some characteristic imprints that should be testable in the next generation of experiments.
Hashim, Hairul Anuar; Hanafi Ahmad Yusof, Hazwani
2011-06-01
This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players' mood states.
Hashim, Hairul Anuar; Hanafi@Ahmad Yusof, Hazwani
2011-01-01
Purpose This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. Methods Sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Results Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. Conclusion These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players’ mood states. PMID:22375225
Relaxation of polarized nuclei in superconducting rhodium
Knuuttila, T.A.; Tuoriniemi, J.T.; Lefmann, K.
2000-01-01
Nuclear spin lattice relaxation rates were measured in normal and superconducting (sc) rhodium with nuclear polarizations up to p = 0.55. This was sufficient to influence the sc state of Rh, whose T, and B-c, are exceptionally low. Because B-c ... is unchanged, the nuclear spin entropy was fully sustained across the sc transition. The relaxation in the sc state was slower at all temperatures without the coherence enhancement close to T-c. Nonzero nuclear polarization strongly reduced the difference between the relaxation rates in the sc and normal...
Spin relaxation in nanowires by hyperfine coupling
Echeverria-Arrondo, C.; Sherman, E.Ya.
2012-01-01
Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Le Chatelier's principle with multiple relaxation channels
Gilmore, R.; Levine, R. D.
1986-05-01
Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.
Universal Mechanism of Spin Relaxation in Solids
Chudnovsky, Eugene
2006-03-01
Conventional elastic theory ignores internal local twists and torques. Meantime, spin-lattice relaxation is inherently coupled with local elastic twists through conservation of the total angular momentum (spin + lattice). This coupling gives universal lower bound (free of fitting parameters) on the relaxation of the atomic or molecular spin in a solid [1] and on the relaxation of the electron spin in a quantum dot [2]. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling, Phys. Rev. B 72, 094426 (2005). [2] C. Calero, E. M. Chudnovsky, and D. A. Garanin, Phys. Rev. Lett. 95, 166603 (2005).
Collisional relaxation of electron tail distribution
Yamagiwa, Mitsuru; Okamoto, Masao.
1985-05-01
Relaxation due to the Coulomb collisions of the electron velocity distribution function with a high energy tail is investigated in detail. In the course of the relaxation, a 'saddle' point can be created in velocity space owing to upsilon -3 dependence of the deflection rate and a positive slope or a 'dip' appears in the tail direction. The time evolution of the electron tail is studied analytically. A comparison is made with numerical results by using a Fokker-Planck code. Also discussed is the kinetic instability concerned with the positive slope during the relaxation. (author)
Nuclear magnetic resonance relaxation in multiple sclerosis
Larsson, H B; Barker, G J; MacKay, A
1998-01-01
OBJECTIVES: The theory of relaxation processes and their measurements are described. An overview is presented of the literature on relaxation time measurements in the normal and the developing brain, in experimental diseases in animals, and in patients with multiple sclerosis. RESULTS...... AND CONCLUSION: Relaxation time measurements provide insight into development of multiple sclerosis plaques, especially the occurrence of oedema, demyelination, and gliosis. There is also evidence that normal appearing white matter in patients with multiple sclerosis is affected. What is now needed are fast...
Stress Relaxation in Entangled Polymer Melts
Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf
2010-01-01
We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...... and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find...
Slow relaxation in weakly open rational polygons.
Kokshenev, Valery B; Vicentini, Eduardo
2003-07-01
The interplay between the regular (piecewise-linear) and irregular (vertex-angle) boundary effects in nonintegrable rational polygonal billiards (of m equal sides) is discussed. Decay dynamics in polygons (of perimeter P(m) and small opening Delta) is analyzed through the late-time survival probability S(m) approximately equal t(-delta). Two distinct slow relaxation channels are established. The primary universal channel exhibits relaxation of regular sliding orbits, with delta=1. The secondary channel is given by delta>1 and becomes open when m>P(m)/Delta. It originates from vertex order-disorder dual effects and is due to relaxation of chaoticlike excitations.
[A study on Korean concepts of relaxation].
Park, J S
1992-01-01
Relaxation technique is an independent nursing intervention used in various stressful situations. The concept of relaxation must be explored for the meaning given by the people in their traditional thought and philosophy. Korean relaxation technique, wanting to become culturally acceptable and effective, is learning to recognize and develop Korean concepts, experiences, and musics of relaxation. This study was aimed at discovering Korean concepts, experiences and musics of relaxation and contributing the development of the relaxation technique for Korean people. The subjects were 59 nursing students, 39 hospitalized patients, 61 housewives, 21 rural residents and 16 researchers. Data were collected from September 4th to October 24th, 1991 by interviews or questionnaires. The data analysis was done by qualitative research method, and validity assured by conformation of the concept and category by 2 nursing scientists who had written a Master's thesis on the relaxation technique. The results of the study were summarized as follows; 1. The meaning of the relaxation concept; From 298 statements, 107 concepts were extracted and then 5 categories "Physical domain", "Psychological domain", "Complex domain", "Situation", and "environment" were organized. 'Don't have discomforts, 'don't have muscle tension', 'don't have energy (him in Korean)', 'don't have activities' subcategories were included in "Physical domain". 'Don't have anxiety', 'feel good', 'emotional stability', 'don't have wordly thoughts', 'feel one's brain muddled', 'loss of desire' subcategories were included in "physical domain" 'Comfort body and mind', 'don't have tension of body and mind', 'be sagged' 'liveliness of thoughts' subcategories were included in "Complex domain". 'Rest', 'sleep', 'others' subcategories were included in "Situation domain". And 'quite environment' & 'comfortable environment' subcategories were included in "Environmental domain". 2. The experiences of the relaxation; From 151
Relaxation processes during amorphous metal alloys heating
Malinochka, E.Ya.; Durachenko, A.M.; Borisov, V.T.
1982-01-01
Behaviour of Te+15 at.%Ge and Fe+13 at.%P+7 at.%C amorphous metal alloys during heating has been studied using the method of differential scanning calorimetry (DSC) as the most convenient one for determination of the value of heat effects, activation energies, temperature ranges of relaxation processes. Thermal effects corresponding to high-temperature relaxation processes taking place during amorphous metal alloys (AMA) heating are detected. The change of ratio of relaxation peaks values on DSC curves as a result of AMA heat treatment can be explained by the presence of a number of levels of inner energy in amorphous system, separated with potential barriers, the heights of which correspond to certain activation energies of relaxation processes
The relaxation of plasmas with dust particles
Chutov, Yu.I.; Kravchenko, A.Yu.; Schram, P.P.J.M.
1997-01-01
Various parameters of relaxing plasmas with dust particles including the electron and ion energy distributions function are numerically simulated at various parameters of the dust particles using the PIC method and taking into account the dynamics of the dust particle charge without the assumption about the equilibrium of electrons and ions. Coulomb collisions are taken into account in the framework of the method of stochastic differential equations. The relaxation of bounded plasma clouds expanding into a vacuum as well as the relaxation of a uniform plasma, in which dust particles appear at some initial time, are investigated. The obtained results show that the relaxation of plasmas can be accompanied by a deviation of the ion distribution function from equilibrium as well as a change of the mean energy of electrons and ions because of the dependence of the collection of electrons and ions by dust particles on their energy. (author)
Multiscale dipole relaxation in dielectric materials
Hansen, Jesper Schmidt
2016-01-01
Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where ...
Generalized approach to non-exponential relaxation
Non-exponential relaxation is a universal feature of systems as diverse as glasses, spin ... which changes from a simple exponential to a stretched exponential and a power law by increasing the constraints in the system. ... Current Issue
Oxygen-17 relaxation in aqueous agarose gels
Ablett, S.; Lillford, P.J.
1977-01-01
Nuclear magnetic relaxation of oxygen-17 in H 2 17 O enriched agarose gels shows that existing explanations of water behaviour are oversimplified. Satisfactory models must include at least three proton phases, two of which involve water molecules. (Auth.)
Relaxation and hypnosis in pediatric dental patients.
Peretz, B
1996-01-01
Relaxation and hypnosis are methods which, may solve the problem of extreme dental anxiety, when all other methods, behavioral or pharmacological may not be used. A simple definition of hypnosis is suggestion and repetition. Suggestion is the process whereby an individual accepts a proposition put to him by another, without having the slightest logical reason for doing so. Relaxation is one method of inducing hypnosis. A case of using hypnosis on an 11-year-old boy is described.
Ghost lines in Moessbauer relaxation spectra
Price, D.C.
1985-01-01
The appearance in Moessbauer relaxation spectra of 'ghost' lines, which are narrow lines that do not correspond to transitions between real hyperfine energy levels of the resonant system, is examined. It is shown that in many cases of interest, the appearance of these 'ghost' lines can be interpreted in terms of the relaxational averaging of one or more of the static interactions of the ion. (orig.)
Dynamics of helicity transport and Taylor relaxation
Diamond, P.H.; Malkov, M.
2003-01-01
A simple model of the dynamics of Taylor relaxation is derived using symmetry principles alone. No statistical closure approximations are invoked or detailed plasma model properties assumed. Notably, the model predicts several classes of nondiffusive helicity transport phenomena, including traveling nonlinear waves and superdiffusive turbulent pulses. A universal expression for the scaling of the effective magnetic Reynolds number of a system undergoing Taylor relaxation is derived. Some basic properties of intermittency in helicity transport are examined
Regularities of intermediate adsorption complex relaxation
Manukova, L.A.
1982-01-01
The experimental data, characterizing the regularities of intermediate adsorption complex relaxation in the polycrystalline Mo-N 2 system at 77 K are given. The method of molecular beam has been used in the investigation. The analytical expressions of change regularity in the relaxation process of full and specific rates - of transition from intermediate state into ''non-reversible'', of desorption into the gas phase and accumUlation of the particles in the intermediate state are obtained
Relaxation of synchronization on complex networks.
Son, Seung-Woo; Jeong, Hawoong; Hong, Hyunsuk
2008-07-01
We study collective synchronization in a large number of coupled oscillators on various complex networks. In particular, we focus on the relaxation dynamics of the synchronization, which is important from the viewpoint of information transfer or the dynamics of system recovery from a perturbation. We measure the relaxation time tau that is required to establish global synchronization by varying the structural properties of the networks. It is found that the relaxation time in a strong-coupling regime (K>Kc) logarithmically increases with network size N , which is attributed to the initial random phase fluctuation given by O(N-1/2) . After elimination of the initial-phase fluctuation, the relaxation time is found to be independent of the system size; this implies that the local interaction that depends on the structural connectivity is irrelevant in the relaxation dynamics of the synchronization in the strong-coupling regime. The relaxation dynamics is analytically derived in a form independent of the system size, and it exhibits good consistency with numerical simulations. As an application, we also explore the recovery dynamics of the oscillators when perturbations enter the system.
Stress relaxation in viscous soft spheres.
Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P
2017-10-04
We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.
Relaxation strain measurements in cellular dislocation structures
Tsai, C.Y.; Quesnel, D.J.
1984-01-01
The conventional picture of what happens during a stress relaxation usually involves imagining the response of a single dislocation to a steadily decreasing stress. The velocity of this dislocation decreases with decreasing stress in such a way that we can measure the stress dependence of the dislocation velocity. Analysis of the data from a different viewpoint enables us to calculate the apparent activation volume for the motion of the dislocation under the assumption of thermally activated glie. Conventional thinking about stress relaxation, however, does not consider the eventual fate of this dislocation. If the stress relaxes to a low enough level, it is clear that the dislocation must stop. This is consistent with the idea that we can determine the stress dependence of the dislocation velocity from relaxation data only for those cases where the dislocation's velocity is allowed to approach zero asymptotically, in short, for those cases where the dislocation never stops. This conflict poses a dilemma for the experimentalist. In real crystals, however, obstacles impede the dislocation's progress so that those dislocations which are stopped at a given stress will probably never resume motion under the influence of the steadily declining stress present during relaxation. Thus one could envision stress relaxation as a process of exhaustion of mobile dislocations, rather than a process of decreasing dislocation velocity. Clearly both points of view have merit and in reality both mechanisms contribute to the phenomena
Use of relaxation skills in differentially skilled athletes.
Kudlackova, K.; Eccles, D. W.; Dieffenbach, K.
2013-01-01
Objectives: To examine the use of relaxation skills by differentially skilled athletes in relation to the deliberate practice framework. Design: Differentially skilled athletes completed a survey about their use of relaxation skills. Method: 150 athletes representing three skill levels (recreational, college, and professional) completed the deliberate relaxation for sport survey, which assessed relaxation on three deliberate practice dimensions (relevancy, concentration, and ...
The use of (double) relaxation oscillation SQUIDs as a sensor
van Duuren, M.J.; Brons, G.C.S.; Kattouw, H.; Flokstra, Jakob; Rogalla, Horst
1997-01-01
Relaxation Oscillation SQUIDs (ROSs) and Double Relaxation Oscillation SQUIDs (DROSs) are based on relaxation oscillations that are induced in hysteretic dc SQUIDs by an external L-R shunt. The relaxation frequency of a ROS varies with the applied flux Φ, whereas the output of a DROS is a dc
Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.
Smith, Jonathan C; Joyce, Carol A
2004-01-01
Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to
Asymptotic representation of relaxation oscillations in lasers
Grigorieva, Elena V
2017-01-01
In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.
Relaxation of the magnetization in magnetic molecules
Carretta, S.; Bianchi, A.; Liviotti, E.; Santini, P.; Amoretti, G.
2006-04-01
Several mechanisms characterize the relaxation dynamics in magnetic molecules. We investigate two of them, spin-lattice coupling and incoherent quantum tunneling. The effect of the phonon heat bath is studied by analyzing the exponential time decay of the autocorrelation of the magnetization. We show that in ferromagnetic (Cu6) and antiferromagnetic (Fe6) molecular rings this decay is characterized by a single characteristic time. At very low temperature, relaxation through incoherent quantum tunneling may occur in nanomagnets such as Fe8 or Ni4. The mixing between levels with different values of the total spin (S mixing) greatly influences this mechanism. In particular, we demonstrate that a fourth-order anisotropy term O44, required to interpret experimental electron paramagnetic resonance and relaxation data in Ni4, naturally arises when S mixing is considered in calculations.
Excited-state relaxation of some aminoquinolines
2006-01-01
Full Text Available The absorption and fluorescence spectra, fluorescence quantum yields and lifetimes, and fluorescence rate constants ( k f of 2-amino-3-( 2 ′ -benzoxazolylquinoline (I, 2-amino-3-( 2 ′ -benzothiazolylquinoline (II, 2-amino-3-( 2 ′ -methoxybenzothiazolyl-quinoline (III, 2-amino-3-( 2 ′ -benzothiazolylbenzoquinoline (IV at different temperatures have been measured. The shortwavelength shift of fluorescence spectra of compounds studied (23–49 nm in ethanol as the temperature decreases (the solvent viscosity increases points out that the excited-state relaxation process takes place. The rate of this process depends essentially on the solvent viscosity, but not the solvent polarity. The essential increasing of fluorescence rate constant k f (up to about 7 times as the solvent viscosity increases proves the existence of excited-state structural relaxation consisting in the mutual internal rotation of molecular fragments of aminoquinolines studied, followed by the solvent orientational relaxation.
Relaxation oscillation logic in Josephson junction circuits
Fulton, T.A.
1981-01-01
A dc powered, self-resetting Josephson junction logic circuit relying on relaxation oscillations is described. A pair of Josephson junction gates are connected in series, a first shunt is connected in parallel with one of the gates, and a second shunt is connected in parallel with the series combination of gates. The resistance of the shunts and the dc bias current bias the gates so that they are capable of undergoing relaxation oscillations. The first shunt forms an output line whereas the second shunt forms a control loop. The bias current is applied to the gates so that, in the quiescent state, the gate in parallel with the second shunt is at V O, and the other gate is undergoing relaxation oscillations. By controlling the state of the first gate with the current in the output loop of another identical circuit, the invert function is performed
Muon spin relaxation in ferromagnets. Pt. 1
Lovesey, S.W.; Karlsson, E.B.
1991-04-01
Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)
Improved memristor-based relaxation oscillator
Mosad, Ahmed G.
2013-09-01
This paper presents an improved memristor-based relaxation oscillator which offers higher frequency and wider tunning range than the existing reactance-less oscillators. It also has the capability of operating on two positive supplies or alternatively a positive and negative supply. Furthermore, it has the advantage that it can be fully integrated on-chip providing an area-efficient solution. On the other hand, The oscillation concept is discussed then a complete mathematical analysis of the proposed oscillator is introduced. Furthermore, the power consumption of the new relaxation circuit is discussed and validated by the PSPICE circuit simulations showing an excellent agreement. MATLAB results are also introduced to demonstrate the resistance range and the corresponding frequency range which can be obtained from the proposed relaxation oscillator. © 2013 Elsevier Ltd.
Relaxation and Diffusion in Complex Systems
Ngai, K L
2011-01-01
Relaxation and Diffusion in Complex Systems comprehensively presents a variety of experimental evidences of universal relaxation and diffusion properties in complex materials and systems. The materials discussed include liquids, glasses, colloids, polymers, rubbers, plastic crystals and aqueous mixtures, as well as carbohydrates, biomolecules, bioprotectants and pharmaceuticals. Due to the abundance of experimental data, emphasis is placed on glass-formers and the glass transition problem, a still unsolved problem in condensed matter physics and chemistry. The evidence for universal properties of relaxation and diffusion dynamics suggests that a fundamental physical law is at work. The origin of the universal properties is traced to the many-body effects of the interaction, rigorous theory of which does not exist at the present time. However, using solutions of simplified models as guides, key quantities have been identified and predictions of the universal properties generated. These predictions from Ngai’...
Electron relaxation properties of Ar magnetron plasmas
Xinjing, CAI; Xinxin, WANG; Xiaobing, ZOU
2018-03-01
An understanding of electron relaxation properties in plasmas is of importance in the application of magnetrons. An improved multi-term approximation of the Boltzmann equation is employed to study electron transport and relaxation properties in plasmas. Elastic, inelastic and nonconservative collisions between electrons and neutral particles are considered. The expressions for the transport coefficients are obtained using the expansion coefficients and the collision operator term. Numerical solutions of the matrix equations for the expansion coefficients are also investigated. Benchmark calculations of the Reid model are presented to demonstrate the accuracy of the improved multi-term approximation. It is shown that the two-term approximation is generally not accurate enough and the magnetic fields can reduce the anisotropy of the velocity distribution function. The electron relaxation properties of Ar plasmas in magnetrons for various magnetic fields are studied. It is demonstrated that the energy parameters change more slowly than the momentum parameters.
Abrupt relaxation in high-spin molecules
Chang, C.-R.; Cheng, T.C.
2000-01-01
Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide
Relaxed plasmas in external magnetic fields
Spies, G.O.; Li, J.
1991-08-01
The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)
Spin transport and relaxation in graphene
Han Wei; McCreary, K.M.; Pi, K.; Wang, W.H.; Li Yan; Wen, H.; Chen, J.R.; Kawakami, R.K.
2012-01-01
We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for
Nonlocal and collective relaxation in stellar systems
Weinberg, Martin D.
1993-01-01
The modal response of stellar systems to fluctuations at large scales is presently investigated by means of analytic theory and n-body simulation; the stochastic excitation of these modes is shown to increase the relaxation rate even for a system which is moderately far from instability. The n-body simulations, when designed to suppress relaxation at small scales, clearly show the effects of large-scale fluctuations. It is predicted that large-scale fluctuations will be largest for such marginally bound systems as forming star clusters and associations.
NMR relaxation times of natural rubber latex
Harun, S.; Aziz, H.; Basir, Z.
1994-01-01
NMR relaxation times T sub 1 and T sub 2 of natural rubber latex have been measured at 25 degree C on a pulsed NMR spectrometer. The work focuses on the variation of the relaxation times with the amount of water content from 0% to 50%. The water content was adjusted by centrifuging and removing a certain amount of water from the sample. The data were analysed using a biexponential fitting procedure which yields simultaneously either T sub 1a and T sub 1b or T sub 2a and T sub 2b. The amount of solid was compared with the known amount of dry rubber content
Green--Kubo formula for collisional relaxation
Visscher, P.B.
1988-01-01
In this paper we generalize the Green--Kubo method (usually used for obtaining formulas for transport coefficients involving conserved densities) to relaxation processes occurring during collisions, such as the transfer of energy from vibrational to translational modes in a molecular fluid. We show that the relaxation rate can be calculated without evaluating time correlation functions over long times, and can in fact be written as a sum over collisions which makes the relation between the Green--Kubo method and approximate independent-collision models much clearer
Exciton-relaxation dynamics in lead halides
Iwanaga, Masanobu; Hayashi, Tetsusuke
2003-01-01
We survey recent comprehensive studies of exciton relaxation in the crystals of lead halides. The luminescence and electron-spin-resonance studies have revealed that excitons in lead bromide spontaneously dissociate and both electrons and holes get self-trapped individually. Similar relaxation has been also clarified in lead chloride. The electron-hole separation is ascribed to repulsive correlation via acoustic phonons. Besides, on the basis of the temperature profiles of self-trapped states, we discuss the origin of luminescence components which are mainly induced under one-photon excitation into the exciton band in lead fluoride, lead chloride, and lead bromide
Point defect relaxation volumes for copper
Miller, K.M.
1979-11-01
The methods used for the determination of point defect relaxation volumes are discussed and it is shown that a previous interatomic potential derived for copper is inaccurate and results obtained using it are invalid. A new interatomic potential has been produced for copper and a computer simulation of point and planar defects carried out. A vacancy relaxation volume of -0.33 atomic volumes has been found with interstitial values in the range 1.7 to 2.0 atomic volumes. It is shown that these values in current theories of irradiation induced swelling lead to an anomalously high value for dislocation bias compared with that determined experimentally. (author)
Nonmaxwell relaxation in disordered media: Physical mechanisms and fractional relaxation equations
Arkhincheev, V.E.
2004-12-01
The problem of charge relaxation in disordered systems has been solved. It is shown, that due to the inhomogeneity of the medium the charge relaxation has a non-Maxwell character. The two physical mechanisms of a such behavior have been founded. The first one is connected with the 'fractality' of conducting ways. The second mechanism of nonexponential non-Maxwell behavior is connected with the frequency dispersion of effective conductivity of heterogeneous medium, initially consisting of conducting phases without dispersion. The new generalized relaxation equations in the form of fractional temporal integro-differential equations are deduced. (author)
Dynamical relaxation in 2HDM models
Lalak, Zygmunt; Markiewicz, Adam
2018-03-01
Dynamical relaxation provides an interesting solution to the hierarchy problem in face of the missing signatures of any new physics in recent experiments. Through a dynamical process taking place in the inflationary phase of the Universe it manages to achieve a small electroweak scale without introducing new states observable in current experiments. Appropriate approximation makes it possible to derive an explicit formula for the final vevs in the double-scanning scenario extended to a model with two Higgs doublets (2HDM). Analysis of the relaxation in the 2HDM confirms that in a general case it is impossible to keep vevs of both scalars small, unless fine-tuning is present or additional symmetries are cast upon the Lagrangian. Within the slightly constrained variant of the 2HDM, where odd powers of the fields’ expectation values are not present (which can be easily enforced by requiring that the doublets have different gauge transformations or by imposing a global symmetry) it is shown that the difference between the vevs of two scalars tends to be proportional to the cutoff. The analysis of the relaxation in 2HDM indicates that in a general case the relaxation would be stopped by the first doublet that gains a vev, with the other one remaining vevless with a mass of the order of the cutoff. This happens to conform with the inert doublet model.
Relaxation of coupled nuclear spin systems
Koenigsberger, E.
1985-05-01
The subject of the present work is the relaxation behaviour of scalarly coupled spin-1/2 systems. In the theoretical part the semiclassical Redfield equations are used. Dipolar (D), Chemical Shift Anisotropy (CSA) and Random Field (RF) interactions are considered as relaxation mechanisms. Cross correlations of dipolar interactions of different nuclei pairs and those between the D and the CSA mechanisms are important. The model of anisotropic molecular rotational relaxation and the extreme narrowing approximation are used to obtain the spectral density functions. The longitudinal relaxation data are analyzed into normal modes following Werbelow and Grant. The time evolution of normal modes is derived for the AX system with D-CSA cross terms. In the experimental part the hypothesis of dimerization in the cinnamic acid and the methyl cinnamate - AMX systems with DD cross terms - is corroborated by T 1 -time measurements and a calculation of the diffusion constants. In pentachlorobenzene - an AX system - taking into account of D-CSA cross terms enables the complete determination of movements anosotropy and the determination of the sign of the indirect coupling constant 1 Jsub(CH). (G.Q.)
Quantization by stochastic relaxation processes and supersymmetry
Kirschner, R.
1984-01-01
We show the supersymmetry mechanism resposible for the quantization by stochastic relaxation processes and for the effective cancellation of the additional time dimension against the two Grassmann dimensions. We give a non-perturbative proof of the validity of this quantization procedure. (author)
Charge Relaxation Dynamics of an Electrolytic Nanocapacitor
2015-01-01
Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941
Relaxation dynamics of multilayer triangular Husimi cacti
Galiceanu, Mircea; Jurjiu, Aurel
2016-09-01
We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.
Waveform relaxation methods for implicit differential equations
P.J. van der Houwen; W.A. van der Veen
1996-01-01
textabstractWe apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems
Collection Development: Relaxation & Meditation, September 1, 2010
Lettus, Dodi
2010-01-01
One of the first books to document the relationship between stress and physical and emotional health was "The Relaxation Response" by Herbert Benson, M.D., with Miriam Z. Klipper. Originally published in 1975, the book grew out of Benson's observations as a cardiologist and his research as a fellow at Harvard Medical School. Benson's study of…
Relaxation time in confined disordered systems
Chamati, H.; Korutcheva, E.
2006-05-01
The dynamic critical behavior of a quenched hypercubic sample of linear size L is considered within the 'random T c ' field theoretical model with purely relaxation dynamic (Model A). The dynamic finite size scaling behavior is established and analyzed when the system is quenched from a homogeneous phase towards its critical temperature. The obtained results are compared to those reported in the literature. (author)
Stretched Exponential relaxation in pure Se glass
Dash, S.; Ravindren, S.; Boolchand, P.
A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0
Structural relaxation monitored by instantaneous shear modulus
Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil
1998-01-01
time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....
Electron spin-lattice relaxation in fractals
Shrivastava, K.N.
1986-08-01
We have developed the theory of the spin-fracton interaction for paramagnetic ions in fractal structures. The interaction is exponentially damped by the self-similarity length of the fractal and by the range dimensionality d Φ . The relaxation time of the spin due to the absorption and emission of the fracton has been calculated for a general dimensionality called the Raman dimensionality d R , which for the fractons differs from the Hausdorff (fractal) dimensionality, D, as well as from the Euclidean dimensionality, d. The exponent of the energy level separation in the relaxation rate varies with d R d Φ /D. We have calculated the spin relaxation rate due to a new type of Raman process in which one fracton is absorbed to affect a spin transition from one electronic level to another and later another fracton is emitted along with a spin transition such that the difference in the energies of the two fractons is equal to the electronic energy level separation. The temperature and the dimensionality dependence of such a process has been found in several approximations. In one of the approximations where the van Vleck relaxation rate for a spin in a crystal is known to vary with temperature as T 9 , our calculated variation for fractals turns out to be T 6.6 , whereas the experimental value for Fe 3+ in frozen solutions of myoglobin azide is T 6.3 . Since we used d R =4/3 and the fracton range dimensionality d Φ =D/1.8, we expect to measure the dimensionalities of the problem by measuring the temperature dependence of the relaxation times. We have also calculated the shift of the paramagnetic resonance transition for a spin in a fractal for general dimensionalities. (author)
Einzel, D.; Woelfle, P.
1978-01-01
The kinetic equation for Bogoliubov quasiparticles for both the A and B phases of superfluid 3 He is derived from the general matrix kinetic equation. A condensed expression for the exact spin-symmetric collision integral is given. The quasiparticle relaxation rate is calculated for the BW state using the s--p approximation for the quasiparticle scattering amplitude. By using the results for the quasiparticle relaxation rate, the mean free path of Bogoliubov quasiparticles is calculated for all temperatures
Vibrational Energy Relaxation in Water-Acetonitrile Mixtures
Cringus, Dan; Yeremenko, Sergey; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A.; Okada, Tadashi; Silvestri, Sandro De
2004-01-01
IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.
Exploiting Sparsity in SDP Relaxation for Sensor Network Localization
S. Kim (Sunyoung); M. Kojima; H. Waki (Hayato)
2008-01-01
htmlabstract A sensor network localization problem can be formulated as a quadratic optimization problem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relaxation by Lasserre with relaxation order 1 for general polynomial optimization problems (POPs) is known to be
Exploiting Sparsity in SDP Relaxation for Sensor Network Localization
S. Kim (Sunyoung); M. Kojima; H. Waki (Hayato)
2009-01-01
htmlabstract A sensor network localization problem can be formulated as a quadratic optimization problem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relaxation by Lasserre with relaxation order 1 for general polynomial optimization problems (POPs) is known to be
Multi-region relaxed magnetohydrodynamics with flow
Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)
2014-04-15
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.
Dissipation and the relaxation to equilibrium
Evans, Denis J; Williams, Stephen R; Searles, Debra J
2009-01-01
Using the recently derived dissipation theorem and a corollary of the transient fluctuation theorem (TFT), namely the second-law inequality, we derive the unique time independent, equilibrium phase space distribution function for an ergodic Hamiltonian system in contact with a remote heat bath. We prove under very general conditions that any deviation from this equilibrium distribution breaks the time independence of the distribution. Provided temporal correlations decay, we show that any nonequilibrium distribution that is an even function of the momenta eventually relaxes (not necessarily monotonically) to the equilibrium distribution. Finally we prove that the negative logarithm of the microscopic partition function is equal to the thermodynamic Helmholtz free energy divided by the thermodynamic temperature and Boltzmann's constant. Our results complement and extend the findings of modern ergodic theory and show the importance of dissipation in the process of relaxation towards equilibrium
Active nematic gels as active relaxing solids
Turzi, Stefano S.
2017-11-01
I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of particles or a self-organization into subchannels flowing in opposite directions.
Relaxation in the XX quantum chain
Platini, Thierry; Karevski, Dragi
2007-01-01
We present the results obtained on the magnetization relaxation properties of an XX quantum chain in a transverse magnetic field. We first consider an initial thermal kink-like state where half of the chain is initially thermalized at a very high temperature T b while the remaining half, called the system, is put at a lower temperature T s . From this initial state, we derive analytically the Green function associated with the dynamical behaviour of the transverse magnetization. Depending on the strength of the magnetic field and on the temperature of the system, different regimes are obtained for the magnetic relaxation. In particular, with an initial droplet-like state, that is a cold subsystem of the finite size in contact at both ends with an infinite temperature environment, we derive analytically the behaviour of the time-dependent system magnetization
Stress relaxation of thermally bowed fuel pins
Crossland, I.G.; Speight, M.V.
1983-01-01
The presence of cross-pin temperature gradients in nuclear reactor fuel pins produces differential thermal expansion which, in turn, causes the fuel pin to bow elastically. If the pin is restrained in any way, such thermal bowing causes the pin to be stressed. At high temperatures these stresses can relax by creep and it is shown here that this causes the pin to suffer an additional permanent deflection, so that when the cross-pin temperature difference is removed the pin remains bowed. By representing the cylindrical pin by an equivalent I-beam, the present work examines this effect when it takes place by secondary creep. Two restraint systems are considered, and it is demonstrated that the rate of relaxation depends mainly upon the creep equation, and hence the temperature, and also the magnitude of the initial stresses. (author)
Relaxation mechanism of the hydrated electron.
Elkins, Madeline H; Williams, Holly L; Shreve, Alexander T; Neumark, Daniel M
2013-12-20
The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.
Creep and relaxation behavior of Inconel-617
Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.
1984-01-01
The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation
Effective temperature in relaxation of Coulomb glasses.
Somoza, A M; Ortuño, M; Caravaca, M; Pollak, M
2008-08-01
We study relaxation in two-dimensional Coulomb glasses up to macroscopic times. We use a kinetic Monte Carlo algorithm especially designed to escape efficiently from deep valleys around metastable states. We find that, during the relaxation process, the site occupancy follows a Fermi-Dirac distribution with an effective temperature much higher than the real temperature T. Long electron-hole excitations are characterized by T(eff), while short ones are thermalized at T. We argue that the density of states at the Fermi level is proportional to T(eff) and is a good thermometer to measure it. T(eff) decreases extremely slowly, roughly as the inverse of the logarithm of time, and it should affect hopping conductance in many experimental circumstances.
Microplastic relaxations of single and polycrystalline molybdenum
Pichl, W.; Weiss, B. [Wien Univ. (Austria). Inst. fuer Materialphysik; Chen, D.L.
1998-05-01
The microplasticity of high-purity molybdenum single crystals and of Mo polycrystals of technical purity has been investigated by relaxation step tests in uniaxial compression. A new model for the evaluation of relaxation tests in the microplastic range of b.c.c metals is presented which takes into account the decrease of the mobile dislocation density due to exhaustion of non-screw dislocations. The model allows an independent determination of the activation volume and of the microstructure parameters controlling dislocation exhaustion. The results indicate that in the high-purity single crystals the deformation rate is controlled by interactions of non-screw dislocations with the grown-in network. In the polycrystals additional interactions with impurity atoms seem to occur. In the single crystals the activity and subsequent exhaustion of two different glide systems was observed, followed by a gradual onset of screw dislocation motion. (orig.) 26 refs.
Limiting conditions for operation relaxation program
Merz, J.F.
1985-01-01
The purpose of this effort was to assess the impact of system maintenance unavailability on plant risk to provide technical justification for the relaxation of system limiting conditions for operation from three to seven days. The primary goal of the relaxation program is to allow for more thorough equipment maintenance. A potential increase in out-of-service time for a particular outage caused by the performance of more effective repairs will be counterbalanced by a probable decrease in the frequency in the outage rate of a component. Benefits resulting from an increase in allowed outage time include: (a) a potential reduction in total system out-of-service time, (b) a minimization of challenges to plant systems, and (c) a reduction in the number of emergency technical specification change requests. This program therefore offers an opportunity to more effectively manage plant maintenance and operation
Modern problems of relaxation gas dynamics
Losev, S.A.; Osipov, A.I.
1985-01-01
Some of the dynamical characteristics of relaxation processes are studied. Unfortunately, many dynamical characteristics of relaxation processes, necessary for the solution of important scientific and applied problems, are not known. These problems require further development of experimental methods of the study of nonequilibrium gas. It is known, that gas systems are shifted from the equilibrium by different methods: by acoustic and shock wav es, by means of gas expansion in nozzles and jets, by powerful radiations (laser, first of all), by electric discharges, in burning and combustion devices, etc. Non-equilibrium gas is produced in installations of continuum, impulse and periodic regime. Molecular beams, shock tubes (especially with nozzles), flow and jet installations, aerodynamical tubes, plasmatrons, vessels with a gas, influenced by the strong radiation, burners and combustion devices, where the study of non-euilibrium gas is helpful to solve the problems of the determination of kinetic equations and constants of physico-chemical kinetics
Impulsive relaxation process in MHD driven reconnection
Kitabata, H.; Hayashi, T.; Sato, T.
1997-01-01
Compressible magnetohydrodynamic (MHD) simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. We focus our attention on the detailed process in the impulsive phase, which is the reconnection rate is remarkably enhanced up. (author)
Current relaxation time scales in toroidal plasmas
Mikkelsen, D.R.
1987-02-01
An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given
On real statistics of relaxation in gases
Kuzovlev, Yu. E.
2016-02-01
By example of a particle interacting with ideal gas, it is shown that the statistics of collisions in statistical mechanics at any value of the gas rarefaction parameter qualitatively differ from that conjugated with Boltzmann's hypothetical molecular chaos and kinetic equation. In reality, the probability of collisions of the particle in itself is random. Because of that, the relaxation of particle velocity acquires a power-law asymptotic behavior. An estimate of its exponent is suggested on the basis of simple kinematic reasons.
Relaxation and kinetics in scalar field theories
Boyanovsky, D.; Lawrie, I.D.; Lee, D.
1996-01-01
A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the open-quote open-quote quasiparticle close-quote close-quote distribution functions is obtained that allows a clear understanding of the different open-quote open-quote coarse-graining close-quote close-quote approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard thermal loop resummation and to an improvement including renormalization, off-shell effects, and contributions that change chemical equilibrium on short time scales. As a by-product of these methods we establish the equivalence between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the open-quote open-quote relaxation time approximation close-quote close-quote including hard thermal loop effects. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi)classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium. copyright 1996 The American Physical Society
Muon spin relaxation in random spin systems
Toshimitsu Yamazaki
1981-01-01
The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)
Structural relaxation and thermal conductivity coefficient of liquids
Abdurasulov, A.
1992-01-01
Present article is devoted to structural relaxation and thermal conductivity coefficient of liquids. The thermoelastic properties of liquids were studied taking into account the contribution of translational and structural relaxation. The results of determination of dynamic coefficient of thermal conductivity of liquids taking into account the contribution of translational and structural relaxation are presented.
The Efficacy of Relaxation Training in Treating Anxiety
Francesco, Pagnini; Mauro, Manzoni Gian; Gianluca, Castelnuovo; Enrico, Molinari
2009-01-01
This paper provides a review of scientific literature about relaxation training and its effects on anxiety. Research investigating progressive relaxation, meditation, applied relaxation and autogenic training were considered. All these methods proved to be effective in reducing anxiety in all kind of samples, affected or not by physical or…
Ideal relaxation of the Hopf fibration
Smiet, Christopher Berg; Candelaresi, Simon; Bouwmeester, Dirk
2017-07-01
Ideal magnetohydrodynamics relaxation is the topology-conserving reconfiguration of a magnetic field into a lower energy state where the net force is zero. This is achieved by modeling the plasma as perfectly conducting viscous fluid. It is an important tool for investigating plasma equilibria and is often used to study the magnetic configurations in fusion devices and astrophysical plasmas. We study the equilibrium reached by a localized magnetic field through the topology conserving relaxation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles that are all linked with one another. Magnetic fields with this topology have recently been shown to occur in non-ideal numerical simulations. Our results show that any localized field can only attain equilibrium if there is a finite external pressure, and that for such a field a Taylor state is unattainable. We find an equilibrium plasma configuration that is characterized by a lowered pressure in a toroidal region, with field lines lying on surfaces of constant pressure. Therefore, the field is in a Grad-Shafranov equilibrium. Localized helical magnetic fields are found when plasma is ejected from astrophysical bodies and subsequently relaxes against the background plasma, as well as on earth in plasmoids generated by, e.g., a Marshall gun. This work shows under which conditions an equilibrium can be reached and identifies a toroidal depression as the characteristic feature of such a configuration.
Tension and relaxation in the individual.
Newbury, C R
1979-06-01
Increasing materialism in society is resulting in more wide spread nervous tension in all age groups. While some degree of nervous tension is necessary in everyday living, its adverse effects require that we must learn to bring it under control. Total tension is shown to have two components: a controllable element arising from factors in the environment and the inbuilt uncontrollable residue which is basic in the individual temperament. The effects of excessive or uncontrolled stress can be classified as 1) emotional reactions such as neurotic behaviour (anxiety hypochondria, hysteria, phobia, depression obsessions and compulsions) or psychotic behaviour and 2) psychosomatic reactions (nervous asthma, headache, insomnia, heart attack). Nervous energy can be wastefully expended by such factors as loss of temper, wrong attitudes to work, job frustration and marital strains. Relaxation is the only positive way to control undesirable nervous tension and its techniques require to be learned. A number of techniques (progressive relaxation, differential relaxation, hypnosis, the use of biofeedback, Yoga and Transcendental Meditation) are described and their application to dental practice is discussed.
Proton NMR relaxation in hydrous melts
Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.
1976-01-01
Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation
Charge carrier relaxation model in disordered organic semiconductors
Lu, Nianduan; Li, Ling; Sun, Pengxiao; Liu, Ming
2013-01-01
The relaxation phenomena of charge carrier in disordered organic semiconductors have been demonstrated and investigated theoretically. An analytical model describing the charge carrier relaxation is proposed based on the pure hopping transport theory. The relation between the material disorder, electric field and temperature and the relaxation phenomena has been discussed in detail, respectively. The calculated results reveal that the increase of electric field and temperature can promote the relaxation effect in disordered organic semiconductors, while the increase of material disorder will weaken the relaxation. The proposed model can explain well the stretched-exponential law by adopting the appropriate parameters. The calculation shows a good agreement with the experimental data for organic semiconductors
Relaxations in spin glasses: Similarities and differences from ordinary glasses
Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.
1984-01-01
Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter
Magneto-dependent stress relaxation of magnetorheological gels
Xu, Yangguang; Liu, Taixiang; Liao, G J; Lubineau, Gilles
2017-01-01
The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.
Magneto-dependent stress relaxation of magnetorheological gels
Xu, Yangguang
2017-09-01
The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.
Stress relaxation of bi-disperse polystyrene melts
Hengeller, Ludovica; Huang, Qian; Dorokhin, Andriy
2016-01-01
We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which...... are the components of the bi-disperse melt. The measurements show three separated relaxation regimes: a fast regime, a transition regime, and a slow regime. In the fast regime, the orientation of the long chains is frozen and the stress relaxation is due to stretch relaxation of the short chains primarily....... Conversely in the slow regime, the long chains have retracted and undergo relaxation of orientation in fully relaxed short chains....
Relaxed Operational Semantics of Concurrent Programming Languages
Gustavo Petri
2012-08-01
Full Text Available We propose a novel, operational framework to formally describe the semantics of concurrent programs running within the context of a relaxed memory model. Our framework features a "temporary store" where the memory operations issued by the threads are recorded, in program order. A memory model then specifies the conditions under which a pending operation from this sequence is allowed to be globally performed, possibly out of order. The memory model also involves a "write grain," accounting for architectures where a thread may read a write that is not yet globally visible. Our formal model is supported by a software simulator, allowing us to run litmus tests in our semantics.
Relaxation Processes and Time Scale Transformation.
1982-03-01
the response function may be immediately recognized as being 14 of the Kubo - Green type in the classical regime. Given this general framework, it is now...b as a function of temperature is 24 equivalent to the Vogel-Beuche-Fulcher empirical law for viscosity or the Williams-Landel-Ferry empirical law...relaxation times. With the weighted sum in the form of an integral , one can write exp(-(t/T)b ] = f dT’g(r’) exp[-(t/T’)], O
Image charge relaxation in electrophoretic displays
1981-01-01
A novel improvement to a real time imaging system for use in electrostatic imaging is described. Present systems produce ten separate images per second and the image must be erased in preparation for the next exposure and image formation. The new design of electrostatic imaging chamber can take one of several forms which are discussed in detail; both organic and inorganic materials may be used as the photoconductor material in the discharging control layer and suitable examples are given. Values for the resistivity and the relaxation time of the discharging control layer are given. (U.K.)
STRUCTURAL STRESS RELAXATION IN STAINLESS INSTABILITY STEEL
S. Lyabuk
2017-06-01
Full Text Available The approach to the description of conditions of martensitic transformation in austenitic steel is advanced. Transformation induced hardening is the result of Le Chatelier principle in instability alloys. The phase transformation in austenitic instability stainless steel is the cause of reduction of grain refining and increase of strength. It was experimentally shown that physical-mechanical characteristics of the prepared materials were defined by the structure and inhomogeneous distribution of the hardening phase within a grain. The reasons for high thermal stability of inverse austenitic were established. The factors determining the inverse austenitic relaxation resistibility and resources for its increasing were revealed.
Ultra-fast relaxation kinetics in semiconductors
Luzzi, R.
1983-01-01
It is presented a brief description of relaxation processes in highly excited semiconductor plasmas (HESP). Comparison with experimental data obtained by means of ultra-fast laser light spectroscopy (UFLS) is made. Some aspects of response funtion theory in systems far-from-equilibrium are reviewed in Section II. In Section III we present some comments on the question of nonequilibrium thermodynamics relevant to the problem to be considered. In last section we present a brief summary of the different aspects of the subject. (author) [pt
Charge imbalance: its relaxation, diffusion and oscillation
Pethick, C.J.
1981-01-01
In this article, the authors use a model for charge density based on two charge components: the normal quasiparticle component and the superfluid/condensate component. Based on the quasiparticle Boltzmann equation, this two-component model, when used in nonequilibrium contexts, is fruitful in describing a variety of charge-imbalance phenomena in superconductors. The authors discuss various methods of generating charge-imbalances, charge-imbalance relaxation processes (such as phonons, impurity scattering and magnetic impurities) and applications of the two-component model of charge imbalance to spatially inhomogeneous conditions
Modelling Creep (Relaxation of the Urinary Bladder
Zdravkovic Nebojsa
2017-12-01
Full Text Available We first present the results of an experiment in which the passive properties of the urinary bladder were investigated using strips of rabbit bladder. Under the assumption that the urinary bladder had orthopaedic characteristics, the strips were taken in the longitudinal and in the circumferential directions. The material was subjected to uniaxial tension, and stress-stretch curves were generated for various rates of deformation. We found that the rates did not have a significantly effect on the passive response of the material. Additionally, the stress-stretch dependence during relaxation of the material when exposed to isometric conditions was determined experimentally.
Ultra-fast relaxation kinetics in semiconductors
Luzzi, R.
1983-01-01
It is presented a brief description of relaxation processes in highly excited semiconductor plasmas (HESP). Comparison with experimental data obtained by means of ultra-fast laser light spectroscopy (UFLS) is made. Some aspects of response function theory in systems far-from-equilibrium are reviewed in Section II. In Section III some comments on the question of nonequilibrium thermodynamics relevant to the problem to be considered are presented. In last Section a brief summary of the different aspects of the subject is also presented. (Author) [pt
Deformation relaxation in heavy-ion collisions
Yu, L.; Gan, Z.G.; Zhang, Z.Y.; Zhang, H.F.; Li, J.Q.
2014-01-01
In deeply inelastic heavy-ion collisions, the quadrupole deformations of both fragments are taken as stochastic independent dynamical variables governed by the Fokker–Planck equation (FPE) under the corresponding driving potential. The mean values, variances and covariance of the fragments are analytically expressed by solving the FPE in head on collisions. The characteristics and mechanism of the deformation are discussed. It is found that both the internal structures and interactions of the colliding partners are critical for the deformation relaxation in deeply inelastic collisions.
Smith, Jonathan C; Karmin, Aaron D
2002-12-01
This study examined idiosyncratic reality claims, that is, irrational or paranormal beliefs often claimed to enhance relaxation and happiness and reduce stress. The Smith Idiosyncratic Reality Claims Inventory and the Smith Relaxation Dispositions Inventory (which measures relaxation and stress dispositions, or enduring states of mind frequently associated with relaxation or stress) were given to 310 junior college student volunteers. Principal components factor analysis with varimax rotation identified five idiosyncratic reality claim factors: belief in Literal Christianity; Magic; Space Aliens: After Death experiences; and Miraculous Powers of Meditation, Prayer, and Belief. No factor correlated with increased relaxation dispositions Peace, Energy, or Joy, or reduced dispositional somatic stress, worry, or negative emotion on the Smith Relaxation Dispositions Inventory. It was concluded that idiosyncratic reality claims may not be associated with reported relaxation, happiness, or stress. In contrast, previous research strongly supported self-affirming beliefs with few paranormal assumptions display such an association.
Thermal relaxation of charm in hadronic matter
He Min, E-mail: mhe@comp.tamu.edu [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Fries, Rainer J. [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); RIKEN/BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rapp, Ralf [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)
2011-07-18
The thermal relaxation rate of open-charm (D) mesons in hot and dense hadronic matter is calculated using empirical elastic scattering amplitudes. D-meson interactions with thermal pions are approximated by D{sup *} resonances, while scattering off other hadrons (K, {eta}, {rho}, {omega}, K{sup *}, N, {Delta}) is evaluated using vacuum scattering amplitudes as available in the literature based on effective Lagrangians and constrained by realistic spectroscopy. The thermal relaxation time of D-mesons in a hot {pi} gas is found to be around 25-50 fm/c for temperatures T=150-180 MeV, which reduces to 10-25 fm/c in a hadron-resonance gas. The latter values, argued to be conservative estimates, imply significant modifications of D-meson spectra in heavy-ion collisions. Close to the critical temperature (T{sub c}), the spatial diffusion coefficient (D{sub s}) is surprisingly similar to recent calculations for charm quarks in the Quark-Gluon Plasma using non-perturbative T-matrix interactions. This suggests a possibly continuous minimum structure of D{sub s} around T{sub c}.
Relaxation methods for gauge field equilibrium equations
Adler, S.L.; Piran, T.
1984-01-01
This article gives a pedagogical introduction to relaxation methods for the numerical solution of elliptic partial differential equations, with particular emphasis on treating nonlinear problems with delta-function source terms and axial symmetry, which arise in the context of effective Lagrangian approximations to the dynamics of quantized gauge fields. The authors present a detailed theoretical analysis of three models which are used as numerical examples: the classical Abelian Higgs model (illustrating charge screening), the semiclassical leading logarithm model (illustrating flux confinement within a free boundary or ''bag''), and the axially symmetric Bogomol'nyi-Prasad-Sommerfield monopoles (illustrating the occurrence of p topological quantum numbers in non-Abelian gauge fields). They then proceed to a self-contained introduction to the theory of relaxation methods and allied iterative numerical methods and to the practical aspects of their implementation, with attention to general issues which arise in the three examples. The authors conclude with a brief discussion of details of the numerical solution of the models, presenting sample numerical results
Relaxed metrics and indistinguishability operators: the relationship
Martin, J.
2017-07-01
In 1982, the notion of indistinguishability operator was introduced by E. Trillas in order to fuzzify the crisp notion of equivalence relation (/cite{Trillas}). In the study of such a class of operators, an outstanding property must be pointed out. Concretely, there exists a duality relationship between indistinguishability operators and metrics. The aforesaid relationship was deeply studied by several authors that introduced a few techniques to generate metrics from indistinguishability operators and vice-versa (see, for instance, /cite{BaetsMesiar,BaetsMesiar2}). In the last years a new generalization of the metric notion has been introduced in the literature with the purpose of developing mathematical tools for quantitative models in Computer Science and Artificial Intelligence (/cite{BKMatthews,Ma}). The aforementioned generalized metrics are known as relaxed metrics. The main target of this talk is to present a study of the duality relationship between indistinguishability operators and relaxed metrics in such a way that the aforementioned classical techniques to generate both concepts, one from the other, can be extended to the new framework. (Author)
Relaxation creep model of impending earthquake
Morgounov, V. A. [Russian Academy of Sciences, Institute of Physics of the Earth, Moscow (Russian Federation)
2001-04-01
The alternative view of the current status and perspective of seismic prediction studies is discussed. In the problem of the ascertainment of the uncertainty relation Cognoscibility-Unpredictability of Earthquakes, priorities of works on short-term earthquake prediction are defined due to the advantage that the final stage of nucleation of earthquake is characterized by a substantial activation of the process while its strain rate increases by the orders of magnitude and considerably increased signal-to-noise ratio. Based on the creep phenomenon under stress relaxation conditions, a model is proposed to explain different images of precursors of impending tectonic earthquakes. The onset of tertiary creep appears to correspond to the onset of instability and inevitably fails unless it unloaded. At this stage, the process acquires the self-regulating character to the greatest extent the property of irreversibility, one of the important components of prediction reliability. Data in situ suggest a principal possibility to diagnose the process of preparation by ground measurements of acoustic and electromagnetic emission in the rocks under constant strain in the condition of self-relaxed stress until the moment of fracture are discussed in context. It was obtained that electromagnetic emission precedes but does not accompany the phase of macrocrak development.
Hydrodynamic relaxations in dissipative particle dynamics
Hansen, J. S.; Greenfield, Michael L.; Dyre, Jeppe C.
2018-01-01
This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics (DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating hydrodynamics as the framework of the investigation, we focus on the collective transverse and longitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics at relatively low temperatures very well when compared to simulation data; however, the theory predictions are, on the same length scale, less accurate for higher temperatures. The agreement with hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynamics are independent of the dissipative and random shear force contributions to the stress. For high temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large length scales and the relaxation is therefore governed by sound wave propagation and is athermal. This contrasts the results at lower temperatures and small length scale, where the thermal process is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures for the transverse dynamics.
Petrov, Oleg V; Stapf, Siegfried
2017-06-01
This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.
Petrov, Oleg V.; Stapf, Siegfried
2017-06-01
This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution.
Structural relaxation dynamics and annealing effects of sodium silicate glass.
Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurélien; Vaills, Yann
2013-05-09
Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.
Anisotropic temperature relaxation of plasmas in an external magnetic field
Hassan, M.H.A.
1977-01-01
The magnetized kinetic equation derived in an earlier paper (Hassan and Watson, 1977) is used to study the problem of relaxation of anisotropic electron and ion temperatures in a magnetized plasma. In the case of anisotropic electron temperature relaxation, it is shown that for small anisotropies the exchange of energy within the electrons between the components parallel and perpendicular to the magnetic field direction determine the relaxation rate. For anisotropic ion temperature relaxation it is shown that the essential mechanism for relaxation is provided by energy transfer between ions and electrons, and that the expression for the relaxation rate perpendicular to the magnetic field contains a significant term proportional to ln eta 0 ln (msub(e)/msub(i)) (where eta 0 = Ωsub(e)/ksub(D)Vsub(e perpendicular to)), in addition to the term proportional to the Coulomb logarithm. (author)
Relaxation Time of High-Density Amorphous Ice
Handle, Philip H.; Seidl, Markus; Loerting, Thomas
2012-06-01
Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.1-0.2 GPa are of collective and global nature, resembling the alpha relaxation in glassy material. Measured relaxation times suggest liquid-like relaxation characteristics in the vicinity of the crystallization temperature at 145 K. By carefully relaxing pressurized HDA for several hours at 135 K, we produce a state that is closer to the ideal glass state than all HDA states discussed so far in literature.
Hyperfine relaxation of an optically pumped cesium vapor
Tornos, J.; Amare, J.C.
1986-01-01
The relaxation of hyperfine orientation indirectly induced by optical pumping with a σ-polarized D 1 -light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D 0 = 0.101 +- 0.010 cm 2 s -1 at 0 0 C and 760 Torr; relaxation cross section by Cs-Ar collisions, σ/sub c/ = (104 +- 5) x 10 -23 cm 2 ; relaxation cross section by Cs-Cs (spin exchange) collisions, σ/sub e//sub x/ = (1.63 +- 0.13) x 10 -14 cm 2
Cross-relaxation in multiple pulse NQR spin-locking
Beltjukov, P. A.; Kibrik, G. E. [Perm State University, Physics Department (Russian Federation); Furman, G. B., E-mail: gregoryf@bgu.ac.il; Goren, S. D. [Ben Gurion University, Physics Department (Israel)
2008-01-15
The experimental and theoretical NQR multiple-pulse spin locking study of cross-relaxation process in solids containing nuclei of two different sorts I > 1/2 and S = 1/2 coupled by the dipole-dipole interactions and influenced by an external magnetic field. Two coupled equations for the inverse spin temperatures of the both spin systems describing the mutual spin lattice relaxation and the cross-relaxation were obtained using the method of the nonequilibrium state operator. It is shown that the relaxation process is realized with non-exponential time dependence describing by a sum of two exponents. The cross relaxation time is calculated as a function of the multiple-pulse field parameters which agree with the experimental data. The calculated magnetization cross relaxation time vs the strength of the applied magnetic field agrees well with the obtained experimental data.
Relaxation techniques for pain management in labour.
Smith, Caroline A; Levett, Kate M; Collins, Carmel T; Armour, Mike; Dahlen, Hannah G; Suganuma, Machiko
2018-03-28
Many women would like to avoid pharmacological or invasive methods of pain management in labour and this may contribute to the popularity of complementary methods of pain management. This review examined currently available evidence on the use of relaxation therapies for pain management in labour. This is an update of a review first published in 2011. To examine the effects of mind-body relaxation techniques for pain management in labour on maternal and neonatal well-being during and after labour. We searched Cochrane Pregnancy and Childbirth's Trials Register (9 May 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, Issue 5 2017), MEDLINE (1966 to 24 May 2017), CINAHL (1980 to 24 May 2017), the Australian New Zealand Clinical Trials Registry (18 May 2017), ClinicalTrials.gov (18 May 2017), the ISRCTN Register (18 May 2017), the WHO International Clinical Trials Registry Platform (ICTRP) (18 May 2017), and reference lists of retrieved studies. Randomised controlled trials (including quasi randomised and cluster trials) comparing relaxation methods with standard care, no treatment, other non-pharmacological forms of pain management in labour or placebo. Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. We attempted to contact study authors for additional information. We assessed evidence quality with GRADE methodology. This review update includes 19 studies (2519 women), 15 of which (1731 women) contribute data. Interventions examined included relaxation, yoga, music and mindfulness. Approximately half of the studies had a low risk of bias for random sequence generation and attrition bias. The majority of studies had a high risk of bias for performance and detection bias, and unclear risk of bias for, allocation concealment, reporting bias and other bias. We assessed the evidence from these studies as ranging from low to very low quality, and
Picosecond absorption relaxation measured with nanosecond laser photoacoustics
Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.
2010-01-01
Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, b...
Momentum and mass relaxation in heavy-ion collisions
Gregoire, C.; Scheuter, F.; Remaud, B.; Sebille, F.
1984-01-01
The momentum and mass relaxation are shown to be described by transport equations. The momentum relaxation, which can be studied in the intermediate energy regime by the particle emissions, refers to a microscopic slowing down and diffusion process in the momentum space. The mass relaxation refers to the coupling of the collective mass asymmetry degree of freedom and the intrinsic system. It can be illustrated by the fast fission of light and very heavy systems
Relaxation of quadrupole orientation in an optically pumped alkali vapour
Bernabeu, E; Tornos, J
1985-04-01
The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.
Relaxation resistance of heat resisting alloys with cobalt
Borzdyka, A.M.
1977-01-01
Relaxation resistance of refractory nickel-chromium alloys containing 5 to 14 % cobalt is under study. The tests involve the use of circular samples at 800 deg to 850 deg C. It is shown that an alloy containing 14% cobalt possesses the best relaxation resistance exceeding that of nickel-chromium alloys without any cobalt by a factor of 1.5 to 2. The relaxation resistance of an alloy with 5% cobalt can be increased by hardening at repeated loading
Multilayer Relaxation and Surface Energies of Metallic Surfaces
Bozzolo, Guillermo; Rodriguez, Agustin M.; Ferrante, John
1994-01-01
The perpendicular and parallel multilayer relaxations of fcc (210) surfaces are studied using equivalent crystal theory (ECT). A comparison with experimental and theoretical results is made for AI(210). The effect of uncertainties in the input parameters on the magnitudes and ordering of surface relaxations for this semiempirical method is estimated. A new measure of surface roughness is proposed. Predictions for the multilayer relaxations and surface energies of the (210) face of Cu and Ni are also included.
Relaxations to Sparse Optimization Problems and Applications
Skau, Erik West
Parsimony is a fundamental property that is applied to many characteristics in a variety of fields. Of particular interest are optimization problems that apply rank, dimensionality, or support in a parsimonious manner. In this thesis we study some optimization problems and their relaxations, and focus on properties and qualities of the solutions of these problems. The Gramian tensor decomposition problem attempts to decompose a symmetric tensor as a sum of rank one tensors.We approach the Gramian tensor decomposition problem with a relaxation to a semidefinite program. We study conditions which ensure that the solution of the relaxed semidefinite problem gives the minimal Gramian rank decomposition. Sparse representations with learned dictionaries are one of the leading image modeling techniques for image restoration. When learning these dictionaries from a set of training images, the sparsity parameter of the dictionary learning algorithm strongly influences the content of the dictionary atoms.We describe geometrically the content of trained dictionaries and how it changes with the sparsity parameter.We use statistical analysis to characterize how the different content is used in sparse representations. Finally, a method to control the structure of the dictionaries is demonstrated, allowing us to learn a dictionary which can later be tailored for specific applications. Variations of dictionary learning can be broadly applied to a variety of applications.We explore a pansharpening problem with a triple factorization variant of coupled dictionary learning. Another application of dictionary learning is computer vision. Computer vision relies heavily on object detection, which we explore with a hierarchical convolutional dictionary learning model. Data fusion of disparate modalities is a growing topic of interest.We do a case study to demonstrate the benefit of using social media data with satellite imagery to estimate hazard extents. In this case study analysis we
Simulation study of stepwise relaxation in a spheromak plasma
Horiuchi, Ritoku; Uchida, Masaya; Sato, Tetsuya.
1991-10-01
The energy relaxation process of a spheromak plasma in a flux conserver is investigated by means of a three-dimensional magnetohydrodynamic simulation. The resistive decay of an initial force-free profile brings the spheromak plasma to an m = 1/n = 2 ideal kink unstable region. It is found that the energy relaxation takes place in two steps; namely, the relaxation consists of two physically distinguished phases, and there exists an intermediate phase in between, during which the relaxation becomes inactive temporarily. The first relaxation corresponds to the transition from an axially symmetric force-free state to a helically symmetric one with an n = 2 crescent magnetic island structure via the helical kink instability. The n = 2 helical structure is nonlinearly sustained in the intermediate phase. The helical twisting of the flux tube creates a reconnection current in the vicinity of the geometrical axis. The second relaxation is triggered by the rapid growth of the n = 1 mode when the reconnection current exceeds a critical value. The helical twisting relaxes through magnetic reconnection toward an axially symmetric force-free state. It is also found that the poloidal flux reduces during the helical twisting in the first relaxation and the generation of the toroidal flux occurs through the magnetic reconnection process in the second relaxation. (author)
Universal relaxation times for electron and nucleon gases
Pelc, M.; Marciak-Kozlowska, J.; Kozlowski, M.
2007-01-01
In this paper we calculate the universal relaxation times for electron and nucleon fermionic gases. We argue that the universal relaxation time tau(i) is equal tau(i)=h/m square v(i) where v(i)=alpha(i)c and alpha(1)=0.15 for nucleon gas and alpha(2)=1/137 for electron gas, c=light velocity. With the universal relaxation time we formulate the thermal Proca equation for fermionic gases. Key words: universal relaxation time, thermal universal Proca equation.
Picosecond absorption relaxation measured with nanosecond laser photoacoustics.
Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V
2010-10-18
Picosecond absorption relaxation-central to many disciplines-is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural-including strongly scattering and nonfluorescent-materials.
Spin relaxation of iron in mixed state hemoproteins
Wajnberg, E.; Kalinowski, H.J.; Bemski, G.; Helman, J.S.
1984-01-01
In pure states hemoproteins the relaxation of iron depends on its spin state. It is found that in both mixed state met-hemoglobin and met-myoglobin, the low and high spin states relax through an Orbach-like process. Also, very short (approx. 1 ns) and temperature independent transverse relaxation times T 2 were estimated. This peculiar behaviour of the relaxation may result from the unusual electronic structure of mixed state hemoproteins that allows thermal equilibrium and interconversion of the spin states. (Author) [pt
Anomalous relaxation and self-organization in nonequilibrium processes
Fatkullin, Ibrahim; Kladko, Konstantin; Mitkov, Igor; Bishop, A. R.
2001-01-01
We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anticooperative, which lead to fast and slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation without explicit disorder or frustration
Relaxation training after stroke: potential to reduce anxiety.
Kneebone, Ian; Walker-Samuel, Natalie; Swanston, Jennifer; Otto, Elisabeth
2014-01-01
To consider the feasibility of setting up a relaxation group to treat symptoms of post stroke anxiety in an in-patient post-acute setting; and to explore the effectiveness of relaxation training in reducing self-reported tension. A relaxation group protocol was developed in consultation with a multidisciplinary team and a user group. Over a period of 24 months, 55 stroke patients attended group autogenic relaxation training on a rehabilitation ward. Attendance ranged between one and eleven sessions. Self-reported tension was assessed pre and post relaxation training using the Tension Rating Circles (TRCs). The TRCs identified a significant reduction in self-reported tension from pre to post training, irrespective of the number of sessions attended; z = -3.656, p training. The TRCs proved acceptable to group members, but should be validated against standard anxiety measures. Further exploration of the application of relaxation techniques in clinical practice is desirable. Implications for Rehabilitation Anxiety is prevalent after stroke and likely affects rehabilitation outcomes. Relaxation training is a well proven treatment for anxiety in the non-stroke population. A significant within session reduction in tension, a hallmark symptom of anxiety, was evidenced via group relaxation training delivered in a post-acute, in-patient stroke unit setting. Relaxation training a shows promise as a treatment for anxiety after stroke.
Relaxation oscillations in stimulated Raman scattering
Kachen, G.I.; Lowdermilk, W.H.
1977-01-01
Light pulses created by stimulated Raman scattering having been found to exhibit a complex time dependence which resembles relaxation oscillations. A focused laser pulse generated both forward and backward Raman emissions which appeared as a series of pulses with durations much shorter than the incident laser pulse. Time dependence of the Raman emission was observed directly by use of a streak camera. The number of observed pulses increased with the intensity of the incident pulse, while separation of the pulses in time depended on the length of the focal region. Beam focusing was incorporated in the coupled wave equations for stimulated Raman scattering. These rate equations were then solved numerically, and the results are in good qualitative agreement with the experimental observations. The short Raman pulses are created by a process associated with depletion of the incident laser pulse. This process occurs under a broad range of conditions
Motional spin relaxation in photoexcited triplet states
Harryvan, D.; Faassen, E. van
1997-01-01
Transient EPR experiments were performed on photoexcited spin triplet states of the luminescent dye EOSIN-Y in diluted (order of 1 nMol) frozen propane-1-ol solutions at various temperatures. Photoexcitation was achieved by irradiation with intense, short laser pulses. The details of the spin relaxation, in particular the dependence on time, magnetic field and microwave field strength are all reproduced by a model which computes the total magnetization in a population of photoexcited triplet states undergoing random reorientational motion. Using this model, we estimated the motional correlation times to be around a microsecond. This timescale is two orders of magnitude slower than the phase memory time of the triplets. (author)
Collisionless relaxation in spiral galaxy models
Hohl, F.
1974-01-01
The increase in random kinetic energy of stars by rapidly fluctuating gravitational fields (collisionless or violent relaxation) in disk galaxy models is investigated for three interaction potentials of the stars corresponding to (1) point stars, (2) rod stars of length 2 kpc, and (3) uniform density spherical stars of radius 2 kpc. To stabilize the galaxy against the large scale bar forming instability, a fixed field corresponding to a central core or halo component of stars was added with the stars containing at most 20 percent of the total mass of the galaxy. Considerable heating occurred for both the point stars and the rod stars, whereas the use of spherical stars resulted in a very low heating rate. The use of spherical stars with the resulting low heating rate will be desirable for the study of large scale galactic stability or density wave propagation, since collective heating effects will no longer mask the phenomena under study.
Energy relaxation and transfer in excitonic trimer
Herman, Pavel; Barvik, Ivan; Urbanec, Martin
2004-01-01
Two models describing exciton relaxation and transfer (the Redfield model in the secular approximation and Capek's model) are compared for a simple example - a symmetric trimer coupled to a phonon bath. Energy transfer within the trimer occurs via resonance interactions and coupling between the trimer and the bath occurs via modulation of the monomer energies by phonons. Two initial conditions are adopted: (1) one of higher eigenstates of the trimer is initially occupied and (2) one local site of the trimer is initially occupied. The diagonal exciton density matrix elements in the representation of eigenstates are found to be the same for both models, but this is not so for the off-diagonal density matrix elements. Only if the off-diagonal density matrix elements vanish initially (initial condition (1)), they then vanish at arbitrary times in both models. If the initial excitation is local, the off-diagonal matrix elements essentially differ
gamma. -relaxation process in crystallizable polymers
Mindiyarov, Kh G; Zelenev, Yu V; Bartenev, G M [Birskij Gosudarstvennyj Pedagogicheskij Inst. (USSR)
1975-07-01
In the present paper, with the aid of radiothermoluminescence technique ..gamma..-relaxation processes are investigated, which are conditioned by molecular mobility and are associated with defects in the crystalline structure of polymers PEh, PP, and elastomers PIB, NK, SKD, SKI exposed to ..gamma..-rays of Co/sup 60/ at a dose rate of 1 Mrad. The shape of the thermoluminescence curve, i.e. the luminescence intensity in the ..cap alpha.. - ..gamma..-maxima, their relationship, position with respect to temperature are strongly dependent on the degree of crystallinity, on the thermal and mechanical prehistory. In highly crystalline samples of PEh and PP ..cap alpha..-maximum may be absent. Dependence has been studied of the luminescence intensity in the ..cap alpha..- and ..gamma..-maxima (Isub(..cap alpha..)/Isub(..gamma..)) on the crystallization temperature; the curve passes through the minimum when the crystallization rate is maximum. The relationship Isub(..gamma..)re of crystallinity degree.
Scalar Similarity for Relaxed Eddy Accumulation Methods
Ruppert, Johannes; Thomas, Christoph; Foken, Thomas
2006-07-01
The relaxed eddy accumulation (REA) method allows the measurement of trace gas fluxes when no fast sensors are available for eddy covariance measurements. The flux parameterisation used in REA is based on the assumption of scalar similarity, i.e., similarity of the turbulent exchange of two scalar quantities. In this study changes in scalar similarity between carbon dioxide, sonic temperature and water vapour were assessed using scalar correlation coefficients and spectral analysis. The influence on REA measurements was assessed by simulation. The evaluation is based on observations over grassland, irrigated cotton plantation and spruce forest. Scalar similarity between carbon dioxide, sonic temperature and water vapour showed a distinct diurnal pattern and change within the day. Poor scalar similarity was found to be linked to dissimilarities in the energy contained in the low frequency part of the turbulent spectra ( definition.
Occupational stress, relaxation therapies, exercise and biofeedback.
Stein, Franklin
2001-01-01
Occupational stress is a widespread occurrence in the United States. It is a contributing factor to absenteeism, disease, injury and lowered productivity. In general stress management programs in the work place that include relaxation therapies, exercise, and biofeedback have been shown to reduce the physiological symptoms such as hypertension, and increase job satisfaction and job performance. Strategies to implement a successful stress management program include incorporating the coping activities into one's daily schedule, monitoring one's symptoms and stressors, and being realistic in setting up a schedule that is relevant and attainable. A short form of meditation, daily exercise program and the use of heart rate or thermal biofeedback can be helpful to a worker experiencing occupational stress.
Pre-relaxation in weakly interacting models
Bertini, Bruno; Fagotti, Maurizio
2015-07-01
We consider time evolution in models close to integrable points with hidden symmetries that generate infinitely many local conservation laws that do not commute with one another. The system is expected to (locally) relax to a thermal ensemble if integrability is broken, or to a so-called generalised Gibbs ensemble if unbroken. In some circumstances expectation values exhibit quasi-stationary behaviour long before their typical relaxation time. For integrability-breaking perturbations, these are also called pre-thermalisation plateaux, and emerge e.g. in the strong coupling limit of the Bose-Hubbard model. As a result of the hidden symmetries, quasi-stationarity appears also in integrable models, for example in the Ising limit of the XXZ model. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-\\frac{1}{2} chain with additional perturbations that break integrability. One of the most intriguing results of the analysis is the appearance of persistent oscillatory behaviour. To unravel its origin, we study in detail a toy model: the transverse-field Ising chain with an additional nonlocal interaction proportional to the square of the transverse spin per unit length (2013 Phys. Rev. Lett. 111 197203). Despite being nonlocal, this belongs to a class of models that emerge as intermediate steps of the mean-field mapping and shares many dynamical properties with the weakly interacting models under consideration.
Temperature relaxation in collisional non equilibrium plasmas
Potapenko, I.F.; Bobylev, A.V.; Azevedo, C.A.; Assis, A.S. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
1997-12-31
Full text. We study the relaxation of a space uniform plasma composed of electrons and one species of ions. To simplified the consideration, standard approach is usually accepted: the distribution functions are considered to be a Maxwellian with time dependent electron T{sub e}(t) and ion T{sub i}(t) temperatures. This approach imposes a severe restriction on the electron/ion distributions that could be very far from the equilibrium. In the present work the problem is investigated on the basis of the nonlinear kinetic Fokker - Planck equation, which is widely used for the description of collisional plasmas. This equation has many applications in plasma physics as an intrinsic part of physical models, both analytical and numerical. A new detailed description of this classical problem of the collisional plasma kinetic theory is given. A deeper examination of the problem shows that the unusual perturbation theory can not be used. The part of the perturbation of the electron distribution has the character of a boundary layer in the neighborhood of small velocities. In this work the boundary layer is thoroughly studied. The correct distribution electron function is given. Nonmonotonic character of the distribution relaxation in the tail region is observed. The corrected formula for temperature equalization is obtained. The comparison of the calculation results with the asymptotic approach is made. We should stress the important role of the completely conservative different scheme used here, which keeps the symmetric properties of the nonlinear exact equation. This allows us to make calculations without numerical error accumulations, except for machine errors. (author)
Dynamics and relaxation in confined medium. Application to 129Xe magnetic relaxation in Vycor
Pasquier, Virginie
1995-01-01
Porous media morphology and topology drive the exploration of pore space by fluid. So, analysis of transport process, associated with relaxation mechanism, allows indirect study of pore geometry. The purpose of this work is to understand better the relation between geometry and transport. This study involves two parts: a modelization and prediction step is followed by an experimental application of magnetic relaxation. Numerical simulations and analytical models allow to quantify the influence on the solid interface of the dynamical behavior of confined gas in disordered porous media (granular structure and porous network) or in common geometry (cylindrical and lamellar interfaces). The formalism of diffusion propagator is a powerful tool to quantify the influence of the pore geometry on the diffusion of confined gas. The propagator holds all dynamical information on the system; it also predicts the temporal evolution of the autocorrelation functions of the Hamiltonian describing local coupling. In an intermediate time scale, magnetic relaxation shows complex diffusional regime: the autocorrelation functions decrease in a power law with a exponent smaller than d/2 (where d is the Euclidian dimension of the system). This behavior is analogous to dynamic in low-dimensional space, but here arises from surface correlations of the porous media. The long-time behavior of the autocorrelation functions retrieves the asymptotic decrease t -d/2 . Moreover, atypical behavior is observed for the Knudsen diffusion between infinite planes. It turns out that 129 Xe NMR is a appropriate technique to characterize organization and diffusion of gas confined in Vycor. Systematic studies of temperature and pressure effect on the 129 Xe chemical shift allow to specify the Xe/solid interaction. The analysis of the relaxation measurements, thanks to the numerical development, confirms conclusions arising from the study of diffusion propagator. (author) [fr
Dielectric Relaxation Studies of Alkyl Methacrylate–Phenol Mixtures ...
The Kirkwood correlation factor and the excess inverse relaxation time were determined and they yield information on the molecular interactions occurring in the systems. The values of the static permittivity and the relaxation time increase with an increase in the percentage of phenol in the mixtures. KEYWORDS: Dielectric ...
Evolving fuzzy rules for relaxed-criteria negotiation.
Sim, Kwang Mong
2008-12-01
In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.
The infinite interface limit of multiple-region relaxed magnetohydrodynamics
Dennis, G. R.; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)
2013-03-15
We show the stepped-pressure equilibria that are obtained from a generalization of Taylor relaxation known as multi-region, relaxed magnetohydrodynamics (MRXMHD) are also generalizations of ideal magnetohydrodynamics (ideal MHD). We show this by proving that as the number of plasma regions becomes infinite, MRXMHD reduces to ideal MHD. Numerical convergence studies illustrating this limit are presented.
Models for multiple relaxation processes in collagen fiber
... originate from stress strain induced changes in hydrogen bond network whereas the other seems to be more strongly coupled to salt like bridges and electrostatic interactions. Urea alters the activation energy for one relaxation step while pH and solvent dielectric constant alter the relaxation behavior one set of processes.
Plasma relaxation of cold electrons and hot ions
Potapenko, I.F.; Sakanaka, P.H.
1996-01-01
The relaxation process of a space uniform plasma composed of cold electrons and one species of hot ions studied numerically. Special attention has been paid to the deviation of relaxation from the classical picture which is characterized by a weakly non-isothermic situation. (author). 6 refs., 2 figs
Accelerating convergence of molecular dynamics-based structural relaxation
Christensen, Asbjørn
2005-01-01
We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...
On integral representation, relaxation and homogenization for unbounded functionals
Carbone, L.; De Arcangelis, R.
1997-01-01
A theory of integral representation, relaxation and homogenization for some types of variational functionals taking extended real values and possibly being not finite also on large classes of regular functions is presented. Some applications to gradient constrained relaxation and homogenization problems are given
5 Things To Know About Relaxation Techniques for Stress
... Techniques for Stress Share: When you’re under stress, your body reacts by releasing hormones that produce the “fight- ... relaxation techniques could counteract the negative effects of stress. ... the body's natural relaxation response, characterized by slower breathing, lower ...
Optimal relaxed causal sampler using sampled-date system theory
Shekhawat, Hanumant; Meinsma, Gjerrit
This paper studies the design of an optimal relaxed causal sampler using sampled data system theory. A lifted frequency domain approach is used to obtain the existence conditions and the optimal sampler. A state space formulation of the results is also provided. The resulting optimal relaxed causal
Wall relaxation rates for an optically pumped NA vapor
Swenson, D.R.; Anderson, L.W.
1986-01-01
The wall relaxation rates for an optically pumped Na vapor have been measured for a variety of wall surfaces. We find that fluorocarbon rubber (Fluorel, Viton) and organosilicones (silicone rubber, dry film) at a temperature of 250 C have respectively relaxation rates that correspond on the average to 10 to 15 and 200 to 500 bounces before depolarization occurs. 7 refs., 3 figs
Improving the Performance of Poor Readers through Autogenic Relaxation Training.
Frey, Herbert
1980-01-01
Reports that the addition of 15 minutes of relaxation training to weekly remedial reading periods for disabled readers throughout a school year raised concentration levels and decreased anxiety, neuroticism, and number of reading errors. Describes a few types of relaxation exercises that may be helpful. (ET)
Communication: Relaxation-limited electronic currents in extended reservoir simulations
Gruss, Daniel; Smolyanitsky, Alex; Zwolak, Michael
2017-10-01
Open-system approaches are gaining traction in the simulation of charge transport in nanoscale and molecular electronic devices. In particular, "extended reservoir" simulations, where explicit reservoir degrees of freedom are present, allow for the computation of both real-time and steady-state properties but require relaxation of the extended reservoirs. The strength of this relaxation, γ, influences the conductance, giving rise to a "turnover" behavior analogous to Kramers turnover in chemical reaction rates. We derive explicit, general expressions for the weak and strong relaxation limits. For weak relaxation, the conductance increases linearly with γ and every electronic state of the total explicit system contributes to the electronic current according to its "reduced" weight in the two extended reservoir regions. Essentially, this represents two conductors in series—one at each interface with the implicit reservoirs that provide the relaxation. For strong relaxation, a "dual" expression-one with the same functional form-results, except now proportional to 1/γ and dependent on the system of interest's electronic states, reflecting that the strong relaxation is localizing electrons in the extended reservoirs. Higher order behavior (e.g., γ2 or 1/γ2) can occur when there is a gap in the frequency spectrum. Moreover, inhomogeneity in the frequency spacing can give rise to a pseudo-plateau regime. These findings yield a physically motivated approach to diagnosing numerical simulations and understanding the influence of relaxation, and we examine their occurrence in both simple models and a realistic, fluctuating graphene nanoribbon.
Irradiation creep, stress relaxation and a mechanical equation of state
Foster, J.P.
1976-01-01
Irradiation creep and stress relaxation data are available from the United Kingdom for 20 percent CW M316, 20 percent CW FV 548 and FHT PE16 using pure torsion in the absence of swelling at 300 0 C. Irradiation creep models were used to calculate the relaxation and permanent deflection of the stress relaxation tests. Two relationships between irradiation creep and stress relaxation were assessed by comparing the measured and calculated stress relaxation and permanent deflection. The results show that for M316 and FV548, the stress relaxation and deflection may be calculated using irradiation creep models when the stress rate term arising from the irradiation creep model is set equal to zero. In the case of PE16, the inability to calculate the stress relaxation and permanent deflection from the irradiation creep data was attributed to differences in creep behavior arising from lot-to-lot variations in alloying elements and impurity content. A modification of the FV548 and PE16 irradiation creep coefficients was necessary in order to calculate the stress relaxation and deflection. The modifications in FV548 and PE16 irradiation creep properties reduces the large variation in the transient or incubation parameter predicted by irradiation creep tests for M316, FV548 and PE16
Noninteracting control of nonlinear systems based on relaxed control
Jayawardhana, B.
2010-01-01
In this paper, we propose methodology to solve noninteracting control problem for general nonlinear systems based on the relaxed control technique proposed by Artstein. For a class of nonlinear systems which cannot be stabilized by smooth feedback, a state-feedback relaxed control can be designed to
Relaxation in x-space magnetic particle imaging.
Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M
2012-12-01
Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.
Effectiveness of relaxation techniques before diagnostic screening of cancer patients
Montserrat Aiger
2016-07-01
Full Text Available Psychophysiological arousal was observed in cancer patients during the application of relaxation techniques prior to a diagnostic scan (PET-CT. The aim of the study is twofold: firstly, it is sought to establish whether such techniques can minimize patient arousal before diagnostic screening begins, and secondly to measure which of them are most effective. The dependent variable is electrodermal activity, recording the attentional level and emotional response, and the independent variable comprises the relaxation techniques used, namely Jacobson, breathing and visualization. The 39 patients were split into experimental groups to whom the relaxation techniques (Jacobson, breathing exercises, and visualization were applied before they went for the PET-CT. An activity-module procedure was applied to track electrodermal activity during the relaxation sessions, consisting of instructions, timeout; wait, task; relaxation and end of the recording session. The control group received no relaxation techniques before the PET-CT. Session-end results show that patients who perform relaxation techniques achieve greater attentional focus using Jacobson's technique (M = .212 and enhanced emotional containment using visualization (M = .206. It is concluded that relaxation techniques minimize the state of activation during the waiting period before a diagnostic scan.
Structural relaxation of Ni-Si-B amorphous ribbon
Jurikova, A.; Csach, K.; Miskuf, J.; Ocelik, V.
The structural relaxation of the Ni-Si-B amorphous ribbon was studied by means of differential scanning calorimetry and thermomechanical analysis. It was shown that considerable length changes associated with reversible structural relaxation were revealed after a previous creep applied at higher
Dielectric relaxation phenomena of rigid polar liquid molecules ...
The probability of showing double relaxation is ... liquids can, however, be inferred from the measured relaxation time τ by Cole–Cole [3], ... A graphical method [13] was, soon employed from Fr¨ohlich's distribution function [14] to ...... tive to choose a few data for some systems for which chi-square values were adjusted to.
Strengthening and stress relaxation of Opalinus Clay
Schulze, Otto
2010-01-01
undisturbed far-field for the long lasting periods of geological times. Consequently, demands on concepts for backfilling and closure of a repository in a clay-stone formation as well as model calculations for safety analyses generally do not take into account convergence by viscous deformation, which would result from stress re-distribution at underground openings. Although there is some doubt, whether Opalinus Clay is creeping at all, some very long lasting laboratory tests were performed on this item in the author's laboratory. A nearly linear dependence of the long-term creep rate on the deviatoric stress was found. In recent work, the technique of stress-relaxation was used. For this, strengthening by strain rate controlled deformation was stopped, i.e. the strain was kept constant for a long time, and the relaxation of the stress was measured. In course of this technique, the deformability which may result from artefacts is ruled out as far as possible by compaction and strengthening. Then, the stress relaxation - if any - will be maintained by true long-term deformation processes which should be active and responsible for any convergence in an at least only partly backfilled mine. In this contribution, the results of the laboratory work and their discussion will be presented. (authors)
Magnetic relaxation in analytical, coordination and bioinorganic chemistry
Mikhajlov, O.
1982-01-01
Nuclear magnetic relaxation is a special type of nuclear magnetic resonance in which the rate is measured of energy transfer between the excited nuclei and their molecular medium (spin-lattice relaxation) or the whole nuclear spin system (spin-spin relaxation). Nuclear magnetic relaxation relates to nuclei with a spin of 1/2, primarily H 1 1 , and is mainly measured in water solutions. It is suitable for (1) analytical chemistry because the relaxation time rapidly reduces in the presence of paramagnetic ions, (2) the study of complex compounds, (3) the study of biochemical reactions in the presence of different metal ions. It is also suitable for testing the composition of a flowing liquid. Its disadvantage is that it requires complex and expensive equipment. (Ha)
Mechanism of nuclear cross-relaxation in magnetically ordered media
Buishvili, L L; Volzhan, E B; Giorgadze, N P [AN Gruzinskoj SSR, Tbilisi. Inst. Fiziki
1975-09-01
A mechanism of two-step nuclear relaxation in magnetic ordered dielectrics is proposed. The case is considered where the energy conservation in the cross relaxation (CR) process is ensured by the lattice itself without spin-spin interactions. Expressions have been obtained describing the temperature dependence of the CR rate. For a nonuniform broadened NMR line it has been shown that the spin-lattice relaxation time for a spin packet taken out from the equilibrium may be determined by the CR time owing to the mechanism suggested. When the quantization axes for electron and nuclear spins coincide, the spin-lattice relaxation is due to the three-magnon mechanism. The cross-relaxation stage has been shown to play a significant role in the range of low temperatures (T<10 deg K) and to become negligible with a temperature increase.
Stress relaxation and hillock growth in thin films
Jackson, M.S.; Li, C.Y.
1978-01-01
The relaxation of thermal stress in a thin film adhering to a substrate of differing expansion coefficient is discussed. Good agreement is found between literature data on relaxation during isothermal anneals of Pb films at up to 350 0 K and model calculations based on a state variable description of plastic flow. The stress system during relaxation is explored, and the absence of diffusional creep is explained. The plasticity-dominated relaxation process suggested by this analysis is shown to be in good qualitative agreement with data on rapid relaxation over the course of a cycle between room and cryogenic temperatures. The implications of this for long-range material transport in the film are discussed. It is shown that hillock volume should increase over the course of a temperature cycle. Finally, a mechanism for hillock nucleation based on grain boundary sliding is suggested
Milrinone relaxes pulmonary veins in guinea pigs and humans.
Annette D Rieg
Full Text Available INTRODUCTION: The phosphodiesterase-III inhibitor milrinone improves ventricular contractility, relaxes pulmonary arteries and reduces right ventricular afterload. Thus, it is used to treat heart failure and pulmonary hypertension (PH. However, its action on pulmonary veins (PVs is not defined, although particularly PH due to left heart disease primarily affects the pulmonary venous bed. We examined milrinone-induced relaxation in PVs from guinea pigs (GPs and humans. MATERIAL AND METHODS: Precision-cut lung slices (PCLS were prepared from GPs or from patients undergoing lobectomy. Milrinone-induced relaxation was studied by videomicroscopy in naïve PVs and in PVs pre-constricted with the ETA-receptor agonist BP0104. Baseline luminal area was defined as 100%. Intracellular cAMP was measured by ELISA and milrinone-induced changes of segmental vascular resistances were studied in the GP isolated perfused lung (IPL. RESULTS: In the IPL (GP, milrinone (10 µM lowered the postcapillary resistance of pre-constricted vessels. In PCLS (GP, milrinone relaxed naïve and pre-constricted PVs (120% and this relaxation was attenuated by inhibition of protein kinase G (KT 5823, adenyl cyclase (SQ 22536 and protein kinase A (KT 5720, but not by inhibition of NO-synthesis (L-NAME. In addition, milrinone-induced relaxation was dependent on the activation of K ATP-, BK Ca (2+- and Kv-channels. Human PVs also relaxed to milrinone (121%, however only if pre-constricted. DISCUSSION: Milrinone relaxes PVs from GPs and humans. In GPs, milrinone-induced relaxation is based on K ATP-, BK Ca (2+- and Kv-channel-activation and on cAMP/PKA/PKG. The relaxant properties of milrinone on PVs lead to reduced postcapillary resistance and hydrostatic pressures. Hence they alleviate pulmonary edema and suggest beneficial effects of milrinone in PH due to left heart disease.
Milrinone relaxes pulmonary veins in guinea pigs and humans.
Rieg, Annette D; Suleiman, Said; Perez-Bouza, Alberto; Braunschweig, Till; Spillner, Jan W; Schröder, Thomas; Verjans, Eva; Schälte, Gereon; Rossaint, Rolf; Uhlig, Stefan; Martin, Christian
2014-01-01
The phosphodiesterase-III inhibitor milrinone improves ventricular contractility, relaxes pulmonary arteries and reduces right ventricular afterload. Thus, it is used to treat heart failure and pulmonary hypertension (PH). However, its action on pulmonary veins (PVs) is not defined, although particularly PH due to left heart disease primarily affects the pulmonary venous bed. We examined milrinone-induced relaxation in PVs from guinea pigs (GPs) and humans. Precision-cut lung slices (PCLS) were prepared from GPs or from patients undergoing lobectomy. Milrinone-induced relaxation was studied by videomicroscopy in naïve PVs and in PVs pre-constricted with the ETA-receptor agonist BP0104. Baseline luminal area was defined as 100%. Intracellular cAMP was measured by ELISA and milrinone-induced changes of segmental vascular resistances were studied in the GP isolated perfused lung (IPL). In the IPL (GP), milrinone (10 µM) lowered the postcapillary resistance of pre-constricted vessels. In PCLS (GP), milrinone relaxed naïve and pre-constricted PVs (120%) and this relaxation was attenuated by inhibition of protein kinase G (KT 5823), adenyl cyclase (SQ 22536) and protein kinase A (KT 5720), but not by inhibition of NO-synthesis (L-NAME). In addition, milrinone-induced relaxation was dependent on the activation of K ATP-, BK Ca (2+)- and Kv-channels. Human PVs also relaxed to milrinone (121%), however only if pre-constricted. Milrinone relaxes PVs from GPs and humans. In GPs, milrinone-induced relaxation is based on K ATP-, BK Ca (2+)- and Kv-channel-activation and on cAMP/PKA/PKG. The relaxant properties of milrinone on PVs lead to reduced postcapillary resistance and hydrostatic pressures. Hence they alleviate pulmonary edema and suggest beneficial effects of milrinone in PH due to left heart disease.
Turbulent Magnetic Relaxation in Pulsar Wind Nebulae
Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)
2017-09-20
We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ -problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ -ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.
Vertical dimonsion changes after muscle relaxation
Shahroodi MH
1998-09-01
Full Text Available In this study, 116 edentulous patients in the age group 37-90 yrs were selected. Out of the above,"n12 patients had visited the dept. Of prosthodontics for the first time for treatment. Other 34 of them were"npatients of the dental school and the rest were from Kahrizak and Nikan sanatoriums."nInitially, the V.D. of rest was measured as usual for all the patients. After subjecting them to the excercises of completely opening and closing of the mouth for 15 no. of times, the rest position was measured again. Results show that the changes in V.D.R. after, excercises, relaxing the elevator and depressor muscles and the duration of usage of prosthesis, the following conclusions are obtained."n1. There is an increase in V.D.R. after tiring out the elevator and depressor muscles of the jaws."n2. There is a direct co - relation between the increased V.D.R. and duration of use of prosthesis after excercises."n3. Change in the V.D.R. after excercise is notably more in women."n4. No definite conclusion is obtained in the relationship between changes in V.D.R. after excercises and use of prosthesis during sleep."n5. As above no conclusions as yet can be deduced between changes in V.D.R. and different operators.
NMR relaxation studies with MnDPDP
Southon, T.E.; Grant, D.; Bjoernerud, A.; Moen, O.M.; Spilling, B.; Martinsen, I.; Refsum, H.
1997-01-01
Purpose: Our studies were designed to compare the efficacy of mangafodipir trisodium (MnDPDP, Teslascan) as a tissue-specific MR agent with that of manganese chloride (MnCl 2 ), to compare the efficacy of different doses and rates of administration of MnDPDP, and to collect the data needed for predicting optimum pulse sequences. Material and Methods: The dose response for the relaxation rates R1 and R2 at 0.47 T, and the manganese (Mn) concentrations in rat liver and in the liver, pancreas, heart and adrenals of pigs was determined for both MnDPDP and MnCl 2 administered i.v. Computer simulations were carried out to model the effects of different tissue Mn concentrations and TR on signal intensities and contrast-to-noise ratios. Results: In rat liver and pig organs both compounds produced a positive dose-response in R1 and tissue Mn concentration, and only small or no response in R2. The Mn concentration in rat liver was positively correlated with R1, regardless of the form in which Mn was given, or the rate of administration. Optimal imaging parametes are therefore expected to be different pre- and post-MnDPDP administration. (orig./AJ)
Turbulent Magnetic Relaxation in Pulsar Wind Nebulae
Zrake, Jonathan; Arons, Jonathan
2017-09-01
We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.
Mixing, ergodicity and slow relaxation phenomena
Costa, I. V. L.; Vainstein, M. H.; Lapas, L. C.; Batista, A. A.; Oliveira, F. A.
2006-11-01
Investigations on diffusion in systems with memory [I.V.L. Costa, R. Morgado, M.V.B.T. Lima, F.A. Oliveira, Europhys. Lett. 63 (2003) 173] have established a hierarchical connection between mixing, ergodicity, and the fluctuation-dissipation theorem (FDT). This hierarchy means that ergodicity is a necessary condition for the validity of the FDT, and mixing is a necessary condition for ergodicity. In this work, we compare those results with recent investigations using the Lee recurrence relations method [M.H. Lee, Phys. Rev. B 26 (1982) 2547; M.H. Lee, Phys. Rev. Lett. 87 (2001) 250601; M.H. Lee, J. Phys. A: Math. Gen. 39 (2006) 4651]. Lee shows that ergodicity is violated in the dynamics of the electron gas [M.H. Lee, J. Phys. A: Math. Gen. 39 (2006) 4651]. This reinforces both works and implies that the results of [I.V.L. Costa, R. Morgado, M.V.B.T. Lima, F.A. Oliveira, Europhys. Lett. 63 (2003) 173] are more general than the framework in which they were obtained. Some applications to slow relaxation phenomena are discussed.
Dasch, C.J.
1978-09-01
Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295/sup 0/K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295/sup 0/K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ..delta..J transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references.
On aggregation of relaxed T-indistinguishability operators
Fuster-Parra, P.
2017-07-01
The notion of T -indistinguishability operator was introduced by E. Trillas in [7] with the aim of fuzzifying the classical (crisp) notion of equivalence relation. Relaxed metrics and indistinguishability operators are closely related. Indeed, in [1] it has been stated that the logical counterpart for relaxed metrics is, in some sense, a generalized indistinguishability operator (relaxed T -indistinguishability operator). Notice that the notion of T -indistinguishability operator is retrieved as a particular case of relaxed T -indistinguishability operator whenever the relaxed T - indistinguishability operator satisfies also the reflexivity. In fact, a relaxed indistinguishability operator is a indistinguishability operator if and only if it holds the reflexivity. The same occurs when we consider T -indistinguishability operator that separates points. Several authors have studied the aggregation of some classes of fuzzy relations (see [3, 4, 5, 6]), where it is stated that transitivity is one of the most important properties of a fuzzy relation. In [5] a study of aggregation of T-indistinguishability operators is presented, motivated by this work the aim of this study is to analyze the case of aggregating relaxed T-indistinguishability operators. (Author)
Relaxed Bell inequalities and Kochen-Specker theorems
Hall, Michael J. W. [Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)
2011-08-15
The combination of various physically plausible properties, such as no signaling, determinism, and experimental free will, is known to be incompatible with quantum correlations. Hence, these properties must be individually or jointly relaxed in any model of such correlations. The necessary degrees of relaxation are quantified here via natural distance and information-theoretic measures. This allows quantitative comparisons between different models in terms of the resources, such as the number of bits of randomness, communication, and/or correlation, that they require. For example, measurement dependence is a relatively strong resource for modeling singlet-state correlations, with only 1/15 of one bit of correlation required between measurement settings and the underlying variable. It is shown how various ''relaxed'' Bell inequalities may be obtained, which precisely specify the complementary degrees of relaxation required to model any given violation of a standard Bell inequality. The robustness of a class of Kochen-Specker theorems, to relaxation of measurement independence, is also investigated. It is shown that a theorem of Mermin remains valid unless measurement independence is relaxed by 1/3. The Conway-Kochen ''free will'' theorem and a result of Hardy are less robust, failing if measurement independence is relaxed by only 6.5% and 4.5%, respectively. An appendix shows that existence of an outcome-independent model is equivalent to existence of a deterministic model.
On the Volterra integral equation relating creep and relaxation
Anderssen, R S; De Hoog, F R; Davies, A R
2008-01-01
The evolving stress–strain response of a material to an applied deformation is causal. If the current response depends on the earlier history of the stress–strain dynamics of the material (i.e. the material has memory), then Volterra integral equations become the natural framework within which to model the response. For viscoelastic materials, when the response is linear, the dual linear Boltzmann causal integral equations are the appropriate model. The choice of one rather than the other depends on whether the applied deformation is a stress or a strain, and the associated response is, respectively, a creep or a relaxation. The duality between creep and relaxation is known explicitly and is referred to as the 'interconversion equation'. Rheologically, its importance relates to the fact that it allows the creep to be determined from knowledge of the relaxation and vice versa. Computationally, it has been known for some time that the recovery of the relaxation from the creep is more problematic than the creep from the relaxation. Recent research, using discrete models for the creep and relaxation, has confirmed that this is an essential feature of interconversion. In this paper, the corresponding result is generalized for continuous models of the creep and relaxation
State resolved vibrational relaxation modeling for strongly nonequilibrium flows
Boyd, Iain D.; Josyula, Eswar
2011-05-01
Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.
Relaxing music counters heightened consolidation of emotional memory.
Rickard, Nikki S; Wong, Wendy Wing; Velik, Lauren
2012-02-01
Emotional events tend to be retained more strongly than other everyday occurrences, a phenomenon partially regulated by the neuromodulatory effects of arousal. Two experiments demonstrated the use of relaxing music as a means of reducing arousal levels, thereby challenging heightened long-term recall of an emotional story. In Experiment 1, participants (N=84) viewed a slideshow, during which they listened to either an emotional or neutral narration, and were exposed to relaxing or no music. Retention was tested 1 week later via a forced choice recognition test. Retention for both the emotional content (Phase 2 of the story) and material presented immediately after the emotional content (Phase 3) was enhanced, when compared with retention for the neutral story. Relaxing music prevented the enhancement for material presented after the emotional content (Phase 3). Experiment 2 (N=159) provided further support to the neuromodulatory effect of music by post-event presentation of both relaxing music and non-relaxing auditory stimuli (arousing music/background sound). Free recall of the story was assessed immediately afterwards and 1 week later. Relaxing music significantly reduced recall of the emotional story (Phase 2). The findings provide further insight into the capacity of relaxing music to attenuate the strength of emotional memory, offering support for the therapeutic use of music for such purposes. Copyright © 2011 Elsevier Inc. All rights reserved.
Nuclear spin-lattice relaxation in carbon nanostructures
Panich, A.M., E-mail: pan@bgu.ac.i [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Sergeev, N.A. [Institute of Physics, University of Szczecin, 70-451 Szczecin (Poland)
2010-04-15
Interpretation of nuclear spin-lattice relaxation data in the carbon nanostructures is usually based on the analysis of fluctuations of dipole-dipole interactions of nuclear spins and anisotropic electron-nuclear interactions responsible for chemical shielding, which are caused by molecular dynamics. However, many nanocarbon systems such as fullerene and nanotube derivatives, nanodiamonds and carbon onions reveal noticeable amount of paramagnetic defects with unpaired electrons originating from dangling bonds. The interaction between nuclear and electron spins strongly influences the nuclear spin-lattice relaxation, but usually is not taken into account, thus the relaxation data are not correctly interpreted. Here we report on the temperature dependent NMR spectra and spin-lattice relaxation measurements of intercalated fullerenes C{sub 60}(MF{sub 6}){sub 2} (M=As and Sb), where nuclear relaxation is caused by both molecular rotation and interaction between nuclei and unpaired electron spins. We present a detailed theoretical analysis of the spin-lattice relaxation data taking into account both these contributions. Good agreement between the experimental data and calculations is obtained. The developed approach would be useful in interpreting the NMR relaxation data in different nanostructures and their intercalation compounds.
Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle.
Leonardo Nogara
Full Text Available In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity.
Jensen, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij G
Concentration of MRI contrast agents (CA) is commonly determined indirectly using their relaxation effect. In quantitative perfusion studies, the change in the relaxation following a bolus passage is converted into concentrations assuming identical relaxivities for tissue and blood. Simulations...
Non-monotonic behaviour in relaxation dynamics of image restoration
Ozeki, Tomoko; Okada, Masato
2003-01-01
We have investigated the relaxation dynamics of image restoration through a Bayesian approach. The relaxation dynamics is much faster at zero temperature than at the Nishimori temperature where the pixel-wise error rate is minimized in equilibrium. At low temperature, we observed non-monotonic development of the overlap. We suggest that the optimal performance is realized through premature termination in the relaxation processes in the case of the infinite-range model. We also performed Markov chain Monte Carlo simulations to clarify the underlying mechanism of non-trivial behaviour at low temperature by checking the local field distributions of each pixel
Contractive relaxation systems and interacting particles for scalar conservation laws
Katsoulakis, M.A.; Tzavaras, A.E.
1996-01-01
We consider a class of semi linear hyperbolic systems with relaxation that are contractive in the L 1 -norm and admit invariant regions. We show that, as the relaxation parameter ξ goes to zero, their solutions converge to a weak solution of the scalar multidimensional conversation law that satisfies the Kruzhkov conditions. In the case of one space dimension, we propose certain interacting particle systems, whose mesoscopic limit is the systems with relaxation and their macroscopic dynamics is described by entropy solutions of a scalar conservation law. (author)
Relaxation peak near 200 K in NiTi alloy
Zhu, J. S.; Schaller, R.; Benoit, W.
1989-10-01
Internal friction (IF), frequency ( f), electrical resistance ( R) and zero point movement of the torsion pendulum (ɛ) have been measured in near equi-atomic NiTi alloy in order to clarify the mechanism for the relaxation peak near 200 K. The height of the relaxation peak decreases successively with thermal cycling and settles down to a lower stable value in running 15 cycles. However, the electrical resistance of the sample shows a variation in contrast with the internal friction. Both of them will return to the initial state after a single annealing at 773 K for 1 h. The probable mechanism of this relaxation peak was discussed.
Stress relaxation characteristics of type 304 stainless steel
Manjoine, M.J.
1975-01-01
The stress relaxation of type 304 stainless steel below 900 0 F (482 0 C) is practically time independent after 100 h and has a maximum of about 18 per cent. The per cent relaxation decreases with increasing degree of cold work and with decreasing stress. Above 900 0 F the per cent relaxation increases with time, temperature, and cold work. The initial stress can also be increased for cold work materials so that the remaining stress can be maintained at a higher value even up to 1200 0 F (649 0 C). Time-temperature parameters are practical to correlate and extrapolate the data in the higher temperature range. (author)
Strain Relaxation and Vacancy Creation in Thin Platinum Films
Gruber, W.; Chakravarty, S.; Schmidt, H.; Baehtz, C.; Leitenberger, W.; Bruns, M.; Kobler, A.; Kuebel, C.
2011-01-01
Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.
Calorimetric and relaxation properties of xylitol-water mixtures
Elamin, Khalid; Sjöström, Johan; Jansson, Helén; Swenson, Jan
2012-03-01
We present the first broadband dielectric spectroscopy (BDS) and differential scanning calorimetry study of supercooled xylitol-water mixtures in the whole concentration range and in wide frequency (10-2-106 Hz) and temperature (120-365 K) ranges. The calorimetric glass transition, Tg, decreases from 247 K for pure xylitol to about 181 K at a water concentration of approximately 37 wt. %. At water concentrations in the range 29-35 wt. % a plentiful calorimetric behaviour is observed. In addition to the glass transition, almost simultaneous crystallization and melting events occurring around 230-240 K. At higher water concentrations ice is formed during cooling and the glass transition temperature increases to a steady value of about 200 K for all higher water concentrations. This Tg corresponds to an unfrozen xylitol-water solution containing 20 wt. % water. In addition to the true glass transition we also observed a glass transition-like feature at 220 K for all the ice containing samples. However, this feature is more likely due to ice dissolution [A. Inaba and O. Andersson, Thermochim. Acta, 461, 44 (2007)]. In the case of the BDS measurements the presence of water clearly has an effect on both the cooperative α-relaxation and the secondary β-relaxation. The α-relaxation shows a non-Arrhenius temperature dependence and becomes faster with increasing concentration of water. The fragility of the solutions, determined by the temperature dependence of the α-relaxation close to the dynamic glass transition, decreases with increasing water content up to about 26 wt. % water, where ice starts to form. This decrease in fragility with increasing water content is most likely caused by the increasing density of hydrogen bonds, forming a network-like structure in the deeply supercooled regime. The intensity of the secondary β-relaxation of xylitol decreases noticeably already at a water content of 2 wt. %, and at a water content above 5 wt. % it has been replaced by a
The ultrasonic relaxation spectra for furfural molecules undergoing conformational changes
Mirzaev, S. Z.; Telyaev, S. Q.; Egamberdiev, K.
2011-01-01
The acoustic spectra of liquid furfural have been investigated in the frequency range from 0.1MHz to 150 MHz and at the temperatures from 303.15 K to 333.15 K. The ultrasonic spectra of pure furfural show two relaxation processes. One relaxation process is located in the frequency range ∼0.2 MHz, and the second in the frequency range ∼2 MHz. The process with the lower relaxation frequency has been assigned to the 'X0-cis and X0-trans' internal rotation of furfural molecules. (authors)
A Linearized Relaxing Algorithm for the Specific Nonlinear Optimization Problem
Mio Horai
2016-01-01
Full Text Available We propose a new method for the specific nonlinear and nonconvex global optimization problem by using a linear relaxation technique. To simplify the specific nonlinear and nonconvex optimization problem, we transform the problem to the lower linear relaxation form, and we solve the linear relaxation optimization problem by the Branch and Bound Algorithm. Under some reasonable assumptions, the global convergence of the algorithm is certified for the problem. Numerical results show that this method is more efficient than the previous methods.
Constraints on relaxation rates for N-level quantum systems
Schirmer, S.G.; Solomon, A.I.
2004-01-01
We study the constraints imposed on the population and phase relaxation rates by the physical requirement of completely positive evolution for open N-level systems. The Lindblad operators that govern the evolution of the system are expressed in terms of observable relaxation rates, explicit formulas for the decoherence rates due to population relaxation are derived, and it is shown that there are additional, nontrivial constraints on the pure dephasing rates for N>2. Explicit, experimentally testable inequality constraints for the decoherence rates are derived for three- and four-level systems, and the implications of the results are discussed for generic ladder, Λ, and V systems and transitions between degenerate energy levels
Relaxation towards phase-locked dynamics in long Josephson junctions
Salerno, M.; Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm
1995-01-01
We study the relaxation phenomenon towards phase-locked dynamics in long Josephson junctions. In particular the dependence of the relaxation frequency for the equal time of flight solution on the junction parameters is derived. The analysis is based on a phase-locked map and is compared with direct...... numerical experiments performed both on the map and on the perturbed sine-Gordon equation. As an interesting result we find that very close to a bifurcation the relaxation frequency is exactly equal to the half of the step frequency, i.e., the frequency characterizing the period-one solution....
Relationship between Structural and Stress Relaxation in a Block-Copolymer Melt
Patel, Amish J.; Narayanan, Suresh; Sandy, Alec; Mochrie, Simon G. J.; Garetz, Bruce A.; Watanabe, Hiroshi; Balsara, Nitash P.
2006-01-01
The relationship between structural relaxation on molecular length scales and macroscopic stress relaxation was explored in a disordered block-copolymer melt. Experiments show that the structural relaxation time, measured by x-ray photon correlation spectroscopy is larger than the terminal stress relaxation time, measured by rheology, by factors as large as 100. We demonstrate that the structural relaxation data are dominated by the diffusion of intact micelles while the stress relaxation data are dominated by contributions due to disordered concentration fluctuations
Colmenero, J.
1993-12-01
The dynamics of the α-relaxation in three different polymeric systems, poly(vinyl methyl ether) (PVME), poly(vinyl chloride) (PVC) and poly(bisphenol A, 2-hydroxypropylether) (PH) has been studied by means of relaxation techniques and quasielastic neutron scattering (backscattering spectrometers IN10 and IN13 at the ILL-Grenoble). By using these techniques we have covered a wide time scale ranging from mesoscopic to macroscopic times (10 -10 -10 1 s). For analyzing the experimental data we have developed a phenomenological procedure in the frequency domain based on the Havriliak-Negami relaxation function, which in fact implies a Kohlrausch-Williams-Watts relaxation function in the time domain. The results obtained indicate that the dynamics of the α-relaxation in a wide time scale shows a clear non-Debye behaviour. The shape of the relaxation functions is found to be similar for the different techniques used and independent of temperature and momentum transfer ( Q). Moreover, the characteristic relaxation times deduced from the fitting of the experimental data can also be described using only one Vogel-Fulcher functional form. Besides we found that the Q-dependence of the relaxation times obtained by QENS is given by a power law, τ( Q) ∞ Q- n ( n>2), n being dependent on the system, and that the Q-behaviour and the non-Debye behaviour are directly correlated. In the case of PVC, time of flight (TOF) neutron scattering experiments confirm these results in a shorter time scale (2×10 -11 -2× 10 -12 s). Moreover, TOF results also suggest the possibility of interpreting the “fast process” usually detected in glass-forming systems as a Debye-like short regime of the α-relaxation.
Multi-region relaxed Hall magnetohydrodynamics with flow
Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Abdelhamid, Hamdi M., E-mail: hamdi@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Hudson, Stuart R., E-mail: shudson@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)
2016-08-15
The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.
On the relaxation of cold electrons and hot ions
Potapenko, I.F.; Bobylev, A.V.; Azevedo, C.A. de; Sakanaka, P.H.; Assis, A.S. de
1998-01-01
The relaxation process of a space uniform plasma composed of cold electrons and one species of hot ions is studied numerically using one- and two-dimensional Landau - Fokker - Planck codes. Relaxation of a monoenergetic ion beam is considered in possibly extreme temperature regimes. Special attention is paid to the deviation of the relaxation process from the classical picture, which is characterized by the close initial temperatures T e >(m e /m i ) 1/3 T i . The present results give quite a clear idea of the relaxation picture for any initial temperatures also in extreme temperature regimes. A difference scheme, preserving the number of particles and the energy, gives the possibility of solving the problem numerically without error accumulation, except for machine errors. copyright 1998 American Institute of Physics
Ber analysis of the box relaxation for BPSK signal recovery
Thrampoulidis, Christos; Abbasi, Ehsan; Xu, Weiyu; Hassibi, Babak
2016-01-01
We study the problem of recovering an n-dimensional BPSK signal from m linear noise-corrupted measurements using the box relaxation method which relaxes the discrete set {±1}n to the convex set [-1,1]n to obtain a convex optimization algorithm followed by hard thresholding. When the noise and measurement matrix have iid standard normal entries, we obtain an exact expression for the bit-wise probability of error Pe in the limit of n and m growing and m/n fixed. At high SNR our result shows that the Pe of box relaxation is within 3dB of the matched filter bound (MFB) for square systems, and that it approaches the (MFB) as m grows large compared to n. Our results also indicate that as m, n → ∞, for any fixed set of size k, the error events of the corresponding k bits in the box relaxation method are independent.
Strain relaxation of germanium-tin (GeSn) fins
Kang, Yuye; Huang, Yi-Chiau; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Lei, Dian; Masudy-Panah, Saeid; Dong, Yuan; Wu, Ying; Xu, Shengqiang; Tan, Chuan Seng; Gong, Xiao; Yeo, Yee-Chia
2018-02-01
Strain relaxation of biaxially strained Ge1-xSnx layer when it is patterned into Ge1-xSnx fin structures is studied. Ge1-xSnx-on-insulator (GeSnOI) substrate was realized using a direct wafer bonding (DWB) technique and Ge1-xSnx fin structures were formed by electron beam lithography (EBL) patterning and dry etching. The strain in the Ge1-xSnx fins having fin widths (WFin) ranging from 1 μm down to 80 nm was characterized using micro-Raman spectroscopy. Raman measurements show that the strain relaxation increases with decreasing WFin. Finite element (FE) simulation shows that the strain component in the transverse direction relaxes with decreasing WFin, while the strain component along the fin direction remains unchanged. For various Ge1-xSnx fin widths, transverse strain relaxation was further extracted using micro-Raman spectroscopy, which is consistent with the simulation results.
Relaxation-phenomena in LiAl/FeS-cells
Borger, W.; Kappus, W.; Panesar, H. S.
A theoretical model of the capacity of strongly relaxing electrochemical systems is applied to the LiAl/FeS system. Relaxation phenomena in LiAl and FeS electrodes can be described by this model. Experimental relaxation data indicate that lithium transport through the alpha-LiAl layer to the particle surface is the capacity limiting process at high discharge current density in the LiAl electrode in LiCl-KCl and LiF-LiCl-LiBr mixtures. Strong relaxation is observed in the FeS electrode with LiCl-KCl electrolyte caused by lithium concentration gradients and precipitation of KCl in the pores.
Levitation force relaxation under reloading in a HTS Maglev system
He Qingyong; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao
2009-01-01
The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle
Density dependence of relaxation dynamics in glass formers, and ...
Anshul D S Parmar
formers, we study the variation of relaxation dynamics with density, rather than temperature, as a control ... stronger behaviour, the use of scaled variables involving temperature and ... of the temperature dependence of B as written defines.
Methodologic aspects of acetylcholine-evoked relaxation of rabbit aorta
Larsen, Kirsten Vendelbo; Nedergaard, Ove A.
1999-01-01
The acetylcholine-evoked relaxation of rabbit isolated thoracic aorta precontracted by phenylephrine was studied. Phenylephrine caused a steady contraction that was maintained for 6 h. In the presence of calcium disodium ethylenediaminetetraacetate (EDTA) and ascorbic acid the contraction decreased...
Relaxation behaviour of gasketed joints during assembly using finite ...
Faculty of Mechanical Engineering, Ghulam Ishaq Khan (GIK) Institute of ... Bolt scatter, bolt bending, joint relaxation and gasket stress variation are concluded the main .... In the present work, following two ..... American Society of Mech.
Levitation force relaxation under reloading in a HTS Maglev system
He Qingyong [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: hedoubling@gmail.com; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)
2009-02-01
The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle.
Ber analysis of the box relaxation for BPSK signal recovery
Thrampoulidis, Christos
2016-06-24
We study the problem of recovering an n-dimensional BPSK signal from m linear noise-corrupted measurements using the box relaxation method which relaxes the discrete set {±1}n to the convex set [-1,1]n to obtain a convex optimization algorithm followed by hard thresholding. When the noise and measurement matrix have iid standard normal entries, we obtain an exact expression for the bit-wise probability of error Pe in the limit of n and m growing and m/n fixed. At high SNR our result shows that the Pe of box relaxation is within 3dB of the matched filter bound (MFB) for square systems, and that it approaches the (MFB) as m grows large compared to n. Our results also indicate that as m, n → ∞, for any fixed set of size k, the error events of the corresponding k bits in the box relaxation method are independent.
Slow logarithmic relaxation in models with hierarchically constrained dynamics
Brey, J. J.; Prados, A.
2000-01-01
A general kind of models with hierarchically constrained dynamics is shown to exhibit logarithmic anomalous relaxation, similarly to a variety of complex strongly interacting materials. The logarithmic behavior describes most of the decay of the response function.
Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation
Kjølby, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij G
2006-01-01
The concentration of MRI tracers cannot be measured directly by MRI and is commonly evaluated indirectly using their relaxation effect. This study develops a comprehensive theoretical model to describe the transverse relaxation in perfused tissue caused by intravascular tracers. The model takes...... into account a number of individual compartments. The signal dephasing is simulated in a semianalytical way by embedding Monte Carlo simulations in the framework of analytical theory. This approach yields a tool for fast, realistic simulation of the change in the transverse relaxation. The results indicate...... with bulk blood. The enhancement of relaxation in tissue is due to the contrast in magnetic susceptibility between blood vessels and parenchyma induced by the presence of paramagnetic tracer. Beyond the perfusion measurements, the results can be applied to quantitation of functional MRI and to vessel size...
Dielectric relaxation studies of dilute solutions of amides
Malathi, M.; Sabesan, R.; Krishnan, S
2003-11-15
The dielectric constants and dielectric losses of formamide, acetamide, N-methyl acetamide, acetanilide and N,N-dimethyl acetamide in dilute solutions of 1,4-dioxan/benzene have been measured at 308 K using 9.37 GHz, dielectric relaxation set up. The relaxation time for the over all rotation {tau}{sub (1)} and that for the group rotation {tau}{sub (2)} of (the molecules were determined using Higasi's method. The activation energies for the processes of dielectric relaxation and viscous flow were determined by using Eyring's rate theory. From relaxation time behaviour of amides in non-polar solvent, solute-solvent and solute-solute type of molecular association is proposed.
^{129} Xe NMR Relaxation-Based Macromolecular Sensing
Gomes, Muller D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Dao, Phuong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Jeong, Keunhong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Slack, Clancy C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Vassiliou, Christophoros C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Finbloom, Joel A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Francis, Matthew B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Wemmer, David E. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Biosciences Division; Pines, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
2016-07-29
A ^{129}Xe NMR relaxation-based sensing approach is reported on that exploits changes in the bulk xenon relaxation rate induced by slowed tumbling of a cryptophane-based sensor upon target binding. The amplification afforded by detection of the bulk dissolved xenon allows sensitive detection of targets. The sensor comprises a xenon-binding cryptophane cage, a target interaction element, and a metal chelating agent. Xenon associated with the target-bound cryptophane cage is rapidly relaxed and then detected after exchange with the bulk. Here we show that large macromolecular targets increase the rotational correlation time of xenon, increasing its relaxation rate. Upon binding of a biotin-containing sensor to avidin at 1.5 μM concentration, the free xenon T_{2} is reduced by a factor of 4.
Mechanical properties of plant cell walls probed by relaxation spectra
Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola
2011-01-01
Relax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated......Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild...... type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply...
Relaxation Dynamics of Nanoparticle-Tethered Polymer Chains
Kim, Sung A; Mangal, Rahul; Archer, Lynden A.
2015-01-01
© 2015 American Chemical Society. Relaxation dynamics of nanoparticle-tethered cis-1,4-polyisoprene (PI) are investigated using dielectric spectroscopy and rheometry. A model system composed of polymer chains densely grafted to spherical SiO2
Electron spin relaxation in cryptochrome-based magnetoreception
Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J
2016-01-01
The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have...... this question for a structurally characterized model cryptochrome expected to share many properties with the putative avian receptor protein. To this end we combine all-atom molecular dynamics simulations, Bloch-Redfield relaxation theory and spin dynamics calculations to assess the effects of spin relaxation...... on the performance of the protein as a compass sensor. Both flavin-tryptophan and flavin-Z˙ radical pairs are studied (Z˙ is a radical with no hyperfine interactions). Relaxation is considered to arise from modulation of hyperfine interactions by librational motions of the radicals and fluctuations in certain...
Acquired relaxation of the right half of the diaphragm
Tolmachev, V.V.; Romadanov, A.A.
1997-01-01
Case is described of the development of complete relaxation of the right half of diaphragm following inflammatory respiratory disease accompanied by infections neuritis involving right phrenic nerve. Results of biomedical radiography and computerized tomography in dynamics are presented
Stress relaxation of shear in metals during shock loading
Glazyrin, V.P.; Platova, T.M.
1988-01-01
Constructed determining equation, taking into account stress relaxation of shear, was used to calculate the evolution of plane shock waves of primary and secondary compression in metals. Values of shear stress and viscosity coefficient were
A Block-Asynchronous Relaxation Method for Graphics Processing Units
Anzt, H.; Dongarra, J.; Heuveline, Vincent; Tomov, S.
2011-01-01
In this paper, we analyze the potential of asynchronous relaxation methods on Graphics Processing Units (GPUs). For this purpose, we developed a set of asynchronous iteration algorithms in CUDA and compared them with a parallel implementation of synchronous relaxation methods on CPU-based systems. For a set of test matrices taken from the University of Florida Matrix Collection we monitor the convergence behavior, the average iteration time and the total time-to-solution time. Analyzing the r...
Relaxation effect of abacavir on rat basilar arteries.
Rachel Wai Sum Li
Full Text Available The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels.The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5' nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate.Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5' nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries.Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may not be related to
A moving mesh method with variable relaxation time
Soheili, Ali Reza; Stockie, John M.
2006-01-01
We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \\tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \\tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in orde...
Fetal responses to induced maternal relaxation during pregnancy
DiPietro, Janet A.; Costigan, Kathleen A.; Nelson, Priscilla; Gurewitsch, Edith D.; Laudenslager, Mark L.
2007-01-01
Fetal responses to induced maternal relaxation during the 32nd week of pregnancy were recorded in 100 maternal-fetal pairs using a digitized data collection system. The 18-minute guided imagery relaxation manipulation generated significant changes in maternal heart rate, skin conductance, respiration period, and respiratory sinus arrhythmia. Significant alterations in fetal neurobehavior were observed, including decreased fetal heart rate (FHR), increased FHR variability, suppression of fetal...
Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times
Kosuke Hayashi
2012-06-01
Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.
Nuclear relaxation in semiconductors doped with magnetic impurities
Mel'nichuk, S.V.; Tovstyuk, N.K.
1984-01-01
The temperature and concentration dependences are investigated of the nuclear spin-lattice relaxation time with account of spin diffusion for degenerated and non-degenerated semicon- ductors doped with magnetic impurities. In case of the non-degenerated semiconductor the time is shown to grow with temperature, while in case of degenerated semiconductor it is practically independent of temperature. The impurity concentration growth results in decreasing the spin-lattice relaxation time
Relaxation of Thick-Walled Cylinders and Spheres
Saabye Ottosen, N.
1982-01-01
Using the nonlinear creep law proposed by Soderberg, (1936) closed-form solutions are derived for the relaxation of incompressible thick-walled spheres and cylinders in plane strain. These solutions involve series expressions which, however, converge very quickly. By simply ignoring these series...... expressions, extremely simple approximate solutions are obtained. Despite their simplicity these approximations possess an accuracy that is superior to approximations currently in use. Finally, several physical aspects related to the relaxation of cylinders and spheres are discussed...
Relaxation dispersion in MRI induced by fictitious magnetic fields.
Liimatainen, Timo; Mangia, Silvia; Ling, Wen; Ellermann, Jutta; Sorce, Dennis J; Garwood, Michael; Michaeli, Shalom
2011-04-01
A new method entitled Relaxation Along a Fictitious Field (RAFF) was recently introduced for investigating relaxations in rotating frames of rank ≥ 2. RAFF generates a fictitious field (E) by applying frequency-swept pulses with sine and cosine amplitude and frequency modulation operating in a sub-adiabatic regime. In the present work, MRI contrast is created by varying the orientation of E, i.e. the angle ε between E and the z″ axis of the second rotating frame. When ε > 45°, the amplitude of the fictitious field E generated during RAFF is significantly larger than the RF field amplitude used for transmitting the sine/cosine pulses. Relaxation during RAFF was investigated using an invariant-trajectory approach and the Bloch-McConnell formalism. Dipole-dipole interactions between identical (like) spins and anisochronous exchange (e.g., exchange between spins with different chemical shifts) in the fast exchange regime were considered. Experimental verifications were performed in vivo in human and mouse brain. Theoretical and experimental results demonstrated that changes in ε induced a dispersion of the relaxation rate constants. The fastest relaxation was achieved at ε ≈ 56°, where the averaged contributions from transverse components during the pulse are maximal and the contribution from longitudinal components are minimal. RAFF relaxation dispersion was compared with the relaxation dispersion achieved with off-resonance spin lock T(₁ρ) experiments. As compared with the off-resonance spin lock T(₁ρ) method, a slower rotating frame relaxation rate was observed with RAFF, which under certain experimental conditions is desirable. Copyright © 2011 Elsevier Inc. All rights reserved.
Topology Synthesis of Structures Using Parameter Relaxation and Geometric Refinement
Hull, P. V.; Tinker, M. L.
2007-01-01
Typically, structural topology optimization problems undergo relaxation of certain design parameters to allow the existence of intermediate variable optimum topologies. Relaxation permits the use of a variety of gradient-based search techniques and has been shown to guarantee the existence of optimal solutions and eliminate mesh dependencies. This Technical Publication (TP) will demonstrate the application of relaxation to a control point discretization of the design workspace for the structural topology optimization process. The control point parameterization with subdivision has been offered as an alternative to the traditional method of discretized finite element design domain. The principle of relaxation demonstrates the increased utility of the control point parameterization. One of the significant results of the relaxation process offered in this TP is that direct manufacturability of the optimized design will be maintained without the need for designer intervention or translation. In addition, it will be shown that relaxation of certain parameters may extend the range of problems that can be addressed; e.g., in permitting limited out-of-plane motion to be included in a path generation problem.
STAR FORMATION AND RELAXATION IN 379 NEARBY GALAXY CLUSTERS
Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.
2015-01-01
We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M r < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters
Relaxation cracking in the process industry, an underestimated problem
Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)
1998-12-31
Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.
Thermal relaxation of molecular oxygen in collisions with nitrogen atoms
Andrienko, Daniil A., E-mail: daniila@umich.edu; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., Ann Arbor, Michigan 48108 (United States)
2016-07-07
Investigation of O{sub 2}–N collisions is performed by means of the quasi-classical trajectory method on the two lowest ab initio potential energy surfaces at temperatures relevant to hypersonic flows. A complete set of bound–bound and bound–free transition rates is obtained for each precollisional rovibrational state. Special attention is paid to the vibrational and rotational relaxations of oxygen as a result of chemically non-reactive interaction with nitrogen atoms. The vibrational relaxation of oxygen partially occurs via the formation of an intermediate NO{sub 2} complex. The efficient energy randomization results in rapid vibrational relaxation at low temperatures, compared to other molecular systems with a purely repulsive potential. The vibrational relaxation time, computed by means of master equation studies, is nearly an order of magnitude lower than the relaxation time in N{sub 2}–O collisions. The rotational nonequilibrium starts to play a significant effect at translational temperatures above 8000 K. The present work provides convenient relations for the vibrational and rotational relaxation times as well as for the quasi-steady dissociation rate coefficient and thus fills a gap in data due to a lack of experimental measurements for this system.
Relaxation cracking in the process industry, an underestimated problem
Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)
1999-12-31
Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.
Interrelation of creep and relaxation: a modeling approach for ligaments.
Lakes, R S; Vanderby, R
1999-12-01
Experimental data (Thornton et al., 1997) show that relaxation proceeds more rapidly (a greater slope on a log-log scale) than creep in ligament, a fact not explained by linear viscoelasticity. An interrelation between creep and relaxation is therefore developed for ligaments based on a single-integral nonlinear superposition model. This interrelation differs from the convolution relation obtained by Laplace transforms for linear materials. We demonstrate via continuum concepts of nonlinear viscoelasticity that such a difference in rate between creep and relaxation phenomenologically occurs when the nonlinearity is of a strain-stiffening type, i.e., the stress-strain curve is concave up as observed in ligament. We also show that it is inconsistent to assume a Fung-type constitutive law (Fung, 1972) for both creep and relaxation. Using the published data of Thornton et al. (1997), the nonlinear interrelation developed herein predicts creep behavior from relaxation data well (R > or = 0.998). Although data are limited and the causal mechanisms associated with viscoelastic tissue behavior are complex, continuum concepts demonstrated here appear capable of interrelating creep and relaxation with fidelity.
Relaxed and partially relaxed magnetic equilibria in tight-aspect-ratio tori
Browning, P.K.; Clegg, J.R.; Duck, R.C.; Rusbridge, M.G.
1993-01-01
Force-free equilibrium magnetic fields in tight-aspect-ratio toroidal configurations are investigated. The study is mainly directed to modelling field configurations in the 'rodomak', a modification to the SPHEX gun-injected spheromak in which a current-carrying rod is inserted along the geometric axis. A family of analytical relaxed states (∇ x B = μB, μ constant) is presented for a torus of rectangular cross section, with boundary conditions allowing for flux embedded in the walls, representing the gun. Numerically calculated fields in SPHEX geometry, with μ profiles relevant to the driven phase of operation, are also given. The dependence of the field configurations and global quantities such as energy, helicity and toroidal current on the controlling parameters (gun flux, gun current and rod current) and geometry is discussed. (author)
Molecular order and T1-relaxation, cross-relaxation in nitroxide spin labels
Marsh, Derek
2018-05-01
Interpretation of saturation-recovery EPR experiments on nitroxide spin labels whose angular rotation is restricted by the orienting potential of the environment (e.g., membranes) currently concentrates on the influence of rotational rates and not of molecular order. Here, I consider the dependence on molecular ordering of contributions to the rates of electron spin-lattice relaxation and cross relaxation from modulation of N-hyperfine and Zeeman anisotropies. These are determined by the averages and , where θ is the angle between the nitroxide z-axis and the static magnetic field, which in turn depends on the angles that these two directions make with the director of uniaxial ordering. For saturation-recovery EPR at 9 GHz, the recovery rate constant is predicted to decrease with increasing order for the magnetic field oriented parallel to the director, and to increase slightly for the perpendicular field orientation. The latter situation corresponds to the usual experimental protocol and is consistent with the dependence on chain-labelling position in lipid bilayer membranes. An altered dependence on order parameter is predicted for saturation-recovery EPR at high field (94 GHz) that is not entirely consistent with observation. Comparisons with experiment are complicated by contributions from slow-motional components, and an unexplained background recovery rate that most probably is independent of order parameter. In general, this analysis supports the interpretation that recovery rates are determined principally by rotational diffusion rates, but experiments at other spectral positions/field orientations could increase the sensitivity to order parameter.
Fetal response to abbreviated relaxation techniques. A randomized controlled study.
Fink, Nadine S; Urech, Corinne; Isabel, Fornaro; Meyer, Andrea; Hoesli, Irène; Bitzer, Johannes; Alder, Judith
2011-02-01
stress during pregnancy can have adverse effects on the course of pregnancy and on fetal development. There are few studies investigating the outcome of stress reduction interventions on maternal well-being and obstetric outcome. this study aims (1) to obtain fetal behavioral states (quiet/active sleep, quiet/active wakefulness), (2) to investigate the effects of maternal relaxation on fetal behavior as well as on uterine activity, and (3) to investigate maternal physiological and endocrine parameters as potential underlying mechanisms for maternal-fetal relaxation-transferral. the behavior of 33 fetuses was analyzed during laboratory relaxation/quiet rest (control group, CG) and controlled for baseline fetal behavior. Potential associations between relaxation/quiet rest and fetal behavior (fetal heart rate (FHR), FHR variation, FHR acceleration, and body movements) and uterine activity were studied, using a computerized cardiotocogram (CTG) system. Maternal heart rate, blood pressure, cortisol, and norepinephrine were measured. intervention (progressive muscle relaxation, PMR, and guided imagery, GI) showed changes in fetal behavior. The intervention groups had higher long-term variation during and after relaxation compared to the CG (p=.039). CG fetuses had more FHR acceleration, especially during and after quiet rest (p=.027). Women in the PMR group had significantly more uterine activity than women in the GI group (p=.011) and than CG women. Maternal heart rate, blood pressure, and stress hormones were not associated with fetal behavior. this study indicates that the fetus might participate in maternal relaxation and suggests that GI is superior to PMR. This could especially be true for women who tend to direct their attention to body sensations such as abdominal activity. 2010 Elsevier Ltd. All rights reserved.
A new method for studying the structure relaxation of amorphous matters
Cao Xiaowen
1989-11-01
A new method for studying the structure relaxation of amorphous matters by Hall effect is proposed. The structure relaxation of the metal-type amorphous InSb has been experimentally studied. The experimental results show that this method is highly sensitive to the structure relaxation, and the mechanism of structure relaxation can be observed
Interstitial relaxations due to hydrostatic stress in niobium--oxygen alloys
Tewari, S.N.
1974-01-01
Experimental investigations of the anelastic relaxation induced by hydrostatic stress in the range from ambient to 81 ksi were made for niobium--oxygen alloys. The anelastic responses, both for the pressurization and the pressure release experiments, were followed by measuring the relative length change between the oxygenated niobium sample and a pure niobium frame with a precision of about 2 A. The relaxation spectrum observed was shown to be made up of three distinct relaxations with unique relaxation times and strengths. The pressure dependence of the relaxation times gave the apparent activation volume for these relaxations of the order of 4 cm 3 /mole. The relaxations were observed to have relaxation strengths of the order of 10 -4 which were found to be independent of pressure up to 81 ksi. The relaxation times for these relaxations were found to occur in the same general temperature range as those for the Snoek relaxations of oxygen clusters in niobium. The temperature dependence of the relaxation times, however, gave activation energies of about 11 to 15 kcal/mole, as compared with roughly 27 to 29 kcal/mole for the Snoek relaxation of oxygen clusters in niobium. Several possible models for these relaxations were developed, however, none could predict the observed temperature dependence. The best interpretation of the data is that due to some anomalous competing relaxation the actual temperature dependence of these relaxations could not be observed. A completely self-consistent analysis is found which is based upon this assumption. (U.S.)
Experimental model of human corpus cavernosum smooth muscle relaxation
Rommel P. Regadas
2010-08-01
Full Text Available PURPOSE: To describe a technique for en bloc harvesting of the corpus cavernosum, cavernous artery and urethra from transplant organ donors and contraction-relaxation experiments with corpus cavernosum smooth muscle. MATERIALS AND METHODS: The corpus cavernosum was dissected to the point of attachment with the crus penis. A 3 cm segment (corpus cavernosum and urethra was isolated and placed in ice-cold sterile transportation buffer. Under magnification, the cavernous artery was dissected. Thus, 2 cm fragments of cavernous artery and corpus cavernosum were obtained. Strips measuring 3 x 3 x 8 mm3 were then mounted vertically in an isolated organ bath device. Contractions were measured isometrically with a Narco-Biosystems force displacement transducer (model F-60, Narco-Biosystems, Houston, TX, USA and recorded on a 4-channel Narco-Biosystems desk model polygraph. RESULTS: Phenylephrine (1µM was used to induce tonic contractions in the corpus cavernosum (3 - 5 g tension and cavernous artery (0.5 - 1g tension until reaching a plateau. After precontraction, smooth muscle relaxants were used to produce relaxation-response curves (10-12M to 10-4 M. Sodium nitroprusside was used as a relaxation control. CONCLUSION: The harvesting technique and the smooth muscle contraction-relaxation model described in this study were shown to be useful instruments in the search for new drugs for the treatment of human erectile dysfunction.
Holographic grating relaxation technique for soft matter science
Lesnichii, Vasilii, E-mail: vasilii.lesnichii@physchem.uni-freiburg.de [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101 (Russian Federation); Kiessling, Andy [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); Current address: Illinois Institute of Technology, 10 West 33rd Street, Chicago,IL60616 (United States); Bartsch, Eckhard [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); Veniaminov, Andrey, E-mail: veniaminov@phoi.ifmo.ru [ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101 (Russian Federation)
2016-06-17
The holographic grating relaxation technique also known as forced Rayleigh scattering consists basically in writing a holographic grating in the specimen of interest and monitoring its diffraction efficiency as a function of time, from which valuable information on mass or heat transfer and photoinduced transformations can be extracted. In a more detailed view, the shape of the relaxation curve and the relaxation rate as a function of the grating period were found to be affected by the architecture of diffusing species (molecular probes) that constitute the grating, as well as that of the environment they diffuse in, thus making it possible to access and study spatial heterogeneity of materials and different modes of e.g., polymer motion. Minimum displacements and spatial domains approachable by the technique are in nanometer range, well below spatial periods of holographic gratings. In the present paper, several cases of holographic relaxation in heterogeneous media and complex motions are exemplified. Nano- to micro-structures or inhomogeneities comparable in spatial scale with holographic gratings manifest themselves in relaxation experiments via non-exponential decay (stepwise or stretched), spatial-period-dependent apparent diffusion coefficient, or unusual dependence of diffusion coefficient on molecular volume of diffusing probes.
Characterization of structural relaxation in inorganic glasses using length dilatometry
Koontz, Erick
The processes that govern how a glass relaxes towards its thermodynamic quasi-equilibrium state are major factors in understanding glass behavior near the glass transition region, as characterized by the glass transition temperature (Tg). Intrinsic glass properties such as specific volume, enthalpy, entropy, density, etc. are used to map the behavior of the glass network below in and near the transition region. The question of whether a true thermodynamic second order phase transition takes place in the glass transition region is another pending question. Linking viscosity behavior to entropy, or viewing the glass configuration as an energy landscape are just a couple of the most prevalent methods used for attempting to understand the glass transition. The structural relaxation behavior of inorganic glasses is important for more than scientific reasons, many commercial glass processing operations including glass melting and certain forms of optical fabrication include significant time spent in the glass transition region. For this reason knowledge of structural relaxation processes can, at a minimum, provide information for annealing duration of melt-quenched glasses. The development of a predictive model for annealing time prescription has the potential to save glass manufacturers significant time and money as well as increasing volume throughput. In optical hot forming processes such as precision glass molding, molded optical components can significantly change in shape upon cooling through the glass transition. This change in shape is not scientifically predictable as of yet though manufacturers typically use empirical rules developed in house. The classification of glass behavior in the glass transition region would allow molds to be accurately designed and save money for the producers. The work discussed in this dissertation is comprised of the development of a dilatometric measurement and characterization method of structural relaxation. The measurement and
[Neurophysiologic and respiratory changes during the practice of relaxation technics].
Gallois, P
1984-01-01
A polygraphic study, of 40 minutes duration, among 10 subjects who practiced autogenic training (TA) and 10 subjects who practiced transcendental meditation (MT), compared to 10 control subjects, gave the following results: rarity of the number of sleeping episodes during relaxation, cardiac rhythm, significantly decreased in the TM group, increased stability of the E.D.G. during and after relaxation, respiratory rate decreased to a value of 33% of the initial rate, respiratory suspensions were frequent in the TM group, reaching a maximal duration of 50 seconds. The absence of compensatory hypercapnia and hyperpnea is an argument in favor of their central origin, lastly, the simple reaction time after relaxation is slightly decreased, whereas it is increased in the controls, this aerobic hypometabolic state, the stability of the autonomic nervous system and the maintenance of the vigilance, induced by deep relaxation, seems to be the opposite of the state which is induced by stress; therefore deep relaxation may play a role in a psycho-somatic approach to treating a variety of disease states.
Effect of iodine impurity on relaxation of photoexcited silver chloride
Vostrikova, Yu. V.; Klyuev, V. G.
2008-01-01
The time and temperature dependences of relaxation of excited AgCl and AgCl:I crystals is studied by the method of photostimulated flash of luminescence. The presence of iodine impurity in silver chloride gives rise to hole recombination (luminescence) centers and hole traps in the band gap. It is shown that the main contribution to the decrease in the concentration of electrons localized at deep traps is made by the recombination of electrons with holes released thermally from shallow localization levels (iodine-related centers). Estimation of activation energy for the relaxation process showed that these energies for the AgCl and AgCl:I samples under study are the same within the experimental error and are equal to E rel1 = 0.01 ± 0.0005 eV for the initial stage of relaxation and E rel2 = 0.09 ± 0.005 eV for the final state. This fact indicates that the majority of hole traps involved in the relaxation process in AgCl are related to iodine impurity. In the course of thermal relaxation in AgCl, relocalization of nonequilibrium charge carriers from shallow levels to deep levels is observed. The depth of the corresponding trap is E arl = 0.174 ± 0.03 eV.
F19 relaxation in non-magnetic hexafluorides
Rigny, P.
1969-01-01
The interesting properties of the fluorine magnetic resonance in the hexafluorides of molybdenum, tungsten and uranium, are very much due to large anisotropies of the chemical shift tensors. In the solid phases these anisotropies, the values of which are deduced from line shape studies, allow one to show that the molecules undergo hindered rotations about the metal atom. The temperature and frequency dependence of the fluorine longitudinal relaxation times shows that the relaxation is due to the molecular motion. The dynamical parameters of this motion are then deduced from the complete study of the fluorine relaxation in the rotating frame. In the liquid phases, the existence of anisotropies allows an estimation of the different contributions to the relaxation. In particular, the frequency and temperature dependence of the relaxation shows it to be dominated by the spin-rotation interaction. We have shown that the strength of this interaction can be deduced from the chemical shifts, and the angle through which the molecule rotates quasi-freely can be determined. In the hexafluorides, this angle is roughly one radian at 70 C, and with the help of this value, the friction coefficients which describe the intermolecular interactions are discussed. (author) [fr
Thermally induced magnetic relaxation in square artificial spin ice
Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.
2016-11-01
The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.
Evolutionary Pseudo-Relaxation Learning Algorithm for Bidirectional Associative Memory
Sheng-Zhi Du; Zeng-Qiang Chen; Zhu-Zhi Yuan
2005-01-01
This paper analyzes the sensitivity to noise in BAM (Bidirectional Associative Memory), and then proves the noise immunity of BAM relates not only to the minimum absolute value of net inputs (MAV) but also to the variance of weights associated with synapse connections. In fact, it is a positive monotonically increasing function of the quotient of MAV divided by the variance of weights. Besides, the performance of pseudo-relaxation method depends on learning parameters (λ and ζ), but the relation of them is not linear. So it is hard to find a best combination of λ and ζ which leads to the best BAM performance. And it is obvious that pseudo-relaxation is a kind of local optimization method, so it cannot guarantee to get the global optimal solution. In this paper, a novel learning algorithm EPRBAM (evolutionary psendo-relaxation learning algorithm for bidirectional association memory) employing genetic algorithm and pseudo-relaxation method is proposed to get feasible solution of BAM weight matrix. This algorithm uses the quotient as the fitness of each individual and employs pseudo-relaxation method to adjust individual solution when it does not satisfy constraining condition any more after genetic operation. Experimental results show this algorithm improves noise immunity of BAM greatly. At the same time, EPRBAM does not depend on learning parameters and can get global optimal solution.
Universal binding energy relation for cleaved and structurally relaxed surfaces
Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V
2014-01-01
The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress–displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements. (paper)
Nuclear magnetic relaxation of methyl group in liquids
Blicharska, B.
1986-01-01
The theoretical description of the relaxation process of methyl group in liquids and some results of the measurements of relaxation function and relaxation times for cryoprotective solutions are presented. Starting from the application of the operator formalism the general equation for spin operators e.g. components of the nuclear spin and magnetization is founded. Next, the spin Hamiltonian is presented as contraction of the symmetry adapted spherical tensors as well as the correlation functions and spectral densities. On the basis of extended and modified Woessner model of motion the correlation functions and spectral densities are calculated for methyl group in liquids. Using these functions the relaxation matrix elements, the spin-spin and spin-lattice relaxation times can be expressed. The prediction of the theory agrees with author's previous experiments on cryoprotective solutions. The observed dependence on temperature, frequency and isotopic dilution in methanol-water, methanol-dimethyl sulfoxide (DMSO) and DMSO-water solutions is in a satisfactory agreement with theoretical equations. 34 refs. (author)
Magnetic-relaxation method of analysis of inorganic substances
Popel', A.A.
1978-01-01
The magnetic-relaxation method is considered of the quantitative analysis of inorganic substances based on time dependence of magnetic nuclei relaxation on the quantity of paramagnetic centres in a solution. The characteristic is given of some methods of measuring nuclear magnetic relaxation times: method of weak oscillation generator and pulse methods. The effect of temperature, general solution viscosity, diamagnetic salt concentration, medium acidity on nuclear relaxation velocity is described. The determination sensitivity is estimated and the means of its increase definable concentration intervals and method selectivity are considered. The method application when studying complexing in the solution is described. A particular attention is given to the investigation of heteroligand homocentre, heterocentre and protonated complexes as well as to the problems of particle exchange of the first coordination sphere with particles from the mass of solution. The equations for equilibrium constant calculation in different systems are given. Possibilities of determining diamagnetic ions by the magnetic-relaxation method using paramagnetic indicators are confirmed by the quantitative analysis of indium, gallium, thorium and scandium in their salt solutions
Universal binding energy relation for cleaved and structurally relaxed surfaces.
Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V
2014-02-05
The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.
Lisovaya E. V.; Victorova E. P.; Agafonov O. S.; Kornen N. N.; Shahray T. A.
2015-01-01
The article presents a comparative assessment and peculiarities of nuclear magnetic relaxation characteristics of rapeseed and sunflower lecithin. It was established, that lecithin’s nuclear magnetic relaxation characteristics, namely, protons’ spin-spin relaxation time and amplitudes of nuclear magnetic relaxation signals of lecithin components, depend on content of oil’s fat acids and phospholipids, contained in the lecithin. Comparative assessment of protons’ spin-spin relaxation time of r...
Repeatability and reliability of muscle relaxation properties induced by motor cortical stimulation.
Molenaar, Joery P; Voermans, Nicol C; de Jong, Lysanne A; Stegeman, Dick F; Doorduin, Jonne; van Engelen, Baziel G
2018-03-15
Impaired muscle relaxation is a feature of many neuromuscular disorders. However, there are few tests available to quantify muscle relaxation. Transcranial magnetic stimulation (TMS) of the motor cortex can induce muscle relaxation by abruptly inhibiting corticospinal drive. The aim of our study is to investigate if repeatability and reliability of TMS-induced relaxation is greater than voluntary relaxation. Furthermore, effects of sex, cooling and fatigue on muscle relaxation properties were studied. Muscle relaxation of deep finger flexors was assessed in twenty-five healthy subjects (14 M and 11 F, aged 39.1{plus minus}12.7 and 45.3{plus minus}8.7 years old, respectively) using handgrip dynamometry. All outcome measures showed greater repeatability and reliability in TMS-induced relaxation compared to voluntary relaxation. The within-subject coefficient of variability of normalized peak relaxation rate was lower in TMS-induced relaxation than in voluntary relaxation (3.0 vs 19.7% in men, and 6.1 vs 14.3% in women). The repeatability coefficient was lower (1.3 vs 6.1 s -1 in men and 2.3 vs 3.1 s -1 in women), and the intraclass correlation coefficient was higher (0.95 vs 0.53 in men and 0.78 vs 0.69 in women), for TMS-induced relaxation compared to voluntary relaxation. TMS enabled to demonstrate slowing effects of sex, muscle cooling, and muscle fatigue on relaxation properties that voluntary relaxation could not. In conclusion, repeatability and reliability of TMS-induced muscle relaxation was greater compared to voluntary muscle relaxation. TMS-induced muscle relaxation has the potential to be used in clinical practice for diagnostic purposes and therapy effect monitoring in patients with impaired muscle relaxation.
Relaxation training for anxiety: a ten-years systematic review with meta-analysis
Castelnuovo Gianluca; Pagnini Francesco; Manzoni Gian; Molinari Enrico
2008-01-01
Abstract Background Relaxation training is a common treatment for anxiety problems. Lacking is a recent quantitative meta-analysis that enhances understanding of the variability and clinical significance of anxiety reduction outcomes after relaxation treatment. Methods All studies (1997–2007), both RCT, observational and without control group, evaluating the efficacy of relaxation training (Jacobson's progressive relaxation, autogenic training, applied relaxation and meditation) for anxiety p...
Isochronous relaxation curves for type 304 stainless steel after monotonic and cyclic strain
Swindeman, R.W.
1978-01-01
Relaxation tests to 100 hr were performed on type 304 stainless steel in the temperature range 480 to 650 0 C and were used to develop isochronous relaxation curves. Behavior after monotonic and cyclic strain was compared. Relaxation differed only slightly as a consequence of the type of previous strain, provided that plastic flow preceded the relaxation period. We observed that the short-time relaxation behavior did not manifest strong heat-to-heat variation in creep strength
Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian
2012-07-21
By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.
Dielectric relaxation of glass particles with conductive nano-coatings
Hussain, Shahid [Applied Technologies Department, QinetiQ Limited, Cody Technology Park, Farnborough, Hampshire, GU14 0LX (United Kingdom)
2009-03-21
This research focuses on the dielectric properties of particles consisting of glass cores with nanometre conductive coatings. The effects of the core glass particle shape (sphere, flake and fibre) and size are investigated for different coating characteristics over the frequency range 0.5-18 GHz. Experimental results for the coated glass particle combinations show the existence of a dielectric loss peak. This feature is associated with interfacial relaxation between the insulating core glass particle and the nanoscale conductive coating. The relaxation mechanism provides enhanced loss that is not observed in conventional solid metal particle composites. The results are fitted to a model, which shows that the relaxation frequency increases with increasing coating conductivity and thickness, with additional parameters identified for further particle optimizations.
Nuclear magnetic relaxation in picolines solutions in carbon tetrachloride
Jurga, J.; Pajak, Z.; Jurga, K.; Jurga, S.
1973-01-01
Spin-lattice relaxation times of the ring and CH 3 group have been measured in order to establish the temperature dependence of the longitudinal relaxation times for picolins in carbon tetrachloride solutions. The information concerning the intramolecular contribution to the relaxation times have been obtained. The high resolution NPR spectrometer operating at 25 MHz has been used. The measurements have been performed in the temperature range from -60degC to 80degC. The experimental results are compared to the predictions given by the Nora Hill and Debye models and it has been found that the Nora Hill model fits the experimental data better than the Debye model. (S.B.)
Efficient relaxed-Jacobi smoothers for multigrid on parallel computers
Yang, Xiang; Mittal, Rajat
2017-03-01
In this Technical Note, we present a family of Jacobi-based multigrid smoothers suitable for the solution of discretized elliptic equations. These smoothers are based on the idea of scheduled-relaxation Jacobi proposed recently by Yang & Mittal (2014) [18] and employ two or three successive relaxed Jacobi iterations with relaxation factors derived so as to maximize the smoothing property of these iterations. The performance of these new smoothers measured in terms of convergence acceleration and computational workload, is assessed for multi-domain implementations typical of parallelized solvers, and compared to the lexicographic point Gauss-Seidel smoother. The tests include the geometric multigrid method on structured grids as well as the algebraic grid method on unstructured grids. The tests demonstrate that unlike Gauss-Seidel, the convergence of these Jacobi-based smoothers is unaffected by domain decomposition, and furthermore, they outperform the lexicographic Gauss-Seidel by factors that increase with domain partition count.
Relaxation and transport properties of liquid n-triacontane
Kondratyuk, N D; Lankin, A V; Norman, G E; Stegailov, V V
2015-01-01
Molecular modelling is used to calculate transport properties and to study relaxation of liquid n-triacontane (C 30 H 62 ). The problem is important in connection with the behavior of liquid isolators in a pre-breakdown state. Two all-atom models and a united-atom model are used. Shear viscosity is calculated using the Green-Kubo formula. The force fields are compared with each other using the following criteria: the required time for one molecular dynamics step, the compliance of the main physical and transport properties with experimental values. The problem of the system equilibration is considered. The united-atom potential is used to model the n-triacontane liquid with an initial directional orientation. The time of relaxation to the disordered state, when all molecules orientations are randomized, are obtained. The influence of the molecules orientations on the shear viscosity value and the shear viscosity relaxation are treated. (paper)
Temperature dependence of the kinetics of isometric myocardium relaxation
Izakov, V.Ya.; Bykov, B.L.; Kimmelman, I.Ya.
1981-11-01
The dependence of the exponential decay constant expressing the isometric relaxation of the myocardium on temperature is investigated in animals with various specific contents of myocardial sarcoplasmic reticulum. Experiments were performed on cardiac ventricles and atria isolated from rabbits, frogs and turtles and electrically stimulated to produce maximal contraction at temperatures from 10 to 35 C. Arrhenius plots derived from the data are found to be linear in the myocardia of the rabbit and frog, with a greater activation energy for the relaxation found in the rabbit. The Arrhenius plot for the turtle, which has a sarcoplasmic reticulum content intermediate between those of the frog and rabbit, corresponds to two straight lines with different activation energies. Results thus support the hypothesis of two separate mechanisms of calcium removal, involving the sarcoplasmic reticulum and cellular membrane, in muscle relaxation.
Sawtooth oscillations as MHD relaxation process in a plasma
Yoshida, Zensho; Inoue, Nobuyuki; Ogawa, Yuichi
1992-01-01
The sawtooth oscillation in a tokamak plasma is a spontaneous relaxation process accompanying global instabilities which behave to reduce the internal magnetic energy. This phenomenon has a similarity to the MHD relaxation processes in Reversed Field Pinch (RFP) and Ultra Low Q (ULQ) plasmas. The self-stabilizing effect of instabilities with m (poloidal mode number) = 1 results in an increase in the central safety factor q(0). Nonlinear dynamics of m = 1 instabilities has been discussed both for global and local modes. The latter appears when a pitch minimum exists in the plasma, and is relevant to the compound sawtooth oscillation. The MHD relaxation is a restructuring process of the plasma current profile that is competitive with the resistive diffusion. (author)
Stability and suppression of turbulence in relaxing molecular gas flows
Grigoryev, Yurii N
2017-01-01
This book presents an in-depth systematic investigation of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The work describes the theoretical foundations of a new way to control stability and laminar turbulent transitions in aerodynamic flows. It develops hydrodynamic models for describing thermal nonequilibrium gas flows which allow the consideration of suppression of inviscid acoustic waves in 2D shear flows. Then, nonlinear evolution of large-scale vortices and Kelvin-Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both linear and nonlinear classical energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of the book is to show the new dissipative effect, which can be used for flo...
Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics
Altaner, Bernhard
2017-01-01
Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. (paper)
Physiological blunting during pregnancy extends to induced relaxation.
DiPietro, Janet A; Mendelson, Tamar; Williams, Erica L; Costigan, Kathleen A
2012-01-01
There is accumulating evidence that pregnancy is accompanied by hyporesponsivity to physical, cognitive, and psychological challenges. This study evaluates whether observed autonomic blunting extends to conditions designed to decrease arousal. Physiological and psychological responsivity to an 18-min guided imagery relaxation protocol in healthy pregnant women during the 32nd week of gestation (n=54) and non-pregnant women (n=28) was measured. Data collection included heart period (HP), respiratory sinus arrhythmia (RSA), tonic and phasic measures of skin conductance (SCL and NS-SCR), respiratory period (RP), and self-reported psychological relaxation. As expected, responses to the manipulation included increased HP, RSA, and RP and decreased SCL and NS-SCR, followed by post-manipulation recovery. However, responsivity was attenuated for all physiological measures except RP in pregnant women, despite no difference in self-reported psychological relaxation. Findings support non-specific blunting of physiological responsivity during pregnancy. Copyright © 2011 Elsevier B.V. All rights reserved.
Interface relaxation and band gap shift in epitaxial layers
Ziming Zhu
2012-12-01
Full Text Available Although it is well known that the interface relaxation plays the crucial role for the electronic properties in semiconductor epitaxial layers, there is lack of a clear definition of relationship between interfacial bond-energy variation and interface bond-nature-factor (IBNF in epitaxial layers before and after relaxation. Here we establish an analytical method to shed light on the relationship between the IBNF and the bond-energy change, as well as the relation with band offset in epitaxial layers from the perspective of atomic-bond-relaxation consideration and continuum mechanics. The theoretical predictions are consistent with the available evidences, which provide an atomistic understanding on underlying mechanism of interface effect in epitaxial nanostructures. Thus, it will be helpful for opening up to tailor physical-chemical properties of the epitaxial nanostructures to the desired specifications.
The relaxation phenomena of radicals induced in irradiated fresh mangoes
Kikuchi, Masahiro; Morishita, Norio; Kobayashi, Yasuhiko; Ogawa, Hideyuki; Shimoyama, Yuhei; Ukai, Mitsuko
2009-01-01
Using the γ-irradiated fresh mangoes followed by freeze-drying and powderization, electron spin resonance spectrometry of specimens was performed. As a result, a strong single peak in the flesh, the pericarp and the seed was observed at g=2.004 and attributed to organic free radicals. When relaxation times of the peak was calculated using the method of Lund et al., T 2 showed dose responses according to increasing doses while T 1 was almost constant. Dose responsibility of the relaxation time T 2 obtained from flesh specimens of the mangoes could be measured regardless of the preservation period of 1 to 9 days following γ-irradiation. Therefore, there might be possible to detect the irradiation treatment of fresh mangoes using relaxation time T 2 . (author)
Irradiation-induced stress relaxation of Eurofer97 steel
Luzginova, N.V.; Jong, M.; Rensman, J.W.; Hegeman, J.B.J.; Laan, J.G. van der
2011-01-01
The irradiation-induced stress relaxation behavior of Eurofer97 at 300 deg. C up to 3.4 dpa and under pre-stress loads typical for the ITER applications is investigated. The bolt specimens are pre-loaded from 30% to 90% of the yield strength. To verify the results obtained with the pre-stressed bolts, bent strips were investigated as well. The strips are bent into a pre-defined radius in order to achieve similar pre-stress levels. The irradiation-induced stress relaxation is found to be independent of the pre-stress level. 10-12% of the stress relaxation in Eurofer97 may be reached after a dose of 0.1 dpa, and after an irradiation dose of 2.7 dpa 42-47% of the original pre-stress is retained.
Wall relaxation and the driving forces for cell expansive growth
Cosgrove, D. J.
1987-01-01
When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.
Present state of the controversy about the grain boundary relaxation
Povolo, F.; Molinas, B.J.
1990-04-01
An analysis of the internal friction produced by grain boundary relaxation in metals, alloys and ceramics is presented. The different interpretations given in the literature to relaxation phenomena occurring at temperatures above about half the melting point which include the influence of grain boundaries and their interaction with solutes and precipitates are discussed in detail. A complete set of the experimental data disposable in this field since 1972 until today is reviewed. Finally, some recent experiments are discussed and new ones are suggested. They might solve the actual controversy about the real origin of the relaxation phenomena observed. If this is the case, a considerable amount of information already published can be taken into account with a good degree of confidence. This information contributes to the description of the structure and behaviour of grain boundaries, both being important topics for materials science. (author). 119 refs, 21 figs, 1 tab
Relaxation oscillations and transport barrier dynamics in tokamak edge plasmas
Benkadda, Sadruddin; Beyer, Peter; Fuhr-Chaudier, Guillaume; Garbet, Xavier; Ghendrih, Philippe; Sarazin, Yanick
2004-01-01
Oscillations of turbulent transport of particles and energy in magnetically confined plasmas can be easily observed in simulations of a variety of turbulence models. These oscillations typically involve a mechanism of energy exchange between fluctuations and a poloidal shear flow. This kind of ''predator-prey'' mechanism is found to be not relevant for transport barrier relaxations. In RBM simulations of resistive ballooning turbulence with transport barrier, relaxation oscillations of the latter are observed even in the case of frozen poloidal shear flow. These relaxations are due to a transitory growth of a mode localized at the barrier center. A one-dimensional model for the evolution of such a mode in the presence of a shear flow describes a transitory growth of an initial perturbation. Oscillations in the case of a finite steady-state shear flow are possible due to the coupling of the mode to the dynamics of the pressure profile. (author)
Relaxation phenomena in the high temperature S-1 spheromak
Ono, Y.; Ellis, R.A. Jr.; Janos, A.C.; Levinton, F.M.; Mayo, R.M.; Motley, R.W.; Ueda, Y.; Yamada, M.
1988-06-01
Operation of the S-1 device in a high current density (j/n/sub e/ ≥ 2 /times/ 10 -14 A/center dot/m) regime has created high electron temperature spheromaks (50eV ≤ T/sub e/ ≤ 130eV). The mechanisms and causes of the periodic relaxation events often observed in these hotter spheromak plasmas were made clear. Also, a relationship between the MHD relaxation cycle and confinement characteristics was revealed for the first time. Resistive loss at the outer edge of the plasma causes a departure from the initial force-free minimum-energy Taylor state to a MHD profile unstable to low-n ideal MHD modes; a relaxation event then returns the configuration to nearly a Taylor state. 11 refs., 5 figs
Mechanisms underlying epithelium-dependent relaxation in rat bronchioles
Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf
2010-01-01
This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...... (SK(Ca)) and intermediate (IK(Ca))-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IK(Ca) and SK(Ca)3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries......, respectively. In 5-hydroxytryptamine (1 microM)-contracted bronchioles (828 +/- 20 microm, n = 84) and U46619 (0.03 microM)-contracted arteries (720 +/- 24 microm, n = 68), NS309 (0.001-10 microM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IK...
Stability investigations of relaxing molecular gas flows. Results and perspectives
Grigor'ev, Yurii N.; Ershov, Igor V.
2017-10-01
This article presents results of systematic investigations of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The effect can be a new way for control stability and laminar turbulent transition in aerodynamic flows. The consideration of suppression of inviscid acoustic waves in 2D shear flows is presented. Nonlinear evolution of large-scale vortices and Kelvin — Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both classical linear and nonlinear energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of this article is to show the new dissipative effect, which can be used for flow control and laminarization.
Dielectric relaxations above room temperature in DMPU derived polyaniline film
Mallya, Ashwini N.; Yashavanth Kumar, G.S.; Ranjan, Rajeev; Ramamurthy, Praveen C.
2012-01-01
Dielectric measurements carried out on drop casted from solution of emeraldine base form of polyaniline films in the temperature range 30-300 °C revealed occurrence of two maxima in the loss tangent as a function of temperature. The activation energies corresponding to these two relaxation processes were found to be ∼0.5 eV and ∼1.5 eV. The occurrence of one relaxation peak in the dispersion curve of the imaginary part of the electric modulus suggests the absence of microphase separation in the film. Thermogravimetric analysis and infrared spectroscopic measurements showed that the films retained its integrity up to 300 °C. The dielectric relaxation at higher temperatures with large activation energy of 1.5 eV is attributed to increase in the barrier potential due to decrease in the polymer conjugation as a result of wide amplitude motion of the chain segments well above the glass transition temperature.
Grid Cell Relaxation Effects on the High Frequency Vibration Characteristics
Ryu, Joo-Young; Eom, Kyong-Bo; Jeon, Sang-Youn; Kim, Jae-Ik
2015-01-01
The plate structure of the grid of fuel assembly is always exposed to serious vortex induced vibration. Also, High Frequency flow induced Vibration (HFV) is primarily generated by vortex-shedding effect. When it comes to grid design as a fuel assembly component, HFV should be considered in advance since it is one of the critical factors. Excessive HFV has a possibility of making degradation of the fuel reliability that is directly related to the fuel robustness and operating performance. KEPCO NF (KNF) has performed HFV tests with various grid designs. While studying the HFV characteristics through the HFV tests, it has been observed that HFV amplitudes show different levels according to grid cell relaxation. It means that the testing could give different interpretations due to the condition of grid cell. Since the amount of relaxation is different under operating conditions and environments in a reactor, test specimens should be modified as much as possible to the real state of the fuel. Therefore, in order to consider the grid cell relaxation effects on the HFV tests, it is important to use cell sized or non-cell sized grids. The main focus of this study is to find out how the HFV characteristics such as amplitude and frequency are affected by grid cell relaxation. Three cases of the grid cell sized specimen which is nickel alloy were prepared and tested. Through the comparison of the test results, it could be concluded that HFV amplitudes show decreasing trend according to the grid cell relaxation in the case of nickel alloy grid. It is also possible to expect the tendency of grid cell relaxation of a zirconium alloy grid based on test results
Correlated and uncorrelated heart rate fluctuations during relaxing visualization
Papasimakis, N.; Pallikari, F.
2010-05-01
The heart rate variability (HRV) of healthy subjects practicing relaxing visualization is studied by use of three multiscale analysis techniques: the detrended fluctuation analysis (DFA), the entropy in natural time (ENT) and the average wavelet (AWC) coefficient. The scaling exponent of normal interbeat interval increments exhibits characteristics of the presence of long-range correlations. During relaxing visualization the HRV dynamics change in the sense that two new features emerge independent of each other: a respiration-induced periodicity that often dominates the HRV at short scales (sleep.
Nuclear magnetic relaxation in aqueous praseodymium and europium solutions
Lopez, J.L.; Diaz, D.
1991-01-01
A general theory for the relaxation of the nuclear spin in paramagnetic complexes where the electronic spin is within a slow-movement regime was presented by Benetis et al. and applied to d-group elements (Ni 2+ , Co 2+ ). This paper show the possibility to apply such formalism to f-group elements and it was developed for S=3(Eu 3+ ). A group of magnitudes characterizing the microstructure and dynamics of these solutions is reported with the approximations used. The dispersion of the nuclear magnetic relaxation (NMRD) for the proton of the variable field was also assessed which had a similar behaviour to what was experimentally reported
Nuclear quadrupole relaxation and viscosity in liquid metals
Schirmacher, W.
1976-01-01
It is shown that the nuclear quadrupole relaxation rate due to the molecular motions in liquid metals is related to the shear and bulk viscosity and hence to the absorption coefficient of ultrasound. Application of the 'extended liquid phonon' model of Ortoleva and Nelkin - which is the third of a series of continued-fraction-approximations for the van Hove neutron scattering function - gives a relation to the self diffusion constant. The predictions of the theory concerning the temperature dependence are compared with quadrupole relaxation measurements of Riegel et al. and Kerlin et al. in liquid gallium. Agreement is found only with the data of Riegel et al. (orig.) [de
Multi-region relaxed magnetohydrodynamics with anisotropy and flow
Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)
2014-07-15
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit of our MRxMHD model is the first variational principle for anisotropic plasma equilibria with general flow fields.
Computation of multi-region relaxed magnetohydrodynamic equilibria
Hudson, S. R.; Lazerson, S. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; Nessi, G. von [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)
2012-11-15
We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.
Measuring the equations of state in a relaxed magnetohydrodynamic plasma
Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Brown, M. R.; Schaffner, D. A.
2018-01-01
We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.
Characterization of the transverse relaxation rates in lipid bilayers
Watnick, P.I.; Dea, P.; Chan, S.I.
1990-01-01
The 2H NMR transverse relaxation rates of a deuterated phospholipid bilayer reflect slow motions in the bilayer membrane. A study of dimyristoyl lecithin specifically deuterated at several positions of the hydrocarbon chains indicates that these motions are cooperative and are confined to the hydrocarbon chains of the lipid bilayer. However, lipid head group interactions do play an important role in modulating the properties of the cooperative fluctuations of the hydrocarbon chains (director fluctuations), as evidenced by the effects of various lipid additives on the 2H NMR transverse relaxation rates of the dimyristoyl lecithin bilayer
Magnetization relaxation in spin glasses above transition point
Zajtsev, I.A.; Minakov, A.A.; Galonzka, R.R.
1988-01-01
Magnetization relaxation of Cd 0.6 Zn 0.4 Cr 2 Se 4 and Cd 0.6 Mn 0.4 Te monocrystalline samples with T g =21 K and T g =12 K respectively and magnetic colloid is investigated. It is shown that magnetization inexponential relaxation detected experimentally in spin and dipole glasses is essentially higher than T g temperature transition. It is found that at temperatures higher than T g the essential difference is observed in behaviour of spin glasses with different Z and disorder types
An Electron/Photon/Relaxation Data Library for MCNP6
Hughes, III, H. Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-07
The capabilities of the MCNP6 Monte Carlo code in simulation of electron transport, photon transport, and atomic relaxation have recently been significantly expanded. The enhancements include not only the extension of existing data and methods to lower energies, but also the introduction of new categories of data and methods. Support of these new capabilities has required major additions to and redesign of the associated data tables. In this paper we present the first complete documentation of the contents and format of the new electron-photon-relaxation data library now available with the initial production release of MCNP6.
Fast relaxation transients in a kicked damped oscillator
Urquizu, Merce [Laboratori d' Estudis Geofisics ' Eduard Fontsere' , IEC, Barcelona (Spain); Correig, Antoni M. [Departament d' Astronomical i Meteorologia, Laboratori d' Estudis Geofisics Eduard Fontsere, UB Marti Franques 1, E-08028 Barcelona (Spain) and Laboratori d' Estudis Geofisics ' Eduard Fontsere' , IEC, Barcelona (Spain)]. E-mail: ton.correig@am.ub.es
2007-08-15
Although nonlinear relaxation transients are very common in nature, very few studies are devoted to its characterization, mainly due to its short time duration. In this paper, we present a study about the nature of relaxation transients in a kicked damped oscillator, in which transients are generated in terms of continuous fast changes in the parameters of the system. We have found that transient dynamics can be described, rather than in terms of bifurcation dynamics, in terms of instantaneous stretching factors, which are related to the stability of fixed points of the corresponding stroboscopic maps.
Dispersion of Sound in Dilute Suspensions with Nonlinear Particle Relaxation
Kandula, Max
2010-01-01
The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of Omega(Tau)(sub d), where Omega is the circular frequency, and Tau(sub d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction
Field dependence of the electron spin relaxation in quantum dots.
Calero, Carlos; Chudnovsky, E M; Garanin, D A
2005-10-14
The interaction of the electron spin with local elastic twists due to transverse phonons is studied. The universal dependence of the spin-relaxation rate on the strength and direction of the magnetic field is obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid. The theory contains no unknown parameters and it can be easily tested in experiment. At high magnetic field it provides a parameter-free lower bound on the electron spin relaxation in quantum dots.
Anomalous behavior of secondary dielectric relaxation in polypropylene glycols
Grzybowska, K; Grzybowski, A; Ziolo, J; Rzoska, S J; Paluch, M [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland)
2007-09-19
A surprising slow down in the dielectric secondary {gamma}-relaxation with temperature increasing near the glass transition is confirmed for several polypropylene glycols. The peculiar behavior diminishes as the molecular weight grows. The minimal model (Dyre and Olsen 2003 Phys. Rev. Lett. 91 155703) is applied successfully to describe the temperature dependences of the {gamma}-relaxation times. The minimal model parameters are analyzed for different molecular weights. A molecular explanation of the {gamma}-process anomaly for polypropylene glycols is proposed on the basis of the minimal model prediction.
Introduction to electronic relaxation in solids: mechanisms and measuring techniques
Bonville, P.
1983-01-01
The fluctuations of electronic magnetic moments in solids may be investigated by several techniques, either electronic or nuclear. This paper is an introduction of the most frequently encountered paramagnetic relaxation mechanisms (phonons, conduction electrons, exchange or dipolar interactions) in condensed matter, and to the different techniques used for measuring relaxation frequencies: electronic paramagnetic resonance, nuclear magnetic resonance, Moessbauer spectroscopy, inelastic neutron scattering, measurement of longitudinal ac susceptibility and γ-γ perturbed angular correlations. We mainly focus our attention on individual ionic fluctuation spectra, the majority of the experimental work refered to concerning rare earth systems [fr
Coherence and relaxation in energy transfer processes in condensed phases
Shelby, R.M.
1978-03-01
Investigations of electronic triplet and vibrational energy transfer dynamics and relaxation processes are presented. Emphasis is placed on understanding the role of coherence and interactions which tend to destroy the coherence. In the case of triplet excitons at low temperatures, the importance of coherence in energy migration can be established, and the average coherence parameters can be experimentally determined. In the case of vibrational excitations, both picosecond spectroscopic studies of vibrational relaxation and spontaneous Raman spectroscopy are used to characterize the dynamics and give increased insight into the nature of the mechanisms responsible for vibrational dephasing. The design and operation of the picosecond apparatus used in these experiments is also described
Non-exponential dynamic relaxation in strongly nonequilibrium nonideal plasmas
Morozov, I V; Norman, G E
2003-01-01
Relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics method for nonideal two-component non-degenerate plasmas. Three limiting examples of initial states of strongly nonequilibrium plasma are considered: zero electron velocities, zero ion velocities and zero velocities of both electrons and ions. The initial non-exponential stage, its duration τ nB and subsequent exponential stages of the relaxation process are studied for a wide range of the nonideality parameter and the ion mass
Search Trees with Relaxed Balance and Near-Optimal Height
Fagerberg, Rolf; Jensen, Rune E.; Larsen, Kim Skak
2001-01-01
We introduce a relaxed k-tree, a search tree with relaxed balance and a height bound, when in balance, of (1+epsilon)log_2 n + 1, for any epsilon > 0. The number of nodes involved in rebalancing is O(1/epsilon) per update in the amortized sense, and O(log n/epsilon) in the worst case sense. This ...... constant rebalancing, which is an improvement over the current definition. World Wide Web search engines are possible applications for this line of work....
Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems
Hassan Saberi Nik
2014-01-01
Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.
Stretched exponential relaxation and ac universality in disordered dielectrics
Milovanov, Alexander V.; Rypdal, Kristoffer; Juul Rasmussen, Jens
2007-01-01
This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues are stretc......This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues...
Power-law relaxation in human violent conflicts
Picoli, Sergio; Antonio, Fernando J.; Itami, Andreia S.; Mendes, Renio S.
2017-08-01
We study relaxation patterns of violent conflicts after bursts of activity. Data were obtained from available catalogs on the conflicts in Iraq, Afghanistan and Northern Ireland. We find several examples in each catalog for which the observed relaxation curves can be well described by an asymptotic power-law decay (the analog of the Omori's law in geophysics). The power-law exponents are robust, nearly independent of the conflict. We also discuss the exogenous or endogenous nature of the shocks. Our results suggest that violent conflicts share with earthquakes and other natural and social phenomena a common feature in the dynamics of aftershocks.
Efficient modified Jacobi relaxation for minimizing the energy functional
Park, C.H.; Lee, I.; Chang, K.J.
1993-01-01
We present an efficient scheme of diagonalizing large Hamiltonian matrices in a self-consistent manner. In the framework of the preconditioned conjugate gradient minimization of the energy functional, we replace the modified Jacobi relaxation for preconditioning and use for band-by-band minimization the restricted-block Davidson algorithm, in which only the previous wave functions and the relaxation vectors are included additionally for subspace diagonalization. Our scheme is found to be comparable with the preconditioned conjugate gradient method for both large ordered and disordered Si systems, while it is more rapidly converged for systems with transition-metal elements
Relaxation of nuclear spin on holes in semiconductors
Gr'ncharova, E.I.; Perel', V.I.
1977-01-01
The longitudienal relaxation time T 1 of nuclear spins due to dipole-dipole interaction with holes in semiconductors is calculated. Expressions for T 1 in cubic and uniaxial semiconductors are obtained for non-degenerate and degenerate cases. On the basis of comparison with available experimental data for silicon the agreement with the theoretical results is obtained. It is demonstrated that in uniaxial semiconductors the time of relaxation on holes for a nuclear spin directed along the c axis is considerably greater than that for a spin in the normal direction
Electrical response of relaxing dielectrics compressed by arbitrary stress pulses
Lysne, P.C.
1983-01-01
The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators
Longitudinal relaxation of initially straight flexible and stiff polymers
Dimitrakopoulos, Panagiotis; Dissanayake, Inuka
2004-11-01
The present talk considers the relaxation of a single flexible or stiff polymer chain from an initial straight configuration in a viscous solvent. This problem commonly arises when strong flows are turned off in both industrial and biological applications. The problem is also motivated by recent experiments with single biopolymer molecules relaxing after being fully extended by applied forces as well as by the recent development of micro-devices involving stretched tethered biopolymers. Our results are applicable to a wide array of synthetic polymers such as polyacrylamides, Kevlar and polyesters as well as biopolymers such as DNA, actin filaments, microtubules and MTV. In this talk we discuss the mechanism of the polymer relaxation as was revealed through Brownian Dynamics simulations covering a broad range of time scales and chain stiffness. After the short-time free diffusion, the chain's longitudinal reduction at early intermediate times is shown to constitute a universal behavior for any chain stiffness caused by a quasi-steady relaxation of tensions associated with the deforming action of the Brownian forces. Stiff chains are shown to exhibit a late intermediate-time longitudinal reduction associated with a relaxation of tensions affected by the deforming Brownian and the restoring bending forces. The longitudinal and transverse relaxations are shown to obey different laws, i.e. the chain relaxation is anisotropic at all times. In the talk, we show how from the knowledge of the relaxation mechanism, we can predict and explain the polymer properties including the polymer stress and the solution birefringence. In addition, a generalized stress-optic law is derived valid for any time and chain stiffness. All polymer properties which depend on the polymer length are shown to exhibit two intermediate-time behaviors with the early one to constitute a universal behavior for any chain stiffness. This work was supported in part by the Minta Martin Research Fund. The
Resonant tunneling measurements of size-induced strain relaxation
Akyuz, Can Deniz
Lattice mismatch strain available in such semiconductor heterostructures as Si/SiGe or GaAs/AlGaAs can be employed to alter the electronic and optoelectronic properties of semiconductor structures and devices. When deep submicron structures are fabricated from strained material, strained layers relax by sidewall expansion giving rise to size- and geometry-dependent strain gradients throughout the structure. This thesis describes a novel experimental technique to probe the size-induced strain relaxation by studying the tunneling current characteristics of strained p-type Si/SiGe resonant tunneling diodes. Our current-voltage measurements on submicron strained p-Si/SiGe double- and triple-barrier resonant tunneling structures as a function of device diameter, D, provide experimental access to both the average strain relaxation (which leads to relative shifts in the tunneling current peak positions) and strain gradients (which give rise to a fine structure in the current peaks due to inhomogeneous strain-induced lateral quantization). We find that strain relaxation is significant, with a large fraction of the strain energy relaxed on average in D ≤ 0.25 m m devices. Further, the in-plane potentials that arise from inhomogeneous strain gradients are large. In the D ˜ 0.2 m m devices, the corresponding lateral potentials are approximately parabolic exceeding ˜ 25 meV near the perimeter. These potentials create discrete hole states in double-barrier structures (single well), and coupled hole states in triple-barrier structures (two wells). Our results are in excellent agreement with finite-element strain calculations in which the strained layers are permitted to relax to a state of minimum energy by sidewall expansion. Size-induced strain relaxation will undoubtedly become a serious technological issue once strained devices are scaled down to the deep submicron regime. Interestingly, our calculations predict and our measurements are consistent with the appearance of
Methyl group rotation and nuclear relaxation at low temperatures
Zweers, A.E.
1976-01-01
This thesis deals with the proton spin-lattice relaxation of some methyl group compounds at liquid helium temperatures. In these molecular crystals, an energy difference between the ground and first rotational state of the methyl group occurs, the so-called tunnelling splitting, which is of the order of a few degrees Kelvin. This means that the high temperature approximation is inappropriate for the description of the occupation densities of the two lowest rotational levels. A description of the properties of the methyl group in connection with relaxation
An approach to the magnetic relaxation processes in lithium ferrites
Torres, C.; Gonzalez Arias, A.; Hernandez-Gomez, P.; Francisco, C. de; Alejos, O.; Munoz, J.M.; Zazo, M.
2007-01-01
The relaxation of the initial magnetic permeability has been measured in polycrystalline Li x Fe 3- x O 4 samples, with x ranging from 0 to 0.5, by means of the magnetic disaccommodation (DA) technique. We have found that there is no abrupt transition for a given composition, but there is a progressive modification of the characteristic relaxation processes of magnetite. These results have been interpreted on the basis of the increasing amount of Li ions in the spinel lattice and hence, the resulting modifications on their proximities
Study on properties of stress relaxation for NiTiNb shape memory alloy
Zhou Xuchang; Mo Huaqiang; Zeng Guangting; Shen Baoluo; Huo Yongzhong
2002-01-01
Stress relaxation tests at high temperature are performed for NiTiNb shape memory alloy to obtain the properties of stress relaxation. The relaxation curve fitted with the expression, which is deduced based on the relation between the relaxation and the creep. With the aid of experimental data, relaxation characteristic coefficient and remaining stress ratio are obtained, which characterize the relaxation behavior. The results of the study show that stress relaxation would be more evident with the higher temperature and/or greater initial stress. NiTiNb alloy has good relaxation resistance in the temperature range 300-400 degree C and the initial stress range 260-360 MPa. NiTiNb has better properties to resist relaxation than NiTiFe, therefore it is more applicable to work at high temperature
Vibrational relaxation of CDCl3 induced by infrared laser radiation
Alvarez, R.F.; Azcarate, M.L.; Alonso, E.M.; Dangelo, R.J.; Quel, E.J.
1990-01-01
A CO 2 TEA laser was used to excite mode ν 4 of CDCl 3 (914cm- 1 ). The laser was constructed at the laboratory, tuned in line 10P(48), (10.91 μm). Infrared fluorescence technique was used to determine V-T/R relaxation times for CDCl 3 both pure and in Ar mixtures. (Author). 9 refs., 3 figs
Nuclear relaxation and critical fluctuations in membranes containing cholesterol
McConnell, Harden
2009-04-01
Nuclear resonance frequencies in bilayer membranes depend on lipid composition. Our calculations describe the combined effects of composition fluctuations and diffusion on nuclear relaxation near a miscibility critical point. Both tracer and gradient diffusion are included. The calculations involve correlation functions and a correlation length ξ =ξ0T/(T -Tc), where T -Tc is temperature above the critical temperature and ξ0 is a parameter of molecular length. Several correlation functions are examined, each of which is related in some degree to the Ising model correlation function. These correlation functions are used in the calculation of transverse deuterium relaxation rates in magic angle spinning and quadrupole echo experiments. The calculations are compared with experiments that report maxima in deuterium and proton nuclear relaxation rates at the critical temperature [Veatch et al., Proc. Nat. Acad. Sci. U.S.A. 104, 17650 (2007)]. One Ising-model-related correlation function yields a maximum 1/T2 relaxation rate at the critical temperature for both magic angle spinning and quadrupole echo experiments. The calculated rates at the critical temperature are close to the experimental rates. The rate maxima involve relatively rapid tracer diffusion in a static composition gradient over distances of up to 10-100 nm.
Magnetic relaxation behaviour in Pr_2NiSi_3
Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.
2016-01-01
Time dependent isothemal remanent magnetizatin (IRM) behaviour for polycrystalline compound Pr_2NiSi_3 have been studied below its characteristic temperature. The compound undergoes slow magnetic relaxation with time. Along with competing interaction, non-magnetic atom disorder plays an important role in formation of non-equilibrium glassy like ground state for this compound.
Free volume and relaxation dynamics of polymeric systems
Bartos, J.; Kristiak, J.
1999-01-01
In this contribution use of positron annihilation spectroscopy (PALS) for the study of free volume and relaxation dynamics of some polymeric systems (1,4-polybutadiene, cis-1,4-polyisoprene, polyisobutylene, trans-1,4-polychloropropene, atactic polypropylene and 1,2-polybutadiene) is discussed
Fourier transform distribution function of relaxation times; application and limitations
Boukamp, Bernard A.
2015-01-01
A simple Fourier transform (FT) method is presented for obtaining a Distribution Function of Relaxation Times (DFRT) for electrochemical impedance spectroscopy (EIS) data. By using a special data extension procedure the FT is performed over the range from -∞ ≤ lnω ≤ + ∞. The integration procedure is
Rouse mode analysis of chain relaxation in polymer nanocomposites.
Kalathi, Jagannathan T; Kumar, Sanat K; Rubinstein, Michael; Grest, Gary S
2015-05-28
Large-scale molecular dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, as in the case of a polymer-solvent system. However, for NPs larger than half the entanglement mesh size, the effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Thus, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect.
Model and prediction of stress relaxation of polyurethane fiber
You, Gexin; Wang, Chunyan; Mei, Shuqin; Yang, Bo; Zhou, Xiuwen
2018-03-01
In this study, the effect of small strain (less than 10%) on hydrogen bond (H-bond) and crystallinity of dry-spun polyurethane fiber was investigated with fourier transform infrared spectroscopy and x-ray diffractometer, respectively. The results showed that the H-bond of hard segments hardly broke and its degree of crystallinity scarcely varied below strain of 10%. The fiber stress relaxation behavior at 25 °C under small strain was researched using dynamic mechanical analyzer. The stress relaxation modulus constitutive equation was obtained by transforming the non-linear relationship between stress and time into the linear relationship between stress and strain. The stress relaxation modulus master curve at 25 °C was established in terms of short-term stress relaxation tests at elevated temperatures (35 °C, 45 °C, 65 °C and 75 °C) according to time-temperature superposition principle (TTS) to predict long-term behavior within 353 year.
Energy equation for the analysis of magnetization relaxation to equilibrium
Bertotti, G. [IEN Galileo Ferraris, Materials Department, Strada delle Cacce, 91, I-10135 Torino (Italy)]. E-mail: bertotti@ien.it; Bonin, R. [Dipartimento di Fisica, Politecnico di Torino, I-10129 Torino (Italy); Magni, A. [IEN Galileo Ferraris, Materials Department, Strada delle Cacce, 91, I-10135 Torino (Italy); Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, 20742 (United States); Serpico, C. [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' Federico II' , I-80125 Naples (Italy)
2005-02-01
Magnetization relaxation starting from a generic non-equilibrium state is analytically described. An equation for the energy decay is obtained. On this basis, an approximate expression for the magnetization motion during the ringing process is obtained in terms of Jacobi elliptic functions with time-dependent parameters.
Hard sphere colloidal dispersions: Mechanical relaxation pertaining to thermodynamic forces
Mellema, J.; de Kruif, C.G.; Blom, C.; Vrij, A.
1987-01-01
The complex viscosity of sterically stabilized (hard) silica spheres in cyclohexane has been measured between 80 Hz and 170 kHz with torsion pendulums and a nickel tube resonator. The observed relaxation behaviour can be attributed to the interplay of hydrodynamic and thermodynamic forces. The
Anomalous relaxation in binary mixtures: a dynamic facilitation picture
Moreno, A J; Colmenero, J
2007-01-01
Recent computational investigations of polymeric and non-polymeric binary mixtures have reported anomalous relaxation features when both components exhibit very different mobilities. Anomalous relaxation is characterized by sublinear power-law behaviour for mean-squared displacements, logarithmic decay in dynamic correlators, and a striking concave-to-convex crossover in the latter by tuning the relevant control parameter, in analogy with predictions of the mode-coupling theory for state points close to higher-order transitions. We present Monte Carlo simulations on a coarse-grained model for relaxation in binary mixtures. The liquid structure is substituted by a three-dimensional array of cells. A spin variable is assigned to each cell, representing unexcited and excited local states of a mobility field. Changes in local mobility (spin flip) are permitted according to kinetic constraints determined by the mobilities of the neighbouring cells. We introduce two types of cell ('fast' and 'slow') with very different rates for spin flip. This coarse-grained model qualitatively reproduces the mentioned anomalous relaxation features observed for real binary mixtures
Energy equation for the analysis of magnetization relaxation to equilibrium
Bertotti, G.; Bonin, R.; Magni, A.; Mayergoyz, I.D.; Serpico, C.
2005-01-01
Magnetization relaxation starting from a generic non-equilibrium state is analytically described. An equation for the energy decay is obtained. On this basis, an approximate expression for the magnetization motion during the ringing process is obtained in terms of Jacobi elliptic functions with time-dependent parameters
A model for the generic alpha relaxation in viscous liquids
Dyre, Jeppe
2005-01-01
Dielectric measurements on molecular liquids just above the glass transition indicate that alpha relaxation is characterized by a generic high-frequency loss varying as one over square root of frequency, whereas deviations from this come from one or more low-lying beta processes [Olsen et al., Phys...
Smooth muscle relaxant activity of 3- carbomethoxylpyridine from ...
This was achieved by subjecting the compound to uterine preparation in an organ bath containing a physiological salt solution of De Jalon. The contractions were recorded with an FT03 transducer attached to an Ugo Basil recorder. The study has shown for the first time that 3-carbomethoxylpyridine has a relaxant effect on ...
Deconvolution of astronomical images using SOR with adaptive relaxation.
Vorontsov, S V; Strakhov, V N; Jefferies, S M; Borelli, K J
2011-07-04
We address the potential performance of the successive overrelaxation technique (SOR) in image deconvolution, focusing our attention on the restoration of astronomical images distorted by atmospheric turbulence. SOR is the classical Gauss-Seidel iteration, supplemented with relaxation. As indicated by earlier work, the convergence properties of SOR, and its ultimate performance in the deconvolution of blurred and noisy images, can be made competitive to other iterative techniques, including conjugate gradients, by a proper choice of the relaxation parameter. The question of how to choose the relaxation parameter, however, remained open, and in the practical work one had to rely on experimentation. In this paper, using constructive (rather than exact) arguments, we suggest a simple strategy for choosing the relaxation parameter and for updating its value in consecutive iterations to optimize the performance of the SOR algorithm (and its positivity-constrained version, +SOR) at finite iteration counts. We suggest an extension of the algorithm to the notoriously difficult problem of "blind" deconvolution, where both the true object and the point-spread function have to be recovered from the blurred image. We report the results of numerical inversions with artificial and real data, where the algorithm is compared with techniques based on conjugate gradients. In all of our experiments +SOR provides the highest quality results. In addition +SOR is found to be able to detect moderately small changes in the true object between separate data frames: an important quality for multi-frame blind deconvolution where stationarity of the object is a necesessity.
Comparing Relaxation Programs for Breast Cancer Patients Receiving Radiotherapy
In this study, women with breast cancer who have had surgery and are scheduled to undergo radiation therapy will be randomly assigned to one of two different stretching and relaxation programs or to a control group that will receive usual care.
A Comparison of Meditation with Other Relaxation Techniques.
Fling, Sheila
This paper critiques a negative 1984 review, "Meditation and Somatic Arousal Reduction" (Holmes), on the absolute effectiveness of meditation in reducing somatic arousal and reviews research on the relative effectiveness of meditation compared to techniques such as biofeedback, hypnosis, progressive muscle relaxation, and autogenics in…
Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8*OCB)
Pawlus, S; Mierzwa, M; Paluch, M; Rzoska, S J [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C M, E-mail: michal.mierzwa@us.edu.p [Chemistry Division, Naval Research Laboratory, Code 6120, Washington, DC 20375-5342 (United States)
2010-06-16
The dynamics of isooctylcyanobiphenyl (8*OCB) was characterized using dielectric and mechanical spectroscopies. This isomer of the liquid crystalline octylcyanobiphenyl (8OCB) vitrifies during cooling or on application of pressure, exhibiting the typical features of glass-forming liquids: non-Debye relaxation function, non-Arrhenius temperature dependence of the relaxation times, {tau}{sub {alpha}}, a dynamic crossover at T {approx} 1.6T{sub g}. This crossover is evidenced by changes in the behavior of both the peak shape and the temperature dependence of {tau}{sub {alpha}}. The primary relaxation time at the crossover, 2 ns at ambient pressure, is the smallest value reported to date for any molecular liquid or polymer. Interestingly, at all temperatures below this crossover, {tau}{sub {alpha}}and the dc conductivity remain coupled (i.e., conform to the Debye-Stokes-Einstein relation). Two secondary relaxations are observed in the glassy state, one of which is identified as the Johari-Goldstein process. Unlike the case for 8OCB, no liquid crystalline phase could be attained for 8*OCB, demonstrating that relatively small differences in chemical structure can effect substantial changes in the intermolecular potential.
Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging
Liu, Yuzhu; Knopp, Gregor; Qin, Chaochao; Gerber, Thomas
2015-01-01
Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S 2 to S 1 is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S 2 state to the vibrationally hot S 1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S 1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding
Spin-lattice relaxation of individual solid-state spins
Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.
2018-03-01
Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.
Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging
Liu, Yuzhu, E-mail: yuzhu.liu@gmail.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Knopp, Gregor [Paul Scherrer Institute, Villigen 5232 (Switzerland); Qin, Chaochao [Department of Physics, Henan Normal University, Xinxiang 453007 (China); Gerber, Thomas [Paul Scherrer Institute, Villigen 5232 (Switzerland)
2015-01-13
Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S{sub 2} to S{sub 1} is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S{sub 2} state to the vibrationally hot S{sub 1} state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S{sub 1} state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.
Detection of quadrupole relaxation in an optically pumped cesium vapour
Bernabeu, E; Tornos, J
1985-10-01
The relaxation of quadrupole orientation induced by means of optical pumping in a cesium vapour is experimentally studied, and the results are compared to the theoretical predictions. The optical detection process of this type of orientation is also discussed as a function of the polarization and spectral profile of the detection light.
Beta relaxation of nonpolymeric liquids close to the glass transition
Olsen, Niels Boye; Christensen, Tage Emil; Dyre, Jeppe
2000-01-01
Dielectric beta relaxation in a pyridine-toluene solution is studied close to the glass transition. Loss peak frequency and maximum loss both exhibit thermal hysteresis. An annealing-state-independent parameter involving loss and loss peak frequency is identified. This parameter has a simple...
Experimental validation of waveform relaxation technique for power ...
damping controller drawn our attention to a potential convergence problem which ... method was originally proposed as a method of parallelizing the numerical integration of very. Figure 2 ..... to it the features of an industrial real-time operating system. ..... Odeh F and Ruehli A 1985 Waveform relaxation: Theory and practice.
Hotspot relaxation dynamics in a current-carrying superconductor
Marsili, F.; Stevens, M. J.; Kozorezov, A.; Verma, V. B.; Lambert, Colin; Stern, J. A.; Horansky, R. D.; Dyer, S.; Duff, S.; Pappas, D. P.; Lita, A. E.; Shaw, M. D.; Mirin, R. P.; Nam, S. W.
2016-03-01
We experimentally studied the dynamics of optically excited hotspots in current-carrying WSi superconducting nanowires as a function of bias current, bath temperature, and excitation wavelength. We observed that the hotspot relaxation time depends on bias current, temperature, and wavelength. We explained this effect with a model based on quasiparticle recombination, which provides insight into the quasiparticle dynamics of superconductors.
Design for relaxation during milk expression using biofeedback
Feijs, L.M.G.; Kierkels, J.G.T.; Marcus, A.
2013-01-01
Many women experience difficulty expressing milk using a breast pump. A negative influence upon their success is stress, hampering the milk ejection reflex. We explore biofeedback to enhance relaxation during milk expression. We discuss context, the principles of biofeedback and the design of an
Microstructural stress relaxation mechanics in functionally different tendons.
Screen, H R C; Toorani, S; Shelton, J C
2013-01-01
Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Music preference and relaxation in Taiwanese elderly people.
Lai, Hui-Ling
2004-01-01
The purpose of this study was to identify individual musical preferences, investigate the relationship between an individual's musical preferences and demographic variables, and examine the effects of the selected music on relaxation. Fifty healthy subjects (mean age 65.7; SD = 5.2) from the community participated in the study. Musical preference interviews and relaxed responses to selected music were administered to the study participants individually in the investigator's office. Participants' heart rates, respiratory rates, and finger temperature were measured before they listened to the introductory tape and again after they listened to the selected music for 20 minutes. The participants were asked to judge how much they liked the 6 types of soothing music and were asked to rate it on a scale. The results indicated that Chinese orchestral music was the preferred choice, followed by harp, piano, synthesizer, orchestral, and finally slow jazz. There were no differences among types of music on relaxation, and no significant differences between musical preference and any demographic variables. The heart rates and respiratory rates of the participants were significantly lower (t = 21.24, P music. These findings suggest that soothing music selections have beneficial effects on relaxation in community-residing elderly people.
BREATHING EXERCISE RELAXATION INCREASE PHSYCOLOGICAL RESPONSE PRESCHOOL CHILDREN
Yuni Sufyanti Arief
2017-07-01
Full Text Available Introduction: Being hospitalize will be made the children become stress. Hospitalization response of the child particularly is afraid sense regard to painfull procedure and increase to attack the invasive procedure. The aimed of this study was to describe the influence of breathing exercise relaxation technique regarded to phsycological receiving responses in the preeliminary school chidren while they were receiving invasive procedure. Method: A quasy experimental purposive sampling design was used in this study. There were 20 respondents who met to the inclusion criteria. The independent variable was the breathing exercise relaxation technique and the dependent variable was phsycological receiving responses. Data for phsylogical response were collected by using observation form then analyzed by using Wilcoxon Signed Rank Test and Mann Whitney U Test with significance level α≤0.05. Result : The result showed that breathing exercise relaxation technique had significance influence to phsycological response (p=0.000. Discussion: It,s can be concluded that breathing exercise relaxation technique has an effect to increase pshycological response in preeliminary school children who received invasive procedure.
Magnetization relaxation in (Ga, Mn)As ferromagnetic semiconductors
Sinova, J.; Jungwirth, Tomáš; Liu, X.; Sasaki, Y.; Furdyna, J. K.; Atkinson, W. A.; MacDonald, A. H.
2004-01-01
Roč. 69, č. 8 (2004), 085209/1-085209/6 ISSN 0163-1829 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetization relaxation * ferromagnetic semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004
Magnon interaction and relaxation in yttrium iron garnet
Mukimov, K.M.; Jumaev, M.R.; Kenjaev, Z.M.
2007-01-01
Full text: Magnon interaction and relaxation are the fundamental characteristics describing the response of any system to an external AC field. Almost all experiments aimed at magnon excitation have been carried out in the microwave frequency range where only magnons with energies 0.1 - 5 K can be excited. Nevertheless, all magnons with energy lower or order of the temperature are involved in the processes of low energy magnon relaxation. The present study deals with the interactions of magnons in YIG in thermodynamic equilibrium at temperatures up to 300 K. We consider the exchange and magnetic - dipole terms in the YIG Hamiltonian and a term due to the local uniaxial crystallographic anisotropy, find the corresponding amplitudes of three - and four - magnon process, and calculate the relaxation rate and the correction to the ferromagnon frequency to the first order in the interaction. This correction is positive, in contrast to the case of ferromagnets, and it is proportional to at temperatures up to, in agreement with experiment. The exchange - relaxation rate of the magnons is found as a function of the wave vector and temperature. In the region this rate agrees with the familiar expression for ferromagnets. At higher temperatures, at which the main contribution to the exchange damping is from the magnons of the linear part of the spectrum, the temperature dependence of the damping becomes stronger. (authors)
Comparing the influence of relaxation training and consumption of ...
Background: Sleep disturbance is one of the symptoms of menopause, which occurs due to a decrease in sex hormones and dramatically affects the quality of life. This study was designed to compare the effects of relaxation and Valerian on insomnia of menopause women. Methods: The study was a randomized clinical ...
Molecular dynamics study on the relaxation properties of bilayered ...
2017-08-31
Aug 31, 2017 ... Abstract. The influence of defects on the relaxation properties of bilayered graphene (BLG) has been studied by molecular dynamics simulation in nanometre sizes. Type and position of defects were taken into account in the calculated model. The results show that great changes begin to occur in the ...
Relaxation path of metastable nanoclusters in oxide dispersion strengthened materials
Ribis, J., E-mail: joel.ribis@cea.fr [DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Thual, M.A. [LLB, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette (France); Guilbert, T.; Carlan, Y. de [DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legris, A. [UMET, CNRS/UMR 8207, Bât. C6, Univ. Lille 1, 59655 Villeneuve d’Ascq (France)
2017-02-15
ODS steels are a promising class of structural materials for sodium cooled fast reactor application. The ultra-high density of the strengthening nanoclusters dispersed within the ferritic matrix is responsible of the excellent creep properties of the alloy. Fine characterization of the nanoclusters has been conducted on a Fe-14Cr-0.3Ti-0.3Y{sub 2}O{sub 3} ODS material using High Resolution and Energy Filtered Transmission Electron Microscopy. The nanoclusters exhibit a cubic symmetry possibly identified as f.c.c and display a non-equilibrium YTiCrO chemical composition thought to be stabilized by a vacancy supersaturation. These nanoclusters undergo relaxation towards the Y{sub 2}Ti{sub 2}O{sub 7}-like state as they grow. A Cr shell is observed around the relaxed nano-oxides, this size-dependent shell may form after the release of Cr by the particles. The relaxation energy barrier appears to be higher for the smaller particles probably owing to a volume/surface ratio effect in reason to the full coherency of the nanoclusters. - Highlights: • The nanoclusters display a f.c.c. cubic symmetry and a non-equilibrium YTiCrO chemical composition. • During thermal annealing the coherent nanocluster transform into semi-coherent pyrochlore particles. • A Cr ring is observed around the relaxed pyrochlore type particles.
Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids
Sachleben, Joseph Robert [Lawrence Berkeley Lab., CA (United States); California Univ., Berkeley, CA (United States). Dept. of Chemistry
1993-09-01
Semiconductor nanocrystals, small biomolecules, and ^{13}C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution ^{1}H and ^{13}C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10^{-8} s^{-1}. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O_{2} and ultraviolet. A method for measuring ^{14}N-^{1}H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T_{1} and T_{2} experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in ^{13}C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.
Is glutamate involved in transient lower esophageal sphincter relaxations?
Hirsch, D. P.; Tytgat, G. N. J.; Boeckxstaens, G. E. E.
2002-01-01
Glutamate is an important excitatory amino acid and plays a major role in brain stem neurotransmission. Although the effect of glutamate on esophaoreal motility is well studied, its role in the triggering of transient lower esophageal sphincter relaxations (TLESRs) remains to be determined.
A cognitive-relaxation-visualisation intervention for anxiety in ...
A cognitive-relaxation-visualisation intervention for anxiety in women with breast cancer. ... A Solomon four group design was used for the pre-diagnosis group and a pre-test - post-test control group design was utilised for the post-diagnosis group. The IPAT Anxiety Scale was used to measure the variables of overt and ...
Effect of Progressive Muscle Relaxation on the Adverse ...
of PCOS patients and their influence on the cardiovascular risk factors. ... and relaxation therapies may be recommended as an adjuvant therapy, to tilt the autonomic balance to .... The fall in systolic pressure was taken as the result of orthostatic tolerance test (OTT). ... period. Group B (control group) received treatment only.
Relaxation model of radiation-induced conductivity in polymers
Zhutayeva, Yu. R.; Khatipov, S. A.
1999-05-01
The paper suggests a relaxation model of radiation-induced conductivity (RIC) in polymers. According to the model, the transfer of charges generated in the polymer volume by ionizing radiation takes place with the participation of molecular relaxation processes. The mechanism of electron transport consists in the transfer of the charge directly between traps when they draw close to one another due to the rotation of macromolecule segments. The numerical solutions of the corresponding kinetic equations for different distribution functions Q( τ) of the times of molecular relaxation and for different functions of the probability P( τ, τ') of charge transfer in the `overlapping' regions of the diffusion spheres of the segments are analyzed. The relaxation model provides an explanation of the non-Arrhenius behavior of the RIC temperature dependence, the power dependence of RIC on the dose rate with a power index in the interval 0.5-1.0, the appearance of maxima in the curves of the RIC temporal dependence and their irreversible character in the region of large dose rates (more than 1 Gy/s). The model can be used for interpreting polymer RIC in conditions of kinetic mobility of macromolecules.
Picosecond relaxation of X-ray excited GaAs
Tkachenko, V.; Medvedev, Nikita; Lipp, V.; Ziaja, B.
2017-01-01
Roč. 24, Sep (2017), s. 15-21 ISSN 1574-1818 Institutional support: RVO:68378271 Keywords : GaAS * X-ray excitation * picosecond relaxation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.908, year: 2016
The Effect of Phonon Relaxation Process on Absorption Spectra ...
In this work we study the effect of phonon relaxation process on the absorption spectra using the Green's function technique. The Green's function technique which is widely used in many particle problems is used to solve the Kubo formula which describes the optical absorption process. Finally the configurational diagram is ...
Influence of relaxation times on the Bloch-Siegert shift
Cao Long Van
1981-01-01
A new method for calculations of Bloch-Siegert shifts in resonances between excited states with the inclusion of relaxation times is given. It will be shown that in this case the definition of the resonance given by I. Bialynicka-Birula is in agreement with the criterion defining the resonance used by D.A. Andrews and G. Newton. (author)
Treatment of Nightmares via Relaxation and Desensitization: A Controlled Evaluation.
Miller, William R.; DiPilato, Marina
1983-01-01
Investigated the role of relaxation training as a component of desensitization to nightmares in adults (N=32). Results showed an 80 percent reduction in nightmares reported by 20 clients, of whom 12 reported total elimination of symptoms at 25-week follow-up, suggesting the effectiveness of a behavioral approach in treating nightmares. (LLL)
Hastelloy X fuel element creep relaxation and residual effects
Castle, R.A.
1971-01-01
A worst case, seven element, asymmetric fuel, thermal environment was assumed and a creep relaxation analysis generated. The fuel element clad is .020 inch Hastelloy X. The contact load decreased from 11.6 pounds to 5.87 pounds in 100,000 hours. The residual stresses were then computed for various shutdown times. (U.S.)
Creep and stress relaxation behavior of two soft denture liners.
Salloum, Alaa'a M
2014-03-01
Numerous investigators stated the indications of soft denture lining materials; but no one determined the indications of these materials according to their chemical structure. The purpose of this investigation was to evaluate the viscoelastic properties of acrylic and silicon lining materials. This study investigated and compared viscoelastic properties of two resilient denture lining materials. Tested materials were laboratory processed; one of them was silicone-based liner product (Molloplast-B), and the other was plasticized acrylic resin (Vertex™ Soft). Twenty cylindrical specimens (10-20 mm in length, 11.55 mm in diameter) were fabricated in an aluminum mold from each material for creep and stress relaxation testing (the study of viscoelastic properties). Tests were performed by using the universal testing machine DY-34. Collected data were analyzed with t test statistics for statistically significant differences at the 95 % confidence level. There was a clear difference in creep and stress relaxation behavior between acrylic and silicone liners. Statistical study of Young's moduli illustrated that Vertex™ Soft was softer than Molloplast-B. On the other hand, the results explained that the recovery of silicone material was better than of acrylic one. The creep test revealed that the plasticized acrylic resin lining material exhibited considerable creep, whereas silicone-based liner exhibited elastic behavior. Besides, the stress relaxation test showed that relaxation of the plasticized acrylic resin material was bigger than of the silicone-based liner.
Stretched exponential relaxation in molecular and electronic glasses
Phillips, J. C.
1996-09-01
Stretched exponential relaxation, 0034-4885/59/9/003/img1, fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where 0034-4885/59/9/003/img2 is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to 0034-4885/59/9/003/img3 even at 0034-4885/59/9/003/img4, a glass transition temperature. We show that for molecular relaxation 0034-4885/59/9/003/img5 can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, 0034-4885/59/9/003/img6 for short-range forces, and 0034-4885/59/9/003/img7 for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz - Kac - Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips - Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S( Q,t) directly, and the traditional linear response measurements which span the range from 0034-4885/59/9/003/img8 to s, as collected and analysed phenomenologically by Angell, Ngai, Böhmer and others. The electronic materials discussed include a-Si:H, granular 0034-4885/59/9/003/img9, semiconductor nanocrystallites, charge density waves in 0034-4885/59/9/003/img10, spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van
Stretched exponential relaxation in molecular and electronic glasses
Phillips, J.C.
1996-01-01
Stretched exponential relaxation, exp[-(t/τ) β ], fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where β is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to 0 g , a glass transition temperature. We show that for molecular relaxation β(T g ) can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, β SR =3/5 for short-range forces, and β K =3/7 for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz-Kac-Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips-Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S(Q, t) directly, and the traditional linear response measurements which span the range from μs to s, as collected and analysed phenomenologically by Angell, Ngai, Boehmer and others. The electronic materials discussed include a-Si:H, granular C 60 , semiconductor nanocrystallites, charge density waves in TaS 3 , spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van der Waals supercooled liquids and glasses, orientational glasses, water, fused salts, and heme proteins. In the intrinsic cases the theory of β(T g ) is often accurate to 2%, which
[Central muscle relaxant activities of 2-methyl-3-aminopropiophenone derivatives].
Kontani, H; Mano, A; Koshiura, R; Yamazaki, M; Shimada, Y; Oshita, M; Morikawa, K; Kato, H; Ito, Y
1987-02-01
In this experiment, we synthetized new 2-methyl-3-aminopropiophenone (MP) derivatives, whose structure is known to have central muscle relaxant activities, and quinolizidine and indan . tetralin derivatives derived from MP by cyclization, and we investigated the central muscle relaxant activity. Among the quinolizidine derivatives, there was a very strong central depressant agent, trans (3H, 9aH)-3-(p-chloro) benzoyl-quinolizidine (HSR-740), and among the indan . tetralin derivatives, there was an excitant agents, trans (1H, 2H)-5-methoxy-3, 3-dimethyl-2-piperidinomethyl indan-1-ol (HSR-719). From the results, these derivatives were not considered to be adequate for central muscle relaxant. Among the MP derivatives, (4'-chloro-2'-methoxy-3-piperidino) propiophenone HCl (HSR-733) and (4'-ethyl-2-methyl-3-pyrrolidino) propiophenone HCl (HSR-770) strongly inhibited the cooperative movement in the rotating rod method using mice, and it exerted almost the same depressant activity on the cross extensor reflex using alpha-chloralose anesthetized rats. However, the inhibitory effects of HSR-733 on the anemic decerebrate rigidity and the rigidity induced by intracollicular decerebration in rats were weaker than those of HSR-770 and eperisone. In spinal cats, at a low dose (5 mg/kg, i.v.), HSR-733 depressed monosynaptic and dorsal root reflex potentials as compared with polysynaptic reflex potentials, and inhibitory effects of HSR-733 on these three reflex potentials were more potent than those of eperisone and HSR-770. Although HSR-770 acts on the spinal cord and supraspinal level on which eperisone has been reported to act, HSR-733 may mainly act on the spinal cord. These results indicate that the MP derivative with a 2-methyl group may be suitable as a central muscle relaxant. HSR-770, which has equipotent muscle relaxant activity to eperisone, exerted strong inhibitory effects on oxotremorine-induced tremor and weak inhibitory effects on spontaneous motor activity in the
AC relaxation in the iron(8) molecular magnet
Rose, Geordie
2000-11-01
We investigate the low energy magnetic relaxation characteristics of the ``iron eight'' (Fe8) molecular magnet. Each molecule in this material contains a cluster of eight Fe 3+ ions surrounded by organic ligands. The molecules arrange themselves into a regular lattice with triclinic symmetry. At sufficiently low energies, the electronic spins of the Fe3+ ions lock together into a ``quantum rotator'' with spin S = 10. We derive a low energy effective Hamiltonian for this system, valid for temperatures less than Tc ~ 360 mK , where Tc is the temperature at which the Fe8 system crosses over into a ``quantum regime'' where relaxation characteristics become temperature independent. We show that in this regime the dominant environmental coupling is to the environmental spin bath in the molecule. We show how to explicitly calculate these couplings, given crystallographic information about the molecule, and do this for Fe8. We use this information to calculate the linewidth, topological decoherence and orthogonality blocking parameters. All of these quantities are shown to exhibit an isotope effect. We demonstrate that orthogonality blocking in Fe8 is significant and suppresses coherent tunneling. We then use our low energy effective Hamiltonian to calculate the single-molecule relaxation rate in the presence of an external magnetic field with both AC and DC components by solving the Landau-Zener problem in the presence of a nuclear spin bath. Both sawtooth and sinusoidal AC fields are analyzed. This single-molecule relaxation rate is then used as input into a master equation in order to take into account the many-molecule nature of the full system. Our results are then compared to quantum regime relaxation experiments performed on the Fe8 system.
Relaxation Dynamics of Nanoparticle-Tethered Polymer Chains
Kim, Sung A
2015-09-08
© 2015 American Chemical Society. Relaxation dynamics of nanoparticle-tethered cis-1,4-polyisoprene (PI) are investigated using dielectric spectroscopy and rheometry. A model system composed of polymer chains densely grafted to spherical SiO2 nanoparticles to form self-suspended suspensions facilitates detailed studies of slow global chain and fast segmental mode dynamics under surface and geometrical confinement-from experiments performed in bulk materials. We report that unentangled polymer molecules tethered to nanoparticles relax far more slowly than their tethered entangled counterparts. Specifically, at fixed grafting density we find, counterintuitively, that increasing the tethered polymer molecular weight up to values close to the entanglement molecular weight speeds up chain relaxation dynamics. Decreasing the polymer grafting density for a fixed molecular weight has the opposite effect: it dramatically slows down chain relaxation, increases interchain coupling, and leads to a transition in rheological response from simple fluid behavior to viscoelastic fluid behavior for tethered PI chains that are unentangled by conventional measures. Increasing the measurement temperature produces an even stronger elastic response and speeds up molecular relaxation at a rate that decreases with grafting density and molecular weight. These observations are discussed in terms of chain confinement driven by crowding between particles and by the existence of an entropic attractive force produced by the space-filling constraint on individual chains in a self-suspended material. Our results indicate that the entropic force between densely grafted polymer molecules couples motions of individual chains in an analogous manner to reversible cross-links in associating polymers.
Vogel-Fulcher dependence of relaxation rates in a nematic monomer and elastomer
Shenoy, D.; Filippov, S.; Aliev, F.; Keller, P.; Thomsen, D.; Ratna, B.
2000-12-01
Dielectric relaxation spectroscopy is used to study the relaxation processes in a nematic monomer and the corresponding cross-linked polymer nematic liquid crystal (elastomer). In the frequency window 10 mHz to 2 GHz the monomer liquid crystal shows a single relaxation whereas the polymer exhibits three relaxation processes, two of which are quantitatively analyzed. The temperature dependence of relaxation times in both the monomer and polymer follows a Vogel-Fulcher behavior. The relaxation processes are identified with specific molecular motions and activation energies are calculated in a linear approximation for comparison with literature data.
Csach, K; Haruyama, O; Kasardova, A; Ocelik, Vaclav
1997-01-01
The structural relaxation of amorphous as-quenched Fe40Ni40B20 sample was investigated during isothermal annealing at temperatures close to 400 degrees C by: (i) the residual electrical resistance measured at liquid N-2 temperature; (ii) the in-situ electrical resistance; and (iii) the length
Cross Relaxation in rare-earth-doped oxyfluoride glasses
Lakshminarayana, G.; Weis, Eric M. [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lira, A.C. [Unidad Académica Profesional Nezahualcóyotl, Universidad Autónoma del Estado de México, Av. Bordo de Xochiaca s/n, Nezahualcóyotl, Estado de Mexico 57000, México (Mexico); Caldiño, Ulises [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, México D.F. 09340 (Mexico); Williams, Darrick J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hehlen, Markus P., E-mail: hehlen@lanl.gov [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2013-07-15
The excited-state relaxation dynamics of Tb{sup 3+}, Sm{sup 3+}, and Eu{sup 3+} doped into a 50SiO{sub 2}–20Al{sub 2}O{sub 3}–10Na{sub 2}O–20LaF{sub 3} (mol%) oxyfluoride glass are studied. Multiphonon relaxation of the primary emitting states in Tb{sup 3+} ({sup 5}D{sub 3} and {sup 5}D{sub 4}), Sm{sup 3+} ({sup 4}G{sub 5/2}), and Eu{sup 3+} ({sup 5}D{sub 0}) was found to be negligible in the present host. The relaxation of Tb{sup 3+} ({sup 5}D{sub 4}) and Eu{sup 3+} ({sup 5}D{sub 0}) is dominated by radiative decay. For Tb{sup 3+} ({sup 5}D{sub 3}) and Sm{sup 3+} ({sup 4}G{sub 5/2}) in contrast, radiative relaxation is in competition with several non-radiative cross-relaxation processes. This competition was found to be particularly pronounced for the {sup 5}D{sub 3} excited state in Tb{sup 3+}, where a 124-fold decrease of the ({sup 5}D{sub 3}→{sup 7}F{sub 5})/({sup 5}D{sub 4}→{sup 7}F{sub 5}) emission intensity ratio and a ∼10-fold shortening of the {sup 5}D{sub 3} lifetime was observed upon increasing the Tb{sup 3+} concentration from 0.01% to 1%. The Tb{sup 3+} concentration dependence of {sup 5}D{sub 3} also points to some degree of ion aggregation in the “as quenched” glasses. A Judd–Ofelt intensity analysis was performed for Sm{sup 3+} and used to estimate the relative magnitude of {sup 4}G{sub 5/2} cross-relaxation processes. Four cross-relaxation processes in particular were identified to account for 92% of the total {sup 4}G{sub 5/2} non-radiative decay, and a 11% quantum efficiency was estimated for the {sup 4}G{sub 5/2} excited state. Non-exponentiality in the {sup 5}D{sub 0} decay of Eu{sup 3+} is evidence for several Eu{sup 3+} coordination environments in the glass host that manifest in different {sup 5}D{sub 0} decay constants because of the hypersensitivity of the {sup 5}D{sub 0}→{sup 7}F{sub 2} transition. -- Highlights: ► Tb{sup 3+}, Sm{sup 3+}, and Eu{sup 3+} were doped into a LaF{sub 3}-rich oxyfluoride glass. ► The
Influence of the storage conditions on prestressing steel relaxation losses
Suárez, F.
2012-12-01
Full Text Available Stress relaxation losses on active reinforcement have significant impact on prestressed concrete structures. This is why relaxation tests are carried out on prestressing steel wires and strands after being manufactured. Then, these materials are coiled and stored for a long-term period, sometimes in excess of one year. The influence of these operations, carried out after manufacturing, is usually neglected. Nevertheless, some manufacturers and contractors have noticed that, sometimes, when relaxation tests are carried out after a long-term storage, the relaxation losses found are higher than those measured immediately after manufacturing. In this work, lab tests are performed to check the influence of the coiling radius and the period of storage on the relaxation test. In addition to this, an analytical model is presented to predict the results of a relaxation test carried out on a wire coiled and stored for a long-term period. This model explains the evolution on the cross-sectional stress profile along the coiling-storing-uncoiling process, as well as the influence of the residual stresses on it.
La pérdida de tensión por relajación en las armaduras activas afecta de forma importante a las estructuras de hormigón pretensado. Por ello se realizan ensayos de relajación de los alambres y cordones de pretensado tras su fabricación. Después, el material es enrollado y almacenado durante periodos que en ocasiones pueden superar el año de duración. Generalmente se desprecia la influencia que estas operaciones posteriores a la fabricación pueden tener sobre el material. Sin embargo, diversos fabricantes y suministradores han constatado experimentalmente que, en ocasiones, el material almacenado durante un periodo prolongado presenta pérdidas de relajación mayores que inmediatamente tras su fabricación. En este trabajo se realizan ensayos de laboratorio para comprobar la influencia que el radio de enrollamiento y el periodo de
The effects of some parameters on the calculated 1H NMR relaxation times of cell water
Koivula, A.; Suominen, K.; Kiviniitty, K.
1976-01-01
The effect of some parameters on the longitudinal and transverse relaxation times is calculated and a comparison between the calculated relaxation times with the results of different measurements is made. (M.S.)
Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem
Lellmann, Jan; Lenzen, Frank; Schnö rr, Christoph
2012-01-01
We consider a variational convex relaxation of a class of optimal partitioning and multiclass labeling problems, which has recently proven quite successful and can be seen as a continuous analogue of Linear Programming (LP) relaxation methods
Axisymmetric force-free states and relaxation of a spheroidal spheromak
Throumoulopoulos, G.N.; Pantis, G.
1990-01-01
Axisymmetric force-free equilibrium eigenstates for a prolate as well as an oblate spheroidal Spheromak with arbitrary elongation are obtained. In the framework of the Woltjer-Taylor relaxation theory the relaxed states are also identified. A simple hypothesis for the relaxation process is introduced, which implies that the plasma relaxes from multitoroidal formations to a singly toroidal configuration, in qualitative agreement with experimental results. (author)
Axisymmetric force-free states and relaxation of a spheroidal spheromak
Throumoulopoulos, G.N.; Pantis, G.
1990-01-01
Axisymmetric force-free equilibrium eigenstates for a prolate as well as an oblate spheroidal spheromak with arbitrary elongation are obtained. In the framework of the Woltjer-Taylor relaxation theory the relaxed states are also identified. A simple hypothesis for the relaxation process is introduced which implies that the plasma relaxes from multitoroidal formations to a singly toroidal configuration in qualitative agreement with experimental results. (Author)
Image Relaxation Matching Based on Feature Points for DSM Generation
ZHENG Shunyi; ZHANG Zuxun; ZHANG Jianqing
2004-01-01
In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can be considered as an extention of regular grid point based matching. It avoids the shortcome of grid point based matching. For example, with this method, we can avoid low or even no texture area where errors frequently appear in cross correlaton matching. In the mean while, it makes full use of some mature techniques such as probability relaxation, image pyramid and the like which have already been successfully used in grid point matching process. Application of the technique to DEM generaton in different regions proved that it is more reasonable and reliable.
Photoconductivity relaxation and electron transport in macroporous silicon structures
L.A. Karachevtseva
2017-12-01
Full Text Available Kinetics and temperature dependence of photoconductivity were measured in macroporous silicon at 80…300 K after light illumination with the wavelength 0.9 μm. The influence of mechanisms of the charge carrier transport through the macropore surface barrier on the kinetics of photoconductivity at various temperatures was investigated. The kinetics of photoconductivity distribution in macroporous silicon and Si substrate has been calculated using the finite-difference time-domain method. The maximum of photoconductivity has been found both in the layer of macroporous silicon and in the monocrystalline substrate. The kinetics of photoconductivity distribution in macroporous silicon showed rapid relaxation of the photoconductivity maximum in the layer of macroporous silicon and slow relaxation of it in the monocrystalline substrate.
Exercise and relaxation intervention for patients with advanced lung cancer
Adamsen, Lis; Stage, M; Laursen, J
2012-01-01
Lung cancer patients experience loss of physical capacity, dyspnea, pain, reduced energy and psychological distress. The aim of this study was to explore feasibility, health benefits and barriers of exercise in former sedentary patients with advanced stage lung cancer, non-small cell lung cancer...... (NSCLC) (III-IV) and small cell lung cancer (SCLC) (ED), undergoing chemotherapy. The intervention consisted of a hospital-based, supervised, group exercise and relaxation program comprising resistance-, cardiovascular- and relaxation training 4 h weekly, 6 weeks, and a concurrent unsupervised home......-based exercise program. An explorative study using individual semi-structured interviews (n=15) and one focus group interview (n=8) was conducted among the participants. Throughout the intervention the patients experienced increased muscle strength, improvement in wellbeing, breathlessness and energy. The group...
Confinement sensitivity in quantum dot singlet-triplet relaxation
Wesslén, C. J.; Lindroth, E.
2017-11-01
Spin-orbit mediated phonon relaxation in a two-dimensional quantum dot is investigated using different confining potentials. Elliptical harmonic oscillator and cylindrical well results are compared to each other in the case of a two-electron GaAs quantum dot subjected to a tilted magnetic field. The lowest energy set of two-body singlet and triplet states are calculated including spin-orbit and magnetic effects. These are used to calculate the phonon induced transition rate from the excited triplet to the ground state singlet for magnetic fields up to where the states cross. The roll of the cubic Dresselhaus effect, which is found to be much more important than previously assumed, and the positioning of ‘spin hot-spots’ are discussed and relaxation rates for a few different systems are exhibited.
H-functions and mixing in violent relaxation
Tremaine, S.; Henon, M.; Lynden-Bell, D.
1986-01-01
An H-function is any function of the phase space distribution function F(x,v) which is non-decreasing with time. In collisionless systems Boltzmann's H-function - integral F log F dx dv is only one of a variety of H-functions of the form - integral C(F) dx dv, where C is any convex function. Every equilibrium stellar system in which the distribution function is a decreasing function of the energy alone is a stationary point of some H-function of this form. During violent relaxation, all such H-functions must increase, and the distribution function is said to become 'more mixed'. A simple criterion is given for determining whether a given distribution function is more mixed than another; this criterion is used to show that a violently relaxed galaxy resembles observed elliptical galaxies only if the initial state is cold or clumpy. (author)
Brownian rotational relaxation and power absorption in magnetite nanoparticles
Goya, G.F.; Fernandez-Pacheco, R.; Arruebo, M.; Cassinelli, N.; Ibarra, M.R.
2007-01-01
We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times τ were measured through the imaginary susceptibility component χ ' '(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe 3 O 4 nanoparticles, whereas a second Fe 3 O 4 -based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles
Brownian rotational relaxation and power absorption in magnetite nanoparticles
Goya, G.F. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)]. E-mail: goya@unizar.es; Fernandez-Pacheco, R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Arruebo, M. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Cassinelli, N. [Electronics Division, Bauer and Associates, Buenos Aires (Argentina); Facultad de Ingenieria, UNLP (Argentina); Ibarra, M.R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)
2007-09-15
We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times {tau} were measured through the imaginary susceptibility component {chi}{sup '}'(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe{sub 3}O{sub 4} nanoparticles, whereas a second Fe{sub 3}O{sub 4}-based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles.
On black hole thermodynamics with a momentum relaxation
Park, Chanyong
2016-01-01
We investigate black hole thermodynamics involving a scalar hair which is dual to a momentum relaxation of the dual field theory. This black hole geometry is able to be classified by two parameters. One is a momentum relaxation and the other is a mass density of another matter localized at the center. Even though all parameters are continuous, there exists a specific point where its thermodynamic interpretation is not continuously connected to the one defined in the other parameter regime. The similar feature also appears in a topological AdS black hole. In this work, we show why such an unusual thermodynamic feature happens and provide a unified way to understand such an exotic black hole thermodynamically in the entire parameter range. (paper)
Hyperpolarized nanodiamond with long spin-relaxation times
Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.
2015-10-01
The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.
Kramers degeneracy and relaxation in vanadium, niobium and tantalum clusters
Diaz-Bachs, A.; Katsnelson, M. I.; Kirilyuk, A.
2018-04-01
In this work we use magnetic deflection of V, Nb, and Ta atomic clusters to measure their magnetic moments. While only a few of the clusters show weak magnetism, all odd-numbered clusters deflect due to the presence of a single unpaired electron. Surprisingly, for the majority of V and Nb clusters an atomic-like behavior is found, which is a direct indication of the absence of spin–lattice interaction. This is in agreement with Kramers degeneracy theorem for systems with a half-integer spin. This purely quantum phenomenon is surprisingly observed for large systems of more than 20 atoms, and also indicates various quantum relaxation processes, via Raman two-phonon and Orbach high-spin mechanisms. In heavier, Ta clusters, the relaxation is always present, probably due to larger masses and thus lower phonon energies, as well as increased spin–orbit coupling.
Dynamic relaxation method in analysis of reinforced concrete bent elements
Anna Szcześniak
2015-12-01
Full Text Available The paper presents a method for the analysis of nonlinear behaviour of reinforced concrete bent elements subjected to short-term static load. The considerations in the range of modelling of deformation processes of reinforced concrete element were carried out. The method of structure effort analysis was developed using the finite difference method. The Dynamic Relaxation Method, which — after introduction of critical damping — allows for description of the static behaviour of a structural element, was used to solve the system of nonlinear equilibrium equations. In order to increase the method effectiveness in the range of the post-critical analysis, the Arc Length Parameter on the equilibrium path was introduced into the computational procedure.[b]Keywords[/b]: reinforced concrete elements, physical nonlinearity, geometrical nonlinearity, dynamic relaxation method, arc-length method
Relaxation labelling-the principle of least disturbance
Blake, A
1983-07-01
Relaxation labelling may be an important method of programming parallel array processors. Work on image recognition systems makes it clear that extraction of primitive descriptions of objects from image data is a processing bottleneck. Badly needed processing power could be obtained from special hardware but the parallel array processor is a flexible source of power because it is programmable, and should become cheaper as it continues to be developed. Parallel array processors perform local operations like convolution and thresholding very efficiently. However, extraction of lines and curves, as primitives for object description, involve operations which are not local, because the edges are long and must be examined over their entire length. Relaxation labelling achieves a global effect by repeated application of a local operation. The way of deriving that local operation from a problem specification, and the relationship to constrained optimisation, is the subject of the paper. 18 references.
Suppressing relaxation in superconducting qubits by quasiparticle pumping.
Gustavsson, Simon; Yan, Fei; Catelani, Gianluigi; Bylander, Jonas; Kamal, Archana; Birenbaum, Jeffrey; Hover, David; Rosenberg, Danna; Samach, Gabriel; Sears, Adam P; Weber, Steven J; Yoder, Jonilyn L; Clarke, John; Kerman, Andrew J; Yoshihara, Fumiki; Nakamura, Yasunobu; Orlando, Terry P; Oliver, William D
2016-12-23
Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to reducing errors: Instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70% reduction in the quasiparticle density results in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variability. Copyright © 2016, American Association for the Advancement of Science.
Plate-wide stress relaxation explains European Palaeocene basin inversions
Nielsen, S.B.; Thomsen, Erik; Hansen, D.L.
2005-01-01
of the in-plane tectonic stress. The onset of relaxation inversions was plate-wide and simultaneous, and may have been triggered by stress changes caused by elevation of the North Atlantic lithosphere by the Iceland plume or the drop in NS convergence rate between Africa and Europe.......During Late Cretaceous and Cenozoic times many Paleozoic and Mesozoic rifts and basin structures in the interior of the European continent underwent several phases of inversion. The main phases occurred during the Late Cretaceous and Middle Paleocene, and have been explained by pulses...... Paleocene phase was characterized by domal uplift of a wider area with only mild fault movements, and formation of more distal and shallow marginal troughs. A simple flexural model explains how domal, secondary inversion follows inevitably from primary, convergence related inversion upon relaxation...
Fetal responses to induced maternal relaxation during pregnancy.
DiPietro, Janet A; Costigan, Kathleen A; Nelson, Priscilla; Gurewitsch, Edith D; Laudenslager, Mark L
2008-01-01
Fetal responses to induced maternal relaxation during the 32nd week of pregnancy were recorded in 100 maternal-fetal pairs using a digitized data collection system. The 18-min guided imagery relaxation manipulation generated significant changes in maternal heart rate, skin conductance, respiration period, and respiratory sinus arrhythmia. Significant alterations in fetal neurobehavior were observed, including decreased fetal heart rate (FHR), increased FHR variability, suppression of fetal motor activity (FM), and increased FM-FHR coupling. Attribution of the two fetal cardiac responses to the guided imagery procedure itself, as opposed to simple rest or recumbency, is tempered by the observed pattern of response. Evaluation of correspondence between changes within individual maternal-fetal pairs revealed significant associations between maternal autonomic measures and fetal cardiac patterns, lower umbilical and uterine artery resistance and increased FHR variability, and declining salivary cortisol and FM activity. Potential mechanisms that may mediate the observed results are discussed.
On relaxation mechanism of tangensial losses in soils
Babayev, M.P.; Gerayzade, A.P.; Mamedov, N.A.
2009-01-01
By experimentally at high-frequency bridge method on dependence of a tangent of a corner of dielectric losses of soil fom humidity and frequency of an electromagnetic field are investigated. In air-dry samples of soils the size of the most probable time of a relaxation and its maximum is established. It is shown that in the field of gravitational humidity, in the soil sample, at a maximum of a tangent of a corner of dielectric losses through conductivity will be veiled, i.e. obviously is not shown. As a result of the received data it is established that in the field of the adsorbed soil moisture the spectrum of time of relaxation is characterized by the wide strip reflecting heterogeneity of its dielectric properties. All this is offered to be used at designing of delkometric hydrometers and measurement of soil humidity
Composite Analysis of Concrete - Creep, Relaxation and Eigenstrain/stress
Nielsen, Lauge Fuglsang
1996-01-01
approach.The model is successfully justified comparing predicted results with recent experimental data obtained in tests made at the Danish Technological Institute and at the Technical University of Denmark on creep, relaxation, and shrinkage of very young concretes (hours) - and also with experimental...... results on creep, shrinkage, and internal stresses caused by drying shrinkage reported in the literature on the mechanical behavior of mature concretes.Shrinkage (autogeneous or drying) of mortar and concrete and associated internal stress states are examples of analysis made in this report......A composite-rheological model of concrete is presented by which consistent predictions of creep, relaxation, and internal stresses can be made from known concrete composition, age at loading, and climatic conditions. No other existing "creep prediction method" offers these possibilities in one...
Donor-driven spin relaxation in multivalley semiconductors.
Song, Yang; Chalaev, Oleg; Dery, Hanan
2014-10-17
The observed dependence of spin relaxation on the identity of the donor atom in n-type silicon has remained without explanation for decades and poses a long-standing open question with important consequences for modern spintronics. Taking into account the multivalley nature of the conduction band in silicon and germanium, we show that the spin-flip amplitude is dominated by short-range scattering off the central-cell potential of impurities after which the electron is transferred to a valley on a different axis in k space. Through symmetry arguments, we show that this spin-flip process can strongly affect the spin relaxation in all multivalley materials in which time-reversal cannot connect distinct valleys. From the physical insights gained from the theory, we provide guidelines to significantly enhance the spin lifetime in semiconductor spintronics devices.
Relaxation of stresses during reduction of anode supported SOFCs
Frandsen, Henrik Lund; Chatzichristodoulou, Christodoulos; Jørgensen, Peter Stanley
2016-01-01
To assess the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. This work reports further details on a newly discovered creep phenomenon......, accelerated creep, taking place during the reduction of a Ni-YSZ anode. This relaxes stresses at a much higher rate (~×104) than creep during operation. Thus, the phenomenon of accelerated creep during reduction has to be considered both in the production of stacks and in the analysis of the stress field...... of reduction should decrease significantly over minutes. In this work these internal stresses are measured in-situ before and after the reduction by use of X-ray diffraction. This is done by determining the elastic micro-strains (correlating to the stresses), which are assessed from the widening of the Bragg...
Memory effects in the relaxation of a confined granular gas
Brey, J. Javier; de Soria, M. I. García; Maynar, P.; Buzón, V.
2014-09-01
The accuracy of a model to describe the horizontal dynamics of a confined quasi-two-dimensional system of inelastic hard spheres is discussed by comparing its predictions for the relaxation of the temperature in a homogenous system with molecular dynamics simulation results for the original system. A reasonably good agreement is found. Next the model is used to investigate the peculiarities of the nonlinear evolution of the temperature when the parameter controlling the energy injection is instantaneously changed while the system was relaxing. This can be considered as a nonequilibrium generalization of the Kovacs effect. It is shown that, in the low-density limit, the effect can be accurately described by using a simple kinetic theory based on the first Sonine approximation for the one-particle distribution function. Some possible experimental implications are indicated.
{sup 13}C relaxation in an RNA hairpin
King, G.C. [Univ. of South Wales, Kensington (Australia)]|[Rice Univ., Houston, TX (United States); Akratos, C. [Univ. of South Wales, Kensington (Australia); Xi, Z.; Michnica, M.J. [Rice Univ., Houston, TX (United States)
1994-12-01
This initial survey of {sup 13}C relaxation in the {triangle}TAR RNA element has generated a number of interesting results that should prove generally useful for future studies. The most readily comparable study in the literature monitored {sup 13}C relaxation of the methyl groups from unusual bases in tRNA{sup Phe}. The study, which used T{sub 1} and NOE data only, reported order parameters for the methyl group axis that ranged between 0.51 and 0.97-a range similar to that observed here. However, they reported a breakdown of the standard order parameter analysis at higher (118-MHz {sup 13}C) frequencies, which should serve to emphasize the need for a thorough exploration of suitable motional models.
Relaxational dissipation of magnetic field energy in a rarefied plasma
Vekshtejn, G.E.
1987-01-01
A mechanism of solar corona plasma heating connected with relaxation of a magnetic configuration in the corona to the state of the magnetic energy minimum at restrictions imposed by high conductivity of a medium is considered. Photospheric plasma pulsations leading to generation of longitudinal currents in the corona are in this case energy sources. The excess magnetic energy of these currents is dissipated as a result of reclosing of force lines of the magnetic field in narrow current layers. Plasmaturbulence related to the process of magnetic reclosing is phenomenologically described in this case by introducing certain characteristic time of relaxation. Such an approach permits to relate the plasma heating energy with parameters of photospheric motions in the framework of a simple model of the magnetic field
Slow Auger Relaxation in HgTe Colloidal Quantum Dots.
Melnychuk, Christopher; Guyot-Sionnest, Philippe
2018-05-03
The biexciton lifetimes in HgTe colloidal quantum dots are measured as a function of particle size. Samples produced by two synthetic methods, leading to partially aggregated or well-dispersed particles, exhibit markedly different dynamics. The relaxation characteristics of partially aggregated HgTe inhibit reliable determinations of the Auger lifetime. In well-dispersed HgTe quantum dots, the biexciton lifetime increases approximately linearly with particle volume, confirming trends observed in other systems. The extracted Auger coefficient is three orders of magnitude smaller than that for bulk HgCdTe materials with similar energy gaps. We discuss these findings in the context of understanding Auger relaxation in quantum-confined systems and their relevance to mid-infrared optoelectronic devices based on HgTe colloidal quantum dots.
Non-uniform sampling of NMR relaxation data
Schwarz-Linnet, Troels; Teilum, Kaare
2016-01-01
The use of non-uniform sampling of NMR spectra may give significant reductions in the data acquisition time. For quantitative experiments such as the measurement of spin relaxation rates, non-uniform sampling is however not widely used as inaccuracies in peak intensities may lead to errors...... in the extracted dynamic parameters. By systematic reducing the coverage of the Nyquist grid of (15)N Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion datasets for four different proteins and performing a full data analysis of the resulting non-uniform sampled datasets, we have compared the performance...... of the multi-dimensional decomposition and iterative re-weighted least-squares algorithms in reconstructing spectra with accurate peak intensities. As long as a single fully sampled spectrum is included in a series of otherwise non-uniform sampled two-dimensional spectra, multi-dimensional decomposition...
Paramagnetic metal complexes as potential relaxation agents for NMR imaging
Coroiu, Ilioara; Demco, D. E.; Darabont, Al.; Bogdan, M.
1997-01-01
The development of nuclear magnetic resonance (NMR) imaging technique as a clinical diagnostic modality has prompted the need for a new class of pharmaceuticals. These drugs must be administered to a patient in order to enhance the image contrast between the normal and diseased tissue and/or indicate the status of organ function or blood flow. Paramagnetic compounds are presently undergoing extensive evaluation as contrast agents in magnetic resonance imaging (MRI). These agents increase contrast in MRI by differentially localizing in tissue where they increase the relaxation rates of nearby water protons. The longitudinal R 1 and transverse R 2 relaxivities were measured as a function of molar concentrations for some new paramagnetic complexes like the following: dysprosium, erbium and gadolinium citrates, gadolinium methylene diphosphonate, dysprosium and gadolinium iminodiacetate, manganese para-aminobenzoate and copper nicotinate. The available theoretical approaches for quantitative understanding are presented. (authors)
Strong Relaxations for the Train Timetabling Problem Using Connected Configurations
Fischer, Frank; Schlechte, Thomas
2017-01-01
The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so cal...
A study of vibrational relaxation of electronically-excited molecules
Datsyuk, V.V.; Izmailov, I.A.; Kochelap, V.A.
1992-09-01
The time kinetics of the vibrational relaxation of excimers is studied in the diffusional approximation. Simple formulae for functions of nonstationary vibrational distribution are found for the electronically excited molecules. Some spectral-kinetic dependencies of the excimer luminescence are explained in a new way. The possibilities of the determination of excimer parameters are discussed. The dependence of energetical characteristics of excimer lasers on these parameters is particularly emphasized. (author). 22 refs, 5 figs
Nernst effect beyond the relaxation-time approximation
Pikulin, D. I.; Hou, Chang-Yu; Beenakker, C. W. J.
2011-01-01
Motivated by recent interest in the Nernst effect in cuprate superconductors, we calculate this magneto-thermo-electric effect for an arbitrary (anisotropic) quasiparticle dispersion relation and elastic scattering rate. The exact solution of the linearized Boltzmann equation is compared with the commonly used relaxation-time approximation. We find qualitative deficiencies of this approximation, to the extent that it can get the sign wrong of the Nernst coefficient. Ziman's improvement of the...
Volume and structural relaxation in compressed sodium borate glass.
Svenson, Mouritz N; Youngman, Randall E; Yue, Yuanzheng; Rzoska, Sylwester J; Bockowski, Michal; Jensen, Lars R; Smedskjaer, Morten M
2016-11-21
The structure and properties of glass can be modified through compression near the glass transition temperature (T g ), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near T g at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its T g at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using 11 B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (B III ) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (B IV ), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near T g , but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring B III ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.
The Effect Of Motivational And Relaxation Music On Aerobic ...
The purpose of this study was to examine the effect of motivational and relaxation music on aerobic performance, rating of perceived exertion (RPE) and salivary cortisol (SC) concentration in trained men. Thirty male physical education college students (ages: 25.66±3.89 yr, height: 176.65±7.66 cm, weight: 78.45±16.20 kg, ...
Physiological blunting during pregnancy extends to induced relaxation
DiPietro, Janet A.; Mendelson, Tamar; Williams, Erica L.; Costigan, Kathleen A.
2011-01-01
There is accumulating evidence that pregnancy is accompanied by hyporesponsivity to physical, cognitive, and psychological challenges. This study evaluates whether observed autonomic blunting extends to conditions designed to decrease arousal. Physiological and psychological responsivity to an 18-minute guided imagery relaxation protocol in healthy pregnant women during the 32nd week of gestation (n = 54) and non-pregnant women (n = 28) was measured. Data collection included heart period (HP)...
Relaxation periodic solutions of one singular perturbed system with delay
Kashchenko, A. A.
2017-12-01
In this paper, we consider a singularly perturbed system of two differential equations with delay, simulating two coupled oscillators with a nonlinear compactly supported feedback. We reduce studying nonlocal dynamics of initial system to studying dynamics of special finite-dimensional mappings: rough stable (unstable) cycles of these mappings correspond to exponentially orbitally stable (unstable) relaxation solutions of initial problem. We show that dynamics of initial model depends on coupling coefficient crucially. Multistability is proved.
On the computation of relaxed pessimistic solutions to MPECs
Červinka, Michal; Matonoha, Ctirad; Outrata, Jiří
2013-01-01
Roč. 28, č. 1 (2013), s. 186-206 ISSN 1055-6788 R&D Projects: GA MŠk 1M0572; GA ČR GA201/09/1957 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10750506 Keywords : MPEC * equilibrium constraints * pessimistic solution * value function * relaxed and approximate solutions Subject RIV: BA - General Mathematics Impact factor: 1.210, year: 2013
Electron-beam driven relaxation oscillations in ferroelectric nanodisks
Ng, Nathaniel; Ahluwalia, Rajeev [Institute of High Performance Computing, Singapore 138632 (Singapore); Kumar, Ashok [CSIR-National Physical Laboratory, Delhi 110012 (India); Srolovitz, David J. [Department of Materials Science and Engineering and Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Chandra, Premala [Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854 (United States); Scott, James F. [Department of Physics, Cavendish Laboratory, J. J. Thompson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Chemistry and Department of Physics, University of St. Andrews, St. Andrews YX16 9ST (United Kingdom)
2015-10-12
Using a combination of computational simulations, atomic-scale resolution imaging and phenomenological modelling, we examine the underlying mechanism for nanodomain restructuring in lead zirconate titanate nanodisks driven by electron beams. The observed subhertz nanodomain dynamics are identified with relaxation oscillations where the charging/discharging cycle time is determined by saturation of charge traps and nanodomain wall creep. These results are unusual in that they indicate very slow athermal dynamics in nanoscale systems, and possible applications of gated versions are discussed.
Resonance and nuclear relaxation in GdCo2
Barata, A.C.
1988-04-01
A study of the 59 Co nuclear magnetic resonance and relaxation was made on the intermetallic compound GdCo 2 from 4,2 k to 330 k using the spin echo technique. An oscillatory behaviour of the primary echo was observed in the whole range of temperatures studied. This is due to the electronic quadrupole interaction of the 59 Co nuclei. (A.C.A.S.) [pt
Semiconvergence and Relaxation Parameters for Projected SIRT Algorithms
Elfving, Tommy; Hansen, Per Christian; Nikazad, Touraj
2012-01-01
We give a detailed study of the semiconverg ence behavior of projected nonstationary simultaneous iterative reconstruction technique (SIRT) algorithms, including the projected Landweber algorithm. We also consider the use of a relaxation parameter strategy, proposed recently for the standard...... algorithms, for controlling the semiconvergence of the projected algorithms. We demonstrate the semiconvergence and the performance of our strategies by examples taken from tomographic imaging. © 2012 Society for Industrial and Applied Mathematics....
NMR relaxation induced by iron oxide particles: testing theoretical models.
Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L
2016-04-15
Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.
The effect of the Magnus force on skyrmion relaxation dynamics
Brown, Barton L.; Täuber, Uwe C.; Pleimling, Michel
2018-01-01
We perform systematic Langevin molecular dynamics simulations of interacting skyrmions in thin films. The interplay between Magnus force, repulsive skyrmion-skyrmion interaction and thermal noise yields different regimes during non-equilibrium relaxation. In the noise-dominated regime the Magnus force enhances the disordering effects of the thermal noise. In the Magnus-force-dominated regime, the Magnus force cooperates with the skyrmion-skyrmion interaction to yield a dynamic regime with slo...
Vibrational energy relaxation: proposed pathway of fast local chromatin denaturation
Harder, D.; Greinert, R.
2002-01-01
The molecular mechanism responsible for the a component of exchange-type chromosome aberrations, of chromosome fragmentation and of reproductive cell death is one of the unsolved issues of radiation biology. Under review is whether vibrational energy relaxation in the constitutive biopolymers of chromatin, induced by inelastic energy deposition events and mediated via highly excited vibrational states, may provide a pathway of fast local chromatin denaturation, thereby producing the severe DNA lesion able to interact chemically with other, non-damaged chromatin. (author)
Mechanisms of relaxation and spin decoherence in nanomagnets
van Tol, Johan
Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.
Identification of structural relaxation in the dielectric response of water
Hansen, Jesper Schmidt; Kisliuk, Alexander; Solokov, Alexei P.
2016-01-01
One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results, we...... unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols....
STRESS RELAXATION CHARACTERISTICS OF SELECTED COMMERCIALLY PRODUCED GLASSES
Chocholoušek J.
2013-06-01
Full Text Available This paper describes a quantitative method of stress relaxation measurement in prismatic glass samples during two different time-temperature regimes using the Sénarmont compensator. Four types of glass (Barium crystal glass, Eutal, Simax, and Container glass were subjected to observation in an assembled measuring device. Results will be used for parameterization of the Tool-Narayanaswamy-Mazurin model and consequently implemented in a finite element method code.
Electron-energy relaxation in polar semiconductor double quantum dots
Král, Karel; Khás, Zdeněk; Zdeněk, Petr; Čerňanský, Marian; Lin, C. Y.
2001-01-01
Roč. 15, č. 27 (2001), s. 3503-3512 ISSN 0217-9792 R&D Projects: GA AV ČR IAA1010113; GA MŠk OC P5.20 Institutional research plan: CEZ:AV0Z1010914 Keywords : electron ic energy relaxation * zero-dimensional nanostructures Subject RIV: BE - The oretical Physics Impact factor: 0.523, year: 2001
Cross-relaxation imaging:methods, challenges and applications
Stikov, Nikola
2010-01-01
An overview of quantitative magnetization transfer (qMT) is given, with focus on cross relaxation imaging (CRI) as a fast method for quantifying the proportion of protons bound to complex macromolecules in tissue. The procedure for generating CRI maps is outlined, showing examples in the human brain and knee, and discussing the caveats and challenges in generating precise and accurate CRI maps. Finally, several applications of CRI for imaging tissue microstructure are presented.(Author)
Muon spin relaxation in ferromagnetic PdMn
Dodds, S.A.; Gist, G.A.; Heffner, R.H.; Leon, M.; MacLaughlin, D.E.; Mydosh, J.A.; Nieuwenhuys, G.J.; Schillaci, M.E.
1983-01-01
Positive-muon (μ + ) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at % Mn (T/sub c/ = 5.8 0 K). In the paramagnetic state the inhomogeneous μ + linewidth is proportional to the bulk magnetization. Below T/sub c/ the μ + linewidth and the width of the μ + local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets
Muon spin relaxation in ferromagnetic PdMn
Dodds, S.A.; Gist, G.A. (Rice Univ., Houston, TX (USA)); Heffner, R.H.; Leon, M.; Schillaci, M.E. (Los Alamos National Lab., NM (USA)); MacLaughlin, D.E. (California Univ., Riverside (USA)); Mydosh, J.A.; Nieuwenhuys, G.J. (Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.)
1984-01-01
Positive-muon (..mu../sup +/) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at.% Mn (Tsub(c) = 5.8 K). In the paramagnetic state the inhomogeneous ..mu../sup +/ linewidth is proportional to the bulk magnetization. Below Tsub(c) the ..mu../sup +/ linewidth and the width of the ..mu../sup +/ local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets.
NMR relaxation times in human brain tumors (preliminary results)
Benoist, L.; Certaines, J. de; Chatel, M.; Menault, F.
1981-01-01
Since the early work of Damadian in 1971, proton NMR studies of tumors has been well documented. Present study concerns the spin-lattice T 1 and spin-spin T 2 relaxation times of normal dog brain according to the histological differentiation and of 35 human benignant or malignant tumors. The results principally show T 2 important variations between white and gray substance in normal brain but no discrimination between malignant and benignant tumors [fr
The dielectric α relaxation at a temperature close to T sub(g)
Gomez Ribelles, J.L.; Diaz Calleja, R.
1985-01-01
It is shown in this work how the dependence of the mean relaxation times of the dielectric α relaxation on temperature deviates from the Williams, Landel and Ferry model at a temperature close to T sub(g). In some cases, an Arrhenius-like relationship for this relaxation can be observed for temperatures below T sub(g)
The shear and bulk relaxation times from the general correlation functions
Czajka, Alina; Jeon, Sangyong
2017-11-01
In this paper we present two quantum field theoretical analyses on the shear and bulk relaxation times. First, we discuss how to find Kubo formulas for the shear and the bulk relaxation times. Next, we provide results on the shear viscosity relaxation time obtained within the diagrammatic approach for the massless λϕ4 theory.
Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics
Altaner, Bernhard
2017-11-01
Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
Warnez, M. T.; Johnsen, E.
2015-06-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.
Stress relaxation in SSC 50mm dipole coils
Rogers, D.; Markley, F.
1992-04-01
We are measuring the stress relaxation of SSC 50mm outer coils with the goal of predicting how much of the coil prestress will be lost while the coils are warehoused between manufacture and cooldown. We manufacture 3 inch (76.2mm) long segments of coil with the same materials and techniques that have been used for prototype coils. We are running four simultaneous tests in an attempt to separate the contributions of the different coil materials. Test one is a completely insulated coil section where the insulation is the all polyamide system being tested at Brookhaven; test two is a wire stack insulated only with the normal Kapton overwrap; test three is a stack of bare cable; and test four is a completely insulated normal coil section. All, except for the bare cable, include the ground insulation. The insulated coil sections are carefully dried before loading and testing in order to eliminate stress changes due to varying moisture content. The temperature dependence of the stress relaxation is being studied separately. Three companion papers presented at this conference will be: (1) ''Temperature dependence of the viscoelastic properties of SSC coil insulation'' (2) ''Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures'' (3) ''Theoretical methods for creep and stress relaxation studies of SSC coil.''
Brownian relaxation of an inelastic sphere in air
Bird, G. A., E-mail: gab@gab.com.au [University of Sydney, Sydney, NSW 2006 (Australia)
2016-06-15
The procedures that are used to calculate the forces and moments on an aerodynamic body in the rarefied gas of the upper atmosphere are applied to a small sphere of the size of an aerosol particle at sea level. While the gas-surface interaction model that provides accurate results for macroscopic bodies may not be appropriate for bodies that are comprised of only about a thousand atoms, it provides a limiting case that is more realistic than the elastic model. The paper concentrates on the transfer of energy from the air to an initially stationary sphere as it acquires Brownian motion. Individual particle trajectories vary wildly, but a clear relaxation process emerges from an ensemble average over tens of thousands of trajectories. The translational and rotational energies in equilibrium Brownian motion are determined. Empirical relationships are obtained for the mean translational and rotational relaxation times, the mean initial power input to the particle, the mean rates of energy transfer between the particle and air, and the diffusivity. These relationships are functions of the ratio of the particle mass to an average air molecule mass and the Knudsen number, which is the ratio of the mean free path in the air to the particle diameter. The ratio of the molecular radius to the particle radius also enters as a correction factor. The implications of Brownian relaxation for the second law of thermodynamics are discussed.
Automated NMR relaxation dispersion data analysis using NESSY
Gooley Paul R
2011-10-01
Full Text Available Abstract Background Proteins are dynamic molecules with motions ranging from picoseconds to longer than seconds. Many protein functions, however, appear to occur on the micro to millisecond timescale and therefore there has been intense research of the importance of these motions in catalysis and molecular interactions. Nuclear Magnetic Resonance (NMR relaxation dispersion experiments are used to measure motion of discrete nuclei within the micro to millisecond timescale. Information about conformational/chemical exchange, populations of exchanging states and chemical shift differences are extracted from these experiments. To ensure these parameters are correctly extracted, accurate and careful analysis of these experiments is necessary. Results The software introduced in this article is designed for the automatic analysis of relaxation dispersion data and the extraction of the parameters mentioned above. It is written in Python for multi platform use and highest performance. Experimental data can be fitted to different models using the Levenberg-Marquardt minimization algorithm and different statistical tests can be used to select the best model. To demonstrate the functionality of this program, synthetic data as well as NMR data were analyzed. Analysis of these data including the generation of plots and color coded structures can be performed with minimal user intervention and using standard procedures that are included in the program. Conclusions NESSY is easy to use open source software to analyze NMR relaxation data. The robustness and standard procedures are demonstrated in this article.
Universal properties of relaxation and diffusion in condensed matter
Ngai K L
2017-01-01
By and large the research communities today are not fully aware of the remarkable universality in the dynamic properties of many-body relaxation/diffusion processes manifested in experiments and simulations on condensed matter with diverse chemical compositions and physical structures. I shall demonstrate the universality first from the dynamic processes in glass-forming systems. This is reinforced by strikingly similar properties of different processes in contrasting interacting systems all having nothing to do with glass transition. The examples given here include glass-forming systems of diverse chemical compositions and physical structures, conductivity relaxation of ionic conductors (liquid, glassy, and crystalline), translation and orientation ordered phase of rigid molecule, and polymer chain dynamics. Universality is also found in the change of dynamics when dimension is reduced to nanometer size in widely different systems. The remarkable universality indicates that many-body relaxation/diffusion is governed by fundamental physics to be unveiled. One candidate is classical chaos on which the coupling model is based, Universal properties predicted by this model are in accord with diverse experiments and simulations. (paper)
Relaxation of cntrol of oil industries in Europe
Sugimura, Nobuaki [The Inst. of Energy Economics, Tokyo, (Japan)
1989-03-01
This article summarizes the results of a survey including field surveys on the actual states and trends of relaxation of the control of oil industries in EC states. In classifying EC states by the degree of the government influence over the industries of oil refining and distribution, there are the group consisting of UK, West Germany and France, etc. where no control is imposed on individual oil companies in the fields of quantity and price of oil, the group consisting of Italy, etc. where no control exists on quantity, but price is partially controlled, and the group consisting of Spain and Greece, etc. where the government controls both quantity and price at the present stage although they are pushing relaxation of such control in accordance with the terms and conditions at the time of their entry to EC. The oil policy of EC is to remove as far as possible interferences of the governments and open its oil market free. This and the trend of over supply of oil since 1980 are two major factors of relaxation of oil industries control in Europe. The author considers it desirable that the oil industries in Japan should withstand international competitions by their inventiveness, creativity and effort, and importation of oil products should be held at a supplementary degree in view of their characters. 2 refs., 1 fig., 4 tabs.
Relaxation Mechanisms, Structure and Properties of Semi-Coherent Interfaces
Shuai Shao
2015-10-01
Full Text Available In this work, using the Cu–Ni (111 semi-coherent interface as a model system, we combine atomistic simulations and defect theory to reveal the relaxation mechanisms, structure, and properties of semi-coherent interfaces. By calculating the generalized stacking fault energy (GSFE profile of the interface, two stable structures and a high-energy structure are located. During the relaxation, the regions that possess the stable structures expand and develop into coherent regions; the regions with high-energy structure shrink into the intersection of misfit dislocations (nodes. This process reduces the interface excess potential energy but increases the core energy of the misfit dislocations and nodes. The core width is dependent on the GSFE of the interface. The high-energy structure relaxes by relative rotation and dilatation between the crystals. The relative rotation is responsible for the spiral pattern at nodes. The relative dilatation is responsible for the creation of free volume at nodes, which facilitates the nodes’ structural transformation. Several node structures have been observed and analyzed. The various structures have significant impact on the plastic deformation in terms of lattice dislocation nucleation, as well as the point defect formation energies.
Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide.
Armenise, Iole; Kustova, Elena
2018-05-21
A complete vibrational state-specific kinetic scheme describing dissociating carbon dioxide mixtures is proposed. CO 2 symmetric, bending and asymmetric vibrations and dissociation-recombination are strongly coupled through inter-mode vibrational energy transfers. Comparative study of state-resolved rate coefficients is carried out; the effect of different transitions may vary considerably with temperature. A non-equilibrium 1-D boundary layer flow typical to hypersonic planetary entry is studied in the state-to-state approach. To assess the sensitivity of fluid-dynamic variables and heat transfer to various vibrational transitions and chemical reactions, corresponding processes are successively included to the kinetic scheme. It is shown that vibrational-translational (VT) transitions in the symmetric and asymmetric modes do not alter the flow and can be neglected whereas the VT 2 exchange in the bending mode is the main channel of vibrational relaxation. Inter-mode vibrational exchanges affect the flow implicitly, through energy redistribution enhancing VT relaxation; the dominating role belongs to near-resonant transitions between symmetric and bending modes as well as between CO molecules and CO 2 asymmetric mode. Strong coupling between VT 2 relaxation and chemical reactions is emphasized. While vibrational distributions and average vibrational energy show strong dependence on the kinetic scheme, the heat flux is more sensitive to chemical reactions.
Microscopic dynamics and relaxation processes in liquid hydrogen fluoride
Angelini, R.; Giura, P.; Monaco, G.; Sette, F.; Fioretto, D.; Ruocco, G.
2004-01-01
Inelastic x-ray scattering and Brillouin light scattering measurements of the dynamic structure factor of liquid hydrogen fluoride have been performed in the temperature range T=214-283 K. The data, analyzed using a viscoelastic model with a two time-scale memory function, show a positive dispersion of the sound velocity c(Q) between the low frequency value c 0 (Q) and the high frequency value c ∞α (Q). This finding confirms the existence of a structural (α) relaxation directly related to the dynamical organization of the hydrogen bonds network of the system. The activation energy E a of the process has been extracted by the analysis of the temperature behavior of the relaxation time τ α (T) that follows an Arrhenius law. The obtained value for E a , when compared with that observed in another hydrogen bond liquid as water, suggests that the main parameter governing the α-relaxation process is the number of hydrogen bonds per molecule
Sedative and muscle relaxant activities of diterpenoids from Phlomidoschema parviflorum
Abdur Rauf
Full Text Available Abstract Phlomidoschema parviflorum (Benth. Vved. (Basionym: Stachys parviflora Benth. Lamiaceae, have significance medicinal importance as it is used in number of health disorders including diarrhea, fever, sore mouth and throat, internal bleeding, weaknesses of the liver and heart genital tumors, sclerosis of the spleen, inflammatory tumors and cancerous ulcers. The present contribution deals with the sedative and muscle relaxant like effects of diterpenoids trivially named stachysrosane and stachysrosane, isolated from the ethyl acetate soluble fraction of P. parviflorum. Both compounds (at 5, 10 and 15 mg/kg, i.p were assessed for their in vivo sedative and muscle relaxant activity in open field and inclined plane test, respectively. The geometries of both compounds were optimized with density functional theory. The molecular docking of both compounds were performed with receptor gamma aminobutyric acid. Both compounds showed marked activity in a dose dependent manner. The docking studies showed that both compounds interact strongly with important residues in receptor gamma aminobutyric acid. The reported data demonstrate that both compounds exhibited significant sedative and muscle relaxant-like effects in animal models, which opens a door for novel therapeutic applications.
An electromyographic study of muscle relaxants in man.
Suzuki, H; Kanayama, T; Nakagawa, H; Yazaki, S; Shiratsuchi, T
1975-05-01
Supramaximal paired stimuli were applied to the ulnar nerve, and the amplitude of the muscle action potential evoked in the abductor digiti minimi by the second member of the stimulus pair (test response) was compared with that evoked by the first component (conditioning response). The interval between the two components of the stimulus pair (the pair interval) was increased stepwise from 7 to 100 msec and a curve (recovery curve) was obtained by relating the changes in pair interval to the difference in amplitude of the test and conditioning responses. Alterations of the recovery curve (RC) during partial paralysis by muscle relaxants were investigated in healthy adult patients under the lightest plane of general anaesthesia. The control curve obtained in 32 subjects before the administration of a muscle relaxant drug was characterized by slight depressions at very short intervals of paired stimuli, followed by a slight potentiation at 20-100 msec. With non-depolarizing relaxants, RC altered to the characteristic pattern of potentiation at very short intervals of stimuli, followed by a notable depression at longer intervals. In depolarizing blocks with small doses of suxamethonium, the depression of RC at short intervals in the control was enhanced and the pattern of RC was different from that of non-depolarizing agents. When desensitization blocks were instigated by the i.v. administration of suxamethonium, the RC patterns were similar to those of competitive agents.
Relaxation and physical aging in network glasses: a review.
Micoulaut, Matthieu
2016-06-01
Recent progress in the description of glassy relaxation and aging are reviewed for the wide class of network-forming materials such as GeO2, Ge x Se1-x , silicates (SiO2-Na2O) or borates (B2O3-Li2O), all of which have an important usefulness in domestic, geological or optoelectronic applications. A brief introduction of the glass transition phenomenology is given, together with the salient features that are revealed both from theory and experiments. Standard experimental methods used for the characterization of the slowing down of the dynamics are reviewed. We then discuss the important role played by aspects of network topology and rigidity for the understanding of the relaxation of the glass transition, while also permitting analytical predictions of glass properties from simple and insightful models based on the network structure. We also emphasize the great utility of computer simulations which probe the dynamics at the molecular level, and permit the calculation of various structure-related functions in connection with glassy relaxation and the physics of aging which reveal the non-equilibrium nature of glasses. We discuss the notion of spatial variations of structure which leads to the concept of 'dynamic heterogeneities', and recent results in relation to this important topic for network glasses are also reviewed.
Sexual selection halts the relaxation of protamine 2 among rodents.
Lena Lüke
Full Text Available Sexual selection has been proposed as the driving force promoting the rapid evolutionary changes observed in some reproductive genes including protamines. We test this hypothesis in a group of rodents which show marked differences in the intensity of sexual selection. Levels of sperm competition were not associated with the evolutionary rates of protamine 1 but, contrary to expectations, were negatively related to the evolutionary rate of cleaved- and mature-protamine 2. Since both domains were found to be under relaxation, our findings reveal an unforeseen role of sexual selection: to halt the degree of degeneration that proteins within families may experience due to functional redundancy. The degree of relaxation of protamine 2 in this group of rodents is such that in some species it has become dysfunctional and it is not expressed in mature spermatozoa. In contrast, protamine 1 is functionally conserved but shows directed positive selection on specific sites which are functionally relevant such as DNA-anchoring domains and phosphorylation sites. We conclude that in rodents protamine 2 is under relaxation and that sexual selection removes deleterious mutations among species with high levels of sperm competition to maintain the protein functional and the spermatozoa competitive.
Dynamical renormalization group approach to relaxation in quantum field theory
Boyanovsky, D.; Vega, H.J. de
2003-01-01
The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG). Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic, and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths
Post-seismic relaxation from geodetic and seismic data
Mikhail V. Rodkin
2017-01-01
Full Text Available We have examined the aftershock sequence and the post-seismic deformation process of the Parkfield earthquake (2004, M = 6, California, USA source area using GPS data. This event was chosen because of the possibility of joint analysis of data from the rather dense local GPS network (from SOPAC Internet archive and of the availability of the rather detailed aftershock sequence data (http://www.ncedc.org/ncedc/catalog-search.html. The relaxation process of post-seismic deformation prolongs about the same 400 days as the seismic aftershock process does. Thus, the aftershock process and the relaxation process in deformation could be the different sides of the same process. It should be noted that the ratio of the released seismic energy and of the GPS obtained deformation is quite different for the main shock and for the aftershock stage. The ratio of the released seismic energy to the deformation value decreases essentially for the post-shock process. The similar change in the seismic energy/deformation value ratio is valid in a few other strong earthquakes. Thus, this decrease seems typical of aftershock sequences testifying for decrease of ratio of elastic to inelastic deformation in the process of post-shock relaxation when the source area appears to be mostly fractured after the main shock occurs, but the healing process had no yet sufficient time to develop.
Multiplied effect of heat and radiation in chemical stress relaxation
Ito, Masayuki
1981-01-01
About the deterioration of rubber due to radiation, useful knowledge can be obtained by the measurement of chemical stress relaxation. As an example, the rubber coating of cables in a reactor containment vessel is estimated to be irradiated by weak radiation at the temperature between 60 and 90 deg C for about 40 years. In such case, it is desirable to establish the method of accelerated test of the deterioration. The author showed previously that the law of time-dose rate conversion holds in the case of radiation. In this study, the chemical stress relaxation to rubber was measured by the simultaneous application of heat and radiation, and it was found that there was the multiplied effect of heat and radiation in the stress relaxation speed. Therefore the factor of multiplication of heat and radiation was proposed to describe quantitatively the degree of the multiplied effect. The chloroprene rubber used was offered by Hitachi Cable Co., Ltd. The experimental method and the results are reported. The multiplication of heat and radiation is not caused by the direct cut of molecular chains by radiation, instead, it is based on the temperature dependence of various reaction rates at which the activated species reached the cut of molecular chains through complex reaction mechanism and the temperature dependence of the diffusion rate of oxygen in rubber. (Kako, I.)
Dynamical X-ray scattering from the relaxed structures
Benediktovitch, A.; Feranchuk, I.; Ulyanenkov, A.
2009-01-01
High-resolution X-ray diffraction is now widely used analytical tool for investigation of nano scale multilayered structures in semiconductor and optical technologies. The HRXRD method delivers unique information on the crystallographic lattice of the samples, concentration of solid solutions, lattice mismatches, layer thicknesses, defect distribution, and relaxation degree of the epitaxial layers. The evaluation of the experimental results, however, requires a robust and precise theory due to complex dynamical scattering of X-rays from near perfect crystallographic structure of the samples. Usually, the Takagi-Taupin approach [1] or the recurrent matrix methods [2] are used for the simulation of the X-ray diffraction profiles from the epitaxial multilayered structures. The use of these theories, however, becomes essentially difficult, when the lateral lattice mismatches are present in multilayers, for example, in the case of partially or fully relaxed epitaxially grown samples. In the present work, the general solution of this problem is found analytically. The angular divergence of the incident beam is also considered and the algorithm for the diffracted profile mapping in the reciprocal space is developed. The experimental reciprocal space mapping of typical AlGaN/GaN/AlN samples with partially relaxed layers is compared to the simulated maps, which describe well the location and character of the diffraction spots caused by different layers. (author)
Excitation relaxation and structure of TPPS4 J-aggregates
Kelbauskas, L.; Bagdonas, S.; Dietel, W.; Rotomskis, R.
2003-01-01
The energy relaxation kinetics and the structure of the J-aggregates of water-soluble porphyrin 5,10,15,20-tetrasulphonatophenyl porphine (TPPS 4 ) were investigated in aqueous medium by means of time-resolved fluorescence spectroscopy and confocal laser-scanning fluorescence microscopy. The excitation of the J-aggregates, at excitation intensities higher than ∼10 15 photons/cm 2 per pulse, results in a remarkable decrease of the fluorescence quantum yield and in the appearance of an additional, non-exponential energy relaxation channel with a decay constant that depends on the excitation intensity. This relaxation mechanism was attributed to the exciton single-singlet annihilation. The exciton lifetime in the absence of the annihilation was calculated to be ∼150 ps. Using exciton annihilation theory, the exciton migration within the J-aggregates could be characterized by determining the exciton diffusion constant (1.8±0.9) 10 -3 cm 2 /s and the hopping time (1.2±0.6) ps. Using the experimental data, the size of the J-aggregate could be evaluated and was seen to yield at least 20 TPPS 4 molecules per aggregate. It was shown by means of confocal fluorescence laser scanning microscopy that TPPS 4 does self-associate in polyvinyl alcohol (PVA) at acidic pH forming molecular macro-assemblies on a scale of ∼1 μm in PVA matrices
Dielectric relaxations above room temperature in DMPU derived polyaniline film
Mallya, Ashwini N.; Yashavanth Kumar, G.S.; Ranjan, Rajeev [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Ramamurthy, Praveen C., E-mail: onegroupb203@gmail.com [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)
2012-09-15
Dielectric measurements carried out on drop casted from solution of emeraldine base form of polyaniline films in the temperature range 30-300 Degree-Sign C revealed occurrence of two maxima in the loss tangent as a function of temperature. The activation energies corresponding to these two relaxation processes were found to be {approx}0.5 eV and {approx}1.5 eV. The occurrence of one relaxation peak in the dispersion curve of the imaginary part of the electric modulus suggests the absence of microphase separation in the film. Thermogravimetric analysis and infrared spectroscopic measurements showed that the films retained its integrity up to 300 Degree-Sign C. The dielectric relaxation at higher temperatures with large activation energy of 1.5 eV is attributed to increase in the barrier potential due to decrease in the polymer conjugation as a result of wide amplitude motion of the chain segments well above the glass transition temperature.
Creep and inverse stress relaxation behaviors of carbon nanotube yarns.
Misak, H E; Sabelkin, V; Miller, L; Asmatulu, R; Mall, S
2013-12-01
Creep, creep recovery and inverse stress relaxation behaviors of carbon nanotube yarns that consisted of 1-, 30-, and 100-yarn(s) were characterized. Primary and secondary creep stages were observed over the duration of 336 h. The primary creep stage lasted for about 4 h at an applied load equal to 75% of the ultimate tensile strength. The total strain in the primary stage was significantly larger in the carbon nanotube multi-yarn than in the carbon nanotube 1-yarn. In the secondary stage, 1-yarn also had a smaller steady state strain rate than the multi-yarn, and it was independent of number of yarns in multi-yarn. Strain response under cyclic creep loading condition was comparable to its counterpart in non-cyclic (i.e., standard) creep test except that strain response during the first cycle was slightly different from the subsequent cycles. Inverse creep (i.e., strain recovery) was observed in the 100-yarn during the cyclic creep tests after the first unloading cycle. Furthermore, inverse stress relaxation of the multi-yarns was characterized. Inverse stress relaxation was larger and for longer duration with the larger number of yarns.
Agarwal RaviP
2009-01-01
Full Text Available We glance at recent advances to the general theory of maximal (set-valued monotone mappings and their role demonstrated to examine the convex programming and closely related field of nonlinear variational inequalities. We focus mostly on applications of the super-relaxed ( -proximal point algorithm to the context of solving a class of nonlinear variational inclusion problems, based on the notion of maximal ( -monotonicity. Investigations highlighted in this communication are greatly influenced by the celebrated work of Rockafellar (1976, while others have played a significant part as well in generalizing the proximal point algorithm considered by Rockafellar (1976 to the case of the relaxed proximal point algorithm by Eckstein and Bertsekas (1992. Even for the linear convergence analysis for the overrelaxed (or super-relaxed ( -proximal point algorithm, the fundamental model for Rockafellar's case does the job. Furthermore, we attempt to explore possibilities of generalizing the Yosida regularization/approximation in light of maximal ( -monotonicity, and then applying to first-order evolution equations/inclusions.
Nuclear spin-lattice relaxation in nitroxide spin-label EPR
Marsh, Derek
2016-01-01
that the definition of nitrogen nuclear relaxation rate Wn commonly used in the CW-EPR literature for 14N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14N spin-lattice relaxation rate, b = Wn/(2We), preserves...... of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14N-relaxation: T1 n = 1/Wn. Results are compared and contrasted...
Dependence of Brownian and Néel relaxation times on magnetic field strength
Deissler, Robert J.; Wu, Yong; Martens, Michael A.
2014-01-01
Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the
Mitsumori, Yasuyoshi; Matsuura, Shimpei; Uchiyama, Shoichi; Saito, Kentarao; Edamatsu, Keiichi; Nakayama, Masaaki; Ajiki, Hiroshi
2018-04-01
We study the biexciton relaxation process in CuCl films ranging from 6 to 200 nm. The relaxation time is measured as the dephasing time and the lifetime. We observe a unique thickness dependence of the biexciton relaxation time and also obtain an ultrafast relaxation time with a timescale as short as 100 fs, while the exciton lifetime monotonically decreases with increasing thickness. By analyzing the exciton-photon coupling energy for a surface polariton, we theoretically calculate the biexciton relaxation time as a function of the thickness. The calculated dependence qualitatively reproduces the observed relaxation time, indicating that the biexciton dissociation into a surface polariton pair is one of the major biexciton relaxation processes.
Sympathetic stimulation alters left ventricular relaxation and chamber size.
Burwash, I G; Morgan, D E; Koilpillai, C J; Blackmore, G L; Johnstone, D E; Armour, J A
1993-01-01
Alterations in left ventricular (LV) contractility, relaxation, and chamber dimensions induced by efferent sympathetic nerve stimulation were investigated in nine anesthetized open-chest dogs in sinus rhythm. Supramaximal stimulation of acutely decentralized left stellate ganglia augmented heart rate, LV systolic pressure, and rate of LV pressure rise (maximum +dP/dt, 1,809 +/- 191 to 6,304 +/- 725 mmHg/s) and fall (maximum -dP/dt, -2,392 +/- 230 to -4,458 +/- 482 mmHg/s). It also reduced the time constant of isovolumic relaxation, tau (36.5 +/- 4.8 to 14.9 +/- 1.1 ms). Simultaneous two-dimensional echocardiography recorded reductions in end-diastolic and end-systolic LV cross-sectional chamber areas (23 and 31%, respectively), an increase in area ejection fraction (32%), and increases in end-diastolic and end-systolic wall thicknesses (14 and 13%, respectively). End-systolic and end-diastolic wall stresses were unchanged by stellate ganglion stimulation (98 +/- 12 to 95 +/- 9 dyn x 10(3)/cm2; 6.4 +/- 2.4 to 2.4 +/- 0.3 dyn x 10(3)/cm2, respectively). Atrial pacing to similar heart rates did not alter monitored indexes of contractility. Dobutamine and isoproterenol induced changes similar to those resulting from sympathetic neuronal stimulation. These data indicate that when the efferent sympathetic nervous system increases left ventricular contractility and relaxation, concomitant reductions in systolic and diastolic dimensions of that chamber occur that are associated with increasing wall thickness such that LV wall stress changes are minimized.
Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization
Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)
2017-02-28
Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent
Relaxation processes and physical aging in metallic glasses
Ruta, B.; Pineda, E.; Evenson, Z.
2017-12-01
Since their discovery in the 1960s, metallic glasses have continuously attracted much interest across the physics and materials science communities. In the forefront are their unique properties, which hold the alluring promise of broad application in fields as diverse as medicine, environmental science and engineering. However, a major obstacle to their wide-spread commercial use is their inherent temporal instability arising from underlying relaxation processes that can dramatically alter their physical properties. The result is a physical aging process which can bring about degradation of mechanical properties, namely through embrittlement and catastrophic mechanical failure. Understanding and controlling the effects of aging will play a decisive role in our on-going endeavor to advance the use of metallic glasses as structural materials, as well as in the more general comprehension of out-of-equilibrium dynamics in complex systems. This review presents an overview of the current state of the art in the experimental advances probing physical aging and relaxation processes in metallic glasses. Similarities and differences between other hard and soft matter glasses are highlighted. The topic is discussed in a multiscale approach, first presenting the key features obtained in macroscopic studies, then connecting them to recent novel microscopic investigations. Particular emphasis is put on the occurrence of distinct relaxation processes beyond the main structural process in viscous metallic melts and their fate upon entering the glassy state, trying to disentangle results and formalisms employed by the different groups of the glass-science community. A microscopic viewpoint is presented, in which physical aging manifests itself in irreversible atomic-scale processes such as avalanches and intermittent dynamics, ascribed to the existence of a plethora of metastable glassy states across a complex energy landscape. Future experimental challenges and the comparison with
Monte Carlo simulation of nuclear spin relaxation in disordered system
Luo, X.; Sholl, C.A.
2002-01-01
Full text: Nuclear spin relaxation is a very useful technique for obtaining information about diffusion in solids. The present work is motivated by relaxation experiments on H diffusing in disordered systems such as metallic glasses or quasicrystalline materials. A theory of the spectral density functions of the magnetic dipolar interactions between diffusing spins is required in order to relate the experimental data to diffusional parameters. In simple ordered systems, the spectral density functions are well understood and a simple BPP (exponential correlation function) model is often used to interpret the data. Diffusion in disordered systems involves a distribution of activation energies and the simple extension of the BPP model that has been used traditionally is of doubtful validity. A more rigorously based BPP model has been developed, and this model has recently been applied to H diffusion in a metal quasicrystal. The improved BPP model still, however, involves approximations and the accuracy of the parameters deduced from it is not clear. The present work involves a Monte Carlo simulation of diffusion in disordered systems and the calculation of the spectral density functions and relaxation rates. The simulations use two algorithms (discrete time and continuous time) for the time-development of the system, and correctly incorporate the Fermi-Dirac distribution for equilibrium occupation of sites, as required by the principle of detailed balance and only single site occupancy of sites. The results are compared with the BPP models for some site- and barrier-energy distributions arising from the structural disorder of the system. The improved BPP model is found to give reasonable values for the diffusion and disorder parameters. Quantitative estimates of the errors involved are determined
Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization
Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli
2017-01-01
Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the
Modified relaxation technique for treating hypertension in Thai postmenopausal women
Saensak S
2013-10-01
Full Text Available Suprawita Saensak,1,2 Teraporn Vutyavanich,3 Woraluk Somboonporn,4 Manit Srisurapanont5 1Academic Department, Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand; 2Department of Community Medicine, Faculty of Medicine, Chiang Mai University,Thailand; 3Department of Obstetrics and Gynecology, Chiang Mai University, Chiang Mai, Thailand; 4Department of Obstetrics and Gynecology, Khon Kaen University, Khon Kaen, Thailand; 5Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand Aim: To examine the effectiveness of a modified relaxation (MR technique in reducing blood pressure levels in Thai postmenopausal women with mild hypertension, compared with a control group who received health education. Methods: This is a 16-week, randomized, parallel, open-label, controlled trial in a menopausal clinic in a tertiary health care center in Northeastern Thailand. The intervention group received a 60-minute session of MR training and were encouraged to practice 15–20 minutes a day, at least 5 days a week. The control group received lifestyle education, including diet and exercise. The primary and secondary outcomes were systolic and diastolic blood pressure (SBP and DBP. Results: Of 432 participants, 215 and 217 were randomly allocated to the MR and control groups, respectively. Of those, 167 participants in the MR group and 175 participants in the control group completed the study. The SBP was significantly more reduced in the MR group, with a mean of 2.1 mmHg (P < 0.001. There was no significant difference between groups on the changed DBP. Conclusion: The MR technique may be effective in lowering SBP in Thai postmenopausal women visiting a menopause clinic. Its efficacy may be observed as soon as 4 weeks after start of treatment. Long-term and combined relaxation therapy and antihypertensive agents are warranted in a large cohort of this population. This trial is registered in clinicaltrials.gov (number
ENERGY RELAXATION OF HELIUM ATOMS IN ASTROPHYSICAL GASES
Lewkow, N. R.; Kharchenko, V.; Zhang, P.
2012-01-01
We report accurate parameters describing energy relaxation of He atoms in atomic gases, important for astrophysics and atmospheric science. Collisional energy exchange between helium atoms and atomic constituents of the interstellar gas, heliosphere, and upper planetary atmosphere has been investigated. Energy transfer rates, number of collisions required for thermalization, energy distributions of recoil atoms, and other major parameters of energy relaxation for fast He atoms in thermal H, He, and O gases have been computed in a broad interval of energies from 10 meV to 10 keV. This energy interval is important for astrophysical applications involving the energy deposition of energetic atoms and ions into atmospheres of planets and exoplanets, atmospheric evolution, and analysis of non-equilibrium processes in the interstellar gas and heliosphere. Angular- and energy-dependent cross sections, required for an accurate description of the momentum-energy transfer, are obtained using ab initio interaction potentials and quantum mechanical calculations for scattering processes. Calculation methods used include partial wave analysis for collisional energies below 2 keV and the eikonal approximation at energies higher than 100 eV, keeping a significant energy region of overlap, 0.1-2 keV, between these two methods for their mutual verification. The partial wave method and the eikonal approximation excellently match results obtained with each other as well as experimental data, providing reliable cross sections in the astrophysically important interval of energies from 10 meV to 10 keV. Analytical formulae, interpolating obtained energy- and angular-dependent cross sections, are presented to simplify potential applications of the reported database. Thermalization of fast He atoms in the interstellar gas and energy relaxation of hot He and O atoms in the upper atmosphere of Mars are considered as illustrative examples of potential applications of the new database.
Influences of irradiating on spectrum temporary to relaxations
Mahmudov, A.Y.; Akhmedov, F.A.
2002-01-01
Full text: Generality of chain macromolecular system construction allows to identify a majority of features of polymers of like nature. So on considered in given work irradiated model no condition on descending in not put. Model consists of gaussian chains with (N x m) numbers (from them N - a number of chains and m - a number an beads on chains, which are distinguished one from another by the degree a mobility) potential interaction centres with the surround environment. The interaction carries of inter and intramolecular nature , including and hydrogen bond. Between these centres there are constant and casual contacts. For terminal volume and terminal time possible to neglect influences casual bonds of fluctuation.Let number of constant contacts is equally n. Changing of number of contacts under the action of irradiating carries a kinetic nature and so it is described by the differential equation, which parameters are formation frequencies and destroying the contacts. Decision of this equation allows to calculate a complex module of bounce, on which possible judge on velocities of relaxation process irradiated polymer. At the equality unit a relations of frequencies of formation and destroying of the contact occurs as it were a dynamic balance and spectrum temporary relaxations corresponds a spectrum non radiating models. An accumulation of energy occurs under small energy of irradiating in the in that nodes, which encircled smaller number nodes. So small doses of irradiating a polymer show a wing of spectrum temporary to relaxations in the lion. Comparison of obtained formula with available in literature by data has shown that frequency of forming the contacts much less, than their destruction frequency
Dielectric relaxation in AgI doped silver selenomolybdate glasses
Palui, A.; Shaw, A.; Ghosh, A.
2016-05-01
We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.
Mechanism of laser-induced stress relaxation in cartilage
Sobol, Emil N.; Sviridov, Alexander P.; Omelchenko, Alexander I.; Bagratashvili, Victor N.; Bagratashvili, Nodar V.; Popov, Vladimir K.
1997-06-01
The paper presents theoretical and experimental results allowing to discuss and understand the mechanism of stress relaxation and reshaping of cartilage under laser radiation. A carbon dioxide and a Holmium laser was used for treatment of rabbits and human cartilage. We measured temperature, stress, amplitude of oscillation by free and forced vibration, internal friction, and light scattering in the course of laser irradiation. Using experimental data and theoretical modeling of heat and mass transfer in cartilaginous tissue we estimated the values of transformation heat, diffusion coefficients and energy activation for water movement.
Relaxation rates studies in an argon cylindrical plasma
Hernandez, M.A.; Dengra, A.; Colomer, V.
1986-01-01
The single Langmuir probe method has been used to determine the relaxation rates of the electron density and temperature in an argon afterglow dc cylindrical plasma. The ion-electron recombination was found to be the fundamental mechanism of density decay during the early afterglow while the ambipolar diffusion controlles the density decay for later afterglow. Electron temperature cooling curves have been interpreted via electron-neutral collisons. Measurements of the electron-ion recombination and the ambipolar diffusion coefficients have been made, as well as of the electron-neutral collision frequency and the momentum transfer cross sections. Good agreement is obtained with previously published data. (author)
Simulations of vibrational relaxation in dense molecular fluids
Holian, B.L.
1985-07-01
In the understanding of high-temperatre and -pressure chemistry in explosives, first step is the study of the transfer of energy from translational degrees of freedom into internal vibrations of the molecules. We present new methods using nonequilibrium molecular dynamics (NEMD) for measuring vibrational relaxation in a diatomic fluid, where we expect a classical treatment of many-body collisions to be relevant because of the high densities (2 to 3 times compressed compared to the normal fluid) and high temperatures (2000 to 4000 K) involved behind detonation waves. NEMD techniques are discussed, including their limitations, and qualitative results presented
Picosecond intersubband hole relaxation in p-type quantum wells
Xu, Z.; Fauchet, P.M.; Rella, C.W.; Schwettman, H.A.
1995-01-01
We report the first direct measurement of the relaxation time of holes in p-type quantum wells using tunable, subpicosecond mid-infrared laser pulses in a pump-probe arrangement. The QW layers consisted of 50 In 0.5 Ga 0.5 As/Al 0.5 Ga 0.5 As periods. The In 0.5 Ga 0.5 As well was 4 nm wide and the Al 0.5 Ga 0.5 As barrier was 8 nm wide. The dopant concentration was 10 19 CM -3 which corresponds to a sheet density of 1.2 x 10 13 CM -2 . The room temperature IR spectrum showed a 50 meV wide absorption peak at 5.25 μm (220 meV). This energy agrees with the calculated n=1 heavy hole to n=1 light hole transition energy of 240 meV (150 meV for strain and 90 meV for confinement). The large absorption width results from hole-hole scattering and the difference in dispersion relations between the two subbands. The equal-wavelength pump-probe transmission measurements were performed using the Stanford free electron laser (FEL). The FEL pulses were tuned between 4 and 6 μ m and their duration was less than 1 ps. The measurements were performed as a function of temperature, pump wavelength and intensity (from 0.3 to 10 GW/cm 2 ). In all our experiments, we find an increase of transmission (decrease of absorption or bleaching) following photopumping, which recovers as a single exponential with a time constant (relaxation time) of the order of 1 picosecond. The maximum change in transmission is linear with pump 2 intensity below 1 GW/cm 2 and saturates to ∼3% with a saturation intensity I sat of 3 GW/cm 2 . As the saturation regime is entered, the relaxation time increases from 0.8 ps to 1.8 ps. This relaxation time depends on the temperature T: it increases from 0.8 ps to 1.3 ps as T decreases from 300 K to 77 K. Finally, when we tune the laser through the absorption band, the magnitude of the signal changes but its temporal behavior does not change, within the accuracy of the measurements
Gas Adsorption in Novel Environments, Including Effects of Pore Relaxation
Cole, Milton W; Gatica, Silvina M; Kim, Hye-Young; Lueking, Angela D; Sircar, Sarmishtha
2012-01-01
Adsorption experiments have been interpreted frequently with simplified model geometries, such as ideally flat surfaces and slit or cylindrical pores. Recent explorations of unusual environments, such as fullerenes and metal-organic-framework materials, have led to a broadened scope of experimental, theoretical and simulation investigations. This paper reviews a number of such studies undertaken by our group. Among the topics receiving emphasis are these: universality of gas uptake in pores, relaxation of a porous absorbent due to gas uptake and the novel phases of gases on a single nanotube, all of which studies have been motivated by recent experiments.
Magnetization relaxation of single molecule magnets after field cooling
Fernandez, Julio F.; Alonso, Juan J.
2004-03-01
Magnetic clusters, such as Fe8 and Mn_12, behave at low temperatures as large single spins S. In crystals, anisotropy energies U allow magnetic relaxation only through tunneling at k_BTstackrelspins with dipolar interactions. To mimic tunneling effects, a spin on a lattice site where h is within some tunnel window -h_w
Ultrafast Librational Relaxation of H2O in Liquid Water
Petersen, Jakob; Møller, Klaus Braagaard; Rey, Rossend
2013-01-01
The ultrafast librational (hindered rotational) relaxation of a rotationally excited H2O molecule in pure liquid water is investigated by means of classical nonequilibrium molecular dynamics simulations and a power and work analysis. This analysis allows the mechanism of the energy transfer from...... the excited H2O to its water neighbors, which occurs on a sub-100 fs time scale, to be followed in molecular detail, i.e., to determine which water molecules receive the energy and in which degrees of freedom. It is found that the dominant energy flow is to the four hydrogen-bonded water partners in the first...
Muon spin relaxation by electronic excitations moving in one dimension
Jestaedt, Th.; Sivia, D.S.; Cox, S.F.J.
1997-01-01
The manner in which an electronic spin, executing a linear random walk, e.g. along a polymer chain, depolarizes a muon (or proton) probe spin, is investigated by computer simulation. The essential features of the model are the assumptions of a contact hyperfine interaction with limited range and of loss of coherence between successive encounters. The low dimensionality of the motion is reflected in the shape of the relaxation functions generated, which depart significantly from simple exponentials. Fits to various functional forms are examined for different combinations of hop rate and chain length, hyperfine constant and applied magnetic field
Relaxing rdf queries based on user and domain preferences
Dolog, Peter; Stueckenschmidt, Heiner; Wache, Holger
2009-01-01
Research in cooperative query answering is triggered by the observation that users are often not able to correctly formulate queries to databases such that they return the intended result. Due to lacking knowledge about the contents and the structure of a database, users will often only be able t...... application in the context of e-learning systems....... knowledge and user preferences. We describe a framework for information access that combines query refinement and relaxation in order to provide robust, personalized access to heterogeneous resource description framework data as well as an implementation in terms of rewriting rules and explain its...