WorldWideScience

Sample records for reflective surfacing methods

  1. A Method of Retrieving BRDF from Surface-Reflected Radiance Using Decoupling of Atmospheric Radiative Transfer and Surface Reflection

    Directory of Open Access Journals (Sweden)

    Alexander Radkevich

    2018-04-01

    Full Text Available Bi-directional reflection distribution function (BRDF defines anisotropy of the surface reflection. It is required to specify the boundary condition for radiative transfer (RT modeling used in aerosol retrievals, cloud retrievals, atmospheric modeling, and other applications. Ground based measurements of reflected radiance draw increasing attention as a source of information about anisotropy of surface reflection. Derivation of BRDF from surface radiance requires atmospheric correction. This study develops a new method of retrieving BRDF on its whole domain, making it immediately suitable for further atmospheric RT modeling applications. The method is based on the integral equation relating surface-reflected radiance, BRDF, and solutions of two auxiliary atmosphere-only RT problems. The method requires kernel-based BRDF. The weights of the kernels are obtained with a quickly converging iterative procedure. RT modeling has to be done only one time before the start of iterative process.

  2. Seismic data enhancement with Common Reflection Surface (CRS) stack method

    Energy Technology Data Exchange (ETDEWEB)

    Baykulov, M.; Brink, H.J.; Gajewski, D.; Yoon, Mi-Kyung [Hamburg Univ. (Germany). Inst. fuer Geophysik

    2008-10-23

    We present the results of partial stacking of prestack seismic reflection data based on the kinematic wavefield attributes computed during the automatic CRS stack. The resulting CRS supergathers are more regularised and have better signal to noise ratio compared to original CMP gathers. The improved data can be used in any conventional processing tool instead of the original data, providing enhanced images of better quality. The CRS supergather method is especially suited for low fold seismic reflection data. Application of the new method to synthetic and real low fold data shows a clear improvement of seismograms as well as time and depth-migrated sections. (orig.)

  3. A method for the characterization of the reflectance of anisotropic functional surfaces

    DEFF Research Database (Denmark)

    Regi, Francesco; Nielsen, J B; Li, Dongya

    2018-01-01

    The functional properties of micro-structured surfaces have gained increasing interest thanks to many applications such as wetting, adhesion, thermal and/or electrical conductivity. In this study, directional optical properties, i.e. contrast between two regions of a surface, were achieved...... reflectance of the surface for a range of design-specific view-illumination configurations was determined using a method that involves a Hirox RH-2000 digital microscope, used as a gonioreflectometer. This method allows the empirical determination of the optimum surface microstructure for maximizing contrast...... between two horizontally orthogonal views. The results show that even if the uncertainty related to the instrumentation is up to 20% in some cases, this procedure is suitable for the characterization of the surface of both metal and plastic counterpart....

  4. [A Method to Reconstruct Surface Reflectance Spectrum from Multispectral Image Based on Canopy Radiation Transfer Model].

    Science.gov (United States)

    Zhao, Yong-guang; Ma, Ling-ling; Li, Chuan-rong; Zhu, Xiao-hua; Tang, Ling-li

    2015-07-01

    Due to the lack of enough spectral bands for multi-spectral sensor, it is difficult to reconstruct surface retlectance spectrum from finite spectral information acquired by multi-spectral instrument. Here, taking into full account of the heterogeneity of pixel from remote sensing image, a method is proposed to simulate hyperspectral data from multispectral data based on canopy radiation transfer model. This method first assumes the mixed pixels contain two types of land cover, i.e., vegetation and soil. The sensitive parameters of Soil-Leaf-Canopy (SLC) model and a soil ratio factor were retrieved from multi-spectral data based on Look-Up Table (LUT) technology. Then, by combined with a soil ratio factor, all the parameters were input into the SLC model to simulate the surface reflectance spectrum from 400 to 2 400 nm. Taking Landsat Enhanced Thematic Mapper Plus (ETM+) image as reference image, the surface reflectance spectrum was simulated. The simulated reflectance spectrum revealed different feature information of different surface types. To test the performance of this method, the simulated reflectance spectrum was convolved with the Landsat ETM + spectral response curves and Moderate Resolution Imaging Spectrometer (MODIS) spectral response curves to obtain the simulated Landsat ETM+ and MODIS image. Finally, the simulated Landsat ETM+ and MODIS images were compared with the observed Landsat ETM+ and MODIS images. The results generally showed high correction coefficients (Landsat: 0.90-0.99, MODIS: 0.74-0.85) between most simulated bands and observed bands and indicated that the simulated reflectance spectrum was well simulated and reliable.

  5. Lunar surface remanent magnetic fields detected by the electron reflection method

    Science.gov (United States)

    Lin, R. P.; Anderson, K. A.; Bush, R.; Mcguire, R. E.; Mccoy, J. E.

    1976-01-01

    We present maps of the lunar surface remanent magnetic fields detected by the electron reflection method. These maps provide substantial coverage of the latitude band from 30 N southward to 30 S with a resolution of about 40 km and a sensitivity of about 0.2 gamma at the lunar surface. Regions of remanent magnetization are observed ranging in size from the resolution limit of 1.25 deg to above approximately 60 deg. The largest contiguous region fills the Big Backside Basin where it is intersected by the spacecraft orbital tracks. Preliminary analyses of the maps show that the source regions of lunar limb compressions correspond to regions of strong surface magnetism, and that there does not appear to be sharply discontinuous magnetization at the edges of maria. We also analyze the electron reflection observations to obtain information on the direction and distribution of magnetization in the Van de Graaff anomaly region.

  6. The normalization of surface anisotropy effects present in SEVIRI reflectances by using the MODIS BRDF method

    DEFF Research Database (Denmark)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI...... acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008....... It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI...

  7. The Normalization of Surface Anisotropy Effects Present in SEVIRI Reflectances by Using the MODIS BRDF Method

    Science.gov (United States)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal; Fensholt, Rasmus; Rasmussen, Mads Olander; Shisanya, Chris; Mutero, Wycliffe; Mbow, Cheikh; Anyamba, Assaf; Pak, Ed; hide

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites. We present early and provisional daily nadir BRDFadjusted reflectance (NBAR) data in the visible and near-infrared MSG channels. These utilize the high temporal resolution of MSG to produce BRDF retrievals with a greatly reduced acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008. It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI observations-primarily because of an insufficient spread of angular data due to the fixed sensor location or localized cloud contamination.

  8. Chromatic X-ray magnifying method and apparatus by Bragg reflective planes on the surface of Abbe sphere

    Science.gov (United States)

    Thoe, Robert S.

    1991-01-01

    Method and apparatus for producing sharp, chromatic, magnified images of X-ray emitting objects, are provided. The apparatus, which constitutes an X-ray microscope or telescope, comprises a connected collection of Bragg reflecting planes, comprised of either a bent crystal or a synthetic multilayer structure, disposed on and adjacent to a locus determined by a spherical surface. The individual Bragg planes are spatially oriented to Bragg reflect radiation from the object location toward the image location. This is accomplished by making the Bragg planes spatially coincident with the surfaces of either a nested series of prolate ellipsoids of revolution, or a nested series of spheres. The spacing between the Bragg reflecting planes can be tailored to control the wavelengths and the amount of the X-radiation that is Bragg reflected to form the X-ray image.

  9. Determination of solid surface composition by the X-ray fluorescence method under total external reflection with angular scanning

    International Nuclear Information System (INIS)

    Krasnolutskij, V.P.

    2000-01-01

    Possibilities of determination of composition of surface layers by X-ray fluorescence analysis under total reflection of incident radiation with angular scanning of a target are investigated. For the case of the GaAs target it is shown that the sensibility of this method is sufficient for a control of element composition in layer of thickness 1 nm. A simple method for solution of inverse task of analysis of a two component medium is considered [ru

  10. Application of the surface reflection seismic method to shallow coal exploration in the plains of Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Lyatsky, H.V.; Lawton, D.C. (University of Victoria, Victoria, BC (Canada). Dept. of Physics and Astronomy)

    1988-12-01

    A study was done to make a quantitative interpretation of reflection seismic data from the Highvale-Whitewood shallow coal deposit in central Alberta. Results showed that the data is useful in demonstrating coal thickness and stratigraphy as well as structural formation. Reflection character is affected by nature of the strata surrounding the coal deposit. 22 refs., 1 tab., 23 figs.

  11. Effect of surface plasmon polaritons on the sensitivity of refractive index measurement using total internal reflection method

    International Nuclear Information System (INIS)

    Roshan Entezar, S.

    2015-01-01

    The phase difference between two p-polarized and s-polarized plane waves which are reflected under total internal reflection from the base of a prism with a thin metal coating is studied. Typically such a quantity can be used to measure the refractive index of a test material using the total internal reflection method. It is shown that due to the excitation of surface plasmon polaritons at the interface between the tested dielectric material and the thin metal layer, the p-polarized light experiences a large phase shift which enlarges the phase difference between the p-polarized and the s-polarized waves. As a result, the sensitivity of refractive index measurement increases and the error in determining the refractive index decreases. - Highlights: • Phase difference of totally internally reflected p and s polarized beams is studied. • Excitation of the surface wave increases the phase shift of the p-polarized light. • The sensitivity of refractive index measurement increases by using a coated prism. • The error in determining the refractive index decreases using the coated prism

  12. Apparatus and method of manufacture for depositing a composite anti-reflection layer on a silicon surface

    Science.gov (United States)

    Pain, Bedabrata (Inventor)

    2012-01-01

    An apparatus and associated method are provided. A first silicon layer having at least one of an associated passivation layer and barrier is included. Also included is a composite anti-reflection layer including a stack of layers each with a different thickness and refractive index. Such composite anti-reflection layer is disposed adjacent to the first silicon layer.

  13. Modeling Bidirectional Reflectance Distribution Function of One-dimensional Random Rough Surfaces with the Finite Difference Time Domain Method

    Directory of Open Access Journals (Sweden)

    Min-Jhong Gu

    2014-08-01

    Full Text Available This article describes the development of a suite of programs that is capable of simulating the radiation properties of a random rough surface (RRS. The fundamental approach involves the generation, by fast Fourier transform (FFT built with rigorous finite difference time domain (FDTD, as the theoretical basis for the simulation of a bidirectional reflectance distribution function (BRDF of the RRS. The results are compared with the measurements and modeling of existing work to verify the feasibility of customized programming. It was found that the results of this study were a better match to the measurement data than those achieved in other modeling work.

  14. Application of Sol-Gel Method as a Protective Layer on a Specular Reflective Surface for Secondary Reflector in a Solar Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Afrin, Samia; Dagdelen, John; Ma, Zhiwen; Kumar, Vinod

    2017-01-01

    Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking, delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.

  15. On automatic visual inspection of reflective surfaces

    DEFF Research Database (Denmark)

    Kulmann, Lionel

    1995-01-01

    surfaces, providing new and exciting applications subject to automated visual inspection. Several contextual features have been surveyed along with introduction of novel methods to perform data-dependent enhancement of local surface appearance . Morphological methods have been described and utilized......This thesis descrbes different methods to perform automatic visual inspection of reflective manufactured products, with the aim of increasing productivity, reduce cost and improve the quality level of the production. We investigate two different systems performing automatic visual inspection....... The first is the inspection of highly reflective aluminum sheets, used by the Danish company Bang & Olufsen, as a part of the exterior design and general appearance of their audio and video products. The second is the inspection of IBM hard disk read/write heads for defects during manufacturing. We have...

  16. A climatology of visible surface reflectance spectra

    International Nuclear Information System (INIS)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-01-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290–740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment–2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes. - Highlights: • Our goals was visible surface reflectance for satellite trace gas measurements. • Captured the range of surface reflectance spectra through EOF analysis. • Used satellite surface reflectance products for each given scene to anchor EOFs. • Generated a climatology of time/geometry dependent surface reflectance spectra. • Demonstrated potential to

  17. A Bayesian Reflection on Surfaces

    Directory of Open Access Journals (Sweden)

    David R. Wolf

    1999-10-01

    Full Text Available Abstract: The topic of this paper is a novel Bayesian continuous-basis field representation and inference framework. Within this paper several problems are solved: The maximally informative inference of continuous-basis fields, that is where the basis for the field is itself a continuous object and not representable in a finite manner; the tradeoff between accuracy of representation in terms of information learned, and memory or storage capacity in bits; the approximation of probability distributions so that a maximal amount of information about the object being inferred is preserved; an information theoretic justification for multigrid methodology. The maximally informative field inference framework is described in full generality and denoted the Generalized Kalman Filter. The Generalized Kalman Filter allows the update of field knowledge from previous knowledge at any scale, and new data, to new knowledge at any other scale. An application example instance, the inference of continuous surfaces from measurements (for example, camera image data, is presented.

  18. Method for measurement of emissivity and absorptivity of highly reflective surfaces from 20 K to room temperatures

    Czech Academy of Sciences Publication Activity Database

    Králík, Tomáš; Musilová, Věra; Hanzelka, Pavel; Frolec, Jiří

    2016-01-01

    Roč. 53, č. 2 (2016), s. 743-753 ISSN 0026-1394 R&D Projects: GA ČR(CZ) GA14-07397S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : absorptivity * emissivity * radiative heat transfer * metallic surfaces * cryogenics * uncertainty evaluation Subject RIV: BJ - Thermodynamics Impact factor: 3.411, year: 2016

  19. Simulation Tool for GNSS Ocean Surface Reflections

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-01-01

    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surfaceheights, and patterns of the general ocean circulation. In the reflection...... zone the measurements may deriveparameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from the top of mountains and airplanes have shown such results leading.The coming satellite missions, CYGNSS, COSMIC-2, and GEROS...

  20. The reflection seismology measurement method

    International Nuclear Information System (INIS)

    Sprecher, C.

    1987-01-01

    Even though data acquisition and data processing procedures have become more and more complex in recent decades, the end products of a reflection seismic survey have remained simple and illustrative. A seismic section resembles a geological cross-section and can be interpreted without in-depth knowledge provided that the basic principles behind the method are understood. This article attempts to convey some insight into the methodology without claiming to be scientifically exact or complete. (author)

  1. Use of reflective surfaces on roadway embankment

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Doré, Guy

    2007-01-01

    adherence characteristics for roadway use. In Kangerlussuaq Airport, western Greenland, ground-penetrating radar (GPR) has been used to compare the variation of the frost table underneath a normal black asphalt surface and a more reflective surface (white paint). The GPR results have shown a clear...

  2. Measuring Light Reflectance of BGO Crystal Surfaces

    Science.gov (United States)

    Janecek, Martin; Moses, William W.

    2008-10-01

    A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal's light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air-coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2pi of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 105:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.

  3. Seismic characterization of geothermal reservoirs by application of the common-reflection-surface stack method and attribute analysis

    OpenAIRE

    Marcin Pussak

    2015-01-01

    An important contribution of geosciences to the renewable energy production portfolio is the exploration and utilization of geothermal resources. For the development of a geothermal project at great depths a detailed geological and geophysical exploration program is required in the first phase. With the help of active seismic methods high-resolution images of the geothermal reservoir can be delivered. This allows potential transport routes for fluids to be identified as well as regions with h...

  4. Computation of Mach reflection from rigid and yielding surfaces

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Wilson, S.S.

    1976-01-01

    The present discussion centers on a theoretical description of one aspect of the irregular or Mach reflection from solid surfaces. The discussion is restricted to analytical considerations and some preliminary results using model approximations to the surface interaction phenomena. Currently, full numerical simulations of the irregular reflection surface interaction dynamics have not been obtained since the method is still under development. Discussion of the numerical method is, therefore, restricted to some special procedures for the gas-solid surface boundary dynamics. The discussion is divided into an introductory section briefly describing a particular Mach reflection process. Subsequently, some of the considerations on boundary conditions are submitted for numerical treatment of the gas-solid interface. Analysis and discussion of a yielding solid surface subjected to impulsive loading from an intense gas shock wave follows. This is used as a guide for the development of the numerical procedure. Mach reflection processes are then briefly reviewed with special attention for similitude and singular perturbation features

  5. X-ray reflectivity and surface roughness

    International Nuclear Information System (INIS)

    Ocko, B.M.

    1988-01-01

    Since the advent of high brightness synchrotron radiation sources there has been a phenomenal growth in the use of x-rays as a probe of surface structure. The technique of x-ray reflectivity is particularly relevant to electrochemists since it is capable of probing the structure normal to an electrode surface in situ. In this paper the theoretical framework for x-ray reflectivity is reviewed and the results from previous non-electrochemistry measurements are summarized. These measurements are from the liquid/air interface (CCl 4 ), the metal crystal vacuum interface (Au(100)), and from the liquid/solid interface(liquid crystal/silicon). 34 refs., 5 figs

  6. Remote measurement of surface roughness, surface reflectance, and body reflectance with LiDAR.

    Science.gov (United States)

    Li, Xiaolu; Liang, Yu

    2015-10-20

    Light detection and ranging (LiDAR) intensity data are attracting increasing attention because of the great potential for use of such data in a variety of remote sensing applications. To fully investigate the data potential for target classification and identification, we carried out a series of experiments with typical urban building materials and employed our reconstructed built-in-lab LiDAR system. Received intensity data were analyzed on the basis of the derived bidirectional reflectance distribution function (BRDF) model and the established integration method. With an improved fitting algorithm, parameters involved in the BRDF model can be obtained to depict the surface characteristics. One of these parameters related to surface roughness was converted to a most used roughness parameter, the arithmetical mean deviation of the roughness profile (Ra), which can be used to validate the feasibility of the BRDF model in surface characterizations and performance evaluations.

  7. Surface composition of Mercury from reflectance spectrophotometry

    Science.gov (United States)

    Vilas, Faith

    1988-01-01

    The controversies surrounding the existing spectra of Mercury are discussed together with the various implications for interpretations of Mercury's surface composition. Special attention is given to the basic procedure used for reducing reflectance spectrophotometry data, the factors that must be accounted for in the reduction of these data, and the methodology for defining the portion of the surface contributing the greatest amount of light to an individual spectrum. The application of these methodologies to Mercury's spectra is presented.

  8. Reflectance spectroscopy and asteroid surface mineralogy

    International Nuclear Information System (INIS)

    Gaffey, M.J.; Bell, J.F.; Cruikshank, D.P.

    1989-01-01

    Information available from reflectance spectroscopy on the surface mineralogy of asteroids is discussed. Current spectral interpretive procedures used in the investigations of asteroid mineralogy are described. Present understanding of the nature and history of asteroids is discussed together with some still unresolved issues such as the source of ordinary chondrites. 100 refs

  9. ASTER L2 Surface Reflectance SWIR and ASTER L2 Surface Reflectance VNIR V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER L2 Surface Reflectance is a multi-file product that contains atmospherically corrected data for both the Visible Near-Infrared (VNIR) and Shortwave...

  10. Copper-assisted, anti-reflection etching of silicon surfaces

    Science.gov (United States)

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  11. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Sleiman, Mohamad [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kirchstetter, Thomas W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Berdahl, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gilbert, Haley E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quelen, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Marlot, Lea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Preble, Chelsea V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Chen, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Montalbano, Amandine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosseler, Olivier [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Akbari, Hashem [Concordia Univ., Montreal (Canada); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Destaillats, Hugo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  12. Reflectance variability of surface coatings reveals characteristic eigenvalue spectra

    Science.gov (United States)

    Medina, José M.; Díaz, José A.; Barros, Rui

    2012-10-01

    We have examined the trial-to-trial variability of the reflectance spectra of surface coatings containing effect pigments. Principal component analysis of reflectances was done at each detection angle separately. A method for classification of principal components is applied based on the eigenvalue spectra. It was found that the eigenvalue spectra follow characteristic power laws and depend on the detection angle. Three different subsets of principal components were examined to separate the relevant spectral features related to the pigments from other noise sources. Reconstruction of the reflectance spectra by taking only the first subset indicated that reflectance variability was higher at near-specular reflection, suggesting a correlation with the trial-to-trial deposition of effect pigments. Reconstruction by using the second subset indicates that variability was higher at short wavelengths. Finally, reconstruction by using only the third subset indicates that reflectance variability was not totally random as a function of the wavelength. The methods employed can be useful in the evaluation of color variability in industrial paint application processes.

  13. Real-time defect detection on highly reflective curved surfaces

    Science.gov (United States)

    Rosati, G.; Boschetti, G.; Biondi, A.; Rossi, A.

    2009-03-01

    This paper presents an automated defect detection system for coated plastic components for the automotive industry. This research activity came up as an evolution of a previous study which employed a non-flat mirror to illuminate and inspect high reflective curved surfaces. According to this method, the rays emitted from a light source are conveyed on the surface under investigation by means of a suitably curved mirror. After the reflection on the surface, the light rays are collected by a CCD camera, in which the coating defects appear as shadows of various shapes and dimensions. In this paper we present an evolution of the above-mentioned method, introducing a simplified mirror set-up in order to reduce the costs and the complexity of the defect detection system. In fact, a set of plane mirrors is employed instead of the curved one. Moreover, the inspection of multiple bend radius parts is investigated. A prototype of the machine vision system has been developed in order to test this simplified method. This device is made up of a light projector, a set of plane mirrors for light rays reflection, a conveyor belt for handling components, a CCD camera and a desktop PC which performs image acquisition and processing. Like in the previous system, the defects are identified as shadows inside a high brightness image. At the end of the paper, first experimental results are presented.

  14. GLOBAL LAND COVER CLASSIFICATION USING MODIS SURFACE REFLECTANCE PROSUCTS

    Directory of Open Access Journals (Sweden)

    K. Fukue

    2016-06-01

    Full Text Available The objective of this study is to develop high accuracy land cover classification algorithm for Global scale by using multi-temporal MODIS land reflectance products. In this study, time-domain co-occurrence matrix was introduced as a classification feature which provides time-series signature of land covers. Further, the non-parametric minimum distance classifier was introduced for timedomain co-occurrence matrix, which performs multi-dimensional pattern matching for time-domain co-occurrence matrices of a classification target pixel and each classification classes. The global land cover classification experiments have been conducted by applying the proposed classification method using 46 multi-temporal(in one year SR(Surface Reflectance and NBAR(Nadir BRDF-Adjusted Reflectance products, respectively. IGBP 17 land cover categories were used in our classification experiments. As the results, SR and NBAR products showed similar classification accuracy of 99%.

  15. The surface analysis methods

    International Nuclear Information System (INIS)

    Deville, J.P.

    1998-01-01

    Nowadays, there are a lot of surfaces analysis methods, each having its specificity, its qualities, its constraints (for instance vacuum) and its limits. Expensive in time and in investment, these methods have to be used deliberately. This article appeals to non specialists. It gives some elements of choice according to the studied information, the sensitivity, the use constraints or the answer to a precise question. After having recalled the fundamental principles which govern these analysis methods, based on the interaction between radiations (ultraviolet, X) or particles (ions, electrons) with matter, two methods will be more particularly described: the Auger electron spectroscopy (AES) and x-rays photoemission spectroscopy (ESCA or XPS). Indeed, they are the most widespread methods in laboratories, the easier for use and probably the most productive for the analysis of surface of industrial materials or samples submitted to treatments in aggressive media. (O.M.)

  16. The differential equation of an arbitrary reflecting surface

    Science.gov (United States)

    Melka, Richard F.; Berrettini, Vincent D.; Yousif, Hashim A.

    2018-05-01

    A differential equation describing the reflection of a light ray incident upon an arbitrary reflecting surface is obtained using the law of reflection. The derived equation is written in terms of a parameter and the value of this parameter determines the nature of the reflecting surface. Under various parametric constraints, the solution of the differential equation leads to the various conic surfaces but is not generally solvable. In addition, the dynamics of the light reflections from the conic surfaces are executed in the Mathematica software. Our derivation is the converse of the traditional approach and our analysis assumes a relation between the object distance and the image distance. This leads to the differential equation of the reflecting surface.

  17. Critical reflection activation analysis - a new near-surface probe

    International Nuclear Information System (INIS)

    Gunn, J.M.F.; Trohidou, K.N.

    1988-09-01

    We propose a new surface analytic technique, Critical Reflection Activation Analysis (CRAA). This technique allows accurate depth profiling of impurities ≤ 100A beneath a surface. The depth profile of the impurity is simply related to the induced activity as a function of the angle of reflection. We argue that the technique is practical and estimate its accuracy. (author)

  18. Examination of zeolites by neutron reflection method

    International Nuclear Information System (INIS)

    Szegedi, S.; Varadi, M.; Boedy, Z.T.; Vas, L.

    1991-01-01

    Neutron reflection method has been used for the determination of zeolite content in minerals. The basis of this measurement is to observe the large difference between the water content of zeolite and that of other mineralic parts of the sample. The method suggested can be used in a zeolite mine for measuring the zeolite content continuously and controlling the quality of the end products. (author) 5 refs.; 3 figs.; 3 tabs

  19. Infrared spectral reflectances of asteroid surfaces

    Science.gov (United States)

    Larson, H. P.; Veeder, G. J.

    1979-01-01

    This review compares the types of compositional information produced by three complementary techniques used in infrared observations of asteroid surfaces: broadband JHKL photometry, narrow band photometry, and multiplex spectroscopy. The high information content of these infrared observations permits definitive interpretations of asteroid surface compositions in terms of the major meteoritic minerals (olivine, pyroxene, plagioclase feldspar, hydrous silicates, and metallic Ni-Fe). These studies emphasize the individuality of asteroid surface compositions, the inadequacy of simple comparisons with spectra of meteorites, and the need to coordinate spectral measurements of all types to optimize diagnostic capabilities.

  20. Method of measuring surface density

    International Nuclear Information System (INIS)

    Gregor, J.

    1982-01-01

    A method is described of measuring surface density or thickness, preferably of coating layers, using radiation emitted by a suitable radionuclide, e.g., 241 Am. The radiation impinges on the measured material, e.g., a copper foil and in dependence on its surface density or thickness part of the flux of impinging radiation is reflected and part penetrates through the material. The radiation which has penetrated through the material excites in a replaceable adjustable backing characteristic radiation of an energy close to that of the impinging radiation (within +-30 keV). Part of the flux of the characteristic radiation spreads back to the detector, penetrates through the material in which in dependence on surface density or thickness of the coating layer it is partly absorbed. The flux of the penetrated characteristic radiation impinging on the face of the detector is a function of surface density or thickness. Only that part of the energy is evaluated of the energy spectrum which corresponds to the energy of characteristic radiation. (B.S.)

  1. Measuring solar reflectance - Part II: Review of practical methods

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-09-15

    A companion article explored how solar reflectance varies with surface orientation and solar position, and found that clear sky air mass 1 global horizontal (AM1GH) solar reflectance is a preferred quantity for estimating solar heat gain. In this study we show that AM1GH solar reflectance R{sub g,0} can be accurately measured with a pyranometer, a solar spectrophotometer, or an updated edition of the Solar Spectrum Reflectometer (version 6). Of primary concern are errors that result from variations in the spectral and angular distributions of incident sunlight. Neglecting shadow, background and instrument errors, the conventional pyranometer technique can measure R{sub g,0} to within 0.01 for surface slopes up to 5:12 [23 ], and to within 0.02 for surface slopes up to 12:12 [45 ]. An alternative pyranometer method minimizes shadow errors and can be used to measure R{sub g,0} of a surface as small as 1 m in diameter. The accuracy with which it can measure R{sub g,0} is otherwise comparable to that of the conventional pyranometer technique. A solar spectrophotometer can be used to determine R{sub g,0}{sup *}, a solar reflectance computed by averaging solar spectral reflectance weighted with AM1GH solar spectral irradiance. Neglecting instrument errors, R{sub g,0}{sup *} matches R{sub g,0} to within 0.006. The air mass 1.5 solar reflectance measured with version 5 of the Solar Spectrum Reflectometer can differ from R{sub g,0}{sup *} by as much as 0.08, but the AM1GH output of version 6 of this instrument matches R{sub g,0}{sup *} to within about 0.01. (author)

  2. On the reflection point where light reflects to a known destination on quadratic surfaces.

    Science.gov (United States)

    Gonçalves, Nuno

    2010-01-15

    We address the problem of determining the reflection point on a specular surface where a light ray that travels from a source to a target is reflected. The specular surfaces considered are those expressed by a quadratic equation. So far, there is no closed form explicit equation for the general solution of this determination of the reflection point, and the usual approach is to use the Snell law or the Fermat principle whose equations are derived in multidimensional nonlinear minimizations. We prove in this Letter that one can impose a set of three restrictions to the reflection point that can impose a set of three restrictions that culminates in a very elegant formalism of searching the reflection point in a unidimensional curve in space. This curve is the intersection of two quadratic equations. Some applications of this framework are also discussed.

  3. An improved method to estimate reflectance parameters for high dynamic range imaging

    Science.gov (United States)

    Li, Shiying; Deguchi, Koichiro; Li, Renfa; Manabe, Yoshitsugu; Chihara, Kunihiro

    2008-01-01

    Two methods are described to accurately estimate diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness, over the dynamic range of the camera used to capture input images. Neither method needs to segment color areas on an image, or to reconstruct a high dynamic range (HDR) image. The second method improves on the first, bypassing the requirement for specific separation of diffuse and specular reflection components. For the latter method, diffuse and specular reflectance parameters are estimated separately, using the least squares method. Reflection values are initially assumed to be diffuse-only reflection components, and are subjected to the least squares method to estimate diffuse reflectance parameters. Specular reflection components, obtained by subtracting the computed diffuse reflection components from reflection values, are then subjected to a logarithmically transformed equation of the Torrance-Sparrow reflection model, and specular reflectance parameters for gloss intensity and surface roughness are finally estimated using the least squares method. Experiments were carried out using both methods, with simulation data at different saturation levels, generated according to the Lambert and Torrance-Sparrow reflection models, and the second method, with spectral images captured by an imaging spectrograph and a moving light source. Our results show that the second method can estimate the diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness more accurately and faster than the first one, so that colors and gloss can be reproduced more efficiently for HDR imaging.

  4. Viscoelasticity evaluation of rubber by surface reflection of supersonic wave.

    Science.gov (United States)

    Omata, Nobuaki; Suga, Takahiro; Furusawa, Hirokazu; Urabe, Shinichi; Kondo, Takeru; Ni, Qing-Qing

    2006-12-22

    The main characteristic of rubber is a viscoelasticity. So it is important to research the characteristic of the viscoelasticity of the high frequency band for the friction between a rubber material and the hard one with roughness, for instance, the tire and the road. As for the measurement of the viscoelasticity of rubber, DMA (dynamic mechanical analysis) is general. However, some problems are pointed out to the measurement of the high frequency band by DMA. Then, we evaluated the viscoelasticity characteristic by the supersonic wave measurement. However, attenuation of rubber is large, and when the viscoelasticity is measured by the supersonic wave therefore, it is inconvenient and limited in a past method by means of bottom reflection. In this report, we tried the viscoelasticity evaluation by the method of using complex surface reflection coefficient and we compared with the friction coefficient under wide-range friction velocity. As a result, some relationships had been found for two properties. We report the result that character of viscoelasticity of rubber was comparable to friction coefficient.

  5. Effect of reflective surfaces on a greenhouse lettuce crop

    Energy Technology Data Exchange (ETDEWEB)

    Warman, P.R.; Mayhew, W.J.

    1979-01-01

    The Canadian greenhouse industry is an important segment of horticultural production, providing employment for thousands of people. Continuing increases in the costs of conventional fuel supplies, however, has placed the industry in some jeopardy since the cost of heating during the winter months is also escalating. In response to this problem the Brace Research Institute has developed a single roofed greenhouse designed to capture and store the sun's energy, and to increase the amount of downward solar radiation inside the greenhouse through the use of specularly-reflecting back and side walls. The research investigated the effect of a reflective surface on plant growth, development, and nutritional uptake during fall and the early months of winter. The inside walls of the greenhouse were lined with aluminized polyester to act as a reflective surface and flat black roofing felt paper to provide a non-reflecting surface. Grand Rapids Forcing lettuce was planted from seed into a peat-vermiculite bed and total solar radiation was monitored on the horizontal. Over the duration of the experiment, the reflective side of the greenhouse received more than twice as much solar radiation as the non-reflective side leading to significantly larger plant yields on the reflective side. There were no significant differences in the uptake of the plant macronutrients, N, P, K, Ca, and Mg.

  6. Internal reflection spectroscopic analysis of sulphide mineral surfaces

    International Nuclear Information System (INIS)

    Kaoma, J.

    1989-01-01

    To establish the reason for flotation of sulfide minerals in the absence of any conventional collector, internal reflection spectroscopic analysis (IRS) of their surfaces was conducted. sulfur, sulfates, thiosulfates, and hydrocarbonates have been detected on the surface of as-grand sulfide minerals. On sodium sulfide-treated surfaces, both sulfur and polysulfide have also been found to be present. From these findings, the flotation of sulfide minerals without collectors is discussed. (author). 26 refs

  7. Diffuse Reflectance Spectroscopy for Surface Measurement of Liver Pathology.

    Science.gov (United States)

    Nilsson, Jan H; Reistad, Nina; Brange, Hannes; Öberg, Carl-Fredrik; Sturesson, Christian

    2017-01-01

    Liver parenchymal injuries such as steatosis, steatohepatitis, fibrosis, and sinusoidal obstruction syndrome can lead to increased morbidity and liver failure after liver resection. Diffuse reflectance spectroscopy (DRS) is an optical measuring method that is fast, convenient, and established. DRS has previously been used on the liver with an invasive technique consisting of a needle that is inserted into the parenchyma. We developed a DRS system with a hand-held probe that is applied to the liver surface. In this study, we investigated the impact of the liver capsule on DRS measurements and whether liver surface measurements are representative of the whole liver. We also wanted to confirm that we could discriminate between tumor and liver parenchyma by DRS. The instrumentation setup consisted of a light source, a fiber-optic contact probe, and two spectrometers connected to a computer. Patients scheduled for liver resection due to hepatic malignancy were included, and DRS measurements were performed on the excised liver part with and without the liver capsule and alongside a newly cut surface. To estimate the scattering parameters and tissue chromophore volume fractions, including blood, bile, and fat, the measured diffuse reflectance spectra were applied to an analytical model. In total, 960 DRS spectra from the excised liver tissue of 18 patients were analyzed. All factors analyzed regarding tumor versus liver tissue were significantly different. When measuring through the capsule, the blood volume fraction was found to be 8.4 ± 3.5%, the lipid volume fraction was 9.9 ± 4.7%, and the bile volume fraction was 8.2 ± 4.6%. No differences could be found between surface measurements and cross-sectional measurements. In measurements with/without the liver capsule, the differences in volume fraction were 1.63% (0.75-2.77), -0.54% (-2.97 to 0.32), and -0.15% (-1.06 to 1.24) for blood, lipid, and bile, respectively. This study shows that it is possible to manage DRS

  8. SECTIONING METHOD APPLICATION AT ELLIPSOMETRY OF INHOMOGENEOUS REFLECTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. N. Gorlyak

    2014-05-01

    Full Text Available The paper deals with investigation of application peculiarities of ellipsometry methods and UF spectrophotometry at mechanical and chemical processing of optical engineering surface elements made of quartz glass. Ellipsometer LEF–3M–1, spectrophotometer SF–26 and interferometer MII–4 are used as experiment tools; they obtain widely known technical characteristics. Polarization characteristics of reflected light beam were measured by ellipsometry method; spectrophotometry method was used for measuring radiation transmission factor in UF spectrum area; by interference method surface layer thickness at quartz glass etching was measured. A method for HF–sectioning of inhomogeneous surface layer of polished quartz glass is developed based on ellipsometry equation for reflection system «inhomogeneous layer – inhomogeneous padding». The method makes it possible to carry out the measuring and analysis of optical characteristics for inhomogeneous layers system on inhomogeneous padding and to reconstruct optical profile of surface layers at quartz glass chemical processing. For definition of refractive index change along the layer depth, approximation of experimental values for polarization characteristics of homogeneous layers system is used. Inhomogeneous surface layer of polished quartz glass consists of an area (with thickness up to 20 nm and layer refractive index less than refractive index for quartz glass and an area (with thickness up to 0,1 μm and layer refractive index larger than refractive index for quartz glass. Ellipsometry and photometry methods are used for definition of technological conditions and optical characteristics of inhomogeneous layers at quartz glass chemical processing for optical elements with minimum radiation losses in UF spectrum area.

  9. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    International Nuclear Information System (INIS)

    Doi, K; Tawada, Y; Kato, S; Sasao, M; Kenmotsu, T; Wada, M; Lee, H T; Ueda, Y; Tanaka, N; Kisaki, M; Nishiura, M; Matsumoto, Y; Yamaoka, H

    2016-01-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H + beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions. (paper)

  10. Simple method for measuring reflectance of optical coatings

    International Nuclear Information System (INIS)

    Wen Gui Wang; Yi Sheng Chen

    1995-01-01

    The quality of optical coatings has an important effect on the performance of optical instrument. The last few years, the requirements for super low loss dielectric mirror coatings used in low gain laser systems such as free electron laser and the ring laser etc., have given an impetus to the development of the technology of precise reflectance measurement of optical coatings. A reliable and workable technique is to measure the light intensity decay time of optical resonant cavity. This paper describes a measuring method which is dependent on direct measurement of the light intensity decay time of a resonant cavity comprised of low loss optical components. According to the evolution of a luminous flux stored inside the cavity, this method guarantees not only a quick and precise reflectance measurements of low loss highly reflecting mirror coatings but also transmittance measurements of low loss antireflection coatings and is especially effective with super los loss highly reflecting mirror. From the round-trip path length of the cavity and the speed of light, the light intensity exponential decay time of an optical cavity is easy to obtain and the cavity losses can be deduced. An optical reflectance of low loss highly mirror coatings and antireflection coatings is precisely measured as well. This is highly significant for the discrimination of the coating surface characteristics, the improvement of the performance of optical instrument and the development of high technology

  11. Geometrical considerations in analyzing isotropic or anisotropic surface reflections.

    Science.gov (United States)

    Simonot, Lionel; Obein, Gael

    2007-05-10

    The bidirectional reflectance distribution function (BRDF) represents the evolution of the reflectance with the directions of incidence and observation. Today BRDF measurements are increasingly applied and have become important to the study of the appearance of surfaces. The representation and the analysis of BRDF data are discussed, and the distortions caused by the traditional representation of the BRDF in a Fourier plane are pointed out and illustrated for two theoretical cases: an isotropic surface and a brushed surface. These considerations will help characterize either the specular peak width of an isotropic rough surface or the main directions of the light scattered by an anisotropic rough surface without misinterpretations. Finally, what is believed to be a new space is suggested for the representation of the BRDF, which avoids the geometrical deformations and in numerous cases is more convenient for BRDF analysis.

  12. Reflection of slow hydrogen and helium ions from solid surfaces

    International Nuclear Information System (INIS)

    Akkerman, A.F.

    1978-01-01

    Some characteristics of the proton and helium ion flux (E < 10 keV), reflected from solid surfaces are presented. A 'condensed walk' scheme, previously used for electron transport calculations, was adapted. Results obtained either by the scheme or by a more detailed 'consequent' scheme agreed closely. The presented data permit calculations of the mean energy of reflected particles and other values for various energy and angular distributions of incident particles. (author)

  13. Quality Assessment of Landsat Surface Reflectance Products Using MODIS Data

    Science.gov (United States)

    Feng, Min; Huang, Chengquan; Channan, Saurabh; Vermote, Eric; Masek, Jeffrey G.; Townshend, John R.

    2012-01-01

    Surface reflectance adjusted for atmospheric effects is a primary input for land cover change detection and for developing many higher level surface geophysical parameters. With the development of automated atmospheric correction algorithms, it is now feasible to produce large quantities of surface reflectance products using Landsat images. Validation of these products requires in situ measurements, which either do not exist or are difficult to obtain for most Landsat images. The surface reflectance products derived using data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), however, have been validated more comprehensively. Because the MODIS on the Terra platform and the Landsat 7 are only half an hour apart following the same orbit, and each of the 6 Landsat spectral bands overlaps with a MODIS band, good agreements between MODIS and Landsat surface reflectance values can be considered indicators of the reliability of the Landsat products, while disagreements may suggest potential quality problems that need to be further investigated. Here we develop a system called Landsat-MODIS Consistency Checking System (LMCCS). This system automatically matches Landsat data with MODIS observations acquired on the same date over the same locations and uses them to calculate a set of agreement metrics. To maximize its portability, Java and open-source libraries were used in developing this system, and object-oriented programming (OOP) principles were followed to make it more flexible for future expansion. As a highly automated system designed to run as a stand-alone package or as a component of other Landsat data processing systems, this system can be used to assess the quality of essentially every Landsat surface reflectance image where spatially and temporally matching MODIS data are available. The effectiveness of this system was demonstrated using it to assess preliminary surface reflectance products derived using the Global Land Survey (GLS) Landsat

  14. DETERMINING REFLECTANCE SPECTRA OF SURFACES AND CLOUDS ON EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Nicolas B.; Strait, Talia E., E-mail: n-cowan@northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, 2131 Tech Dr., IL 60208 (United States)

    2013-03-01

    Planned missions will spatially resolve temperate terrestrial planets from their host star. Although reflected light from such a planet encodes information about its surface, it has not been shown how to establish surface characteristics of a planet without assuming known surfaces to begin with. We present a reanalysis of disk-integrated, time-resolved, multiband photometry of Earth obtained by the Deep Impact spacecraft as part of the EPOXI Mission of Opportunity. We extract reflectance spectra of clouds, ocean, and land without a priori knowledge of the numbers or colors of these surfaces. We show that the inverse problem of extracting surface spectra from such data is a novel and extreme instance of spectral unmixing, a well-studied problem in remote sensing. Principal component analysis is used to determine an appropriate number of model surfaces with which to interpret the data. Shrink-wrapping a simplex to the color excursions of the planet yields a conservative estimate of the planet's endmember spectra. The resulting surface maps are unphysical, however, requiring negative or larger-than-unity surface coverage at certain locations. Our ''rotational unmixing'' supersedes the endmember analysis by simultaneously solving for the surface spectra and their geographical distributions on the planet, under the assumption of diffuse reflection and known viewing geometry. We use a Markov Chain Monte Carlo to determine best-fit parameters and their uncertainties. The resulting albedo spectra are similar to clouds, ocean, and land seen through a Rayleigh-scattering atmosphere. This study suggests that future direct-imaging efforts could identify and map unknown surfaces and clouds on exoplanets.

  15. Earth surface reflectance climatology from 3 years of OMI data

    NARCIS (Netherlands)

    Kleipool, Q.L.; Dobber, M.R.; Haan, de J.F.; Levelt, P.F.

    2008-01-01

    Global maps of the Earth's surface Lambertian equivalent reflectance (LER) are constructed using 3 years of Ozone Monitoring Instrument (OMI) measurements obtained between October 2004 and October 2007 at 23 wavelengths between 328 and 500 nm. The maps are constructed on a 0.5° by 0.5°

  16. Nanoimprinted reflecting gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Haugstrup; Boltasseva, Alexandra; Johansen, Dan Mario

    2007-01-01

    We present a novel design, fabrication, and characterization of reflecting gratings for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. LR-SPP waveguides consisting of a thin (12 nm) gold film embedded in a thick (45 μm) layer of dielectric polymer cladding are structured...

  17. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  18. Retrieval and Validation of aerosol optical properties from AHI measurements: impact of surface reflectance assumption

    Science.gov (United States)

    Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.

    2017-12-01

    This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER

  19. Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    Science.gov (United States)

    Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.; hide

    2014-01-01

    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.

  20. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    surfaces in use have changed - for instance to road surface types with less noise from wheel passages. Because of this, a co-operation between the road administrations of the Nordic countries (abbreviated NMF) decided to construct a portable instrument to be used on selections of traffic roads within......Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  1. Repulsive Casimir-Polder potential by a negative reflecting surface

    Science.gov (United States)

    Yuan, Qi-Zhang

    2015-07-01

    We present a scheme to generate an all-range long repulsive Casimir-Polder potential between a perfect negative reflecting surface and a ground-state atom. The repulsive potential is stable and does not decay with time. The Casimir-Polder potential is proportional to z-2 at short atom-surface distances and to z-4 at long atom-surface distances. Because of these advantages, this potential can help in building quantum reflectors, quantum levitating devices, and waveguides for matter waves.

  2. Excitations of surface plasmon polaritons by attenuated total reflection, revisited

    International Nuclear Information System (INIS)

    Barchesi, D.; Otto, A.

    2013-01-01

    Many textbooks and review papers are devoted to plasmonics based on a selection of the numerous bibliography. But none describes the details of the first culmination of plasmonics in 1968, when surface plasmons become a field of optics. The coupling of light with the surface plasmon leads to the surface plasmon polariton (SPP). Therefore, the authors chose to associate historical insight (not avoiding a personal touch), a modern mathematical formulation of the excitation of the SPP by attenuated total reflection (ATR), considered as well understood since decades, and experimental applications since 1969, including recent developments.

  3. Developing teachers through research: reflections on method

    African Journals Online (AJOL)

    Erna Kinsey

    was decided upon as the best means of reflecting teachers' under- standing of ... Through the use of language (communication) people critically under- stand a ... strategies and assessment exercises without looking at them as part of a whole ...

  4. Methods for measuring the spectral reflectivity of advanced materials at high temperature

    International Nuclear Information System (INIS)

    Salikhov, T.P.; Kan, V.V.

    1993-01-01

    For investigation in the domain of advanced materials as well as for new technologies there is an urgent need for knowledge of the spectral reflectivity of the materials specially at high temperatures. However the methods available are mostly intended for measuring the model materials with specular or diffuse reflection surface. This is not quite correct since advanced materials have mixed specular diffuse reflection surfaces. New methods for reflectivity measurements of materials in the visible, near and middle infrared range at high temperature, regardless of surface texture, have been developed. The advantages of the methods proposed are as flows: (a) the facility of performing the reflectivity measurements for materials with mixed specular diffuse reflectance; (b) wide spectral range 0,38-8 micro m; (c) wide temperature range 300-3000 K; (d) high accuracy and rapid measurements. The methods are based on the following principals (i) Diffuse irradiation of the sample surface and the use of Helkholtz reciprocity principle to determine the directional hemispherical reflectivity ii) Pulse polychromatic probing of the sample by additional light source. The first principle excludes the influence of the angular reflection distribution of sample surface on data obtained. The second principle gives the possibility of simultaneous measurements of the reflectivity. The second principle gives the possibility of simultaneous measurements of the reflectivity in wide spectral range. On the basis of these principles for high temperature reflectometers have been developed and discussed here. (author)

  5. Spectral curves of surface reflectance in some Antarctic regions

    International Nuclear Information System (INIS)

    Lupi, A.; Tomasi, C.; Orsini, A.; Cacciari, A.; Vitale, V.; Georgiadis, T.; Casacchia, R.; Salvatori, R.; Salvi, S.

    2001-01-01

    Four surface reflectance models of solar radiation were determined by examining several sets of field measurements taken for clear-sky conditions at various sites in Antarctica. Each model consists of the mean spectral curve of surface reflectance in the 0.25-2.7 μm wavelength range and of the dependence curve of total abedo on the solar elevation angle h, within the range from 5 0 to 55 0 . The TNB (Terra Nova Bay) model refers to a rocky terrain where granites are predominant; the NIS (Nansen Ice Sheet) model to a glacier surface made uneven by sastrugi and streaked by irregular fractures; the HAP (High Altitude Plateau) model to a flat ice surface covered by fresh snow and scored by light sastrugi; and the RIS (Ross Ice Shelf) model to an area covered by the sea ice pack presenting many discontinuities in the reflectance features, due to melt water lakes, puddles, refrozen ice and snow pots. The reflectance curve obtained for the TNB model presents gradually increasing values as wavelength increases through the visible spectral range and almost constant values at infrared wavelengths, giving a total albedo value equal to 0.264 at = 30 0 , which increases by about 80% through the lower range of h and decreases by 12% through the upper range. The reflectance curves of the NIS, HAP and RIS models are all peaked at visible wavelengths and exhibit decreasing values throughout the infrared spectral range, giving values of total albedo equal to 0.464, 0.738 and 0.426 at h 30 0 , respectively. These values were estimated to increase by 8-14% as h decreases from 30 0 to 5 0 and to decrease by 2-4% only as h increases from 30 0 to 55 0

  6. Comparison of the bidirectional reflectance distribution function of various surfaces

    International Nuclear Information System (INIS)

    Fernandez, R.; Seasholtz, R.G.; Oberle, L.G.; Kadambi, J.R.

    1989-01-01

    This paper describes the development and use of a system to measure the bidirectional reflectance distribution function (BRDF) of various surfaces. The BRDF measurements are to be used in the analysis and design of optical measurement systems such as laser anemometers. An Ar-ion laser (514 nm) was the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand-blasted Al, unworked Al, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests. 8 refs

  7. Landsat surface reflectance quality assurance extraction (version 1.7)

    Science.gov (United States)

    Jones, J.W.; Starbuck, M.J.; Jenkerson, Calli B.

    2013-01-01

    The U.S. Geological Survey (USGS) Land Remote Sensing Program is developing an operational capability to produce Climate Data Records (CDRs) and Essential Climate Variables (ECVs) from the Landsat Archive to support a wide variety of science and resource management activities from regional to global scale. The USGS Earth Resources Observation and Science (EROS) Center is charged with prototyping systems and software to generate these high-level data products. Various USGS Geographic Science Centers are charged with particular ECV algorithm development and (or) selection as well as the evaluation and application demonstration of various USGS CDRs and ECVs. Because it is a foundation for many other ECVs, the first CDR in development is the Landsat Surface Reflectance Product (LSRP). The LSRP incorporates data quality information in a bit-packed structure that is not readily accessible without postprocessing services performed by the user. This document describes two general methods of LSRP quality-data extraction for use in image processing systems. Helpful hints for the installation and use of software originally developed for manipulation of Hierarchical Data Format (HDF) produced through the National Aeronautics and Space Administration (NASA) Earth Observing System are first provided for users who wish to extract quality data into separate HDF files. Next, steps follow to incorporate these extracted data into an image processing system. Finally, an alternative example is illustrated in which the data are extracted within a particular image processing system.

  8. Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland

    Science.gov (United States)

    Faulkner Burkhart, John; Kylling, Arve; Schaaf, Crystal B.; Wang, Zhuosen; Bogren, Wiley; Storvold, Rune; Solbø, Stian; Pedersen, Christina A.; Gerland, Sebastian

    2017-07-01

    Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo (MCD43) algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS). The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300-920 nm) with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR) products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.

  9. Implementation of solar-reflective surfaces: Materials and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

    1992-06-01

    This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

  10. Iterative discrete ordinates solution of the equation for surface-reflected radiance

    Science.gov (United States)

    Radkevich, Alexander

    2017-11-01

    This paper presents a new method of numerical solution of the integral equation for the radiance reflected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also shown that the kernel of the equation satisfies the condition of the existence of a unique solution and the convergence of the successive approximations to that solution. The developed method features two basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numerical examples show good coincidence between the surface-reflected radiance obtained with DISORT and the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of the downward radiance to the total solution is performed. Together, they represent a very good initial guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and viewing zenith angles.

  11. Additive manufacturing of reflective optics: evaluating finishing methods

    Science.gov (United States)

    Leuteritz, G.; Lachmayer, R.

    2018-02-01

    Individually shaped light distributions become more and more important in lighting technologies and thus the importance of additively manufactured reflectors increases significantly. The vast field of applications ranges from automotive lighting to medical imaging and bolsters the statement. However, the surfaces of additively manufactured reflectors suffer from insufficient optical properties even when manufactured using optimized process parameters for the Selective Laser Melting (SLM) process. Therefore post-process treatments of reflectors are necessary in order to further enhance their optical quality. This work concentrates on the effectiveness of post-process procedures for reflective optics. Based on already optimized aluminum reflectors, which are manufactured with a SLM machine, the parts are differently machined after the SLM process. Selected finishing methods like laser polishing, sputtering or sand blasting are applied and their effects quantified and compared. The post-process procedures are investigated on their impact on surface roughness and reflectance as well as geometrical precision. For each finishing method a demonstrator will be created and compared to a fully milled sample and among themselves. Ultimately, guidelines are developed in order to figure out the optimal treatment of additively manufactured reflectors regarding their optical and geometrical properties. Simulations of the light distributions will be validated with the developed demonstrators.

  12. The effect of surface texture on total reflection of neutrons and X-rays from modified interfaces

    DEFF Research Database (Denmark)

    Goldar, A.; Roser, S.J.; Hughes, A.

    2002-01-01

    X-ray and neutron scattering from macroscopically rough surfaces and interfaces is considered and a new method of analysis based on the variation of the shape of the total reflection edge in the reflectivity profile is proposed. It was shown that in the limit that the correlation length and the h......X-ray and neutron scattering from macroscopically rough surfaces and interfaces is considered and a new method of analysis based on the variation of the shape of the total reflection edge in the reflectivity profile is proposed. It was shown that in the limit that the correlation length...... and the height of the surface roughness are larger than the wavelength (at least 100 times bigger) of the incoming beam, the total reflection edge in the reflection profile becomes rounded. This technique allows direct analysis of the variation of the reflectivity pro le in terms of the structure of the surface...

  13. Quantum reflection of fast atoms from insulator surfaces: Eikonal description

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M S; Miraglia, J E, E-mail: msilvia@iafe.uba.a, E-mail: miraglia@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, CONICET, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Dpto. de Fisica, FCEN, Universidad de Buenos Aires (Argentina)

    2009-11-01

    Interference effects recently observed in grazing scattering of swift atoms from insulator surfaces are studied within a distorted-wave method - the surface eikonal approximation. This approach makes use of the eikonal wave function, involving axial channeled trajectories. The theory is applied to helium atoms colliding with a LiF(001) surface along low-index crystallographic directions. The roles played by the projectile polarization and the surface rumpling are investigated, finding that both effects are important for the description of the experimental projectile distributions.

  14. Micro reflectance difference techniques: Optical probes for surface exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lastras-Martinez, L.F.; Del Pozo-Zamudio, O.; Herrera-Jasso, R.; Ulloa-Castillo, N.A.; Balderas-Navarro, R.E.; Ortega-Gallegos, J.; Lastras-Martinez, A. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico)

    2012-06-15

    Micro reflectance difference spectroscopy ({mu}-RDS) is a promising tool for the in-situ and ex-situ characterization of semiconductors surfaces and interfaces. We discuss and compare two different approaches used to measure {mu}-RD spectra. One is based on a charge-coupled device (CCD) camera, while the other uses a laser and a XY translation stage. To show the performance of these systems, we have measured surface optical anisotropies of GaSb(001) sample on which anisotropic strains have been generated by preferential mechanical polishing along [110] and [1 anti 10] directions. The spectrometers are complementary and the selection of one of them depends on the sample to be investigated and on experimental conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Measurement of integrated coefficients of ultracold neutron reflection from solid surfaces

    International Nuclear Information System (INIS)

    Golikov, V.V.; Kulagin, E.N.; Nikitenko, Yu.V.

    1985-01-01

    The method of measurement of the integrated coefficients of ultracold neutrons (UCN) reflection from solid surfaces is reported. A simple formula is suggested which expresses the integrated coefficients of UCN reflection from a given sample through the measured counting rate of the detector with and without strong absorber (polyethelene). The parameters are determined describing anisotropic and inhomogeneity properties of UCN reflection from Al, Mg, Pb, Zn, Mo, stainless steel, T and V are measured. The thickness of oxide layers is determined within the 5-10A accuracy limits from the experimental coefficients of UCN reflection from metals having on their surfaces the oxides with boundary velocity larger than that for the metal. It has been determined that the density of 5000 A layer of heavy ice freezed on aluminium is 0.83 +- 0.05 from the crystal ice density

  16. A simple method for the measurement of reflective foil emissivity

    International Nuclear Information System (INIS)

    Ballico, M. J.; Ham, E. W. M. van der

    2013-01-01

    Reflective metal foil is widely used to reduce radiative heat transfer within the roof space of buildings. Such foils are typically mass-produced by vapor-deposition of a thin metallic coating onto a variety of substrates, ranging from plastic-coated reinforced paper to 'bubble-wrap'. Although the emissivity of such surfaces is almost negligible in the thermal infrared, typically less than 0.03, an insufficiently thick metal coating, or organic contamination of the surface, can significantly increase this value. To ensure that the quality of the installed insulation is satisfactory, Australian building code AS/NZS 4201.5:1994 requires a practical agreed method for measurement of the emissivity, and the standard ASTM-E408 is implied. Unfortunately this standard is not a 'primary method' and requires the use of specified expensive apparatus and calibrated reference materials. At NMIA we have developed a simple primary technique, based on an apparatus to thermally modulate the sample and record the apparent modulation in infra-red radiance with commercially available radiation thermometers. The method achieves an absolute accuracy in the emissivity of approximately 0.004 (k=2). This paper theoretically analyses the equivalence between the thermal emissivity measured in this manner, the effective thermal emissivity in application, and the apparent emissivity measured in accordance with ASTM-E408

  17. A simple method for the measurement of reflective foil emissivity

    Science.gov (United States)

    Ballico, M. J.; van der Ham, E. W. M.

    2013-09-01

    Reflective metal foil is widely used to reduce radiative heat transfer within the roof space of buildings. Such foils are typically mass-produced by vapor-deposition of a thin metallic coating onto a variety of substrates, ranging from plastic-coated reinforced paper to "bubble-wrap". Although the emissivity of such surfaces is almost negligible in the thermal infrared, typically less than 0.03, an insufficiently thick metal coating, or organic contamination of the surface, can significantly increase this value. To ensure that the quality of the installed insulation is satisfactory, Australian building code AS/NZS 4201.5:1994 requires a practical agreed method for measurement of the emissivity, and the standard ASTM-E408 is implied. Unfortunately this standard is not a "primary method" and requires the use of specified expensive apparatus and calibrated reference materials. At NMIA we have developed a simple primary technique, based on an apparatus to thermally modulate the sample and record the apparent modulation in infra-red radiance with commercially available radiation thermometers. The method achieves an absolute accuracy in the emissivity of approximately 0.004 (k=2). This paper theoretically analyses the equivalence between the thermal emissivity measured in this manner, the effective thermal emissivity in application, and the apparent emissivity measured in accordance with ASTM-E408.

  18. Mars analog minerals' spectral reflectance characteristics under Martian surface conditions

    Science.gov (United States)

    Poitras, J. T.; Cloutis, E. A.; Salvatore, M. R.; Mertzman, S. A.; Applin, D. M.; Mann, P.

    2018-05-01

    We investigated the spectral reflectance properties of minerals under a simulated Martian environment. Twenty-eight different hydrated or hydroxylated phases of carbonates, sulfates, and silica minerals were selected based on past detection on Mars through spectral remote sensing data. Samples were ground and dry sieved to <45 μm grain size and characterized by XRD before and after 133 days inside a simulated Martian surface environment (pressure 5 Torr and CO2 fed). Reflectance spectra from 0.35 to 4 μm were taken periodically through a sapphire (0.35-2.5 μm) and zinc selenide (2.5-4 μm) window over a 133-day period. Mineral stability on the Martian surface was assessed through changes in spectral characteristics. Results indicate that the hydrated carbonates studied would be stable on the surface of Mars, only losing adsorbed H2O while maintaining their diagnostic spectral features. Sulfates were less stable, often with shifts in the band position of the SO, Fe, and OH absorption features. Silicas displayed spectral shifts related to SiOH and hydration state of the mineral surface, while diagnostic bands for quartz were stable. Previous detection of carbonate minerals based on 2.3-2.5 μm and 3.4-3.9 μm features appears to be consistent with our results. Sulfate mineral detection is more questionable since there can be shifts in band position related to SO4. The loss of the 0.43 μm Fe3+ band in many of the sulfates indicate that there are fewer potential candidates for Fe3+ sulfates to permanently exist on the Martian surface based on this band. The gypsum sample changed phase to basanite during desiccation as demonstrated by both reflectance and XRD. Silica on Mars has been detected using band depth ratio at 1.91 and 1.96 μm and band minimum position of the 1.4 μm feature, and the properties are also used to determine their age. This technique continues to be useful for positive silica identifications, however, silica age appears to be less consistent

  19. Degradation of Silicon Carbide Reflective Surfaces in the LEO Environment

    Science.gov (United States)

    Mileti, Sandro; Coluzzi, Plinio; Marchetti, Mario

    2009-01-01

    Space mirrors in Low Earth Orbit (LEO) encounter a degradation problem caused by the impact of atomic oxygen (ATOX) in the space environment. This paper presents an experiment of the atomic oxygen impact degradation and UV synergic effects on ground simulation. The experiment was carried out in a dedicated ATOX simulation vacuum chamber. As target materials, a polished CVD Beta-silicon carbide (SiC) coating was investigated. The selection of silicon carbide is due to its high potential candidate as a mirror layer substrate material for its good reflectance at UV wavelengths and excellent thermal diffusivity. It has highly desirable mechanical and thermal properties and can achieve an excellent surface finish. The deposition of the coatings were on carbon-based material substrate; i.e., silicon impregnated carbon fiber composite (C/SiC). Mechanical and thermal properties of the coatings such as hardness and Coefficient of Thermal Expansion (CTE) were achieved. Several atomic oxygen impact angles were studied tilting the target samples respect to the flux direction. The various impact angles permitted to analyze the different erosion rates and typologies which the mirrors would encounter in LEO environment. The degradation was analyzed in various aspects. Macroscopic mass loss per unit area, surface roughness and morphology change were basically analyzed. The exposed surfaces of the materials were observed through a Scanning Electron Microscope (SEM). Secondly, optical diagnostic of the surfaces were performed in order to investigate their variation in optical properties as the evaluation of reflectance degradation. The presence of micro-cracks caused by shrinkage, grinding, polishing or thermal cycling and the porosity in the coatings, could have led to the undercutting phenomenon. Observation of uprising of undercutting was also conducted. Remarks are given regarding capabilities in short-term mission exposures to the LEO environment of this coating.

  20. Method of Determining Reflections of Light

    DEFF Research Database (Denmark)

    2017-01-01

    A method of filtering glints by processing an image of a user's cornea to obtain coordinates of desired glints from a configuration of light sources, comprising processing an image, in a first image space, of a user's cornea to determine coordinates of respective multiple positions of glints...

  1. Reflections On Method in Interwar American Sociology

    Czech Academy of Sciences Publication Activity Database

    Balon, Jan

    2010-01-01

    Roč. 32, č. 4 (2010), s. 419-448 ISSN 1210-0250 R&D Projects: GA ČR(CZ) GP401/09/P428 Institutional research plan: CEZ:AV0Z90090514 Keywords : theory * method * interdisciplinary interaction * fragmentation * crisis Subject RIV: AA - Philosophy ; Religion

  2. Reflection properties of road surfaces. Contribution to OECD Scientific Expert Group AC4 on Road Surface Characteristics.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1983-01-01

    Photometric characteristics of road surfaces are dealt with. Representation of reflection properties in public lighting; quality criteria of road lighting installations; classification of road surfaces; the relation between reflection characteristics and other properties of road pavements in public

  3. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic...

  4. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    Energy Technology Data Exchange (ETDEWEB)

    Erlangga, Mokhammad Puput [Geophysical Engineering, Institut Teknologi Bandung, Ganesha Street no.10 Basic Science B Buliding fl.2-3 Bandung, 40132, West Java Indonesia puput.erlangga@gmail.com (Indonesia)

    2015-04-16

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, in case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.

  5. Experimental method for testing diffraction properties of reflection waveguide holograms.

    Science.gov (United States)

    Xie, Yi; Kang, Ming-Wu; Wang, Bao-Ping

    2014-07-01

    Waveguide holograms' diffraction properties include peak wavelength and diffraction efficiency, which play an important role in determining their display performance. Based on the record and reconstruction theory of reflection waveguide holograms, a novel experimental method for testing diffraction properties is introduced and analyzed in this paper, which uses a plano-convex lens optically contacted to the surface of the substrate plate of the waveguide hologram, so that the diffracted light beam can be easily detected. Then an experiment is implemented. The designed reconstruction wavelength of the test sample is 530 nm, and its diffraction efficiency is 100%. The experimental results are a peak wavelength of 527.7 nm and a diffraction efficiency of 94.1%. It is shown that the tested value corresponds well with the designed value.

  6. Method of Detecting Coliform Bacteria from Reflected Light

    Science.gov (United States)

    Vincent, Robert K. (Inventor)

    2014-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  7. Shifting horizons: Reflections on qualitative methods

    OpenAIRE

    Smart, Carol

    2009-01-01

    This article addresses the challenges of developing methodologies which build on the insights of early feminist research and methods, but which also incorporate some of the new innovations in sociological, qualitative research. Feminist research has emphasized the need to capture the everyday lives of women (and others) but this is not so easy once it is realized how 'messy' everyday life may be and that we may also not have tools adequate to the art of listening and the task of 'story tellin...

  8. Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection

    Science.gov (United States)

    Abdelsalam, D. G.; Shaalan, M. S.; Eloker, M. M.; Kim, Daesuk

    2010-06-01

    In this paper a method is presented to accurately measure the radius of curvature of different types of curved surfaces of different radii of curvatures of 38 000,18 000 and 8000 mm using multiple-beam interference fringes in reflection. The images captured by the digital detector were corrected by flat fielding method. The corrected images were analyzed and the form of the surfaces was obtained. A 3D profile for the three types of surfaces was obtained using Zernike polynomial fitting. Some sources of uncertainty in measurement were calculated by means of ray tracing simulations and the uncertainty budget was estimated within λ/40.

  9. Creative Research Methods - a reflective online discussion

    Directory of Open Access Journals (Sweden)

    Ruth Leary

    2014-03-01

    Full Text Available In November 2013, the Institute of Advanced Studies (University of Warwick hosted a meeting of interdisciplinary colleagues interested in Creative Research Methods. The aspirations were to kick-start the debate at Warwick and create a platform from which researchers can develop projects that embrace new forms of intellectual enquiry and knowledge production. Following the meeting, several of the attendees agreed to develop some of the discussion points and briefly responded to a number of questions in an online document over a period of a few weeks. This paper is the result of that real space and online collaboration.

  10. Weighted least-square approach for simultaneous measurement of multiple reflective surfaces

    Science.gov (United States)

    Tang, Shouhong; Bills, Richard E.; Freischlad, Klaus

    2007-09-01

    Phase shifting interferometry (PSI) is a highly accurate method for measuring the nanometer-scale relative surface height of a semi-reflective test surface. PSI is effectively used in conjunction with Fizeau interferometers for optical testing, hard disk inspection, and semiconductor wafer flatness. However, commonly-used PSI algorithms are unable to produce an accurate phase measurement if more than one reflective surface is present in the Fizeau interferometer test cavity. Examples of test parts that fall into this category include lithography mask blanks and their protective pellicles, and plane parallel optical beam splitters. The plane parallel surfaces of these parts generate multiple interferograms that are superimposed in the recording plane of the Fizeau interferometer. When using wavelength shifting in PSI the phase shifting speed of each interferogram is proportional to the optical path difference (OPD) between the two reflective surfaces. The proposed method is able to differentiate each underlying interferogram from each other in an optimal manner. In this paper, we present a method for simultaneously measuring the multiple test surfaces of all underlying interferograms from these superimposed interferograms through the use of a weighted least-square fitting technique. The theoretical analysis of weighted least-square technique and the measurement results will be described in this paper.

  11. Bidirectional reflectance distribution function modeling of one-dimensional rough surface in the microwave band

    International Nuclear Information System (INIS)

    Guo Li-Xin; Gou Xue-Yin; Zhang Lian-Bo

    2014-01-01

    In this study, the bidirectional reflectance distribution function (BRDF) of a one-dimensional conducting rough surface and a dielectric rough surface are calculated with different frequencies and roughness values in the microwave band by using the method of moments, and the relationship between the bistatic scattering coefficient and the BRDF of a rough surface is expressed. From the theory of the parameters of the rough surface BRDF, the parameters of the BRDF are obtained using a genetic algorithm. The BRDF of a rough surface is calculated using the obtained parameter values. Further, the fitting values and theoretical calculations of the BRDF are compared, and the optimization results are in agreement with the theoretical calculation results. Finally, a reference for BRDF modeling of a Gaussian rough surface in the microwave band is provided by the proposed method. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Surface 3-D reflection seismics - implementation at the Olkiluoto site

    Energy Technology Data Exchange (ETDEWEB)

    Saksa, P.; Lehtimaeki, T.; Heikkinen, E. [Poeyry Environment Oy, Vantaa (Finland)

    2007-03-15

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to study the possibilities for surface 3-D seismics and to review experiences for design before field work. The physical parameters and geometric properties of the site, as well as efficient survey layout and source arrangements, were considered in this work. Reflection seismics is most used geophysical investigation method in oil exploration and earth studies in sedimentary environment. Recently method has also been applied in crystalline bedrock for ore exploration and nuclear waste disposal site investigations. The advantage of the method is high accuracy combined with large depth of investigation. The principles of seismic 2-D and 3-D soundings are well known and advanced. 3-D sounding is a straightforward expansion of 2-D line based surveying. In investigation of crystalline bedrock, the high frequency wave sources and receivers, their right use in measurements and careful processing procedure (refraction static corrections in particular) are important. Using the site parameters in 2-D numerical modeling, two cases of faulted thin layer at depths of 200, 400 and 600 meters were studied. The first case was a layer with vertical dislocation (a ramp) and the other a layer having limited width of dislocated part. Central frequencies were 100, 200, 400 and 700 Hz. Results indicate that 10 - 20 m dislocation is recognizable, but for depths greater than 600 m, over 20 meters is required. Width of the dislocated part will affect the detectability of vertical displacement. At depths of 200 m and 400 m 10 - 50 m wide parts appear as point-like scatterers, wider areas have more continuity. Dislocations larger than 20 m can be seen. From depth of 600 m over 100 m wide parts are discernible, narrower are visible

  13. Surface 3-D reflection seismics - implementation at the Olkiluoto site

    International Nuclear Information System (INIS)

    Saksa, P.; Lehtimaeki, T.; Heikkinen, E.

    2007-03-01

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to study the possibilities for surface 3-D seismics and to review experiences for design before field work. The physical parameters and geometric properties of the site, as well as efficient survey layout and source arrangements, were considered in this work. Reflection seismics is most used geophysical investigation method in oil exploration and earth studies in sedimentary environment. Recently method has also been applied in crystalline bedrock for ore exploration and nuclear waste disposal site investigations. The advantage of the method is high accuracy combined with large depth of investigation. The principles of seismic 2-D and 3-D soundings are well known and advanced. 3-D sounding is a straightforward expansion of 2-D line based surveying. In investigation of crystalline bedrock, the high frequency wave sources and receivers, their right use in measurements and careful processing procedure (refraction static corrections in particular) are important. Using the site parameters in 2-D numerical modeling, two cases of faulted thin layer at depths of 200, 400 and 600 meters were studied. The first case was a layer with vertical dislocation (a ramp) and the other a layer having limited width of dislocated part. Central frequencies were 100, 200, 400 and 700 Hz. Results indicate that 10 - 20 m dislocation is recognizable, but for depths greater than 600 m, over 20 meters is required. Width of the dislocated part will affect the detectability of vertical displacement. At depths of 200 m and 400 m 10 - 50 m wide parts appear as point-like scatterers, wider areas have more continuity. Dislocations larger than 20 m can be seen. From depth of 600 m over 100 m wide parts are discernible, narrower are visible

  14. Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015

    Science.gov (United States)

    Liu, M.; Lin, J.

    2016-12-01

    Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.

  15. IRAS surface brightness maps of reflection nebulae in the Pleiades

    Science.gov (United States)

    Castelaz, Michael W.; Werner, M. W.; Sellgren, K.

    1987-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns were made of a 2.5 deg x 2.5 deg area of the reflection nebulae in the Pleiades by coadding IRAS scans of this region. Emission is seen surrounding 17 Tau, 20 Tau, 23 Tau, and 25 Tau in all four bands, coextensive with the visible reflection nebulosity, and extending as far as 30 arcminutes from the illuminating stars. The infrared energy distributions of the nebulae peak in the 100 micron band, but up to 40 percent of the total infrared power lies in the 12 and 25 micron bands. The brightness of the 12 and 25 micron emission and the absence of temperature gradients at these wavelengths are inconsistent with the predictions of equilibrium thermal emission models. The emission at these wavelengths appears to be the result of micron nonequilibrium emission from very small grains, or from molecules consisting of 10-100 carbon atoms, which have been excited by ultraviolet radiation from the illuminating stars.

  16. X-Ray Reflectivity from the Surface of a Liquid Crystal:

    DEFF Research Database (Denmark)

    Pershan, P.S.; Als-Nielsen, Jens Aage

    1984-01-01

    X-ray reflectivity from the surface of a nematic liquid crystal is interpreted as the coherent superposition of Fresnel reflection from the surface and Bragg reflection from smectic order induced by the surface. Angular dependence of the Fresnel effect yields information on surface structure....... Measurement of the intensity of diffuse critical scattering relative to the Fresnel reflection yields the absolute value of the critical part of the density-density correlation function....

  17. Comparison of cloud optical depth and cloud mask applying BRDF model-based background surface reflectance

    Science.gov (United States)

    Kim, H. W.; Yeom, J. M.; Woo, S. H.

    2017-12-01

    Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With

  18. STACKING ON COMMON REFLECTION SURFACE WITH MULTIPARAMETER TRAVELTIME

    Directory of Open Access Journals (Sweden)

    Montes V. Luis A.

    2006-12-01

    Full Text Available Commonly seismic images are displayed in time domain because the model in depth can be known only in well logs. To produce seismic sections, pre and post stack processing approaches use time or depth velocity models whereas the common reflection method does not, instead it requires a set of parameters established for the first layer. A set of synthetic data of an anticline model, with sources and receivers placed on a flat topography, was used to observe the performance of this method. As result, a better reflector recovering compared against conventional processing sequence was observed.
    The procedure was extended to real data, using a dataset acquired on a zone characterized by mild topography and quiet environment reflectors in the Eastern Colombia planes, observing an enhanced and a better continuity of the reflectors in the CRS stacked section.

  19. Surface wave velocity tracking by bisection method

    International Nuclear Information System (INIS)

    Maeda, T.

    2005-01-01

    Calculation of surface wave velocity is a classic problem dating back to the well-known Haskell's transfer matrix method, which contributes to solutions of elastic wave propagation, global subsurface structure evaluation by simulating observed earthquake group velocities, and on-site evaluation of subsurface structure by simulating phase velocity dispersion curves and/or H/V spectra obtained by micro-tremor observation. Recently inversion analysis on micro-tremor observation requires efficient method of generating many model candidates and also stable, accurate, and fast computation of dispersion curves and Raleigh wave trajectory. The original Haskell's transfer matrix method has been improved in terms of its divergence tendency mainly by the generalized transmission and reflection matrix method with formulation available for surface wave velocity; however, root finding algorithm has not been fully discussed except for the one by setting threshold to the absolute value of complex characteristic functions. Since surface wave number (reciprocal to the surface wave velocity multiplied by frequency) is a root of complex valued characteristic function, it is intractable to use general root finding algorithm. We will examine characteristic function in phase plane to construct two dimensional bisection algorithm with consideration on a layer to be evaluated and algorithm for tracking roots down along frequency axis. (author)

  20. Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Saarakkala, Simo; Wang Shuzhe; Huang Yanping; Zheng Yongping [Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong (China)], E-mail: simo.saarakkala@uku.fi, E-mail: ypzheng@ieee.org

    2009-11-21

    Optical coherence tomography (OCT) is a promising new technique for characterizing the structural changes of articular cartilage in osteoarthritis (OA). The calculation of quantitative parameters from the OCT signal is an important step to develop OCT as an effective diagnostic technique. In this study, two novel parameters for the quantification of optical surface reflection and surface roughness from OCT measurements are introduced: optical surface reflection coefficient (ORC), describing the amount of a ratio of the optical reflection from cartilage surface with respect to that from a reference material, and OCT roughness index (ORI) indicating the smoothness of the cartilage surface. The sensitivity of ORC and ORI to detect changes in bovine articular cartilage samples after enzymatic degradations of collagen and proteoglycans using collagenase and trypsin enzymes, respectively, was tested in vitro. A significant decrease (p < 0.001) in ORC as well as a significant increase (p < 0.001) in ORI was observed after collagenase digestion. After trypsin digestion, no significant changes in ORC or ORI were observed. To conclude, the new parameters introduced were demonstrated to be feasible and sensitive to detect typical OA-like degenerative changes in the collagen network. From the clinical point of view, the quantification of OCT measurements is of great interest since OCT probes have been already miniaturized and applied in patient studies during arthroscopy or open knee surgery in vivo. Further studies are still necessary to demonstrate the clinical capability of the introduced parameters for naturally occurring early OA changes in the cartilage.

  1. Distance, dialogue and reflection : Interpersonal reflective equilibrium as method for professional ethics education

    NARCIS (Netherlands)

    van den Hoven, Mariëtte; Kole, Jos

    2015-01-01

    The method of reflective equilibrium (RE) is well known within the domain of moral philosophy, but hardly discussed as a method in professional ethics education. We argue that an interpersonal version of RE is very promising for professional ethics education. We offer several arguments to support

  2. Distance, Dialogue and Reflection: Interpersonal Reflective Equilibrium as Method for Professional Ethics Education

    Science.gov (United States)

    van den Hoven, Mariëtte; Kole, Jos

    2015-01-01

    The method of reflective equilibrium (RE) is well known within the domain of moral philosophy, but hardly discussed as a method in professional ethics education. We argue that an interpersonal version of RE is very promising for professional ethics education. We offer several arguments to support this claim. The first group of arguments focus on a…

  3. Patellar Skin Surface Temperature by Thermography Reflects Knee Osteoarthritis Severity

    OpenAIRE

    Anna E. Denoble; Norine Hall; Carl F. Pieper; Virginia B. Kraus

    2010-01-01

    Background: Digital infrared thermal imaging is a means of measuring the heat radiated from the skin surface. Our goal was to develop and assess the reproducibility of serial infrared measurements of the knee and to assess the association of knee temperature by region of interest with radiographic severity of knee Osteoarthritis (rOA). Methods: A total of 30 women (15 Cases with symptomatic knee OA and 15 age-matched Controls without knee pain or knee OA) participated in this study. Infrared ...

  4. Low cloud investigations for project FIRE: Island studies of cloud properties, surface radiation, and boundary layer dynamics. A simulation of the reflectivity over a stratocumulus cloud deck by the Monte Carlo method. M.S. Thesis Final Report

    Science.gov (United States)

    Ackerman, Thomas P.; Lin, Ruei-Fong

    1993-01-01

    The radiation field over a broken stratocumulus cloud deck is simulated by the Monte Carlo method. We conducted four experiments to investigate the main factor for the observed shortwave reflectively over the FIRE flight 2 leg 5, in which reflectivity decreases almost linearly from the cloud center to cloud edge while the cloud top height and the brightness temperature remain almost constant through out the clouds. From our results, the geometry effect, however, did not contribute significantly to what has been observed. We found that the variation of the volume extinction coefficient as a function of its relative position in the cloud affects the reflectivity efficiently. Additional check of the brightness temperature of each experiment also confirms this conclusion. The cloud microphysical data showed some interesting features. We found that the cloud droplet spectrum is nearly log-normal distributed when the clouds were solid. However, whether the shift of cloud droplet spectrum toward the larger end is not certain. The decrease of number density from cloud center to cloud edges seems to have more significant effects on the optical properties.

  5. Reflections on Mixing Methods in Applied Linguistics Research

    Science.gov (United States)

    Hashemi, Mohammad R.

    2012-01-01

    This commentary advocates the use of mixed methods research--that is the integration of qualitative and quantitative methods in a single study--in applied linguistics. Based on preliminary findings from a research project in progress, some reflections on the current practice of mixing methods as a new trend in applied linguistics are put forward.…

  6. A METHOD USING GNSS LH-REFLECTED SIGNALS FOR SOIL ROUGHNESS ESTIMATION

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2018-04-01

    Full Text Available Global Navigation Satellite System Reflectometry (GNSS-R is based on the concept of receiving GPS signals reflected by the ground using a passive receiver. The receiver can be on the ground or installed on a small aircraft or UAV and collects the electromagnetic field scattered from the surface of the Earth. The received signals are then analyzed to determine the characteristics of the surface. Many research has been reported showing the capability of the GNSS-R technique. However, the roughness of the surface impacts the phase and amplitude of the received signals, which is still a worthwhile study. This paper presented a method can be used by GNSS-R to estimate the surface roughness. First, the data was calculated in the specular reflection with the assumption of a flat surface with different permittivity. Since the power reflectivity can be evaluated as the ratio of left-hand (LH reflected signal to the direct right-hand (RH signal. Then a semi-empirical roughness model was applied to the data for testing. The results showed the method can distinguish the water and the soil surface. The sensitivity of the parameters was also analyzed. It indicates this method for soil roughness estimation can be used by GNSS-R LH reflected signals. In the next step, several experiments need to be done for improving the model and exploring the way of the estimation.

  7. a Method Using Gnss Lh-Reflected Signals for Soil Roughness Estimation

    Science.gov (United States)

    Jia, Y.; Li, W.; Chen, Y.; Lv, H.; Pei, Y.

    2018-04-01

    Global Navigation Satellite System Reflectometry (GNSS-R) is based on the concept of receiving GPS signals reflected by the ground using a passive receiver. The receiver can be on the ground or installed on a small aircraft or UAV and collects the electromagnetic field scattered from the surface of the Earth. The received signals are then analyzed to determine the characteristics of the surface. Many research has been reported showing the capability of the GNSS-R technique. However, the roughness of the surface impacts the phase and amplitude of the received signals, which is still a worthwhile study. This paper presented a method can be used by GNSS-R to estimate the surface roughness. First, the data was calculated in the specular reflection with the assumption of a flat surface with different permittivity. Since the power reflectivity can be evaluated as the ratio of left-hand (LH) reflected signal to the direct right-hand (RH) signal. Then a semi-empirical roughness model was applied to the data for testing. The results showed the method can distinguish the water and the soil surface. The sensitivity of the parameters was also analyzed. It indicates this method for soil roughness estimation can be used by GNSS-R LH reflected signals. In the next step, several experiments need to be done for improving the model and exploring the way of the estimation.

  8. Method and apparatus to characterize ultrasonically reflective contrast agents

    Science.gov (United States)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  9. Retrieval of the Land Surface Reflectance for Landsat-8 and Sentinel-2 and its validation.

    Science.gov (United States)

    Roger, J. C.; Vermote, E.; Skakun, S.; Franch, B.; Holben, B. N.; Justice, C. O.

    2017-12-01

    The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and a key parameter in the understanding of the land-surface-climate processes. For 25 years, Vermote and al. develop atmospheric corrections methods to define a land surface reflectance product for various satellites (AVHRR, MODIS, VIIRS…). This presentation highlights the algorithms developed both for Landsant-8 and Sentinel-2. We also emphasize the validation of the "Land surface reflectance" satellite products, which is a very important step to be done. For that purpose, we compared the surface reflectance products to a reference determined by using the accurate radiative transfer code 6S and very detailed measurements of the atmosphere obtained over the AERONET network (which allows to test for a large range of aerosol characteristics); formers being important inputs for atmospheric corrections. However, the application of this method necessitates the definition of a very detailed protocol for the use of AERONET data especially as far as size distribution and absorption are concerned, so that alternative validation methods or protocols could be compared. We describe here the protocol we have been working on based on our experience with the AERONET data and its application to Landsat-8 and Sentinel-2). We also derive a detailed error budget in relation to this approach. For a mean loaded atmosphere, t550 less than 0.25, the maximum uncertainty is 0.0025 corresponding to a relative uncertainty (in the RED channels): U 0.10, and 1% rsurf > 0.04.

  10. Variability of Surface Reflection Amplitudes of GPR Horn Antenna Depending on Distance between Antenna and Surface

    Directory of Open Access Journals (Sweden)

    Komačka Jozef

    2016-05-01

    Full Text Available The study focused on variability of surface reflections amplitudes of GPR horn antenna in relation to distance between an antenna and a surface is presented in the paper. The air-coupled antenna with the central frequency of 1 GHz was used in the investigation. Four types of surfaces (dry pavement, wet pavement, metal plate and composite layer from gypsum and wood were tested. The distance of antenna above the surfaces was changed in the range from 37.5 cm to 53.5 cm. The amplitudes of negative and positive peaks and their variability were analysed in relation to the distance of antenna above the surfaces. Moreover, the influence of changes in the peaks of negative and positive amplitudes on the total amplitudes was assessed. It was found out the amplitudes of negative peaks for all investigated surfaces were relatively consistent in the range from 40.5 cm to 48.5 cm and the moderate decline was identified in the case of amplitudes of positive peaks in the range of distances from 37.5 cm to 51.5 cm. This decline influences the tendency of total amplitudes. Based on the results of analysis it can be stated the distance of air-coupled antenna above the surface can influence the value of total amplitude and the differences depend on the type of surface.

  11. The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Ricchiazzi, P.; O' Hirok, W.; Gautier, C.

    2005-03-18

    Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

  12. A study of muscular tissue of animal origin by reflection-spectroscopy methods

    Science.gov (United States)

    Plotnikova, L. V.; Nechiporenko, A. P.; Orekhova, S. M.; Plotnikov, P. P.; Ishevskii, A. L.

    2017-06-01

    A comparative analysis of the spectral characteristics of the surface of muscular tissue of animal origin (pork) and its main components has been performed by the methods of diffuse reflection electronic spectroscopy (DRES) and frustrated total internal reflection IR spectroscopy. The experiments have shown that the application of the DRES method makes it possible to detect more pronounced changes in the surface optical characteristics of muscular tissue and obtain electronic spectra containing information about the component composition of its main parts under successive extraction of sarcoplasmic materials, myofibrillar proteins of the actomyosin complex, and stroma mucopolysaccharides.

  13. Self-consistent approach to x-ray reflection from rough surfaces

    International Nuclear Information System (INIS)

    Feranchuk, I. D.; Feranchuk, S. I.; Ulyanenkov, A. P.

    2007-01-01

    A self-consistent analytical approach for specular x-ray reflection from interfaces with transition layers [I. D. Feranchuk et al., Phys. Rev. B 67, 235417 (2003)] based on the distorted-wave Born approximation (DWBA) is used for the description of coherent and incoherent x-ray scattering from rough surfaces and interfaces. This approach takes into account the transformation of the modeling transition layer profile at the interface, which is caused by roughness correlations. The reflection coefficients for each DWBA order are directly calculated without phenomenological assumptions on their exponential decay at large scattering angles. Various regions of scattering angles are discussed, which show qualitatively different dependence of the reflection coefficient on the scattering angle. The experimental data are analyzed using the method developed

  14. Principles of the radiosity method versus radiative transfer for canopy reflectance modeling

    Science.gov (United States)

    Gerstl, Siegfried A. W.; Borel, Christoph C.

    1992-01-01

    The radiosity method is introduced to plant canopy reflectance modeling. We review the physics principles of the radiosity method which originates in thermal radiative transfer analyses when hot and cold surfaces are considered within a given enclosure. The radiosity equation, which is an energy balance equation for discrete surfaces, is described and contrasted with the radiative transfer equation, which is a volumetric energy balance equation. Comparing the strengths and weaknesses of the radiosity method and the radiative transfer method, we conclude that both methods are complementary to each other. Results of sample calculations are given for canopy models with up to 20,000 discrete leaves.

  15. Light reflection from a rough liquid surface including wind-wave effects in a scattering atmosphere

    International Nuclear Information System (INIS)

    Salinas, Santo V.; Liew, S.C.

    2007-01-01

    Visible and near-IR images of the ocean surface, taken from remote satellites, often contain important information of near-surface or sub-surface processes, which occur on, or over the ocean. Remote measurements of near surface winds, sea surface temperature and salinity, ocean color and underwater bathymetry, all, one way or another, depend on how well we understand sea surface roughness. However, in order to extract useful information from our remote measurements, we need to construct accurate models of the transfer of solar radiation inside the atmosphere as well as, its reflection from the sea surface. To approach this problem, we numerically solve the radiative transfer equation (RTE) by implementing a model for the atmosphere-ocean system. A one-dimensional atmospheric radiation model is solved via the widely known doubling and adding method and the ocean body is treated as a boundary condition to the problem. The ocean surface is modeled as a rough liquid surface which includes wind interaction and wave states, such as wave age. The model can have possible applications to the retrieval of wind and wave states, such as wave age, near a Sun glint region

  16. The Influence of Collaborative Reflection and Think-Aloud Protocols on Pre-Service Teachers' Reflection: A Mixed Methods Approach

    Science.gov (United States)

    Epler, Cory M.; Drape, Tiffany A.; Broyles, Thomas W.; Rudd, Rick D.

    2013-01-01

    The purpose of this mixed methods study was to determine if there are differences in pre-service teachers' depth of reflection when using a written self-reflection form, a written self-reflection form and a think-aloud protocol, and collaborative reflection. Twenty-six pre-service teachers were randomly assigned to fourteen teaching teams. The…

  17. Anti-reflection textured structures by wet etching and island lithography for surface-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Bo-Kai [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Cheng, Hsin-Hung [Department of Marine Engineering, Taipei College of Maritime Technology, Taipei 11174, Taiwan (China); Nien, Li-Wei; Chen, Miin-Jang [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Nagao, Tadaaki [Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Li, Jia-Han [Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Hsueh, Chun-Hway, E-mail: hsuehc@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-12-01

    Graphical abstract: - Highlights: • We fabricated textured SERS substrate with a high surface area and low reflectance. • Large surface area of substrate contains more gold nanodroplets to absorb analytes. • Low reflectance of textured SERS substrate enabled multiple reflections of incident laser light. • We obtained strong SERS enhancement from nanopillar-on-pyramid SERS substrate. - Abstract: A high surface area and low reflection textured surface-enhanced Raman scattering (SERS) substrate with plasmonic gold nanodroplets fabricated by wet etching and island lithography was reported in the present study. Specifically, four textured substrates, planar, pyramid, nanopillar, and nanopillar-on-pyramid, were fabricated. The fabricated structures were simulated using the finite-difference time-domain method and the results agreed with the reflection and dark-field scattering measurements. Although the SERS signals varied in different measured regions because of the random nanostructure, the SERS substrates with nanopillar-on-pyramid structure always have the stronger enhancement factor than the SERS substrates with only pyramids or nanopillars. Based on the atomic force microscope and reflection measurements, the nanopillar-on-pyramid structure provided a large surface area and multiple reflections for SERS enhancement, which was about 3 orders of magnitude larger than that of the planar substrate. Our results can be applied to fabricate the inexpensive, large surface area, and high SERS enhancement substrates.

  18. The Reflecting Team: A Training Method for Family Counselors

    Science.gov (United States)

    Chang, Jeff

    2010-01-01

    The reflecting team (RT) is an innovative method used in the training and supervision of family counselors. In this article, I trace the history, development, and current uses of RTs and review current findings on RTs. In my opinion, many users of RTs have diverged from their original theoretical principles and have adopted RTs mainly as a…

  19. Determination of water content in natural zeolites by reflection method

    International Nuclear Information System (INIS)

    Sarria, Lopez P.; Desdin Garcia, V.; Freixas Lemus, V.; Dominguez Ley, O.; Csikai, G.

    1989-01-01

    Water content in natural zeolites collected from different site places in Cuba has been determined by neutron reflection method. Results show that it is possible to separate the minerals abundant in zeolite from the surrounding barren rocks. Water content of about 10% can be determined with 2-3% relative accuracy for different matrices, using 10 m measuring time

  20. Fault analysis in the very shallow seismic reflection method; Gokusenso jishin hanshaho ni okeru danso kaiseki. 1

    Energy Technology Data Exchange (ETDEWEB)

    Nagumo, S; Muraoka, S; Kaida, Y; Takahashi, T [OYO Corp., Tokyo (Japan)

    1996-10-01

    To effectively use the very shallow seismic reflection for active fault survey, a method has been investigated by which fault structures can be appropriately reconstructed from the fault information detected in the original records. The first step of reconstructing the fault system from the travel time reflection curve was to grasp an outline of fault structure from the patterns of travel time curve observed in the original record. For the very shallow seismic reflection method, especially, the low velocity layers in a shallow part succeeding from the ground surface made the issue complicated. Then, the travel time reflection curves were calculated in the case of existing several horizontal reflection surfaces in the surface layer. The constant values, mean velocities to the depth at individual reflection surfaces were used for the approximation of velocities. The outline of fault structure was grasped from the observation of original record. Then, the structure was reconstructed from the travel time curves. When the mean velocity in the medium was known, reconstruction of the feature of reflection surfaces from the travel time curves could be determined by simple mapping. When the mean velocity was unknown, it was calculated using the reciprocal travel time from the common reflection surface for individual reflection surfaces. 7 figs.

  1. Determining surface coverage of ultra-thin gold films from X-ray reflectivity measurements

    International Nuclear Information System (INIS)

    Kossoy, A.; Simakov, D.; Olafsson, S.; Leosson, K.

    2013-01-01

    The paper describes usage of X-ray reflectivity for characterization of surface coverage (i.e. film continuity) of ultra-thin gold films which are widely studied for optical, plasmonic and electronic applications. The demonstrated method is very sensitive and can be applied for layers below 1 nm. It has several advantages over other techniques which are often employed in characterization of ultra-thin metal films, such as optical absorption, Atomic Force Microscopy, Transmission Electron Microscopy or Scanning Electron Microscopy. In contrast to those techniques our method does not require specialized sample preparation and measurement process is insensitive to electrostatic charge and/or presence of surface absorbed water. We validate our results with image processing of Scanning Electron Microscopy images. To ensure precise quantitative analysis of the images we developed a generic local thresholding algorithm which allowed us to treat series of images with various values of surface coverage with similar image processing parameters. - Highlights: • Surface coverage/continuity of ultra-thin Au films (up to 7 nm) was determined. • Results from X-ray reflectivity were verified by scanning electron microscopy. • We developed local thresholding algorithm to treat non-homogeneous image contrast

  2. Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals

    Science.gov (United States)

    Liu, Lin; Larson, Kristine M.

    2018-02-01

    Conventional benchmark-based survey and Global Positioning System (GPS) have been used to measure surface elevation changes over permafrost areas, usually once or a few times a year. Here we use reflected GPS signals to measure temporal changes of ground surface elevation due to dynamics of the active layer and near-surface permafrost. Applying the GPS interferometric reflectometry technique to the multipath signal-to-noise ratio data collected by a continuously operating GPS receiver mounted deep in permafrost in Barrow, Alaska, we can retrieve the vertical distance between the antenna and reflecting surface. Using this unique kind of observables, we obtain daily changes of surface elevation during July and August from 2004 to 2015. Our results show distinct temporal variations at three timescales: regular thaw settlement within each summer, strong interannual variability that is characterized by a sub-decadal subsidence trend followed by a brief uplift trend, and a secular subsidence trend of 0.26 ± 0.02 cm year-1 during 2004 and 2015. This method provides a new way to fully utilize data from continuously operating GPS sites in cold regions for studying dynamics of the frozen ground consistently and sustainably over a long time.

  3. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dexin; Zhang, Yan [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China); Bessho, Takeshi [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio [Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kang, Zhixin, E-mail: zxkang@scut.edu.cn [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China)

    2015-09-15

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method.

  4. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    International Nuclear Information System (INIS)

    Chen, Dexin; Zhang, Yan; Bessho, Takeshi; Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio; Kang, Zhixin

    2015-01-01

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method

  5. Patellar Skin Surface Temperature by Thermography Reflects Knee Osteoarthritis Severity

    Directory of Open Access Journals (Sweden)

    Anna E. Denoble

    2010-01-01

    Full Text Available Background Digital infrared thermal imaging is a means of measuring the heat radiated from the skin surface. Our goal was to develop and assess the reproducibility of serial infrared measurements of the knee and to assess the association of knee temperature by region of interest with radiographic severity of knee Osteoarthritis (rOA. Methods A total of 30 women (15 Cases with symptomatic knee OA and 15 age-matched Controls without knee pain or knee OA participated in this study. Infrared imaging was performed with a Meditherm Med2000™ Pro infrared camera. The reproducibility of infrared imaging of the knee was evaluated through determination of intraclass correlation coefficients (ICCs for temperature measurements from two images performed 6 months apart in Controls whose knee status was not expected to change. The average cutaneous temperature for each of five knee regions of interest was extracted using WinTes software. Knee x-rays were scored for severity of rOA based on the global Kellgren-Lawrence grading scale. Results The knee infrared thermal imaging procedure used here demonstrated long-term reproducibility with high ICCs (0.50–0.72 for the various regions of interest in Controls. Cutaneous temperature of the patella (knee cap yielded a significant correlation with severity of knee rOA (R = 0.594, P = 0.02. Conclusion The skin temperature of the patellar region correlated with x-ray severity of knee OA. This method of infrared knee imaging is reliable and as an objective measure of a sign of inflammation, temperature, indicates an interrelationship of inflammation and structural knee rOA damage.

  6. Mathematical Modeling of Radiant Heat Transfer in Mirror Systems Considering Deep Reflecting Surface Defects

    Directory of Open Access Journals (Sweden)

    V. V. Leonov

    2014-01-01

    Full Text Available When designing large-sized mirror concentrating systems (MCS for high-temperature solar power plants, one must have at disposal reasonably reliable and economical methods and tools, making it possible to analyze its characteristics, to predict them depending on the operation conditions and accordingly to choose the most suitable system for the solution of particular task.Experimental determination of MCS characteristics requires complicated and expensive experimentation, having significant limitations on interpretation of the results, as well as limitations imposed due to the size of the structure. Therefore it is of particular interest to develop a mathematical model capable of estimating power characteristics of MCS considering the influence of operating conditions, design features, roughness and other surface defects.For efficient solution of the tasks the model must ensure simulation of solar radiant flux as well as simulation of geometrical and optical characteristics of reflection surface and their interaction. In this connection a statistical mathematical model of radiation heat exchange based on use of Monte Carlo methods and Finite Element Method was developed and realized in the software complex, making it possible to determine main characteristics of the MCS.In this paper the main attention is given to definition of MCS radiation characteristics with account for deep reflecting surface defects (cavities, craters. Deep cavities are not typical for MCS, but their occurrence is possible during operation as a result of erosion or any physical damage. For example, for space technology it is primarily micrometeorite erosion.

  7. Reflectance of Antarctic surfaces from multispectral radiometers: The correction of atmospheric effects

    International Nuclear Information System (INIS)

    Zibordi, G.; Maracci, G.

    1993-01-01

    Monitoring reflectance of polar icecaps has relevance in climate studies. In fact, climate changes produce variations in the morphology of ice and snow covers, which are detectable as surface reflectance change. Surface reflectance can be retrieved from remotely sensed data. However, absolute values independent of atmospheric turbidity and surface altitude can only be obtained after removing masking effects of the atmosphere. An atmospheric correction model, accounting for surface and sensor altitudes above sea level, is described and validated through data detected over Antarctic surfaces with a Barnes Modular Multispectral Radiometer having bands overlapping those of the Landsat Thematic Mapper. The model is also applied in a sensitivity analysis to investigate error induced in reflectance obtained from satellite data by indeterminacy in optical parameters of atmospheric constituents. Results show that indeterminacy in the atmospheric water vapor optical thickness is the main source of nonaccuracy in the retrieval of surface reflectance from data remotely sensed over Antarctic regions

  8. Patellar skin surface temperature by thermography reflects knee osteoarthritis severity.

    Science.gov (United States)

    Denoble, Anna E; Hall, Norine; Pieper, Carl F; Kraus, Virginia B

    2010-10-15

    Digital infrared thermal imaging is a means of measuring the heat radiated from the skin surface. Our goal was to develop and assess the reproducibility of serial infrared measurements of the knee and to assess the association of knee temperature by region of interest with radiographic severity of knee Osteoarthritis (rOA). A total of 30 women (15 Cases with symptomatic knee OA and 15 age-matched Controls without knee pain or knee OA) participated in this study. Infrared imaging was performed with a Meditherm Med2000™ Pro infrared camera. The reproducibility of infrared imaging of the knee was evaluated through determination of intraclass correlation coefficients (ICCs) for temperature measurements from two images performed 6 months apart in Controls whose knee status was not expected to change. The average cutaneous temperature for each of five knee regions of interest was extracted using WinTes software. Knee x-rays were scored for severity of rOA based on the global Kellgren-Lawrence grading scale. The knee infrared thermal imaging procedure used here demonstrated long-term reproducibility with high ICCs (0.50-0.72 for the various regions of interest) in Controls. Cutaneous temperature of the patella (knee cap) yielded a significant correlation with severity of knee rOA (R = 0.594, P = 0.02). The skin temperature of the patellar region correlated with x-ray severity of knee OA. This method of infrared knee imaging is reliable and as an objective measure of a sign of inflammation, temperature, indicates an interrelationship of inflammation and structural knee rOA damage.

  9. Interference effects in plasom excitation by particles reflected near a metal surface

    International Nuclear Information System (INIS)

    Denton, C.D.; Gervasoni, J.L.; Barrachina, R.O.; Arista, N.R.; Universidad Nacional de Cuyo, Mendoza

    1993-01-01

    Using the dielectric formalism and the specular reflection model, we evaluate the probability of surface and bulk plasmon excitation by particles reflected in the proximity of a metal surface. We obtain a strong oscillatory behaviour as a function of the penetration distance. (author)

  10. Repetitive output laser system and method using target reflectivity

    International Nuclear Information System (INIS)

    Johnson, R.R.

    1978-01-01

    An improved laser system and method for implosion of a thermonuclear fuel pellet is described in which that portion of a laser pulse reflected by the target pellet is utilized in the laser system to initiate a succeeding target implosion, and in which the energy stored in the laser system to amplify the initial laser pulse, but not completely absorbed thereby, is used to amplify succeeding laser pulses initiated by target refγlection

  11. Liquid Atomization Induced by Pulse Laser Reflection underneath Liquid Surface

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2009-05-01

    We observed a novel effect of pulse laser reflection at the interface between transparent materials with different refractive indices. The electric field intensity doubles when a laser beam is completely reflected from a material with a higher refractive index to a material with a lower index. This effect appreciably reduces pulse laser ablation threshold of transparent materials. We performed experiments to observe the entire ablation process for laser incidence on the water-air interface using pulse laser shadowgraphy with high-resolution film; the minimum laser fluence for laser ablation at the water-air interface was approximately 12-16 J/cm2. We confirmed that this laser ablation occurs only when the laser beam is incident on the water-air interface from water. Many slender liquid ligaments extend like a milk crown and seem to be atomized at the tip. Their detailed structures can be resolved only by pulse laser photography using high-resolution film.

  12. A Monte Carlo reflectance model for soil surfaces with three-dimensional structure

    Science.gov (United States)

    Cooper, K. D.; Smith, J. A.

    1985-01-01

    A Monte Carlo soil reflectance model has been developed to study the effect of macroscopic surface irregularities larger than the wavelength of incident flux. The model treats incoherent multiple scattering from Lambertian facets distributed on a periodic surface. Resulting bidirectional reflectance distribution functions are non-Lambertian and compare well with experimental trends reported in the literature. Examples showing the coupling of the Monte Carlo soil model to an adding bidirectional canopy of reflectance model are also given.

  13. Influence of surface roughness on the reflective properties of snow

    International Nuclear Information System (INIS)

    Zhuravleva, Tatiana B.; Kokhanovsky, Alexander A.

    2011-01-01

    In this paper the influence of 3D effect on snow reflection function (SRF) and albedo is studied in the framework of the stochastic radiative transfer theory. In particular, the corresponding equations for the averaged intensity of reflected light are solved for the ensemble of realizations of the stochastic field κ(r), describing the distribution of 3D elements on the flat semi-infinite snow layer (SISL). The reflection from the underlying SISL is modeled using the solution of the 1D radiative transfer equation. The corresponding look-up tables were compiled beforehand and used in the simulation process. In accordance with the previous studies, it was found that the albedo of snow layer is reduced (in particular, in the infrared region), if 3D effects are taken into account. There is no such a reduction, if light absorption in snow is absent. The 3D effects may increase or decrease SRF depending on the sastrugi fraction and illumination/observation conditions.

  14. Reflectivity reduction of retro-reflector installed in LHD due to plasma surface interaction

    International Nuclear Information System (INIS)

    Yoshida, N.; Ohtawa, Y.; Ebihara, A.; Akiyama, T.; Tokitani, M.; Ashikawa, N.; Kawahata, K.

    2008-10-01

    Optical reflectivity of the retro-reflector installed in LHD as the first mirror was reduced seriously by plasma wall interaction. In order to understand the mechanism of the reflectivity reduction, optical and material properties of the mirror surfaces have been examined extensively. It was found that the deposited impurity layers caused the serious reduction of the reflectivity. Formation of iron oxide, bulges structure and He bubbles are the major factors for the reflectivity reduction in the wide wave length range. (author)

  15. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    Science.gov (United States)

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. From Intensity Profile to Surface Normal: Photometric Stereo for Unknown Light Sources and Isotropic Reflectances.

    Science.gov (United States)

    Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi

    2015-10-01

    We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.

  17. Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique

    International Nuclear Information System (INIS)

    Wu Zhanpeng; Wu Dezhen; Qi Shengli; Zhang Teng; Jin Riguang

    2005-01-01

    Double surface conductive and reflective flexible silvered polyimide films have been prepared by alkali hydroxylation of polyimide film surface and incorporation of silver ions through subsequent ion exchange. Thermal curing of silver(I) polyamate precursor leads to re-cycloimidization of modified surface with concomitant silver reduction, yielding a reflective and conductive silver surface approaching that of native metal. The reflective and conductive surface evolves only when the cure temperature rises to 300 deg. C. The metallized films usually retain the essential mechanical properties of the parent films. Films were characterized by transmission electron microscopy (TEM), scanning electron microscopy and tapping mode atomic force microscopy (AFM). AFM demonstrates that the diameter of close-packed silver particles of the silver layers was about 50-150 nm. TEM shows that thickness of silver layer on the polyimide film surface is about 400-600 nm

  18. High quality broadband spatial reflections of slow Rayleigh surface acoustic waves modulated by a graded grooved surface

    KAUST Repository

    Xu, Yanlong

    2015-01-21

    We report high quality broadband spatial reflections of Rayleigh surface acoustic waves (SAWs) through a graded grooved surface. High quality means that no wave is allowed to transmit and the incident wave is nearly all reflected to the input side. The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a Gaussian pulse through the graded grooved surface. Results show that the input broadband Rayleigh SAWs can be slowed, spatially enhanced and stopped, and finally reflected to the input side. The study suggests that engraving the flat surface can be used as an efficient and economical way to manipulate Rayleigh SAWs, which has potential application in novel SAW devices such as filters, reflectors, sensors, energy harvesters, and diodes.

  19. Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images

    Science.gov (United States)

    Pons, X.; Pesquer, L.; Cristóbal, J.; González-Guerrero, O.

    2014-12-01

    Radiometric correction is a prerequisite for generating high-quality scientific data, making it possible to discriminate between product artefacts and real changes in Earth processes as well as accurately produce land cover maps and detect changes. This work contributes to the automatic generation of surface reflectance products for Landsat satellite series. Surface reflectances are generated by a new approach developed from a previous simplified radiometric (atmospheric + topographic) correction model. The proposed model keeps the core of the old model (incidence angles and cast-shadows through a digital elevation model [DEM], Earth-Sun distance, etc.) and adds new characteristics to enhance and automatize ground reflectance retrieval. The new model includes the following new features: (1) A fitting model based on reference values from pseudoinvariant areas that have been automatically extracted from existing reflectance products (Terra MODIS MOD09GA) that were selected also automatically by applying quality criteria that include a geostatistical pattern model. This guarantees the consistency of the internal and external series, making it unnecessary to provide extra atmospheric data for the acquisition date and time, dark objects or dense vegetation. (2) A spatial model for atmospheric optical depth that uses detailed DEM and MODTRAN simulations. (3) It is designed so that large time-series of images can be processed automatically to produce consistent Landsat surface reflectance time-series. (4) The approach can handle most images, acquired now or in the past, regardless of the processing system, with the exception of those with extremely high cloud coverage. The new methodology has been successfully applied to a series of near 300 images of the same area including MSS, TM and ETM+ imagery as well as to different formats and processing systems (LPGS and NLAPS from the USGS; CEOS from ESA) for different degrees of cloud coverage (up to 60%) and SLC

  20. Retrieving background surface reflectance of Himawari-8/AHI using BRDF modeling

    Science.gov (United States)

    Choi, Sungwon; Seo, Minji; Lee, Kyeong-sang; Han, Kyung-soo

    2017-04-01

    In these days, remote sensing is more important than past. And retrieving surface reflectance in remote sensing is also important. So there are many ways to retrieve surface reflectance by my countries with polar orbit and geostationary satellite. We studied Bidirectional Reflectance Distribution Function (BRDF) which is used to retrieve surface reflectance. In BRDF equation, we calculate surface reflectance using BRD components and angular data. BRD components are to calculate 3 of scatterings, isotropic geometric and volumetric scattering. To make Background Surface Reflectance (BSR) of Himawari-8/AHI. We used 5 bands (band1, band2, band3, band4, band5) with BRDF. And we made 5 BSR for 5 channels. For validation, we compare BSR with Top of canopy (TOC) reflectance of AHI. As a result, bias are from -0.00223 to 0.008328 and Root Mean Square Error (RMSE) are from 0.045 to 0.049. We think BSR can be used to replace TOC reflectance in remote sensing to improve weakness of TOC reflectance.

  1. An Operational Scheme for Deriving Standardised Surface Reflectance from Landsat TM/ETM+ and SPOT HRG Imagery for Eastern Australia

    Directory of Open Access Journals (Sweden)

    Neil Flood

    2013-01-01

    Full Text Available Operational monitoring of vegetation and land surface change over large areas can make good use of satellite sensors that measure radiance reflected from the Earth’s surface. Monitoring programs use multiple images for complete spatial coverage over time. Accurate retrievals of vegetation cover and vegetation change estimates can be hampered by variation, in both space and time, in the measured radiance, caused by atmospheric conditions, topography, sensor location, and sun elevation. In order to obtain estimates of cover that are comparable between images, and to retrieve accurate estimates of change, these sources of variation must be removed. In this paper we present a preprocessing scheme for minimising atmospheric, topographic and bi-directional reflectance effects on Landsat-5 TM, Landsat-7 ETM+ and SPOT-5 HRG imagery. The approach involves atmospheric correction to compute surface-leaving radiance, and bi-directional reflectance modelling to remove the effects of topography and angular variation in reflectance. The bi-directional reflectance model has been parameterised for eastern Australia, but the general approach is more widely applicable. The result is surface reflectance standardised to a fixed viewing and illumination geometry. The method can be applied to the entire record for these instruments, without intervention, which is of increasing importance with the increased availability of long term image archives. Validation shows that the corrections improve the estimation of reflectance at any given angular configuration, thus allowing the removal from the reflectance signal of much variation due to factors independent of the land surface. The method has been used to process over 45,000 Landsat-5 TM and Landsat-7 ETM+ scenes and 2,500 SPOT-5 scenes, over eastern Australia, and is now in use in operational monitoring programs.

  2. A new theory and its application to remove the effect of surface-reflected light in above-surface radiance data from clear and turbid waters

    International Nuclear Information System (INIS)

    Dev, Pravin Jeba; Shanmugam, Palanisamy

    2014-01-01

    Water-leaving radiances (L w ) measured from the deck of a ship or boat in oceanic and lake waters are widely and operationally used for satellite sensor vicarious calibration and validation and development of remote-sensing algorithms to understand interdisciplinary coastal ocean properties and processes. However, accurate determination of L w remains to be a challenging issue because of the limitations of the existing methods to accurately remove the undesired signal (surface-reflected light of the sky and sun) from above-surface measurements of the total upwelling radiance leaving the water surface. In this study, a new theory is developed and applied to the above-surface radiometric data measured from clear, turbid and eutrophic waters. The new method effectively removes surface-reflected contributions from the total upwelling radiance signal under different sky (clear sky to overcast sky) and sun glint conditions. The L w spectra obtained from the above-surface radiance data using the new method are found to match well with those extrapolated from the upwelling radiances (L u ) measured with another set of underwater radiometers (used just below the sea surface). The new method proves to be a viable alternative, especially in circumstances when the above-surface measurements of radiances are severally contaminated by the surface-reflected light fields. Since spectral radiance measurements are also sensitive to the observation angles, and to the magnitude of the radiometer's solid angle field of view, above-surface radiances are also measured for different viewing angles in highly eutrophic waters. Such measurements show large deviations in L w spectra except at lower viewing angles (30°). When applied to these data, the new method eliminates the undesired signal encountered at higher viewing angles and delivers accurate water-leaving radiance data. These results suggest that the new method is capable of removing the surface-reflected light fields from both

  3. Reflection seismic methods applied to locating fracture zones in crystalline rock

    International Nuclear Information System (INIS)

    Juhlin, C.

    1998-01-01

    The reflection seismic method is a potentially powerful tool for identifying and localising fracture zones in crystalline rock if used properly. Borehole sonic logs across fracture zones show that they have reduced P-wave velocities compared to the surrounding intact rock. Diagnostically important S-wave velocity log information across the fracture zones is generally lacking. Generation of synthetic reflection seismic data and subsequent processing of these data show that structures dipping up towards 70 degrees from horizontal can be reliably imaged using surface seismic methods. Two real case studies where seismic reflection methods have been used to image fracture zones in crystalline rock are presented. Two examples using reflection seismic are presented. The first is from the 5354 m deep SG-4 borehole in the Middle Urals, Russia where strong seismic reflectors dipping from 25 to 50 degrees are observed on surface seismic reflection data crossing over the borehole. On vertical seismic profile data acquired in the borehole, the observed P-wave reflectivity is weak from these zones, however, strong converted P to S waves are observed. This can be explained by the source of the reflectors being fracture zones with a high P wave to S wave velocity ratio compared to the surrounding rock resulting in a high dependence on the angle of incidence for the reflection coefficient. A high P wave to S wave velocity ratio (high Poisson's ratio) is to be expected in fluid filled fractured rock. The second case is from Aevroe, SE Sweden, where two 1 km long crossing high resolution seismic reflection lines were acquired in October 1996. An E-W line was shot with 5 m geophone and shotpoint spacing and a N-S one with 10 m geophone and shotpoint spacing. An explosive source with a charge size of 100 grams was used along both lines. The data clearly image three major dipping reflectors in the upper 200 ms (600 m). The dipping ones intersect or project to the surface at/or close to

  4. Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy

    Science.gov (United States)

    Huynh, Ruby N.; Nehmetallah, George; Raub, Christopher B.

    2017-06-01

    Articular surface damage occurs to cartilage during normal aging, osteoarthritis, and in trauma. A noninvasive assessment of cartilage microstructural alterations is useful for studies involving cartilage explants. This study evaluates polarized reflectance microscopy as a tool to assess surface damage to cartilage explants caused by mechanical scraping and enzymatic degradation. Adult bovine articular cartilage explants were scraped, incubated in collagenase, or underwent scrape and collagenase treatments. In an additional experiment, cartilage explants were subject to scrapes at graduated levels of severity. Polarized reflectance parameters were compared with India ink surface staining, features of histological sections, changes in explant wet weight and thickness, and chondrocyte viability. The polarized reflectance signal was sensitive to surface scrape damage and revealed individual scrape features consistent with India ink marks. Following surface treatments, the reflectance contrast parameter was elevated and correlated with image area fraction of India ink. After extensive scraping, polarized reflectance contrast and chondrocyte viability were lower than that from untreated explants. As part of this work, a mathematical model was developed and confirmed the trend in the reflectance signal due to changes in surface scattering and subsurface birefringence. These results demonstrate the effectiveness of polarized reflectance microscopy to sensitively assess surface microstructural alterations in articular cartilage explants.

  5. Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland

    Directory of Open Access Journals (Sweden)

    J. F. Burkhart

    2017-07-01

    Full Text Available Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS bidirectional reflectance distribution function (BRDF/albedo (MCD43 algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS. The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300–920 nm with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.

  6. Optical Estimation of the 3D Shape of a Solar Illuminated, Reflecting Satellite Surface

    Science.gov (United States)

    Antolin, J.; Yu, Z.; Prasad, S.

    2016-09-01

    The spatial distribution of the polarized component of the power reflected by a macroscopically smooth but microscopically roughened curved surface under highly directional illumination, as characterized by an appropriate bi-directional reflectance distribution function (BRDF), carries information about the three-dimensional (3D) shape of the surface. This information can be exploited to recover the surface shape locally under rather general conditions whenever power reflectance data for at least two different illumination or observation directions can be obtained. We present here two different parametric approaches for surface reconstruction, amounting to the recovery of the surface parameters that are either the global parameters of the family to which the surface is known a priori to belong or the coefficients of a low-order polynomial that can be employed to characterize a smoothly varying surface locally over the observed patch.

  7. Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation

    Science.gov (United States)

    Zhan, Hanyu; Voelz, David G.

    2016-12-01

    The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.

  8. Proposed frustrated-total-reflection acoustic sensing method

    International Nuclear Information System (INIS)

    Hull, J.R.

    1981-01-01

    Modulation of electromagnetic energy transmission through a frustrated-total-reflection device by pressure-induced changes in the index of refraction is proposed for use as an acoustic detector. Maximum sensitivity occurs for angles of incidence near the critical angle. The minimum detectable pressure in air is limited by Brownian noise. Acoustic propagation losses and diffraction of the optical beam by the acoustic signal limit the minimum acoustic wavelength to lengths of the order of the spatial extent of the optical beam. The response time of the method is fast enough to follow individual acoustic waves

  9. Estimating surface acoustic impedance with the inverse method.

    Science.gov (United States)

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.

  10. Capabilities of using white x-rays for the reconstruction of surface morphology from coherent reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Sant, Tushar, E-mail: tushar@physik.uni-siegen.de [Solid State Physics Group, University of Siegen, 57068 Siegen (Germany); Panzner, Tobias [Paul Scherrer Institute (Switzerland); Pietsch, Ullrich [Solid State Physics Group, University of Siegen, 57068 Siegen (Germany)

    2010-10-15

    We present a new method to reconstruct the surface profile of a sample from coherent reflectivity data of a white x-ray beam experiment. As an example the surface profile of a laterally confined silicon wafer has been reconstructed quantitatively from static speckle measurements using white coherent x-rays from a bending magnet in the energy range between 5 < E < 20 keV. As a consequence of using white radiation, speckles appear in addition to the Airy pattern caused by scattering at the entrance pinhole. Nevertheless, the surface profile of a triangularly shaped specimen was reconstructed considering sufficient oversampling between the beam-footprint and the effective sample width. For the profile reconstruction the Error-Reduction phase retrieval algorithm was modified by including the spectral illumination function and a Fresnel propagator term. The simultaneous use of different x-ray energies having different penetration depth provides information on the evolution of the surface profile from the near-surface towards the bulk. The limitations of present experiment can be overcome using white or pink radiation from a source with higher photon flux.

  11. Nanoscale silver-assisted wet etching of crystalline silicon for anti-reflection surface textures.

    Science.gov (United States)

    Li, Rui; Wang, Shuling; Chuwongin, Santhad; Zhou, Weidong

    2013-01-01

    We report here an electro-less metal-assisted chemical etching (MacEtch) process as light management surface-texturing technique for single crystalline Si photovoltaics. Random Silver nanostructures were formed on top of the Si surface based on the thin film evaporation and annealing process. Significant reflection reduction was obtained from the fabricated Si sample, with approximately 2% reflection over a wide spectra range (300 to 1050 nm). The work demonstrates the potential of MacEtch process for anti-reflection surface texture fabrication of large area, high efficiency, and low cost thin film solar cell.

  12. How Can Polarization States of Reflected Light from Snow Surfaces Inform Us on Surface Normals and Ultimately Snow Grain Size Measurements?

    Science.gov (United States)

    Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.

    2016-12-01

    The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.

  13. METHODS TO DEVELOP A TOROIDAL SURFACE

    Directory of Open Access Journals (Sweden)

    DANAILA Ligia

    2017-05-01

    Full Text Available The paper work presents two practical methods to draw the development of a surface unable to be developed applying classical methods of Descriptive Geometry, the toroidal surface, frequently met in technical practice. The described methods are approximate ones; the development is obtained with the help of points. The accuracy of the methods is given by the number of points used when drawing. As for any other approximate method, when practically manufactured the development may need to be adjusted on site.

  14. SO2 frost - UV-visible reflectivity and Io surface coverage

    Science.gov (United States)

    Nash, D. B.; Fanale, F. P.; Nelson, R. M.

    1980-01-01

    The reflectance spectrum in the range 0.24-0.85 microns of SO2 frost is measured in light of the discovery of SO2 gas in the atmosphere of Io and the possible discovery of the frost on its surface. Frost deposits up to 1.5 mm thick were grown in vacuum at 130 K and bi-directional reflectance spectra were obtained. Typical SO2 frost is found to exhibit very low reflectivity (2-5%) at 0.30 microns, rising steeply at 0.32 microns to attain a maximum reflectivity (75-80%) at 4.0 microns and uniformly high reflectivity throughout the visible and near infrared. Comparison with the full disk spectrum of Io reveals that no more than 20% of the surface can be covered with optically thick SO2 frost. Combinations of surface materials including SO2 frost which can produce the observed spectrum are indicated.

  15. Perceived Average Orientation Reflects Effective Gist of the Surface.

    Science.gov (United States)

    Cha, Oakyoon; Chong, Sang Chul

    2018-03-01

    The human ability to represent ensemble visual information, such as average orientation and size, has been suggested as the foundation of gist perception. To effectively summarize different groups of objects into the gist of a scene, observers should form ensembles separately for different groups, even when objects have similar visual features across groups. We hypothesized that the visual system utilizes perceptual groups characterized by spatial configuration and represents separate ensembles for different groups. Therefore, participants could not integrate ensembles of different perceptual groups on a task basis. We asked participants to determine the average orientation of visual elements comprising a surface with a contour situated inside. Although participants were asked to estimate the average orientation of all the elements, they ignored orientation signals embedded in the contour. This constraint may help the visual system to keep the visual features of occluding objects separate from those of the occluded objects.

  16. Evaluation of BRDF Archetypes for Representing Surface Reflectance Anisotropy Using MODIS BRDF Data

    OpenAIRE

    Zhang, Hu; Jiao, Ziti; Dong, Yadong; Li, Xiaowen

    2015-01-01

    Bidirectional reflectance distribution function (BRDF) archetypes extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo product over the global Earth Observing System Land Validation Core Sites can be used to simplify BRDF models. The present study attempts to evaluate the representativeness of BRDF archetypes for surface reflectance anisotropy. Five-year forward-modeled MODIS multi-angular reflectance (MCD-ref) and aditional actual MODIS multi-angular observat...

  17. Surface roughness and gloss study of prints: application of specular reflection at near infrared

    International Nuclear Information System (INIS)

    Silfsten, P; Dutta, R; Pääkkönen, P; Peiponen, K-E; Tåg, C-M; Gane, P A C

    2012-01-01

    Absolute reflectance data were measured with a spectrophotometer in the visible and near infrared (NIR) spectral range. The specular reflectance data in the NIR were used for the assessment of the surface roughness of magenta, yellow, cyan and black prints on paper. In addition, surface roughness data obtained from the prints with a mechanical diamond stylus, an optical profiling system and the spectrophotometer are compared with each other. The surface roughness obtained with the aid of the spectrophotometer data suggests a smoother surface than when measured with the diamond stylus and the optical profiling system. The gloss of the prints can be obtained from the absolute specular reflectance spectra in the spectral region of visible light. It is shown that specular reflection data at a fixed wavelength in the NIR are useful also in the interpretation of gloss in the visible spectral range, but using an unconventional grazing angle of incidence. (paper)

  18. NOAA Climate Data Record (CDR) of AVHRR Surface Reflectance, Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains gridded daily surface reflectance and brightness temperatures derived from the Advanced Very High Resolution Radiometer (AVHRR) sensors onboard...

  19. LiDAR Relative Reflectivity Surface (2011) for the St. Thomas East End Reserve, St. Thomas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution relative seafloor reflectivity surface for the St. Thomas East End Reserve...

  20. Accounting for surface reflectance anisotropy in satellite retrievals of tropospheric NO₂

    NARCIS (Netherlands)

    Zhou, Yipin; Brunner, D.; Spurr, R.J.D.; Boersma, K.F.; Sneep, M.; Popp, C.; Buchmann, B.

    2010-01-01

    Surface reflectance is a key parameter in satellite trace gas retrievals in the UV/visible range and in particular for the retrieval of nitrogen dioxide (NO2) vertical tropospheric columns (VTCs). Current operational retrievals rely on coarse-resolution reflectance data and do not account for the

  1. Backscattered EM-wave manipulation using low cost 1-bit reflective surface at W-band

    Science.gov (United States)

    Taher Al-Nuaimi, Mustafa K.; Hong, Wei; He, Yejun

    2018-04-01

    The design of low cost 1-bit reflective (non-absorptive) surfaces for manipulation of backscattered EM-waves and radar cross section (RCS) reduction at W-band is presented in this article. The presented surface is designed based on the reflection phase cancellation principle. The unit cell used to compose the proposed surface has an obelus (division symbol of short wire and two disks above and below) like shape printed on a grounded dielectric material. Using this unit cell, surfaces that can efficiently manipulate the backscattered RCS pattern by using the proposed obelus-shaped unit cell (as ‘0’ element) and its mirrored unit cell (as ‘1’ element) in one surface with a 180°  ±  35° reflection phase difference between their reflection phases are designed. The proposed surfaces can generate various kinds of backscattered RCS patterns, such as single, three, or four lobes or even a low-level (reduced RCS) diffused reflection pattern when those two unit cells are distributed randomly across the surface aperture. For experimental characterization purposes, a 50  ×  50 mm2 surface is fabricated and measured.

  2. a Comparative Case Study of Reflection Seismic Imaging Method

    Science.gov (United States)

    Alamooti, M.; Aydin, A.

    2017-12-01

    Seismic imaging is the most common means of gathering information about subsurface structural features. The accuracy of seismic images may be highly variable depending on the complexity of the subsurface and on how seismic data is processed. One of the crucial steps in this process, especially in layered sequences with complicated structure, is the time and/or depth migration of seismic data.The primary purpose of the migration is to increase the spatial resolution of seismic images by repositioning the recorded seismic signal back to its original point of reflection in time/space, which enhances information about complex structure. In this study, our objective is to process a seismic data set (courtesy of the University of South Carolina) to generate an image on which the Magruder fault near Allendale SC can be clearly distinguished and its attitude can be accurately depicted. The data was gathered by common mid-point method with 60 geophones equally spaced along an about 550 m long traverse over a nearly flat ground. The results obtained from the application of different migration algorithms (including finite-difference and Kirchhoff) are compared in time and depth domains to investigate the efficiency of each algorithm in reducing the processing time and improving the accuracy of seismic images in reflecting the correct position of the Magruder fault.

  3. Development and applications of retro-reflective surfaces for ultrasound in LBE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    pulse or a complete absence of a reflection like a shadow. In that way, it suffices to align the sensor with the diaphragm instead of the fuel assembly which is much easier to achieve as the robotics on which the sensor is mounted move parallel with the diaphragm. The alignment requirement in the latter approach can be further relaxed by using a tiling of retro-reflectors on the lower surface of the diaphragm. In that way, alignment becomes less vital and the main source of acoustic energy loss - geometric spread of the beam - is almost completely removed, leaving only absorption losses. In this paper, we present the first results in developing a retro reflectance surface for ultrasound in LBE. We present experimental results for different designs of retro-reflectors in both water and LBE. We discuss both linear and array retro-reflectors of different sizes and investigate the influence of the main relevant ultrasonic parameters such as wavelength and spot size on the strength of the received reflection under different alignment angles. We also demonstrate how retro-reflective surfaces can be exploited when localizing objects using linear and rotating scanning methods. (authors)

  4. Calculation of Reflectance and Transmittance of Coating With Optically Rough Surfaces

    International Nuclear Information System (INIS)

    El-Depsy, A.; Shawky, A.M.

    2011-01-01

    For ideal surfaces, components of the reflected beam are related to the components of the incident beam by Fresnel reflection equation. The surfaces encountered in engineering applications deviate from ideal as a result of roughness, oxidization and contamination; hence the Radiative properties of these real surfaces differ greatly from those predicted by electromagnetic theory. In regard to problems of radiative heat transfer; the roughness of surfaces may be divided into two categories: (1) small surface irregularities such that the incident radiation cannot undergo more than a single reflection, (2) deep cavities in which the incident radiation undergoes multi-reflection. The normally incident radiation from rough surface having small irregularities is reflected partly specularly and partly diffusely [1]. Kubelka-Munk theory (K-M) [2] describes optical characteristics (e.g. reflectance, transmittance and absorbance) by a variety of light scattering media including paints, textiles and papers, and It is widely used in various industrial applications. Moder developments in radiative transfer theory (RTT) enable the derivation of (K-M) parameters from first principles [3]. Kubelka and Munk proposed a theory based on a model of two light fluxes travelling in the forward and backward directions. Subsequently a number of authors refined the theory and compared it with experimental data [4]. Several authors attempted to relate the Kubelka- Munk coefficients to the transport coefficients [5,6

  5. MODIS/Aqua Near Real Time (NRT) Surface Reflectance Daily L2G Global 250m SIN Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Near Real Time (NRT) Surface Reflectance products are an estimate of the surface spectral reflectance as it would be measured at ground level in the...

  6. ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars

    Science.gov (United States)

    Johnson, Jeffrey R.; Bell, J. F.; Bender, S.; Blaney, D.; Cloutis, E.; DeFlores, L.; Ehlmann, B.; Gasnault, O.; Gondet, B.; Kinch, K.; Lemmon, M.; Le Mouélic, S.; Maurice, S.; Rice, M.; Wiens, R. C.

    2015-03-01

    The spectrometers on the Mars Science Laboratory (MSL) ChemCam instrument were used in passive mode to record visible/near-infrared (400-840 nm) radiance from the martian surface. Using the onboard ChemCam calibration targets' housing as a reflectance standard, we developed methods to collect, calibrate, and reduce radiance observations to relative reflectance. Such measurements accurately reproduce the known reflectance spectra of other calibration targets on the rover, and represent the highest spatial resolution (0.65 mrad) and spectral sampling (rocks and soils match those from orbital observations and multispectral data from the MSL Mastcam camera. Preliminary analyses of the band depths, spectral slopes, and reflectance ratios of the more than 2000 spectra taken during the first year of MSL operations demonstrate at least six spectral classes of materials distinguished by variations in ferrous and ferric components. Initial comparisons of ChemCam spectra to laboratory spectra of minerals and Mars analog materials demonstrate similarities with palagonitic soils and indications of orthopyroxene in some dark rocks. Magnesium-rich "raised ridges" tend to exhibit distinct near-infrared slopes. The ferric absorption downturn typically found for martian materials at rocks and drill tailings, consistent with their more ferrous nature. Calcium-sulfate veins exhibit the highest relative reflectances observed, but are still relatively red owing to the effects of residual dust. Such dust is overall less prominent on rocks sampled within the "blast zone" immediately surrounding the landing site. These samples were likely affected by the landing thrusters, which partially removed the ubiquitous dust coatings. Increased dust coatings on the calibration targets during the first year of the mission were documented by the ChemCam passive measurements as well. Ongoing efforts to model and correct for this dust component should improve calibration of the relative reflectance

  7. Reflections

    Directory of Open Access Journals (Sweden)

    Joanne Embree

    2001-01-01

    Full Text Available Ideally, editorials are written one to two months before publication in the Journal. It was my turn to write this one. I had planned to write the first draft the evening after my clinic on Tuesday, September 11. It didn't get done that night or during the next week. Somehow, the topic that I had originally chosen just didn't seem that important anymore as I, along my friends and colleagues, reflected on the changes that the events of that day were likely to have on our lives.

  8. X-ray Reflectivity Study of Ionic Liquids at Electrified Surfaces

    Science.gov (United States)

    Chu, Miaoqi

    X-ray reflectivity (XRR) versatile technique that characterize the surface structures. However, due to the lack of phase information of X-ray data, the reconstruction of electron density profile (EDP) from XRR data is an ill-posed inverse problem that requires extra attention. In Chapter 1, several key concepts in XRR data analysis are reviewed. The typical XRR data acquisition procedure and methods of modeling electron density are introduced. The widely used logarithm form of merit function is justified with mathematical deduction and numerical experiment. A scheme that generates artificial reflectivity data with theoretical statistical error but not systematical error is proposed. With the methods and schemes described in Chapter 1, simulated reflectivity data of a simple one-slab model is generated and fitted to test the efficient of EDP reconstruction. By isolating the parameters, the effects of slab width, electron density contrast and maximal wave transfer are studied individually. It?s demonstrated that best-fit/global minima, result reported by most XRR studies, don?t necessary reflect the real EDP. By contrast, mapping the merit function in the parametric space can capture much more details. Additionally, the widely accepted concept about the XRR theoretical spatial resolution (pi/q_{max}) as well the using Patterson function are brought to test. In the perspective of XRR data analysis, this chapter puts forward general rules to design and optimize XRR experiments. It also demonstrates how susceptible the fitting result will be if it?s not done carefully. In Chapter 3, the interface between hydrophobic OTS film and several solvents is studied with XRR in a transmission-cell setup. The solvents, from water, acetone, to alcohol (methanol, ethanol, 1-propanol), to alkane (pentane, hexane and heptane), vary significantly in terms of polarity and hydrogen bonding. However, the XRR data from different solvents are subtle. The methods and principles elicited in

  9. A comparison of reflectance properties on polymer micro-structured functional surface

    DEFF Research Database (Denmark)

    Regi, Francesco; Li, Dongya; Nielsen, Jannik Boll

    In this study, a functional micro-structure surface [1] has been developed as a combination of arrays of micro ridges. The scope of the surface is to achieve specific directional optical properties: that is, under constrained lighting, maximizing the reflectance from a certain viewing direction, ...

  10. Reflection of illumination laser from gas metal arc weld pool surface

    International Nuclear Information System (INIS)

    Ma, Xiaoji; Zhang, YuMing

    2009-01-01

    The weld pool is the core of the welding process where complex welding phenomena originate. Skilled welders acquire their process feedback primarily from the weld pool. Observation and measurement of the three-dimensional weld pool surface thus play a fundamental role in understanding and future control of complex welding processes. To this end, a laser line is projected onto the weld pool surface in pulsed gas metal arc welding (GMAW) and an imaging plane is used to intercept its reflection from the weld pool surface. Resultant images of the reflected laser are analyzed and it is found that the weld pool surface in GMAW does specularly reflect the projected laser as in gas tungsten arc welding (GTAW). Hence, the weld pool surface in GMAW is also specular and it is in principle possible that it may be observed and measured by projecting a laser pattern and then intercepting and imaging the reflection from it. Due to high frequencies of surface fluctuations, GMAW requires a relatively short time to image the reflected laser

  11. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy.

    Science.gov (United States)

    Monico, Letizia; Rosi, Francesca; Miliani, Costanza; Daveri, Alessia; Brunetti, Brunetto G

    2013-12-01

    In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome artworks analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the νs(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Bio-inspired, subwavelength surface structures to control reflectivity, transmission, and scattering in the infrared

    Science.gov (United States)

    Lora Gonzalez, Federico

    Controlling the reflection of visible and infrared (IR) light at interfaces is extremely important to increase the power efficiency and performance of optics, electro-optical and (thermo)photovoltaic systems. The eye of the moth has evolved subwavelength protuberances that increase light transmission into the eye tissue and prevent reflection. The subwavelength protuberances effectively grade the refractive index from that of air (n=1) to that of the tissue (n=1.4), making the interface gradual, suppressing reflection. In theory, the moth-eye (ME) structures can be implemented with any material platform to achieve an antireflectance effect by scaling the pitch and size of protuberances for the wavelength range of interest. In this work, a bio-inspired, scalable and substrate-independent surface modification protocol was developed to realize broadband antireflective structures based on the moth-eye principle. Quasi-ordered ME arrays were fabricated in IR relevant materials using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering is explored, with discussion on experimental techniques and effective medium theory (EMT). The highest aspect ratio structures (AR = 9.4) achieved peak single-side transmittance of 98%, with >85% transmission for lambda = 7--30 microns. A detailed photon balance constructed by transmission, forward scattering, specular reflection and diffuse reflection measurements to quantify optical losses due to near-field effects will be discussed. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior antireflective properties compared to unstructured interfaces over a wide angular range (0--60° incidence). Finally, subwavelength ME structures are incorporated on a Si substrate to enhance the absorption of near infrared (NIR) light in PtSi films to

  13. Estimates of radiance reflected towards the zenith at the surface of the sea

    Directory of Open Access Journals (Sweden)

    E. Aas

    2010-10-01

    Full Text Available Remote sensing of water colour by ship-mounted sensors represents an important tool for the validation of satellite products and the monitoring of water quality. The recorded radiance from the sea has to be corrected for the surface-reflected radiance from sun and sky in order to obtain the water-leaving radiance. Here the simple case of radiance reflected towards the zenith is studied. A set of observed sky radiance and solar irradiance data from Oslo has been used together with a Gaussian slope distribution for the sea surface in order to estimate the reflected radiance. The spectral range studied is 405–650 nm, the solar zenith angles are in the range 37°–76°, and the wind speeds are up to 10 m s−1. The analysis of the results show that the reflected radiance has to be separated into three contributions: sky radiance and sun rays reflected at the foam-free surface and irradiance reflected by whitecaps and foam. It is then demonstrated that by using four input values, namely the downward irradiance, the sky radiance from the zenith, the solar zenith angle and the wind speed, it is possible to obtain by simple expressions estimates of the reflected radiance that only differ from the former calculated values by relative errors of less than 5%. The analysis also indicates that for the spectral range studied neither the water-leaving radiance nor the surface-reflected radiance can be disregarded relative to the other one in the Case 2 waters of the Oslofjord-Skagerrak area. The results form a first step towards the study of reflected radiance in viewing angles differing from the nadir direction.

  14. Monte Carlo method for random surfaces

    International Nuclear Information System (INIS)

    Berg, B.

    1985-01-01

    Previously two of the authors proposed a Monte Carlo method for sampling statistical ensembles of random walks and surfaces with a Boltzmann probabilistic weight. In the present paper we work out the details for several models of random surfaces, defined on d-dimensional hypercubic lattices. (orig.)

  15. Measurement Development in Reflective Supervision: History, Methods, and Next Steps

    Science.gov (United States)

    Tomlin, Angela M.; Heller, Sherryl Scott

    2016-01-01

    This issue of the "ZERO TO THREE" journal provides a snapshot of the current state of measurement of reflective supervision within the infant-family field. In this article, the authors introduce the issue by providing a brief history of the development of reflective supervision in the field of infant mental health, with a specific focus…

  16. Manifestation of surface phonons in far infrared reflectivity of diamond-type semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, F.L.; Perez-Rodriguez, F. [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Post. J-48, Puebla, Pue. 72570 (Mexico)

    2004-11-01

    The coupling of surface phonons with light at (001) surfaces of diamond-structure crystals and its manifestation in far-infrared anisotropy spectra are theoretically studied. We apply the adiabatic bond charge model to describe short-range mechanical interactions together with long-range Coulomb forces and radiation fields, and we solve the corresponding system of coupled equations for the electromagnetic field and the lattice vibrations. We calculate far-infrared normal reflectance spectra of (001) surfaces of semi-infinite diamond-type crystals. In particular, we analyse reflectance spectra for the Si(001) (2 x 1) surface, which exhibit a resonance structure associated with the excitation of surface phonon modes. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. A Precise Visual Method for Narrow Butt Detection in Specular Reflection Workpiece Welding

    Directory of Open Access Journals (Sweden)

    Jinle Zeng

    2016-09-01

    Full Text Available During the complex path workpiece welding, it is important to keep the welding torch aligned with the groove center using a visual seam detection method, so that the deviation between the torch and the groove can be corrected automatically. However, when detecting the narrow butt of a specular reflection workpiece, the existing methods may fail because of the extremely small groove width and the poor imaging quality. This paper proposes a novel detection method to solve these issues. We design a uniform surface light source to get high signal-to-noise ratio images against the specular reflection effect, and a double-line laser light source is used to obtain the workpiece surface equation relative to the torch. Two light sources are switched on alternately and the camera is synchronized to capture images when each light is on; then the position and pose between the torch and the groove can be obtained nearly at the same time. Experimental results show that our method can detect the groove effectively and efficiently during the welding process. The image resolution is 12.5 μm and the processing time is less than 10 ms per frame. This indicates our method can be applied to real-time narrow butt detection during high-speed welding process.

  18. Surface physics theoretical models and experimental methods

    CERN Document Server

    Mamonova, Marina V; Prudnikova, I A

    2016-01-01

    The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...

  19. Developmental prosopagnosia and super-recognition: no special role for surface reflectance processing.

    Science.gov (United States)

    Russell, Richard; Chatterjee, Garga; Nakayama, Ken

    2012-01-01

    Face recognition by normal subjects depends in roughly equal proportions on shape and surface reflectance cues, while object recognition depends predominantly on shape cues. It is possible that developmental prosopagnosics are deficient not in their ability to recognize faces per se, but rather in their ability to use reflectance cues. Similarly, super-recognizers' exceptional ability with face recognition may be a result of superior surface reflectance perception and memory. We tested this possibility by administering tests of face perception and face recognition in which only shape or reflectance cues are available to developmental prosopagnosics, super-recognizers, and control subjects. Face recognition ability and the relative use of shape and pigmentation were unrelated in all the tests. Subjects who were better at using shape or reflectance cues were also better at using the other type of cue. These results do not support the proposal that variation in surface reflectance perception ability is the underlying cause of variation in face recognition ability. Instead, these findings support the idea that face recognition ability is related to neural circuits using representations that integrate shape and pigmentation information. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Assessment of biases in MODIS surface reflectance due to Lambertian approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Robert B [ORNL; SanthanaVannan, Suresh K [ORNL

    2010-08-01

    Using MODIS data and the AERONET-based Surface Reflectance Validation Network (ASRVN), this work studies errors of MODIS atmospheric correction caused by the Lambertian approximation. On one hand, this approximation greatly simplifies the radiative transfer model, reduces the size of the look-up tables, and makes operational algorithm faster. On the other hand, uncompensated atmospheric scattering caused by Lambertian model systematically biases the results. For example, for a typical bowl-shaped bidirectional reflectance distribution function (BRDF), the derived reflectance is underestimated at high solar or view zenith angles, where BRDF is high, and is overestimated at low zenith angles where BRDF is low. The magnitude of biases grows with the amount of scattering in the atmosphere, i.e., at shorter wavelengths and at higher aerosol concentration. The slope of regression of Lambertian surface reflectance vs. ASRVN bidirectional reflectance factor (BRF) is about 0.85 in the red and 0.6 in the green bands. This error propagates into the MODIS BRDF/albedo algorithm, slightly reducing the magnitude of overall reflectance and anisotropy of BRDF. This results in a small negative bias of spectral surface albedo. An assessment for the GSFC (Greenbelt, USA) validation site shows the albedo reduction by 0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands.

  1. Surface reflectance of Antarctic bryophytes and protection from UV and visible light

    International Nuclear Information System (INIS)

    Robinson, S.A.; Wasley, J.; Turnbull, J.

    2000-01-01

    Full text: As well as determining the amount of solar radiation available for photosynthesis, the surface reflectance and absorptance characteristics of plants are their first defence against damaging effects of solar radiation. The solar spectrum can be damaging to plants in many ways. At shorter wavelengths, UV-B (280-320 nm) radiation can cause lesions in nucleic acid and proteins. Excess levels of visible radiation (400-750) can cause photoinhibition whilst high absorbtance of longer wavelengths (>750) leads to increases in temperature that can be detrimental in some environments. The adaptation of surface reflectance properties of vascular plants to particular environments are well known in some ecosystems. For example in desert ecosystems pubescent leaf surfaces that increase reflectance are common and have been demonstrated to be important to protection from photoinhibition. The epidermal characteristics of some plants are also known to change in absorptance, due to the accumulation of specific compounds. For example flavonoids which are effective screens against UV-B radiation, increase upon exposure to UV-B radiation. In this study we surveyed the natural variability in surface reflectance in mosses growing in continental Antarctica. Antarctica is experiencing large increases in incident UV-B radiation due to reductions in concentrations of stratospheric ozone. Additionally over the summer months (November January), when moss is exposed to direct sunlight, levels of visible solar radiation are also high, increasing the likelihood of photoinhibitory damage in moss. Our aim in this study is to describe the natural variability in the surface reflectance characteristics of moss, such that we have a baseline with which to assess future changes in response to changes in global climate, and imposed experimental treatments, and also to develop hypotheses with respect to how mosses have adapted to the cold and arid antarctic environment. Variability in surface

  2. Gain-Enhanced On-Chip Antenna Utilizing Artificial Magnetic Conductor Reflecting Surface at 94 GHz

    KAUST Repository

    Nafe, Mahmoud

    2015-01-01

    In this work, the use of specially patterned reflecting surfaces for improving on- chip antenna performance is investigated. By using a periodic metallic surface on top of a grounded substrate, the structure can mimic the behavior of a perfect mag- netic conductor, hence called Artificial Magnetic Conductor (AMC) surface. Unlike conventional ground plane reflecting surfaces, AMC surfaces generally enhance the radiation and impedance characteristics of close-by antennas. Based on this property, a ring-based AMC reflecting surface has been designed in the oxide layer for on-chip antennas operating at 94 GHz. Furthermore, a folded dipole antenna with its associ- ated planar feeding structures has been optimized and integrated with the developed ring-based AMC surface. The proposed design is then fabricated at KAUST clean- room facilities. Prototype characterization showed very promising results with good correlation to simulations, with the antenna exhibiting an impedance bandwidth of 10% (90-100 GHz) and peak gain of -1.4 dBi, which is the highest gain reported for on-chip antennas at this frequency band without the use of any external o↵-chip components or post-fabrication steps.

  3. An analytical and numerical study of the nonlinear reflection at a stress-free surface

    Energy Technology Data Exchange (ETDEWEB)

    Romer, Anne, E-mail: anne.romer@gmx.net; Kim, Jin-Yeon, E-mail: anne.romer@gmx.net [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA and G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2015-03-31

    Implementation of the ultrasonic second harmonic generation has typically been restricted to simple setups such as through-transmission or Rayleigh surface waves. Recent research has evaluated the second harmonic waves generation in P- and SV- waves reflected from a stress-free surface to enable the single-sided interrogation of a specimen. This research considers the second harmonic generation in an aluminum specimen, which is analytically evaluated using an approach based on a perturbation method. Here, the model is chosen to mimic an experimental setup where the longitudinal wave is generated at oblique angle using a wedge transducer. Due to the mode conversion at the interface of the wedge and the specimen, it is necessary to evaluate longitudinal and shear waves, determining all second harmonic waves generated in the bulk and at the stress-free boundary. The theoretically developed model is then implemented in a commercial finite element code, COMSOL, using increasing fundamental wave amplitudes for different values of third order elastic constants. The results of this computational model verify the analytical approach and the proposed measurement setup, taking into account assumptions and approximations of the solution procedure. Furthermore, the computational model is used to draw important conclusions relevant to the experimental setup, including the need to avoid interaction with diffracted waves.

  4. Tunable natural nano-arrays : controlling surface properties and light reflectance

    International Nuclear Information System (INIS)

    Watson, J.A.; Myhra, S.; Cribb, B.W.; Hope, G.A.; Watson, G.S.

    2005-01-01

    A sudden transition or impedance mismatch from one optical medium to another can result in unwanted reflections from the surface plane. Modification of a surface by creation of a gradual change in refractive index over a significant portion of a wavelength range will result in a reduction in reflection. Multi-layered thin film coatings based on this phenomenon are widely used on a number of different surfaces (e.g. solar cells, lenses, display screens etc.) to suppress undesired reflections and/or increase light transmittance. An alternative surface modification to the multi-layered stack coating (gradient index coating) is to produce a surface with structures having a period and heights shorter than the light wavelength. These structures act like a pseudo-gradient index coating and can be described by the effective medium theory. In this study we report on nano-structures (a natural pseudo-gradient index coating) which we have found on certain species of cicada wings demonstrating their reflective effectiveness using manipulative atomic force microscopy. (author). 2 refs., 5 figs

  5. Early Evaluation of the VIIRS Calibration, Cloud Mask and Surface Reflectance Earth Data Records

    Science.gov (United States)

    Vermote, Eric; Justice, Chris; Csiszar, Ivan

    2014-01-01

    Surface reflectance is one of the key products fromVIIRS and as withMODIS, is used in developing several higherorder land products. The VIIRS Surface Reflectance (SR) Intermediate Product (IP) is based on the heritageMODIS Collection 5 product (Vermote, El Saleous, & Justice, 2002). The quality and character of surface reflectance depend on the accuracy of the VIIRS Cloud Mask (VCM), the aerosol algorithms and the adequate calibration of the sensor. The focus of this paper is the early evaluation of the VIIRS SR product in the context of the maturity of the operational processing system, the Interface Data Processing System (IDPS). After a brief introduction, the paper presents the calibration performance and the role of the surface reflectance in calibration monitoring. The analysis of the performance of the cloud mask with a focus on vegetation monitoring (no snow conditions) shows typical problems over bright surfaces and high elevation sites. Also discussed is the performance of the aerosol input used in the atmospheric correction and in particular the artifacts generated by the use of the Navy Aerosol Analysis and Prediction System. Early quantitative results of the performance of the SR product over the AERONET sites showthatwith the fewadjustments recommended, the accuracy iswithin the threshold specifications. The analysis of the adequacy of the SR product (Land PEATE adjusted version) in applications of societal benefits is then presented. We conclude with a set of recommendations to ensure consistency and continuity of the JPSS mission with the MODIS Land Climate Data Record.

  6. Observation on Surface Change of Fragile Glass: Temperature - Time Dependence Studied by X-Ray Reflectivity

    International Nuclear Information System (INIS)

    Kikkawa, Hiroyuki; Kitahara, Amane; Takahashi, Isao

    2004-01-01

    The structural change of a fragile glass surface close to the glass transition temperature Tg is studied by using X-ray reflectivity. Measurements were performed on surfaces of maltitol, which is a typical polyalcohol fragile glass with Tg = 320K. Upon both heating and cooling, we find the following features which are also noticed in silicate glass surfaces: (i) On heating, the surface morphology indicates a variation at temperatures below Tg; (ii) A drastic increase in surface roughness occurs at a temperature about 333K on heating, which is 13K higher than Tg; (iii) During the cooling of the sample, formation of a low-density surface layer (3nm at 293K) is observed. Prior to the crystallization, nm - μm sized domains were grown at the surface, which might not be reported for other glasses

  7. Definition of datum of materials lump size on conveyors by means of reflected gamma-radiation method

    International Nuclear Information System (INIS)

    Gal'yanov, A.V.; Antonov, V.A.; Laptev, Yu.V.

    2001-01-01

    A method of technological control of large-size lumps in conveyor-transported crushed material based on intensity measurement of X-ray and gamma radiation reflected from the material surface was suggested. The method was substantiated theoretically and as a result it was shown that dispersion of radiation intensity, multiply measured for short periods of time, can be analytic parameter of large-size lumps yield. Principled methodical and design recommendations on the method practical applications are given [ru

  8. Solar flux incident on an orbiting surface after reflection from a planet

    Science.gov (United States)

    Modest, M. F.

    1980-01-01

    Algorithms describing the solar radiation impinging on an infinitesimal surface after reflection from a gray and diffuse planet are derived. The following conditions apply: only radiation from the sunny half of the planet is taken into account; the radiation must fall on the top of the orbiting surface, and radiation must come from that part of the planet that can be seen from the orbiting body. A simple approximate formula is presented which displays excellent accuracy for all significant situations, with an error which is always less than 5% of the maximum possible reflected flux. Attention is also given to solar albedo flux on a surface directly facing the planet, the influence of solar position on albedo flux, and to solar albedo flux as a function of the surface-planet tilt angle.

  9. Effect of surface characteristics on diffuse reflection radiation at lambda=0. 40. mu. m

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, T [Atmospheric Environment Service, Downsview, Ontario (Canada)

    1976-08-01

    The diffuse radiation in the upward direction at the top and at an internal level of an inhomogeneous atmosphere is computed at lambda=0.40 ..mu..m. The surface is assumed to reflect light in accordance with a hybrid mode of a diffuse and specular reflector. The objective is to estimate the effect of underlying surface characteristics in terms of the diffuse radiation field. By making use of these results, accuracy in monitoring the atmospheric aerosols would be increased for the use of remote sensing satellite techniques. Junge power law (..gamma..*=3) is adopted for the size distribution of aerosols (1963), while the data given by McClatchy et al. (1971) is used for the number density of aerosols with height distribution. It is noted from the computations that the diffuse reflection radiation is affected by the surface characteristics, even if the albedo of the surface is a fixed constant and very small.

  10. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    Science.gov (United States)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  11. Surface modifying method for metal member

    International Nuclear Information System (INIS)

    Amano, Kazuo; Enomoto, Kunio; Hirano, Akihiko; Hirano, Atsuya; Hattori, Shigeo; Hayashi, Eisaku; Ueyama, Toshiharu; Hayashi, Makoto

    1998-01-01

    A surface of a metal member such as carbon steel to be used in a corrosion circumstance such as in a nuclear power plant and a thermoelectric plant are polished. A printing method is conducted for removing obstacles on the surface of the member. Namely, a photographing printing paper immersed in a diluted sulfuric acid solution is appended tightly to the portion with its surface polished smoothly. Sulfur present in the form of an obstacle of MnS or present alone in the material reacts with the sulfuric acid to form a sulfuric acid gas, and reacts with Ag of the printing paper to discolor the printing paper to brown. When a peeled printing paper is discolored to brown, sulfur printing is repeated. After conforming that the peeled printing paper is white, the surface is washed. Subsequently, surface plasticization is conducted by water jet peening or shot peening. (I.N.)

  12. Objective and Subjective Evaluation of Reflecting and Diffusing Surfaces in Auditoria

    Science.gov (United States)

    Cox, Trevor John

    Available from UMI in association with The British Library. Requires signed TDF. The performance of reflectors and diffusers used in auditoria have been evaluated both objectively and subjectively. Two accurate systems have been developed to measure the scattering from surfaces via the cross correlation function. These have been used to measure the scattering from plane panels, curved panels and quadratic residue diffusers (QRDs). The scattering measurements have been used to test theoretical prediction methods based on the Helmholtz-Kirchhoff integral equation. Accurate prediction methods were found for all surfaces tested. The limitations of the more approximate methods have been defined. The assumptions behind Schroeder's design of the QRD have been tested and the local reacting admittance assumption found to be valid over a wide frequency range. It was found that the QRD only produces uniform scattering at low frequencies. For an on-axis source the scattering from a curved panel was as good as from a QRD. For an oblique source the QRD produced much more uniform scattering than the curved panel. The subjective measurements evaluated the smallest perceivable change in the early sound field, the part most influenced by reflectors and diffusers. A natural sounding simulation of a concert hall field within an anechoic chamber was used. Standard objective parameters were reasonable values when compared to values found in real halls and subjective preference measurements. A difference limen was measured for early lateral energy fraction (.048 +/-.005); inter aural cross correlation (.075 +/-.008); clarity index (.67 +/-.13 dB); and centre time (8.6 +/- 1.6 ms). It was found that: (i) when changes are made to diffusers and reflectors, changes in spatial impression will usually be larger than those in clarity; and (ii) acousticians can gain most by paying attention to lateral sound in auditoria. It was also found that: (i) diffuse reflections in the early sound field

  13. Near-surface 3D reflections seismic survey; Sanjigen senso hanshaho jishin tansa

    Energy Technology Data Exchange (ETDEWEB)

    Nakahigashi, H; Mitsui, H; Nakano, O; Kobayashi, T [DIA Consultants Co. Ltd., Tokyo (Japan)

    1997-05-27

    Faults are being actively investigated across Japan since the Great Hanshin-Awaji Earthquake. Discussed in this report is the application of the 3D near-surface reflection seismic survey in big cities. Data from trenching and drilling is used for the geological interpretation of the surroundings of a fault, and the reflection seismic survey is used to identify the position, etc., of the fault. In this article, when the results obtained from the experimental field are examined, it is found that the conventional 2D imaging reflection survey betrays the limit of its capability when the geological structure is complicated, that the 3D reflection seismic survey, on the contrary, is capable of high-precision imaging and, when augmented by drilling, etc., becomes capable of a more detailed interpretation, and that it also contributes effectively to the improvement of local disaster prevention in big cities. Using as the model the Tachikawa fault that runs near JR Tachikawa Station, embodiment of the 3D reflection seismic survey is reviewed. For the acquisition of data excellent in quality in a 3D reflection seismic survey conducted utilizing the roads in the sector chosen for experiment in the urban area, the shock generating points and receiving points should be positioned by taking into account the parameters in the bin arranging process so that the mid-points will be regularly distributed on the surface. 3 refs., 11 figs., 1 tab.

  14. An efficient approach for computing the geometrical optics field reflected from a numerically specified surface

    Science.gov (United States)

    Mittra, R.; Rushdi, A.

    1979-01-01

    An approach for computing the geometrical optic fields reflected from a numerically specified surface is presented. The approach includes the step of deriving a specular point and begins with computing the reflected rays off the surface at the points where their coordinates, as well as the partial derivatives (or equivalently, the direction of the normal), are numerically specified. Then, a cluster of three adjacent rays are chosen to define a 'mean ray' and the divergence factor associated with this mean ray. Finally, the ampilitude, phase, and vector direction of the reflected field at a given observation point are derived by associating this point with the nearest mean ray and determining its position relative to such a ray.

  15. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces.

    Science.gov (United States)

    Hyde, M W; Schmidt, J D; Havrilla, M J

    2009-11-23

    A polarimetric bidirectional reflectance distribution function (pBRDF), based on geometrical optics, is presented. The pBRDF incorporates a visibility (shadowing/masking) function and a Lambertian (diffuse) component which distinguishes it from other geometrical optics pBRDFs in literature. It is shown that these additions keep the pBRDF bounded (and thus a more realistic physical model) as the angle of incidence or observation approaches grazing and better able to model the behavior of light scattered from rough, reflective surfaces. In this paper, the theoretical development of the pBRDF is shown and discussed. Simulation results of a rough, perfect reflecting surface obtained using an exact, electromagnetic solution and experimental Mueller matrix results of two, rough metallic samples are presented to validate the pBRDF.

  16. LiDAR Relative Reflectivity Surface (2011) for Coral Bay, St. John

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution relative seafloor reflectivity surface for Coral Bay, St. John in the U.S....

  17. Classification of Clean and Dirty Pighouse Surfaces Based on Spectral Reflectance

    DEFF Research Database (Denmark)

    Blanke, Mogens; Braithwaite, Ian David; Zhang, Guo-Qiang

    2004-01-01

    of designing a vision based system to locate dirty areas and subsequently direct a cleaning robot to remove dirt. Novel results include the characterisation of the spectral reflectance of real surfaces and dirt in a pig house and the design of illumination to obtain discrimination of clean from dirty areas...

  18. LiDAR Relative Reflectivity Surface (2011) for Fish Bay, St. John

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution relative seafloor reflectivity surface for Fish Bay, St. John in the U.S....

  19. Video Journaling as a Method of Reflective Practice

    Science.gov (United States)

    Parikh, Sejal B.; Janson, Christopher; Singleton, Tiffany

    2012-01-01

    The purpose of this phenomenological study was to examine seven school counseling students' experiences of creating reflective video journals during their first internship course. Specifically, this study focused on capturing the essence of the experiences related to personal reactions, feelings, and thoughts about creating two video journal…

  20. A calibration method for fringe reflection technique based on the analytical phase-slope description

    Science.gov (United States)

    Wu, Yuxiang; Yue, Huimin; Pan, Zhipeng; Liu, Yong

    2018-05-01

    The fringe reflection technique (FRT) has been one of the most popular methods to measure the shape of specular surface these years. The existing system calibration methods of FRT usually contain two parts, which are camera calibration and geometric calibration. In geometric calibration, the liquid crystal display (LCD) screen position calibration is one of the most difficult steps among all the calibration procedures, and its accuracy is affected by the factors such as the imaging aberration, the plane mirror flatness, and LCD screen pixel size accuracy. In this paper, based on the deduction of FRT analytical phase-slope description, we present a novel calibration method with no requirement to calibrate the position of LCD screen. On the other hand, the system can be arbitrarily arranged, and the imaging system can either be telecentric or non-telecentric. In our experiment of measuring the 5000mm radius sphere mirror, the proposed calibration method achieves 2.5 times smaller measurement error than the geometric calibration method. In the wafer surface measuring experiment, the measurement result with the proposed calibration method is closer to the interferometer result than the geometric calibration method.

  1. A sea surface reflectance model for (AATSR, and application to aerosol retrievals

    Directory of Open Access Journals (Sweden)

    A. M. Sayer

    2010-07-01

    Full Text Available A model of the sea surface bidirectional reflectance distribution function (BRDF is presented for the visible and near-IR channels (over the spectral range 550 nm to 1.6 μm of the dual-viewing Along-Track Scanning Radiometers (ATSRs. The intended application is as part of the Oxford-RAL Aerosols and Clouds (ORAC retrieval scheme. The model accounts for contributions to the observed reflectance from whitecaps, sun-glint and underlight. Uncertainties in the parametrisations used in the BRDF model are propagated through into the forward model and retrieved state. The new BRDF model offers improved coverage over previous methods, as retrievals are possible into the sun-glint region, through the ATSR dual-viewing system. The new model has been applied in the ORAC aerosol retrieval algorithm to process Advanced ATSR (AATSR data from September 2004 over the south-eastern Pacific. The assumed error budget is shown to be generally appropriate, meaning the retrieved states are consistent with the measurements and a priori assumptions. The resulting field of aerosol optical depth (AOD is compared with colocated MODIS-Terra observations, AERONET observations at Tahiti, and cruises over the oceanic region. MODIS and AATSR show similar spatial distributions of AOD, although MODIS reports values which are larger and more variable. It is suggested that assumptions in the MODIS aerosol retrieval algorithm may lead to a positive bias in MODIS AOD of order 0.01 at 550 nm over ocean regions where the wind speed is high.

  2. An Optimization Method for Virtual Globe Ocean Surface Dynamic Visualization

    Directory of Open Access Journals (Sweden)

    HUANG Wumeng

    2016-12-01

    Full Text Available The existing visualization method in the virtual globe mainly uses the projection grid to organize the ocean grid. This special grid organization has the defects in reflecting the difference characteristics of different ocean areas. The method of global ocean visualization based on global discrete grid can make up the defect of the projection grid method by matching with the discrete space of the virtual globe, so it is more suitable for the virtual ocean surface simulation application.But the available global discrete grids method has many problems which limiting its application such as the low efficiency of rendering and loading, the need of repairing grid crevices. To this point, we propose an optimization for the global discrete grids method. At first, a GPU-oriented multi-scale grid model of ocean surface which develops on the foundation of global discrete grids was designed to organize and manage the ocean surface grids. Then, in order to achieve the wind-drive wave dynamic rendering, this paper proposes a dynamic wave rendering method based on the multi-scale ocean surface grid model to support real-time wind field updating. At the same time, considering the effect of repairing grid crevices on the system efficiency, this paper presents an efficient method for repairing ocean surface grid crevices based on the characteristics of ocean grid and GPU technology. At last, the feasibility and validity of the method are verified by the comparison experiment. The experimental results show that the proposed method is efficient, stable and fast, and can compensate for the lack of function of the existing methods, so the application range is more extensive.

  3. Mechanisms for the reflection of light atoms from crystal surfaces at kilovolt energies

    International Nuclear Information System (INIS)

    Hou, M.; Robinson, M.T.

    1978-01-01

    The computer program MARLOWE was used to investigate the backscattering of protons from the (110) surface of a nickel crystal. Grazing incidence was considered so that anisotropic effects originated mainly from the surface region. The contribution of aligned scattering was studied by comparing the results with similar calculations for an amorphous target. Energy distributions of backscattered particles were investigated for incident energies ranging from 0.1 to 5 keV. The structure of these distributions was explained by making calculations for several target thickness. Specular reflection was found to depend on the structure of the first few atomic planes only. The (110) rows in the surface plane were responsible for focusing into surface semichannels. Focusing in these semichannels was found to be the strongest under total reflection conditions (below about 1.3 keV) while the scattering intensity from surface rows increased with increasing incident energy. The orientation of the plane of incidence was found to have large influence on the relative contributions of the reflection mechanisms involved. (orig.) [de

  4. Relation between seasonally detrended shortwave infrared reflectance data and land surface moisture in semi-arid Sahel

    DEFF Research Database (Denmark)

    Olsen, Jørgen Lundegaard; Ceccato, Pietro; Proud, Simon Richard

    2013-01-01

    in vegetation moisture status, and is compared to detrended time series of the Normalized Difference Vegetation Index (NDVI). It was found that when plant available water is low, the SIWSI anomalies increase over time, while the NDVI anomalies decrease over time, but less systematically. Therefore SIWSI may......In the Sudano-Sahelian areas of Africa droughts can have serious impacts on natural resources, and therefore land surface moisture is an important factor. Insufficient conventional sites for monitoring land surface moisture make the use of Earth Observation data for this purpose a key issue...... Second Generation (MSG) satellite. We focused on responses in surface reflectance to soil- and surface moisture for bare soil and early to mid- growing season. A method for implementing detrended time series of the Shortwave Infrared Water Stress Index (SIWSI) is examined for detecting variations...

  5. Critical coupling of surface plasmons in graphene attenuated total reflection geometry

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas, Mauro, E-mail: cuevas@df.uba.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires (Argentina); Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires (Argentina)

    2016-12-09

    We study the optical response of an attenuated total reflection (ATR) structure in Otto configuration with graphene sheet, paying especial attention to the occurrence of total absorption. Our results show that due to excitation of surface plasmons on the graphene sheet, two different conditions of total absorption may occur. At these conditions, the energy loss of the surface plasmon by radiation is equal to its energy loss by absorption into the graphene sheet. We give necessary conditions on ATR parameters for the existence of total absorption. - Highlights: • Attenuated total reflection (ATR) structure with graphene sheet. • Surface plasmons and power matched condition. • Necessary conditions on ATR parameters for the existence of total absorption.

  6. Critical coupling of surface plasmons in graphene attenuated total reflection geometry

    International Nuclear Information System (INIS)

    Cuevas, Mauro

    2016-01-01

    We study the optical response of an attenuated total reflection (ATR) structure in Otto configuration with graphene sheet, paying especial attention to the occurrence of total absorption. Our results show that due to excitation of surface plasmons on the graphene sheet, two different conditions of total absorption may occur. At these conditions, the energy loss of the surface plasmon by radiation is equal to its energy loss by absorption into the graphene sheet. We give necessary conditions on ATR parameters for the existence of total absorption. - Highlights: • Attenuated total reflection (ATR) structure with graphene sheet. • Surface plasmons and power matched condition. • Necessary conditions on ATR parameters for the existence of total absorption.

  7. Sunlight reflection off the spacecraft with a solar sail on the surface of mars

    Science.gov (United States)

    Starinova, O. L.; Rozhkov, M. A.; Gorbunova, I. V.

    2018-05-01

    Modern technologies make it possible to fulfill many projects in the field of space exploration. One such project is the colonization of Mars and providing favorable conditions for living on it. Authors propose principles of functioning of the spacecraft with a solar sail, intended to create a thermal and light spot in a predetermined area of the Martian surface. This additional illumination can maintain and support certain climatic conditions on a small area where a Mars base could be located. This paper investigate the possibility of the spacecraft continuously reflect the sunlight off the solar sail on the small area of the Mars surface. The mathematical motion model in such condition of the solar sail's orientation is considered and used for motion simulation session. Moreover, the analysis of this motion is performed. Thus, were obtained parameters of the synchronic non-Keplerian orbit and spacecraft construction. In addition, were given recommendations for further applying satellites to reflect the sunlight on a planet's surface.

  8. Lactoperoxidase catalyzed radioiodination of cell surface immunoglobulin: incorporated radioactivity may not reflect relative cell surface Ig density

    International Nuclear Information System (INIS)

    Wilder, R.L.; Yuen, C.C.; Mage, R.G.

    1979-01-01

    Rabbit and mouse splenic lymphocytes were radioiodinated by the lactoperoxidase technique, extracted with non-ionic detergent, immunoprecipitated with high titered rabbit anti-kappa antisera, and compared by SDS-PAGE. Mouse sIg peaks were reproducibly larger in size than rabbit sIg peaks (often greater than 10 times). Neither differences in incorporation of label into the rabbit cell surface, nor differences in average sIg density explain this result. Total TCA-precipitable radioactivity was similar in each species. Estimation of the relative amounts of sIg in the mouse and rabbit showed similar average sIg densities. Differences in detergent solubility, proteolytic lability, or antisera used also do not adequately account for this difference. Thus, these data indicate that radioactivity incorporated after lactoperoxidase catalyzed cell surface radioiodination may not reflect cell surface Ig density. Conclusions about cell surface density based upon relative incorporation of radioactivity should be confirmed by other approaches

  9. Comparison of optical methods for surface roughness characterization

    International Nuclear Information System (INIS)

    Feidenhans’l, Nikolaj A; Hansen, Poul-Erik; Madsen, Morten H; Petersen, Jan C; Pilný, Lukáš; Bissacco, Giuliano; Taboryski, Rafael

    2015-01-01

    We report a study of the correlation between three optical methods for characterizing surface roughness: a laboratory scatterometer measuring the bi-directional reflection distribution function (BRDF instrument), a simple commercial scatterometer (rBRDF instrument), and a confocal optical profiler. For each instrument, the effective range of spatial surface wavelengths is determined, and the common bandwidth used when comparing the evaluated roughness parameters. The compared roughness parameters are: the root-mean-square (RMS) profile deviation (Rq), the RMS profile slope (Rdq), and the variance of the scattering angle distribution (Aq). The twenty-two investigated samples were manufactured with several methods in order to obtain a suitable diversity of roughness patterns.Our study shows a one-to-one correlation of both the Rq and the Rdq roughness values when obtained with the BRDF and the confocal instruments, if the common bandwidth is applied. Likewise, a correlation is observed when determining the Aq value with the BRDF and the rBRDF instruments.Furthermore, we show that it is possible to determine the Rq value from the Aq value, by applying a simple transfer function derived from the instrument comparisons. The presented method is validated for surfaces with predominantly 1D roughness, i.e. consisting of parallel grooves of various periods, and a reflectance similar to stainless steel. The Rq values are predicted with an accuracy of 38% at the 95% confidence interval. (paper)

  10. Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy

    Science.gov (United States)

    Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony

    The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.

  11. Optimized method for manufacturing large aspheric surfaces

    Science.gov (United States)

    Zhou, Xusheng; Li, Shengyi; Dai, Yifan; Xie, Xuhui

    2007-12-01

    Aspheric optics are being used more and more widely in modern optical systems, due to their ability of correcting aberrations, enhancing image quality, enlarging the field of view and extending the range of effect, while reducing the weight and volume of the system. With optical technology development, we have more pressing requirement to large-aperture and high-precision aspheric surfaces. The original computer controlled optical surfacing (CCOS) technique cannot meet the challenge of precision and machining efficiency. This problem has been thought highly of by researchers. Aiming at the problem of original polishing process, an optimized method for manufacturing large aspheric surfaces is put forward. Subsurface damage (SSD), full aperture errors and full band of frequency errors are all in control of this method. Lesser SSD depth can be gained by using little hardness tool and small abrasive grains in grinding process. For full aperture errors control, edge effects can be controlled by using smaller tools and amendment model with material removal function. For full band of frequency errors control, low frequency errors can be corrected with the optimized material removal function, while medium-high frequency errors by using uniform removing principle. With this optimized method, the accuracy of a K9 glass paraboloid mirror can reach rms 0.055 waves (where a wave is 0.6328μm) in a short time. The results show that the optimized method can guide large aspheric surface manufacturing effectively.

  12. Evaluation of BRDF Archetypes for Representing Surface Reflectance Anisotropy Using MODIS BRDF Data

    Directory of Open Access Journals (Sweden)

    Hu Zhang

    2015-06-01

    Full Text Available Bidirectional reflectance distribution function (BRDF archetypes extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS BRDF/Albedo product over the global Earth Observing System Land Validation Core Sites can be used to simplify BRDF models. The present study attempts to evaluate the representativeness of BRDF archetypes for surface reflectance anisotropy. Five-year forward-modeled MODIS multi-angular reflectance (MCD-ref and aditional actual MODIS multi-angular observations (MCD-obs in four growing periods in 2008 over three tiles were taken as validation data. First, BRDF archetypes in the principal plane were qualitatively compared with the time-series MODIS BRDF product of randomly sampled pixels. Secondly, BRDF archetypes were used to fit MCD-ref, and the average root-mean-squared errors (RMSEs over each tile were examined for these five years. Finally, both BRDF archetypes and the MODIS BRDF were used to fit MCD-obs, and the histograms of the fit-RMSEs were compared. The consistency of the directional reflectance between the BRDF archetypes and MODIS BRDFs in nadir-view, hotspot and entire viewing hemisphere at 30° and 50° solar geometries were also examined. The results confirm that BRDF archetypes are representative of surface reflectance anisotropy for available snow-free MODIS data.

  13. Ray splitting in the reflection and refraction of surface acoustic waves in anisotropic solids.

    Science.gov (United States)

    Every, A G; Maznev, A A

    2010-05-01

    This paper examines the conditions for, and provides examples of, ray splitting in the reflection and refraction of surface acoustic waves (SAW) in elastically anisotropic solids at straight obstacles such as edges, surface breaking cracks, and interfaces between different solids. The concern here is not with the partial scattering of an incident SAW's energy into bulk waves, but with the occurrence of more than one SAW ray in the reflected and/or transmitted wave fields, by analogy with birefringence in optics and mode conversion of bulk elastic waves at interfaces. SAW ray splitting is dependent on the SAW slowness curve possessing concave regions, which within the constraint of wave vector conservation parallel to the obstacle allows multiple outgoing SAW modes for certain directions of incidence and orientation of obstacle. The existence of pseudo-SAW for a given surface provides a further channel for ray splitting. This paper discusses some typical material configurations for which SAW ray splitting occurs. An example is provided of mode conversion entailing backward reflection or negative refraction. Experimental demonstration of ray splitting in the reflection of a laser generated SAW in GaAs(111) is provided. The calculation of SAW mode conversion amplitudes lies outside the scope of this paper.

  14. Improving Image Matching by Reducing Surface Reflections Using Polarising Filter Techniques

    Science.gov (United States)

    Conen, N.; Hastedt, H.; Kahmen, O.; Luhmann, T.

    2018-05-01

    In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results. However, the filter may influence the camera's orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002) using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (Δc ≤ 4 μm) with the polarising filter in use. Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.

  15. Triangulation of Methods in Labour Studies in Nigeria: Reflections ...

    African Journals Online (AJOL)

    One of the distinctive aspects of social science research in Nigeria as in other ... method in their investigations while relegating qualitative methods to the background. In labour studies, adopting only quantitative method to studying workers ...

  16. Modeling and analysis of surface roughness effects on sputtering, reflection, and sputtered particle transport

    International Nuclear Information System (INIS)

    Brooks, J.N.; Ruzic, D.N.

    1990-01-01

    The microstructure of the redeposited surface in tokamaks may affect sputtering and reflection properties and subsequent particle transport. This subject has been studied numerically using coupled models/codes for near-surface plasma particle kinetic transport (WBC code) and rough surface sputtering (fractal-TRIM). The coupled codes provide an overall Monte Carlo calculation of the sputtering cascade resulting from an initial flux of hydrogen ions. Beryllium, carbon, and tungsten surfaces are analyzed for typical high recycling, oblique magnetic field, divertor conditions. Significant variations in computed sputtering rates are found with surface roughness. Beryllium exhibits high D-T and self-sputtering coefficients for the plasma regime studied (T e = 30-75 eV). Carbon and tungsten sputtering is significantly lower. 9 refs., 6 figs., 1 tab

  17. Bi-directional Reflectance of Icy Surface Analogs: A Dual Approach

    Science.gov (United States)

    Quinones, Juan Manuel; Vides, Christina; Nelson, Robert M.; Boryta, Mark; Mannat, Ken s.

    2018-01-01

    Bi-directional reflectance measurements of analogs for planetary regolith have provided insight into the surface properties of planetary satellites and small bodies. Because Aluminum Oxide (Al2O3) and water ice share a similar hexagonal crystalline structure, the former has been used in laboratory experiments to simulate the regolith of both icy and dusty planetary bodies. By measuring various sizes of well sorted size fractions of Al2O3, the reflectance phase curve and porosity of a planetary regolith can be determined. We have designed an experiment to test the laboratory measurements produced by Nelson et al. (2000). Additionally, we made reflectance measurements for other alkali-halide compounds that could be used for applications beyond astronomy and planetary science.In order to provide an independent check on the Nelson et al. data, we designed an instrument with a different configuration. While both instruments take bidirectional reflectance measurements, our instrument, the Rigid Photometric Goniometer (RPG), is fixed at a phase angle of 5° and detects the scattered light with a photomultiplier tube (PMT). The PMT current is then measured with an electrometer. Following the example of Nelson et al., we measured the bidirectional reflectance of Al2O3 particulate size fractions between 0.1sizes from 20size that provided optimal, or maximum, reflectance for each compound. Our conclusions bring confirmation and clarity to photometric sciences.

  18. Using the Surface Reflectance MODIS Terra Product to Estimate Turbidity in Tampa Bay, Florida

    Directory of Open Access Journals (Sweden)

    Douglas L. Rickman

    2010-12-01

    Full Text Available Turbidity is a commonly-used index of the factors that determine light penetration in the water column. Consistent estimation of turbidity is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Traditional methods monitoring fixed geographical locations at fixed intervals may not be representative of the mean water turbidity in estuaries between intervals, and can be expensive and time consuming. Although remote sensing offers a good solution to this limitation, it is still not widely used due in part to required complex processing of imagery. There are satellite-derived products, including the Moderate Resolution Imaging Spectroradiometer (MODIS Terra surface reflectance daily product (MOD09GQ Band 1 (620–670 nm which are now routinely available at 250 m spatial resolution and corrected for atmospheric effect. This study shows this product to be useful to estimate turbidity in Tampa Bay, Florida, after rainfall events (R2 = 0.76, n = 34. Within Tampa Bay, Hillsborough Bay (HB and Old Tampa Bay (OTB presented higher turbidity compared to Middle Tampa Bay (MTB and Lower Tampa Bay (LTB.

  19. Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments

    Directory of Open Access Journals (Sweden)

    Jianguang Wen

    2018-02-01

    Full Text Available Rugged terrain, including mountains, hills, and some high lands are typical land surfaces around the world. As a physical parameter for characterizing the anisotropic reflectance of the land surface, the importance of the bidirectional reflectance distribution function (BRDF has been gradually recognized in the remote sensing community, and great efforts have been dedicated to build BRDF models over various terrain types. However, on rugged terrain, the topography intensely affects the shape and magnitude of the BRDF and creates challenges in modeling the BRDF. In this paper, after a brief introduction of the theoretical background of the BRDF over rugged terrain, the status of estimating land surface BRDF properties over rugged terrain is comprehensively reviewed from a historical perspective and summarized in two categories: BRDFs describing solo slopes and those describing composite slopes. The discussion focuses on land surface reflectance retrieval over mountainous areas, the difference in solo slope and composite slope BRDF models, and suggested future research to improve the accuracy of BRDFs derived with remote sensing satellites.

  20. Biomimetic approaches to create anti-reflection glass surfaces for solar cells using self-organizing techniques

    International Nuclear Information System (INIS)

    Achtelik, J.; Sievers, W.; Lindner, J.K.N.

    2013-01-01

    Highlights: ► Nanostructured glass surfaces with theoretically near-to-zero reflectivity in the UVNIR region. ► Simple fabrication process using self-organization during reactive ion etching proposed. ► Prediction of optical reflectivity from AFM measured surface morphology. -- Abstract: Aiming to diminish the reflection losses of glass covered light harvesting devices, the optical reflectivity of nanostructured glass surfaces is studied theoretically and experimentally. The work is inspired by the nanoscale roughness of insect eyes, which is tried to be replicated on a technical glass surface. To this end, the reflectivity of glass surfaces with topographies represented by linear, parabolic and Fermi-shaped glass/air fill factor profiles is calculated for normal incidence. It is shown that using the latter ones, an almost complete suppression of reflections can be achieved. A simple, self-organization technique to create such Fermi-shaped filling factor profiles in glass experimentally is also presented

  1. Biomimetic approaches to create anti-reflection glass surfaces for solar cells using self-organizing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Achtelik, J.; Sievers, W. [University of Paderborn, Department of Physics, 33098 Paderborn (Germany); Center of Optoelectronics and Photonics Paderborn CeOPP, 33098 Paderborn (Germany); Lindner, J.K.N., E-mail: lindner@physik.uni-paderborn.de [University of Paderborn, Department of Physics, 33098 Paderborn (Germany); Center of Optoelectronics and Photonics Paderborn CeOPP, 33098 Paderborn (Germany)

    2013-05-15

    Highlights: ► Nanostructured glass surfaces with theoretically near-to-zero reflectivity in the UVNIR region. ► Simple fabrication process using self-organization during reactive ion etching proposed. ► Prediction of optical reflectivity from AFM measured surface morphology. -- Abstract: Aiming to diminish the reflection losses of glass covered light harvesting devices, the optical reflectivity of nanostructured glass surfaces is studied theoretically and experimentally. The work is inspired by the nanoscale roughness of insect eyes, which is tried to be replicated on a technical glass surface. To this end, the reflectivity of glass surfaces with topographies represented by linear, parabolic and Fermi-shaped glass/air fill factor profiles is calculated for normal incidence. It is shown that using the latter ones, an almost complete suppression of reflections can be achieved. A simple, self-organization technique to create such Fermi-shaped filling factor profiles in glass experimentally is also presented.

  2. Comparison of optical methods for surface roughness characterization

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Hansen, Poul Erik; Pilny, Lukas

    2015-01-01

    We report a study of the correlation between three optical methods for characterizing surface roughness: a laboratory scatterometer measuring the bi-directional reflection distribution function (BRDF instrument), a simple commercial scatterometer (rBRDF instrument), and a confocal optical profiler....... For each instrument, the effective range of spatial surface wavelengths is determined, and the common bandwidth used when comparing the evaluated roughness parameters. The compared roughness parameters are: the root-mean-square (RMS) profile deviation (Rq), the RMS profile slope (Rdq), and the variance...... of the scattering angle distribution (Aq). The twenty-two investigated samples were manufactured with several methods in order to obtain a suitable diversity of roughness patterns.Our study shows a one-to-one correlation of both the Rq and the Rdq roughness values when obtained with the BRDF and the confocal...

  3. Computational method for free surface hydrodynamics

    International Nuclear Information System (INIS)

    Hirt, C.W.; Nichols, B.D.

    1980-01-01

    There are numerous flow phenomena in pressure vessel and piping systems that involve the dynamics of free fluid surfaces. For example, fluid interfaces must be considered during the draining or filling of tanks, in the formation and collapse of vapor bubbles, and in seismically shaken vessels that are partially filled. To aid in the analysis of these types of flow phenomena, a new technique has been developed for the computation of complicated free-surface motions. This technique is based on the concept of a local average volume of fluid (VOF) and is embodied in a computer program for two-dimensional, transient fluid flow called SOLA-VOF. The basic approach used in the VOF technique is briefly described, and compared to other free-surface methods. Specific capabilities of the SOLA-VOF program are illustrated by generic examples of bubble growth and collapse, flows of immiscible fluid mixtures, and the confinement of spilled liquids

  4. DO TIE LABORATORY BASED METHODS REALLY REFLECT FIELD CONDITIONS

    Science.gov (United States)

    Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both interstitial waters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question ...

  5. Simulation of reflecting surface deviations of centimeter-band parabolic space radiotelescope (SRT) with the large-size mirror

    Science.gov (United States)

    Kotik, A.; Usyukin, V.; Vinogradov, I.; Arkhipov, M.

    2017-11-01

    he realization of astrophysical researches requires the development of high-sensitive centimeterband parabolic space radiotelescopes (SRT) with the large-size mirrors. Constructively such SRT with the mirror size more than 10 m can be realized as deployable rigid structures. Mesh-structures of such size do not provide the reflector reflecting surface accuracy which is necessary for the centimeter band observations. Now such telescope with the 10 m diameter mirror is developed in Russia in the frame of "SPECTR - R" program. External dimensions of the telescope is more than the size of existing thermo-vacuum chambers used to prove SRT reflecting surface accuracy parameters under the action of space environment factors. That's why the numerical simulation turns out to be the basis required to accept the taken designs. Such modeling should be based on experimental working of the basic constructive materials and elements of the future reflector. In the article computational modeling of reflecting surface deviations of a centimeter-band of a large-sized deployable space reflector at a stage of his orbital functioning is considered. The analysis of the factors that determines the deviations - both determined (temperatures fields) and not-determined (telescope manufacturing and installation faults; the deformations caused by features of composite materials behavior in space) is carried out. The finite-element model and complex of methods are developed. They allow to carry out computational modeling of reflecting surface deviations caused by influence of all factors and to take into account the deviations correction by space vehicle orientation system. The results of modeling for two modes of functioning (orientation at the Sun) SRT are presented.

  6. Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments

    Science.gov (United States)

    Gorham, P. W.; Allison, P.; Banerjee, O.; Beatty, J. J.; Belov, K.; Besson, D. Z.; Binns, W. R.; Bugaev, V.; Cao, P.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dailey, B.; Dasgupta, P.; Deaconu, C.; Cremonesi, L.; Dowkontt, P. F.; Fox, B. D.; Gordon, J.; Hill, B.; Hupe, R.; Israel, M. H.; Jain, P.; Kowalski, J.; Lam, J.; Learned, J. G.; Liewer, K. M.; Liu, T. C.; Matsuno, S.; Miki, C.; Mottram, M.; Mulrey, K.; Nam, J.; Nichol, R. J.; Novikov, A.; Oberla, E.; Prohira, S.; Rauch, B. F.; Romero-Wolf, A.; Rotter, B.; Ratzlaff, K.; Russell, J.; Saltzberg, D.; Seckel, D.; Schoorlemmer, H.; Stafford, S.; Stockham, J.; Stockham, M.; Strutt, B.; Tatem, K.; Varner, G. S.; Vieregg, A. G.; Wissel, S. A.; Wu, F.; Young, R.

    The primary science goal of the NASA-sponsored ANITA project is measurement of ultra-high energy neutrinos and cosmic rays, observed via radio-frequency signals resulting from a neutrino or cosmic ray interaction with terrestrial matter (e.g. atmospheric or ice molecules). Accurate inference of the energies of these cosmic rays requires understanding the transmission/reflection of radio wave signals across the ice-air boundary. Satellite-based measurements of Antarctic surface reflectivity, using a co-located transmitter and receiver, have been performed more-or-less continuously for the last few decades. Our comparison of four different reflectivity surveys, at frequencies ranging from 2 to 45GHz and at near-normal incidence, yield generally consistent maps of high versus low reflectivity, as a function of location, across Antarctica. Using the Sun as an RF source, and the ANITA-3 balloon borne radio-frequency antenna array as the RF receiver, we have also measured the surface reflectivity over the interval 200-1000MHz, at elevation angles of 12-30∘. Consistent with our previous measurement using ANITA-2, we find good agreement, within systematic errors (dominated by antenna beam width uncertainties) and across Antarctica, with the expected reflectivity as prescribed by the Fresnel equations. To probe low incidence angles, inaccessible to the Antarctic Solar technique and not probed by previous satellite surveys, a novel experimental approach (“HiCal-1”) was devised. Unlike previous measurements, HiCal-ANITA constitute a bi-static transmitter-receiver pair separated by hundreds of kilometers. Data taken with HiCal, between 200 and 600MHz shows a significant departure from the Fresnel equations, constant with frequency over that band, with the deficit increasing with obliquity of incidence, which we attribute to the combined effects of possible surface roughness, surface grain effects, radar clutter and/or shadowing of the reflection zone due to Earth

  7. An Optical Fiber Read Out Method for a Reflective Microcantilever Biosensor

    Directory of Open Access Journals (Sweden)

    Feng Wen

    2013-03-01

    Full Text Available An effective optical read out approach based on fiber reflective is presented to detect bends of a biomaterial microcantilever. The microcantilever was fabricated on single crystalline SOI wafer using a series of side definitions and backside wet/dry etchings. A Cr/Au layer with 30 nm Cr and 50 nm Au layer was deposited for the immobilized of bimolecular on the cantilever surface and for reflecting the light back into the fiber, the different light intensities means different bimolecular concentrations. The noncoherent light source is a super luminescent LED. Gradient index lens as a collimator and 50:50 optical coupler and signal modefiber was used to transmit light. Two PINFETs were used to convert the reflecting the light intensities and the light sources into electronic signals, two ADCs convert the signal into digital signals, a MPU was used to eliminate the fluctuation of the light source error. The method can has got high sensitivity is 6507.59 mV/um. Though the experiment, the cantilever biosensor can detect glucose, measurement results clearly demonstrate that the output voltage induced by the microcantilevers bending is proportional to the glucose concentrations and the sensitivity is up to 0.1V/mM, which is enough for glucose real-time trace detection.

  8. Energy loss of MeV protons specularly reflected from metal surfaces

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Garcia de Abajo, F.J.; Echenique, P.M.

    1996-01-01

    A parameter-free model is presented to study the energy loss of fast protons specularly reflected from metal surfaces. The contributions to the energy loss from excitation of valence-band electrons and ionization of localized target-atom electronic states are calculated separately. The former is calculated from the induced surface wake potential using linear response theory and the specular-reflection model, while the latter is calculated in the first Born approximation. The results obtained are in good agreement with available experimental data. However, the experimental qualitative trend of the energy loss as a function of the angle of incidence is obtained when the valence-band electron model is replaced by localized target atom electron states, though with a worse quantitative agreement. copyright 1996 The American Physical Society

  9. Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface

    Science.gov (United States)

    Kosobukin, V. A.; Korotchenkov, A. V.

    2016-12-01

    A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.

  10. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    Science.gov (United States)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  11. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index

    International Nuclear Information System (INIS)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M.

    2016-01-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  12. Anomalous Quasiparticle Reflection from the Surface of a ^{3}He-^{4}He Dilute Solution.

    Science.gov (United States)

    Ikegami, Hiroki; Kim, Kitak; Sato, Daisuke; Kono, Kimitoshi; Choi, Hyoungsoon; Monarkha, Yuriy P

    2017-11-10

    A free surface of a dilute ^{3}He-^{4}He liquid mixture is a unique system where two Fermi liquids with distinct dimensions coexist: a three-dimensional (3D) ^{3}He Fermi liquid in the bulk and a two-dimensional (2D) ^{3}He Fermi liquid at the surface. To investigate a novel effect generated by the interaction between the two Fermi liquids, the mobility of a Wigner crystal of electrons formed on the free surface of the mixture is studied. An anomalous enhancement of the mobility, compared with the case where the 3D and 2D systems do not interact with each other, is observed. The enhancement is explained by the nontrivial reflection of 3D quasiparticles from the surface covered with the 2D ^{3}He system.

  13. Absorption and reflectivity of the lithium niobate surface masked with a graphene layer

    Directory of Open Access Journals (Sweden)

    O. Salas

    2017-01-01

    Full Text Available We performed simulations of the interaction of a graphene layer with the surface of lithium niobate utilizing density functional theory and molecular dynamics at 300K and atmospheric pressure. We found that the graphene layer is physisorbed on the lithium niobate surface with an adsorption energy of -0.8205 eV/(carbon-atom. Subsequently, the energy band structure, the optical absorption and reflectivity of the new system were calculated. We found important changes in these physical properties with respect to the corresponding ones of a graphene layer and of a lithium niobate crystal.

  14. Doing laboratory ethnography: reflections on method in scientific workplaces.

    Science.gov (United States)

    Stephens, Neil; Lewis, Jamie

    2017-04-01

    Laboratory ethnography extended the social scientist's gaze into the day-to-day accomplishment of scientific practice. Here we reflect upon our own ethnographies of biomedical scientific workspaces to provoke methodological discussion on the doing of laboratory ethnography. What we provide is less a 'how to' guide and more a commentary on what to look for and what to look at. We draw upon our empirical research with stem cell laboratories and animal houses, teams producing robotic surgical tools, musicians sonifying data science, a psychiatric genetics laboratory, and scientists developing laboratory grown meat. We use these cases to example a set of potential ethnographic themes worthy of pursuit: science epistemics and the extended laboratory, the interaction order of scientific work, sensory realms and the rending of science as sensible, conferences as performative sites, and the spaces, places and temporalities of scientific work.

  15. Observations of discrete energy loss effects in spectra of positrons reflected from solid surfaces

    International Nuclear Information System (INIS)

    Dale, J.M.; Hulett, L.D.; Pendyala, S.

    1980-01-01

    Surfaces of tungsten and silicon have been bombarded with monoenergetic beams of positrons and electrons. Spectra of reflected particles show energy loss tails with discrete peaks at kinetic energies about 15 eV lower than that of the elastic peaks. In the higher energy loss range for tungsten, positron spectra show fine structure that is not apparent in the electron spectra. This suggests that the positrons are losing energy through mechanisms different from that of the electrons

  16. Combined analysis of surface reflection imaging and vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Daley, T.M.; Majer, E.L.; Karageorgi, E.

    1994-08-01

    This report presents results from surface and borehole seismic profiling performed by the Lawrence Berkeley Laboratory (LBL) on Yucca Mountain. This work was performed as part of the site characterization effort for the potential high-level nuclear waste repository. Their objective was to provide seismic imaging from the near surface (200 to 300 ft. depth) to the repository horizon and below, if possible. Among the issues addressed by this seismic imaging work are location and depth of fracturing and faulting, geologic identification of reflecting horizons, and spatial continuity of reflecting horizons. The authors believe their results are generally positive, with tome specific successes. This was the first attempt at this scale using modem seismic imaging techniques to determine geologic features on Yucca Mountain. The principle purpose of this report is to present the interpretation of the seismic reflection section in a geologic context. Three surface reflection profiles were acquired and processed as part of this study. Because of environmental concerns, all three lines were on preexisting roads. Line 1 crossed the mapped surface trace of the Ghost Dance fault and it was intended to study the dip and depth extent of the fault system. Line 2 was acquired along Drill Hole wash and was intended to help the ESF north ramp design activities. Line 3 was acquired along Yucca Crest and was designed to image geologic horizons which were thought to be less faulted along the ridge. Unfortunately, line 3 proved to have poor data quality, in part because of winds, poor field conditions and limited time. Their processing and interpretation efforts were focused on lines 1 and 2 and their associated VSP studies

  17. IRAS surface brightness maps of visible reflection nebulae: evidence for non-equilibrium infrared emission

    International Nuclear Information System (INIS)

    Castelaz, M.W.; Werner, M.W.; Sellgren, K.

    1986-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns of 16 visible reflection nebulae were extracted from the Infrared Astronomy Satellite (IRAS) database. The maps were produced by coadding IRAS survey scans over areas centered on the illuminating stars, and have spatial resolutions of 0.9' x 4' at 12 and 25 microns, 1.8' x 4.5' at 60 microns, and 3.6' x 5' at 100 microns. Extended emission in the four IRAS bandpasses was detected in fourteen of the reflection nebulae. The IRAS data were used to measure the flux of the infrared emission associated with each source. The energy distributions show that the 12 micron flux is greater than the 25 micron flux in 11 of the nebulae, and the peak flux occurs in the 60 or 100 micron bandpass in all 16 nebular. The 60 and 100 micron flux can be approximated by blackbodies with temperatures between 30 and 50 K, consistent with temperatures expected from extrapolation of greybody fits to the 60 and 100 micron data. The excess 12 and 25 micron emission is attributed to a nonequilibrium process such as emission from thermal fluctuations of very small grains excited by single ultraviolet photons, or emission from polycyclic aromatic hydrocarbons (PAHs) excited by ultraviolet radiation. The common features of the energy distributions of the 16 reflection nebulae, also seen in the reflection nebulae associated with the Pleiades, suggest that PAHs or very small grains may be found in most reflection nebulae

  18. A fiber-coupled displacement measuring interferometer for determination of the posture of a reflective surface

    International Nuclear Information System (INIS)

    Mao, Shuai; Hu, Peng-Cheng; Ding, Xue-Mei; Tan, Jiu-Bin

    2016-01-01

    A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibration show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.

  19. Computational efficiency for the surface renewal method

    Science.gov (United States)

    Kelley, Jason; Higgins, Chad

    2018-04-01

    Measuring surface fluxes using the surface renewal (SR) method requires programmatic algorithms for tabulation, algebraic calculation, and data quality control. A number of different methods have been published describing automated calibration of SR parameters. Because the SR method utilizes high-frequency (10 Hz+) measurements, some steps in the flux calculation are computationally expensive, especially when automating SR to perform many iterations of these calculations. Several new algorithms were written that perform the required calculations more efficiently and rapidly, and that tested for sensitivity to length of flux averaging period, ability to measure over a large range of lag timescales, and overall computational efficiency. These algorithms utilize signal processing techniques and algebraic simplifications that demonstrate simple modifications that dramatically improve computational efficiency. The results here complement efforts by other authors to standardize a robust and accurate computational SR method. Increased speed of computation time grants flexibility to implementing the SR method, opening new avenues for SR to be used in research, for applied monitoring, and in novel field deployments.

  20. Gain-Enhanced On-Chip Antenna Utilizing Artificial Magnetic Conductor Reflecting Surface at 94 GHz

    KAUST Repository

    Nafe, Mahmoud

    2015-08-04

    Nowadays, there is a growing demand for high frequency-bandwidth mm-wave (30-300 GHz) electronic wireless transceiver systems to support applications such as high data-rate wireless communication and high resolution imaging. Such mm-wave systems are becoming more feasible due to the extreme transistor downscaling in silicon-based integrated circuits, which enabled densely-integrated high-speed elec- tronics operating up to more than 100 GHz with low fabrication cost. To further enhance system integrability, it is required to implement all wireless system compo- nents on the chip. Presently, the last major barrier to true System-on-Chip (SoC) realization is the antenna implementation on the silicon chip. Although at mm-wave frequencies the antenna size becomes small enough to fit on chip, the antenna performance is greatly deteriorated due the high conductivity and high relative permittivity of the silicon substrate. The negative e↵ects of the silicon substrate could be avoided by using a metallic reflecting surface on top of silicon, which e↵ectively isolates the antenna from the silicon. However, this approach has the shortcoming of having to implement the antenna on the usually very thin silicon oxide layer of a typical CMOS fabrication process (10’s of μm). This forces the antenna to be in a very close proximity (less than one hundredth of a wavelength) to the reflecting surface. In this regime, the use of conventional metallic reflecting surface for silicon shielding has severe e↵ects on the antenna performance as it tends to reduce the antenna radiation resistance resulting in most of the energy being absorbed rather than radiated. In this work, the use of specially patterned reflecting surfaces for improving on- chip antenna performance is investigated. By using a periodic metallic surface on top of a grounded substrate, the structure can mimic the behavior of a perfect mag- netic conductor, hence called Artificial Magnetic Conductor (AMC) surface

  1. Surface Compositional Units on Mercury from Spectral Reflectance at Ultraviolet to Near-infrared Wavelengths

    Science.gov (United States)

    Izenberg, N. R.; Holsclaw, G. M.; Domingue, D. L.; McClintock, W. E.; Klima, R. L.; Blewett, D. T.; Helbert, J.; Head, J. W.; Sprague, A. L.; Vilas, F.; Solomon, S. C.

    2012-12-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has been acquiring reflectance spectra of Mercury's surface for over 16 months. The Visible and Infrared Spectrograph (VIRS) component of MASCS has accumulated a global data set of more than 2 million spectra over the wavelength range 300-1450 nm. We have derived a set of VIRS spectral units (VSUs) from the following spectral parameters: visible brightness (R575: reflectance at 575 nm); visible/near-infrared reflectance ratio (VISr: reflectance at 415 nm to that at 750 nm); and ultraviolet reflectance ratio (UVr: reflectance at 310 nm to that at 390 nm). Five broad, slightly overlapping VSUs may be distinguished from these parameters. "Average VSU" areas have spectral parameters close to mean global values. "Dark blue VSU" areas have spectra with low R575 and high UVr. "Red VSU" areas have spectra with low UVr and higher VISr and R575 than average. "Intermediate VSU" areas have spectra with higher VISr than VSU red, generally higher R575, and a wide range of UVr. "Bright VSU" areas have high R575 and VISr and intermediate UVr. Several units defined by morphological or multispectral criteria correspond to specific VSUs, including low-reflectance material (dark blue VSU), pyroclastic deposits (red VSU), and hollows (intermediate VSU), but these VSUs generally include other types of areas as well. VSU definitions are complementary to those obtained by unsupervised clustering analysis. The global distribution of VIRS spectral units provides new information on Mercury's geological evolution. Much of Mercury's northern volcanic plains show spectral properties ranging from those of average VSU to those of red VSU, as does a large region in the southern hemisphere centered near 50°S, 245°E. Dark blue VSU material is widely distributed, with concentrations south of the northern plains, around the Rembrandt and

  2. RESEARCH OF THE ENTRANCE ANGLE EFFECT ON THE REFLECTANCE SPECTRA OF THE STAINLESS STEEL SURFACE OXIDIZED BY PULSED LASER RADIATION

    Directory of Open Access Journals (Sweden)

    V. P. Veiko

    2016-05-01

    Full Text Available Subject of Research.Oxide films on the metal surfaces can be obtained both by surface-uniform infrared heating and local laser treatment e.g. by sequence of nanosecond laser pulses. Due to interference in created films the coloration of treated area is observed. The present work shows the results of spectrophotometric measurements for various light entrance angles in the range of 10-60°. Method. AISI 304 stainless steel plates were oxidized by two methods: in muffle furnace FM - 10 (Т= 500-600° С, t = 5-7 min. and at line-by-line scanning by sequence of nanosecond laser pulses (λ = 1.06 μm, τ =100 ns, r = 25 μm,q=2.91∙107 W/cm2, Nx = 30, Ny = 1. Surface research in optical resolution was realized by Carl Zeiss Axio Imager A1M. Reflectance spectra were obtained with spectrophotometer Lambda Perkin 1050 with integrating sphere at different fixed light incidence angles. Topographic features were detected by scanning probe microscopy investigation with NanoEducator equipment. Main Results. The quantitative surface geometry characteristics of AISI 304 stainless steel patterns treated by different methods are obtained. It was found that the increase of light entrance angle has no influence on the form of reflection coefficient dependence from a wavelength, but a blue-shift occurs especially for the case of laser treatment. This difference can be caused by surface topology formed by laser heating and variety of oxide film thickness. This effect results in more significant change in observed sample color for laser treatment then for infrared heating. Practical Relevance. The results obtained in the present work can be used to implement a new element of product protection against forgery with the product marking.

  3. IMPROVING IMAGE MATCHING BY REDUCING SURFACE REFLECTIONS USING POLARISING FILTER TECHNIQUES

    Directory of Open Access Journals (Sweden)

    N. Conen

    2018-05-01

    Full Text Available In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results. However, the filter may influence the camera’s orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002 using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (Δc ≤ 4 μm with the polarising filter in use. Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.

  4. A Comparison of Surface Acoustic Wave Modeling Methods

    Science.gov (United States)

    Wilson, W. c.; Atkinson, G. M.

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method a first order model, and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices.

  5. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife.

    Directory of Open Access Journals (Sweden)

    Stephen R Griffiths

    Full Text Available Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance, white boxes (high reflectance, and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and

  6. Simulation calculations of physical sputtering and reflection coefficient of plasma-irradiated carbon surface

    International Nuclear Information System (INIS)

    Kawamura, T.; Ono, T.; Yamamura, Y.

    1994-08-01

    Physical sputtering yields from the carbon surface irradiated by the boundary plasma are obtained with the use of a Monte Carlo simulation code ACAT. The yields are calculated for many random initial energy and angle values of incident protons or deuterons with a Maxwellian velocity distribution, and then averaged. Here the temperature of the boundary plasma, the sheath potential and the angle δ between the magnetic field line and the surface normal are taken into account. A new fitting formula for an arrangement of the numerical data of sputtering yield is introduced, in which six fitting parameters are determined from the numerical results and listed. These results provide a way to estimate the erosion of carbon materials irradiated by boundary plasma. The particle reflection coefficients for deuterons and their neutrals from a carbon surface are also calculated by the same code and presented together with, for comparison, that for the case of monoenergetic normal incidence. (author)

  7. Classification of reflected signals from cavitated tooth surfaces using an artificial intelligence technique incorporating a fiber optic displacement sensor

    Science.gov (United States)

    Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith

    2014-05-01

    An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.

  8. On quantum motion of particle in linear potential bounded by perfectly reflecting plane and parabolic surfaces

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.

    1999-01-01

    The motion of a particle in the linear potential bounded by an inclined plane or parabolic surfaces is considered. The quantization of energy and wave functions is obtained numerically by the separation of the variables method

  9. Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface

    Science.gov (United States)

    2016-12-22

    of Philosophy Kenneth W. Burgi, BS, MS Major, USAF 22 December 2016 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT...refocusing light through thin films of a turbid medium. When coherent light is trans- mitted through a stationary diffuser (i.e. a turbid medium), a fine...resultant light scatter [14, 15, 21, 23]. Transmission matrices were measured with microscopic objectives and thin films of turbid media, resulting in

  10. Method and apparatus for detecting phycocyanin-pigmented algae and bacteria from reflected light

    Science.gov (United States)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting phycocyanin algae or bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  11. Surface analytical methods in nuclear technology

    International Nuclear Information System (INIS)

    Baumgaertner, F.

    1985-06-01

    Application of SEM-EDX, AES, XPS are exemplarily demonstrated for highly radioactive materials with ionizing dose rates of about 1 Sv near the surface. The samples studied are aerosols from the high level waste vitrification process, postprecipitation in a pretreated fuel solution and emulsifying sludge from a solvent extraction process. The results of the chemical composition differentiated down to microscopic level reveal much more information about the history of a sample than those available from the integral macro-methods analysing. Elucidication of chemical composition and body structure in micrometer level may give insight into the origin and generation processes of samples under investigation. (orig.)

  12. STUDY OF INK LAYER BY METHOD OF ATTENUATED TOTAL REFLECTANCE SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    D. G. Fatkhullina

    2016-05-01

    Full Text Available Subject of Research. Researchresults of thickness distribution of an ink layer smearedon a glass surface are presented. The orange ink which is used as a coloring pigment in writing instrument (highlighter is selectedasan object of study. Method. Researches were carried out by the method of attenuated total reflectance(ATR spectroscopy. The spectral setup fitted up on the basis of monochromator MDR-204 was usedin the experiment. The peculiarity of the measurement scheme is the applicationofhigh-resolution camera as a radiation detector and information storage as an images package. Researches allowed receivingexperimental data in the form of ink ATR spectra arrayfor studied areas of layer surface in a given spectral range. Main Results. The estimation of ink layer thickness was done, that gives the possibilityto visualize its distribution over the surface using three-dimensional modeling capabilities. The thickness of the ink layer is not more than 0.12 microns and arithmetic mean of the thickness is0.06 microns. The local areas are observed in an ink distribution, they have a maximum layer thickness (0.07-0.12 microns or areas with the ink thickness less then 0.03 microns. Variation of the ink layer thicknessbetween the local areas is smooth. Practical Relevance. The proposed measuring scheme, the sequence of registration and processing of experimental data can be used to studyink distribution within the thickness of a surface layer of other materials,for example, in analysis of signs performed by an ink on paper medium in order to identify them in such areas of science as forensic science andstudy of art.

  13. Derivation of Land Surface Albedo at High Resolution by Combining HJ-1A/B Reflectance Observations with MODIS BRDF Products

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2014-09-01

    Full Text Available Land surface albedo is an essential parameter for monitoring global/regional climate and land surface energy balance. Although many studies have been conducted on global or regional land surface albedo using various remote sensing data over the past few decades, land surface albedo product with a high spatio–temporal resolution is currently very scarce. This paper proposes a method for deriving land surface albedo with a high spatio–temporal resolution (space: 30 m and time: 2–4 days. The proposed method works by combining the land surface reflectance data at 30 m spatial resolution obtained from the charge-coupled devices in the Huanjing-1A and -1B (HJ-1A/B satellites with the Moderate Resolution Imaging Spectroradiometer (MODIS land surface bidirectional reflectance distribution function (BRDF parameters product (MCD43A1, which is at a spatial resolution of 500 m. First, the land surface BRDF parameters for HJ-1A/B land surface reflectance with a spatial–temporal resolutions of 30 m and 2–4 day are calculated on the basis of the prior knowledge from the MODIS BRDF product; then, the calculated high resolution BRDF parameters are integrated over the illuminating/viewing hemisphere to produce the white- and black-sky albedos at 30 m resolution. These results form the basis for the final land surface albedo derivation by accounting for the proportion of direct and diffuse solar radiation arriving at the ground. The albedo retrieved by this novel method is compared with MODIS land surface albedo products, as well as with ground measurements. The results show that the derived land surface albedo during the growing season of 2012 generally achieved a mean absolute accuracy of ±0.044, and a root mean square error of 0.039, confirming the effectiveness of the newly proposed method.

  14. Research Method and Phenomenological Pedagogy. Reflections from Piero Bertolini

    Directory of Open Access Journals (Sweden)

    Luca Ghirotto

    2016-10-01

    Full Text Available Inspired by Husserlian phenomenology, Piero Bertolini defined the phenomenological pedagogy and education as a scientific discipline (Bertolini, 2005. This project remains an undetermined one as there is still room for defining its research methods. This article intends to propose a contribution to the discussion of research methodology, in line with the assumptions of Piero Bertolini (1988 phenomenological pedagogy. In particular, starting from the definition of phenomenological pedagogy and education, it aims to answer the question: what are the research strategies through which to build a viable and rigorous educational knowledge, able to grasp the personal transformation and development in a context of inter-subjectivity? Accordingly, I shall discuss data collection and analysis strategies.

  15. Estimating the Augmented Reflectance Ratio of the Ocean Surface When Whitecaps Appear

    Directory of Open Access Journals (Sweden)

    Zhantang Xu

    2015-10-01

    Full Text Available The presence of foam influences the accuracy of satellite-derived water-leaving radiance. A model has been developed to estimate the augmented reflectance ratio (A(λ,U due to differences in the fraction of whitecap coverage (w on the ocean surface. A(λ,U can be calculated from the product of w and ρ(λ,U, where ρ(λ,U is the augmented ratio of the reflectance of background water (Rb(λ caused by the presence of whitecaps. Our results showed that the average A(400~700,U in the visible region was approximately 1.3% at U = 9 m∙s−1, 2.2% at U = 10 m∙s−1, 4.4% at U = 12 m∙s−1, 7.4% at U = 14 m∙s−1, 19% at U = 19 m∙s−1 and 37.9% at U = 24 m∙s−1, making it is necessary to consider the augmented reflectance ratio for remote sensing applications. By estimating remote sensing augmented reflectance using A(λ,U, it was found that the result was in good agreement with previous studies conducted in other areas with U from 9 to 12 m∙s−1. Since Rb(λ is temporally and spatially variable, our model considered the variation of Rb(λ, whereas existing models have assumed that Rb(λ is constant. Therefore, the proposed model is more suitable for estimating the augmented reflectance ratio due to whitecaps.

  16. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen (Germany); Ueta, Hirokazu; Beck, Rainer D. [Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Federale de Lausanne (Switzerland); Bisson, Regis [Aix-Marseille Universite, PIIM, CNRS, UMR 7345, 13397 Marseille (France)

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  17. The conditions for total reflection of low-energy atoms from crystal surfaces

    International Nuclear Information System (INIS)

    Hou, M.; Robinson, M.T.

    1978-01-01

    The critical angles for the total reflection of low-energy particles from Cu rows and (001) planes have been investigated, using the binary collision approximation computer simulation code MARLOWE Breakthrough angles were evaluated for H, N, Ne, Ar, Cu, Xe, and Au in the energy range from 0.1 to 7.5 keV. In both the axial and the planar cases, recoiling of the target atoms lowers the energy barrier which the target surface presents to the heavy projectiles. Consequently, the breakthrough angles are reduced for heavy projectiles below the values expected either from observations on light projectiles or from analytical channeling theory. (orig.) [de

  18. Assessment of Satellite-Derived Surface Reflectances by NASA's CAR Airborne Radiometer over Railroad Valley, Nevada

    Science.gov (United States)

    Kharbouche, Said; Muller, Jan-Peter; Gatebe, Charles K.; Scanlon, Tracy; Banks, Andrew C.

    2017-01-01

    CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May 2008, a CAR flight campaign took place over the well-known calibration and validation site of Railroad Valley in Nevada (38.504 deg N, 115.692 deg W).The campaign coincided with the overpasses of several key EO (Earth Observation) satellites such as Landsat-7, Envisat and Terra. Thus, there are nearly simultaneous measurements from these satellites and the CAR airborne sensor over the same calibration site. The CAR spectral bands are close to those of most EO satellites. CAR has the ability to cover the whole range of azimuth view angles and a variety of zenith angles depending on altitude and, as a consequence, the biases seen between satellite and CAR measurements due to both unmatched spectral bands and unmatched angles can be significantly reduced. A comparison is presented here between CARs land surface reflectance (BRF or Bidirectional Reflectance Factor) with those derived from Terra/MODIS (MOD09 and MAIAC), Terra/MISR, Envisat/MERIS and Landsat-7. In this study, we utilized CAR data from low altitude flights (approx. 180 m above the surface) in order to minimize the effects of the atmosphere on these measurements and then obtain a valuable ground-truth data set of surface reflectance. Furthermore, this study shows that differences between measurements caused by surface heterogeneity can be tolerated, thanks to the high homogeneity of the study site on the one hand, and on the other hand, to the spatial sampling and the large number of CAR samples. These results demonstrate that satellite BRF measurements over this site are in good agreement with CAR with variable biases across different spectral bands. This is most likely due to residual aerosol

  19. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk [Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  20. Scanning tunnel microscopic image of tungsten (100) and (110) real surfaces and nature of conduction electron reflection

    International Nuclear Information System (INIS)

    Pryadkin, S.L.; Tsoj, V.S.

    1988-01-01

    The electrically polished (100) and (110) surfaces of tungsten are studied with the aid of a scanning tunnel microscope at atmospheric pressure. The (110) surface consists of a large number of atomically plane terraces whereas the (100) surface is faceted. The scanning tunnel microscope data can explain such results of experiments on transverse electron focussing as the strong dependence of the probability for specular reflection of conduction electrons scattered by the (100) surface on the electron de Broglie wavelength and the absence of a dependence of the probability for specular reflection on the wavelength for the (110) surface

  1. Laser reflection method for determination of shear stress in low density transitional flows

    Science.gov (United States)

    Sathian, Sarith P.; Kurian, Job

    2006-03-01

    The details of laser reflection method (LRM) for the determination of shear stress in low density transitional flows are presented. The method is employed to determine the shear stress due to impingement of a low density supersonic free jet issuing out from a convergent divergent nozzle on a flat plate. The plate is smeared with a thin oil film and kept parallel to the nozzle axis. For a thin oil film moving under the action of aerodynamic boundary layer, the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope generated by the shear force is done using a position sensing detector (PSD). The thinning rate of the oil film is directly measured which is the major advantage of the LRM. From the oil film slope history, calculation of the shear stress is done using a three-point formula. The range of Knudsen numbers investigated is from 0.028 to 0.516. Pressure ratio across the nozzle varied from 3,500 to 8,500 giving highly under expanded free jets. The measured values of shear, in the overlapping region of experimental parameters, show fair agreement with those obtained by force balance method and laser interferometric method.

  2. Regional-Scale Surface Magnetic Fields and Proton Fluxes to Mercury's Surface from Proton-Reflection Magnetometry

    Science.gov (United States)

    Winslow, R. M.; Johnson, C. L.; Anderson, B. J.; Gershman, D. J.; Raines, J. M.; Lillis, R. J.; Korth, H.; Slavin, J. A.; Solomon, S. C.; Zurbuchen, T.

    2014-12-01

    The application of a recently developed proton-reflection magnetometry technique to MESSENGER spacecraft observations at Mercury has yielded two significant findings. First, loss-cone observations directly confirm particle precipitation to Mercury's surface and indicate that solar wind plasma persistently bombards the planet not only in the magnetic cusp regions but over a large fraction of the southern hemisphere. Second, the inferred surface field strengths independently confirm the north-south asymmetry in Mercury's global magnetic field structure first documented from observations of magnetic equator crossings. Here we extend this work with 1.5 additional years of observations (i.e., to 2.5 years in all) to further probe Mercury's surface magnetic field and better resolve proton flux precipitation to the planet's surface. We map regions where proton loss cones are observed; these maps indicate regions where protons precipitate directly onto the surface. The augmentation of our data set over that used in our original study allows us to examine the proton loss cones in cells of dimension 10° latitude by 20° longitude in Mercury body-fixed coordinates. We observe a transition from double-sided to single-sided loss cones in the pitch-angle distributions; this transition marks the boundary between open and closed field lines. At the surface this boundary lies between 60° and 70°N. Our observations allow the estimation of surface magnetic field strengths in the northern cusp region and the calculation of incident proton fluxes to both hemispheres. In the northern cusp, our regional-scale observations are consistent with an offset dipole field and a dipole moment of 190 nT RM3, where RM is Mercury's radius, implying that any regional-scale variations in surface magnetic field strengths are either weak relative to the dipole field or occur at length scales smaller than the resolution of our observations (~300 km). From the global proton flux map (north of 40° S

  3. Barium fluoride surface preparation, analysis and UV reflective coatings at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Wuest, C.R.

    1992-01-01

    Lawrence Livermore National Laboratory (LLNL) has begun a program of study on barium fluoride scintillating crystals for the Barium Fluoride Electromagnetic Calorimeter Collaboration. This program has resulted in a number of significant improvements in the mechanical processing, polishing and coating of barium fluoride crystals. Techniques have been developed using diamond-loaded pitch lapping that can produce 15 angstrom RMS surface finishes over large areas. These lapped surfaces have been shown to be crystalline using Rutherford Back-scattering (RBS). Also, special polishing fixtures have been designed based on mounting technology developed for the 1.1 m diameter optics used in LLNL's Nova Laser. These fixtures allow as many as five 25--50 cm long barium fluoride crystals to be polished and lapped at a time with the necessary tolerances for the 16,000 crystal Barium Fluoride Calorimeter. In addition, results will be presented on coating barium fluoride with UV reflective layers of magnesium fluoride and aluminum

  4. Generating Land Surface Reflectance for the New Generation of Geostationary Satellite Sensors with the MAIAC Algorithm

    Science.gov (United States)

    Wang, W.; Wang, Y.; Hashimoto, H.; Li, S.; Takenaka, H.; Higuchi, A.; Lyapustin, A.; Nemani, R. R.

    2017-12-01

    The latest generation of geostationary satellite sensors, including the GOES-16/ABI and the Himawari 8/AHI, provide exciting capability to monitor land surface at very high temporal resolutions (5-15 minute intervals) and with spatial and spectral characteristics that mimic the Earth Observing System flagship MODIS. However, geostationary data feature changing sun angles at constant view geometry, which is almost reciprocal to sun-synchronous observations. Such a challenge needs to be carefully addressed before one can exploit the full potential of the new sources of data. Here we take on this challenge with Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, recently developed for accurate and globally robust applications like the MODIS Collection 6 re-processing. MAIAC first grids the top-of-atmosphere measurements to a fixed grid so that the spectral and physical signatures of each grid cell are stacked ("remembered") over time and used to dramatically improve cloud/shadow/snow detection, which is by far the dominant error source in the remote sensing. It also exploits the changing sun-view geometry of the geostationary sensor to characterize surface BRDF with augmented angular resolution for accurate aerosol retrievals and atmospheric correction. The high temporal resolutions of the geostationary data indeed make the BRDF retrieval much simpler and more robust as compared with sun-synchronous sensors such as MODIS. As a prototype test for the geostationary-data processing pipeline on NASA Earth Exchange (GEONEX), we apply MAIAC to process 18 months of data from Himawari 8/AHI over Australia. We generate a suite of test results, including the input TOA reflectance and the output cloud mask, aerosol optical depth (AOD), and the atmospherically-corrected surface reflectance for a variety of geographic locations, terrain, and land cover types. Comparison with MODIS data indicates a general agreement between the retrieved surface reflectance

  5. Virtual Relighting of a Virtualized Scene by Estimating Surface Reflectance Properties

    OpenAIRE

    福富, 弘敦; 町田, 貴史; 横矢, 直和

    2011-01-01

    In mixed reality that merges real and virtual worlds, it is required to interactively manipulate the illumination conditions in a virtualized space. In general, specular reflections in a scene make it difficult to interactively manipulate the illumination conditions. Our goal is to provide an opportunity to simulate the original scene, including diffuse and specular relfections, with novel viewpoints and illumination conditions. Thus, we propose a new method for estimating diffuse and specula...

  6. Analysing the impact of reflectance distributions and well geometries on vertical surface daylight levels in atria for overcast skies

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiangtao; Sharples, Steve [School of Architecture, University of Sheffield, Crookesmoor Building, Conduit Road, Sheffield S10 1FL (United Kingdom)

    2010-07-15

    This study investigated the impacts of different diffuse reflectance distributions and well geometries on vertical daylight factors and vertical internally reflected components in atria. Two forms of reflectance distribution patterns of wall surface were examined: horizontal and vertical reflectance band variation. The square atrium models studied have a broader WI range of 0.25-2.0, which represent shallow, medium and high atria. Radiance, a powerful package based on backward ray tracing technique, was used for the simulations of vertical daylight levels. The results show that different reflectance distributions of square atrium walls do have an impact on the vertical daylight factors and vertical internally reflected components under overcast sky condition. The impact relates to the orientation of the band with different reflectance distributions on the wall. Compared with the vertical band surface, the horizontal band surface has a much more complicated effect. The horizontal distributions of the reflectances significantly affects the vertical daylight levels at the locations more than 30% atrium height on the wall. For an atrium with a height more than 1/2 the width, the effect tends to increase with the increasing well index. The vertical distributions of the reflectance, nevertheless, do not substantially take effect on the vertical daylight levels in atria except for some special reflectance distribution patterns. (author)

  7. The surface analysis methods; Les methodes d`analyse des surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Deville, J.P. [Institut de Physique et Chimie, 67 - Strasbourg (France)

    1998-11-01

    Nowadays, there are a lot of surfaces analysis methods, each having its specificity, its qualities, its constraints (for instance vacuum) and its limits. Expensive in time and in investment, these methods have to be used deliberately. This article appeals to non specialists. It gives some elements of choice according to the studied information, the sensitivity, the use constraints or the answer to a precise question. After having recalled the fundamental principles which govern these analysis methods, based on the interaction between radiations (ultraviolet, X) or particles (ions, electrons) with matter, two methods will be more particularly described: the Auger electron spectroscopy (AES) and x-rays photoemission spectroscopy (ESCA or XPS). Indeed, they are the most widespread methods in laboratories, the easier for use and probably the most productive for the analysis of surface of industrial materials or samples submitted to treatments in aggressive media. (O.M.) 11 refs.

  8. Estimation of Melt Ponds over Arctic Sea Ice using MODIS Surface Reflectance Data

    Science.gov (United States)

    Ding, Y.; Cheng, X.; Liu, J.

    2017-12-01

    Melt ponds over Arctic sea ice is one of the main factors affecting variability of surface albedo, increasing absorption of solar radiation and further melting of snow and ice. In recent years, a large number of melt ponds have been observed during the melt season in Arctic. Moreover, some studies have suggested that late spring to mid summer melt ponds information promises to improve the prediction skill of seasonal Arctic sea ice minimum. In the study, we extract the melt pond fraction over Arctic sea ice since 2000 using three bands MODIS weekly surface reflectance data by considering the difference of spectral reflectance in ponds, ice and open water. The preliminary comparison shows our derived Arctic-wide melt ponds are in good agreement with that derived by the University of Hamburg, especially at the pond distribution. We analyze seasonal evolution, interannual variability and trend of the melt ponds, as well as the changes of onset and re-freezing. The melt pond fraction shows an asymmetrical growth and decay pattern. The observed melt ponds fraction is almost within 25% in early May and increases rapidly in June and July with a high fraction of more than 40% in the east of Greenland and Beaufort Sea. A significant increasing trend in the melt pond fraction is observed for the period of 2000-2017. The relationship between melt pond fraction and sea ice extent will be also discussed. Key Words: melt ponds, sea ice, Arctic

  9. Collection and corrections of oblique multiangle hyperspectral bidirectional reflectance imagery of the water surface

    Science.gov (United States)

    Bostater, Charles R.; Oney, Taylor S.

    2017-10-01

    Hyperspectral images of coastal waters in urbanized regions were collected from fixed platform locations. Surf zone imagery, images of shallow bays, lagoons and coastal waters are processed to produce bidirectional reflectance factor (BRF) signatures corrected for changing viewing angles. Angular changes as a function of pixel location within a scene are used to estimate changes in pixel size and ground sampling areas. Diffuse calibration targets collected simultaneously from within the image scene provides the necessary information for calculating BRF signatures of the water surface and shorelines. Automated scanning using a pushbroom hyperspectral sensor allows imagery to be collected on the order of one minute or less for different regions of interest. Imagery is then rectified and georeferenced using ground control points within nadir viewing multispectral imagery via image to image registration techniques. This paper demonstrates the above as well as presenting how spectra can be extracted along different directions in the imagery. The extraction of BRF spectra along track lines allows the application of derivative reflectance spectroscopy for estimating chlorophyll-a, dissolved organic matter and suspended matter concentrations at or near the water surface. Imagery is presented demonstrating the techniques to identify subsurface features and targets within the littoral and surf zones.

  10. Application of pedagogy reflective in statistical methods course and practicum statistical methods

    Science.gov (United States)

    Julie, Hongki

    2017-08-01

    Subject Elementary Statistics, Statistical Methods and Statistical Methods Practicum aimed to equip students of Mathematics Education about descriptive statistics and inferential statistics. The students' understanding about descriptive and inferential statistics were important for students on Mathematics Education Department, especially for those who took the final task associated with quantitative research. In quantitative research, students were required to be able to present and describe the quantitative data in an appropriate manner, to make conclusions from their quantitative data, and to create relationships between independent and dependent variables were defined in their research. In fact, when students made their final project associated with quantitative research, it was not been rare still met the students making mistakes in the steps of making conclusions and error in choosing the hypothetical testing process. As a result, they got incorrect conclusions. This is a very fatal mistake for those who did the quantitative research. There were some things gained from the implementation of reflective pedagogy on teaching learning process in Statistical Methods and Statistical Methods Practicum courses, namely: 1. Twenty two students passed in this course and and one student did not pass in this course. 2. The value of the most accomplished student was A that was achieved by 18 students. 3. According all students, their critical stance could be developed by them, and they could build a caring for each other through a learning process in this course. 4. All students agreed that through a learning process that they undergo in the course, they can build a caring for each other.

  11. Airborne hyperspectral observations of surface and cloud directional reflectivity using a commercial digital camera

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2012-04-01

    Full Text Available Spectral radiance measurements by a digital single-lens reflex camera were used to derive the directional reflectivity of clouds and different surfaces in the Arctic. The camera has been calibrated radiometrically and spectrally to provide accurate radiance measurements with high angular resolution. A comparison with spectral radiance measurements with the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer showed an agreement within the uncertainties of both instruments (6% for both. The directional reflectivity in terms of the hemispherical directional reflectance factor (HDRF was obtained for sea ice, ice-free ocean and clouds. The sea ice, with an albedo of ρ = 0.96 (at 530 nm wavelength, showed an almost isotropic HDRF, while sun glint was observed for the ocean HDRF (ρ = 0.12. For the cloud observations with ρ = 0.62, the cloudbow – a backscatter feature typically for scattering by liquid water droplets – was covered by the camera. For measurements above heterogeneous stratocumulus clouds, the required number of images to obtain a mean HDRF that clearly exhibits the cloudbow has been estimated at about 50 images (10 min flight time. A representation of the HDRF as a function of the scattering angle only reduces the image number to about 10 (2 min flight time.

    The measured cloud and ocean HDRF have been compared to radiative transfer simulations. The ocean HDRF simulated with the observed surface wind speed of 9 m s−1 agreed best with the measurements. For the cloud HDRF, the best agreement was obtained by a broad and weak cloudbow simulated with a cloud droplet effective radius of Reff = 4 μm. This value agrees with the particle sizes derived from in situ measurements and retrieved from the spectral radiance of the SMART-Albedometer.

  12. A Method for Retrieving Daily Land Surface Albedo from Space at 30-m Resolution

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2015-08-01

    Full Text Available Land surface albedo data with high spatio-temporal resolution are increasingly important for scientific studies addressing spatially and/or temporally small-scale phenomena, such as urban heat islands and urban land surface energy balance. Our previous study derived albedo data with 2–4-day and 30-m temporal and spatial resolution that have better spatio-temporal resolution than existing albedo data, but do not completely satisfy the requirements for monitoring high-frequency land surface changes at the small scale. Downscaling technology provides a chance to further improve the albedo data spatio-temporal resolution and accuracy. This paper introduces a method that combines downscaling technology for land surface reflectance with an empirical method of deriving land surface albedo. Firstly, downscaling daily MODIS land surface reflectance data (MOD09GA from 500 m to 30 m on the basis of HJ-1A/B BRDF data with 2–4-day and 30-m temporal and spatial resolution is performed: this is the key step in the improved method. Subsequently, the daily 30-m land surface albedo data are derived by an empirical method combining prior knowledge of the MODIS BRDF product and the downscaled daily 30-m reflectance. Validation of albedo data obtained using the proposed method shows that the new method has both improved spatio-temporal resolution and good accuracy (a total absolute accuracy of 0.022 and a total root mean squared error at six sites of 0.028.

  13. The FTIR study of uranium oxides by the method of light pipe reflection spectroscopy

    International Nuclear Information System (INIS)

    Bao Zhu Yu; Hansen, W.N.

    1988-01-01

    Light pipe infrared reflection spectra of UO 2 , UO 3 , U 3 O 8 have been studied by using an FTIR spectrometer. The uranium oxide powders were ground to ensure fine particle size and distributed on the inner surface of a straight glass pipe with gold coating. The infrared beam from the inter-ferometer was focused into one end of the pipe at 45 0 incidence and then the transmitted beam was refocused by a pair of Cassegrainian type mirrors. The resultant spectra show the infrared characteristics of the ...-U-O-U-O-..., uranyl ion UO 2 2+ bond vibration and the active lattice vibrations predicted by group theory calculations. In comparison to the transmission spectra measured by authors or reported in literature, this 45 0 incident light pipe method as well as the previous light pipe method offer advantages of sensitivity, ease of acquisition and interpretation, and require a very small sample. It confirms the power of the light pipe method for studying powders and its special utility for the infrared studies of hazardous materials. (Author)

  14. A New Method for Simultaneous Measurement of the Integrated Reflectivity of Crystals at Multiple Orders of Reflection and Comparison with New Theoretical Calculations

    International Nuclear Information System (INIS)

    Lee, S.G.; Bak, J.G.; Jung, Y.S.; Bitter, M.; Hill, K.W.; Hoelzer, G.; Wehrhan, O.; Foerster, E.

    2003-01-01

    This paper describes a new method for the simultaneous measurement of the integrated reflectivity of a crystal for multiple orders of reflection at a predefined Bragg angle. The technique is demonstrated with a mica crystal for Bragg angles of 43 o , 47 o , and 50 o . The measured integrated reflectivity for Bragg reflections up to the 24th order is compared with new theoretical predictions, which are also presented in this paper

  15. Broadband antireflective silicon carbide surface produced by cost-effective method

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Ou, Yiyu; Ou, Haiyan

    2013-01-01

    A cost-effective method for fabricating antireflective subwavelength structures on silicon carbide is demonstrated. The nanopatterning is performed in a 2-step process: aluminum deposition and reactive ion etching. The effect, of the deposited aluminum film thickness and the reactive ion etching...... conditions, on the average surface reflectance and nanostructure landscape have been investigated systematically. The average reflectance of silicon carbide surface is significantly suppressed from 25.4% to 0.05%, under the optimal experimental conditions, in the wavelength range of 390-784 nm. The presence...... of stochastic nanostructures also changes the wetting properties of silicon carbide surface from hydrophilic (47°) to hydrophobic (108°)....

  16. OMI/Aura Surface Reflectance Climatology Level 3 Global 0.5deg Lat/Lon Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI Earth Surface Reflectance Climatology product, OMLER (Global 0.5deg Lat/Lon grid) which is based on Version 003 Level-1B top of atmosphere upwelling radiance...

  17. Plasma surface reflectance spectroscopy for non-invasive and continuous monitoring of extracellular component of blood

    Science.gov (United States)

    Sakota, Daisuke; Takatani, Setsuo

    2012-04-01

    To achieve the quantitative optical non-invasive diagnosis of blood during extracorporeal circulation therapies, the instrumental technique to extract extracellular spectra from whole blood was developed. In the circuit, the continuous blood flow was generated by a centrifugal blood pump. The oxygen saturation was maintained 100% by an oxygenator. The developed glass optical flow cell was attached to the outlet tubing of the oxygenator. The halogen lamp including the light from 400 to 900 nm wavelength was used for the light source. The light was guided into an optical fiber. The light emitted by the fiber was collimated and emitted to the flow cell flat surface at the incident angle of 45 degrees. The light just reflected on the boundary between inner surface of the flow cell and plasma at 45 degrees was detected by the detection fiber. The detected light was analyzed by a spectral photometer. The obtained spectrum from 400 to 600nm wavelength was not changed with respect to the hematocrit. In contrast, the signal in the spectral range was changed when the plasma free hemoglobin increased. By using two spectral range, 505+/-5 nm and 542.5+/-2.5 nm, the differential spectrum was correlated with the free hemoglobin at R2=0.99. On the other hand, as for the hematocrit, the differential spectrum was not correlated at R2=0.01. Finally, the plasma free hemoglobin was quantified with the accuracy of 22+/-19mg/dL. The result shows that the developed plasma surface reflectance spectroscopy (PSRS) can extract the plasma spectrum from flowing whole blood.

  18. A prototype for automation of land-cover products from Landsat Surface Reflectance Data Records

    Science.gov (United States)

    Rover, J.; Goldhaber, M. B.; Steinwand, D.; Nelson, K.; Coan, M.; Wylie, B. K.; Dahal, D.; Wika, S.; Quenzer, R.

    2014-12-01

    Landsat data records of surface reflectance provide a three-decade history of land surface processes. Due to the vast number of these archived records, development of innovative approaches for automated data mining and information retrieval were necessary. Recently, we created a prototype utilizing open source software libraries for automatically generating annual Anderson Level 1 land cover maps and information products from data acquired by the Landsat Mission for the years 1984 to 2013. The automated prototype was applied to two target areas in northwestern and east-central North Dakota, USA. The approach required the National Land Cover Database (NLCD) and two user-input target acquisition year-days. The Landsat archive was mined for scenes acquired within a 100-day window surrounding these target dates, and then cloud-free pixels where chosen closest to the specified target acquisition dates. The selected pixels were then composited before completing an unsupervised classification using the NLCD. Pixels unchanged in pairs of the NLCD were used for training decision tree models in an iterative process refined with model confidence measures. The decision tree models were applied to the Landsat composites to generate a yearly land cover map and related information products. Results for the target areas captured changes associated with the recent expansion of oil shale production and agriculture driven by economics and policy, such as the increase in biofuel production and reduction in Conservation Reserve Program. Changes in agriculture, grasslands, and surface water reflect the local hydrological conditions that occurred during the 29-year span. Future enhancements considered for this prototype include a web-based client, ancillary spatial datasets, trends and clustering algorithms, and the forecasting of future land cover.

  19. The adaptation of methods in multilayer optics for the calculation of specular neutron reflection

    International Nuclear Information System (INIS)

    Penfold, J.

    1988-10-01

    The adaptation of standard methods in multilayer optics to the calculation of specular neutron reflection is described. Their application is illustrated with examples which include a glass optical flat and a deuterated Langmuir-Blodgett film. (author)

  20. Method for surface treatment by electron beams

    International Nuclear Information System (INIS)

    Panzer, S.; Doehler, H.; Bartel, R.; Ardenne, T. von.

    1985-01-01

    The invention has been aimed at simplifying the technology and saving energy in modifying surfaces with the aid of electron beams. The described beam-object geometry allows to abandon additional heat treatments. It can be used for surface hardening

  1. Study on the cloud detection of GOCI by using the simulated surface reflectance from BRDF-model for the land application and meteorological utilization

    Science.gov (United States)

    Kim, Hye-Won; Yeom, Jong-Min; Woo, Sun-Hee; Chae, Tae-Byeong

    2016-04-01

    COMS (Communication, Ocean, and Meteorological Satellite) was launched at French Guiana Kourou space center on 27 June 2010. Geostationary Ocean Color Imager (GOCI), which is the first ocean color geostationary satellite in the world for observing the ocean phenomena, is able to obtain the scientific data per an hour from 00UTC to 07UTC. Moreover, the spectral channels of GOCI would enable not only monitoring for the ocean, but for extracting the information of the land surface over the Korean Peninsula, Japan, and Eastern China. Since it is extremely important to utilize GOCI data accurately for the land application, cloud pixels over the surface have to be removed. Unfortunately, infra-red (IR) channels that can easily detect the water vapor with the cloud top temperature, are not included in the GOCI sensor. In this paper, the advanced cloud masking algorithm will be proposed with visible and near-IR (NIR) bands that are within GOCI bands. The main obstacle of cloud masking with GOCI is how to handle the high variable surface reflectance, which is mainly depending on the solar zenith angle. In this study, we use semi-empirical BRDF model to simulate the surface reflectance by using 16 day composite cloudy free image. When estimating the simulated surface reflectance, same geometry for GOCI observation was applied. The simulated surface reflectance is used to discriminate cloud areas especially for the thin cloud and shows more reasonable result than original threshold methods.

  2. Light mirror reflection combined with heating/cooling curves as a method of studying phase transitions in transparent and opaque petroleum products: Apparatus and theory

    International Nuclear Information System (INIS)

    Shishkin, Yu.L.

    2007-01-01

    A portable low weight low cost apparatus 'Phasafot' and method for determining pour and cloud points of petroleum products, as well as precipitation and melting temperatures of paraffins in both transparent (diesel fuels), semi-transparent (lube oils) and opaque (crude oils) samples are described. The method consists in illuminating the surface of a sample with an oblique light beam and registering the intensity of specularly reflected light while heating/cooling the sample in the temperature range of its structural transitions. The mirror reflection of a light beam from an ideally smooth liquid surface falls in intensity when the surface becomes rough (dim) due to crystal formation. Simultaneous recording of the temperature ramp curve and the mirror reflection curve enables the determination of the beginning and end of crystallization of paraffins in both transparent and opaque petroleum products. Besides, their rheological properties can be accurately determined by rocking or tilting the instrument while monitoring the sample movement via its mirror reflection

  3. VNIR Reflectance and MIR Emissivity Spectra of Ordinary Chondrite Meteorites Under Simulated Asteroid Surface Conditions

    Science.gov (United States)

    Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.

    2017-12-01

    Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to

  4. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (1120) sapphire.

    Energy Technology Data Exchange (ETDEWEB)

    Oleson, Timothy A. [University of Wisconsin, Madison; Sahai, Nita [University of Akron; Wesolowski, David J [ORNL; Dura, Joseph A [ORNL; Majkrzak, Charles F [ORNL; Giuffre, Anthony J. [University of Wisconsin, Madison

    2012-01-01

    Oxide-supported phospholipid bilayers (SPBs) used as biomimetric membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacjed SPBs retain properties (e.,g. fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined face coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (1120) face of sapphire (a-Al2O3). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (l=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I>210mM, or with addition of 2mM Ca2+. The latter two effects are additive, suggesting that Ca2+ mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on a-Al2O3 particles determined by adsorption isotherms and on single-crystal (1010) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques.

  5. Different size biomolecules anchoring on porous silicon surface: fluorescence and reflectivity pores infiltration comparative studies

    Energy Technology Data Exchange (ETDEWEB)

    Giovannozzi, Andrea M.; Rossi, Andrea M. [National Institute for Metrological Research, Thermodynamic Division, Strada delle Cacce 91, 10135 Torino (Italy); Renacco, Chiara; Farano, Alessandro [Ribes Ricecrhe Srl, Via Lavoratori Vittime del Col du Mont 24, 11100 Aosta (Italy); Derosas, Manuela [Biodiversity Srl, Via Corfu 71, 25124 Brescia (Italy); Enrico, Emanuele [National Institute for Metrological Research, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy)

    2011-06-15

    The performance of porous silicon optical based biosensors strongly depends on material nanomorphology, on biomolecules distribution inside the pores and on the ability to link sensing species to the pore walls. In this paper we studied the immobilization of biomolecules with different size, such as antibody anti aflatoxin (anti Aflatox Ab, {proportional_to}150 KDa), malate dehydrogenase (MDH, {proportional_to}36KDa) and metallothionein (MT, {proportional_to}6KDa) at different concentrations on mesoporous silicon samples ({proportional_to}15 nm pores diameter). Fluorescence measurements using FITC- labeled biomolecules and refractive index analysis based on reflectivity spectra have been employed together to detect the amount of proteins bound to the surface and to evaluate their diffusion inside the pores. Here we suggest that these two techniques should be used together to have a better understanding of what happens at the porous silicon surface. In fact, when pores dimensions are not perfectly tuned to the protein size a higher fluorescence signal doesn't often correspond to a higher biomolecules distribution inside the pores. When a too much higher concentration of biomolecule is anchored on the surface, steric crowd effects and repulsive interactions probably take over and hinder pores infiltration, inducing a small or absent shift in the fringe pattern even if a higher fluorescence signal is registered. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Virtual-stereo fringe reflection technique for specular free-form surface testing

    Science.gov (United States)

    Ma, Suodong; Li, Bo

    2016-11-01

    Due to their excellent ability to improve the performance of optical systems, free-form optics have attracted extensive interest in many fields, e.g. optical design of astronomical telescopes, laser beam expanders, spectral imagers, etc. However, compared with traditional simple ones, testing for such kind of optics is usually more complex and difficult which has been being a big barrier for the manufacture and the application of these optics. Fortunately, owing to the rapid development of electronic devices and computer vision technology, fringe reflection technique (FRT) with advantages of simple system structure, high measurement accuracy and large dynamic range is becoming a powerful tool for specular free-form surface testing. In order to obtain absolute surface shape distributions of test objects, two or more cameras are often required in the conventional FRT which makes the system structure more complex and the measurement cost much higher. Furthermore, high precision synchronization between each camera is also a troublesome issue. To overcome the aforementioned drawback, a virtual-stereo FRT for specular free-form surface testing is put forward in this paper. It is able to achieve absolute profiles with the help of only one single biprism and a camera meanwhile avoiding the problems of stereo FRT based on binocular or multi-ocular cameras. Preliminary experimental results demonstrate the feasibility of the proposed technique.

  7. Surface energy loss processes in XPS studied by absolute reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Nagatomi, T.; Goto, K.

    2010-01-01

    The results of the investigation of the inelastic interaction of 300-3000 eV electrons with the Ni and Au surfaces by the analysis of absolute reflection electron energy loss spectroscopy (REELS) spectra were described. The present analysis enables the inelastic mean free path (IMFP), surface excitation parameter (SEP) and differential SEP (DSEP) to be obtained simultaneously from an absolute REELS spectrum. The obtained IMFPs for Ni and Au showed a good agreement with those calculated using the TPP-2M predictive equation. The present SEPs determined for Ni and Au were fitted to the Chen's formula describing the dependence of the SEP on the electron energy, and material parameters for Ni and Au in Chen's formula were proposed. The present DESPs were compared with the theoretical results, and a reasonable agreement between the experimentally determined DSEPs and theoretical results was confirmed. The MC modeling of calculating the REELS spectrum, in which energy loss processes due to surface excitations are taken into account, was also described. The IMFP, SEP and DSEP determined by the present absolute REELS analysis were employed to describe energy loss processes by inelastic scattering in the proposed MC simulation. The simulated REELS spectra were found to be in a good agreement with the experimental spectra for both Ni and Au.

  8. Diffuse reflectance startigraphy - a new method in the study of loess (?)

    Science.gov (United States)

    József, Szeberényi; Balázs, Bradák; Klaudia, Kiss; József, Kovács; György, Varga; Réka, Balázs; Viczián, István

    2017-04-01

    The different varieties of loess (and intercalated paleosol layers) together constitute one of the most widespread terrestrial sediments, which was deposited, altered, and redeposited in the course of the changing climatic conditions of the Pleistocene. To reveal more information about Pleistocene climate cycles and/or environments the detailed lithostratigraphical subdivision and classification of the loess variations and paleosols are necessary. Beside the numerous method such as various field measurements, semi-quantitative tests and laboratory investigations, diffuse reflectance spectroscopy (DRS) is one of the well applied method on loess/paleosol sequences. Generally, DRS has been used to separate the detrital and pedogenic mineral component of the loess sections by the hematite/goethite ratio. DRS also has been applied as a joint method of various environmental magnetic investigations such as magnetic susceptibility- and isothermal remanent magnetization measurements. In our study the so-called "diffuse reflectance stratigraphy method" were developed. At First, complex mathematical method was applied to compare the results of the spectral reflectance measurements. One of the most preferred multivariate methods is cluster analysis. Its scope is to group and compare the loess variations and paleosol based on the similarity and common properties of their reflectance curves. In the Second, beside the basic subdivision of the profiles by the different reflectance curves of the layers, the most characteristic wavelength section of the reflectance curve was determined. This sections played the most important role during the classification of the different materials of the section. The reflectance value of individual samples, belonged to the characteristic wavelength were depicted in the function of depth and well correlated with other proxies like grain size distribution and magnetic susceptibility data. The results of the correlation showed the significance of the

  9. Evaluation of ethical reflections in community healthcare: a mixed-methods study.

    Science.gov (United States)

    Söderhamn, Ulrika; Kjøstvedt, Helga Tofte; Slettebø, Åshild

    2015-03-01

    Ethical reflections over care practices are important. In order to be able to perform such reflections, healthcare professionals must learn to think critically about their care practice. The aim of this study was to evaluate whether an introduction to and practice in ethical reflections in community healthcare have consequences for the healthcare personnel's practice. A mixed-methods design was adopted with five focus group interviews and an electronic questionnaire based on results from the interviews. A total of 29 community healthcare personnel with experience in ethical reflections participated in the interviews. The electronic questionnaire was sent via email to 2382 employees in community healthcare services in 13 municipalities in southern part of Norway. The study was guided by the intentions of the Declaration of Helsinki and ethical standard principles and approved by the Norwegian Social Science Data Services. An introduction to and practice in performing ethical reflections brought about an ethical awareness with understanding and respect for both colleagues and patients. The leader had a key role. Lack of time was a hindrance for ethical reflections. Three factors could predict meaningful ethical reflections: higher age of personnel, higher percentage of employment and longer experience with ethical reflections. According to other studies, ethical reflections may enhance moral development of colleagues and their actions as advocates for the patients. A deepened ethical awareness, professional competency and sufficient time resources will guarantee proper caregiving. A supportive environment that prioritizes participation in reflection meetings is decisive. To practice ethical reflections will provide better care for patients. A challenge for the community healthcare system is to offer adequate positions that provide the personnel an opportunity to be involved as caregivers and to participate in ethical reflections. © The Author(s) 2014.

  10. Detecting moisture status of pecan orchards and the potential of remotely-sensed surface reflectance data

    Science.gov (United States)

    Othman, Yahia Abdelrahman

    Demand for New Mexico's limited water resources coupled with periodic drought has increased the need to schedule irrigation of pecan orchards based on tree water status. The overall goal of this research was to develop advanced tree water status sensing techniques to optimize irrigation scheduling of pecan orchards. To achieve this goal, I conducted three studies in the La Mancha and Leyendecker orchards, both mature pecan orchards located in the Mesilla Valley, New Mexico. In the first study, I screened leaf-level physiological changes that occurred during cyclic irrigation to determine parameters that best represented changes in plant moisture status. Then, I linked plant physiological changes to remotely-sensed surface reflectance data derived from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+). In the second study, I assessed the impact of water deficits that developed during the flood irrigation dry-down cycles on photosynthesis (A) and gas exchange and established preliminary water deficit thresholds of midday stem water potential (Psi smd) critical to A and gas exchange of pecans. In a third study, I investigated whether hyperspectral data obtained from a handheld spectroradiometer and multispectral remotely-sensed data derived from Landsat 7 ETM+ and Landsat 8 Operational Land Imager (OLI) could detect moisture status in pecans during cyclic flood irrigations. I conducted the first study simultaneously in both orchards. Leaf-level physiological responses and remotely-sensed surface reflectance data were collected from trees that were either well watered or in water deficit. Midday stem water potential was the best leaf-level physiological response to detect moisture status in pecans. Multiple linear regression between Psismd and vegetation indices revealed a significant relationship (R 2 = 0.54) in both orchards. Accordingly, I concluded that remotely-sensed multispectral data form Landsat TMETM+ holds promise for detecting the moisture

  11. Transient reflection and transmission of E polarized electromagnetic waves at boundary surface between air and moving isotropic plasma

    International Nuclear Information System (INIS)

    Saito, Yukimasa

    1977-01-01

    The transient reflection and transmission waves of E polarized electromagnetic waves coming into the boundary surface between air and moving isotropic plasma were theoretically investigated. By using the Laplace transformation in the moving system, the formulae of Lorentz and inverse Lorentz transformations concerning electromagnetic field were transformed, thus the transient reflection and transmission waves were obtained. These waves were normalized with the angular frequency of the incident waves, and the variation of the wave form was obtained. Examples of the numerical calculation of reflected waves are shown for the plasma moving in parallel to the boundary surface. (Kato, T.)

  12. Improved analytical formulas for x-ray and neutron reflection from surface films

    International Nuclear Information System (INIS)

    Zhou, X.; Chen, S.; Felcher, G.P.

    1992-01-01

    A general and exact expression for x-ray and neutron reflectance and transmittance is given in terms of an integral of the real-space scattering-length-density profile fluctuation of the film, with respect to an arbitrary constant reference density level, over the wave function inside the film. Various special cases and approximations are then derived from this exact form by suitable approximations of the wave function. In particular, two practical approximate formulas are derived which are improvement over the corresponding distorted-wave Born approximations. One is for an arbitrary film deposited on a known substrate and the other for a free liquid surface. Numerical results are used to illustrate the accuracy of these formulas

  13. Modified polarized geometrical attenuation model for bidirectional reflection distribution function based on random surface microfacet theory.

    Science.gov (United States)

    Liu, Hong; Zhu, Jingping; Wang, Kai

    2015-08-24

    The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.

  14. Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons

    International Nuclear Information System (INIS)

    Kurosawa, K.; Pierce, R.M.; Ushioda, S.; Hemminger, J.C.

    1986-01-01

    We have made in situ measurements of attenuated total reflection (ATR) and Raman scattering from a layered structure consisting of a glass prism, a thin silver film, an MgF 2 spacer, and a liquid mixture whose refractive index is matched to that of MgF 2 . When the incident angle of the laser beam coincides with the ATR angle, the surface-plasmon polariton (SPP) of the silver film is excited resonantly and the Raman scattering intensity of the liquid shows a maximum. The same effect is observed at the frequency of the Stokes scattered light. By measuring the decrease of the Raman scattering intensity of the liquid with increase of the thickness of the MgF 2 spacer layer, we have determined the decay length (l/sub d/) of the SPP field into the liquid. The measured value of l/sub d/ = 1539 A agrees with the calculated value, 1534 A

  15. Recent Developments in the X-Ray Reflectivity Analysis for Rough Surfaces and Interfaces of Multilayered Thin Film Materials

    Directory of Open Access Journals (Sweden)

    Yoshikazu Fujii

    2013-01-01

    Full Text Available X-ray reflectometry is a powerful tool for investigations on rough surface and interface structures of multilayered thin film materials. The X-ray reflectivity has been calculated based on the Parratt formalism, accounting for the effect of roughness by the theory of Nevot-Croce conventionally. However, in previous studies, the calculations of the X-ray reflectivity often show a strange effect where interference effects would increase at a rough surface. And estimated surface and interface roughnesses from the X-ray reflectivity measurements did not correspond to the TEM image observation results. The strange result had its origin in a used equation due to a serious mistake in which the Fresnel transmission coefficient in the reflectivity equation is increased at a rough interface because of a lack of consideration of diffuse scattering. In this review, a new accurate formalism that corrects this mistake is presented. The new accurate formalism derives an accurate analysis of the X-ray reflectivity from a multilayer surface of thin film materials, taking into account the effect of roughness-induced diffuse scattering. The calculated reflectivity by this accurate reflectivity equation should enable the structure of buried interfaces to be analyzed more accurately.

  16. Reflection and diffraction of atomic de Broglie waves by evanescent laser waves. Bare-state method

    International Nuclear Information System (INIS)

    Feng, Xiaoping; Witte, N.S.; Hollenberg, C.L.; Opat, G.

    1994-01-01

    Two methods are presented for the investigation of the reflection and diffraction of atoms by gratings formed either by standing or travelling evanescent laser waves. Both methods use the bare-state rather than dressed-state picture. One method is based on the Born series, whereas the other is based on the Laplace transformation of the coupled differential equations. The two methods yield the same theoretical expressions for the reflected and diffracted atomic waves in the whole space including the interaction and the asymptotic regions. 1 ref., 1 fig

  17. [Studies on a sequential injection renewable surface reflectance spectrophotometric system using a microchip flow cell].

    Science.gov (United States)

    Wang, Jian-ya; Fang, Zhao-lun

    2002-02-01

    A microchip flow cell was developed for flow injection renewable surface assay by reflectance spectrophotometry. The flow cell was coupled to a sequential injection system and optical fiber photometric detection system. The flow cell featured a three-layer structure. The flow channel was cut into a silicone rubber membrance which formed the middle layer, and a porous filter was inlayed across a widened section of the channel to trap microbeads introduced into the flow cell. The area of the detection window of the flow cell was approximately 3.6 mm2, the volume of the bead trapped in the flow cell was 2.2 microL, the depth of the bead layer was 600 microns. A multistrand bifurcated optical fiber was coupled with incident light, detector and flow cell. The chromogenic reaction of Cr(VI) with 1,5-diphenylcarbohydrazide (DPC) which was adsorbed on trapped Polysorb C-18 beads was used as a model reaction to optimize the flow cell design and the experimental system. The reflectance of the renewable reaction surface was monitored at 540 nm. With 100 microL sample loaded and 1.0 mL.min-1 carrier flow rate, the linear response range was 0-0.6 microgram.mL-1 Cr(VI). A detection limit (3 sigma) of 6 ng.mL-1, precision of 1.5% RSD(n = 11), and a throughput of 64 samples per hour were achieved. Considerations in system and flow cell design, the influence of depth of the bead layer, weight of beads used, and the flow rates of carrier stream on the performance were discussed.

  18. Modification of kaolinite surfaces through mechanochemical activation with quartz: A diffuse reflectance infrared fourier transform and chemometrics study.

    Science.gov (United States)

    Carmody, Onuma; Frost, Ray L; Kristóf, János; Kokot, Serge; Kloprogge, J Theo; Makó, Eva

    2006-12-01

    Studies of kaolinite surfaces are of industrial importance. One useful method for studying the changes in kaolinite surface properties is to apply chemometric analyses to the kaolinite surface infrared spectra. A comparison is made between the mechanochemical activation of Kiralyhegy kaolinites with significant amounts of natural quartz and the mechanochemical activation of Zettlitz kaolinite with added quartz. Diffuse reflectance infrared Fourier transform (DRIFT) spectra were analyzed using principal component analysis (PCA) and multi-criteria decision making (MCDM) methods, the preference ranking organization method for enrichment evaluations (PROMETHEE) and geometrical analysis for interactive assistance (GAIA). The clear discrimination of the Kiralyhegy spectral objects on the two PC scores plots (400-800 and 800-2030 cm(-1)) indicated the dominance of quartz. Importantly, no ordering of any spectral objects appeared to be related to grinding time in the PC plots of these spectral regions. Thus, neither the kaolinite nor the quartz are systematically responsive to grinding time according to the spectral criteria investigated. The third spectral region (2600-3800 cm(-1), OH vibrations), showed apparent systematic ordering of the Kiralyhegy and, to a lesser extent, Zettlitz spectral objects with grinding time. This was attributed to the effect of the natural quartz on the delamination of kaolinite and the accompanying phenomena (i.e., formation of kaolinite spheres and water). The mechanochemical activation of kaolinite and quartz, through dry grinding, results in changes to the surface structure. Different grinding times were adopted to study the rate of destruction of the kaolinite and quartz structures. This relationship (i.e., grinding time) was classified using PROMETHEE and GAIA methodology.

  19. Geometrical error calibration in reflective surface testing based on reverse Hartmann test

    Science.gov (United States)

    Gong, Zhidong; Wang, Daodang; Xu, Ping; Wang, Chao; Liang, Rongguang; Kong, Ming; Zhao, Jun; Mo, Linhai; Mo, Shuhui

    2017-08-01

    In the fringe-illumination deflectometry based on reverse-Hartmann-test configuration, ray tracing of the modeled testing system is performed to reconstruct the test surface error. Careful calibration of system geometry is required to achieve high testing accuracy. To realize the high-precision surface testing with reverse Hartmann test, a computer-aided geometrical error calibration method is proposed. The aberrations corresponding to various geometrical errors are studied. With the aberration weights for various geometrical errors, the computer-aided optimization of system geometry with iterative ray tracing is carried out to calibration the geometrical error, and the accuracy in the order of subnanometer is achieved.

  20. Nowcasting Surface Meteorological Parameters Using Successive Correction Method

    National Research Council Canada - National Science Library

    Henmi, Teizi

    2002-01-01

    The successive correction method was examined and evaluated statistically as a nowcasting method for surface meteorological parameters including temperature, dew point temperature, and horizontal wind vector components...

  1. A Harmonized Landsat-Sentinel-2 Surface Reflectance product: a resource for Agricultural Monitoring

    Science.gov (United States)

    Masek, J. G.; Claverie, M.; Ju, J.; Vermote, E.; Justice, C. O.

    2015-12-01

    The combination of Landsat and Sentinel-2 data offers a unique opportunity to observe globally the land every 2-3 days at medium (reflectance data from Landsat and Sentinel-2 missions and to deliver them to the community in a combined, seamless form. The HLS will be beneficial for global agricultural monitoring applications that require medium spatial resolution and weekly or more frequent observations. In particular, the provided opportunity to track crop phenology at the scale of individual fields will support detailed mapping of crop type and type-specific vegetation conditions. To create a compatible set of radiometric measurements, the HLS product relies on rigorous pre- and post-launch cross-calibration (Landsat-8 OLI and Sentinel-2 MSI) activities. The processing chain includes the following components: atmospheric correction, cloud/shadow masking, nadir BRDF-adjustment, spectral-adjustment, regridding, and temporal composite. The atmospheric correction and cloud masking is based on the OLI atmospheric correction developed at NASA-GSFC and has been adapted to the MSI data. The BRDF-adjustment is based on a disaggregation technique using MODIS-based BRDF coefficients. The technique has been evaluated using the multi-angular acquisition from the SPOT 4 and 5 (Take5) experiments. The spectral-adjustment relies on a linear regression that has been calibrated and evaluated using synthetic data and surface reflectance processed from a large number of hyperspectral EO-1 Hyperion scenes. Finally, significant effort is placed on product validation and evaluation. The delivered data set will include surface reflectance products at different levels: Using the native gridding, i.e. UTM, 30m for Landsat-8, and UTM, 10-20m for Sentinel-2 Using a common global gridding (Sinusoidal, 30m) Temporal composite (Sinusoidal, 30m, 5-day) During the first year of operation of Sentinel-2A, the HLS will be prototyped over a selection of 30 sites that includes some of the JECAM sites

  2. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers

    Science.gov (United States)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-06-01

    preserved in the sediment record of Lake Schreventeich reflect summer surface water temperatures. As N2-fixing heterocystous cyanobacteria are widespread in present-day freshwater and brackish environments, we conclude that the distribution of HGs in sediments may allow for the reconstruction of surface water temperatures of modern and potentially ancient lacustrine settings.

  3. Spontaneous acoustic emission of a corrugated shock wave in the presence of a reflecting surface

    International Nuclear Information System (INIS)

    Wouchuk, J.G.; Lopez Cavada, J.

    2004-01-01

    An analytic model to study perturbation evolution in the space between a corrugated shock and a piston surface is presented. The conditions for stable oscillation patterns are obtained by looking at the poles of the exact Laplace transform. It is seen that besides the standard D'yakov-Kontorovich (DK) mode of oscillation, the shock surface can exhibit an additional finite set of discrete frequencies, due to the interaction with the piston which reflects sound waves from behind. The additional eigenmodes are excited when the shock is launched at t=0 + . The first eigenmode (the DK mode) is always present, if the Hugoniot curve has the correct slope in the V-p plane. However, the additional frequencies could be excited for strong enough shocks. The predictions of the model are verified for particular cases by studying a van der Waals gas, as in the work of Bates and Montgomery [Phys. Fluids 11, 462 (1999); Phys. Rev. Lett. 84, 1180 (2000)]. Only acoustic emission modes are considered

  4. System and method for free-boundary surface extraction

    KAUST Repository

    Algarni, Marei

    2017-10-26

    A method of extracting surfaces in three-dimensional data includes receiving as inputs three-dimensional data and a seed point p located on a surface to be extracted. The method further includes propagating a front outwardly from the seed point p and extracting a plurality of ridge curves based on the propagated front. A surface boundary is detected based on a comparison of distances between adjacent ridge curves and the desired surface is extracted based on the detected surface boundary.

  5. Automated sulcal depth measurement on cortical surface reflecting geometrical properties of sulci.

    Directory of Open Access Journals (Sweden)

    Hyuk Jin Yun

    Full Text Available Sulcal depth that is one of the quantitative measures of cerebral cortex has been widely used as an important marker for brain morphological studies. Several studies have employed Euclidean (EUD or geodesic (GED algorithms to measure sulcal depth, which have limitations that ignore sulcal geometry in highly convoluted regions and result in under or overestimated depth. In this study, we proposed an automated measurement for sulcal depth on cortical surface reflecting geometrical properties of sulci, which named the adaptive distance transform (ADT. We first defined the volume region of cerebrospinal fluid between the 3D convex hull and the cortical surface, and constructed local coordinates for that restricted region. Dijkstra's algorithm was then used to compute the shortest paths from the convex hull to the vertices of the cortical surface based on the local coordinates, which may be the most proper approach for defining sulcal depth. We applied our algorithm to both a clinical dataset including patients with mild Alzheimer's disease (AD and 25 normal controls and a simulated dataset whose shape was similar to a single sulcus. The mean sulcal depth in the mild AD group was significantly lower than controls (p = 0.007, normal [mean±SD]: 7.29±0.23 mm, AD: 7.11±0.29 and the area under the receiver operating characteristic curve was relatively high, showing the value of 0.818. Results from clinical dataset that were consistent with former studies using EUD or GED demonstrated that ADT was sensitive to cortical atrophy. The robustness against inter-individual variability of ADT was highlighted through simulation dataset. ADT showed a low and constant normalized difference between the depth of the simulated data and the calculated depth, whereas EUD and GED had high and variable differences. We suggest that ADT is more robust than EUD or GED and might be a useful alternative algorithm for measuring sulcal depth.

  6. Study of phosphoric acid crystallization using a focused beam reflectance measurement method

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yong [School of Chemistry and Resource Environment, Linyi Normal University, Linyi Shandong 276005 (China); Chen, Kui; Wu, Yanyang; Zhu, Jiawen [Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237 (China); Sheng, Yong [SINOCHEN Fuling Chemical Industrial Co., Ltd, Chongqing 226005 (China)

    2010-10-15

    A way for restoring the crystal size distributions (CSD) from measured chord length distributions (CLD) was reported in this paper. The kinetics of phosphoric acid crystallization process was investigated in cooling mode using focused beam reflectance measurement (FBRM) and digital photo technique. In order to restore the CSD from measured CLD and verify the reliability of FBRM data, digital photo technique in real time and optical microscope were applied in large crystal size and small range, respectively. Results indicated a converting constant A existed between CLD and CSD when crystal growth follows size-independent growth (Mcabe's {delta}L law) law. It was verified by Malvern particles size analysis method. The converting constant A varied with crystal morphology. The crystal growth order increased with the stirring increasing speed during phosphoric acid crystallization process. The trend was especially notable at higher speed situations. It can illustrate that the state of phosphoric acid hemihydrate crystal growth was controlled by both diffusion and surface-integration with the increasing stirring speed. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. The laboratory investigation of surface envelope solitons: reflection from a vertical wall and collisions of solitons

    Science.gov (United States)

    Slunyaev, Alexey; Klein, Marco; Clauss, Günther F.

    2016-04-01

    Envelope soliton solutions are key elements governing the nonlinear wave dynamics within a simplified theory for unidirectional weakly modulated weakly nonlinear wave groups on the water surface. Within integrable models the solitons preserve their structure in collisions with other waves; they do not disperse and can carry energy infinitively long. Steep and short soliton-like wave groups have been shown to exist in laboratory tests [1] and, even earlier, in numerical simulations [2, 3]. Thus, long-living wave groups may play important role in the dynamics of intense sea waves and wave-structure interactions. The solitary wave groups may change the wave statistics and can be taken into account when developing approaches for the deterministic forecasting of dangerous waves, including so-called rogue waves. An experimental campaign has been conducted in the wave basin of the Technical University of Berlin on simulations of intense solitary wave groups. The first successful experimental observation of intense envelope solitons took place in this facility [1]. The new experiments aimed at following main goals: 1) to reproduce intense envelope solitons with different carrier wave lengths; 2) to estimate the rate of envelope soliton dissipation; 3) to consider the reflection of envelope solitons on a vertical wall; 4) to consider head-on collisions of envelope solitons, and 5) to consider overtaking interactions of envelope solitons. Up to 9 wave gauges were used in each experimental run, which enabled registration of the surface movement at different distances from the wavemaker, at different locations across the wave flume and near the wall. Besides surface displacements, the group envelope shapes were directly recorded, with use of phase shifts applied to the modulated waves generated by the wavemaker. [1] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and experiments of short intense envelope solitons of surface water waves. Phys. Fluids 25, 067105

  8. Simple methods of aligning four-circle diffractometers with crystal reflections

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Y [Tokyo Univ. (Japan). Faculty of Pharmaceutical Sciences

    1979-08-01

    Simple methods of aligning four-circle diffractometers with crystal reflections are devised. They provide the methods to check (1) perpendicularity of chi plane to the incident beam, (2) zero point of 2theta and linearity of focus-chi center-receiving aperture and (3) zero point of chi.

  9. A volume-based method for denoising on curved surfaces

    KAUST Repository

    Biddle, Harry; von Glehn, Ingrid; Macdonald, Colin B.; Marz, Thomas

    2013-01-01

    We demonstrate a method for removing noise from images or other data on curved surfaces. Our approach relies on in-surface diffusion: we formulate both the Gaussian diffusion and Perona-Malik edge-preserving diffusion equations in a surface-intrinsic way. Using the Closest Point Method, a recent technique for solving partial differential equations (PDEs) on general surfaces, we obtain a very simple algorithm where we merely alternate a time step of the usual Gaussian diffusion (and similarly Perona-Malik) in a small 3D volume containing the surface with an interpolation step. The method uses a closest point function to represent the underlying surface and can treat very general surfaces. Experimental results include image filtering on smooth surfaces, open surfaces, and general triangulated surfaces. © 2013 IEEE.

  10. A volume-based method for denoising on curved surfaces

    KAUST Repository

    Biddle, Harry

    2013-09-01

    We demonstrate a method for removing noise from images or other data on curved surfaces. Our approach relies on in-surface diffusion: we formulate both the Gaussian diffusion and Perona-Malik edge-preserving diffusion equations in a surface-intrinsic way. Using the Closest Point Method, a recent technique for solving partial differential equations (PDEs) on general surfaces, we obtain a very simple algorithm where we merely alternate a time step of the usual Gaussian diffusion (and similarly Perona-Malik) in a small 3D volume containing the surface with an interpolation step. The method uses a closest point function to represent the underlying surface and can treat very general surfaces. Experimental results include image filtering on smooth surfaces, open surfaces, and general triangulated surfaces. © 2013 IEEE.

  11. Definition of a critical confining zone using surface geophysical methods

    International Nuclear Information System (INIS)

    Eddy-Dilek, C.A.; Hoekstra, P.; Harthill, N.; Blohm, M.; Phillips, D.R.

    1996-01-01

    Definition of the hydrogeologic framework in layered sediments of fluvial and deltaic origin is a difficult challenge for environmental characterization and remediation programs due to the lithologic and stratigraphic heterogeneities inherent in these settings. These heterogeneties often control contaminant transport and the effectiveness of remediation alternatives, Surface geophysical surveys can be cost-effective methods for characterization, but individual methods have inherent limitations in resolution and sensitivity. A synergistic approach, utilizing two geophysical survey methods was applied, to define and examine the nature and extent of a deep confining zone of regulatory importance, the Crouch Branch Confining Unit, in Coastal Plain sediments at the Savannah River Site. TDEM accurately maps the overall conductance (product of thickness and electrical conductivity) of a confining zone clay facies; from variation in conductance, changes in lithology of the conforming zone can be inferred. Shear wave seismic reflection surveys map the depth to the clay layers, and the clay layer thickness, but provides little information on the lithologic nature of the confining zone. Integrated interpretation of the combined data set (including all available borehole logs) allows for delineation of the lateral and vertical extent of clay-dominated zones, sand-dominated zones, key stratigraphic horizons, and erosional features associated with unconformities. This approach has resulted in the collection of critical information that will be used to optimize remedial system design, representing a significant cost savings to environmental restoration programs at the Savannah River Site

  12. Ultraviolet (UV)-reflective paint with ultraviolet germicidal irradiation (UVGI) improves decontamination of nosocomial bacteria on hospital room surfaces.

    Science.gov (United States)

    Jelden, Katelyn C; Gibbs, Shawn G; Smith, Philip W; Hewlett, Angela L; Iwen, Peter C; Schmid, Kendra K; Lowe, John J

    2017-06-01

    An ultraviolet germicidal irradiation (UVGI) generator (the TORCH, ClorDiSys Solutions, Inc.) was used to compare the disinfection of surface coupons (plastic from a bedrail, stainless steel, and chrome-plated light switch cover) in a hospital room with walls coated with ultraviolet (UV)-reflective paint (Lumacept) or standard paint. Each surface coupon was inoculated with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus faecalis (VRE), placed at 6 different sites within a hospital room coated with UV-reflective paint or standard paint, and treated by 10 min UVC exposure (UVC dose of 0-688 mJ/cm 2 between sites with standard paint and 0-553 mJ/cm 2 with UV-reflective paint) in 8 total trials. Aggregated MRSA concentrations on plastic bedrail surface coupons were reduced on average by 3.0 log 10 (1.8 log 10 Geometric Standard Deviation [GSD]) with standard paint and 4.3 log 10 (1.3 log 10 GSD) with UV-reflective paint (p = 0.0005) with no significant reduction differences between paints on stainless steel and chrome. Average VRE concentrations were reduced by ≥4.9 log 10 (surface types with UV-reflective paint and ≤4.1 log 10 (hospital bed from the UVGI generator, MRSA concentrations on average were reduced by 1.3 log 10 (1.7 log 10 GSD) with standard paint and 4.7 log 10 (1.3 log 10 GSD) with UV-reflective paint (p hospital room walls with UV-reflective paint enhanced UVGI disinfection of nosocomial bacteria on various surfaces compared to standard paint, particularly at a surface placement site indirectly exposed to UVC light.

  13. Standard Test Methods for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1971-01-01

    1.1 These test methods cover the measurement of solar energy transmittance and reflectance (terrestrial) of materials in sheet form. Method A, using a spectrophotometer, is applicable for both transmittance and reflectance and is the referee method. Method B is applicable only for measurement of transmittance using a pyranometer in an enclosure and the sun as the energy source. Specimens for Method A are limited in size by the geometry of the spectrophotometer while Method B requires a specimen 0.61 m2 (2 ft2). For the materials studied by the drafting task group, both test methods give essentially equivalent results. 1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  14. Impacts of dust aerosol and adjacency effects on the accuracy of Landsat 8 and RapidEye surface reflectances

    KAUST Repository

    Houborg, Rasmus; McCabe, Matthew

    2017-01-01

    The atmospheric correction of satellite data is challenging over desert agricultural systems, due to the relatively high aerosol optical thicknesses (τ550), bright soils, and a heterogeneous surface reflectance field. Indeed, the contribution of reflected radiation from adjacent pixels scattered into the field of view of a target pixel is considerable and can significantly affect the fidelity of retrieved reflectances. In this study, uncertainties and quantitative errors associated with the atmospheric correction of multi-spectral Landsat 8 and RapidEye data were characterized over a desert agricultural landscape in Saudi Arabia. Surface reflectances were retrieved using an implementation of the 6SV atmospheric correction code, and validated against field collected spectroradiometer measurements over desert, cultivated soil, and vegetated surface targets. A combination of satellite and Aerosol Robotic Network (AERONET) data were used to parameterize aerosol properties and atmospheric state parameters. With optimal specification of τ550 and aerosol optical properties and correction for adjacency effects, the relative Mean Absolute Deviation (MAD) for all bands combined was 5.4% for RapidEye and 6.8% for Landsat 8. However uncertainties associated with satellite-based τ550 retrievals were shown to introduce significant error into the reflectance estimates. With respect to deriving common vegetation indices from corrected reflectance data, the Normalized Difference Vegetation Index (NDVI) was associated with the smallest errors (3–8% MAD). Surface reflectance errors were highest for bands in the visible part of the spectrum, particularly the blue band (5–16%), while there was more consistency within the red-edge (~ 5%) and near-infrared (5–7%). Results were generally better constrained when a τ550-dependent aerosol model for desert dust particles, parameterized on the basis of nearby AERONET site data, was used in place of a generic rural or background

  15. Impacts of dust aerosol and adjacency effects on the accuracy of Landsat 8 and RapidEye surface reflectances

    KAUST Repository

    Houborg, Rasmus

    2017-03-29

    The atmospheric correction of satellite data is challenging over desert agricultural systems, due to the relatively high aerosol optical thicknesses (τ550), bright soils, and a heterogeneous surface reflectance field. Indeed, the contribution of reflected radiation from adjacent pixels scattered into the field of view of a target pixel is considerable and can significantly affect the fidelity of retrieved reflectances. In this study, uncertainties and quantitative errors associated with the atmospheric correction of multi-spectral Landsat 8 and RapidEye data were characterized over a desert agricultural landscape in Saudi Arabia. Surface reflectances were retrieved using an implementation of the 6SV atmospheric correction code, and validated against field collected spectroradiometer measurements over desert, cultivated soil, and vegetated surface targets. A combination of satellite and Aerosol Robotic Network (AERONET) data were used to parameterize aerosol properties and atmospheric state parameters. With optimal specification of τ550 and aerosol optical properties and correction for adjacency effects, the relative Mean Absolute Deviation (MAD) for all bands combined was 5.4% for RapidEye and 6.8% for Landsat 8. However uncertainties associated with satellite-based τ550 retrievals were shown to introduce significant error into the reflectance estimates. With respect to deriving common vegetation indices from corrected reflectance data, the Normalized Difference Vegetation Index (NDVI) was associated with the smallest errors (3–8% MAD). Surface reflectance errors were highest for bands in the visible part of the spectrum, particularly the blue band (5–16%), while there was more consistency within the red-edge (~ 5%) and near-infrared (5–7%). Results were generally better constrained when a τ550-dependent aerosol model for desert dust particles, parameterized on the basis of nearby AERONET site data, was used in place of a generic rural or background

  16. Macro Photography for Reflectance Transformation Imaging: A Practical Guide to the Highlights Method

    Directory of Open Access Journals (Sweden)

    Antonino Cosentino

    2014-11-01

    Full Text Available Reflectance Transformation Imaging (RTI is increasingly being used for art documentation and analysis and it can be successful also for the examination of features on the order of hundreds of microns. This paper evaluates some macro scale photography methods specifically for RTI employing the Highlights method for documenting sub-millimeter details. This RTI technique consists in including one reflective sphere in the scene photographed so that the processing software can calculate for each photo the direction of the light source from its reflection on the sphere. RTI documentation can be performed also with an RTI dome, but the Highlights method is preferred because is more mobile and more affordable. This technique is demonstrated in the documentation of some prints ranging from the XV to the XX century from to the Ingels collection in Sweden. The images are here examined and discussed, showing the application of macro RTI for identifying features of prints.

  17. Identification method of non-reflective faults based on index distribution of optical fibers.

    Science.gov (United States)

    Lee, Wonkyoung; Myong, Seung Il; Lee, Jyung Chan; Lee, Sangsoo

    2014-01-13

    This paper investigates an identification method of non-reflective faults based on index distribution of optical fibers. The method identifies not only reflective faults but also non-reflective faults caused by tilted fiber-cut, lateral connector-misalignment, fiber-bend, and temperature variation. We analyze the reason why wavelength dependence of the fiber-bend is opposite to that of the lateral connector-misalignment, and the effect of loss due to temperature variation on OTDR waveforms through simulation and experimental results. This method can be realized by only upgrade of fault-analysis software without the hardware change, it is, therefore, competitive and cost-effective in passive optical networks.

  18. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  19. Updating Landsat time series of surface-reflectance composites and forest change products with new observations

    Science.gov (United States)

    Hermosilla, Txomin; Wulder, Michael A.; White, Joanne C.; Coops, Nicholas C.; Hobart, Geordie W.

    2017-12-01

    The use of time series satellite data allows for the temporally dense, systematic, transparent, and synoptic capture of land dynamics over time. Subsequent to the opening of the Landsat archive, several time series approaches for characterizing landscape change have been developed, often representing a particular analytical time window. The information richness and widespread utility of these time series data have created a need to maintain the currency of time series information via the addition of new data, as it becomes available. When an existing time series is temporally extended, it is critical that previously generated change information remains consistent, thereby not altering reported change statistics or science outcomes based on that change information. In this research, we investigate the impacts and implications of adding additional years to an existing 29-year annual Landsat time series for forest change. To do so, we undertook a spatially explicit comparison of the 29 overlapping years of a time series representing 1984-2012, with a time series representing 1984-2016. Surface reflectance values, and presence, year, and type of change were compared. We found that the addition of years to extend the time series had minimal effect on the annual surface reflectance composites, with slight band-specific differences (r ≥ 0.1) in the final years of the original time series being updated. The area of stand replacing disturbances and determination of change year are virtually unchanged for the overlapping period between the two time-series products. Over the overlapping temporal period (1984-2012), the total area of change differs by 0.53%, equating to an annual difference in change area of 0.019%. Overall, the spatial and temporal agreement of the changes detected by both time series was 96%. Further, our findings suggest that the entire pre-existing historic time series does not need to be re-processed during the update process. Critically, given the time

  20. Protocol for Validation of the Land Surface Reflectance Fundamental Climate Data Record using AERONET: Application to the Global MODIS and VIIRS Data Records

    Science.gov (United States)

    Roger, J. C.; Vermote, E.; Holben, B. N.

    2014-12-01

    The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and a key parameter in the understanding of the land-surface-climate processes. It is essential that a careful validation of its uncertainties is performed on a global and continuous basis. One approach is the direct comparison of this product with ground measurements but that approach presents several issues related to scale, the episodic nature of ground measurements and the global representativeness. An alternative is to compare the surface reflectance product to reference reflectance determined from Top of atmosphere reflectance corrected using accurate radiative transfer code and very detailed measurements of the atmosphere obtained over the AERONET sites (Vermote and al, 2014, RSE) which allows to test for a large range of aerosol characteristics; formers being important inputs for atmospheric corrections. However, the application of this method necessitates the definition of a very detailed protocol for the use of AERONET data especially as far as size distribution and absorption are concerned, so that alternative validation methods or protocols could be compared. This paper describes the protocol we have been working on based on our experience with the AERONET data and its application to the MODIS and VIIRS record.

  1. Giant enhancement of reflectance due to the interplay between surface confined wave modes and nonlinear gain in dielectric media.

    Science.gov (United States)

    Kim, Sangbum; Kim, Kihong

    2017-12-11

    We study theoretically the interplay between the surface confined wave modes and the linear and nonlinear gain of the dielectric layer in the Otto configuration. The surface confined wave modes, such as surface plasmons or waveguide modes, are excited in the dielectric-metal bilayer by obliquely incident p waves. In the purely linear case, we find that the interplay between linear gain and surface confined wave modes can generate a large reflectance peak with its value much greater than 1. As the linear gain parameter increases, the peak appears at smaller incident angles, and the associated modes also change from surface plasmons to waveguide modes. When the nonlinear gain is turned on, the reflectance shows very strong multistability near the incident angles associated with surface confined wave modes. As the nonlinear gain parameter is varied, the reflectance curve undergoes complicated topological changes and sometimes displays separated closed curves. When the nonlinear gain parameter takes an optimally small value, a giant amplification of the reflectance by three orders of magnitude occurs near the incident angle associated with a waveguide mode. We also find that there exists a range of the incident angle where the wave is dissipated rather than amplified even in the presence of gain. We suggest that this can provide the basis for a possible new technology for thermal control in the subwavelength scale.

  2. Application of the B.F.S. Method to Metallic Surfaces: Surface Alloys and Alloy Surfaces

    International Nuclear Information System (INIS)

    Bozzolo, Gullermo

    1997-01-01

    These notes introduce the BFS (Bozzolo-Ferrante-Smith) method for alloys, in the framework of what is available today in terms of computationally efficient and physically sound techniques for modeling of atomic systems. The BFS method belongs to the family of semi-empirical methods, which aim to balance scientific rigour with practical applications. The goal is to provide a tool that aids in the process of material analysis and development, supplementing the experimental work which by itself has limitations in terms of time, money, technology and human resources. One of the main advantages of the BFS method, basically tailored to assist in the problem of alloy design, is that it is easily applicable to the analysis of surface structure, with a satisfactory degree of accuracy. In these notes, first the role of semiempirical methods among the available tools for atomistic simulations is reviewed, followed by a description of the BFS method and a simple application in order to understand the operational procedure, and conclude reviewing some of the topics of current interest where techniques such as the BFS method play an important role in furthering the understanding os fundamental issues

  3. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    Science.gov (United States)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  4. Image potential effect on the specular reflection coefficient of alkali ions scattered from a nickel surface at low energy

    International Nuclear Information System (INIS)

    Zemih, R.; Boudjema, M.; Benazeth, C.; Boudouma, Y.; Chami, A.C.

    2002-01-01

    The resonant charge exchange in the incoming path of alkali ions scattered at low energy from a polycrystalline nickel surface is studied by using the image effect occurring at glancing incidence (2-10 deg. from the surface plane) and for specular reflection. The part of the experimental artefacts (geometrical factor, surface roughness ...) is extracted from the reflection coefficient of almost completely neutralised projectiles (He + or Ne + ) compared with the coefficient obtained from numerical simulations (TRIM and MARLOWE codes). The present model explains very well the lowering of the reflection coefficient measured at grazing incidence (below 4 deg.). Furthermore, the optimised values of the charge fraction in the incoming path and the image potential are in agreement with the theoretical calculations in the case of Na + /Ni at 4 keV

  5. Neutron Reflection Study of Surface Adsorption of Fc, Fab, and the Whole mAb.

    Science.gov (United States)

    Li, Zongyi; Li, Ruiheng; Smith, Charles; Pan, Fang; Campana, Mario; Webster, John R P; van der Walle, Christopher F; Uddin, Shahid; Bishop, Steve M; Narwal, Rojaramani; Warwicker, Jim; Lu, Jian Ren

    2017-07-12

    Characterizing the influence of fragment crystallization (Fc) and antigen-binding fragment (Fab) on monoclonal antibody (mAb) adsorption at the air/water interface is an important step to understanding liquid mAb drug product stability during manufacture, shipping, and storage. Here, neutron reflection is used to study the air/water adsorption of a mAb and its Fc and Fab fragments. By varying the isotopic contrast, the adsorbed amount, thickness, orientation, and immersion of the adsorbed layers could be determined unambiguously. While Fc adsorption reached saturation within the hour, its surface adsorbed amount showed little variation with bulk concentration. In contrast, Fab adsorption was slower and the adsorbed amount was concentration dependent. The much higher Fc adsorption, as compared to Fab, was linked to its lower surface charge. Time and concentration dependence of mAb adsorption was dominated by Fab behavior, although both Fab and Fc behaviors contributed to the amount of mAb adsorbed. Changing the pH from 5.5 to 8.8 did not much perturb the adsorbed amount of Fc, Fab, or mAb. However, a small decrease in adsorption was observed for the Fc over pH 8-8.8 and vice versa for the Fab and mAb, consistent with a dominant Fab behavior. As bulk concentration increased from 5 to 50 ppm, the thicknesses of the Fc layers were almost constant at 40 Å, while Fab and mAb layers increased from 45 to 50 Å. These results imply that the adsorbed mAb, Fc, and Fab all retained their globular structures and were oriented with their short axial lengths perpendicular to the interface.

  6. Surface control alloy substrates and methods of manufacture therefor

    Energy Technology Data Exchange (ETDEWEB)

    Fritzemeier, Leslie G. (Mendon, MA); Li, Qi (Marlborough, MA); Rupich, Martin W. (Framingham, MA); Thompson, Elliott D. (Coventry, RI); Siegal, Edward J. (Malden, MA); Thieme, Cornelis Leo Hans (Westborough, MA); Annavarapu, Suresh (Brookline, MA); Arendt, Paul N. (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2004-05-04

    Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.

  7. A method for thickness determination of thin films of amalgamable metals by total-reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Bennun, L.; Greaves, E.D.; Barros, H.; Diaz-Valdes, J.

    2009-01-01

    A method for thickness determination of thin amalgamable metallic films by total-reflection X-ray fluorescence (TXRF) is presented. The peak's intensity in TXRF spectra are directly related to the surface density of the sample, i.e. to its thickness in a homogeneous film. Performing a traditional TXRF analysis on a thin film of an amalgamated metal, and determining the relative peak intensity of a specific metal line, the layer thickness can be precisely obtained. In the case of gold thickness determination, mercury and gold peaks overlap, hence we have developed a general data processing scheme to achieve the most precise results.

  8. An adaptive phase space method with application to reflection traveltime tomography

    International Nuclear Information System (INIS)

    Chung, Eric; Qian, Jianliang; Uhlmann, Gunther; Zhao, Hongkai

    2011-01-01

    In this work, an adaptive strategy for the phase space method for traveltime tomography (Chung et al 2007 Inverse Problems 23 309–29) is developed. The method first uses those geodesics/rays that produce smaller mismatch with the measurements and continues on in the spirit of layer stripping without defining the layers explicitly. The adaptive approach improves stability, efficiency and accuracy. We then extend our method to reflection traveltime tomography by incorporating broken geodesics/rays for which a jump condition has to be imposed at the broken point for the geodesic flow. In particular, we show that our method can distinguish non-broken and broken geodesics in the measurement and utilize them accordingly in reflection traveltime tomography. We demonstrate that our method can recover the convex hull (with respect to the underlying metric) of unknown obstacles as well as the metric outside the convex hull. (paper)

  9. Mix ratio measurements of pozzolanic blends by Fourier transform infrared-attenuated total reflectance method

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Dodd, D.A.

    1992-07-01

    The disposal of low-level radioactive liquid wastes at the Hanford Site near Richland, Washington, involves mixing the wastes with pozzolanic grout-forming solid blends. Checking the quality of each blend component and its mix ratio will ensure processibility of the blend and the long-term performance of the resulting waste grout. In earlier work at Hanford laboratories, Fourier transform infrared-transmission method (FTIR-TR) using KBr pellet was applied successfully in the analysis of blends consisting of cement, fly ash, and clays. This method involves time-consuming sample preparation resulting in slow turnaround for repetitive sampling. Because reflection methods do not require elaborate sample preparation, they have the potential to reduce turnaround analysis time. Neat samples may be examined making these methods attractive for quality control. This study investigates the capability of Fourier transform infrared-attenuated total reflectance method (FTIR-ATR) to analyze pozzolanic blends

  10. Shallow Reflection Method for Water-Filled Void Detection and Characterization

    Science.gov (United States)

    Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Hazreek, Z. A. M.; Mohammad, A. H.; Izzaty, R. A.

    2018-04-01

    Shallow investigation is crucial in enhancing the characteristics of subsurface void commonly encountered in civil engineering, and one such technique commonly used is seismic-reflection technique. An assessment of the effectiveness of such an approach is critical to determine whether the quality of the works meets the prescribed requirements. Conventional quality testing suffers limitations including: limited coverage (both area and depth) and problems with resolution quality. Traditionally quality assurance measurements use laboratory and in-situ invasive and destructive tests. However geophysical approaches, which are typically non-invasive and non-destructive, offer a method by which improvement of detection can be measured in a cost-effective way. Of this seismic reflection have proved useful to assess void characteristic, this paper evaluates the application of shallow seismic-reflection method in characterizing the water-filled void properties at 0.34 m depth, specifically for detection and characterization of void measurement using 2-dimensional tomography.

  11. Analytical methods for the characterization of surface finishing in bricks

    International Nuclear Information System (INIS)

    Nardini, I.; Zendri, E.; Biscontin, G.; Brunetin, A.

    2006-01-01

    The recent restoration works of Santo Stefano Church Facade (XV century) in Venice have shown traces variously saved of different kind of surface finishes. These finishes were found on the brick's surface both in the masonry and in the decorative elements. Different brick's surface and decorative tile samples were investigated using several techniques: optical microscopy, scanning electron-microscopy, thermal analysis, infrared spectroscopy and reflectance Fourier transform infrared microspectroscopy. The evaluation of the reached results was used to understand the decorative techniques and to recognize the material employed

  12. Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager

    Directory of Open Access Journals (Sweden)

    David J. Diner

    2012-12-01

    Full Text Available Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument’s bands (470, 660, and 865 nm. A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof, possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.

  13. Analysis and experimental investigation for collimator reflective mirror surface deformation adjustment

    Directory of Open Access Journals (Sweden)

    Chia-Yen Chan

    2017-01-01

    Full Text Available Collimator design is essential for meeting the requirements of high-precision telescopes. The collimator diameter should be larger than that of the target for alignment. Special supporting structures are required to reduce the gravitational deformation and control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors (M1. A ZERODURÂŽ mirror 620 mm in diameter for a collimator was analyzed using the finite element method to obtain the deformation induced by the supporting structures and adjustment mechanism. Zernike polynomials were also adopted to fit the optical surface and separate corresponding aberrations. The computed and measured wavefront aberration configurations for the collimator M1 were obtained complementally. The wavefront aberrations were adjusted using fine adjustment screws using 3D optical path differences map of the mirror surface. Through studies using different boundary conditions and inner ring support positions, it is concluded that the optical performance was excellent under a strong enough supporter. The best adjustment position was attained and applied to the actual collimator M1 to prove the correctness of the simulation results.

  14. On fatigue crack growth mechanisms of MMC: Reflection on analysis of 'multi surface initiations'

    International Nuclear Information System (INIS)

    Mkaddem, A.; El Mansori, M.

    2009-01-01

    This work attempts to examine the mechanisms of fatigue when cracks synergetically initiate in more than one site at the specimen surface. The metal matrix composites (MMC) i.e. silicon carbide particles reinforced aluminium matrix composites (Al/SiC p -MMC), seem to be good candidates to accelerate fatigue failures following multi surface initiations (MSI). Closure effects of MSI mechanisms on the variation of fatigue behaviour are explored for various stress states. Experiments were carried out using non pre-treated and pre-treated specimens. Using an Equivalent Ellipse Method (EEM), it is shown that the aspect of surface finish of specimen plays an important role on crack growth. Scanning Electron Microscope (SEM) inspections have lead to distinguishing the initiation regions from propagation regions and final separation regions. It is also revealed that the total lifetime of specimens is sensitive to heat treatment. Moreover, it is found that the appearance of MSI in cycled materials is more probable at high level of fatigue loads.

  15. A library based fitting method for visual reflectance spectroscopy of human skin

    Energy Technology Data Exchange (ETDEWEB)

    Verkruysse, Wim [Beckman Laser Institute, University of California, Irvine, CA 92612 (United States); Zhang Rong [Beckman Laser Institute, University of California, Irvine, CA 92612 (United States); Choi, Bernard [Beckman Laser Institute, University of California, Irvine, CA 92612 (United States); Lucassen, Gerald [Personal Care Institute, Philips Research, Prof Holstlaan 4, Eindhoven (Netherlands); Svaasand, Lars O [Department of Physical Electronics Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Nelson, J Stuart [Beckman Laser Institute, University of California, Irvine, CA 92612 (United States)

    2005-01-07

    The diffuse reflectance spectrum of human skin in the visible region (400-800 nm) contains information on the concentrations of chromophores such as melanin and haemoglobin. This information may be extracted by fitting the reflectance spectrum with an optical diffusion based analytical expression applied to a layered skin model. With the use of the analytical expression, it is assumed that light transport is dominated by scattering. For port wine stain (PWS) and highly pigmented human skin, however, this assumption may not be valid resulting in a potentially large error in visual reflectance spectroscopy (VRS). Monte Carlo based techniques can overcome this problem but are currently too computationally intensive to be combined with previously used fitting procedures. The fitting procedure presented herein is based on a library search which enables the use of accurate reflectance spectra based on forward Monte Carlo simulations or diffusion theory. This allows for accurate VRS to characterize chromophore concentrations in PWS and highly pigmented human skin. The method is demonstrated using both simulated and measured reflectance spectra. An additional advantage of the method is that the fitting procedure is very fast.

  16. A library based fitting method for visual reflectance spectroscopy of human skin

    International Nuclear Information System (INIS)

    Verkruysse, Wim; Zhang Rong; Choi, Bernard; Lucassen, Gerald; Svaasand, Lars O; Nelson, J Stuart

    2005-01-01

    The diffuse reflectance spectrum of human skin in the visible region (400-800 nm) contains information on the concentrations of chromophores such as melanin and haemoglobin. This information may be extracted by fitting the reflectance spectrum with an optical diffusion based analytical expression applied to a layered skin model. With the use of the analytical expression, it is assumed that light transport is dominated by scattering. For port wine stain (PWS) and highly pigmented human skin, however, this assumption may not be valid resulting in a potentially large error in visual reflectance spectroscopy (VRS). Monte Carlo based techniques can overcome this problem but are currently too computationally intensive to be combined with previously used fitting procedures. The fitting procedure presented herein is based on a library search which enables the use of accurate reflectance spectra based on forward Monte Carlo simulations or diffusion theory. This allows for accurate VRS to characterize chromophore concentrations in PWS and highly pigmented human skin. The method is demonstrated using both simulated and measured reflectance spectra. An additional advantage of the method is that the fitting procedure is very fast

  17. A library based fitting method for visual reflectance spectroscopy of human skin

    Science.gov (United States)

    Verkruysse, Wim; Zhang, Rong; Choi, Bernard; Lucassen, Gerald; Svaasand, Lars O.; Nelson, J. Stuart

    2005-01-01

    The diffuse reflectance spectrum of human skin in the visible region (400-800 nm) contains information on the concentrations of chromophores such as melanin and haemoglobin. This information may be extracted by fitting the reflectance spectrum with an optical diffusion based analytical expression applied to a layered skin model. With the use of the analytical expression, it is assumed that light transport is dominated by scattering. For port wine stain (PWS) and highly pigmented human skin, however, this assumption may not be valid resulting in a potentially large error in visual reflectance spectroscopy (VRS). Monte Carlo based techniques can overcome this problem but are currently too computationally intensive to be combined with previously used fitting procedures. The fitting procedure presented herein is based on a library search which enables the use of accurate reflectance spectra based on forward Monte Carlo simulations or diffusion theory. This allows for accurate VRS to characterize chromophore concentrations in PWS and highly pigmented human skin. The method is demonstrated using both simulated and measured reflectance spectra. An additional advantage of the method is that the fitting procedure is very fast.

  18. The evaluation of reflective learning from the nursing student's point of view: A mixed method approach.

    Science.gov (United States)

    Fernández-Peña, Rosario; Fuentes-Pumarola, Concepció; Malagón-Aguilera, M Carme; Bonmatí-Tomàs, Anna; Bosch-Farré, Cristina; Ballester-Ferrando, David

    2016-09-01

    Adapting university programmes to European Higher Education Area criteria has required substantial changes in curricula and teaching methodologies. Reflective learning (RL) has attracted growing interest and occupies an important place in the scientific literature on theoretical and methodological aspects of university instruction. However, fewer studies have focused on evaluating the RL methodology from the point of view of nursing students. To assess nursing students' perceptions of the usefulness and challenges of RL methodology. Mixed method design, using a cross-sectional questionnaire and focus group discussion. The research was conducted via self-reported reflective learning questionnaire complemented by focus group discussion. Students provided a positive overall evaluation of RL, highlighting the method's capacity to help them better understand themselves, engage in self-reflection about the learning process, optimize their strengths and discover additional training needs, along with searching for continuous improvement. Nonetheless, RL does not help them as much to plan their learning or identify areas of weakness or needed improvement in knowledge, skills and attitudes. Among the difficulties or challenges, students reported low motivation and lack of familiarity with this type of learning, along with concerns about the privacy of their reflective journals and about the grading criteria. In general, students evaluated RL positively. The results suggest areas of needed improvement related to unfamiliarity with the methodology, ethical aspects of developing a reflective journal and the need for clear evaluation criteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Enhancing the Pronunciation of English Suprasegmental Features through Reflective Learning Method

    Science.gov (United States)

    Suwartono

    2014-01-01

    Suprasegmental features are of paramount importance in spoken English. Yet, these pronunciation features are marginalised in EFL/ESL teaching-learning. This article reported a study that was aimed at improving the students' mastery of English suprasegmental features through the use of reflective learning method. The study adopted Kemmis and…

  20. Blogging as a method to stimulate entrepreneurial reflective practice learning in physiotherapy education

    DEFF Research Database (Denmark)

    Ringby, Betina

    2016-01-01

    The aim was to identify, create and test an easy and low cost method that stimulates physiotherapy students to become reflective practice learners. Thus blogging was selected as a tool for students to use in their learning process. Blogging is considered to be a useful tool to support students...

  1. Synthesis of biocompatible surfaces by nanotechnology methods

    OpenAIRE

    Alekhin , A. ,; Boleiko , G. ,; Gudkova , S. ,; Markeev , A. ,; Sigarev , A. ,; Toknova , V. ,; Kirilenko , A. ,; Lapshin , R. ,; Kozlov , E. ,; Tetyukhin , D. ,

    2010-01-01

    International audience; The modification of the surface of low-density polyethylene (LDPE) and polyurethane (PU) by means of the pulsed ion-plasma deposition of nanostructural carbon coatings at 20–60°C has been studied. The effect of this low-temperature treatment on the biocompatibility of the LDPE and PU has been assessed. Optimum technological parameters for the formation of mosaic carbon nanostructures with a thickness of 0.3–15 nm and a cluster lateral size of 10–500 nm are determined. ...

  2. Full waveform seismic AVAZ signatures of anisotropic shales by integrated rock physics and the reflectivity method

    Science.gov (United States)

    Liu, Xiwu; Guo, Zhiqi; Han, Xu

    2018-06-01

    A set of parallel vertical fractures embedded in a vertically transverse isotropy (VTI) background leads to orthorhombic anisotropy and corresponding azimuthal seismic responses. We conducted seismic modeling of full waveform amplitude variations versus azimuth (AVAZ) responses of anisotropic shale by integrating a rock physics model and a reflectivity method. The results indicate that the azimuthal variation of P-wave velocity tends to be more complicated for orthorhombic medium compared to the horizontally transverse isotropy (HTI) case, especially at high polar angles. Correspondingly, for the HTI layer in the theoretical model, the short axis of the azimuthal PP amplitudes at the top interface is parallel to the fracture strike, while the long axis at the bottom reflection directs the fracture strike. In contrast, the orthorhombic layer in the theoretical model shows distinct AVAZ responses in terms of PP reflections. Nevertheless, the azimuthal signatures of the R- and T-components of the mode-converted PS reflections show similar AVAZ features for the HTI and orthorhombic layers, which may imply that the PS responses are dominated by fractures. For the application to real data, a seismic-well tie based on upscaled data and a reflectivity method illustrate good agreement between the reference layers and the corresponding reflected events. Finally, the full waveform seismic AVAZ responses of the Longmaxi shale formation are computed for the cases of HTI and orthorhombic anisotropy for comparison. For the two cases, the azimuthal features represent differences mainly in amplitudes, while slightly in the phases of the reflected waveforms. Azimuth variations in the PP reflections from the reference layers show distinct behaviors for the HTI and orthorhombic cases, while the mode-converted PS reflections in terms of the R- and T-components show little differences in azimuthal features. It may suggest that the behaviors of the PS waves are dominated by vertically

  3. Application of the HN method to the critical slab problem for reflecting boundary conditions

    International Nuclear Information System (INIS)

    Tuereci, R.G.; Guelecyuez, M.C.; Kaskas, A.; Tezcan, C.

    2004-01-01

    The recently developed H N method is used to solve the critical slab problem for a slab which is surrounded by a reflector. In the special case for R=0 (the reflection coefficient) the problem reduces to the one under vacuum boundary conditions. It is shown that the method is concise and leads to fast converging numerical results. The presented numerical results are compared with the data available in literature

  4. Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site

    Science.gov (United States)

    Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong

    2013-01-01

    To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01–0.07 and relative RMSE of approximately 5%–12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0). PMID:23785513

  5. High quality broadband spatial reflections of slow Rayleigh surface acoustic waves modulated by a graded grooved surface

    KAUST Repository

    Xu, Yanlong; Peng, Pai

    2015-01-01

    . The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a

  6. Synchrotron Radiation Total Reflection X-ray Fluorescence Spectroscopy for Microcontamination Analysis on Silicon Wafer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Takaura, Norikatsu

    1997-10-01

    As dimensions in state-of-the-art CMOS devices shrink to less than 0.1 pm, even low levels of impurities on wafer surfaces can cause device degradation. Conventionally, metal contamination on wafer surfaces is measured using Total Reflection X-Ray Fluorescence Spectroscopy (TXRF). However, commercially available TXRF systems do not have the necessary sensitivity for measuring the lower levels of contamination required to develop new CMOS technologies. In an attempt to improve the sensitivity of TXRF, this research investigates Synchrotron Radiation TXRF (SR TXRF). The advantages of SR TXRF over conventional TXRF are higher incident photon flux, energy tunability, and linear polarization. We made use of these advantages to develop an optimized SR TXRF system at the Stanford Synchrotron Radiation Laboratory (SSRL). The results of measurements show that the Minimum Detection Limits (MDLs) of SR TXRF for 3-d transition metals are typically at a level-of 3x10{sup 8} atoms/cm{sup 2}, which is better than conventional TXRF by about a factor of 20. However, to use our SR TXRF system for practical applications, it was necessary to modify a commercially available Si (Li) detector which generates parasitic fluorescence signals. With the modified detector, we could achieve true MDLs of 3x10{sup 8} atoms/cm{sup 2} for 3-d transition metals. In addition, the analysis of Al on Si wafers is described. Al analysis is difficult because strong Si signals overlap the Al signals. In this work, the Si signals are greatly reduced by tuning the incident beam energy below the Si K edge. The results of our measurements show that the sensitivity for Al is limited by x-ray Raman scattering. Furthermore, we show the results of theoretical modeling of SR TXRF backgrounds consisting of the bremsstrahlung generated by photoelectrons, Compton scattering, and Raman scattering. To model these backgrounds, we extended conventional theoretical models by taking into account several aspects particular

  7. Optical performance of random anti-reflection structured surfaces (rARSS) on spherical lenses

    Science.gov (United States)

    Taylor, Courtney D.

    Random anti-reflection structured surfaces (rARSS) have been reported to improve transmittance of optical-grade fused silica planar substrates to values greater than 99%. These textures are fabricated directly on the substrates using reactive-ion/inductively-coupled plasma etching (RIE/ICP) techniques, and often result in transmitted spectra with no measurable interference effects (fringes) for a wide range of wavelengths. The RIE/ICP processes used in the fabrication process to etch the rARSS is anisotropic and thus well suited for planar components. The improvement in spectral transmission has been found to be independent of optical incidence angles for values from 0° to +/-30°. Qualifying and quantifying the rARSS performance on curved substrates, such as convex lenses, is required to optimize the fabrication of the desired AR effect on optical-power elements. In this work, rARSS was fabricated on fused silica plano-convex (PCX) and plano-concave (PCV) lenses using a planar-substrate optimized RIE process to maximize optical transmission in the range from 500 to 1100 nm. An additional set of lenses were etched in a non-optimized ICP process to provide additional comparisons. Results are presented from optical transmission and beam propagation tests (optimized lenses only) of rARSS lenses for both TE and TM incident polarizations at a wavelength of 633 nm and over a 70° full field of view in both singlet and doublet configurations. These results suggest optimization of the fabrication process is not required, mainly due to the wide angle-of-incidence AR tolerance performance of the rARSS lenses. Non-optimized recipe lenses showed low transmission enhancement, and confirmed the need to optimized etch recipes prior to process transfer of PCX/PCV lenses. Beam propagation tests indicated no major beam degradation through the optimized lens elements. Scanning electron microscopy (SEM) images confirmed different structure between optimized and non-optimized samples

  8. Fixed Nadir Focus Concentrated Solar Power Applying Reflective Array Tracking Method

    Science.gov (United States)

    Setiawan, B.; DAMayanti, A. M.; Murdani, A.; Habibi, I. I. A.; Wakidah, R. N.

    2018-04-01

    The Sun is one of the most potential renewable energy develoPMent to be utilized, one of its utilization is for solar thermal concentrators, CSP (Concentrated Solar Power). In CSP energy conversion, the concentrator is as moving the object by tracking the sunlight to reach the focus point. This method need quite energy consumption, because the unit of the concentrators has considerable weight, and use large CSP, means the existence of the usage unit will appear to be wider and heavier. The addition of weight and width of the unit will increase the torque to drive the concentrator and hold the wind gusts. One method to reduce energy consumption is direct the sunlight by the reflective array to nadir through CSP with Reflective Fresnel Lens concentrator. The focus will be below the nadir direction, and the position of concentrator will be fixed position even the angle of the sun’s elevation changes from morning to afternoon. So, the energy concentrated maximally, because it has been protected from wind gusts. And then, the possibility of dAMage and changes in focus construction will not occur. The research study and simulation of the reflective array (mechanical method) will show the reflective angle movement. The distance between reflectors and their angle are controlled by mechatronics. From the simulation using fresnel 1m2, and efficiency of solar energy is 60.88%. In restriction, the intensity of sunlight at the tropical circles 1KW/peak, from 6 AM until 6 PM.

  9. Surface structure analysis by means of Rutherford scattering: methods to study surface relaxation

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Soszka, W.; Saris, F.W.; Kersten, H.H.; Colenbrander, B.G.

    1976-01-01

    The use of Rutherford backscattering for structural analysis of single crystal surfaces is reviewed, and a new method is introduced. With this method, which makes use of the channeling and blocking phenomenon of light ions of medium energy, surface atoms can be located with a precision of 0.02 A. This is demonstrated in a measurement of surface relaxation for the Cu(110) surface. (Auth.)

  10. Simulation of reflectance from white-anodised aluminium surfaces using polyurethane–TiO2 composite coatings

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Johansen, Villads Egede; Ambat, Rajan

    2015-01-01

    of anodised surfaces. PU matrix was selected for its matching refractive-index (n = 1.7) with anodic alumina layer. Three different TiO2 particle size distributions were dispersed in PU and spin coated onto bright high-gloss and matte caustic-etched aluminium substrates. The reflectance spectra of coated...

  11. Model for the ultrasound reflection from micro-beads and cells distributed in layers on a uniform surface

    Energy Technology Data Exchange (ETDEWEB)

    Couture, O; Cherin, E; Foster, F S [Imaging Research, Sunnybrook Health Sciences Centre/University of Toronto, Toronto (Canada)

    2007-07-21

    A model predicting the reflection of ultrasound from multiple layers of small scattering spheres is developed. Predictions of the reflection coefficient, which takes into account the interferences between the different sphere layers, are compared to measurements performed in the 10-80 MHz and 15-35 MHz frequency range with layers of glass beads and spherical acute myeloid leukemia (AML) cells, respectively. For both types of scatterers, the reflection coefficient increases as a function of their density on the surface for less than three superimposed layers, at which point it saturates at 0.38 for glass beads and 0.02 for AML cells. Above three layers, oscillations of the reflection coefficient due to constructive or destructive interference between layers are observed experimentally and are accurately predicted by the model. The use of such a model could lead to a better understanding of the structures observed in layered tissue images.

  12. Interpretative Social Work: On the Uses of Qualitative Methods for Practice, Reflection and Research

    Directory of Open Access Journals (Sweden)

    Bettina Völter

    2008-01-01

    Full Text Available Qualitative methods could play an important role in the context of a lively, life-world oriented, and emancipatory self-reflective social work. They are already applied in three realms of social work: social work research, the daily practice of social workers and professional self-reflection. Even though these three realms overlap they are three distinct spheres of knowledge and action, which have specific aims. Therefore qualitative methods have to be adjusted to the needs of social science, practice and practice reflection. When students and practitioners of social work learn to use qualitative methods in this sense, they gain a competence which can be referred to as "ethnographic sophistication." This "ethnographic sophistication" contains essential elements of social work professionalism. Familiarity with qualitative methods and their application are highly relevant for the acquisition of basic competencies in social work, i.e., that what has become known as "reconstructive social pedagogy" is much more than just one social work method among others. But a consequence of the introduction of academic reforms of the so called "Bologna process" all over Europe is that it has become more difficult in many universities and universities of applied sciences to implement this approach. URN: urn:nbn:de:0114-fqs0801563

  13. Method of predicting surface deformation in the form of sinkholes

    Energy Technology Data Exchange (ETDEWEB)

    Chudek, M.; Arkuszewski, J.

    1980-06-01

    Proposes a method for predicting probability of sinkhole shaped subsidence, number of funnel-shaped subsidences and size of individual funnels. The following factors which influence the sudden subsidence of the surface in the form of funnels are analyzed: geologic structure of the strata between mining workings and the surface, mining depth, time factor, and geologic disolocations. Sudden surface subsidence is observed only in the case of workings situated up to a few dozen meters from the surface. Using the proposed method is explained with some examples. It is suggested that the method produces correct results which can be used in coal mining and in ore mining. (1 ref.) (In Polish)

  14. Recent characterization of steel by surface analysis methods

    International Nuclear Information System (INIS)

    Suzuki, Shigeru

    1996-01-01

    Surface analysis methods, such as Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, glow discharge optical emission spectrometry and so on, have become indispensable to characterize surface and interface of many kinds of steel. Although a number of studies on characterization of steel by these methods have been carried out, several problems still remain in quantification and depth profiling. Nevertheless, the methods have provided essential information on the concentration and chemical state of elements at the surface and interface. Recent results on characterization of oxide layers, coated films, etc. on the surface of steel are reviewed here. (author). 99 refs

  15. Fault analysis in the very shallow seismic reflection method. 2; Gokusenso hanshaho ni okeru danso kaiseki. 2

    Energy Technology Data Exchange (ETDEWEB)

    Nagumo, S; Muraoka, S; Takahashi, T [Oyo Corp., Tokyo (Japan)

    1997-05-27

    Fault analysis is required in addition to the ordinary process of structural analysis (CDP stacking) for the examination of discontinuity in the reflection horizon in question. The fault shape restoration principle is that the reflection point of a reflection wave observed at a certain receiving point is on an ellipse with the shock point and receiving point at its focal points and that the sum of the distances between the reflection point and the focal points is equal to the reflection wave propagation time. The DMO velocity is worked out by calculation using the positive travel time and inverse travel time from the common reflection surface. When the reflection surface is inclined by {theta}, the average interval velocity/cos{theta} is called the DMO velocity. When the reflection surface inclination and the average interval velocities are determined separately in this way, the position of the reflection point may be worked out, and this enables the calculation of the amount of migration (lateral movement). The reflection wave lineups carried by the original record are picked up one by one, and the average interval velocities are treated very prudently. After such a basic DMO conversion treatment, the actualities of the fault are described fairly correctly. 3 figs.

  16. Language Practitioners' Reflections on Method-Based and Post-Method Pedagogies

    Science.gov (United States)

    Soomro, Abdul Fattah; Almalki, Mansoor S.

    2017-01-01

    Method-based pedagogies are commonly applied in teaching English as a foreign language all over the world. However, in the last quarter of the 20th century, the concept of such pedagogies based on the application of a single best method in EFL started to be viewed with concerns by some scholars. In response to the growing concern against the…

  17. Study on the effect of ambient gas on nanostructure formation on metal surfaces during femtosecond laser ablation for fabrication of low-reflective surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smausz, Tomi, E-mail: tomi@physx.u-szeged.hu [MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, 6720 Szeged, Dóm tér 9 (Hungary); Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Csizmadia, Tamás [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Attosecond Light Pulse Source, ELI-Hu Nkft, H-6720 Szeged, Dugonics ter 13 (Hungary); Tápai, Csaba; Kopniczky, Judit [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Oszkó, Albert [Department of Physical Chemistry and Material Science, University of Szeged, H-6720 Szeged, Aradi vértanuk tere 1 (Hungary); Ehrhardt, Martin; Lorenz, Pierre; Zimmer, Klaus; Prager, Andrea [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Hopp, Béla [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary)

    2016-12-15

    Highlights: • Metal surfaces were irradiated with femtosecond laser in different gas environments. • The reflectivity, morphology and chemical composition of the surfaces were studied. • Darkening was influenced by chemical and physical interaction of the plume and gas. • Molecular mass of the applied gas had an impact on the nanostructure formation. • For some of the used metals the oxide formation affected the reflective properties. - Abstract: Nanostructure formation on bulk metals (silver, gold, copper and titanium) by femtosecond Ti-sapphire laser irradiation (775 nm, 150 fs) is studied aiming the production of low-reflectivity surfaces and the better understanding of the development process. The experiments were performed in nitrogen, air, oxygen and helium environments at atmospheric pressure. The samples were irradiated with fluences in the 0.1–2 J/cm{sup 2} range and an average pulse number of 100 falling over a given area. The reflectivity of the treated surfaces was determined by a microspectrometer in the 450–800 nm range and their morphology was studied by scanning electron microscopy. The gas ambience influenced the results via two effects: formation processes and the chemically-induced modifications of the nanostructures. In case of He the nanoparticle aggregates–otherwise generally present–are predominantly missing, which leads to a lower darkening efficiency. The presence of oxygen enhances the darkening effect for copper mostly at lower fluences, while causes a slow increase in reflectivity in the case of titanium (in case of pure oxygen) in the high fluence range. The surface morphology in case of nitrogen and air were quite similar probably due to their close molecular mass values.

  18. Prediction of tablets disintegration times using near-infrared diffuse reflectance spectroscopy as a nondestructive method.

    Science.gov (United States)

    Donoso, M; Ghaly, Evone S

    2005-01-01

    The goals of this study are to user near-infrared reflectance (NIR) spectroscopy to measure the disintegration time of a series of tablets compacted at different compressional forces, calibrate NIR data vs. laboratory equipment data, develop a model equation, validate the model, and test the model's predictive ability. Seven theophylline tablet formulations of the same composition but with different disintegration time values (0.224, 1.141, 2.797, 5.492, 9.397, 16.8, and 30.092 min) were prepared along with five placebo tablet formulations with different disintegration times. Laboratory disintegration time was compared to near-infrared diffuse reflectance data. Linear regression, quadratic, cubic, and partial least square techniques were used to determine the relationship between disintegration time and near-infrared spectra. The results demonstrated that an increase in disintegration time produced an increase in near-infrared absorbance. Series of model equations, which depended on the mathematical technique used for regression, were developed from the calibration of disintegration time using laboratory equipment vs. the near-infrared diffuse reflectance for each formulation. The results of NIR disintegration time were similar to laboratory tests. The near-infrared diffuse reflectance spectroscopy method is an alternative nondestructive method for measurement of disintegration time of tablets.

  19. A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra

    International Nuclear Information System (INIS)

    Da, B.; Sun, Y.; Ding, Z. J.; Mao, S. F.; Zhang, Z. M.; Jin, H.; Yoshikawa, H.; Tanuma, S.

    2013-01-01

    A reverse Monte Carlo (RMC) method is developed to obtain the energy loss function (ELF) and optical constants from a measured reflection electron energy-loss spectroscopy (REELS) spectrum by an iterative Monte Carlo (MC) simulation procedure. The method combines the simulated annealing method, i.e., a Markov chain Monte Carlo (MCMC) sampling of oscillator parameters, surface and bulk excitation weighting factors, and band gap energy, with a conventional MC simulation of electron interaction with solids, which acts as a single step of MCMC sampling in this RMC method. To examine the reliability of this method, we have verified that the output data of the dielectric function are essentially independent of the initial values of the trial parameters, which is a basic property of a MCMC method. The optical constants derived for SiO 2 in the energy loss range of 8-90 eV are in good agreement with other available data, and relevant bulk ELFs are checked by oscillator strength-sum and perfect-screening-sum rules. Our results show that the dielectric function can be obtained by the RMC method even with a wide range of initial trial parameters. The RMC method is thus a general and effective method for determining the optical properties of solids from REELS measurements.

  20. Determining the influential depth for surface reflectance of sediment by BRDF measurements.

    Science.gov (United States)

    Zhang, H; Voss, K; Reid, R

    2003-10-20

    We measure the Bi-directional reflectance distribution function (BRDF) of ooid sand layers with three particle size distributions (0.5-1mm, 0.25-0.5mm and 0.125-0.25mm) and layer thicknesses on a reflecting mirror to determine the influential depth in the optical region at wavelengths of 658 nm (red), 570 nm (green) and 457 nm (blue). The hemispherical reflectance (albedo) was used as an indicator of BRDF changes between different layers. Measurements are carried out on both dry and water wetted grains. The results indicate that for both dry and wet and all size distributions, the influential depth is at most 2mm.

  1. Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching.

    Science.gov (United States)

    Chan, Lesley W; Morse, Daniel E; Gordon, Michael J

    2018-05-08

    Near- and sub-wavelength photonic structures are used by numerous organisms (e.g. insects, cephalopods, fish, birds) to create vivid and often dynamically-tunable colors, as well as create, manipulate, or capture light for vision, communication, crypsis, photosynthesis, and defense. This review introduces the physics of moth eye (ME)-like, biomimetic nanostructures and discusses their application to reduce optical losses and improve efficiency of various optoelectronic devices, including photodetectors, photovoltaics, imagers, and light emitting diodes. Light-matter interactions at structured and heterogeneous surfaces over different length scales are discussed, as are the various methods used to create ME-inspired surfaces. Special interest is placed on a simple, scalable, and tunable method, namely colloidal lithography with plasma dry etching, to fabricate ME-inspired nanostructures in a vast suite of materials. Anti-reflective surfaces and coatings for IR devices and enhancing light extraction from visible light emitting diodes are highlighted.

  2. Modern methods of studying surfaces and their application to glasses

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Haehnert, M.

    1977-05-01

    In the works are demonstrated modern methods for study of solid surfaces and its use of glasses. Study of the interaction of ions, electrons and photons with the glass surface provides information about the composition of the surface and its structure on an atomic scale. A qualitative analysis of a surface can be made with the aid of the Auger electron spectroscopy (AES) and the electron spectroscopy for chemical analysis (ESCA) and with the ion scattering (ISS and RBS) and the secondary ion mass spectrometry (SIMS). The structure of a surface can be studied by means of ion scattering and low-energy electron diffraction (LEED) and the topography of a surface by means of scanning electron microscopy (SEM). The ellipsometry is generally confined to measuring the thickness of very thin layers. The application these methods to the glass surfaces is demonstrated on series of examples. (author)

  3. Variability of the reflectance coefficient of skylight from the ocean surface and its implications to ocean color.

    Science.gov (United States)

    Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan

    2018-04-16

    The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.

  4. Sliding surface searching method for slopes containing a potential weak structural surface

    Directory of Open Access Journals (Sweden)

    Aijun Yao

    2014-06-01

    Full Text Available Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is polyline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simulated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.

  5. Native SrTiO3 (001) surface layer from resonant Ti L2,3 reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Valvidares, Manuel; Huijben, Mark; Yu, Pu; Ramesh, Ramamoorthy; Kortright, Jeffrey

    2010-11-03

    We quantitatively model resonant Ti L2,3 reflectivity Rs,p(q, hn) from several SrTiO3 (001) single crystals having different initial surface preparations and stored in ambient conditions before and between measurements. All samples exhibit unexpected 300 K Rs(hn) - Rp(hn) anisotropy corresponding to weak linear dichroism and tetragonal distortion of the TiO6 octahedra indicating a surface layer with properties different from cubic SrTiO3. Oscillations in Rs(q) confirm a ubiquitous surface layer 2-3 nm thick that evolves over a range of time scales. Resonant optical constant spectra derived from Rs,p(hn) assuming a uniform sample are refined using a single surface layer to fit measured Rs(q). Differences in surface layer and bulk optical properties indicate that the surface is significantly depleted in Sr and enriched in Ti and O. While consistent with the tendency of SrTiO3 surfaces toward non-stoichiometry, this layer does not conform simply to existing models for the near surface region and apparently forms via room temperature surface reactions with the ambient. This new quantitative spectral modeling approach is generally applicable and has potential to study near-surface properties of a variety of systems with unique chemical and electronic sensitivities.

  6. GEOLOGICAL-GEOPHYSICAL EXPLORATION OF THE BAUXITE DEPOSITS APPLICATION OF THE SHALLOW SEIZMIC REFLECTION METHOD

    Directory of Open Access Journals (Sweden)

    Ivan Dragičević

    1991-12-01

    Full Text Available The exploration of bauxite deposits in the region of the carbonaceous Dinarides has been performed by using different geological and geophysical methods. Deposits laying shallower or deeper below the roof sediments have so far most often been discovered by expensive drilling methods in a corresponding grid. Complex geological explorations have led to a series of valuable data thus enabling the application of other much more economical methods as well. In the region of the bauxite sedimentary basin Mesihovina-Rakitno, western Herzegovina, at the site of Studena vrila - after extensive geological explorations - a conclusion was drawn that the shallow seismic reflection geophysical method as well might be successfully applied in locating new bauxite deposits. In the paper, the geological framework of the bauxite deposits occurrences, stipulating the selection of this methode, will be presented. Measurements were performed on a known deposit (L-84, Povaljenica, completely defined by exploration drilling. The obtained results justify the selection of the shallow seismic reflection method as one of the methods for exploring bauxite deposits beneath the roof beds.

  7. X-ray reflectivity study of thermal capillary waves on liquid surfaces

    International Nuclear Information System (INIS)

    Ocko, B.M.; Wu, X.Z.; Sirota, E.B.; Sinha, S.K.; Deutsch, M.

    1994-01-01

    X-ray reflectivity measurements have been carried out at the liquid/vapor interface of normal alkanes. The reflectivities over a large temperature range of different chain lengths (C20 and C36) provide a critical test of the various capillary wave models. Our data are most consistent with the hybrid model which allows for a molecular size dependent cutoff q max for the capillary waves and an intrinsic interface width σ 0

  8. Morphology and phase structures of CW laser-induced oxide layers on iron surface with evolving reflectivity and colors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Taotao, E-mail: wutaotao@nint.ac.cn; Wang, Lijun; Wei, Chenghua; Zhou, Menglian; He, Minbo; Wu, Lixiong

    2016-11-30

    Highlights: • Firstly, iron samples with different color features were obtained by continuous wave laser irradiation depending on progressive durations. The real-time reflectivity and temperature of samples were measured. The color and the reflectivity evolution were related. They were both caused by the forming oxide films. • Secondly, laser-induced oxidation process of iron was studied by microscope, X-ray diffraction and Raman spectrum. The first formed magnetite made the surface reflectivity decline rapidly and caused the “positive feedback” effect because of molecular absorption. The later formed hematite oscillated the reflectivity by interference effect. • Lastly, the laser-induced oxide films were thin, orientated and badly crystallized. The Wagner oxidation theory was incapable of describing the non-isothermal and early stage oxidation process. So we emphasized that a precise oxidation model depending on the experiment and the optical constants of the laser-induced oxides must be studied. - Abstract: Laser-induced oxidation will change the laser reflectivity and color features of metal surface. Both changes can be theoretically calculated based on the oxidation kinetics and the optical constants of oxides. For the purpose of calculation, the laser-induced oxidation process of pure polycrystalline iron was studied. Samples with various color features were obtained by continuous wave Nd:YAG fiber laser (1.06 μm) irradiation depending on progressive durations in the intensity of 1.90 W/cm{sup 2}. The real-time reflectivity and temperature were measured with integral sphere and thermocouples. The irradiated surface morphology and phase structures were characterized by microscope, X-ray diffraction and Raman spectrum. It was found that the first formed magnetite made the surface reflectivity decline rapidly and caused the “positive feedback” effect because of molecular absorption. The later formed hematite oscillated the reflectivity by

  9. Method and apparatus for checking the stability of a setup for making reflection type holograms

    Science.gov (United States)

    Lackner, H. G. (Inventor)

    1974-01-01

    A method and apparatus are described for checking the stability of a setup for recording reflection-type (white light) holograms. Two sets of interference fringes are simultaneously obtained, one giving information about coherence and stability of the setup alone and the other demonstrating coherence of the entire system, including the holographic recording plate. Special emphasis is given to the stability of the plate, due to the fact that any minute vibration might severely degrade or completely destroy the recording.

  10. Multiplication factor evaluation of bare and reflected small fast assemblies using variational methods

    International Nuclear Information System (INIS)

    Dwivedi, S.R.; Jain, D.

    1979-01-01

    The multigroup collision probability equations were solved by the variational method to derive a simple relation between the multiplication factor and the size of a small spherical bare or reflected fast reactor. This relation was verified by a number of 26-group, S 4 , transport theory calculations in one-dimensional spherical geometry for enriched uranium and plutonium systems. It has been shown that further approximations to the above relation lead to the universal empirical relation obtained by Anil Kumar. (orig.) [de

  11. Quantitative Determination of Pole Figures with a Texture Goniometer by the Reflection Method

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Manfred

    1962-03-15

    For different slit systems of a modern texture goniometer (type Siemens) the X-ray intensity reflected from textureless plane samples has been measured as function of the tilt angle {phi} and Bragg angle {theta}. The intensity curves obtained generally enable quantitative and almost complete pole figure determinations to be made with only one reflection recording, even for materials with high line density. Investigations on rolled uranium sheet with CuK{sub {alpha}} radiation showed that for reliable chart records up to {phi} {approx} 70 deg on reflections with an angular separation of only {delta}(2{theta}) = 0.7 deg, the vertical receiving slit must be limited to at least 1 mm when using a horizontal main slit of 0.5 mm, Though in this case the intensity drop off resulting from defocusing from the flat sample surface is considerable even at small tilt angles, a correction of intensity is possible also at large angles within an accuracy of {+-} 5 %. Moreover, different pole figures for one material can be compared quantitatively, without constant slit settings and recording conditions being necessary, if the intensity values of the contour lines are always referred to the background radiation.

  12. METHODS FOR THE REPRESENTATION OF THE HELICOIDAL SURFACE

    Directory of Open Access Journals (Sweden)

    SCURTU Liviu-Iacob

    2017-05-01

    Full Text Available In this paper there are presented the graphical methods to determine the parameters of an helicoidal stairs. The first part of this paper shows the used methods to generate the helicoidal curves using descriptive geometry methods. It has represented the state of the art of the generation of a helical surface studies. The second part of this study shows the helical stairs surface representation using descriptive geometry methods. For the representation of the helicoidal stairs are used two projections, the front and top view. A method of the stairs representation is solved using CAD modelling dedicated software. Following the helical surface representation in both methods, has been achieved a comparative study by using two representation methods. Conclusions about these two representation methods are presented in the end of this paper.

  13. Kaguya observations of the lunar wake in the terrestrial foreshock: Surface potential change by bow-shock reflected ions

    Science.gov (United States)

    Nishino, Masaki N.; Harada, Yuki; Saito, Yoshifumi; Tsunakawa, Hideo; Takahashi, Futoshi; Yokota, Shoichiro; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2017-09-01

    There forms a tenuous region called the wake behind the Moon in the solar wind, and plasma entry/refilling into the wake is a fundamental problem of the lunar plasma science. High-energy ions and electrons in the foreshock of the Earth's magnetosphere were detected at the lunar surface in the Apollo era, but their effects on the lunar night-side environment have never been studied. Here we show the first observation of bow-shock reflected protons by Kaguya (SELENE) spacecraft in orbit around the Moon, confirming that solar wind plasma reflected at the terrestrial bow shock can easily access the deepest lunar wake when the Moon stays in the foreshock (We name this mechanism 'type-3 entry'). In a continuous type-3 event, low-energy electron beams from the lunar night-side surface are not obvious even though the spacecraft location is magnetically connected to the lunar surface. On the other hand, in an intermittent type-3 entry event, the kinetic energy of upward-going field-aligned electron beams decreases from ∼ 80 eV to ∼ 20 eV or electron beams disappear as the bow-shock reflected ions come accompanied by enhanced downward electrons. According to theoretical treatment based on electric current balance at the lunar surface including secondary electron emission by incident electron and ion impact, we deduce that incident ions would be accompanied by a few to several times higher flux of an incident electron flux, which well fits observed downward fluxes. We conclude that impact by the bow-shock reflected ions and electrons raises the electrostatic potential of the lunar night-side surface.

  14. Evaluation of surface sampling method performance for Bacillus Spores on clean and dirty outdoor surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Einfeld, Wayne; Boucher, Raymond M.; Brown, Gary Stephen; Tezak, Matthew Stephen

    2011-06-01

    Recovery of Bacillus atrophaeous spores from grime-treated and clean surfaces was measured in a controlled chamber study to assess sampling method performance. Outdoor surfaces investigated by wipe and vacuum sampling methods included stainless steel, glass, marble and concrete. Bacillus atrophaeous spores were used as a surrogate for Bacillus anthracis spores in this study designed to assess whether grime-coated surfaces significantly affected surface sampling method performance when compared to clean surfaces. A series of chamber tests were carried out in which known amounts of spores were allowed to gravitationally settle onto both clean and dirty surfaces. Reference coupons were co-located with test coupons in all chamber experiments to provide a quantitative measure of initial surface concentrations of spores on all surfaces, thereby allowing sampling recovery calculations. Results from these tests, carried out under both low and high humidity conditions, show that spore recovery from grime-coated surfaces is the same as or better than spore recovery from clean surfaces. Statistically significant differences between method performance for grime-coated and clean surfaces were observed in only about half of the chamber tests conducted.

  15. Coherent reflection from surface gravity water waves during reciprocal acoustic transmissions.

    Science.gov (United States)

    Badiey, Mohsen; Song, Aijun; Smith, Kevin B

    2012-10-01

    During a recent experiment in Kauai, Hawaii, reciprocal transmissions were conducted between two acoustic transceivers mounted on the seafloor at a depth of 100 m. The passage of moving surface wave crests was shown to generate focused and intense coherent acoustic returns, which had increasing or decreasing delay depending on the direction of propagation relative to the direction of surface wave crests. It is shown that a rough surface two-dimensional parabolic equation model with an evolving sea surface can produce qualitative agreement with data for the dynamic surface returns.

  16. Stretched membrane heliostats: design and structural analysis of reflectance module and support of a heliostats of 9 m. diaform and 60 m''3 of reflectance surface

    International Nuclear Information System (INIS)

    Figarola Torres, J. M.

    1993-01-01

    After having designed and built at CIEMAT a first prototype of a Btretched membrane heliostats of 3 m. diameter, the design and the structural analysis of the different components included in the reflectance module and support of another heliostats, this one of 9 m. diameter and 60 m2. of reflectance surface, are shown In this report. This last heliostats will be mounted on a pedestal and its driving device at the Solar Platform of Almeria. In order to optimize design and performance, the structural analysis of its basic components has been analyzed with the finite elements program ANSYS. The following elements have been subject to analysis: the membrane and their ring supports, stretching system and the structural support. A similar scheme to the one applied to the previous prototype has been used on the focus control system. That includes a linear transducer, a variable frequency and a fan. Finally it has to be pointed out that substantial improvements have been achieved with respect to the first prototype concerning design and cost. (Author) 5 refs

  17. Determination of point of incidence for the case of reflection or refraction at spherical surface knowing two points lying on the ray.

    Science.gov (United States)

    Mikš, Antonín; Novák, Pavel

    2017-09-01

    The paper is focused on the problem of determination of the point of incidence of a light ray for the case of reflection or refraction at the spherical optical surface, assuming that two fixed points in space that the sought light ray should go through are given. The requirement is that one of these points lies on the incident ray and the other point on the reflected/refracted ray. Although at first glance it seems to be a simple problem, it will be shown that it has no simple analytical solution. The basic idea of the solution is given, and it is shown that the problem leads to a nonlinear equation in one variable. The roots of the resulting nonlinear equation can be found by numerical methods of mathematical optimization. The proposed methods were implemented in MATLAB, and the proper function of these algorithms was verified on several examples.

  18. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.

    Science.gov (United States)

    Weinstock, B André; Guiney, Linda M; Loose, Christopher

    2012-11-01

    We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

  19. Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Ojeda, Jesús J; Romero-González, María E; Banwart, Steven A

    2009-08-01

    Reflectance micro-Fourier transform infrared (FT-IR) analysis has been applied to characterize biofilm formation of Aquabacterium commune, a common microorganism present on drinking water distribution systems, onto the increasingly popular pipe material stainless steel EN1.4307. The applicability of the reflectance micro-FT-IR technique for analyzing the bacterial functional groups is discussed, and the results are compared to spectra obtained using more conventional FT-IR techniques: transmission micro-FT-IR, attenuated transmitted reflectance (ATR), and KBr pellets. The differences between the infrared spectra of wet and dried bacteria, as well as free versus attached bacteria, are also discussed. The spectra obtained using reflectance micro-FT-IR spectroscopy were comparable to those obtained using other FT-IR techniques. The absence of sample preparation, the potential to analyze intact samples, and the ability to characterize opaque and thick samples without the need to transfer the bacterial samples to an infrared transparent medium or produce a pure culture were the main advantages of reflectance micro-FT-IR spectroscopy.

  20. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    Science.gov (United States)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  1. More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method.

    Science.gov (United States)

    Shu, Hong; Mokhov, Sergiy; Zeldovich, Boris Ya; Bass, Michael

    2009-01-01

    A further extension of the iteration method for beam propagation calculation is presented that can be applied for volume Bragg gratings (VBGs) with extremely large grating strength. A reformulation of the beam propagation formulation is presented for analyzing the reflection of a laser beam by a deformed VBG. These methods will be shown to be very accurate and efficient. A VBG with generic z-dependent distortion has been analyzed using these methods.

  2. Modeling the reflectance of the lunar regolith by a new method combining Monte Carlo Ray tracing and Hapke's model with application to Chang'E-1 IIM data.

    Science.gov (United States)

    Wong, Un-Hong; Wu, Yunzhao; Wong, Hon-Cheng; Liang, Yanyan; Tang, Zesheng

    2014-01-01

    In this paper, we model the reflectance of the lunar regolith by a new method combining Monte Carlo ray tracing and Hapke's model. The existing modeling methods exploit either a radiative transfer model or a geometric optical model. However, the measured data from an Interference Imaging spectrometer (IIM) on an orbiter were affected not only by the composition of minerals but also by the environmental factors. These factors cannot be well addressed by a single model alone. Our method implemented Monte Carlo ray tracing for simulating the large-scale effects such as the reflection of topography of the lunar soil and Hapke's model for calculating the reflection intensity of the internal scattering effects of particles of the lunar soil. Therefore, both the large-scale and microscale effects are considered in our method, providing a more accurate modeling of the reflectance of the lunar regolith. Simulation results using the Lunar Soil Characterization Consortium (LSCC) data and Chang'E-1 elevation map show that our method is effective and useful. We have also applied our method to Chang'E-1 IIM data for removing the influence of lunar topography to the reflectance of the lunar soil and to generate more realistic visualizations of the lunar surface.

  3. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Bertram, F.; Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-01-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  4. Formation of plasmonic silver nanoparticles using rapid thermal annealing at low temperature and study in reflectance reduction of Si surface

    Science.gov (United States)

    Barman, Bidyut; Dhasmana, Hrishikesh; Verma, Abhishek; Kumar, Amit; Pratap Chaudhary, Shiv; Jain, V. K.

    2017-09-01

    This work presents studies of plasmonic silver nanoparticles (AgNPs) formation at low temperatures (200 °C-300 °C) onto Si surface by sputtering followed with rapid thermal processing (RTP) for different time durations(5-30 min). The study reveals that 20 min RTP at all temperatures show minimum average size of AgNPs (60.42 nm) with corresponding reduction in reflectance of Si surface from 40.12% to mere 1.15% only in wavelength region 300-800 nm for RTP at 200 °C. A detailed supporting growth mechanism is also discussed. This low temperature technique can be helpful in achieving efficiency improvement in solar cells via reflectance reduction with additional features such as reproducibility, minimal time and very good adhesion without damaging underlying layers device parameters.

  5. Moisture content determination in solid biofuels by dielectric and NIR reflection methods

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Peter Daugbjerg; Morsing, Merete [Department of Forest and Landscape, The Royal Veterinary and Agricultural University, Rolighedsvej 23, DK-1958 Frederiksberg C (Denmark); Hartmann, Hans; Boehm, Thorsten [Technologie- und Foerderzentrum fuer Nachwachsende Rohstoffe (TFZ), Schulgasse 18, D-94315 Straubing (Germany); Temmerman, Michael; Rabier, Fabienne [Departement Genie Rural, Chee de Namur 146, B-5030 Gembloux (Belgium)

    2006-11-15

    One near infrared (NIR) reflectance and five dielectric moisture meters were tested for their capability of measuring moisture content (MC) in solid biofuels. Ninety-eight samples were tested at up to eight moisture levels covering the MC range from fresh fuel to approximately 10% MC (w.b.). The fuel types ranged from typical solid biofuels such as coniferous and deciduous wood chips over short rotation coppice (SRC) to sunflower seed and olive stones. The most promising calibrations were obtained with the NIR reflection method and two dielectric devices where the sample is placed in a container integrated in the device. The calibration equations developed show that there is a profound influence from both laboratory and fuel type. It is suggested that individual calibrations that are based on the specific fuel types used at the individual heating plant could be applied. (author)

  6. Use of thermal neutron reflection method for chemical analysis of bulk samples

    International Nuclear Information System (INIS)

    Papp, A.; Csikai, J.

    2014-01-01

    Microscopic, σ β , and macroscopic, Σ β , reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σ β values are additive even for bulk samples in the z=0.5–8 cm interval and so the σ βmol (z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ∼1000 cm 3 dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously. - Highlights: • Check the proposed analytical expression for the description of the flux. • Determination of the reflection cross-sections averaged over bulk samples. • Data rendered to estimate the excess counts for various materials

  7. Use of thermal neutron reflection method for chemical analysis of bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A., E-mail: papppa@atomki.hu [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Csikai, J. [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Institute of Experimental Physics, University Debrecen (IEP), 4010 Debrecen-10, Pf. 105 (Hungary)

    2014-09-11

    Microscopic, σ{sub β}, and macroscopic, Σ{sub β}, reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σ{sub β} values are additive even for bulk samples in the z=0.5–8 cm interval and so the σ{sub βmol}(z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ∼1000 cm{sup 3} dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously. - Highlights: • Check the proposed analytical expression for the description of the flux. • Determination of the reflection cross-sections averaged over bulk samples. • Data rendered to estimate the excess counts for various materials.

  8. A Level Set Discontinuous Galerkin Method for Free Surface Flows

    DEFF Research Database (Denmark)

    Grooss, Jesper; Hesthaven, Jan

    2006-01-01

    We present a discontinuous Galerkin method on a fully unstructured grid for the modeling of unsteady incompressible fluid flows with free surfaces. The surface is modeled by embedding and represented by a levelset. We discuss the discretization of the flow equations and the level set equation...

  9. Method for Surface Scanning in Medical Imaging and Related Apparatus

    DEFF Research Database (Denmark)

    2015-01-01

    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...

  10. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, California 90095 (United States); Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2015-11-15

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method

  11. Surface segregation of InGaAs films by the evolution of reflection high-energy electron diffraction patterns

    International Nuclear Information System (INIS)

    Zhou Xun; Luo Zi-Jiang; Guo Xiang; Zhang Bi-Chan; Shang Lin-Tao; Zhou Qing; Deng Chao-Yong; Ding Zhao

    2012-01-01

    Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As 4 BEP for InGaAs films. When the As 4 BEP is set to be zero, the RHEED pattern keeps a 4×3/(n × 3) structure with increasing temperature, and surface segregation takes place until 470 °C. The RHEED pattern develops into a metal-rich (4 × 2) structure as temperature increases to 495 °C. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515 °C, the RHEED pattern turns into a GaAs(2 × 4) structure due to In desorption. While the As 4 BEP comes up to a specific value (1.33 × 10 -4 Pa−1.33 × 10 -3 Pa), the surface temperature can delay the segregation and desorption. We find that As 4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption. (condensed matter: structural, mechanical, and thermal properties)

  12. Intercomparison of 30+ years of AVHRR and Landsat-5 TM Surface Reflectance using Multiple Pseudo-Invariant Calibration Sites

    Science.gov (United States)

    Santamaría-Artigas, A. E.; Franch, B.; Vermote, E.; Roger, J. C.; Justice, C. O.

    2017-12-01

    The 30+ years daily surface reflectance long term data record (LTDR) from the Advanced Very High Resolution Radiometer (AVHRR) is a valuable source of information for long-term studies of the Earth surface. This LTDR was generated by combining observations from multiple AVHRR sensors aboard different NOAA satellites starting from the early 1980s, and due to the lack of on-board calibration its quality should be evaluated. Previous studies have used observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) over pseudo-invariant calibration sites (PICS) as a calibrated reference to assess the performance of AVHRR products. However, this limits the evaluation to the period after MODIS launch. In this work, the AVHRR surface reflectance LTDR was evaluated against Landsat-5 Thematic Mapper (TM) data using observations from 4 well known pseudo-invariant calibration sites (i.e. Sonoran, Saharan, Sudan1, and Libya4) over an extended time period (1984-2011). For the intercomparison, AVHRR and TM observations of each site were extracted and averaged over a 20 km x 20 km area and aggregated to monthly mean values. In order to account for the spectral differences between sensors, Hyperion hyperspectral data from the Sonoran and Libya4 sites were convolved with sensor-specific relative spectral responses, and used to compute spectral band adjustment factors (SBAFs). Results of the intercomparison are reported in terms of the root mean square difference (RMSD) and determination coefficient (r2). In general, there is good agreement between the surface reflectance products from both sensors. The overall RMSD and r2 for all the sites and AVHRR/TM combinations were 0.03 and 0.85 for the red band, and 0.04 and 0.81 for the near-infrared band. These results show the strong performance of the AVHRR surface reflectance LTDR through all of the considered period. Thus, remarking its usefulness and value for long term Earth studies. Figure 1 shows the red (filled markers

  13. Performance evaluation of sea surface simulation methods for target detection

    Science.gov (United States)

    Xia, Renjie; Wu, Xin; Yang, Chen; Han, Yiping; Zhang, Jianqi

    2017-11-01

    With the fast development of sea surface target detection by optoelectronic sensors, machine learning has been adopted to improve the detection performance. Many features can be learned from training images by machines automatically. However, field images of sea surface target are not sufficient as training data. 3D scene simulation is a promising method to address this problem. For ocean scene simulation, sea surface height field generation is the key point to achieve high fidelity. In this paper, two spectra-based height field generation methods are evaluated. Comparison between the linear superposition and linear filter method is made quantitatively with a statistical model. 3D ocean scene simulating results show the different features between the methods, which can give reference for synthesizing sea surface target images with different ocean conditions.

  14. Reflection of sound from finite-size plane and curved surfaces

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    2005-01-01

    of a reflector array can improve if the size of the panels is decreased. The same design frequency applies to a single reflector and a reflector array, but with different meaning; in the latter case the design frequency is the upper limit for useful reflections. This design rule was first used...

  15. Critical and Creative Reflective Inquiry: Surfacing Narratives to Enable Learning and Inform Action

    Science.gov (United States)

    Cardiff, Shaun

    2012-01-01

    Narratives are being increasingly used in nursing and action research. In this participatory action research study, nurse leaders of an acute care of the older person unit collectively, critically and creatively reflected on lived experiences in order to explore the concept of person-centred leadership within their own practice. This paper…

  16. Relationship of intertidal surface sediment chlorophyll concentration to hyper-spectral reflectance and chlorophyll fluorescence

    NARCIS (Netherlands)

    Kromkamp, J.C.; Morris, E.P.; Forster, R.M.; Honeywill, C.; Hagerthey, S.; Paterson, D.M.

    2006-01-01

    Estimating biomass of microphytobenthos (MPB) on intertidal mud flats is extremely difficult due to their patchy occurrence, especially at the scale of an entire mud flat. We tested two optical approaches that can be applied in situ: spectral reflectance and chlorophyll fluorescence. These two

  17. Reflectivity and surface roughness of multilayer-coated substrate recovery layers for EUV lithographic optics

    NARCIS (Netherlands)

    Nedelcu, I.; van de Kruijs, R.W.E.; Yakshin, A. E.; von Blanckenhagen, G.; F. Bijkerk,

    2008-01-01

    We investigated the use of separation, or substrate recovery, layers (SRLs), to enable the reuse of optical substrates after the deposition of multilayer reflective coatings, in particular Mo/Si multilayers as used for EUV lithography. An organic material (polyimide), known from other work to reduce

  18. Reflection of P and SV waves at the free surface of a monoclinic ...

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging)1461 1996 Oct 15 13:05:22

    The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry is discussed. The expressions for ... Keywords. Anisotropic medium; elastic waves; monoclinic half-space; reflection coefficients. Proc. Indian Acad. Sci. ...... In contrast, for C < 0, the angle of reflec- tion is less than the angle of ...

  19. Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang'E-3 lunar rover: based on ground validation experiment data

    International Nuclear Information System (INIS)

    Liu Bin; Liu Jian-Zhong; Zhang Guang-Liang; Zou Yong-Liao; Ling Zong-Cheng; Zhang Jiang; He Zhi-Ping; Yang Ben-Yong

    2013-01-01

    The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface. A VIS/NIR imaging spectrometer (VNIS) will be carried on the Chang'E-3 lunar rover to detect the distribution of lunar minerals and resources. VNIS is the first mission in history to perform in-situ spectral measurement on the surface of the Moon, the reflectance data of which are fundamental for interpretation of lunar composition, whose quality would greatly affect the accuracy of lunar element and mineral determination. Until now, in-situ detection by imaging spectrometers was only performed by rovers on Mars. We firstly review reflectance conversion methods for rovers on Mars (Viking landers, Pathfinder and Mars Exploration rovers, etc). Secondly, we discuss whether these conversion methods used on Mars can be applied to lunar in-situ detection. We also applied data from a laboratory bidirectional reflectance distribution function (BRDF) using simulated lunar soil to test the availability of this method. Finally, we modify reflectance conversion methods used on Mars by considering differences between environments on the Moon and Mars and apply the methods to experimental data obtained from the ground validation of VNIS. These results were obtained by comparing reflectance data from the VNIS measured in the laboratory with those from a standard spectrometer obtained at the same time and under the same observing conditions. The shape and amplitude of the spectrum fits well, and the spectral uncertainty parameters for most samples are within 8%, except for the ilmenite sample which has a low albedo. In conclusion, our reflectance conversion method is suitable for lunar in-situ detection.

  20. Multiple and mixed methods in formative evaluation: Is more better? Reflections from a South African study

    Directory of Open Access Journals (Sweden)

    Willem Odendaal

    2016-12-01

    Full Text Available Abstract Background Formative programme evaluations assess intervention implementation processes, and are seen widely as a way of unlocking the ‘black box’ of any programme in order to explore and understand why a programme functions as it does. However, few critical assessments of the methods used in such evaluations are available, and there are especially few that reflect on how well the evaluation achieved its objectives. This paper describes a formative evaluation of a community-based lay health worker programme for TB and HIV/AIDS clients across three low-income communities in South Africa. It assesses each of the methods used in relation to the evaluation objectives, and offers suggestions on ways of optimising the use of multiple, mixed-methods within formative evaluations of complex health system interventions. Methods The evaluation’s qualitative methods comprised interviews, focus groups, observations and diary keeping. Quantitative methods included a time-and-motion study of the lay health workers’ scope of practice and a client survey. The authors conceptualised and conducted the evaluation, and through iterative discussions, assessed the methods used and their results. Results Overall, the evaluation highlighted programme issues and insights beyond the reach of traditional single methods evaluations. The strengths of the multiple, mixed-methods in this evaluation included a detailed description and nuanced understanding of the programme and its implementation, and triangulation of the perspectives and experiences of clients, lay health workers, and programme managers. However, the use of multiple methods needs to be carefully planned and implemented as this approach can overstretch the logistic and analytic resources of an evaluation. Conclusions For complex interventions, formative evaluation designs including multiple qualitative and quantitative methods hold distinct advantages over single method evaluations. However

  1. Nonlinear reflection of a spherically divergent N-wave from a plane surface: Optical interferometry measurements in air

    International Nuclear Information System (INIS)

    Karzova, M.; Yuldashev, P.; Khokhlova, V.; Ollivier, S.; Blanc-Benon, Ph.

    2015-01-01

    Mach stem is a well-known structure typically observed in the process of strong (acoustic Mach numbers greater than 0.4) step-shock waves reflection from a rigid boundary. However, this phenomenon has been much less studied for weak shocks in nonlinear acoustic fields where Mach numbers are in the range from 0.001 to 0.01 and pressure waveforms have more complicated waveforms than step shocks. The goal of this work was to demonstrate experimentally how nonlinear reflection occurs in air for very weak spherically divergent acoustic spark-generated pulses resembling an N-wave. Measurements of reflection patterns were performed using a Mach-Zehnder interferometer. A thin laser beam with sub-millimeter cross-section was used to obtain the time resolution of 0.4 µs, which is 6 times higher than the time resolution of the condenser microphones. Pressure waveforms were reconstructed using the inverse Abel transform applied to the phase of the signal measured by the interferometer. The Mach stem formation was observed experimentally as a result of collision of the incident and reflected shock pulses. It was shown that irregular reflection of the pulse occurred in a dynamic way and the length of the Mach stem increased linearly while the pulse propagated along the surface. Since the front shock of the spark-generated pulse was steeper than the rear shock, irregular type of reflection was observed only for the front shock of the pulse while the rear shock reflection occurred in a regular regime

  2. Nonlinear reflection of a spherically divergent N-wave from a plane surface: Optical interferometry measurements in air

    Energy Technology Data Exchange (ETDEWEB)

    Karzova, M., E-mail: masha@acs366.phys.msu.ru [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Yuldashev, P.; Khokhlova, V. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Ollivier, S.; Blanc-Benon, Ph. [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France)

    2015-10-28

    Mach stem is a well-known structure typically observed in the process of strong (acoustic Mach numbers greater than 0.4) step-shock waves reflection from a rigid boundary. However, this phenomenon has been much less studied for weak shocks in nonlinear acoustic fields where Mach numbers are in the range from 0.001 to 0.01 and pressure waveforms have more complicated waveforms than step shocks. The goal of this work was to demonstrate experimentally how nonlinear reflection occurs in air for very weak spherically divergent acoustic spark-generated pulses resembling an N-wave. Measurements of reflection patterns were performed using a Mach-Zehnder interferometer. A thin laser beam with sub-millimeter cross-section was used to obtain the time resolution of 0.4 µs, which is 6 times higher than the time resolution of the condenser microphones. Pressure waveforms were reconstructed using the inverse Abel transform applied to the phase of the signal measured by the interferometer. The Mach stem formation was observed experimentally as a result of collision of the incident and reflected shock pulses. It was shown that irregular reflection of the pulse occurred in a dynamic way and the length of the Mach stem increased linearly while the pulse propagated along the surface. Since the front shock of the spark-generated pulse was steeper than the rear shock, irregular type of reflection was observed only for the front shock of the pulse while the rear shock reflection occurred in a regular regime.

  3. Standard test method for measurement of light reflectance value and small color differences between pieces of ceramic tile

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers the measurement of Light Reflectance Value (LRV) and visually small color difference between pieces of glazed or unglazed ceramic tile, using any spectrophotometer that meets the requirements specified in the test method. LRV and the magnitude and direction of the color difference are expressed numerically, with sufficient accuracy for use in product specification. 1.2 LRV may be measured for either solid-colored tile or tile having a multicolored, speckled, or textured surface. For tile that are not solid-colored, an average reading should be obtained from multiple measurements taken in a pattern representative of the overall sample as described in 9.2 of this test method. Small color difference between tiles should only be measured for solid-color tiles. Small color difference between tile that have a multicolored, speckled, or textured surface, are not valid. 1.3 For solid colored tile, a comparison of the test specimen and reference specimen should be made under incandescent, f...

  4. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J; Sawant, Amit; Ruan, Dan

    2015-11-01

    To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. On phantom point clouds, their method achieved submillimeter

  5. A poster presentation as an evaluation method to facilitate reflective thinking skills in nursing education.

    Science.gov (United States)

    Chabeli, M M

    2002-08-01

    This article seeks to establish whether the poster presentation of a specific theme can facilitate the student's thinking skills in nursing education. A qualitative, exploratory, descriptive and contextual research design where twenty students volunteered to take part in the study by signing an informed consent was followed. Descriptive naïve sketches were used for data collection followed by individual interviews to validate the findings. Data was analysed by means of the descriptive method of open coding of Tesch (in Creswell, 1994:155). DENOSA's ethical standards for research (1998:7) were considered. The findings indicated both positive and negative perceptions. The positive perceptions were: a poster presentation as an evaluation method facilitates creative, critical and reflective thinking skills; group work facilitates student participation; it facilitates problem solving skills; it increases the student's independence and a sense of ownership; and the evaluation is fair. The negative perceptions were that there was a lack of clarity on the student's expectations and that group activity is difficult. Trustworthiness was maintained in accordance with Lincoln and Guba's principles (1985:290-327). It is concluded that a poster presentation, used effectively as an evaluation method, can facilitate the learner's critical and reflective thinking skills. It is recommended that other learner-centred methods of assessment and evaluation be researched for their effective use in facilitating the higher order thinking skills of learners.

  6. Are students' impressions of improved learning through active learning methods reflected by improved test scores?

    Science.gov (United States)

    Everly, Marcee C

    2013-02-01

    To report the transformation from lecture to more active learning methods in a maternity nursing course and to evaluate whether student perception of improved learning through active-learning methods is supported by improved test scores. The process of transforming a course into an active-learning model of teaching is described. A voluntary mid-semester survey for student acceptance of the new teaching method was conducted. Course examination results, from both a standardized exam and a cumulative final exam, among students who received lecture in the classroom and students who had active learning activities in the classroom were compared. Active learning activities were very acceptable to students. The majority of students reported learning more from having active-learning activities in the classroom rather than lecture-only and this belief was supported by improved test scores. Students who had active learning activities in the classroom scored significantly higher on a standardized assessment test than students who received lecture only. The findings support the use of student reflection to evaluate the effectiveness of active-learning methods and help validate the use of student reflection of improved learning in other research projects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals

    Science.gov (United States)

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2006-02-21

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.

  8. An assessment of thin cloud detection by applying bidirectional reflectance distribution function model-based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea

    Science.gov (United States)

    Kim, Hye-Won; Yeom, Jong-Min; Shin, Daegeun; Choi, Sungwon; Han, Kyung-Soo; Roujean, Jean-Louis

    2017-08-01

    In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model-based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting solar angle-dependent geostationary sensor geometry. For quantitative validation, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) (POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud mask product (MYD35).

  9. Establishment of the method of surface shaded display for brain PET imaging

    International Nuclear Information System (INIS)

    Zhang Xiangsong; Tang Anwu; He Zuoxiang

    2003-01-01

    Objective: To establish the method of surface shaded display (SSD) for brain PET imaging. Methods: The original brain PET images volume data were transferred to the personal computer by the local area network, and scaled into 256 grayscale values between 0 and 255. An appropriate threshold could be selected with three differential methods: depended on the histogram or maximum percentage of the volume data and the opposite value percentage of the lesion. The list of vertices and triangles describing the contour surface was produced with a high resolution three dimensional (3D) surface construction algorithm. Results: The final software of SSD for brain PET imaging with interactive user interface can produce 3D brain PET images which can be rotated, scaled, and saved or outputted with several image formats. Conclusion: The method of SSD for brain PET imaging can directly and integrally reflect the surface of brain cortex, and be helpful to locate lesions and display the range of lesions, but can not reflect the severity of lesions, nor can display the structure under brain cortex

  10. Laser method of acoustical emission control from vibrating surfaces

    Science.gov (United States)

    Motyka, Zbigniew

    2013-01-01

    For limitation of the noise in environment, the necessity occurs of determining and location of sources of sounds emitted from surfaces of many machines and devices, assuring in effect the possibility of suitable constructional changes implementation, targeted at decreasing of their nuisance. In the paper, the results of tests and calculations are presented for plane surface sources emitting acoustic waves. The tests were realized with the use of scanning laser vibrometer which enabled remote registration and the spectral analysis of the surfaces vibrations. The known hybrid digital method developed for determination of sound wave emission from such surfaces divided into small finite elements was slightly modified by distinguishing the phase correlations between such vibrating elements. The final method being developed may find use in wide range of applications for different forms of vibrations of plane surfaces.

  11. A GPU-based mipmapping method for water surface visualization

    Science.gov (United States)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  12. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    Science.gov (United States)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  13. In situ surface roughness measurement using a laser scattering method

    Science.gov (United States)

    Tay, C. J.; Wang, S. H.; Quan, C.; Shang, H. M.

    2003-03-01

    In this paper, the design and development of an optical probe for in situ measurement of surface roughness are discussed. Based on this light scattering principle, the probe which consists of a laser diode, measuring lens and a linear photodiode array, is designed to capture the scattered light from a test surface with a relatively large scattering angle ϕ (=28°). This capability increases the measuring range and enhances repeatability of the results. The coaxial arrangement that incorporates a dual-laser beam and a constant compressed air stream renders the proposed system insensitive to movement or vibration of the test surface as well as surface conditions. Tests were conducted on workpieces which were mounted on a turning machine that operates with different cutting speeds. Test specimens which underwent different machining processes and of different surface finish were also studied. The results obtained demonstrate the feasibility of surface roughness measurement using the proposed method.

  14. Study of Surface Wettability Change of Unconsolidated Sand Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Thermogravimetric Analysis.

    Science.gov (United States)

    Gómora-Herrera, Diana; Navarrete Bolaños, Juan; Lijanova, Irina V; Olivares-Xometl, Octavio; Likhanova, Natalya V

    2018-04-01

    The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.

  15. A reflective lens: applying critical systems thinking and visual methods to ecohealth research.

    Science.gov (United States)

    Cleland, Deborah; Wyborn, Carina

    2010-12-01

    Critical systems methodology has been advocated as an effective and ethical way to engage with the uncertainty and conflicting values common to ecohealth problems. We use two contrasting case studies, coral reef management in the Philippines and national park management in Australia, to illustrate the value of critical systems approaches in exploring how people respond to environmental threats to their physical and spiritual well-being. In both cases, we used visual methods--participatory modeling and rich picturing, respectively. The critical systems methodology, with its emphasis on reflection, guided an appraisal of the research process. A discussion of these two case studies suggests that visual methods can be usefully applied within a critical systems framework to offer new insights into ecohealth issues across a diverse range of socio-political contexts. With this article, we hope to open up a conversation with other practitioners to expand the use of visual methods in integrated research.

  16. Porous Nanomaterials for Ultrabroadband Omnidirectional Anti-Reflection Surfaces with Applications in High Concentration Photovoltaics

    KAUST Repository

    Yao, Yuan

    2016-12-06

    Materials for nanoporous coatings that exploit optimized chemistries and self-assembly processes offer capabilities to reach ≈98% transmission efficiency and negligible scattering losses over the broad wavelength range of the solar spectrum from 350 nm to 1.5 μm, on both flat and curved glass substrates. These nanomaterial anti-reflection coatings also offer wide acceptance angles, up to ±40°, for both s- and p-polarization states of incident light. Carefully controlled bilayer films have allowed for the fabrication of dual-sided, gradient index profiles on plano-convex lens elements. In concentration photovoltaics platforms, the resultant enhancements in the photovoltaics efficiencies are ≈8%, as defined by experimental measurements on systems that use microscale triple-junction solar cells. These materials and their applications in technologies that require control over interface reflections have the potential for broad utility in imaging systems, photolithography, light-emitting diodes, and display technologies.

  17. Secondary electron/reflected particle coincidence studies during slow highly charged ion-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, C.T.; Szilagyi, Z.; Shah, M.B.; McCullough, R.W. [Queen' s Univ., Belfast, Northern Ireland (United Kingdom); Woolsey, J.M. [Stirling Univ. (United Kingdom). DBMS; Trassl, R.; Salzborn, E. [Giessen Univ. (Germany). Inst. fuer Kernphysik

    2001-07-01

    We have measured the secondary electron emission statistics (ES) for 5 keV N{sup q+} (q = 1-4) ions incident at 10 on polycrystalline aluminium, in coincidence with specularly reflected N{sup 0}. In this arrangement the kinetic contribution to secondary electron emission is minimised. The experimental data shows that the coincident electron yield, {gamma}, increases linearly with incident ion charge state. The kinetic emission contribution has also been determined from this data. The ES due to 2 and 4 keV He{sup 2+} impact on polycrystalline aluminium in coincidence with specularly reflected He{sup +} and He{sup 0} have also been determined. The process He{sup 2+} {yields} He{sup 0} yields a larger {gamma} value than the process He{sup 2+} {yields} He{sup +}. (orig.)

  18. Neutron reflection effect on total absorption detector method used in SWINPC neutron multiplication experiment for beryllium

    International Nuclear Information System (INIS)

    Tian Dongfeng; Ho Yukun; Yang Fujia

    2001-01-01

    The SWINPC integral experiment on neutron multiplication in bulk beryllium showed that there were marked discrepancies between experimental data and calculated values with the ENDF/B-VI data. The calculated values become higher than experimental ones as the sample thickness increases. Several works had been devoted to find problems existing in the experiment. This paper discusses the neutron reflection effect on the total absorption detector method which was used in the experiment to measure the neutron leakage from samples. One systematic correction is suggested to make the experimental values agree with the calculated ones with the ENDF/B-VI data within experimental errors. (author)

  19. Characterizing the surface heterogeneity of fire effects using multi-temporal reflective wavelength data

    CSIR Research Space (South Africa)

    Roy, DP

    2005-10-10

    Full Text Available fires lit in South Africa to substantiate and illustrate the model findings. We discuss the implications of our findings for algorithms that examine change in reflectance to map fire-affected areas and discuss the possibility of deriving cc and f from... measurements were taken in the laboratory to reduce field measurement errors and because we were concerned only with obtaining representative spectra for illustrative modelling. SAFARI 2000 4203 The measurements were made under diffuse illumination conditions...

  20. Role of the substrate reflectance and surface-bulk treatments in CsI quantum efficiency

    CERN Document Server

    Singh, B K; Nitti, M A; Valentini, A

    2003-01-01

    We have experimentally investigated the following aspects related to the quantum efficiency of CsI photocathodes: the type of substrate, the film thickness and the effect of a 'bulk treatment' during the film growth. We discovered that, using a high reflectivity aluminium substrate, the photoemission of very thin CsI film is enhanced. Our study also revealed that photocathodes become less sensitive to moisture when a negative bias voltage is applied to the substrate during the film deposition process.

  1. Facile Method for Fabricating Superhydrophobic Surface on Magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mun Hee; Park, Yeon Hwa; Hyun, June Won; Ahn, Yong Hyun [Dankook Univ., Yongin (Korea, Republic of)

    2010-04-15

    In conclusion, we have developed a simple and inexpensive method for fabricating a superhydrophobic surface of magnesium by metal deposition and stearic acid coating. We fabricated a superhydrophobic surface on magnesium by nickel deposition and surface coating of stearic acid. The fabricated surfaces were stable against acidic and basic solutions. In recent times, technologies based on the imitation of nature have attracted considerable attention. Lotus leaves are known for their self-cleaning effect. The micrometer-scale papillae structure and the epicuticular wax on the lotus leaf contribute to this effect. In a manner similar to the self-cleaning property of lotus leaves, the wettability of solid surfaces is of great interest in daily life and industry.1-4 Wettability is controlled by both the geometrical structure of a surface and a low surface energy material coating. A superhydrophobic surface is satisfied with a water contact angle of more than 150 .deg. and a sliding angle of less than 10 .deg. On such a surface, a water drop has a perfectly spherical shape and it easily rolls off and removes deposited contaminants. A superhydrophobic surface thus protects a material from contamination, fogging, and snow deposition.

  2. Comparative Study of Two Daylighting Analysis Methods with Regard to Window Orientation and Interior Wall Reflectance

    Directory of Open Access Journals (Sweden)

    Yeo Beom Yoon

    2014-09-01

    Full Text Available The accuracy and speed of the daylighting analysis developed for use in EnergyPlus is better than its predecessors. In EnergyPlus, the detailed method uses the Split-flux algorithm whereas the DElight method uses the Radiosity algorithm. Many existing studies have addressed the two methods, either individually or compared with other daylight analysis methods like Ray tracing but still there is lack of detailed comparative study of these two methods. Our previous studies show that the Split-flux method overestimates the illuminance, especially for the areas away from the window. The Radiosity method has the advantage of accurately predicting this illuminance because of how it deals with the diffuse light. For this study, the EnergyPlus model, which has been calibrated using data measured in a real building in previous studies, has also been used. The calibrated model has a south oriented window only. This model is then used to analyze the interior illuminance inside the room for north, west and east orientation of the window by rotating the model and by changing the wall reflectance of the model with south oriented window. Direct and diffuse component of the illuminance as well as the algorithms have been compared for a detailed analysis.

  3. Free-surface viscous flow solution methods for ship hydrodynamics

    NARCIS (Netherlands)

    Wackers, J.; Koren, B.; Raven, H.C.; Ploeg, van der A.; Starke, A.R.; Deng, G.; Queutey, P.; Visonneau, M.; Hino, T.; Ohashi, K.

    2011-01-01

    The simulation of viscous free-surface water flow is a subject that has reached a certain maturity and is nowadays used in industrial applications, like the simulation of the flow around ships. While almost all methods used are based on the Navier-Stokes equations, the discretisation methods for the

  4. Methods of Reflection about Service Learning: Guided vs. Free, Dialogic vs. Expressive, and Public vs. Private

    Science.gov (United States)

    Sturgill, Amanda; Motley, Phillip

    2014-01-01

    Reflection is a key component of service learning, but research shows that in order to maximize learning, the reflection must be of high quality. This paper compares the affordances of three different models of written reflection in engendering students' higher-order thought processes. Student reflections were compared across axes of guided versus…

  5. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method

    Science.gov (United States)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-01

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  6. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method.

    Science.gov (United States)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-17

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat 'brighter' than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  7. Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method

    Energy Technology Data Exchange (ETDEWEB)

    Le Hardy, D. [Université de Nantes, LTN UMR CNRS 6607 (France); Favennec, Y., E-mail: yann.favennec@univ-nantes.fr [Université de Nantes, LTN UMR CNRS 6607 (France); Rousseau, B. [Université de Nantes, LTN UMR CNRS 6607 (France); Hecht, F. [Sorbonne Universités, UPMC Université Paris 06, UMR 7598, inria de Paris, Laboratoire Jacques-Louis Lions, F-75005, Paris (France)

    2017-04-01

    The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken into account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.

  8. Quantifying Uncertainty in Near Surface Electromagnetic Imaging Using Bayesian Methods

    Science.gov (United States)

    Blatter, D. B.; Ray, A.; Key, K.

    2017-12-01

    Geoscientists commonly use electromagnetic methods to image the Earth's near surface. Field measurements of EM fields are made (often with the aid an artificial EM source) and then used to infer near surface electrical conductivity via a process known as inversion. In geophysics, the standard inversion tool kit is robust and can provide an estimate of the Earth's near surface conductivity that is both geologically reasonable and compatible with the measured field data. However, standard inverse methods struggle to provide a sense of the uncertainty in the estimate they provide. This is because the task of finding an Earth model that explains the data to within measurement error is non-unique - that is, there are many, many such models; but the standard methods provide only one "answer." An alternative method, known as Bayesian inversion, seeks to explore the full range of Earth model parameters that can adequately explain the measured data, rather than attempting to find a single, "ideal" model. Bayesian inverse methods can therefore provide a quantitative assessment of the uncertainty inherent in trying to infer near surface conductivity from noisy, measured field data. This study applies a Bayesian inverse method (called trans-dimensional Markov chain Monte Carlo) to transient airborne EM data previously collected over Taylor Valley - one of the McMurdo Dry Valleys in Antarctica. Our results confirm the reasonableness of previous estimates (made using standard methods) of near surface conductivity beneath Taylor Valley. In addition, we demonstrate quantitatively the uncertainty associated with those estimates. We demonstrate that Bayesian inverse methods can provide quantitative uncertainty to estimates of near surface conductivity.

  9. Detection of the specific binding on protein microarrays by oblique-incidence reflectivity difference method

    International Nuclear Information System (INIS)

    Lu, Heng; Wen, Juan; Wang, Xu; Yuan, Kun; Lu, Huibin; Zhou, Yueliang; Jin, Kuijuan; Yang, Guozhen; Li, Wei; Ruan, Kangcheng

    2010-01-01

    The specific binding between Cy5-labeled goat anti-mouse Immunoglobulin G (IgG) and mouse IgG with a concentration range from 625 to 10 4 µg ml −1 has been detected successfully by the oblique-incidence reflectivity difference (OI-RD) method in each procedure of microarray fabrication. The experimental data prove that the OI-RD method can be employed not only to distinguish the different concentrations in label-free fashion but also to detect the antibody–antigen capture. In addition, the differential treatment of the OI-RD signals can decrease the negative influences of glass slide as the microarray upholder. Therefore the OI-RD technique has promising applications for the label-free and high-throughput detection of protein microarrays

  10. Optical description and design method with annularly stitched aspheric surface.

    Science.gov (United States)

    Cheng, De-Wen; Chen, Xue-Jiao; Xu, Chen; Hu, Yuan; Wang, Yong-Tian

    2015-12-01

    The relentless pressure for designs with new optical functions, small volume, and light weight has greatly increased the importance of aspheric surfaces. In this paper, we propose an annularly stitched aspheric surface (ASAS) description method to increase the freedom and flexibility of imaging system design. The rotationally symmetric ASAS consists of a circular central zone and one or more annular zones. Two neighboring zones are constrained to have the same derivatives on their joint curve, and this means the ASAS is C1 continuous. This finding is proved and verified by the mathematical deduction of the surface formulas. Two optimization strategies and two design methods with the C1 continuous constraints are also discussed. This surface can greatly facilitate the design and even achieve some previously impossible designs without increasing the fabrication difficulty. Two different systems with the proposed ASAS are optimized and the results are presented. The design results verified the practicability of the ASAS.

  11. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms, there is a n......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions....

  12. Multiscale Finite Element Methods for Flows on Rough Surfaces

    KAUST Repository

    Efendiev, Yalchin

    2013-01-01

    In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.

  13. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cudzinovic, M.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  14. Modeling the Anisotropic Reflectance of a Surface with Microstructure Engineered to Obtain Visible Contrast after Rotation

    DEFF Research Database (Denmark)

    Luongo, Andrea; Falster, Viggo; Doest, Mads Emil Brix

    2017-01-01

    in previous work. The benefit of an analytical model like the one we provide is its potential to be used in computer vision for estimating the quality of a surface sample. The quality of a sample is indicated by the resemblance of camera-based contrast measurements with contrasts predicted for an idealized...

  15. Reflection-based fibre-optic refractive index sensor using surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Hlubina, P.; Kadulová, M.; Ciprian, D.; Sobota, Jaroslav

    2014-01-01

    Roč. 9, August 19 (2014), 14033:1-5 ISSN 1990-2573 R&D Projects: GA MŠk(CZ) LO1212 Keywords : surface plasmon resonance * fibre-optic sensor * spectral interrogation technique * aqueous solutions of ethanol * refractive index Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.231, year: 2014

  16. Processing OMEGA/Mars Express hyperspectral imagery from radiance-at-sensor to surface reflectance

    NARCIS (Netherlands)

    Bakker, W.H.; Ruitenbeek, F.J.A. van; Werff, H.M.A. van der; Zegers, T.E.; Oosthoek, J.H.P.; Marsh, S.H.; Meer, F.D. van der

    2014-01-01

    OMEGA/Mars Express hyperspectral imagery is an excellent source of data for exploring the surface composition of the planet Mars. Compared to terrestrial hyperspectral imagery, the data are challenging to work with; scene-specific transmission models are lacking, spectral features are shallow making

  17. Mapping lithosphere thickness beneath the Southern Caribbean and Venezuela using body wave reflectivity and surface wave tomography

    Science.gov (United States)

    Masy, J.; Niu, F.; Levander, A.; Schmitz, M.

    2012-12-01

    The Caribbean (CAR) and South American (SA) plate boundary in Venezuela is a broad zone of diffuse deformation and faulting. GPS measurements indicate that the CAR is moving approximately 2 cm/yr respect to SA, parallel to the strike slip fault system in the east, but with an oblique convergence component in the west (Weber et al., 2001). Along the central and eastern Venezuela coast, most of the motion is accommodated by both transpression and transtension along the right lateral strike-slip San Sebastian- El Pilar fault system. The main tectonic features of the area include accretionary wedges and coastal thrust belts with their associated foreland basins (e.g. Sierra del Interior and Espino Graben). Southern of the plate boundary is located the Guayana Shield, which is part of the Amazonian Craton, and is an elevated plain consisting of Precambrian rocks. BOLIVAR (Broadband Onshore-Offshore Lithospheric Investigation of Venezuela and the Antilles Arc Region) was a multidisciplinary, international investigation to determine the evolution of the CAR-SA plate boundary (Levander et al., 2006) that included a 47 station broadband seismic array to complement the 40 station Venezuelan national array operated by FUNVISIS. The goal of this study is to map out lithosphere thickness across the region in order to understand its role for the various types of deformations observed at surface. We combined surface wave tomography and body wave reflectivity to locate the depth of the lithosphere-asthenosphere boundary (LAB). To generate a coherent 3D reflectivity volume of the study area, we used both P- and S-wave receiver-function data, as well as the ScS reverberation records of two deep earthquakes occurring in South America. We also measured Rayleigh phase velocities in the frequency range of 20-100 s using the two plane-wave method to remove multi-pathing effects (Forsyth and Li, 2005). Finite-frequency kernels were computed for a total of 63 teleseismic events to improve

  18. Reflections on the added value of using mixed methods in the SCAPE study.

    Science.gov (United States)

    Murphy, Kathy; Casey, Dympna; Devane, Declan; Meskell, Pauline; Higgins, Agnes; Elliot, Naomi; Lalor, Joan; Begley, Cecily

    2014-03-01

    To reflect on the added value that a mixed method design gave in a large national evaluation study of specialist and advanced practice (SCAPE), and to propose a reporting guide that could help make explicit the added value of mixed methods in other studies. Recently, researchers have focused on how to carry out mixed methods research (MMR) rigorously. The value-added claims for MMR include the capacity to exploit the strengths and compensate for weakness inherent in single designs, generate comprehensive description of phenomena, produce more convincing results for funders or policy-makers and build methodological expertise. Data illustrating value added claims were drawn from the SCAPE study. Studies about the purpose of mixed methods were identified from a search of literature. The authors explain why and how they undertook components of the study, and propose a guideline to facilitate such studies. If MMR is to become the third methodological paradigm, then articulation of what extra benefit MMR adds to a study is essential. The authors conclude that MMR has added value and found the guideline useful as a way of making value claims explicit. The clear articulation of the procedural aspects of mixed-methods research, and identification of a guideline to facilitate such research, will enable researchers to learn more effectively from each other.

  19. [Experimental Methods and Result Analysis of a Variety of Spectral Reflectance Properties of the Thin Oil Film].

    Science.gov (United States)

    Ye, Zhou; Liu, Li; Wei, Chuan-xin; Gu, Qun; An, Ping-ao; Zhao, Yue-jiao; Yin, Da-yi

    2015-06-01

    In order to analysis the oil spill situation based on the obtained data in airborne aerial work, it's needed to get the spectral reflectance characteristics of the oil film of different oils and thickness as support and to select the appropriate operating band. An experiment is set up to measure the reflectance spectroscopy from ultraviolet to near-infrared for the film of five target samples, which means petrol, diesel, lubricating oil, kerosene and fossil, using spectral measurement device. The result is compared with the reflectance spectra of water in the same experimental environment, which shows that the spectral reflection characteristics of the oil film are related to the thickness and the type of the oil film. In case of the same thickness, the spectral reflectance curve of different types of film is far different, and for the same type of film, the spectral reflectance curve changes accordingly with the change of film thickness, therefore in terms of the single film, different film thickness can be distinguished by reflectance curves. It also shows that in terms of the same film thickness, the reflectance of diesel, kerosene, lubricants reaches peak around 380 nm wavelength, obviously different from the reflectance of water, and that the reflectance of crude oil is far less than that of water in more than 340 nm wavelength, and the obtained reflection spectrum can be used to distinguish between different types of oil film to some extent. The experiment covers main types of spilled oil, with data comprehensively covering commonly used detect spectral bands, and quantitative description of the spectral reflectance properties of film. It provides comprehensive theoretical and data support for the selection of airborne oil spill detection working band and the detection and analysis of water-surface oil spill.

  20. SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma

    International Nuclear Information System (INIS)

    Yang Hongwei; Nanjing Agricultural Univ., Nanjing; Chen Rushan; Zhang Yun

    2006-01-01

    The dielectric property of dispersive media is written as rational polynomial function, the relation between D and E is derived in time domain. It is named shift operator FDTD (SO-FDTD) method. The high accuracy and efficiency of this method is confirmed by computing the reflection coefficients of electromagnetic waves by a collisional plasma slab. The reflection coefficients between plasma and the atmosphere or vacuum can be calculated by using the SO-FDTD method. The result is that the reflection coefficients are affected by plasma thickness, electron numerical density, the distributing orderliness of electron density, and incidence wave frequency. (authors)

  1. Red-Edge Spectral Reflectance as an Indicator of Surface Moisture Content in an Alaskan Peatland Ecosystem

    Science.gov (United States)

    McPartland, M.; Kane, E. S.; Turetsky, M. R.; Douglass, T.; Falkowski, M. J.; Montgomery, R.; Edwards, J.

    2015-12-01

    Arctic and boreal peatlands serve as major reservoirs of terrestrial organic carbon (C) because Net Primary Productivity (NPP) outstrips C loss from decomposition over long periods of time. Peatland productivity varies as a function of water table position and surface moisture content, making C storage in these systems particularly vulnerable to the climate warming and drying predicted for high latitudes. Detailed spatial knowledge of how aboveground vegetation communities respond to changes in hydrology would allow for ecosystem response to environmental change to be measured at the landscape scale. This study leverages remotely sensed data along with field measurements taken at the Alaska Peatland Experiment (APEX) at the Bonanza Creek Long Term Ecological Research site to examine relationships between plant solar reflectance and surface moisture. APEX is a decade-long experiment investigating the effects of hydrologic change on peatland ecosystems using water table manipulation treatments (raised, lowered, and control). Water table levels were manipulated throughout the 2015 growing season, resulting in a maximum separation of 35 cm between raised and lowered treatment plots. Water table position, soil moisture content, depth to seasonal ice, soil temperature, photosynthetically active radiation (PAR), CO2 and CH4 fluxes were measured as predictors of C loss through decomposition and NPP. Vegetation was surveyed for percent cover of plant functional types. Remote sensing data was collected during peak growing season, when the separation between treatment plots was at maximum difference. Imagery was acquired via a SenseFly eBee airborne platform equipped with a Canon S110 red-edge camera capable of detecting spectral reflectance from plant tissue at 715 nm band center to within centimeters of spatial resolution. Here, we investigate empirical relationships between spectral reflectance, water table position, and surface moisture in relation to peat carbon balance.

  2. Development of autoradiographic method for measuring sorption of radionuclides on natural fracture surfaces

    International Nuclear Information System (INIS)

    Muuronen, S.

    1983-11-01

    On the basis of positive results about sorption of radionuclides in rock thin sections an autoradiographic method applicable for measurement sorption of radionuclides on rough rock surfaces was developed. There is no method available because 1) a plane film cannot be used because due to the roughness of rock surfaces 2) rock samples used in this investigation cannot be studied with microscopes and 3) autoradiogram cannot be studied fixed on the surface of a rock sample because the colours of the minerals in the sample will interfere with the interpretation. This report discusses experimental work done to find an useful proedure. In the development of the method main emphasis was put on investigation of the following steps: 1) preparation of the sample for equilibration and spiking; 2) properties of the covering paint for the rock surface and 3) testing of autoradiographic methods using different nuclear emulsions. As the result of these experiments promising autoradiograms with gel emulsion for sawed rock surfaces and with stripping film for rough rock surfaces were obtained. The mineralogic disribution of sorbed activity is easily seen in autoradiograms. Much work must still be done to get reliable quantitative information from autoradiograms. For developing of the autoradiographic method sawed plane rock samples of quartz feldspar intergrowth, pegmatite and limestone were used. In addition core samples of tonalite and mica gneiss from Olkiluoto were utilized. The distribution coefficients (Ksub(a)) obtained for cesium were 560 x 10 -4 and 620 x 10 -4 m 3 /m 2 for tonalite and mica gneiss, respectively. The results are little higher but of the same order of magnitude as obtained by the autoradiographic method using rock thin sections and by the batch method using crused samples. The natural fracture surface sorption study is a logical step in determining the scaling factor from laboratory to field studies. Field data will be needed to determine whether laboratory

  3. Quantitative surface topography determination by Nomarski reflection microscopy. 2: Microscope modification, calibration, and planar sample experiments

    International Nuclear Information System (INIS)

    Hartman, J.S.; Gordon, R.L.; Lessor, D.L.

    1980-01-01

    The application of reflective Nomarski differential interference contrast microscopy for the determination of quantitative sample topography data is presented. The discussion includes a review of key theoretical results presented previously plus the experimental implementation of the concepts using a commercial Momarski microscope. The experimental work included the modification and characterization of a commercial microscope to allow its use for obtaining quantitative sample topography data. System usage for the measurement of slopes on flat planar samples is also discussed. The discussion has been designed to provide the theoretical basis, a physical insight, and a cookbook procedure for implementation to allow these results to be of value to both those interested in the microscope theory and its practical usage in the metallography laboratory

  4. In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy.

    Science.gov (United States)

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki; Enami, Shinichi; Shimoaka, Takafumi; Hasegawa, Takeshi

    2017-12-14

    The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH 2 -related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.

  5. Identification of hydrogen and deuterium at the surface of water ice by reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Yubero, F.; Toekesi, K.

    2009-01-01

    Complete text of publication follows. The study of elastically backscattered electrons from surfaces by reflection electron energy loss spectroscopy (REELS) has been recently recommended as an alternative technique to quantify the H content at the surface of a-C:H and polymer samples. This analysis is based on the fact that the energy loss of the incident electrons due to the recoil effect depends on the atomic mass of the particular atom present at the surface. The observed difference in recoil energies between H and O atoms (about 2 eV for 1.5 keV primary electrons) can be easily measured with standard electron spectrometers used in surface analysis. In this paper we go one step forward to explore if, with the same experimental approach, it is possible to differentiate between hydrogen and deuterium (D) in the surface region of a sample. This capability could be important for technological fields such as surface functionalization, where it is desired to distinguish between H and D at surfaces after interaction with labeled compounds. We have chosen normal and deuterated water as test labeled compounds because this polar molecule is of key importance in numerous surface reactions. It has been shown that H and D can be easily distinguished at the surface of water ice [4] using standard REELS measurements with 1000 - 1650 eV primary-electron energies, i.e., a surface analytical technique. Differences in recoil energies of the O - H and O - D atom pairs present in H 2 O and D 2 O have been found to agree with MC simulations (see Fig.1). There are many possible applications of H and D detection by REELS. Among many others, this study opens the possibility of nondestructive studies of deuterium-labeled atoms present or adsorbed on surfaces. For example, studies of H incorporation into a polymer or carbonbased surface after plasma activation with gas mixtures with several labeled molecules containing H atoms. Acknowledgements F.Y. thanks the Spanish Ministry of Science

  6. A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry.

    Science.gov (United States)

    Wang, Shinn-Fwu

    2009-01-01

    A small-displacement sensor based on total-internal reflection theory and surface plasmon resonance technology is proposed for use in heterodyne interferometry. A small displacement can be obtained simply by measuring the variation in phase difference between s- and p-polarization states with the small-displacement sensor. The theoretical displacement resolution of the small-displacement sensor can reach 0.45 nm. The sensor has some additional advantages, e.g., a simple optical setup, high resolution, high sensitivity and rapid measurement. Its feasibility is also demonstrated.

  7. A Generic Approach for Inversion of Surface Reflectance over Land: Overview, Application and Validation Using MODIS and LANDSAT8 Data

    Science.gov (United States)

    Vermote, E.; Roger, J. C.; Justice, C. O.; Franch, B.; Claverie, M.

    2016-01-01

    This paper presents a generic approach developed to derive surface reflectance over land from a variety of sensors. This technique builds on the extensive dataset acquired by the Terra platform by combining MODIS and MISR to derive an explicit and dynamic map of band ratio's between blue and red channels and is a refinement of the operational approach used for MODIS and LANDSAT over the past 15 years. We will present the generic approach and the application to MODIS and LANDSAT data and its validation using the AERONET data.

  8. Crystals with an Open Wave-Vector Surface: Peculiarities of Reflection and Possibilities of Designing Flat Lenses

    International Nuclear Information System (INIS)

    Eritsyan, O. S.; Lalayan, A. A.; Arakelyan, O. M.; Papoyan, A. A.; Kostanyan, R. B.

    2010-01-01

    The frequency dependence of the reflection coefficient of MgF 2 crystal in the frequency range of 200-800 cm -1 at different orientations of the optical axis has been investigated. The experimental data are compared with the calculation results. This comparison confirms that the wave vectors for the extraordinary wave have an open surface. This makes it possible to focus a divergent beam refracted at a flat boundary ori- ented perpendicularly to the optical crystal axis. The focusing effect of a plane-parallel MgF 2 crystal plate is calculated.

  9. 3D electric field calculation with surface charge method

    International Nuclear Information System (INIS)

    Yamada, S.

    1992-01-01

    This paper describes an outline and some examples of three dimensional electric field calculations with a computer code developed at NIRS. In the code, a surface charge method is adopted because of it's simplicity in the mesh establishing procedure. The charge density in a triangular mesh is assumed to distribute with a linear function of the position. The electric field distribution is calculated for a pair of drift tubes with the focusing fingers on the opposing surfaces. The field distribution in an acceleration gap is analyzed with a Fourier-Bessel series expansion method. The calculated results excellently reproduces the measured data with a magnetic model. (author)

  10. Spatial and energy distributions of satellite-speed helium atoms reflected from satellite-type surfaces

    International Nuclear Information System (INIS)

    Liu, S.M.; Rodgers, W.E.; Knuth, E.L.

    1977-01-01

    Interactions of satellite-speed helium atoms (accelerated in an expansion from an arc-heated supersonic-molecular-beam source) with practical satellite surfaces have been investigated experimentally. The density and energy distributions of the scattered atoms were measured using a detection system developed for this study. This detection system includes (a) a target positioning mechanism, (b) a detector rotating mechanism, and (c) a mass spectrometer and/or a retarding-field energy analyzer. (Auth.)

  11. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Science.gov (United States)

    Zhang, Sibo; Calvet, Jean-Christophe; Darrozes, José; Roussel, Nicolas; Frappart, Frédéric; Bouhours, Gilles

    2018-03-01

    This work assesses the estimation of surface volumetric soil moisture (VSM) using the global navigation satellite system interferometric reflectometry (GNSS-IR) technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m). The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere) land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 = 0.86 and RMSE = 0.04 m3 m-3). It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  12. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2018-03-01

    Full Text Available This work assesses the estimation of surface volumetric soil moisture (VSM using the global navigation satellite system interferometric reflectometry (GNSS-IR technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m. The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 =  0.86 and RMSE  =  0.04 m3 m−3. It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  13. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    Science.gov (United States)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  14. Potential Long-Term Records of Surface Albedo at Fine Spatiotemporal Resolution from Landsat/Sentinle-2A Surface Reflectance and MODIS/VIIRS BRDF

    Science.gov (United States)

    Li, Z.; Schaaf, C.; Shuai, Y.; Liu, Y.; Sun, Q.; Erb, A.; Wang, Z.

    2016-12-01

    The land surface albedo products at fine spatial resolutions are generated by coupling surface reflectance (SR) from Landsat (30 m) or Sentinel-2A (20 m) with concurrent surface anisotropy information (the Bidirectional Reflectance Distribution Function - BRDF) at coarser spatial resolutions from sequential multi-angular observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) or its successor, the Visible Infrared Imaging Radiometer Suite (VIIRS). We assess the comparability of four types of fine-resolution albedo products (black-sky and white-sky albedos over the shortwave broad band) generated by coupling, (1) Landsat-8 Optical Land Imager (OLI) SR with MODIS BRDF; (2) OLI SR with VIIRS BRDF; (3) Sentinel-2A MultiSpectral Instrument (MSI) SR with MODIS BRDF; and (4) MSI SR with VIIRS BRDF. We evaluate the accuracy of these four types of fine-resolution albedo products using ground tower measurements of surface albedo over six SURFace RADiation Network (SURFRAD) sites in the United States. For comparison with the ground measurements, we estimate the actual (blue-sky) albedo values at the six sites by using the satellite-based retrievals of black-sky and white-sky albedos and taking into account the proportion of direct and diffuse solar radiation from the ground measurements at the sites. The coupling of the OLI and MSI SR with MODIS BRDF has already been shown to provide accurate fine-resolution albedo values. With demonstration of a high agreement in BRDF products from MODIS and VIIRS, we expect to see consistency between all four types of fine-resolution albedo products. This assurance of consistency between the couplings of both OLI and MSI with both MODIS and VIIRS guarantees the production of long-term records of surface albedo at fine spatial resolutions and an increased temporal resolution. Such products will be critical in studying land surface changes and associated surface energy balance over the dynamic and heterogeneous landscapes

  15. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-01

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.

  16. An experimental investigation of the reflection of low energy electrons from surfaces of 2H-MoS2

    International Nuclear Information System (INIS)

    Komolov, S.A.; Chadderton, L.T.

    1978-01-01

    Experiments are described in which a new technique - total current spectroscopy (TCS) - has been used to investigate the energy dependence of the reflection of low energy electrons from clean surfaces of the naturally occuring mineral molybdenite (2H-MoS 2 ). A theory involving both elastic and inelastic scattering of electrons is applied to a band structure calculated for molybdenite by Mattheiss. With relatively few approximations the results of numerical calculations for a TCS spectrum from molybdenite agree surprisingly well with experiment. It is suggested that TCS will prove to be a convenient and sensitive tool for the probing of energy structures in other solid surfaces. For the transition metal dichalcogenide series it should be possible to observe systematic changes in TCS spectra associated with changes in band structure, and subsequently to predict details in the density of states distributions using iterative computer procedures. (Auth.)

  17. Formulating and testing a method for perturbing precipitation time series to reflect anticipated climatic changes

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Georgiadis, Stylianos; Gregersen, Ida Bülow

    2017-01-01

    Urban water infrastructure has very long planning horizons, and planning is thus very dependent on reliable estimates of the impacts of climate change. Many urban water systems are designed using time series with a high temporal resolution. To assess the impact of climate change on these systems......, similarly high-resolution precipitation time series for future climate are necessary. Climate models cannot at their current resolutions provide these time series at the relevant scales. Known methods for stochastic downscaling of climate change to urban hydrological scales have known shortcomings...... in constructing realistic climate-changed precipitation time series at the sub-hourly scale. In the present study we present a deterministic methodology to perturb historical precipitation time series at the minute scale to reflect non-linear expectations to climate change. The methodology shows good skill...

  18. Registration of T-2 mycotoxin with total internal reflection ellipsometry and QCM impedance methods.

    Science.gov (United States)

    Nabok, A V; Tsargorodskaya, A; Holloway, A; Starodub, N F; Gojster, O

    2007-01-15

    A sensitive optical method of total internal reflection ellipsometry (TIRE) in conjunction with immune assay approach was exploited for the registration of T-2 mycotoxin in a wide range of concentrations from 100 microg/ml down to 0.15 ng/ml. Association constants of 1.4x10(6) and 1.9x10(7)mol(-1)s for poly- and monoclonal T-2 antibodies, respectively, were evaluated from TIRE kinetic measurements. According to TIRE data fitting, binding of T-2 molecules to antibodies (at saturation) has resulted in the increase in adsorbed layer thickness of 4-5 nm. The QCM impedance measurements data showed anomalously large mass increase and film softening, most likely, due to the binding of large T-2 aggregates to antibodies.

  19. Specific surface area evaluation method by using scanning electron microscopy

    International Nuclear Information System (INIS)

    Petrescu, Camelia; Petrescu, Cristian; Axinte, Adrian

    2000-01-01

    Ceramics are among the most interesting materials for a large category of applications, including both industry and health. Among the characteristic of the ceramic materials, the specific surface area is often difficult to evaluate.The paper presents a method of evaluation for the specific surface area of two ceramic powders by means of scanning electron microscopy measurements and an original method of computing the specific surface area.Cumulative curves are used to calculate the specific surface area under assumption that the values of particles diameters follow a normal logarithmic distribution. For two powder types, X7R and NPO the results are the following: - for the density ρ (g/cm 2 ), 5.5 and 6.0, respectively; - for the average diameter D bar (μm), 0.51 and 0.53, respectively; - for σ, 1.465 and 1.385, respectively; - for specific surface area (m 2 /g), 1.248 and 1.330, respectively. The obtained results are in good agreement with the values measured by conventional methods. (authors)

  20. Diffusion accessibility as a method for visualizing macromolecular surface geometry.

    Science.gov (United States)

    Tsai, Yingssu; Holton, Thomas; Yeates, Todd O

    2015-10-01

    Important three-dimensional spatial features such as depth and surface concavity can be difficult to convey clearly in the context of two-dimensional images. In the area of macromolecular visualization, the computer graphics technique of ray-tracing can be helpful, but further techniques for emphasizing surface concavity can give clearer perceptions of depth. The notion of diffusion accessibility is well-suited for emphasizing such features of macromolecular surfaces, but a method for calculating diffusion accessibility has not been made widely available. Here we make available a web-based platform that performs the necessary calculation by solving the Laplace equation for steady state diffusion, and produces scripts for visualization that emphasize surface depth by coloring according to diffusion accessibility. The URL is http://services.mbi.ucla.edu/DiffAcc/. © 2015 The Protein Society.

  1. Surface topography to reflectivity mapping in two-dimensional photonic crystals designed in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Husanu, M.A.; Ganea, C.P. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania); Anghel, I. [National Institute for Laser, Plasma & Radiation Physics, Atomistilor 409, 077125 Magurele (Romania); University of Bucharest, Faculty of Physics, Atomistilor 405, 077125 Magurele (Romania); Florica, C.; Rasoga, O. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania); Popescu, D.G., E-mail: dana.popescu@infim.ro [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania)

    2015-11-15

    Highlights: • Laser ablation is used for drilling a periodic 2D photonic structure. • Confinement of radiation is revealed by infra-red spectromicroscopy correlated with numerical calculations. • Telecommunication range is accessible upon tuning conveniently the processing parameters. - Abstract: Light confinement in a two dimensional photonic crystal (2D PhC) with hexagonal symmetry is studied using infra-red reflectance spectromicroscopy and numerical calculations. The structure has been realized by laser ablation, using a pulsed laser (λ = 775 nm), perforating an In-doped Ge wafer and creating a lattice of holes with well-defined symmetry. Correlating the spectral signature of the photonic gaps recorded experimentally with the results obtained in the finite difference time domain and finite difference frequency domain calculations, we established the relationship between the geometric parameters of the structure (lattice constants, shape of the hole) and its efficiency in trapping and guiding the radiation in a well-defined frequency range. Besides the gap in the low energy range of transversal electric modes, a second one is identified in the telecommunication range, originating in the localization of the leaky modes within the radiation continuum. The emerging picture is of a device with promising characteristics as an alternative to Si-based technology in photonic device fabrication with special emphasize in energy storage and conversion.

  2. Method and Apparatus for Creating a Topography at a Surface

    Science.gov (United States)

    Adams, David P.; Sinclair, Michael B.; Mayer, Thomas M.; Vasile, Michael J.; Sweatt, William C.

    2008-11-11

    Methods and apparatus whereby an optical interferometer is utilized to monitor and provide feedback control to an integrated energetic particle column, to create desired topographies, including the depth, shape and/or roughness of features, at a surface of a specimen. Energetic particle columns can direct energetic species including, ions, photons and/or neutral particles to a surface to create features having in-plane dimensions on the order of 1 micron, and a height or depth on the order of 1 nanometer. Energetic processes can include subtractive processes such as sputtering, ablation, focused ion beam milling and, additive processes, such as energetic beam induced chemical vapor deposition. The integration of interferometric methods with processing by energetic species offers the ability to create desired topographies at surfaces, including planar and curved shapes.

  3. Multi-phase-field method for surface tension induced elasticity

    Science.gov (United States)

    Schiedung, Raphael; Steinbach, Ingo; Varnik, Fathollah

    2018-01-01

    A method, based on the multi-phase-field framework, is proposed that adequately accounts for the effects of a coupling between surface free energy and elastic deformation in solids. The method is validated via a number of analytically solvable problems. In addition to stress states at mechanical equilibrium in complex geometries, the underlying multi-phase-field framework naturally allows us to account for the influence of surface energy induced stresses on phase transformation kinetics. This issue, which is of fundamental importance on the nanoscale, is demonstrated in the limit of fast diffusion for a solid sphere, which melts due to the well-known Gibbs-Thompson effect. This melting process is slowed down when coupled to surface energy induced elastic deformation.

  4. Temperature sensitive surfaces and methods of making same

    Science.gov (United States)

    Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA

    2002-09-10

    Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.

  5. Localized surface plasmon resonance mercury detection system and methods

    Science.gov (United States)

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  6. Direct methods for surface X-ray diffraction

    International Nuclear Information System (INIS)

    Saldin, D. K.; Harder, R.; Shneerson, V. L.; Vogler, H.; Moritz, W.

    2000-01-01

    We develop of a direct method for surface X-ray diffraction that exploits the holographic feature of a known reference wave from the substrate. A Bayesian analysis of the optimal inference to be made from an incomplete data set suggests a maximum entropy algorithm that balances agreement with the data and other statistical considerations

  7. Response surface method to optimize the low cost medium for ...

    African Journals Online (AJOL)

    A protease producing Bacillus sp. GA CAS10 was isolated from ascidian Phallusia arabica, Tuticorin, Southeast coast of India. Response surface methodology was employed for the optimization of different nutritional and physical factors for the production of protease. Plackett-Burman method was applied to identify ...

  8. Surface sterilization method for reducing microbial contamination of ...

    African Journals Online (AJOL)

    An effective disinfection method for strawberry (Fragaria x ananassa Duch.) cv. Senga Sengana micropropagation using runner tips and nodal segments as explants was developed. The explants were surface sterilized with different sterilants for different durations. The present studies on the effect of different regimes of ...

  9. Assessment methods of injection moulded nano-patterned surfaces

    DEFF Research Database (Denmark)

    Menotti, S.; Bisacco, G.; Hansen, H. N.

    2014-01-01

    algorithm for feature recognition. To compare the methods, the mould insert and a number of replicated nano-patterned surfaces, injection moulded with an induction heating aid, were measured on nominally identical locations by means of an atomic force microscope mounted on a manual CMM....

  10. Surface zwitterionization: Effective method for preventing oral bacterial biofilm formation on hydroxyapatite surfaces

    Science.gov (United States)

    Lee, Myoungjin; Kim, Heejin; Seo, Jiae; Kang, Minji; Kang, Sunah; Jang, Joomyung; Lee, Yan; Seo, Ji-Hun

    2018-01-01

    In this study, we conducted surface zwitterionization of hydroxyapatite (HA) surfaces by immersing them in the zwitterionic polymer solutions to provide anti-bacterial properties to the HA surface. Three different monomers containing various zwitterionic groups, i.e., phosphorylcholine (PC), sulfobetaine (SB), and carboxybetaine (CB), were copolymerized with the methacrylic monomer containing a Ca2+-binding moiety, using the free radical polymerization method. As a control, functionalization of the copolymer containing the Ca2+-binding moiety was synthesized using a hydroxy group. The stable immobilization of the zwitterionic functional groups was confirmed by water contact angle analysis and X-ray photoelectron spectroscopy (XPS) measurement conducted after the sonication process. The zwitterionized HA surface showed significantly decreased protein adsorption, whereas the hydroxyl group-coated HA surface showed limited efficacy. The anti-bacterial adhesion property was confirmed by conducting Streptococcus mutans (S. mutans) adhesion tests for 6 h and 24 h. When furanone C-30, a representative anti-quorum sensing molecule for S. mutans, was used, only a small amount of bacteria adhered after 6 h and the population did not increase after 24 h. In contrast, zwitterionized HA surfaces showed almost no bacterial adhesion after 6 h and the effect was retained for 24 h, resulting in the lowest level of oral bacterial adhesion. These results confirm that surface zwitterionization is a promising method to effectively prevent oral bacterial adhesion on HA-based materials.

  11. A novel test method for quantifying surface tack of polypropylene compound surfaces

    Directory of Open Access Journals (Sweden)

    2011-11-01

    Full Text Available While adhesiveness is required for polymer surfaces in special applications, tacky surfaces are generally undesirable in many applications like automotive interior parts. The tackiness of polymer surface results from a combination of composition and additivation, and it can change significantly in natural or accelerated ageing. Since there is no established, uniform method to characterize surface tack, the major focus of the present work was on the development of an objective quantification method. A setup having a soft die tip attached to a standard tensile tester was developed aiming for correlation to the human sense of touch. Three different model thermoplastic polyolefin (TPO compound formulations based on a high-impact isotactic polypropylene (iPP composition with varying amounts and types of anti-scratch additives were used for these investigations. As the surface tack phenomenon is related to ageing and weathering, the material’s examination was also performed after various intervals of weathering. The developed method allows a fast assessment of the effect of polymer composition variations and different additive formulations on surface tack and gives identical rankings as the standardized haptic panel.

  12. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  13. Surface reflectance and conversion efficiency dependence of technologies for mitigating global warming

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd., 12 Lentara St, Kenmore, Brisbane 4069 (Australia); Smith, Geoff [Physics and Advanced Materials, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007 (Australia)

    2011-05-15

    A means of assessing the relative impact of different renewable energy technologies on global warming has been developed. All power plants emit thermal energy to the atmosphere. Fossil fuel power plants also emit CO{sub 2} which accumulates in the atmosphere and provides an indirect increase in global warming via the greenhouse effect. A fossil fuel power plant may operate for some time before the global warming due to its CO{sub 2} emission exceeds the warming due to its direct heat emission. When a renewable energy power plant is deployed instead of a fossil fuel power plant there may be a significant time delay before the direct global warming effect is less than the combined direct and indirect global warming effect from an equivalent output coal fired plant - the ''business as usual'' case. Simple expressions are derived to calculate global temperature change as a function of ground reflectance and conversion efficiency for various types of fossil fuelled and renewable energy power plants. These expressions are used to assess the global warming mitigation potential of some proposed Australian renewable energy projects. The application of the expressions is extended to evaluate the deployment in Australia of current and new geo-engineering and carbon sequestration solutions to mitigate global warming. Principal findings are that warming mitigation depends strongly on the solar to electric conversion efficiency of renewable technologies, geo-engineering projects may offer more economic mitigation than renewable energy projects and the mitigation potential of reforestation projects depends strongly on the location of the projects. (author)

  14. Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate

    Science.gov (United States)

    Tormann, Theresa; Wiemer, Stefan; Metzger, Sabrina; Michael, Andrew J.; Hardebeck, Jeanne L.

    2013-01-01

    The nucleation area of the series of M6 events in Parkfield has been shown to be characterized by low b-values throughout the seismic cycle. Since low b-values represent high differential stresses, the asperity structure seems to be always stably stressed and even unaffected by the latest main shock in 2004. However, because fault loading rates and applied shear stress vary with time, some degree of temporal variability of the b-value within stable blocks is to be expected. We discuss in this study adequate techniques and uncertainty treatment for a detailed analysis of the temporal evolution of b-values. We show that the derived signal for the Parkfield asperity correlates with changes in surface creep, suggesting a sensitive time resolution of the b-value stress meter, and confirming near-critical loading conditions within the Parkfield asperity.

  15. Neutron reflectivity

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples and two examples related to the materials for energy.

  16. Accounting for surface reflectance in the derivation of vertical column densities of NO2 from airborne imaging DOAS

    Science.gov (United States)

    Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.

    2016-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in

  17. An analytical two-flow model to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance

    Science.gov (United States)

    Ma, Wei-Ming

    1997-06-01

    An analytical two-flow model is derived from the radiative transfer equation to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance. The model utilizes unique boundary conditions, including the surface slope of the downwelling and upwelling irradiance as well as the influence of wind and bottom reflectance on simulated surface reflectance. The developed model provides a simple mathematical concept for understanding the irradiant light flux and associated processes in coastal or fresh water as well as turbid estuarine waters. The model is applied to data from the Banana River and coastal Atlantic Ocean water off the east coast of central Florida, USA. The two-flow irradiance model is capable of simulating realistic above-surface reflectance signatures under wind-roughened air-water surface given realistic input parameters including a specular flux conversion coefficient, absorption coefficient, backscattering coefficient, atmospheric visibility, bottom reflectance, and water depth. The root-mean-squared error of the calculated above-surface reflectances is approximately 3% in the Banana River and is less than 15% in coastal Atlantic Ocean off the east of Florida. Result of the subsurface reflectance sensitivity analysis indicates that the specular conversion coefficient is the most sensitive parameter in the model, followed by the beam attenuation coefficient, absorption coefficient, water depth, backscattering coefficient, specular irradiance, diffuse irradiance, bottom reflectance, and wind speed. On the other hand, result of the above-surface reflectance sensitivity analysis indicates that the wind speed is the most important parameter, followed by bottom reflectance, attenuation coefficient, water depth, conversion coefficient, specular irradiance, downwelling irradiance, absorption coefficient, and backscattering coefficient. Model results depend on the accuracy of these parameters to a large degree and

  18. System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber

    Science.gov (United States)

    Moore, Jason P. (Inventor)

    2009-01-01

    A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.

  19. The method of synthesizing of superhydrophobic surfaces by PECVD

    Science.gov (United States)

    Orazbayev, Sagi; Gabdullin, Maratbek; Ramazanov, Tlekkabul; Dosbolayev, Merlan; Zhunisbekov, Askar; Omirbekov, Dulat; Otarbay, Zhuldyz

    2018-03-01

    The aim of this work was to obtain superhydrophobic surfaces in a plasma medium. The experiment was carried out using the PECVD method in two different modes: constant and pulsing. The surface roughness was obtained by applying nanoparticles synthesized in plasma in a mixture of argon and methane. The resulting particles were deposited on the surface of silicon and glass materials. The contact angle increased linearly depending on the number of cycles, until it reached 160° at 150-160th cycles, after that the increase in cycles does not affect the contact angle, since the saturation process is in progress. Also the effect of the working gas composition on the hydrophobicity of the surface was studied. At low concentrations of methane (1%) only particles are synthesized in the working gas, and hydrophobicity is unstable, with an increase in methane concentration (7%) nanofilms are synthesized from nanoclusters, and surface hydrophobicity is relatively stable. In addition, a pulsing plasma mode was used to obtain superhydrophobic surfaces. The hydrophobicity of the sample showed that the strength of the nanofilm was stable in comparison with the sample obtained in the first mode, but the contact angle was lower. The obtained samples were examined using SEM, SPM, optical analysis, and their contact angles were determined.

  20. Use of total internal reflection Raman (TIR) and attenuated total reflection infrared (ATR-IR) spectroscopy to analyze component separation in thin offset ink films after setting on coated paper surfaces.

    Science.gov (United States)

    Kivioja, Antti; Hartus, Timo; Vuorinen, Tapani; Gane, Patrick; Jääskeläinen, Anna-Stiina

    2013-06-01

    The interactive behavior of ink constituents with porous substrates during and after the offset print process has an important effect on the quality of printed products. To help elucidate the distribution of ink components between the retained ink layer and the substrate, a variety of spectroscopic and microscopic analysis techniques have been developed. This paper describes for the first time the use of total internal reflection (TIR) Raman spectroscopy to analyze the penetration behavior of separated offset ink components (linseed oil, solid color pigment) in coated papers providing chemically intrinsic information rapidly, nondestructively, and with minimal sample preparation. In addition, the already widely applied technique of attenuated total reflection infrared spectroscopy (ATR-IR) was evaluated in parallel and compared. The results of the ATR-IR Raman clearly revealed an improvement in uppermost depth resolution compared with values previously published from other nondestructive techniques, and the method is shown to be capable of providing new knowledge of the setting of thin (0.25-2 μm) offset ink films, allowing the spreading and the penetration behavior on physically different paper coating surfaces to be studied.

  1. Advances in the Surface Renewal Flux Measurement Method

    Science.gov (United States)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  2. A Method of Drusen Measurement Based on the Geometry of Fundus Reflectance

    Directory of Open Access Journals (Sweden)

    Barbazetto Irene

    2003-04-01

    Full Text Available Abstract Background The hallmarks of age-related macular degeneration, the leading cause of blindness in the developed world, are the subretinal deposits known as drusen. Drusen identification and measurement play a key role in clinical studies of this disease. Current manual methods of drusen measurement are laborious and subjective. Our purpose was to expedite clinical research with an accurate, reliable digital method. Methods An interactive semi-automated procedure was developed to level the macular background reflectance for the purpose of morphometric analysis of drusen. 12 color fundus photographs of patients with age-related macular degeneration and drusen were analyzed. After digitizing the photographs, the underlying background pattern in the green channel was leveled by an algorithm based on the elliptically concentric geometry of the reflectance in the normal macula: the gray scale values of all structures within defined elliptical boundaries were raised sequentially until a uniform background was obtained. Segmentation of drusen and area measurements in the central and middle subfields (1000 μm and 3000 μm diameters were performed by uniform thresholds. Two observers using this interactive semi-automated software measured each image digitally. The mean digital measurements were compared to independent stereo fundus gradings by two expert graders (stereo Grader 1 estimated the drusen percentage in each of the 24 regions as falling into one of four standard broad ranges; stereo Grader 2 estimated drusen percentages in 1% to 5% intervals. Results The mean digital area measurements had a median standard deviation of 1.9%. The mean digital area measurements agreed with stereo Grader 1 in 22/24 cases. The 95% limits of agreement between the mean digital area measurements and the more precise stereo gradings of Grader 2 were -6.4 % to +6.8 % in the central subfield and -6.0 % to +4.5 % in the middle subfield. The mean absolute

  3. Continuum damage mechanics method for fatigue growth of surface cracks

    International Nuclear Information System (INIS)

    Feng Xiqiao; He Shuyan

    1997-01-01

    With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth

  4. The new fabrication method of standard surface sources

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yasushi E-mail: yss.sato@aist.go.jp; Hino, Yoshio; Yamada, Takahiro; Matsumoto, Mikio

    2004-04-01

    We developed a new fabrication method for standard surface sources by using an inkjet printer with inks in which a radioactive material is mixed to print on a sheet of paper. Three printed test patterns have been prepared: (1) 100 mmx100 mm uniformity-test patterns, (2) positional-resolution test patterns with different widths and intervals of straight lines, and (3) logarithmic intensity test patterns with different radioactive intensities. The results revealed that the fabricated standard surface sources had high uniformity, high positional resolution, arbitrary shapes and a broad intensity range.

  5. Rawls’s Wide Reflective Equilibrium as a Method for Engaged Interdisciplinary Collaboration

    Science.gov (United States)

    Taebi, Behnam

    2017-01-01

    The introduction of new technologies in society is sometimes met with public resistance. Supported by public policy calls for “upstream engagement” and “responsible innovation,” recent years have seen a notable rise in attempts to attune research and innovation processes to societal needs, so that stakeholders’ concerns are taken into account in the design phase of technology. Both within the social sciences and in the ethics of technology, we see many interdisciplinary collaborations being initiated that aim to address tensions between various normative expectations about science and engineering and the actual outcomes. However, despite pleas to integrate social science research into the ethics of technology, effective normative models for assessing technologies are still scarce. Rawls’s wide reflective equilibrium (WRE) is often mentioned as a promising approach to integrate insights from the social sciences in the normative analysis of concrete cases, but an in-depth discussion of how this would work in practice is still lacking. In this article, we explore to what extent the WRE method can be used in the context of technology development. Using cases in engineering and technology development, we discuss three issues that are currently neglected in the applied ethics literature on WRE. The first issue concerns the operationalization of abstract background theories to moral principles. The second issue concerns the inclusiveness of the method and the demand for openness. The third issue is how to establish whether or not an equilibrium has been reached. These issues should be taken into account when applying the methods to real-world cases involving technological risks. Applying the WRE method in the context of engaged interdisciplinary collaboration requires sensitivity for issues of power and representativeness to properly deal with the dynamics between the technical and normative researchers involved as well as society at large. PMID:29657348

  6. 3D registration method for assessing the gastrointestinal motility using spectral reflectance estimation

    Science.gov (United States)

    Nobe, Kazuki; Yoshimoto, Kayo; Yamada, Kenji; Takahashi, Hideya

    2018-02-01

    Functional gastrointestinal disorders (FGID) are the most common gastrointestinal disorders. The term "functional" is generally applied to disorders where there are no structural abnormalities. One of the major factors for FGID is abnormal gastrointestinal motility. We have proposed a system for assessing the function of gastric motility using a 3D endoscope. In this previous study, we established a method for estimating characteristics of contraction wave extracted from a 3D shape include contraction wave obtained from stereo endoscope. Because it is difficult to fix the tip position of the endoscope during the examination, estimation of the 3D position between the endoscope and the gastric wall is necessary for the accurate assessment. Then, we have proposed a motion compensation method using 3D scene flow. However, since mucosa has few feature points, it is difficult to obtain 3D scene flow from RGB images. So, we focused on spectral imaging that can enhance visualization of mucosal structure. Spectral image can be obtained without switching optical filters by using technique to estimate spectral reflectance by image processing. In this paper, we propose registration method of measured 3D shape in time series using estimated spectral image. The spectral image is estimated from the RGB image for each frame. 3D scene flow of feature points, that is, enhanced mucosal structure calculated by spectral images in a time series. The position change between the endoscope and gastric wall is estimated by 3D scene flow. We experimented to confirm the validity of the proposed method using papers with a grid of colors close to the background color.

  7. Spatial distribution of reflection intensity of the upper surface of the Philippine Sea plate, near the main slip area of the Boso Slow Slip Events

    Science.gov (United States)

    Kono, A.; Sato, T.; Shinohara, M.; Mochizuki, K.; Yamada, T.; Uehira, K.; Shimbo, T.; Machida, Y.; Hino, R.; Azuma, R.

    2017-12-01

    Off the Boso Peninsula, Japan, the Pacific plate (PAC) is subducting westward beneath the Honshu Island Arc (HIA) and the Philippine Sea plate (PHS), while the PHS is subducting northwestward under the HIA. Such tectonic interactions have caused various seismic events such as the Boso Slow Slip Events (SSEs). To better understand these seismic events, it is important to determine the structure under this region. In May 2017, we published 2D P-wave velocity structure under the survey area, and showed geometry of the upper surface of PHS (UPHS) and reflection intensity variation along it. From our result and previous studies, relatively strong reflection from the UPHS can be observed near the main slip area of Boso SSEs, and such reflective area may relate with the Boso SSEs. However, it is still insufficient to link both only from the 2D models and further work is needed to reveal spatial distribution of the strong reflection area. From July to August 2009, we conducted a marine seismic experiment using airgun as source off the east coast of the Boso Peninsula. Airgun was shot along the 4 survey lines, and 27 Ocean Bottom Seismometers (OBSs) were deployed in the survey area. In our presentation, we used 18 OBSs to determine 3D P-wave velocity structure. We estimated 3D velocity structure from airgun data recorded in the OBSs by using the FAST (Zelt and Barton, 1998). Next, we picked the reflection traveltimes likely reflected from the UPHS and applied them to the Traveltime mapping method (Fujie et al. 2006) to estimate spatial locations of the reflectors. As a result, reflections from the UPHS seem to concentrate near the main slip area of the Boso SSEs and an area where the serpentine seamount chain of the Izu-Bonin subduction zone is subducting. Acknowledgement The marine seismic experiment was conducted by R/V Hakuhou-maru of Japan Agency for Marine-Earth Science and Technology, and the OBSs were retrieved by Shincho-maru of Shin-Nihon-Kaiji co. Ltd. (Present

  8. Using the Surface Reflectance MODIS Terra Product to Estimate Turbidity in Tampa Bay, Florida

    OpenAIRE

    Douglas L. Rickman; Frank E. Muller-Karger; Max J. Moreno-Madrinan; Mohammad Z. Al-Hamdan

    2010-01-01

    Turbidity is a commonly-used index of the factors that determine light penetration in the water column. Consistent estimation of turbidity is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Traditional methods monitoring fixed geographical locations at fixed intervals may not be representative of the mean water turbidity in estuaries between intervals, and can be expensive and time con...

  9. Noninvasive method for the assessment of dermal uptake of pesticides using attenuated total reflectance infrared spectroscopy.

    Science.gov (United States)

    Carden, Angela; Yost, Michael G; Fenske, Richard A

    2005-03-01

    Dermal absorption of pesticides is a primary exposure route for agricultural workers, but is not well characterized. Current measurement techniques are either invasive, such as tape-stripping, or require extensive sample preparation or analysis time, such as urinary metabolite monitoring or wipe sampling followed by gas chromatography analysis. We present the application of a noninvasive, spectroscopic approach for the measurement of pesticide absorption into skin. Attenuated total reflectance infrared spectroscopy (ATR-IR) was used to monitor directly the absorption of two pesticides--captan and azinphos-methyl--in ten volunteers over 20 min under occlusive conditions. We found substantial variability in absorption across subjects. Our results were comparable to those measured by the more traditional method of wipe-sampling followed by extraction and gas chromatography analysis. Multivariate data analysis, in the form of multivariate curve resolution (MCR), is a novel addition to this type of experiment, yielding time-resolved information unachievable by standard methods. These data are potentially more informative than the monitoring of blood or urinary metabolites because they can be acquired in essentially real-time, allowing observations of pesticide absorption on a rapid timescale rather than over hours or days.

  10. Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges

    Science.gov (United States)

    Sunderland, Zofia; Patorski, Krzysztof

    2015-09-01

    When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.

  11. A density gradient theory based method for surface tension calculations

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2016-01-01

    The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...

  12. Simulating condensation on microstructured surfaces using Lattice Boltzmann Method

    Science.gov (United States)

    Alexeev, Alexander; Vasyliv, Yaroslav

    2017-11-01

    We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.

  13. Variability in surface infrared reflectance of thirteen nitrile rubber gloves at key wavelengths for analysis of captan.

    Science.gov (United States)

    Phalen, R N; Que Hee, Shane S

    2007-02-01

    The aim of this study was to investigate the surface variability of 13 powder-free, unlined, and unsupported nitrile rubber gloves using attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectrophotometry at key wavelengths for analysis of captan contamination. The within-glove, within-lot, and between-lot variability was measured at 740, 1124, 1252, and 1735 cm(-1), the characteristic captan reflectance minima wavelengths. Three glove brands were assessed after conditioning overnight at relative humidity (RH) values ranging from 2 +/- 1 to 87 +/- 4% and temperatures ranging from -8.6 +/- 0.7 to 59.2 +/- 0.9 degrees C. For all gloves, 1735 cm(-1) provided the lowest background absorbance and greatest potential sensitivity for captan analysis on the outer glove surface: absorbances ranged from 0.0074 +/- 0.0005 (Microflex) to 0.0195 +/- 0.0024 (SafeSkin); average within-glove coefficients of variation (CV) ranged from 2.7% (Best, range 0.9-5.3%) to 10% (SafeSkin, 1.2-17%); within-glove CVs greater than 10% were for one brand (SafeSkin); within-lot CVs ranged from 2.8% (Best N-Dex) to 28% (SafeSkin Blue); and between-lot variation was statistically significant (p < or = 0.05) for all but two SafeSkin lots. The RH had variable effects dependent on wavelength, being minimal at 1735, 1252, and 1124 cm(-1) and highest at 3430 cm(-1) (O-H stretch region). There was no significant effect of temperature conditioning. Substantial within-glove, within-lot, and between-lot variability was observed. Thus, surface analysis using ATR-FT-IR must treat glove brands and lots as different. ATR-FT-IR proved to be a useful real-time analytical tool for measuring glove variability, detecting surface humidity effects, and choosing selective and sensitive wavelengths for analysis of nonvolatile surface contaminants.

  14. Definition of a critical confining zone using surface geophysical methods

    International Nuclear Information System (INIS)

    Eddy-Dilek, C.A.; Looney, B.B.; Hoekstra, P.; Harthill, N.; Blohm, M.; Phillips, D.R.

    1997-01-01

    Definition of the hydrologic framework in layered sediments of fluvial and deltaic origin is a difficult challenge for environmental characterization and remediation programs due to the lithologic and stratigraphic heterogeneities inherent in these settings. The authors set out to use complementary geophysical surveys to determine the nature and extent of a deep confining unit at the Savannah River Site, South Carolina. Time Domain Electromagnetic (TDEM) soundings were used to define the electrical conductance of the clayey confining unit (aquitard), and shear-wave reflection seismic was used to define the stratigraphic framework. Based on correlations with borehole geophysical logs and sieve data, the shear-wave seismic proved capable of defining relatively fine layering in the coastal plain sediments, the upper and lower surfaces of a critical confining unit, and erosional features on the surface of the confining unit. The TDEM surveys defined the presence or absence of the clay facies of the confining unit. Moreover, by constraining the interpretation of the TDEM data with the thickness of the confining unit derived from the seismic data, the authors mapped the extent of the unit, showing where the clay is thicker, where it probably was never deposited, and where it was eroded by downcutting channels. These results have significant implications on the design and optimization of remedial systems

  15. A surface refractive index scanning system and method

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a surface refractive index scanning system for characterization of a sample. The system comprises a grating device for holding or receiving the sample, the device comprising at least a first grating region having a first grating width along a transverse direction, and a s......The invention relates to a surface refractive index scanning system for characterization of a sample. The system comprises a grating device for holding or receiving the sample, the device comprising at least a first grating region having a first grating width along a transverse direction...... a grating period Λ2 in the longitudinal direction, where the longitudinal direction is orthogonal to the transverse direction. A grating period spacing ΔΛ = Λ1 - Λ2 is finite. Further, the first and second grating periods are chosen to provide optical resonances for light respectively in a first...... wavelength band and a second wavelength band, light is being emitted, transmitted, or reflected in an out-of-plane direction, wherein the first wavelength band and the second wavelength band are at least partially non-overlapping in wavelength. The system further comprises a light source for illuminating...

  16. Does the MUNIX Method Reflect Clinical Dysfunction in Amyotrophic Lateral Sclerosis: A Practical Experience.

    Science.gov (United States)

    Gawel, Malgorzata; Kuzma-Kozakiewicz, Magdalena

    2016-05-01

    The aim of our study was to assess the usefulness of the MUNIX method in reflecting the clinical dysfunction in patients with amyotrophic lateral sclerosis (ALS), as well as to assess an intra-rater reproducibility of MUNIX. The study group consisted of a total of 15 ALS patients. The mean age of symptoms onset was 55 years, and the mean disease duration was 10 months. The muscle strength and patients' functional status were assessed according to the Medical Research Council (MRC) and by ALS functional rating scale revised (ALSFRS-R), respectively. The MUNIX was performed in 6 muscles: abductor pollicis brevis (APB), abductor digiti minimi (ADM), biceps brachii (BB), tibial anterior (TA), extensor digitorum brevis (EDB), and abductor hallucis (AH), unilaterally, at a less affected side. Both muscle-specific and global MRC and MUNIX scores were calculated. In 11 patients, the study protocol was repeated at least twice every 3 months. An additional testing of the intra-rater reliability was performed at the first visit.There were no significant differences between MUNIX test and re-test values in the APB, ADM, BB, TA, EDB, and AH muscles (P >0.05). The highest variability of the test-retest values was found in the BB muscle (7.53%). Although there was a significant test-retest difference in the global MUNIX score (P = 0.02), the variability of the results was as low as 1.26%. The MUNIX value correlated with the muscle-specific MRC score in ABP, ADM, TA, EDB and AH (P <0.05), and the global MUNIX values correlated with global MRC scores (P <0.05). There was also a significant correlation between the global MUNIX score and the clinical dysfunction measured by the ALSFRS-R scale (P <0.05). The global MUNIX showed a higher monthly decline (4.3%) as compared with ALFRS-R (0.7%) and the MRC global score (0.5%).This study confirms that the MUNIX method is a sensitive, reliable, and accurate tool reflecting both motor dysfunction and disease progression in ALS

  17. Full surface inspection methods regarding reinforcement corrosion of concrete structures

    International Nuclear Information System (INIS)

    Reichling, K.; Raupach, M.; Broomfield, J.; Gulikers, J.; L'Hostis, Valerie

    2013-01-01

    For reinforced concrete structures a localisation of all significant critical areas can only be done by a full surface inspection. The economic advantages are obvious: uncritical areas have not to be repaired expensively.The first step of the assessment should always be a visual inspection. The range of deterioration causes can be limited and the degree of deterioration may be estimated roughly. The inspection program can be adjusted to the requirements. By means of a full surface potential mapping areas with a high risk for chloride induced reinforcement corrosion can be localised, although no deteriorations are visually detectable at the concrete surface. In combination with concrete cover depth and resistivity measurements areas with corrosion promoting exposure conditions can be localised even if the reinforcement is not yet de-passivated. The following publication gives an overview about the essential full surface investigation methods to localise critical areas regarding corrosion of steel in concrete. The selection of methods is based on the inspection procedure given in reference 2. (authors)

  18. Impact of dielectric parameters on the reflectivity of 3C–SiC wafers with a rough surface morphology in the reststrahlen region

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Janzén, E.; Henry, A.; Rooyen, I.J. van

    2014-01-01

    A layer-on-substrate model is used to obtain the infrared reflectance for 3C–SiC with a rough surface morphology. The effect of varying dielectric parameters of the “damaged layer” on the observed reflectivity of the 3C–SiC in the reststrahlen region is assessed. Different simulated reflectance spectra are obtained to those if the dielectric parameters of the “substrate” were varied. Most notable changes in the shape of the simulated reststrahlen peak are observed for changes in the high frequency dielectric constant, the phonon damping constant, the phonon frequencies and “thickness” of damaged surface layer.

  19. Impact of dielectric parameters on the reflectivity of 3C–SiC wafers with a rough surface morphology in the reststrahlen region

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.za [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Janzén, E.; Henry, A. [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Rooyen, I.J. van [Fuel Performance and Design Department, Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2014-04-15

    A layer-on-substrate model is used to obtain the infrared reflectance for 3C–SiC with a rough surface morphology. The effect of varying dielectric parameters of the “damaged layer” on the observed reflectivity of the 3C–SiC in the reststrahlen region is assessed. Different simulated reflectance spectra are obtained to those if the dielectric parameters of the “substrate” were varied. Most notable changes in the shape of the simulated reststrahlen peak are observed for changes in the high frequency dielectric constant, the phonon damping constant, the phonon frequencies and “thickness” of damaged surface layer.

  20. Thermographic method for evaluation of thermal influence of exterior surface colour of buildings

    Science.gov (United States)

    Wu, Yanpeng; Li, Deying; Jin, Rendong; Liu, Li; Bai, Jiabin; Feng, Jianming

    2008-12-01

    Architecture colour is an important part in urban designing. It directly affects the expressing and the thermal effect of exterior surface of buildings. It has proved that four factors affect the sign visibility, graphics, colour, lighting condition and age of the observers, and colour is the main aspect. The best method is to prevent the exterior space heating up in the first place, by reflecting heat away room the exterior surface.The colour of paint to coat building's exterior wall can have a huge impact on energy efficiency. While the suitable colour is essential to increasing the energy efficiency of paint colour during the warm summer months, those products also help paint colour efficiency and reduce heat loss from buildings during winter months making the interior more comfortable all year long. The article is based on analyzing the importance of architecture color design and existing urban colour design. The effect of external surface colour on the thermal behaviour of a building has been studied experimentally by Infrared Thermographic method in University of Science and technology Beijing insummer.The experimental results showed that different colour has quietly different thermal effect on the exterior surface of buildings. The thermal effect of carmine and fawn has nearly the same values. The main factor which is color express, give some suggest ting about urban color design. The investigation reveals that the use of suitable surface colour can dramatically reduce maximum the temperatures of the exterior wall. Keywords: architectural colour, thermal, thermographic